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Abstract: Elevated homocysteine (Hcy) levels are a risk factor for vascular diseases. Recently,
increases in ultraviolet radiation (UVR) have been linked to decreased Hcy levels. This relationship
may be mediated by the status of UVR-responsive vitamins, vitamin D and folate, and/or genetic
variants influencing their levels; however, this has yet to be examined. Therefore, the independent
and interactive influences of environmental UVR, vitamin D and folate levels and related genetic
variants on Hcy levels were examined in an elderly Australian cohort (n = 619). Red blood cell
folate, 25-hydroxyvitamin D (25(OH)D), and plasma Hcy levels were determined, and genotyping
for 21 folate and vitamin D-related variants was performed. Erythemal dose rate accumulated over
six-weeks (6W-EDR) and four-months (4M-EDR) prior to clinics were calculated as a measure of
environmental UVR. Multivariate analyses found interactions between 6W-EDR and 25(OH)D levels
(pinteraction = 0.002), and 4M-EDR and MTHFD1-rs2236225 (pinteraction = 0.006) in predicting Hcy
levels. The association between 6W-EDR and Hcy levels was found only in subjects within lower
25(OH)D quartiles (<33.26 ng/mL), with the association between 4M-EDR and Hcy occurring only in
subjects carrying the MTHFD1-rs2236225 variant. 4M-EDR, 6W-EDR, and MTHFD1-rs2236225 were
also independent predictors of Hcy. Findings highlight nutrient–environment and gene–environment
interactions that could influence the risk of Hcy-related outcomes.

Keywords: homocysteine; folate; vitamin D; ultraviolet radiation; genetic variant

1. Introduction

Homocysteine (Hcy) is a non-essential amino acid produced as an intermediate product in the
synthesis of methionine and cysteine. Elevated levels of Hcy (i.e., hyperhomocysteinemia) can lead
to the onset of multiple cardiovascular and neurovascular outcomes, such as atherosclerosis, stroke,
and Alzheimer’s disease [1,2]. Several genetic, dietary, and other lifestyle factors are established
determinants of Hcy status. The effects of these determinants are commonly examined in isolation;
however, interactions may exist between determinants that lead to variation in Hcy levels and
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related risk of disease, and this is understudied. Investigation into such environment–gene–nutrient
interactions in Hcy metabolism is limited but may offer new avenues in modifying Hcy and its related
risk of pathology.

An inverse relationship between folate and Hcy is well established due to the central role of folate
in converting Hcy to methionine [3,4]. Several environmental and genetic factors that regulate systemic
folate status, such as dietary intake of folate, or the MTHFR-rs1801133 (commonly MTHFR-C677T)
variant are recognised as key modulators of Hcy status. An emerging determinant of blood folate
status—ultraviolet radiation (UVR)—is also a potential modulator of Hcy. UVR exposure has been
shown to cause the breakdown of folates in vitro [5,6], and increases in UVR exposure have been
associated with a decreased folate status in several human cohort studies [6–10]. More recently,
we have reported that increases in environmental UVR levels are also associated with decreases in Hcy
levels [11]. This association is counter-intuitive given the well-known inverse relationship between
folate and Hcy levels, but it may be modulated in part by folate-related genetic factors, which require
further investigation. Previous investigation into the negative association between UVR levels and
red blood cell folate levels have found that this association was dependent on the presence of the
MTHFR-rs1801133 variant. Furthermore, the distribution of multiple folate-related polymorphisms are
linked to latitude [12] and skin phototype [13], indicating multiple folate polymorphisms that may
interact with UVR exposure and potentially modulate the relationship between UVR and Hcy levels.

The relationship between Hcy and UVR may in part be dictated by changes in vitamin D levels.
The relationship between UVR environment and vitamin D levels is well known, with vitamin D levels
also having been reported to be inversely associated with Hcy. An inverse association between blood
vitamin D and Hcy was first shown in data from the National Health and Nutrition Examination
Survey (2001–2006) [14] and has since been replicated in several observational and intervention
studies examining both healthy subjects [15,16] and subjects with Hcy-related conditions [17,18].
The mechanism by which vitamin D is linked to Hcy has not been elucidated, but likely relates to the
influences of vitamin D on cystathionine B-synthase activity, a key enzyme in the folate-independent
transsulfuration pathway that interconverts cysteine and Hcy [19]. However this relationship has only
been demonstrated in vitro [19]. Hcy may be influenced by changes in vitamin D levels, as well as
variants in related genes that influence overall vitamin D function. Multiple genes control vitamin D
synthesis, metabolism and activity, with the frequency of multiple common variants in these genes
known to vary by UVR environment and latitude [20–25].

Therefore, the aim of the present study was to further examine the negative association between
environmental UVR and Hcy status reported in an elderly Australian cohort [26], examining whether
this association is modulated by independent or interactive influences of vitamin D and/or folate levels,
and related genetic factors.

