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Abstract

With the increasing proliferation of intelligent edge devices and their appli-
cations, machine learning has contributed significantly to regression analysis.
Over the past few decades, the sub-fields of machine learning have evolved,
such as evolutionary computing, computer vision, natural language processing,
neural net- works and speech recognition. Traditionally, machine learning is
performed by collecting a huge amount of data at a centralized location, often
raising privacy concerns. More recently, edge computing has been introduced
where computation moves closer to the edge devices which decreases the latency
associated with the centralized cloud. Moreover, edge servers help in compu-
tation offloading which decreases the data transit time to the central cloud.
However, data privacy issues re- main unresolved. Hence, federated learning
has emerged as a thought-provoking technology for keeping data at the source
and obtaining a collaborative predictive model. Further, federated learning fol-
lows rigid client-server architecture where one server communicates with many
clients. A single global server is a single point of failure. In addition, clients
have to communicate with global servers and communication latency is high
in this context. Therefore, to deal with these issues, federated learning is seen
as a critical application in edge computing. Hence, to fully exploit the enor-
mous data generated by devices in edge computing, edge federated learning is
a promising solution. The distributed collaborative training in EFL deals with
delay and privacy issues compared to traditional model training methods. How-
ever, the existence of straggling devices degrades model performance. Stragglers
are caused by data and system heterogeneity. The straggler effect can be al-
leviated by reinforced device selection by edge servers which can solve device
heterogeneity to some extent. But, the challenge of statistical heterogeneity
remains unsolved.

We investigate heterogeneity in data from two aspects: high-dimensional
data generated at edge devices where the number of features is greater than the
number of observations and the heterogeneity caused by partial device participa-
tion. With a large number of features, the computation overhead on the devices
increases, causing edge devices to become stragglers. Also, the submission of
partial results causes gradients to be diverged as more local training is per-
formed to reach local optima. In this thesis, we introduce elastic optimization
for stragglers due to data heterogeneity in edge federated learning. Specifically,
we define the problem of stragglers in edge federated learning. Then, we formu-
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late an optimization problem to be solved at the edge devices. We customize the
benchmark algorithm, FedAvg, to obtain a new elastic optimization algorithm
(FedEN) which is applied in the local training of edge devices. FedEN erad-
icates stragglers by achieving a balance between lasso and ridge penalization,
thereby generating sparse model updates and forcing the parameters to be as
close as possible to local optima. We experiment on the MNIST and CIFAR-
10 datasets for the proposed model. Simulated experiments demonstrate that
the proposed approach improves the run time training performance by achieving
target accuracy in less communication rounds. The results confirm the improved
performance of the FedEN approach over benchmark algorithms.
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Chapter 1

Introduction

Overview

This chapter commences with the preliminaries in section 1.1. The problem
context and motivation for this research is presented in section 1.2. The overall
aim of the thesis followed by the research questions are covered in section 1.3.
Limitations are presented in section 1.4 followed by contributions in section 1.5.
Finally, the structure of the thesis is outlined in section 1.6.

The sheer amount of data generated due to big data has resulted in it be-
ing centralized at a single place or in an isolated centralized database. For
distributed machine learning (DML), the typical assumption is a client-server
architecture where one party acts as a server which is responsible for data accu-
mulation and the other party acts as a client who is responsible for sending data
to the server for aggregation and communicates with the server for any type of
predictive analysis [73, 86, 28].Further, the ever-growing adoption of the Internet
of Things (IoT) for smart and intelligent applications has increased the usage
of IoT mobile/edge devices [37, 126, 164]. Over the last few decades, machine
learning (ML) inference on mobile edge devices is possible due to the growing
computational capabilities of the edge devices [66, 200, 147]. According to the
Forbes 2020 report, “The constant increase in data processing speeds and band-
width, the non-stop invention of new tools for creating, sharing, and consuming
data, and the steady addition of new data creators and consumers around the
world, ensure that data growth continues unabated. Data begets more data in a
constant virtuous cycle.” It is evident that, the data generated by smart devices
such as IoT devices, smart phones and various edge devices that can be included
in edge computing, today, is increasing enormously and to obtain meaningful
information from this data, different technologies, such as artificial intelligence
[173, 209], ML [206, 111, 183], data analytics [129, 161, 143], and data science
[45, 92, 44], are used. The era of mobile or edge computing has made it possible
for edge devices to train ML models. However, the issue of data privacy has
always been a critical point of concern [18, 148, 53]. In recent years, the General
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Data Protection Regulation (GDPR) [175] has made strict security and privacy
compliance compulsory for all the organizations across Europe. GDPR is the
world’s most stringent privacy law. With the introduction of GDPR, people are
more aware of data privacy and its regulations [163, 140, 139]. Traditionally, to
start any ML task, we need data in silos. The owners have to make their data
available for research which is often of great concern, especially when it comes
to private and sensitive data [192, 79, 132]. ]. The moment data leaves its place
of origin, there is no guarantee of its complete safety and that data breaches
will not occur. Many studies in literature have focused on secure data storage,
data protection in transit, the owner’s regulations over their data, to list a few
[195, 52, 190]. In a nutshell, data has to leave the owners and reside in a data
repository which is a significant privacy concern all over the world. Therefore, to
avoid privacy concerns, a new privacy-preserving technology was introduced, by
Google known as federated learning (FL) where machine learning is undertaken
at the edge devices with their local data thereby avoiding the need to keep data
in warehouse [128, 62, 51]. Hence, it is not possible for anyone to see the data on
which the models are trained which makes collaborative learning much simpler
and more reliable. Consecutively, FL can be thought of as an ML application
to support privacy in edge computing, which includes all the data generating
edge devices. However, FL has certain characteristics such as system and sta-
tistical heterogeneity which can cause obstacles in its real-time implementation.
In particular, in edge federated learning, where FL is implemented in edge com-
puting, the two heterogeneities mentioned above can result in the emergence of
stragglers. Stragglers are slow devices which delay the communication of their
local training results with the edge server. Hence, stragglers can degrade model
performance and can affect accuracy, thereby decreasing model utility. In edge
federated learning, there are millions of edge devices available for FL training.
These devices communicate with the edge servers for model aggregation at the
end of each training round. The training iterations stop once target accuracy
is achieved. One critical aspect in FL training is to ensure the model training
is efficient by reducing the number of communication rounds while achieving
target accuracy. This is only possible when the local objectives of the edge
clients are optimized from the heterogeneities present. The recent literature
suggests two reasons for the emergence of straggles, firstly, the large number of
parameters from high dimensional edge devices data; and secondly, statistical
local objective divergence due to the partial participation of edge devices. These
reasons cause computation and communication issues with the edge server as
large parameters result in a computation burden whereas statistical divergence
results in a drop in ac- curacy and disturbs the regression analysis. To deal
with the large number of parameters or features and statistical heterogeneity,
which causes stragglers, various techniques have been used in the literature. In
the recent literature, many studies such as [81], [59], [202], [84], [13], [49], [221],
[85] focus on making federated learning efficient.

Some of techniques involved are discussed in the following sub-sections.
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1.1 Federated Learning

FL was first coined in 2016 [96]. McMahan et al. introduced a new way of
obtaining decentralized machine learning without data centralization

Typically, the steps involved in the FL are as follows:

• Global model parameters are initialized at the server.

• Global parameters are sent or broadcasted by the server to all the partic-
ipating clients.

• Clients perform local training by using the downloaded global parameters
for a certain number of local iterations.

• Local model parameters are sent to the server by the clients.

• The server obtains a global model after aggregating the parameters re-
ceived by all the clients. The newly obtained global model parameters
are again shared with the clients in the subsequent training rounds until
a target accuracy is reached.

Since its inception, FL has been a trending area of research and has at-
tracted significant interest from both research and applied perspectives. Al-
though, there has been a lot of work on implementing and integrating FL in
different frameworks, such as mobile edge computing, wireless networks, etc., it
has received little attention in relation to making it efficient in the presence of
stragglers which delays server aggregation. This motivates us to research the
straggler effect in FL settings. The massive distribution of clients with varying
heterogeneities can cause severe performance degradation if the stragglers are
not handled properly. Our objective is to mitigate stragglers by adopting a
hierarchical structure to overcome the rigid topology of baseline FedAvg.

1.2 Algorithm for federated learning

Federated averaging (FedAvg) is the algorithm designed by [96] for FL. FedAvg
is considered the baseline algorithm for FL and uses stochastic gradient de- scent
(SGD) as the local optimizer. FedAvg follows a synchronous approach where
global model aggregation is performed once all the participating de- vices have
submitted their local updated results to the server.

The algorithm for FL is as follows:

1.3 Motivation/Research Problem

Currently, the benchmark algorithm for FL, federated averaging (FedAvg), re-
quires all the participating edge devices to perform the same number of training
rounds regardless of their system and statistical heterogeneity. These hetero-
geneities result in stragglers who cannot complete their all the training rounds
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Algorithm 1: Federated Averaging

Input: B, N, E, η
Output: federated trained global model
while target accuracy not achieved do

Global model parameters broadcast to edge devices;
Local model training at each client;
if complete local training after E updates then

send the updated parameters to the edge server;
end
if local updates received by the edge server then

perform aggregation using equation(3);
end

end

thereby delaying the global model aggregation. Stragglers have been a topic of
interest in distributed systems from for the past few years. The interest of in
stragglers in FL grew quite quickly, as shown in the recent literature. We are in-
terested in edge federated learning where FL is an application in edge computing.
In edge federated learning, the straggler issue can degrade model performance
as there are millions of participating devices which are uncertain about their
prolonged participation as well as complete time dedication for model training.
System heterogeneity arises due to the different computational capabilities of the
clients with different system configurations. Similarly, statistical heterogeneity
is due to high dimensional data with a large number of features or parameters.
For instance, the images stacked on top of each other form the video where the
pixel values stored could be very complex. Hence, the processing time for this
kind of data also requires the devices to completely dedicate their system re-
sources. Any limitation in system resources or complexity in data can result in
stragglers, thereby decreasing model utility. A large number of parameters from
high dimensional data has been a statistical problem in the literature, where
the use of efficient methods to identify the appropriate required features was
adopted [55, 56]. ]. Many of the deep neural networks used for federated model
training have millions of parameters due to high data dimensionality [3],[160],
[4].This large number of parameters makes it challenging for model training.
Deep learning is often helpful in dealing with feature extraction so that the
model with the optimal features is selected with a feasible number of parame-
ters [151]. The work in [98] discusses client drift due to the high-dimensional
data together with few local steps in the model training which hurts global
model convergence. Further,

high data dimensionality of model parameters causes communication latency
between the base station and the edge devices in mobile edge computing [118].
In [153],the clients are grouped as per their data distributions and then their
individual model is obtained from each group. The benefit of undertaking this
clustered approach for model aggregation is that the high dimensional model
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Figure 1.1: Stragglers In Federated Learning

parameters from clients which belong to the other group cannot reach another
distribution group, thereby improving model training.

As can be seen in 1.1, there are three edge devices performing local training
at the edge. Device 1 is a mobile phone, device 2 is a PC and device 3 is a
tablet. Device 1 and device 2 can perform specified local iterations and can
update the edge server with their results. But, device 3 has failed to respond
to the edge server. Hence, device 3 is a straggling device, which is caused by
differences with respect to the computational capabilities compared to the other
two devices and the variances in their data when incomplete results are shared
after the specified number of iterations.

1.4 Research Aims

1.5 Objective

The research objective of this thesis is to introduce an optimization algorithm
that can mitigate stragglers due to data heterogeneity. This algorithm can
assist in the utilization of data from stragglers which is other- wise missed
from training by ignoring them, as in FedAvg. Hence, an elastic optimization
algorithm can help researchers to better analyse straggler mitigation and utilize
the potential of straggler data in obtaining target accuracy.

From this principal research objective, the following research objectives are
identified:
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• to define federated learning (FL) and its characteristics;

• to give an overview of the various FL algorithms for stragglers in the
literature and to investigate how they differ from each other;

• to introduce an elastic optimization algorithm which is different to any of
the approaches in the literature for straggler mitigation;

• to evaluate the proposed algorithm.

1.6 Research Contribution

Existing work has investigated and developed various distributed optimization
algorithms to solve the straggler problem which causes communication inef-
ficiency and accuracy degradation. However, the following crucial questions
remain unanswered:

• What could be the reasons for straggler emergence in edge federated learn-
ing. Is there an algorithm as simple as FedAvg which can solve this prob-
lem and how can we compare this algorithm with the benchmarks?

• FedAvg generally doesn’t consider stragglers and ignores the valuable in-
formation stragglers can provide which may eventually improve regression
analysis. Is there a distributed algorithm which is as simple as FedAvg
but works better at incorporating straggler information. How can the
re-designed FedAvg achieve better accuracy and ensure communication is
more efficient?

• How much better can the revised FedAvg perform in terms of accuracy and
communication rounds? Can we compare the new distributed algorithm
with benchmarks such as FedAvg and FedProx?

This research aims at addressing the above thought-provoking questions
about stragglers in edge federated learning. Our contributions are summarized
in the next section.

• We formulate stragglers as the distributed optimization problem in edge
federated learning where the optimization involves the minimization of the
the local objective loss function for all the edge clients participating in the
federated training. By formulating a distributed optimization for strag-
glers, we are trying to achieve faster computation with better accuracy
over less communication rounds.

• We propose the Elastic Optimized Edge Federated Learning (FedEN) ap-
proach to deal with stragglers due to data heterogeneity which is a result
of today’s high dimensional data and partial edge device participation.
FedEN mitigates stragglers by dealing with the large number of features
with the help of lasso penalization and generates sparse efficient models.
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Furthermore, the edge devices stay near to the local optima with the help
of ridge penalization thereby restricting the strict feature elimination of
lasso. Hence, the elastic optimization in edge federated learning gives an
optimal balance between lasso and ridge, thereby benefiting edge federated
learning with the elimination of stragglers.

• Finally, our extensive experiments performed for image classification using
FedEN prove that our work achieves substantially high accuracy and lower
loss compared to the benchmark algorithms.

1.7 Research Questions

The following research questions aim to address the issue of stragglers being
ignored by the benchmark algorithms

• What is the model accuracy when stragglers are incorporated in edge
federated learning?

• How can we improve training performance in the presence of stragglers?

The motivation for research question 1 is because stragglers degrade model
performance. The aim is to analyze the performance of the image classification
model in the presence of stragglers in model training. Further, we examine
how the benchmark algorithms FedAvg and FedProx behave when stragglers
are incorporated in training. Research question 2 deals with the performance
optimization of federated training by considering the elastic optimization in the
local objectives of the participating edge devices.

1.8 Publications

Conference Paper

• Elastic Optimized Edge Federated Learning

Journal Paper

• Elastic Optimization for Stragglers in Edge Federated Learning (In Progress)

1.9 Thesis composition

This section provides an outline of the thesis. In Chapter 2, we discuss the
background information required to understand the concepts and algorithms
in further chapters. In general, chapter 2 covers all the concepts of machine
learning and distributed machine learning, the optimization algorithms in the
literature, the regularization techniques for distributed optimization, the basics
of federated learning and gives a brief overview of the benchmark federated aver-
aging algorithm. Finally, edge federated learning is briefly discussed. In Chapter

8



3, we discuss the stragglers in the literature and how they are mitigated. We
discuss the reasons for stragglers in distributed systems followed by a discussion
of the emergence of stragglers in federated learning and edge federated learn-
ing. In Chapter 4, we discuss the pro- posed distributed edge federated learning
framework, Elastic Optimized Edge Federated Learning algorithm (FedEN) and
its convergence analysis. We briefly overview the data collection as well as data
heterogeneity and convergence properties. We then describe the methodology
of the proposed research which involves logistic regression for image classifica-
tion and optimization with stochastic gradient descent. Next, we discuss the
emergence of stragglers as the distributed optimization problem followed by the
proposed regularization technique used for straggler optimization. Finally, dis-
cuss the theoretical assumptions and theorems for FedEN convergence analysis.
In chapter 5, we discuss the datasets used for the experiments and how data
partitioning is performed for federated training. We then discuss heterogeneity
and the hyper-parameters used for training. Next, we discuss the implemen-
tation details including the loss function and optimizer used for training. We
describe each implementation module for the server and for the clients involved
in the training process and obtain results for 200 training rounds. Finally, we
compare the test accuracy for the CIFAR-10 and MNIST datasets for 10% and
20% of stragglers in the training for over 200 communication rounds.
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Chapter 2

Background

In this section, we discuss the preliminary information required to understand
the concepts related to machine learning (ML) and federated learning (FL). We
start with the background knowledge of ML followed by distributed machine
learning, deep learning, convolutional neural networks in ML model training [26,
208, 145]. Next, we provide a generic explanation of FL, its characteristics and
types, followed by a discussion of the benchmark algorithm, federated averaging.

2.1 Machine learning

Turing proposed the idea of machine intelligence in 1936. Since then, the interest
in machine learning, to create intelligent models for better decision making has
grown rapidly [41, 113, 144, 78]. ML is a core part of several technologies
such as 6G, blockchain, autonomous vehicles to name a few. The majority of
computations inmachine learning are based on the basic transformations for
matrices or tensors. Finding a way to optimize these operations has been an
area of research interest in the literature. As a result of this, many techniques
such as high-performance computing [21] have been an active area for research
in academia as well as in industry.

ML is a very im- portant concept in deep leaning as well as artificial in-
telligence. The combination of machine learning and artificial intelligence has
led to the development of robot-nurses, self-driving cars etc. The insights ob-
tained from ML can help in better decision making in almost all fields, such as
healthcare, manufacturing and automation. Machine learning or deep learning
are sub-fields of artificial intelligence. Deep learning, however, is a sub-field
of machine learning. Neural networks, on the other hand, are a sub-field of
deep learning. The main difference between machine learning and deep learn-
ing is how their algorithm learns. Generally, deep learning is used for feature
extraction, reducing the manual human effort of feature extraction, whereas
machine learning is more dependent on human intervention for feature extrac-
tion. Machine learning comprises the following stages : 1) data collection; 2)
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Figure 2.1: Machine learning from centralized data

pre-processing; 3) feature extraction; 4) training; 5) testing the model for its
accuracy; 6) re-training with updated parameters or adjusted features., A ma-
chine learning algorithm comprises the following three parts: 1)decision making
- the algorithm has to make decision based on what has been set for the al-
gorithm (classification, for instance) and will give an output given the labelled
or unlabeled data to process and provide an estimate; 2) error function: this
gives an estimate on the accuracy of the model predictions. Error functions
usually help to determine if the model or algorithm has better accuracy over
the test data; 3) model process: When the machine learning model is trained,
it fits the data points in the training set. Further, when the predicted value
fits the data points in the training set, then the model is said to be general-
ized. When only the training set is identified by the model, the model is said
to be over fitted and it does not have a better generalization error. Therefore,
sometimes to avoid overfitting, regularization is used which induces bias while
training and helps improve the generalization error. Therefore, regularization
plays an important role in reducing overfitting. Two phases are involved in
machine learning: 1) training the model; and 2) testing the model. During the
training phase, the collected data is fed to the model and hyper-parameters are
adjusted either manually or using cross- validation or other techniques. The
output of the training phase is a trained model which is ready for the testing
or evaluation phase. During the model testing phase, the model is deployed to
check its generalizability. The training phase is computationally difficult while
the testing phase is easier and requires less computing power.

2.1.1 Distributed Machine learning

Distributed machine learning (DML), as the name implies, consists of multiple
nodes geographically in different locations but connected with each other. DML
improves accuracy as it reduces the need for centralized training and enables
the incorporation of information from multiple worker nodes. To enable faster
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processing time, computation can be performed with other devices. One of the
most important aspects when discussing distributed machine learning relates
to accuracy goals and reducing the communication and computation overheads.
However, when communication and computation delays increase with the ma-
chine learning problem, then subsequently accuracy also increases. To reduce
the delays associated with communication and computation in distributed ma-
chine learning, parallelism is widely adopted to make the process flexible for
model training. The following several techniques are used for parallel computa-
tion and communication between workers:

Bulk Synchronous Parallel The bulk synchronous parallel (BSP) model is
a simple technique where workers communicate effectively and it is synchronous
in nature. It is a parallel computing technique comprising a series of supersteps.
Each superstep has processes that run the same code in a parallel manner and
later the messages are sent to other processes. At the completion of a superstep,
all messages have already been sent to the processes. At the end of a superstep,
a barrier for synchronization ensures that all computations are done and mes-
sages are transmitted. As soon as the next superstep starts, all the messages
are then delivered to the processes. This whole process is iteratively executed
starting from processing and delivering at the start of next superstep. BSP
has been extensively used in many environments. For instance, MPI-2 mim-
ics the BSP technique including one-sided communication along with barrier
synchronization. However, the global barrier for synchronization can result in
stragglers since some workers with limited resources can delay the computation
or communication process.

Asynchronous Parallel To overcome the growing issue of stragglers in BSP,
asynchronous parallel (ASP) processing was developed to ensure the partici-
pating worker gains faster access to messages compared to BSP. Workers with
fast computational capabilities can move forward without waiting for the strag-
glers. However, since waiting for stragglers is not a consideration in ASP, stale
gradient computation is involved in the process. Stale gradient computation
increases the computation time and decreases the accuracy of the global model
due to the incorporation of stale gradients.

Stale Synchronous Parallel A stale synchronous parallel (SSP) model was
developed since neither BSP nor ASP can work better with different algorithms
for better accuracy with reduces communication and computation delays. SSP
works better than BSP by allowing fast workers to work by a fixed number
of steps ahead. This is known as gradient bounded staleness. Bounded stale-
ness ensures that there is a bound on the staleness that a model can bear and
the amount of trade-off that can be made in relation to accuracy and delays
associated with communication and the computation of resource-constrained
workers. SSP greatly reduces stragglers because, on completion of their pro-
cess, workers communicate and proceed with the next round thereby improving
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training efficiently. However, as staleness increases over time, accuracy reduces
dramatically.

2.1.2 Machine models

Parallelism in machine learning can be achieved in two ways: 1) model paral-
lelism; and 2) data parallelism.

Model Parallelism As the name indicates, model parallelism divides model
parts among participating worker nodes in machine learning. Each worker has
an entire copy of the data set to be processed. This entire data set is used by
different workers to train different part of the models. The actual model is a
summation of all model parts aggregated into one global model.

Data Parallelism In data parallelism, training data is split across many de-
vices in the training process. Each worker has a copy of the whole model for
training. Each worker node applies the same algorithm to the different data
subsets. This works better when the data each worker hold come from the same
or a global distribution. That is, data parallelism assumes data to be inde-
pendent and identical (IID) for every data sample each worker holds. Hence,
federated learning does not allow raw communications, rather federated learning
is a distributed machine learning approach.

2.1.3 Deep learning

Deep learning is a making learning method based on artificial neural networks.
Deep learning revolutionized the world with its growing development in all fields,
especially in image and text classification. Traditionally, in the machine learning
process, features are manually extracted which is the most crucial step before
model training. The better the features extracted, the better the accuracy of
the trained model. More recently, deep learning has been a hot area of interest
for automatic feature extraction and has been widely used in the literature for
many machine learning applications. Further, deep learning does not require
manual feature engineering and takes raw data as the input. Deep learning
works with both structured or un-structured data. Deep learning algorithms
can easily handle complex operations efficiently which machine learning cannot.
Further, with an increase in training data, the performance of machine learning
algorithms decreases, whereas deep learning can easily handle a large amount
of data and can efficiently extract features.