2. Materials and Methods

2.1. Subjects

This study was a secondary analysis using samples and pre-existing data from the Retirement
Health and Lifestyle Study (RHLS), a cross-sectional study examining the health and lifestyle of older
Australians (>65 years) living in the Central Coast region of NSW, Australia (n = 650) [11,26–28].
This Australian elderly cohort was an appropriate focus for this investigation and previous studies due to
Australians, in general, being exposed to high levels of environmental UVR [29], with elderly Australians
a sub-population particularly at risk of adverse UVR-related effects as biological photoprotective
factors reduce with age [30]. Briefly, subjects were eligible to be included in the initial RHLS if they
were ≥65 years and lived independently within the community or resided in retirement villages on the
Central Coast, NSW, Australia for at least the last 12 months. Subjects were ineligible if they did not
live independently, if another household member was already taking part in the study, if they had
language/communicative difficulties and/or were unable to provide informed consent. Subjects were
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eligible to be included in this secondary analysis if data was available for plasma Hcy levels (n = 619).
Subjects provided written informed consent, and ethics approval for the study was obtained from the
University of Newcastle Human Research Ethics Committee (reference no. H-2008-0431). Further
details on the original study population and design have been reported previously [11,26–28].

2.2. Blood Biochemistry; Hcy and Vitamin Levels

Fasting blood samples of subjects were collected in EDTA-lined tubes. Blood samples were stored
at −20 ◦C as whole blood, or stored at −80 ◦C as plasma or serum components in lithium heparin tubes
or tubes containing clot activator respectively. Red blood cell (RBC) folate, serum vitamin B12 and
creatinine were assessed by the Hunter Area Pathology Service via standardised assays. Total plasma
Hcy was measured by a selective fluorescence assay (JD Biotech Corp, Taipei, Taiwan; linear range
1–60 umol/L, CV < 8%) [31,32]. All samples were tested in triplicate, and control samples were
tested between batches as per manufacturer’s protocol (JD Biotech Corp, Taipei, Taiwan). Vitamin
D levels were assessed via HPLC methods as the total serum concentration of 25-hydroxyvitamin D
(25(OH)D) [33]. The detection range for this method was 9–193 ng/mL with a CV% < 10%. Method
precision and accuracy were examined for quality control via repetitive assessments of triplicates of
quality control samples prepared with different concentrations of vitamin D (20 nmol/L and 40 nmol/L
25(OH)D).

2.3. Dietary Intake, Smoking Status, and Body Mass Index

Dietary intake of subjects was estimated using a validated self-administered food frequency
questionnaire (FFQ) covering 225 food items and all food groups, with questionnaires analysed
using FoodworksTM software (V.2.10.146; Xyris Software, Brisbane, QLD, Australia). These food
frequency questionnaires were as published in previous studies [28,31] and were adapted from the
Commonwealth Scientific and Industrial Research Organisation (CSIRO) FFQ [34]. Additional intake
of nutrients via supplement use was included in calculated nutrient intakes as total dietary equivalents
when applicable. Subject dietary data was not used if FFQs were invalid, with FFQs considered invalid
if they were incomplete, or subjects reported excess (>30,000 kj/day) or deficient (<3500 kj/day) energy
consumption, or excessive consumption of a single food group (≥11 serves/day) [28,31].

The smoking status of subjects was evaluated via an interviewer-administered questionnaire and
subjects were categorised as non-smokers, ex-smokers or current smokers. Only 3% of subjects were
current smokers, and therefore current smokers and those with a history of smoking were combined
in the analyses. Subject’s body mass index (BMI (kg/m2)) was calculated using anthropometric
measures taken during clinic appointments via standard procedures [27], and subjects were classified
as underweight (BMI; <18.5), normal weight (BMI; 18.5–24.9), overweight (BMI; 25–29.9), or obese
(BMI > 30). Only 2% of subjects were classified as underweight and were considered with those of
normal BMIs in analyses.