2.1.4 Convolutional neural networks

Convolutional neural networks (CNNs) are commonly used for image classifi-
cation [104, 124, 71]. The default assumption for CNNs is that the input is
images which makes the forward function more efficient and reduces the pa-
rameters. CNNs requires less pre-processing and can perform better feature
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extraction than usual neural networks. CNNs, in general, use convolution fil-
ters which slide over whole image and extract the features [191, 193, 162, 166].
Three layers are used in the CNN architecture: convolutional layers, pooling
layers, fully-connected layers. Convolution in mathematics is an operation on
two functions which describes how the shape of one function is modified by the
other. The result of this operation yields a feature or activation map. The next
layer, the pooling layer, performs downsampling. There are two types of pooling
- max pooling and average pooling. Max pooling, as the name indicates, takes
the maximum value of the view of the convolution filter, preserving the detected
features, whereas average pooling downsamples the activation map by averag-
ing the view of the current value. The last layer of CNNs is the fully connected
layer , which works on the flattened input where each input is connected to all
neurons in the network.

Convolutional layer

A convolutional layer, as its name indicates, is based on a mathematical operator
which is called a convolution. For a any given two functions, f and g such that
f : Z2 → R and so g : Z2 → R, the convolution operation between the two at a
point, p, such that p ∈ Z2 can be defined as follows:

(f ∗ g)(p1, P2) =
∑
n1∈Z

∑
n2∈Z

f(p1 − n1, p2 − n2)g(n1, n2) (2.1)

f represents the input from the preceding layer for a convolution and g is
the convolutional kernel that is used to move through the convolution. Usually,
the output feature map is smaller than the input feature map as a result of the
convolution operation. Further, the output feature map is the average of the
input from f with the convolution kernel g which is obtained when the kernel
transverses over the input feature map. This traversal creates an output map
which is then passed to the next layer. Depending on the size of the kernel as
well as how the boundaries of the input feature map are considered, the result
is the size of the output feature map.

Pooling Layers

Usually after the convolutional layers, pooling layers are used. There are two
types of pooling layers: 1) max pooling; and 2) average pooling. Max pooling
extracts the maximum value from each neuron’s local neighbourhood, whereas
average pooling extracts the average value from the neighbourhood of local
neurons. Pooling helps in reducing the number of parameters for the subsequent
rounds of the network. The pooling layer operates independently on every input
and resizes the input using the MAX operation. The most common form of
convolutional layer is a pooling layer with filters of size 2x2 with a stride of 2
downsamples every depth slice, discarding 75% of the activations.
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Fully Connected Layers

In the fully connected layer, neurons are connected to all the activations in the
previous layer. These layers are placed at the end of the convolutional layers.
Every neuron has a trainable bias which is associated with it. This is represented
by the following equation:

y =
∑

Wx + bias (2.2)

where W is the weight of the input neuron and b is the bias of the neuron.

Deep Learning - Platforms There are many frameworks currently used for
deep learning. They can be listed as follows:

• TensorFlow : TensorFlow is an open source platform available for machine
learning. It consists of many libraries to support many deep learning ap-
plications. TensorFlow has many built-in modules and pre-trained models
which can be used directly to be incorporated in the existing works. It
can be programmed using Python. Since Python is an easy programming
language providing high level abstractions, it allows flexible programming
for tensorflow. The main reason to use TensorFlow is that it provides
the abstraction of modules which does not require either a technical or
non-technical person to get in detailed description such that a person can
just focus on the application logic. TensorFlow can be used for heteroge-
neous large-scale environments. It can be regarded as a platform for many
research areas such as computer vision, natural language processing, in-
formation systems.

• PyTorch : This is another open source deep learning framework which
is used extensively in re- search. PyTorch provides high-level features to
support production deployment. Recently, with the introduction of dis-
tributed machine learning and gradient quantization, PyTorch has been
widely adopted in academia and industry. PyTorch supports the asyn-
chronous execution of tasks which can optimize the training. It is simi-
lar to the NumPy operation and accelerates the training process using a
graphical processing unit. PyTorch supports more than 200 mathematical
operations. The key features include the following : 1) the availability of
TorchScript which enables users to move between different modes with
easy to use and flexible operations , dynamic graph computation which
allows the participants to engage in dynamic network behaviour, allowing
changes as per their network conditions on the fly, differentiation auto-
calculation which ensures that the differentiation of gradients is done au-
tomatically, Python packages which ensures the availability of multiple
libraries such as NumPy, SciPy and many more.

• MXNet: MXNet is an open-source deep learning framework that allows
deep neural networks to be defined, trained, and deployed on a wide ar-
ray of devices., It is a deep learning framework developed using various

15



program- ming approaches. The programming approaches supported by
MXNET include Python, C++, Perl, R, to name a few. A unique advan-
tage of building a model using MXNET is due to the fact that MXNET
models are portable and can fit in a small memory. Therefore, once the
model is trained and testing using the MXNET framework, it can eas-
ily work on mobile devices. Due to its scalability, it is used by many
companies including Amazon to provide deep learning services.

• Keras is a Python framework to perform deep learning model training.
With Keras, it is straightforward to define a neural network structure and
undertake its training. It provides high- level APIs that can work with
backends such as Theono, TensorFlow etc.

• DL4J: Eclipse DeepLearning4j (DL4J) is the open source deep learn- ing
framework with many distributed libraries written for Java and Scala.
DLJ4 enables CPUs and GPUs to be used in distributed environments.
It allows a combination of neural nets such as en- coders and CovNets as
per the distributed requirement. DL4J has a large number of parameters
which can be adjusted during deep learning training.

2.2 Optimizers in Deep Learning

An optimizer is an important part of a neural network which helps in deter-
mining the appropriate weights required for accurate prediction. This can be
achieved by minimizing the local objective function of the devices in training
neural networks. Depending on the output weights achieved, optimizers can be
categorized into the following different types:

• Gradient Descent

– Batch gradient descent

– Stochastic gradient descent

– Mini-batch gradient descent

• Momentum based gradient descent

• AdaGrad

• Nesterov Accelerated Gradient

• RMSProp

2.2.1 Gradient Descent:

Gradient descent is one of the iterative optimiza- tion algorithms to train a
neural network. Gradient descent works by minimizing the objective function by
moving into a negative direction of the computed gradients so that the steepest
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point is obtained and optima is reached. The negative direction is computed by
taking the derivative of the slope of the objective function at a given point. For
instance, let the objective function be denoted as f(ω) with respect to the model
parameter ω. Therefore, the derivative for f(ω) is denoted by f ‘(ω) which can
be formulated as follows:

f ‘(ω) =
df(ω)

dω

= lim
hk→0

(ω + hk)− ω

hk

(2.3)

From the equation above, it is worth mentioning some of the key points for
f ‘(ω) > 0 which are as follows:

• the function is growing locally upwards

• the function is growing locally downwards

• the function has a local stationary point

Therefore, gradient descent can be formulated as follows:

ωa = ωa−1 − η∇f(ωa−1), a ∈ R (2.4)

where, ω is the model parameter and η is the learning rate.
For multivariate functions, the above equation can be written with respect

to points x,y. Therefore, the multivariate function for any point x, y is given as
follows:

∂f(x, y)

∂x
= lim

hk→0

(x, y + hk)− f(x)

hk
(2.5)

∂f(x, y)

∂y
= lim

hk→0

(x, y + hk)− f(y)

hk
(2.6)

For a multivariate function, there are infinite possibilities of the gradient
direction. Therefore, the directional derivative for a vector for a function f(x, y)
of the form v =< a, b > can be expressed as follows:

f(x, y)v = lim
hk→0

f(x + ahk, y + bhk)− f(x, y)

hk
(2.7)

Therefore, the gradient descent is given as follows:

< xa, yb >=< xa−1, ya−1 > −η∇f(xa−1, ya−1) (2.8)

And, also the gradient update is given by

xa = xa−1 − η∇f(xa−1) (2.9)
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2.2.2 Batch Gradient Descent:

The computation in batch gradient descent is carried out to obtain the gradient
of the objective function with respect to the model parameters. It obtains the
training samples for a particular iteration and processes it as a batch at a time.
Moreover, the training can be computationally expensive when the batch size is
larger thereby increasing the processing time. Therefore, when the number of
samples in the batch is larger, batch gradient descent is not an option. Instead,
stochastic gradient descent or mini-batch gradient descent is an alternative.

Pseudocode for batch gradient descent:

• Initialize the model weights vector

• Until the termination condition is met, take batch of sample for training

• Update the model parameter after each batch training

2.2.3 Stochastic Gradient Descent

Different from batch gradient descent (iterative), stochastic gradient descent
(SGD) is an incremental approach to moving in negative direction of the gra-
dients to reach the steepest point. SGD updates the model parameter, ω, at
every step of the iteration. Hence, the computation time is greatly reduced in
SGD. However, when the training samples are larger, updating parameters per
iteration causes overhead. Compared to batch gradient descent, SGD results in
higher variances as it computes the noisy gradients for the input samples. SGD
also computes the stochastic approximation of gradient descent optimization.
The choice of learning rate plays a crucial role in the working of SGD. A smaller
learning rate makes the variance larger and delays convergence, whereas a larger
learning rate does not reach the local optima as larger steps are taken by the
algorithm and minima might be missed due to these larger steps. So, in general
terms, a constant learning rate is used to reach half of the convergence and then
the learning rate is decreased by some constant. This is also called learning rate
decay where we start with a small constant learning rate and then eventually
drops it by some constant to achieve stable convergence.

Pseudocode for stochastic gradient descent:

• Initialize the model weights vector

• Until the termination condition is met, take each sample for training

• Update each model parameter per iteration

2.2.4 Mini-batch gradient descent:

Mini-batch gradient descent takes a subset or mini-batches from the samples to
compute gradients per iteration. It is often a choice to use mini-batch gradient
descent when the training set has a larger number of parameters as it is efficient
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to use mini batches of data samples instead of the whole batch in each iteration
or each parameter per iteration.

Pseudocode for mini-gradient descent:

• Initialize the model weights vector

• Until the termination condition is met, take each sample for training

• Update each model parameter per iteration

2.3 Regularization Methods

Regularization is an old technique but is powerful when dealing with statistical
problems in data. More recently, statistical problems due to high dimensional
data generated by edge devices have become more prevalent.

to achieve a stable classification or regression model from high dimensional
data, penalization methods, such as L1 norm or L2 norm have been adopted
in the literature. Imposing such regularization methods reduces generalization
error and improves prediction accuracy. L1 or L2 or both together work to elim-
inate the redundant features and can shrink the parameters for induce smooth-
ness in the objective function. The basic foundations of such regularization
norms are detailed in the following section. Different regularization techniques
includes the following:

• Lasso Regression

• Ridge Regression

• Elastic Net Regularization

The aforementioned regularization methods differ in the way they impose a
penalty on the model coefficients. Lasso(L1) is well known to induce sparsity
thereby selecting appropriate features for the model. Ridge(L2) is responsible
for keeping all the features but tries to shrink them.

2.3.1 Lasso

Lasso is an abbreviation for least absolute shrinkage and selection operator.
It is also known as L1 norm or L1 regularization. Lasso regression is a linear
regression which shrinks the coefficients to a central point. Lasso adds a penalty
which is equal to the absolute value of magnitude of the model coefficients.
Therefore, lasso produces a sparse model by eliminating some of the coefficients
which are made zero. [154] explains the lasso problem which is also known as l1
penalized linear regression. Lasso estimates for any predictor matrix A ∈ Rnxp,
with the predictor, y, and tuning parameter λ is given as follows

β‘ ∈ argmin
1

2
||y −Aβ||22 + λ||β|| (2.10)
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When the rank of predictor matrix A, rank(A) = p, the lasso solution is
unique. When the rank is less than p, the solution is not unique as the objective
function is non-convex due to the presence of multiple local minima. When the
data is high-dimensional, lasso is quite a popular tool since it induces sparsity
and produces sparse models. High dimensional data occurs where the features
are larger than the number of observations in the data set. The number of
features removed or set to zero by lasso all depends on the value of the tuning
parameter, λ. If the value of the tuning parameter in equation 2.10 is zero (= 0
then it is the linear regression estimate equivalent. The inference is due to fact
that when the data is high-dimensional, the linear regression estimate is never
unique or uniquely identified. Let us consider the following conditions to explain
the unique lasso solution:

Corollary 1: The lasso problem as per equation 2.10 for any output predic-
tor, y, predictor matrix, A, and the tuning parameter, λ has the given following
properties:

• Multiple solutions exist or a unique solution is possible

• For every lasso solution there exists Aβ‘

• Every lasso solution has same l1 norm.

With the first property of corollary 1, since f(x) is strictly convex and if two
lasso solutions β‘

1 and β‘
2 are different from each other, we know αβ‘

1 +(1−α)β‘
2

is a solution where 0 < α < 1. This gives multiple solutions for lasso.
With the second property of lasso, if two lasso solutions(αβ‘

1 + (1 − α)β‘
2)

have different fitted values then for any k minimum value obtained for any two
lasso solutions we have,

1/2||y −A(αβ‘
1 + (1− α)β‘

2)||22 + λ||αβ‘
1 + (1− α)β‘

2||1
< α ∗ k + (1− α) ∗ k = k

(2.11)

where β‘
1 and β‘

2 are two lasso solutions for strictly convex function, f(x).
With the third property of lasso, if αβ‘

1 + (1 − α)β‘
2 have the same fitted

values , then they have same square error. If the tuning parameter λ > 0, they
must also have same l1 norm.

Karush-Kuhn-Tucker (KKT) Optimality conditions: KKT conditions
for lasso solution can be defined as follows:

AT (y = Aβ‘) = λΓ (2.12)

Γi ∈

{
sign(β‘j), if β‘j ̸= 0

[−1, 1], ifβ‘j = 0, forj = 1, 2, ...., p.
(2.13)

In the above equation, Γ is the sub-gradient of a function, f(x), which is
equivalent of the l1 norm of x.
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We define the equicorrelation set and signs as follows:

ξ = {i ∈ {1, 2, ..., p} : |AT
i (−∇f)(Aβ‘)| = λ},

s = sign(AT
ξ (−∇f)(Aβ‘))

(2.14)

The equicorrelation set is so named because for the predictor variable, y,
predictor matrix, A is standardized and the equi-correlation matrix consists of
variables that have the maximum correlation with respect to the residual.

The unique lasso fit for Aβ‘ = Aξ and any lasso solution β‘ can be written
as follows:

Aβ‘ = Aξ(Aξ)+(y − (AT
ξ )λs) (2.15)

Similarly,
β‘
−ξ = 0

β‘
+ξ = (Aξ)+(y − (AT

ξ )λs) + bl
(2.16)

where bl produces a lasso solution such that bl ∈ null(Aξ) satisfying the
following conditions :

sj .[(Aξ)+(y − (AT
ξ )λs)j + blj ] ≥ 0 (2.17)

The above equation is true when the value of j is such that j ∈ ξ.

LARS Lasso Algorithm The LARS algorithm calculates the lasso solution
path. When the tuning parameter λ = ∞, the lasso solution is zero. As the
parameter tends to decrease, it computes a solution as a piecewise linear contin-
uous function of the parameter. The solution path is the combination of multiple
links with each link representing an iteration of the algorithm satisfying KKT
optimality conditions. The LARS algorithm assumes that when rank(Aξ) = |ξ|
when computing its solution path. The LARS algorithm for computing the lasso
path is as follows:

• Starting with the count, j=0, parameter ‘ =∞, correlation set, ξ, and the
sign as s.

• While λj > 0

– compute the lasso solution as in equation 2.16 and 2.17 at λj

– compute the solution joining time as in equation 2.18 and 2.19

– compute the solution cross time as in equation 2.20 and 2.21

– set the next link in the solution path to the maximal value of join
and cross time.

We can compute the equicorrelation set at the beginning of j-th iteration of the
algorithm as follows:
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β‘LARS(λj) = (Aξ)+(y − (AT
ξ )λs)

= k − λjd
(2.18)

where k = (Aξ)+y and d = (Aξ)+(AT
ξ
+)s give a linear representative func-

tion of the tuning parameter, λ. The estimate given above can be assumed as
the l2 regularization on the variable ξ as follows:

β‘LARS
ξ (λj) = argmin||β‘

ξ|| : β‘
ξ ∈ argmin||y − (AT

ξ )+λjs−Aξλξ||22 (2.19)

Next, the joining time of a variable is the time when an outside variable from
the equicorrelation set attaining a maximal value of the absolute inner product
will join the set. We denote this time the λjoining

j+1 . When a variable inside the
correlation set crosses the coefficient path through zero, we call this as next
cross time denoted as λcrossing

j+1 .
A simple and easy calculation for the situation where j ̸= ξ can be written

as follows:
timejoiningj = AT

j (y −Aξc)/(±1−AT
j Aξd) (2.20)

Following the above joining time, the next joining time can be given as follows:

λP joiningj+1 = Maximum(timejoiningj ) (2.21)

Similarly, the cross time of a variable is given as follows:

timecrossingj = [A+
ξ y]j/[(AT

ξ Aξ)+s]j .1[[A+
ξ y]/[(AT

ξ Aξ)+s]] (2.22)

Subsequently, the next crossing time for the variable inside the correlation
set can be given as follows:

λcrossingj+1 = maximum[tcrossingj ] (2.23)

Properties of LARS:

2.3.2 Ridge regression

For high-dimensional data and to select the parameters during the training
process, ridge regression is more commonly used. Ridge regression is also known
as Thikonov regularization. Matrix A can have a least square estimate which
is not unique due to the presence of many predictors. Ridge regression has the
ability to overcome the criteria of (ATA)−1.

Residual Sum of Squares: Residual Sum of Squares (RSS) measures the
amount of variability or variance in the given data of a regression model. Gen-
erally, the sum of squares is the term used for statistical analysis. The math-
ematical way to represent the best fit line is through the sum of squares. RSS
represents the difference between the actual regression function investigated and
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the data set used for model train. RSS for a function f(x) and output variable
y is as follows:

RSS =
n∑

j=1

(yj − f(xj))
2

(2.24)

where yj is the j-th predicted variable, f(x)j is prediction of yj over the
entire n data entries.

Least Squares Estimate (LSS): The least square estimate for coefficient β
is defined as follows:

βlss = arg min
β

Rss(β) (2.25)

RSS tries to find the values that best fit over the line for the regression
model by making RSS(β small. Generally, all the coefficient estimates are
shrunk towards zero. Similar to the least squares estimate, ridge regression can
be defined as follows:

RSS(β) = λ
n∑

j=1

β2
j (2.26)

where λ is the tuning parameter which controls the strength of the penaliza-
tion. the above equation defines the coefficients for ridge regression. Also, the
following shows different approaches to the values of the tuning parameter:

• λ = 0, we can get the estimate of the linear regression

• λ =∞, we can get the ridge estimate as zero

• 0 ≤ λ ≤ 1, we can get a balanced fit with coefficients shrunken near to
zero making a smooth function.

The bias and variance of ridge regression depends on the amount of shrinkage
done on the tuning parameter as follows:

• As the amount of shrinkage on the tuning parameter increases, the bias
in the data also increases

• As the amount of shrinkage on the tuning parameter decreases, the vari-
ance also decreases

Therefore, the amount of shrinkage depends on how the tuning parameter
is controlled. Larger values of λ cause more shrinkage and a higher bias in the
data as we get different estimates for coefficients for different values of λ and
smaller values reduce the shrinkage intensity and thereby decrease the variance
in data.
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2.4 Federated Learning

Federated learning (FL) [96] has been a hot area of research ever since its evolu-
tion by Google. It has opened opportunities to perform collaborative distributed
machine learning while preserving data privacy. The ideology of FL is to pro-
vide on-device training while complying with data privacy issues. For a device
to participate in the FL training process, it must be connected to a network,
idle and must be charging. Since the number of edge devices (such as IoT de-
vices) are increasing daily, the potential to obtain an accurate global model is
no longer just a whim. That is, apart from privacy concerns, FL also exploits
the benefits of the computing power of edge devices. The first FL open source
platform known as the Federated AI Technology Enabler (FATE) was developed
by WeBank.

Some of the benefits of FL over traditional centralized ML are as follows:

• Since data never leaves its source, the risk of data exposure to unautho-
rized organizations for ML is greatly reduced. Hence, data privacy is a
critical aspect of FL for ML at the edge.

• The data being processed at the edge devices reduces the computation and
storage efforts otherwise required for centralized training. Hence, edge
devices perform local computations with their data and only the results
are shared with the server.

• Obtaining a shared and collaborative model trained on data from large
number of devices is the fundamental aspect of FL. Hence, the future of
ML with FL at the edge can be seen as a promising solution which can
enable different organizations to work collectively without compromising
their data.

2.4.1 Characteristics of federated learning

This section details the characteristics of FL briefly and explains each one.
These characteristics are based on the description of FL in [96], [57], [80], [61].

• Data privacy : Each edge device uses the data produced locally. Hence,
data is not stored in a centralized server which preserves privacy to some
extent. However, some inference can be performed as in [131, 142, 165],
to gain insights from the gradients in transit from the edge device to the
server. Hence, there are several other techniques used in combination with
FL. One such technique is differential privacy which tries to hide the actual
information by adding some noise to the data transmitted [174, 146].

• System heterogeneity : Edge devices participating in FL vary in their
system configurations such as storage capabilities and computation re-
sources. This can affect the number of communication rounds the device
can perform with the edge server and the amount of data they can process
at a time for local model training. Therefore, edge devices with varying
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capabilities participating in FL training can have a significant effect on
performance.

• Statistical heterogeneity: Apart from system heterogeneities, heterogene-
ity in data is the other challenge in FL.

• Massive client Distribution:

• Communication limitation:

As can be seen in Figure 2.2, federated training takes place collaboratively,
considering one edge layer at a time for simplicity, with an edge server commu-
nicating the initial and subsequent updated intermediate models with the edge
devices. Once the model parameters are updated by all three edge devices by
performing local training, the updated parameters are shared back to server for
model aggregation where all three models are aggregated into one global model.
This process continues until target accuracy is achieved.

2.4.2 Types of federated learning

Consider N edge devices with their respective data set D. A traditional ap-
proach is to collect all the data from N edge devices and utilize the collected
centralized data to train an ML model, Mtotal. In FL, a trained global model
Mglobal is obtained without total data, D, centralization at the server. Let the
performance measure of traditional centralized and federated learning be de-
noted as νtotal and νglobal. The performance of the FL model can be formulated
as

νtotal − νglobal < ϕ

FL is known to have ϕ−performance if the difference between traditional cen-
tralized and federated trained models is less than a non-negative real number
ϕ.

Depending on how the features and data samples are distributed, federated
learning is classified into different categories. The classification is as follows:
vertical federated learning (VFL), horizontal federated learning (HFL) and fed-
erated transfer learning (FTL).

Horizontal FL

When two parties have overlapping data features between them, this type of
federated learning is horizontal federated learning. However, they differ in the
data samples. This is also known as sample-based federated learning [186]. Fig-
ure 2.3, shows an example of horizontal federated learning with three hospitals
which specialize in treating cardiac patients in different locations. Each hospital
shares the same patient features in their database. In other words, an individual
might be patient at any of these hospitals or more than one hospital, that is
patients might be different among these hospital with similar features. However,
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Figure 2.2: Federated Learning Training

the feature space for all the patients is the same. Therefore, these three hos-
pitals can work collaboratively to obtain a global and better predictive model
where data features overlap to a great extent. The overall objective of horizontal
federated learning is to obtain a globally trained model with or without central
server participation for the orchestration of intermediate results. Recent studies
such as [30], [33], [214] investigate the horizontal federated learning framework
for their experiments.

Traditionally, ML is performed by centralizing the data from different loca-
tions [25, 201, 157]. With horizontal federated learning, data are not shared
with the server, instead only the gradients or model parameters are shared with
the server. The procedure involved in horizontal federated learning involves the
following steps:

• Each edge device participates in the federated learning process and obtains
the model parameters from the server
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• Upon receipt of the model parameters, devices perform local training,
returns gradients in encrypted form back to the server

• the server returns updated aggregated model parameters back to the edge
devices for further training

For instance, two or three hospitals only share a few patients whose infor-
mation is in all these hospital’s databases. Instead, the features of patients
are commonly shared among each hospital’s database. Therefore, with hori-
zontal federated learning, the hospitals with the maximum overlap of features
help to obtain a global collaborative model which can better work for regression
analysis.