2.4. Genotyping of Vitamin D and Folate Genetic Variants

Genomic DNA was isolated from whole blood samples using Qiagen QIAamp mini-kits
following manufacturer’s protocols for blood samples (Qiagen, Hilden, Germany). Genotypes
were assessed for 10 folate-related genetic variants (MTRR-rs1801394, MTR-rs1805087,
MTHFR-rs1801133, MTHFR-rs1801131, SHMT-rs1979277, MTHFD1-rs2236225, RFC1-rs1051266,
TYMS-rs11280056, TYMS-rs45445694, and DHFR-rs70991108) and 11 vitamin D-related variants
(GC-rs4588, CYP2R1-rs10741657, DHCR7/NADSYN1-rs12785878, CYP24A1-rs17216707, VDR-rs4516035,
VDR-rs757343, VDR-rs2228570, VDR-rs731236, VDR-rs7975232, VDR-rs11568820, and VDR-rs1544410).
These variants were selected for assessment as they are common and well-characterized variants
related to changes in vitamin status and activity (Figure 1).
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Figure 1. Examined genetic variants involved in folate and vitamin D metabolic pathways. Examined
folate-related genetic variants reside within key genes coding for the enzymes (blue) involved in three
interconnected pathways which support activities of folate in the methionine cycle, which allows for
regulation homocysteine, and pathways related to the synthesis of thymidylate (thymine precursor) and
purines. These pathways are interconnected as they rely on the same pool of reduced folates within the
cell, so disruption to any of these pathways via genetic variation can lead to changes in Hcy levels [4].
RFC1 is a carrier protein which transports circulating folates into target cells. Hcy may be regulated
through an alternative folate-independent process—the transsulfuration pathway. Hcy is converted to
cysteine in this pathway via CSE and CBS. Vitamin D is previously shown to influence CBS activity [19],
and this is the suggested mechanism, explaining previous reports of Hcy and vitamin D levels being
inversely related [15,16]. Examined vitamin D-related genetic variants reside within genes coding for
the key enzymes (red) involved in vitamin D synthesis and metabolism, which may influence vitamin
D levels and/or activity and therefore have the potential to influence vitamin D’s role in influencing Hcy
levels. Abbreviations: Folate metabolism; AICAR, 5-aminoimidazole-4-carboxamide ribonucleotide;
CBS, cystathionine beta-synthase; CSE, Cystathionine gamma-lyase; DHF, dihydrofolate; DHFR,
dihydrofolate reductase; dTMP, deoxyuridine monophosphate; dUMP, deoxyuridine monophosphate;
GAR, glycinamide ribonucleotide; Hcy, homocysteine; MAT, adenosylmethionine synthetase; Met,
methionine; MTHFD1, methylenetetrahydrofolate dehydrogenase 1; MTHFR, 5,10-methyleneTHF
reductase; MTR, methionine synthase; MTRR, methionine synthase reductase; RFC1, reduced folate
carrier gene; SAH, S-adenosyl hcy; SAHH, S-adenosylhomocysteine hydrolase; SAM, S-adenosyl
methionine; SHMT, serinehydroxymethyl transferase; THF, tetrahydrofolate; TYMS, thymidylate
synthase. Vitamin D metabolism; CYP24A1, 24-hydroxylase; CYP27B1, 1α-hydroxylase; CYP2R1,
25-hydroxylase; DBP/GC, vitamin D-binding protein; DHCR7, 7-dehydrocholesterol reductase; VDR,
vitamin D receptor. Figure created with BioRender.

Genotyping was undertaken via mixed PCR methods. The majority of variants were genotyped
following previously outlined RFLP-PCR methods [35–47]; MTRR-rs1801394, MTR-rs1805087,
MTHFR-rs1801133, MTHFR-rs1801131, SHMT-rs1979277 MTHFD1-rs2236225, RFC1-rs1051266,
TYMS-rs11280056, GC-rs4588, CYP2R1-rs10741657, VDR-rs4516035, VDR-rs757343, VDR-rs2228570,
VDR-rs731236, VDR-rs7975232, and VDR-rs1544410. Variants DHFR-rs70991108 and VDR-rs11568820
were assessed following allele-specific PCR [48,49], with TYMS-rs45445694 evaluated via PCR and gel
electrophoresis [50]. Genotyping for DHCR7/NADSYN1-rs12785878 and CYP24A1-rs17216707 were
performed through qPCR methods using Taqman genotyping assays (Assay IDs; C_32063037_10 and
C_33659702_10).
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2.5. Estimation of Environmental UVR Levels: Accumulated Area Erythemal Dose Rate

Coordinates of subjects’ reported residential location were used to gather data on erythemal
dose rate (EDR) in subject location prior to clinic appointments, gathered from NASA’s Total Ozone
Mapping Spectrometer (Accessed via https://giovanni.gsfc.nasa.gov/giovanni/). EDR is a measure
of the potential for biological damage to be caused by UVR [51]. Information was gathered for the
total amount of EDR accumulated over two time periods of interest—over the six weeks (6W-EDR)
and four months (4M-EDR) prior to the subject’s clinic appointments. 4M-EDR was assessed in a
previous investigation examining relationships between environmental UVR and Hcy and/or RBC
folate levels [11], and was chosen due to four months being the approximate lifespan of an RBC (i.e.,
relevant to RBC folate turnover), respectively. 6W-EDR was also assessed in the current study, with six
weeks being indicative of the time-lag between UVR exposure and serum 25(OH)D changes [52,53].
EDR values ranged considerably between RHLS subjects and captured varying seasons due to original
subject recruitments and clinic appointments spanning > 18 months (>80 clinic dates). Further details
on the method have been published previously [11,54,55].