Figure 2.3: Horizontal Federated Learning

Vertical FL

With vertical federated learning, the data samples largely overlap among the
users and differ in feature space. Hence, it also known as feature-based federated
learning. The number of participants required for vertical federated learning is
usually less than horizontal federated learning[186]. The datasets involved in
vertical federated learning must be from the same sample space and a different
feature space. The process includes collating different features such that the
features are dissimilar whereas the data overlaps to greater extent.

The steps involved in vertical federated learning are as follows:

• Encrypted training samples are aligned and used for training as an en-
crypted model.
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• An aggregator Z sends the key to the training parties X and Y for data
encryption so that only encrypted data is transmitted over the network.

• During model training devices X and B can perform the intermediate
gradient step and exchange loss values and then re-calculate the gradients
after the intermediate gradient exchange.

• Newly calculated gradients are then sent to aggregator Z,

During the whole process of training and model parameter sharing, participants
X and Y do not know about each others model features and the only part
of model whose parameters are supported by the local model of X and Y are
shared to them after global model aggregation. Vertical federated learning can
be used by large organizations, such as the financial and retail sector as they
can receive suggestions to obtain information on customer habits for a better
business plan.

2.4.3 Federated Transfer Learning

To leverage the information gathered from other source domains, the trans-
fer learning approach is widely adopted. Transfer learning is generally used
to transfer the trained models to act as a base model which does not require
training from the start. In other words, transfer learning allows the processes,
training distribution and testing distribution to be different. Pre-trained models
which are trained on generalized data sets are used as the base to start the train-
ing process. This can help the model become more specialized after training.
Federated transfer learning is a special case which is different from horizontal
and vertical federated learning.. The most important part of federated trans-
fer learning is to identity which generalized model to use for particular training
based on the training domain. Then, the chosen generalized model is trained to
obtain an application-specific model that is based on the target domain.

2.4.4 Frameworks for federated learning

• TensorFlow Federated (TFF): TFF [63] is a platform on which federated
learning can be performed using TensorFlow modules. It consists of two
layers namely: 1) the federated learning layer; and 2) the federated Core.
The federated learning layer provides high level interfaces so that existing
keras and non-keras models can be integrated with TFF. This layer does
not require the user to understand the underlying working and can easily
use pre-defined functions to test the federated environment.

• Flower: Flower [9] is a novel framework for federated learning which sup-
ports federated training. It offers a stable and flexible ML framework
for federated learning training. Similar to TFF, it provides high-level ab-
stractions that allow users to use the pre-defined modules as is and can
add their own modules on top of the existing stack so that the new re-
sultant model is more job specific. For wireless devices, where system
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heterogeneity prevails, system resources such as memory, bandwidth, and
computational capabilities are not bottlenecks of the system.

• Sherpa.AI: This is a privacy-preserving framework for federated learn-
ing. It aims to bridge the gap between applied and fundamental research.
Sherpa. AI [123] supports keras models and many models from scikit-learn
including linear regression, logistic regression clustering algorithms.

• PySyft: PySyft [224] is an extension of PyTorch for secure and privacy-
preserving deep learning for federated learning. It enables the use of 1)
federated learning; 2) multi-party computation; and 3) differential pri-
vacy. It helps in communication and data transfer for virtual workers that
are created for federated training. It implements a protocol for commu-
nication between a master node and network virtual nodes. It provides a
tensor chain dividing a main tensor. This tensor requires two subclasses
of SyftTensor class, namely 1) LocalTensor and 2) PointTensor. These
tensors are used for the remote execution of operations on virtual workers
and only updated results are transmitted back to the main central master
node for aggregation.

• FATE : Federated AI Technology Enabler https://fate.fedai.org/(FATE)
is an open source framework initiated by WeBank. It implements proto-
cols based on multi-party computation and homomorphic encryption. It
supports many federated learning algorithms including horizontal feder-
ated learning, vertical federated learning and federated transfer learning.
A very important component in this framework is FATE flow which is re-
sponsible for a worker’s job scheduling and their management. Generally,
the following steps are involved in FATE flow for federated learning:1)
Calling interface by FATE to upload the training dataset; 2)the pipeline
for training is defined and FATE interfaces are called for job upload; 3)the
training parameters are continuously adjusted as per the training results;
4)the dataset for prediction is then uploaded through FATE; 5)the pre-
diction job is defined and then executed through FATE.

• OpenFL: Open Federated Learning [121] is a platform for federated learn-
ing developed by Intel Labs & University of Pennsylvania for healthcare
related federated training. Regardless of its initial use case for the health-
care sector, it has now become agnostic to other use cases. Python is
mainly used to code the framework and the distribution is done with the
help of docker, pip and conda packages. The main idea behind OpenFL
is to train the model on the remote workers with their private data. Data
remains private to the data owner, however, only the updated gradients
are sent back to the server for model aggregation.

• NVIDIA Clara: This is the application framework for federated learning
which allows researchers to work on different strategies for federated learn-
ing. NVIDIA Clara integrates with itself NVIDIA runtime environment
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known as NVFlare which helps in getting the domain specific implementa-
tions of modules required in this framework: https://developer.download.nvidia.com/CLARA/Federated-
Learning-Training-for-Healthcare-Using-NVIDIA-Clara.pdfNVIDIA CLARA

• FL4J: Federated learning for the JVM platform [64], uses Java as the
programming language which allows code re-usability and allows training
on android devices with no further code changes. To provide federated
modules abstract model descriptions and algorithms are proposed.

• FLEE: Federated Learning and Early Exit of Interference [210] is a hier-
archical framework for federated learning which provides distributed deep
learning training over the main cloud, intermediate edge and local end
devices. Using the architecture specified in FLEE, the network can be up-
dated dynamically with no model resetting. FLEE consists of three parts
which together forms the whole framework. They are 1) process specific to
FLEE; 2) algorithms; and 3) mathematical formulas. In FLEE, the main
large model comprises two part: the front and back part of the model.
The first part of the model is used for deployment on end devices and the
second part of the model is used for deployment on edge devices. The
training process involved in FLEE includes the following steps: 1)Local
updates: Using the local data available, the end devices train and update
the network of model 1 (front part of the model); 2)Aggregation at edge:
Since the process is at the edge level the edge devices are regarded as the
servers for aggregation and the edge devices are the clients performing
local training. Therefore, the local model parameters updated by the end
devices on the front model (model 1) are then passed over to the edge
server for aggregation at the edge level; 3)Update at edge and end device
local update: Based on the model parameters obtained by the end devices,
the edge servers then performs the entire model training (now including
the back model) and sends the obtained results to the cloud server; 4)
Final Aggregation at Cloud: In this step, the aggregation occurs at the
cloud-level based on the parameters shared from the edge level training.
Here, the model obtained is the global collaborative final model.

• FedLab : FebLab [198] is a federated learning framework with the op-
tion of customizable interfaces and high level-APIs for federated training
simulation. The paradigms supported by FedLab include standalone, hi-
erarchical, and cross-machine. FedLab consists of two main participants
- The server and client with each having two modules, namely Network-
Manager and ParameterServerHandler. The first module, Networkman-
ager, manages the messages between client and server whereas Parame-
terServerHandler performs algorithm optimization and is independent of
NetworkManager.

• Flute: Federated Learning Utilities and Tools for Experimentation (FLUTE)
is an open-source platform for federated learning simulation particularly
offline simulation with an optional integration with the AzureML workspace.
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The local workflow for FLUTE is given as follows: 1) the initial model is
sent to the clients; 2) the global model instances are trained with the
local data available on each client device; 3) after local training at the
client devices is complete, the trained model parameters are then shared
with the global server; 4) once the information is received by the server,
it forms a new global model by accumulating all the received gradients or
locally updated parameters; 5)further, there can be an additional or op-
tional feature of having the training performed by the server before final
aggregation.

Edge Federated Learning Consideration of edge federated learning [169].
Edge federated learning is a type of ML process that integrates both edge com-
puting and federated learning to best utilize the data generated at edge devices
while preserving the data privacy as data is not shared. EFL is a promising
solution for preserving privacy and obtaining the collaborative predictive mod-
els. With edge federated learning, communication with the central server is
reduced but communication between the edge servers is required which helps
the intermediate communications and model aggregations at each level.
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Chapter 3

Literature Review

Overview

In this chapter, we summarize the results of the systematic literature review.
The goal of this chapter is to review the prior literature on stragglers and their
management. Section 3.1 outlines the existing latest literature on stragglers in
edge federated learning Section 3.2. summarizes the techniques in the literature,
to mitigate stragglers and the motivation for the proposed research work.

Stragglers in the Literature: In this section, we review various studies in
the literature that have attempted to address the straggling-effect. Numerous
methods have ben proposed for straggler mitigation. The problem of stragglers
has been studied by many research works in the literature as a distributed
optimization problem.

Generally, for parallel distributed deep learning, parameter servers are more
prevalent with master-slave architecture and the method of communication is
synchronous. Traditionally, in parallel distributing learning, straggling-effect
is a common problem. The work in [16] proposed the concept of the back-up
worker to mitigate stragglers. The main concept was to increase the training
speed by introducing redundancy in terms of additional participating clients.
In this approach, a total of (N + b) clients are considered where b indicates
extra clients for redundancy. During the training process, whenever, the first
N clients respond, the server stops waiting for the other updates and performs
global aggregation while discarding the updates received later. The work in [23]
focus on exploiting stragglers by fixing the computation and communication
deadline so that all the workers complete the training in the same amount of
time and communicate with the server without any wait time. This reduces
resource wastage, as stated in the earlier approach. Additionally, the former
approach works well only when the number of stragglers is less than or equal to
the number of back-up workers, b. If the number of stragglers is more than b,
this resembles the ideal stragglers situation where the wait time is introduced.
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Moreover, both of them follow a synchronous distributed training approach
and are the approaches followed in distributed systems. However, these are
also applicable to the context of FL where distributed training is performed
without data sharing. Some studies such as [150] tried to avoid the straggler
problem. The work in [184] proposes adjusting the training batch according
to the computation time taken by the clients, where both static and dynamic
stragglers are identified. However, the adjustment depends on the computation
time of the workers at the previous iteration which takes more time to decide the
mini batch size and update it in subsequent rounds. In [212], the training speed
of each worker is managed by a parallelism manager. If stragglers are detected,
by comparing the remaining time of a worker with the standard epoch time, its
task is transferred to the fast clients to speed up the training process. This is
similar to the work in [10], where data duplication among clients is seen as a
way to mitigate the straggler problem in distributed systems. The algorithms
for straggler mitigation in distributed systems mainly involve data duplication
among clients, task re-assignment, and ignoring or dropping stragglers (as in
case of federated averaging). These methods are not applicable in the context
of FL since data is not considered a central entity at the cloud server. Hence,
the problem of stragglers in FL is unique with its own characteristics and can
result in a degradation of performance in the case of federated edge computing
context since federated learning in edge computing can cause various issues
such as computation and communication delays due to straggling nodes at the
edge levels[117]. Therefore, the intermediate edge level communications remains
halted thereby delaying the cloud communication at the next level. In another
study [179], in order to deal with stragglers in the edge computing scenario, a
large number of clients are selected by the edge servers so that even if there are
straggling nodes, it will not have a major impact.

To alleviate stragglers in FL, which could be thought of as a distributed
optimization without data centralization and dissemination among clients, var-
ious techniques have been implemented. For instance, ESync [84] was recently
proposed which involves dealing with the blocking time of pioneers instead of
focusing on the long-tail (straggling) effect. ESync tries to utilize the idle time
of pioneers by allowing them to perform additional training rounds only if it can
be accommodated within the predicted straggler response time. Based on the
straggler response time, the state server decides if the training round of the pio-
neer can proceed or if it is allowed to synchronize. It is worth mentioning that if
pioneers are allowed to perform too much local training, during the wait time for
stragglers, it could diverge from the local minimum thereby adding inaccurate
results to the global model. A different approach from ESync is introduced in
TiFL [13]. TiFL selects clients with a similar response time into a same tier so
that whenever clients are randomly selected from a tier, they take same time to
return the updates to the server. Unlike the aforementioned methods, FedProx
[81] introduces a proximal term to deal with system and statistical heterogene-
ity which are the causes of the straggler effect. The notion behind the addition
of proximal term to FedAvg is reparameterizing it such that the local updates
are not diverged from the global objective, thereby involving partial work of
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the clients by tuning it. While others focus on profiling clients into tiers(TiFL),
restricting clients to diverge from the global objective (FedProx), utilizing the
block time for pioneers (ESync), FedCS [102] focuses on client selection as an
important step for federated training in mobile edge computing. The selection
ensures that only clients who can perform model training and update it within
the set deadline are selected. In this way, more clients can be incorporated in
the training process to achieve high performance results unlike the baseline FL
protocol with random selection restricting the number of clients per round.

In [85], the problem of stragglers affecting the over-the-air FL model ag-
gregation is overcome by exploiting the benefits of relays. Moreover, devices
with the help of relays can become communication efficient by uploading their
results to the access point following the amplify and forward strategy of re-
lays. In [202], the FL model is made efficient by estimating the contribution
of participating clients by the iteration detection algorithm, thereby reducing
the training time for FL. Further, the work in in [122] starts with faster clients
and later allows slower clients in model training. Hence, near to target accuracy
is achieved via the participation of faster clients followed by some information
incorporated from stragglers towards the end of model training. There are var-
ious studies in the literature as in [85], [105], [221], [215] that investigate the
edge federated learning scenario. FedEN is closely related to FedProx [81], as
the latter also work on the client drift problem. Similar to FedProx, FedEN
tries to optimize the local objective such that the sparse models are obtained
and at the same time parameters are shrunk to be as close as possible to the
local optima. The work in [59] contain some of the early work on federated
learning dealing with client gradient divergence and proposes the SCAFFOLD
algorithm. SCAFFOLD focuses on client drift due to gradient divergence and
proposes to add a correction term in the local objectives of edge clients which
can nullify the effect of divergence and brings gradients as close as possible to
the global minima.

Stragglers in Distributed learning: In [48], authors introduced a method
named EP4DDL, which uses the technique of load balancing to over- come the
straggler problem in distributed deep learning. The method proposed in the
research uses the elastic parallel strategy to obtain load balancing, considering
the real-time input from CPU or time per epoch or parallelism. Following this,
the input is normalized and model prediction takes place. Finally, the output
is then un-normalized. The result obtained is then used to calculate the par-
ticipating node speed. In a nutshell, the delay time associated with stragglers
is reduced by adjusting the iteration speed of each participating device. This
is similar to the work in [212], where the iteration speed is adjusted to speed
up the overall training process. Another approach in [47] is Berrut Approxi-
mated Coded Computing (BACC). Coded computing has a long history in the
literature in dealing with stragglers. In coded computing, raw data is converted
into coded data and then the coded data is used for all computations. Coding,
in general, adds redundancy in data so the data is replicated among multiple
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servers. Finally, the results from the subset of servers can be used by the main
server thereby reducing the time delay associated with stragglers. In relation to
the current problem with coded computing such as computation instability, new
approach such as BACC recently introduced, BACC allows the master server to
share the coded data generated with the worker nodes and waits for the results
from the fastest worker nodes and computes the final results. Hence, master
server is reducing the overall training time. However, the results from worker
node who might have valuable information might be missed in this scenario.
Further, accuracy might not be as high as it would be when all worker node
results are added together. Similarly, gradient coding methods are used for op-
timization in ML and are also used to straggler mitigation. In gradient coding,
un-coded data is shared between the participating workers in such a way that
it is replicated throughout the workers in the training process. Redundancy
across all workers is achieved either through data creation and sharing or via
data sharing at the initial stage of the training process. However, data sharing
can’t be done in federated learning as the sole purpose of federated learning
is to provide privacy-preserving ML. The work in [11] adopts gradient coding
to mitigate stragglers via a dynamic code word, GC-DC, assigned to workers
for large-scale distributed learning. At iteration, the workers are assigned to
various computing clusters to improve training efficiency by working on extra
data but not by increasing the computational burden on workers. This helps
in assigning the stragglers to different clusters uniformly. Another approach
to deal with stragglers was recently introduced in [203] where only the parity
blocks are cached over with write once and read multiple times technique for
the workloads. However, whether it is caching or coding, data is pre-generated
and then distributed among the participating nodes. This might speed up the
training process but there is no guarantee that the pre-generated data improves
accuracy. Apart from defining what stragglers are and how they manifest, the
work in [135] defines a recovery threshold where the recovery of the system with
stragglers is only possible when the number of stragglers is less than the num-
ber of actual devices in the training process. The authors propose a scheme to
perform distributed matrix multiplication by adopting frame quantization pro-
viding a better reconstruction performance. Frame quantization is translated in
matrix multiplication settings where more robust and efficient communication
can take place with a varying number of devices in training process. In order to
stop stragglers being dropped out from the training and to improve accuracy,
authors in [94] proposes gradient coding with dynamic grouping where stragglers
are distributed equally in each group and coded data is then distributed among
all the devices per group. This ensures that the data is duplicated among all
devices to compensate for straggler’s delay. The main essence is that the devices
are group together using a clustering algorithm, depending on how similar the
gradient cosine is. While the aforementioned techniques deals with stragglers
mitigate stragglers in different ways, the work in [8] detects if a device will ten-
tatively become a straggler based on its performance since the early detection
of stragglers helps in identifying them and also helps in their careful specu-
lation, based on the training performance, in the heterogeneous environment.
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Task speculation is done via Hadoop which records the progress of each task
over time and compares it with a threshold called the average progress score.
If a score is less than the threshold value then the task is considered to be a
straggler. The algorithm proposed in [8] is a better way to identify a straggler
as identification is the first step before mitigation. Identifying stragglers also
helps to analyze the characteristics of stragglers which better helps to devise an
algorithm for dealing them. The recent work in [219] considers distributed code
computing to deal with stragglers. This approach is similar to the work in [47],
[11], [203] where data replication is of high interest. However, the coding ap-
proaches add additional similar data for processing which seems to be better in
ensuring the system is fault tolerant. However, accuracy cannot be improved as
it depends on the new and valuable information incorporated from the devices,
not on the replicated data. Replicating tasks to improve training efficiency is
inefficient as the overhead on the fast devices increases due to additional task
processing. Different from the work in [203], the authors of [134] do not take into
account parity blocks, instead instances of cloud-hosted models are deployed by
workers. In addition to this, because the hosted model is independent of encod-
ing and decoding procedures, any neural network architectures can be used for
the training process. Compared to the traditional techniques used for dealing
with stragglers, ApproxIFER is agnostic to the model data and architectures
and can deal with any number of stragglers in the system. Authors in [115]
tries to minimize the tasks completion time by considering trade-off between
diversity and parallelism. Efficient federated learning is proposed in [188] where
FastSlowMo is introduced. FastSlowMo is combined with Nesterov Accelerated
Gradient (NAG) and client momentum. The steps followed in FastSlowMo are
as follows: 1)Each participating device performs local training, update their
local model and momentum after each epoch with the help of NAG 2) server
aggregated the momentum from all clients and returns the average value back to
them for further training rounds 3) server also receive and aggregate local mod-
els after each training round.4) updated model is broadcasted again to all the
participating clients. The main benefit of this approach is that the momentum
of both server and clients are used to accelerate the convergence performance as
compared to approaches with momentum only at the server side. The download
communication cost of the participating user is assisted with the help of servers
in [74]. The main benefit of doing so is reducing the effort required for downlink
communication required by the resource constraint participating users. In other
words, communication cost is given to the helper servers to support the users
thereby reducing the overhead on them. As compared to all the techniques used
for straggler mitigation in literature, studies in [6] is the unique approach which
jointly works on the replication of tasks as well as it’s speculation and load
balancing. However, none of the three approaches mentioned are best among
others as their response depends on the load in a network as well as on the vari-
ability of the tasks coming in. Generally, when the load conditions are less, then
the replication of tasks can give a better response times. Similarly, when the
load in the network is moderate then speculation can be of great help in order
to identify any deadlock or an overhead in the network. In another study [152],

36



performance of the participating nodes are monitored and the failing nodes,
which are stragglers, are identified. Once stragglers are identified then they are
not allowed to participate thereby avoiding them totally once identified.

Synchronous methods are where the parameter server waits for all the de-
vices to return with their gradient updates which increases the wall-clock time,
causing straggler emergence. Hence, to deal with stragglers causing delay in the
training process and to allow faster synchronization, asynchronous methods are
adopted in the literature. With asynchronous methods, the parameter server
does not wait for any of the participating devices before proceeding to the next
round of training. Instead, as soon as the updates from the devices are received,
the gradients are updated. Hence, synchronization speed increases but some-
times at the expense of accuracy as stale gradients can cause the divergence of
gradients to a greater extent if the stale gradients are calculated at the older
version of the model [222], [89], [22]. Synchronous methods are better in terms
of accuracy but incur a higher wall-clock time, whereas, asynchronous methods
are highly time efficient but can result in a trade-off with accuracy. Therefore,
for asynchronous methods, stale gradients calculated on outdated parameters
beyond a certain threshold can neither improve accuracy nor allow the algorithm
to reach convergence due to gradient divergence. The use of gradient staleness
with an upper bound is suggested in [5] where it is discussed that there are cer-
tain parameters such as the number of workers, and the batch size which can help
in adjusting the gradient staleness. Hence, gradient divergence can be reduced
thereby improving the model’s prediction accuracy. Different from the afore-
mentioned methods, online min-max optimization is proposed in [167] where
nodes with high cost are considered to be stragglers and since the algorithm
is gradient and projection free it is considered to be computationally efficient.
The algorithm is proposed for online training and is called the Distributed On-
line resource Re-Allocation (DORA). In DORA, after the careful speculation
of stragglers performance in online training, the resources are meticulously dis-
tributed among them to help improve the training performance. Similar to [47],
[11], [203] which used gradient coding for straggler mitigation, the authors of
[7] proposes an erasure coding scheme where instead of a single server, multi-
ple servers process some k version of coded sub-tasks such that if the fastest k
servers process all the sub-tasks then the whole task is complete. Further, the
decoding time required to decode a sub-task is negligible compared to the pro-
cessing time. This type of method creates redundancy in data to increase the
processing time in the presence of stragglers in training process. The following
considerations make [47], [11] and [7] different from other studies: 1)the general
number of coded tasks are provided initially; 2)the start time of a sub-task is
generally random and it varies with respect to the completion time of the sub-
tasks; and 3)there is be a trade-off of time between the server and task comple-
tion time. To improve the quality of service of a system [156] proposes Straggler
Prediction and Mitigation (START) which not only mitigates stragglers simi-
lar to other algorithms, it also identifies stragglers at an early stage. In other
words, START predicts the devices which can become stragglers later thereby
reducing the time and cost in identifying and mitigating stragglers. This is exe-
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cuted with the help of LSTM (long short-term memory) based neural networks
which can record changes in performance in terms of CPU, amount of band-
width consumed, service level agreements and many more. Hence, the changes
in the dynamic cloud-like environments can be recorded and a prediction can
be made as to whether a device could become straggler in the next cycle. Simi-
lar to [48], [15] devised worker coordination technique based on load balancing.
Two worker coordination schemes are used in literature: asynchronous parallel
(ASP) and stale synchronous parallel (SSP). ASP is where the server doesn’t
wait for stragglers and update the global parameters as soon as it receives up-
dates from the fast workers. This improves training efficiency but due to the
incorporation of stale gradients, accuracy decreases due to gradient divergence,
whereas in SSP, the wait for stragglers is only until the threshold which imposes
a bound on the gradient staleness. Therefore, SSP is a type between ASP ans
BSP. In [15], the basic idea is that the server issues multiple copies of straggling
tasks and collects only the ones which reply first. Load balancing can be done in
either a with static or dynamic way. Static load balancing, does not require any
real-time progress whereas in dynamic load balancing, straggler detection and
load migration is done for specific groups at a very fine granularity level and in
real time. An important assumption made for dynamic load balancing is that
the sequential process of the jobs is not computationally efficient. Hence, all the
samples in a batch are processed as a single tensor matrix in dynamic load bal-
ancing for model ML workloads. Therefore, in [15], the following properties were
investigated when the proposed algorithm was developed: 1) How practical is
the algorithm? 2) How effective is the algorithm with current ML frameworks;
3) How efficient is the algorithm in terms of not interrupting the processing
time. The work in [83] investigates the coarse-grained and fine-grained perfor-
mance of the models used for distributed SGD. A heuristic based loss function
for coarse-grained models produces the results similar to fine-grained models
and were evaluated per day. Then, the asynchronous model is chosen for the
framework which increases the average prediction accuracy or the test errors.
A fine grained-model can be an abstraction which simulates stochastic gradient
descent for many workers with a lower transmission rate. The architecture used
is the parameter-server so that resources are shared among multiple workers.
Models were evaluated under the following three circumstances as follows: 1)
homogeneous workers with an overlap between communication and computa-
tion 2)homogeneous worker without the overlap between communication and
computation; and 3) heterogeneous nodes are included in the model formation
with coarse-grained model parameters obtained easily. Hence, the model was
thoroughly tested in different scenarios for architectures including centralized
and decentralized settings to ensure it was architecture agnostic.