2.6. Statistical Analyses

Statistical analyses were performed using JMP software (V.14.2.0; SAS Institute Inc., Cary, NC,
USA). Descriptive statistics (means, 95% confidence intervals, ranges, and frequencies) were calculated
and presented as appropriate. Multifactorial modelling (standard least squares regression) was used
to examine associations between variables of interest, with multiplicative interaction terms included
in models where appropriate. Adjustment variables included age, sex, and key determinants of
Hcy levels—dietary intake of vitamin B6 and alcohol, RBC folate, vitamin B12 and creatinine levels,
BMI category, and smoking status [56–58]. Mixed direction stepwise regression was undertaken using
significance levels of p ≤ 0.250 or p > 0.250 to enter or remove variables from models where appropriate.
Mallow’s Cp criterion was used for selecting the model where Cp first approaches p variables. Multiple
comparisons of least-squares means were made using Tukey’s HSD post hoc tests. Adjusted R2 values
and p-values are reported for final models, with standardised parameter estimates (β) and p-values
reported for individual variables. Significance level (p < 0.05) was adjusted using the Bonferroni
method [59] to account for multiple testing where appropriate.

3. Results

3.1. Subject Characteristics

The mean age of subjects was 77 years (Table 1), with 56% being female. Mean RBC folate, 25(OH)D
and Hcy levels were within the reference ranges, with reference ranges defined as 317–1422 nmol/L
for RBC folate [60] and 5–15 µmol/L for Hcy levels [61]. The mean 25(OH)D level was higher than
the range considered adequate (20–28 ng/mL) in the Australian population [62]. However, 14% of the
cohort had 25(OH)D levels indicative of vitamin D deficiency (<20 ng/mL) [62]. Furthermore, 16% of
the cohort had mild elevations in Hcy levels (15–35 µmol/L); however Hcy levels beyond the reference
range for Hcy (5–15 µmol/L) are expected in elderly populations [61]. There were no incidences of
folate deficiency (RBC folate < 317 nmol/L).

Reported intake of alcohol, creatinine levels, vitamin B12 levels, and smoking status differed by
sex. Mean reported alcohol intake and creatinine levels were higher in males compared to females
(10.4 (95% CI; 9.0–11.4) vs. 4.4 (3.7–5.1); p < 0.001, and 10.6 (10.0–11.2) vs. 8.4 (7.8–8.9); p < 0.001).
Vitamin B12 levels were lower in males 224.6 (207.4–241.8) vs. 251.0 (235.6–266.2); p = 0.03). More males
had a history of smoking (64% vs. 32%; p < 0.001).

https://giovanni.gsfc.nasa.gov/giovanni/
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Table 1. Subject Characteristics.

Male (n = 273) Female (n = 346) All (n = 619)

Continuous Variables Mean 95% CI Range Mean 95% CI Range Mean 95% CI Range

Age 77 76–78 65–93 77 76–78 65–95 77 76–78 65–95
RBC folate (nmol/L) 1625.7 1311.5–1939.8 931.0–2539.0 1342.2 1292.0–1392.5 385.0–2695.0 1340.9 1304.8–1377.1 381.0–2695.0
25(OH)D (ng/mL) 31.5 24.6–38.4 9.7–44.7 35.0 33.3–36.7 9.3–94.4 35.8 34.6–37.0 9.3–94.4

Hcy (µmol/L) 11.3 10.5–12.2 0.1–47.4 10.1 9.5–10.6 0.1–31.2 10.4 9.9–10.9 0.1–47.4
Serum vitamin B12 (pmol/L) 224.6 207.4–241.8 12.0–1116.0 251.0 235.6–266.2 68.0–1500.0 239.3 227.8–251.0 12.0–1500.0

Creatinine (µmol/L) 10.6 10.0–11.2 1.4–51.6 8.4 7.8–8.9 0.5–29.5 9.4 9.0–9.8 0.5–51.6
Vitamin B6 intake (mg/d) 9.0 4.9–13.1 0.0–220.7 9.2 6.9–11.5 0.0–203.0 8.6 6.9–10.3 0.0–220.7

Alcohol intake (g/day) 10.4 9.0–11.7 0.0–40.4 4.4 3.7–5.1 0.0–37.7 7.0 6.3–7.7 0.0–40.4
6W-EDR 5920.8 5577.9–6263.7 2140.5–11057.4 5959.9 5662.1–6257.6 2140.5–11057.4 6014.4 5718.4–6166.9 2149.5–11057.4
4M-EDR 16795.5 15888.5–17702.5 7788.2–28258.0 16739.0 15939.6–17538.4 7788.2–29160.6 16764.7 16165.8–17361.9 7788.2–29160.6

Categorical Variables n % n % n %

Tea serves/day

<1 78 30 108 34 193 32
1–2 118 46 141 45 274 46
>2 61 24 67 21 132 22

Coffee serves/day

<1 90 35 113 36 208 35
1–2 112 44 135 43 262 44
>2 55 21 68 22 129 22

Smoking status

Current or ex-smoker 185 68 126 36 308 50
Never smoked 88 32 220 64 311 50

BMI category

Underweight or normal 49 20 82 26 122 23
Overweight 121 48 128 40 257 43

Obese 80 32 107 34 199 34

Hcy: Homocysteine, 4M-EDR: 4 month accumulated erythemal dose rate, 6W-EDR: 6 week accumulated erythemal dose rate, 2D-EDR: 2 day accumulated erythemal dose rate, BMI:
body mass index.
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The frequencies of examined folate and vitamin D genetic variants in this cohort are outlined in
Table S1. Genotype frequencies did not deviate from Hardy–Weinberg expectations, except for the
GC-rs4588 variant (Table S1). Genotypes were further classified as binary variables, with analyses
comparing presence vs. absence of the polymorphic allele. DHCR7/NADSYN1-rs12785878 and
VDR-rs7975232 variants were excluded from further analysis due to uneven groups, with >95% of
subjects carrying polymorphic alleles for these variants.