A decentralized framework, ScaleReactor, is proposed in [218] to mitigating
stragglers . ScaleReactor decouples performance from the scheduler. It moni-
tors, detects and identifies the straggling resources. Therefore, the performance
interferences are migrated to container based clusters thereby reducing perfor-
mance loss. Hence, the computation and time complexity as well as offline
profiling approaches is handled by ScaleReactor for better resource utilization.
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The authors of [106] proposed a preemptive online algorithm which determines
the distribution of tasks between the participating workers. In addition to this,
the overhead associated with a preemptive algorithm is taken care of with the
help of a non-preemptive scheduling algorithm. In order to improve the per-
formance of the graph convolutional network, which is affected by straggling
nodes, Boundary Node Sampling (BNS) - a graph convolution network is pro-
posed. This method partitions the graph which reduces the number of straggling
nodes. Hence, both communication and memory associated costs are reduced.
In other studies [19], the group based sampling technique, ReSKY, is proposed
which helps in the processing of worker nodes considering the sub arrays of other
worker nodes in an efficient manner. Hence, this decreases the straggling effect
as well as the cost associated with network delay. The assumptions made for
the straggler problem are as follows: 1) a database system has a single coordi-
nator worker node and under that coordinator are multiple processing worker
nodes; 2) all pieces of data including the overlapped data in the array are dis-
tributed among all the participating worker nodes; 3) all participating worker
nodes will have an equal number of non-empty chunks of data. Following is the
distributed processing approach in ReSKY: 1) each participating worker node
computes the representative of its sub-array; 2) after forming the sub-array
group, each worker node identifies its local sub array group skyline; 3) the co-
ordinator then computes the global sub-array group skyline and this helps in
pruning the sub groups. This third step in the algorithm is where the group
bases sampling method is introduced to mitigate stragglers. The authors of [87]
proposes a dependency and resource aware scheduling algorithm for jobs that
are heterogeneous in nature and can cause bottleneck in the system thereby
increasing the straggling effect. The proposed algorithm reduces the latency
associated with stragglers and improves the utilization of resources effectively
in the cloud environment. The main idea of Fregata is that it splits the task
into various sub tasks by taking into account, the constraints of tasks. Finally,
it assigns tasks which are independent of each other to different processing
worker nodes such that all tasks can be processed in parallel, thereby reducing
latency. To deal with the disk associated I/O overhead with random walks, an
in-storage accelerator for random walks, known as FlashWalker, is proposed. In
FlashWalker, if Clue Web has more walks then the processing straggler nodes
takes a small portion of processing time. Hence, the optimization is effective
to process the non-straggler processing nodes with improved performance. The
hypergraph partitioning based Online Joint Scheduling (HOJS) technique is pro-
posed in [136] where it deals with the impact of diversity in resources during the
scheduling process. HOJS proposes a time associated cost based on the process
completion time and proposes an optimization algorithm which can efficiently
describe the scheduling of processes thereby reducing the overall completion time
of processes. HOJS makes scheduling decisions, and the hypergraph dynami-
cally gets updated based on the previous results. It can generate an efficient
scheduling techniques since all the constraints such as resource diversity and
distributions are considered at the time of scheduling. However, the current
implementation the optimization of data replication layout is not considered.
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The authors of [114] proposes a gossip-like protocol in IoT settings. The main
idea is to analyze the dissemination and collection of the delays for transmis-
sion models by introducing redundant IoT relays and erasure coding techniques
to deal with stragglers. Hence, the system performance is evaluated based on
the covertness estimation as well as with message passing associated straggler
delay. Further,it is near impossible for cohort estimation as well as message
passing design parameters to be chosen at the same time simultaneously. Sim-
ilarly, in [171], the authors specify some of the most popular techniques that
are used to mitigate stragglers in the literature and proposed the Heterogeneous
Throughput- Driven (HTD) scheduling algorithm. The main idea is to study
the problem of batch- processing in the heterogeneous settings which can cause
straggler problem due to workload overhead. For a single job execution, a task
scheduling scheme for heterogeneous settings is estimated. Further, for multi-
ple sets of job coming in distributed settings, an optimal execution sequence is
generated using parameter estimates. Further, the generated sequence is used
to optimize the details of the tasks in the heterogeneous environment thereby
obtaining the final scheme for task execution. Obtaining the optimal sequence
execution list ensures that stragglers are mitigated. The following steps are
used to obtain the optimal sequence for any tasks in distributed systems: 1)
the original set of jobs are simplified and merged with the corresponding jobs
thereby reducing the number of jobs in the list. Hence, the obtained output is
the simplified set of the job list; 2) the obtained set of jobs are further sorted to
obtain the optimal sequence with a bounded value for the completion time of
each job in the optimal sequence list; 3) all the sequences obtained are verified
using the pruning scheme. The verification of a task is for all the sequences
whose completion time in the list is less than the bounded value. Therefore, the
algorithm helps in the adoption of reasonable job execution optimal sequence
time and ensures that all jobs are processed in a short duration time thereby
reducing the straggler effect.

Stragglers in Federated learning In recent studies, such as [13],[81], [202],
[215], [122], [42], the point of focus was on stragglers in federated learning. The
basic ideology is to deal with stragglers who slow down the training process
by not responding to the server, thereby delaying the global model aggregation.
Different algorithms have been proposed to deal with stragglers in the aforemen-
tioned studies. For instance, segregating stragglers as per their training speeds
in previous rounds, making local functions smooth with l2 regularization, and
better client selection, to name a few. Compared to synchronous methods, asyn-
chronous methods are much more preferable and have been widely adopted as
they improve federated training efficiency by performing global aggregation as
soon as they receive the fastest worker updates. Therefore, the issue of stale
gradients is common in asynchronous federated learning. However keeping a
threshold on how much staleness is allowed helps in negotiating the trade-off
between accuracy and gradient staleness. The work in [108], proposes a gradient
staleness based algorithm, namely Sageflow, to deal with stragglers in federated
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learning. They proposed a two-stage solution based on grouping and filtering
where small a amount of public data is used at the server for training. Sageflow
can deal with stragglers by grouping then in different groups. However, Sageflow
works better when a small amount of public data is available at the server to
perform grouping and filtering of stragglers with a non-straggler device. Coded
computing which is widely used in distributed systems is integrated with fed-
erated learning [100] and termed as coded federated learning. Coded federated
learning allows the server to perform extra redundant computations which are
computationally efficient for participating edge devices. Edge devices compute
partial gradients based on their parity data and submits partial gradients to the
server. The task of server is to aggregate the partial gradients calculated using
parity data from the edge devices since only a subset of some of the partial
gradients can be used for full gradients. Different from CFL, [101] proposed a
buffered algorithm, named FedBuff, which is an asynchronous algorithm with
no penalization for mitigating stragglers. The main idea is to use trusted execu-
tion environments (TEE) for buffering or storing updates from the participating
edge devices. The procedure used in FedBuff is as follows: 1) workers receive
model parameters from the server and perform local federated training in an
asynchronous manner; 2) when the results are shared in an asynchronous man-
ner, the server does not update the global model parameters as it should in
the case of asynchronous techniques. Instead, the updates from the devices are
stored in the buffer and the server chooses to have a threshold for how often the
model is to be updated. A study in [29], proposed a variant of federated aver-
aging which has additional features to deal with stragglers and detailed a new
algorithm called as ’memory-augmented impatient federated learning (MIFA),
which has two additional features - the first being impatient with respect to
stragglers in the training process which is similar to federated averaging as it
does not wait for straggling devices and ignores stragglers; and the second which
includes the augmentation of the latest updates with the stored updates and
then finally performs averaging of the gradients to obtain the final results. Since
MIFA ignores stragglers in a similar way to federated averaging, it follows the
synchronous technique for model aggregation. Different to synchronous or asyn-
chronous techniques, [205] proposed semi-synchronous technique for stragglers
known as clustered semi-asynchronous federated learning (CSAFL). CSAFL is
a combination of both synchronous and asynchronous techniques where gra-
dient staleness is treated by dividing the workers of different objectives into
different groups. Further, the delays associated with model training and results
submission are limited by a threshold. Similar to [156], the authors of recent
work [76] predict the training workload of each device based on the workload
completion history of the workers so that stragglers can be identified and dealt
with accordingly. The algorithm is named as FedSAE, which is a synchronous
and adaptive algorithm. The main concept behind FedSAE can be explained as
follows: 1) the server can delegate the workload among the participating devices
based on their historical information in relation to how they performed during
training process; 2) active learning [182] in device selection. In a nutshell, the
very first step in FedSAE is device selection based on the historical performance
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while in FedAvg clients are selected randomly. Next, the server predicts the
workload for all the selected devices to speed up the training process while in
federated averaging, all devices have some amount of workload for each training
round. While federated learning aggregates the model based on the sample size,
FedSAE aggregates it on the basis of the weights from the training loss of the
participating devices in each training round. FedSAE is a better approach as it
deals with the fairness of the local models and obtains a an fair global model
with better convergence properties. Compared to the benchmark algorithm,
FedSAE achieves a 22.19% increase in test accuracy. The algorithm proposed
in [109] deals with stragglers due to system heterogeneity and communication
inefficiency. To mitigate stragglers, the authors propose a simple yet novel algo-
rithm named the Adjusting Mini-batch and Local Epochs (AMBLE). AMBLE
is an adaptive algorithm that adaptively adjusts the local batch size as well
as the local epoch size for devices which are heterogeneous in terms of system
characteristics. AMBLE adopts a synchronous mechanism to aggregate model
updates after each iteration. Since the local batches and the epoch sizes are
adjusted, each device has a different mini-batch size as well as a different local
epoch size with an adaptive scaled learning rate. AMBLE follows a simple yet
unique approach for straggler mitigation which stands out of all approaches in
literature. However, the scalability of AMBLE with respect to the number of
clients in the training process is not clear. For computational challenges of the
devices in federated training, [177] proposed FedAdapt recently. FedAdapt im-
plements three techniques to deal with stragglers. Firstly, it offloads the layers
of the deep neural networks used in federated training at the servers. The deep
neural network layer after which the partitioning takes place for offloading is
the offloading point. Secondly, reinforcement learning is used to identify the
offloading point for each device before the actual offloading at the server can be
initiated. Lastly, reinforcement learning is optimized so that the bandwidth is
optimal at the time of the offloading procedure. FedAdapt reduces the training
time up to 40% compared to benchmark federated averaging. Since reinforce-
ment learning is used for the offloading procedure for each device in federated
training, any increase in the number of devices requires more reinforcement
agents to perform the offloading strategies.