3.2. Independent and Interactive Influences of EDR and Levels of 25(OH)D and RBC Folate on Hcy Levels

Increases in EDR accumulated over six weeks prior to clinic appointment (6W-EDR) was associated
with decreased Hcy levels (unadjusted model; β = −0.25, p < 0.001; Table 2). A similar negative
association was also shown between 4M-EDR and Hcy levels as previously reported [11] (unadjusted
model; β = −0.29, p < 0.001; Table 2). Both these associations remained following adjustments with
25(OH)D and RBC folate levels (β = −0.24, p < 0.001 and β = −0.29, p < 0.001; Model 1, Table 2),
and following further adjustments with potential confounders (β = −0.24, p < 0.001 and β = −0.30,
p < 0.001; Model 2, Table 2). Notably, neither 25(OH)D or RBC folate levels were significant independent
predictors of Hcy levels in these models (Table 2; Models 1–2) or when the binary associations between
Hcy and either 25(OH)D or RBC folate were considered (Figure S1).

Table 2. Associations between accumulated erythemal dose rate (EDR) measures, and levels of 25(OH)D
levels, and RBC folate on Hcy levels, with and without adjustments for Hcy confounders.

Hcy Levels

Unadjusted (n = 618) Model 1 (n = 579) Model 2 (n = 464)

β p β p β p

6W-EDR −0.25 <0.001 −0.24 <0.001 0.24 <0.001
25(OH)D levels - 0.04 0.3 −0.03 0.5
RBC folate levels - −0.02 0.7 −0.03 0.6

4M-EDR −0.29 <0.001 −0.29 <0.001 −0.30 <0.001
25(OH)D levels - −0.05 0.2 −0.05 0.3
RBC folate levels - −0.04 0.3 −0.05 0.2

Italics and bold indicate results that are statistically significant. Adjustments: Model 1 = 25(OH)D and RBC folate
levels. Model 2 = Model 1 and sex, age, creatinine and vitamin B12 levels, reported dietary intake of alcohol, vitamin
B6, tea and coffee, smoking status and BMI category. Total number of participants in each model vary due to
missing data.

Potential environment–nutrient interactions between EDR measures and levels of 25(OH)D
and/or folate in determining Hcy levels were examined to consider if the effects of EDR measures
were dependent on levels of UVR-sensitive vitamins. A significant interaction between 6M-EDR and
25(OH)D in predicting Hcy was observed (unadjusted model; pinteraction = 0.01; Table 3). This interaction
remained following adjustments with potential Hcy determinants and when considering multiple
testing corrections using the Bonferroni method (Adjusted model; pinteraction = 0.002; Table 2). The direct
effect of 6W-EDR was also an independent predictor of Hcy levels in unadjusted and adjusted models
(β = −0.24, p < 0.001 in both cases; Table 3). When stratifying the association between 6W-EDR and
Hcy by quartiles of 25(OH)D levels, this association was only significant for subjects in the two lower
quartiles of 25(OH)D levels (Q1; β = −0.35, p = 0.001, Q2; β = −0.35, p = 0.001; Table 4). However,
the overall interaction between 6W-EDR and 25(OH)D quartiles (when assessed as a categorical
variable) did not remain when applying strict adjustments to the p-value threshold via the Bonferroni
method (pinteraction = 0.004; Table 4).
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Table 3. Assessment of interactions between EDR measures (6W-EDR and 4M-EDR) and levels of
25(OH)D or RBC folate in determining Hcy levels, with and without adjustments.

Hcy Levels

Unadjusted Adjusted

β p β p

6W-EDR −0.24 <0.001 −0.24 <0.001
25(OH)D levels −0.04 0.3 −0.03 0.5

6W-EDR x 25(OH)D levels 0.10 0.01 0.15 0.002

n = 582/467

4M-EDR −0.27 <0.001 −0.27 <0.001
25(OH)D levels −0.05 0.2 −0.03 0.4

4M-EDR x 25(OH)D levels 0.04 0.3 0.09 0.05

n = 582/467

6W-EDR −0.24 <0.001 −0.24 <0.001
RBC folate levels 0.00 0.9 −0.01 0.9

6W-EDR x RBC folate levels 0.01 0.9 0.01 0.9

n = 612/491

4M-EDR −0.29 <0.001 −0.29 <0.001
RBC folate levels −0.02 0.6 −0.04 0.4

4M-EDR x RBC folate levels 0.01 0.9 0.01 0.9
n = 612/491

Italics and bold indicate results that are statistically significant. P-values for interactions were compared against
Bonferroni-adjusted p thresholds of p < 0.008 for 6W-EDR models and p < 0.0125 for 4M-EDR models, to account
for multiple testing. Tabled variables were entered into models as continuous variables. Adjustments: sex, age,
creatinine and vitamin B12 levels, reported dietary intake of alcohol, vitamin B6, tea and coffee, smoking status,
and BMI category. Total number of participants in each model varies due to missing data.

Table 4. Association between 6W-EDR and Hcy levels stratified by quartiles of 25(OH)D levels.

Hcy Levels

6W-EDR

by 25(OH)D
quartiles
(ng/mL)

n β p mean 95% CI

Q1 (<23.95)
Mean: 18.60 107 −0.35 0.001 10.6 8.6–12.6

Q2
(23.96–33.25)
Mean: 28.24

120 −0.32 0.001 10.2 8.2–12.1

Q3
(33.26–45.60)
Mean: 39.51

108 −0.18 0.09 9.8 7.9–11.7

Q4 (>45.60)
Mean: 56.88 132 0.01 0.9 10.2 8.3–12.2

6W-EDR x 25(OH)D quartiles (as categorical)—pinteraction = 0.004

Italics and bold indicate results that are statistically significant. The p-value for interaction between 6W-EDR and
25(OH)D was compared against a Bonferroni-adjusted p threshold of p < 0.008 to account for multiple testing
between 6W-EDR and variables of interest. Values shown are adjusted with sex, age, and Hcy determinants,
creatinine and vitamin B12 levels, reported dietary intake of alcohol, vitamin B6, tea and coffee, smoking status,
and BMI category.
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3.3. Independent and Interactive Influences of Vitamin D and/or Folate Genetic Variants on Hcy Levels

Stepwise regression for all examined vitamin D and folate genetic variants resulted in two
folate-related variants being entered into the predictive model for Hcy (DHFR-rs70991108 and
MTHFD1-rs2236225). Neither variant was found to be a significant independent predictor of Hcy
levels in unadjusted and adjusted models (Table S2).

Potential interactions between these variants and RBC folate and/or EDR measures were
also assessed to consider if influences of EDR or folate were modified by DHFR-rs70991108 and
MTHFD1-rs2236225 variants. No significant interactions were observed between variants and RBC
folate in predicting Hcy. However, MTHFD1-rs2236225 was a significant independent predictor of
Hcy levels following consideration of interactions with RBC folate (β = −0.11, p = 0.02; adjusted
model; Table S3). Presence of MTHFD1-rs2236225 polymorphic allele was associated with higher
Hcy levels relative to ancestral homozygotes (10.7 µmol/L (95% CI; 8.9–12.6 µmol/L) vs. 9.3 µmol/L
(7.4–11.3 µmol/L).

A significant interaction was found between MTHFD1-rs2236225 and 4M-EDR in predicting Hcy
levels (adjusted models; pinteraction = 0.006; Table 5). MTHFD1-rs2236225, 4M-EDR, and 6M-EDR were
also direct independent predictors of Hcy levels in these models (adjusted models; Table 5). When the
association between 4M-EDR and Hcy levels was stratified by carriage of the MTHFD1-rs2236225
polymorphic allele, a significant association was only observed in subjects carrying the polymorphic
allele (β = −0.28, p < 0.001).

Table 5. Assessment of gene–environment interactions between DHFR-rs70991108 and
MTHFD1-rs2236225 variants and 2D-EDR or 6W-EDR in determining Hcy levels.

Hcy Levels

Unadjusted Adjusted

β p β p

6W-EDR −0.23 <0.001 −0.24 <0.001
DHFR-rs70991108 −0.06 0.1 −0.03 0.6

6W-EDR x DHFR-rs70991108 0.02 0.7 −0.01 0.9
n = 611/462

6W-EDR −0.20 <0.001 −0.17 0.001
MTHFD1-rs2236225 −0.05 0.2 −0.09 0.05

6W-EDR x MTHFD1-rs2236225 0.06 0.2 0.11 0.05
n = 611/461

4M-EDR −0.28 <0.001 −0.30 <0.001
DHFR-rs70991108 −0.06 0.1 −0.03 0.5

4M-EDR x DHFR-rs70991108 0.02 0.7 −0.01 0.9
n = 611/462

4M-EDR −0.23 <0.001 −0.22 <0.001
MTHFD1-rs2236225 −0.05 0.2 −0.09 0.04

4M-EDR x MTHFD1-rs2236225 0.10 0.03 0.15 0.006
n = 611/461

Italics and bold indicate results that are statistically significant. P-values for interactions were compared against
Bonferroni-adjusted p thresholds of p < 0.008 for 6W-EDR models and p < 0.0125 for 4M-EDR models, to account for
multiple testing. Adjustments: RBC folate levels and Hcy determinants, sex, age, creatinine and vitamin B12 levels,
reported dietary intake of alcohol, vitamin B6, tea and coffee, smoking status and BMI category. Totals shown are for
unadjusted and adjusted models respectively. Total number of participants in each model varies due to missing data.

Significant interactions identified between EDR measures, 25(OH)D levels, and/or MTHFD1-rs2236225
in previous analyses were considered together in multivariate models. When considering interactions
between 6W-EDR and both 25(OH)D levels and MTHFD1-rs2236225 in a single multivariate model,
only the interaction between 6W-EDR and 25(OH)D levels were significant (pinteraction ≤ 0.001; adjusted
model; Table 6). The direct effect of 6W-EDR was also a significant predictor of Hcy levels in this model
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(β = −0.19, p = 0.001), with the overall model predicting 9% of variance in Hcy levels. When considering
interactions between 4M-EDR and both 25(OH)D levels and MTHFD1-rs2236225, only the interaction
between 4M-EDR and MTHFD1-rs2236225 remained significant (pinteraction = 0.006; adjusted model;
Table 6). The direct effects of MTHFD1-rs2236225 and 4M-EDR were also significantly associated with
Hcy levels in this model (β = −0.09, p = 0.04 and β = −0.21, p ≤ 0.001; adjusted model; Table 6). The final
overall model predicted 11% of variance in Hcy levels.

Table 6. Independent and interactive influences of EDR measures, 25(OH)D levels and MTHFD1-rs2236225
on Hcy levels.

Hcy Levels

Unadjusted (n = 578) Adjusted (n = 461)

β p β p

6W-EDR −0.20 <0.001 −0.19 0.001
25(OH)D levels −0.04 0.3 −0.03 0.6

6W-EDR x 25(OH)D levels 0.10 0.02 0.14 0.002
MTHFD1-rs2236225 −0.04 0.3 −0.09 0.05

6W-EDR x MTHFD1-rs2236225 0.06 0.2 0.11 0.05

Model—R2 (p) 0.07 <0.001 0.09 <0.001

4M-EDR −0.22 <0.001 −0.21 <0.001
25(OH)D levels −0.05 0.2 −0.03 0.4

4M-EDR x 25(OH)D levels 0.03 0.4 0.09 0.06
MTHFD1-rs2236225 −0.04 0.3 −0.09 0.04

4M-EDR x MTHFD1-rs2236225 0.10 0.03 0.14 0.006

Model—R2 (p) 0.08 <0.001 0.11 <0.001

Italics and bold indicate results that are statistically significant. Adjustments: RBC folate levels and Hcy determinants,
sex, age, creatinine and vitamin B12 levels, reported dietary intake of alcohol, vitamin B6, tea and coffee, smoking
status and BMI category. Totals shown are for unadjusted and adjusted models, respectively. The total number of
participants in each model varies due to missing data.

4. Discussion

The presented findings demonstrate independent and interactive influences of environmental
UVR, 25(OH)D levels, and folate variant MTHFD1-rs2236225 on Hcy levels in an elderly Australian
cohort. These findings are novel, with this being the first study to consider the independent and
interactive influences of environmental UVR levels, vitamin D and folate levels and related genetic
factors on Hcy levels.

Environmental UVR levels accumulated over six weeks and four months before clinic appointments
(i.e., 6W-EDR and 4M-EDR) were independent predictors of Hcy levels. Hcy levels were inversely
associated with 4M-EDR previously [11], with Hcy levels further shown to be related to UVR levels over
a shorter six week period (6W-EDR) in the current study. Notably, an interaction between 25(OH)D
levels and 6W-EDR, but not 4M-EDR, in predicting Hcy levels was shown, indicating an interaction
between 25(OH)D levels and a UVR time frame representative of the time-lag between UVR exposure
and 25(OH)D changes [52]. When examining the directionality of this interaction, the association
between 6W-EDR and Hcy levels was found to be only significant in subjects within the lower quartiles
of 25(OH)D status (<33.26 ng/mL). This finding suggests that a relationship between 6W-EDR and
25(OH)D level exists until adequate vitamin D status is achieved. However, the direct effect of 6W-EDR
remained a significant independent predictor of Hcy levels in models considering 6W-EDR/25(OH)D
interactions, indicating that the relationship between 6W-EDR and Hcy levels is not solely explained
by changes in 25(OH)D levels.

Carriage of the MTHFD1-rs2236225 polymorphic allele was associated with increased Hcy levels.
This finding is supported by a previous investigation finding homozygosity for this variant to be
related to increases in plasma Hcy in healthy Mexican American women (n = 43) [63]. MTHFD1 is the
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gene for the methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate
synthetase 1 (MTHFD1) trifunctional enzyme, which is required for the interconversion of active
folate forms 5,10-methylenetetrahydrofolate (THF), 5,10-methenylTHF, and 10-formylTHF [64].
5,10-methyleneTHF is required for Hcy regulation, being reduced to 5-methylTHF via action of
5,10-methylenetetrahydrofolate reductase (MTHFR), with 5-methylTHF then used as a methyl donor
in the remethylation of Hcy into methionine [3]. Murine models of MTHFD1 insufficiency display
increased Hcy levels, as well as decreases in methionine and cystathionine, indicative of impaired
Hcy regulation [65,66]. The MTHFD1-rs2236225 is a missense variant which results in a thermolabile
protein with a reduced half-life and synthetase enzyme activity [67]. This variant causes a reduction in
5,10-methyleneTHF formation, which may adversely affect Hcy regulation [68].

The MTHFD1-rs2236225 variant was found to interact with 4M-EDR to predict Hcy levels,
with the association between 4M-EDR and Hcy levels dependent on the carriage of the polymorphic
MTHFD1-rs2236225 allele. This association may be explained in part by the thermolability of the
MTHFD1 variant. A previous investigation by the current authors found the association between
environmental UVR levels and RBC folate levels to be dependent on the presence of another thermolabile
variant: MTHFR-rs1801133 [26]. It is possible that the presence of thermolabile enzymes paired with
increased UVR exposure leads to compensatory shifts in folate metabolism, which results in Hcy levels
being influenced by UVR through a currently unknown mechanism.

Investigations examining the potential relationship between UVR and Hcy status are limited.
Prior to studies undertaken by the current group, only two studies had examined Hcy in this context,
with potential seasonal variations in Hcy examined, but with no significant findings reported [69,70].
However, these studies examined < 100 subjects residing in Northern European locations and therefore
findings may reflect differences in statistical power and environmental UVR levels [69,70]. It is possible
that a UVR-related decline in Hcy may only be evident in populations exposed to high levels of
environmental UVR, such as Australians [29], with further investigations examining cohorts located in
high UVR areas needed. The reported inverse relationship between UVR and Hcy levels should be
interpreted with caution, as it may not indicate a benefit of UVR exposure on Hcy metabolism, but an
increase in Hcy turnover and/or use in response to increased oxidative stress following UVR exposure.
Increased oxidative stress may promote Hcy auto-oxidization and the formation of Hcy into other
oxidants not detected by the Hcy assay used here [71,72].

An apparent limitation of this study is that Hcy levels were examined against environmental UVR
levels rather than personal UVR exposures. Assessment of personal exposures was not possible due to
this being a secondary retrospective cohort analysis. However, given that original subject recruitments
and clinic appointments in the RHLS spanned > 18 months (> 80 clinic dates), collective environmental
UVR data captured a wide range of UVR levels, with reported findings providing a justification for
future investigations using more precise methods. Further strengths of this investigation were that
multiple vitamin D and folate variants were examined, with the RHLS cohort well-characterised in
respect to several known Hcy determinants, which were corrected for in subsequent analyses. 25(OH)D
levels were examined via a HPLC method [33], with HPLC methods shown to be a more precise and
sensitive method for 25(OH)D measurement compared to other methods [73]. However, a limitation
of this method is that external quality assessment was not obtained via external quality assessment
schemes (e.g., via DEQAS). The focus of the current study was to examine these influences in an
elderly Australian cohort, given that this sub-population is at heightened risk of UVR-related cellular
damage [29,30]. Several novel independent and interactive influences of environmental UVR levels and
25(OH)D levels and folate variant MTHFD1-rs2236225 on Hcy levels are presented. However, findings
may be age-specific, given age-related decreases in UVR-protection [30], and increases in oxidative
stress [74], with further investigation required before findings can be generalised to other populations.
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5. Conclusions

Accumulated environmental UVR levels and MTHFD1-rs2236225 were found to be independent
predictors of Hcy status in an elderly Australian cohort. A nutrient–environment interaction between
25(OH)D levels and 6W-EDR was demonstrated, with the association between 6W-EDR and Hcy
only significant for subjects in lower quartiles of 25(OH)D status. Furthermore, a gene–environment
interaction between MTHFR-rs1801133 and 4M-EDR in predicting Hcy was found, with an association
between 4M-EDR and Hcy only observed in subjects carrying the polymorphic MTHFD1-rs2236225
allele. Presented findings are novel, with further investigation needed to examine if these independent
and interactive effects are population or age-specific, and whether they influence the risk of Hcy-related
health outcomes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/12/5/1455/s1,
Figure S1: Binary associations between biochemical variables of interest (Hcy, 25(OH)D and RBC folate levels),
Table S1: Allelic and genotypic frequencies for folate and vitamin D variants and assessment for deviation
from Hardy–Weinberg equilibrium, Table S2: Folate variants identified by stepwise regression for inclusion in
models for Hcy prediction, with and without adjustments, Table S3: Assessment for gene-nutrient interactions in
predicting Hcy, with and without adjustments for determinants of Hcy levels.
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