In [127], the stragglers in a cellular network are identified and mitigated. The
authors designed a mixed-integer optimization problem where the first part of
the optimization problem deals with scheduling devices with a large amount of
data and the second part deals with making the appropriate channel conditions
for those selected devices to make transmission easier and successful. To achieve
the first step of the chosen optimization problem, the authors of this study per-
forms device selection using a greedy algorithm which helps in selecting devices
with better transmitting capabilities, and it is worth mentioning that as the
number of devices in the selection increases the data for federated training also
increases thereby causing the data to move closer to the actual distribution
over the population. Secondly, the appropriate design of a receiver combiner
is proposed to ensure the channel is optimal for the signals to be received by
the base stations at the end of the training round for final signal aggregation.
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In [35], training efficiency is improved by minimizing the training maximiza-
tion problem for 6G to enable mobile edge computing networks and AceFL was
proposed to accelerate 6G-enabled mobile edge computing. AceFL takes into
account both system and network heterogeneity which causes edge devices to
become stragglers. The authors investigated the edge federated learning frame-
work. The main aim of AceFL is to improve training efficiency in the presence of
resource-constrained edge devices. There are two parameters that AceFL tries
to optimize in order to achieve it’s aim. The optimization parameters are local
inexactness and band allocation frequency for each of the device. By adjusting
the aforementioned parameters, the training efficiency of AceFL is improved and
the two aforementioned heterogeneities are dealt within edge federated learn-
ing. AceFL allows edge devices to have local inexactness in the local objectives
and use the proximal term in the optimization of the local loss function of edge
devices. The idea of improving training efficiency in the presence of stragglers
in edge federated learning is a hot area of research of recent times. However,
the concept of using local inexactness and proximal term in the local objectives
of edge devices is same as that proposed in [81]. the authors of [93] propose a
convolutional neural network and multi-layer perceptron based intrusion detec-
tion model known as FedBatch and to deal with stragglers in FedBatch, they
proposed the federated aggregation algorithm where the average is calculated
with respect to uploaded weights only. The asynchronous distributed federated
learning proposed in [116] shows that the system can perform better even if it
consists of stragglers and that the model convergence speed can be improved if
the asynchronous technique is used for model training. In [17], the authors pro-
pose dynamic asynchronous and anti-poisoning federated learning (RAPFDL),
an adaptive algorithm, where stragglers with characteristics such as low compu-
tation power, and improper channel conditions are removed from the training
process. This is similar to the benchmark algorithm, federated averaging, where
stragglers are completely ignored and any information from stragglers is not in-
corporated in the training process. System stragglers are identified in [67] and
FedScale, a federated learning benchmark suite is proposed. FedScale provides
high level APIs which can be used to develop federated algorithms with less
effort. Further, FedScale provides realistic datasets to reflect the characteristics
of federated learning. The authors of FedScale finds that the stragglers in the
system can slow down practical federated learning to a very great extent. They
provided the client completion handler(), an API for dealing with stragglers.
Heterogeneous multi-view data is investigated in [43], giving rise to stragglers
in federated learning. To mitigate stragglers, they developed an iterative opti-
mization algorithm which helps in providing flexibility between communication
and computation. The work in [82] proposed FEDDATE-CS to provide the
deadline and decision for client scheduling in federated learning within a multi-
armed bandit framework. To deal with stragglers, the authors proposed hard
deadline for each local training round. Eventually, this hard deadline threshold
mitigates stragglers thereby improving training efficiency. Both gradient stal-
eness as well as the non-IID characteristic of data reduces the model utility.
K-async federated learning has two issues: stale gradients causing gradient di-
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vergence and non-IID data generated at each device causes a huge impact on the
model utility as the distribution does not matche with the overall distribution
[168]. Weighted K-async federated learning (WKAFL) was proposed to deal
with these two issues. WKAFL works in two stages and performs the following:
1) stale gradients are clipped to make model efficient and stable; 2) the model
works perfectly with improved utility and robustness to non-IID data among
edge devices. The authors of [185], imitated the heterogeneous system by keep-
ing constant and dynamic local epoch steps in federated training. To perform a
fixed number of local steps, each participating edge device performs some fixed
local update steps for training. Similarly, for dynamic local steps, a random
number of steps are performed during local training. Hence,local steps applied
in conjunction with the learning rate plays an import role in the training process
as it can improve training efficiency. This is similar to [109] where mini-batch
size as well as the local epoch size plays a crucial role in training efficiency. In
[187], the heterogeneities of IIoT devices are considered to be the source for
straggler manifestation. The authors proposed a DT based IIoT architecture to
retrieve the real-time statuses of IIoT devices.

Further, to improve training efficiency and to mitigate stragglers, an asyn-
chronous algorithm is proposed. The proposed algorithm is based on Deep Rein-
forcement Learning (DRL) which is used for participating edge device selection
and for clustering algorithms to classify devices based on the size of their data
and computational power. The work in [36] proposed the Adp-FedProx algo-
rithm in order to achieve optimal training performance. Adp-FedProx has better
convergence than asynchronous federated learning and asynchronous federated
learning has better convergence than FedProx as Adp-FedProx can dynamically
adjust the number of global iterations. Hence, Adp-FedProx improves the train-
ing efficiency by 5% to 10% compared to asynchronous federated learning and
FedProx. The authors of [20] proposed an in-network computation framework
for device scheduling in edge networks to decentralize the aggregation process
thereby optimizing communication and reducing the computation overhead on
the edge devices. The core part of mitigating stragglers is the scheduling pro-
cess which is based on a power law distribution. Further, the authors derive the
theoretical bound on the performance of the participating edge devices. In [90]
the asynchronous technique, Fed2A, is adopted only for the local stage. That is,
the edge devices can load the parameters from the server, perform training with
their local data and upload the updated model parameters back to the server
for model aggregation. However, the critical part is at the server where it has
to decide when to aggregate all the updated parameters. Hence, the server con-
tinuously receives the updated parameters from the asynchronous edge devices.
After receiving the parameters until the maximum wait time of the server or
when certain pre-defined conditions are met, the server starts the global round
of model aggregation and the updated model is obtained. This updated model
parameters will then be broadcasted back to the edge devices for the next round
of training. Fed2A achieves higher accuracy and better training performance
compared to the benchmarks FedAvg, FedProx and FedAsync. However, Fed2A
only discusses the model parameters upload stage and the reverse step is not
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discussed, which is downstream optimization. Worker device management or
scheduling plays a crucial role in efficient federated learning as it all starts from
the edge device which will train a local model and any heterogeneous charac-
teristics associated with the devices can cause them to become stragglers. In
[138], the authors propose fairness at the device level which is with respect to
model loss or accuracy loss for the participating edge devices in model training.
An efficient and fairness goal oriented algorithm, Eiffel, is proposed to consider
the resource constraint environment of the edge devices. Instead of including a
random number of devices which could otherwise be resource-constrained and
can stop the training process, Eiffel undertakes intelligent device selection and
can save essential resources such as channel bandwidth, and reduce the energy
consumption.

The authors in [120], deals with stragglers by utilizing a better client selec-
tion procedure for federated learning in a hierarchical framework. Stragglers are
those devices whose wireless links are adverse and the devices have low com-
putational capabilities. The main objective is the identification of stragglers
in hierarchical federated learning. Based on the multi-armed bandit frame-
work, a context-aware online client selection policy (COCS) is proposed. In
COCS, the network operator select the clients on the basis of their computa-
tion and communication requirements and maximizes the resources required for
local training assistance. Edge clients are usually charged for the amount of
resources allocated by the network operator. This proposal is similar to [102]
and [76] where the selection and scheduling of clients is of utmost priority. De-
spite client selection being the better approach to deal with stragglers, there are
other reasons for straggler emergence in a network which is pointed out in [40].
The authors of [197], provide a detailed overview of some of the approaches to
deal with stragglers in federated learning. In addition to all the aforementioned
approaches which are used to mitigate stragglers, the authors of [141], propose
an asynchronous algorithm which ignores stragglers and reduces the training
time compared to other approaches in the literature. Ignoring stragglers (not
involving them in the training process) is also the assumption made by bench-
mark federated averaging. The partial model aggregation approach, FedPA, is
investigated in [88].In FedPA, the models for aggregation are known to be the
aggregation number for a particular round which is identified using reinforce-
ment learning dynamically. The goal of FedPA is to utilize valuable information
from the stale models without discarding them. This is achievable only when the
weighting factors of stale models are used along with the updated fresh model
in the aggregation. The authors of [69] adopts an asynchronous approach in
wireless network settings to deal with stragglers. The main goal is to adopt the
asynchronous approach to obtain some amount of learning which otherwise is
affected by the stragglers in the training process. In addition to this, limiting
the round time of stragglers or uploading the fraction time in each training
round is investigated in [97]. In other studies such as [68], to trade off between
the statistical and system efficiency, the statistical utility of the client is associ-
ated with the utility of the global model. That is, the updates from the first K
clients are collected out of a total 1.3K clients, with K being 100 by default), in
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each training round. Therefore, the time-to-accuracy performance is improved
by selecting clients with high system and statistical utility. To deal with feder-
ated client heterogeneity in mobile edge computing framework, the authors of
[172] introduced FedCH. Similar to other approaches in the literature, FedCH
adopts hierarchical model aggregation. But, different from other approaches,
FedCH takes into account efficient cluster topology where clients are formed in
K clusters depending on their training capabilities. Therefore, each cluster will
perform federated training independently and have their own training speed.
And, the clusters where the participating clients are stragglers will not halt the
system performance as they are restricted to a cluster and are not an impor-
tant part of the system which is different to the work in [102], [82], [120] where
client scheduling is the approach adopted. However, [159] not only deals with
client scheduling but also resource blocks allocated to the clients depending on
the communication and computation limitations for the participating clients.
The authors of [220] deal with the communication latency associated with net-
work stragglers using a distributed optimization algorithm, Delayed Gradient
Aggregation (DGA). The main objective is to delay the aggregation process so
that the communication can be delayed for the computation wait in the future
training rounds.

In the work in [1], a reduction in the number of communication rounds be-
tween the server and the edge devices is considered. The authors proposed a
hierarchical federated learning framework to address the challenges such as re-
source limitations associated with the edge devices as well as the data-privacy
issue associated when performing model training. The main idea is to formulate
the optimization problem for the scheduling of edge devices. In addition to this,
resources are also allocated to the participating edge users based on the distri-
bution of data. However, tight synchronization between the federated training
workers is not considered. The authors in [217], investigate asynchronous fed-
erated learning. For each training round, fixed interval is provided with aggre-
gation done in first-come-first-server approach. In addition to this, the number
of clients selected in the very first round of training is N followed by only one
client being selected for the subsequent training rounds. Therefore, with the
help of model diffusion approach, clients participating in the training rounds
can be organized for each training round. Further, the staleness associated with
the asynchronous approach is dealt with the adoption of the weighted average
aggregation. Similarly, the work in [130], investigates bandwidth allocation and
the client scheduling problem, which can cause stragglers. Further, convergence
bounds guarantee that the trade-off between the latency associated with every
round and the total number of training rounds helps to achieve the required
fixed accuracy. Similar to our approach, [125] investigates the percentage of
stragglers present ranging from 0- 90% in the training process. The authors
propose different federated learning system parameters such as the number of
participating clients, the number of stragglers in the system, and the communi-
cation cost. The consideration of straggler percentage in the system is similar to
the work in [81] where system heterogeneity was accounted for by incorporating
the straggler’s presence percentage in the system. Including a large number of
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clients can speed up the training process only when the percentage of stragglers
in the system is less compared to the number of non-stragglers. The authors
of [14], investigate the limitation on the number of devices participating in the
training process which reduces the metrics such as communication cost or car-
bon emissions. However, the issue of generalizing the train samples when a large
number of clients participate in the training process, the effect on generaliza-
tion is not studied. Similarly, the work in [32] deals with resource management
in the wireless network given the problem of client scheduling as well as en-
ergy management among the participating devices. To address the challenges
of statistical and system heterogeneity, few modification to benchmark algo-
rithm can be done and accuracy over communication rounds can be used as a
metric for federated training which was investigated by authors in [223] who
proposed EasyFL. EasyFL provides diverse training methods as well as scalable
deployment with the assistance of containerization and service discovery.

The interface layer and system layer forms a two-tier architecture. The in-
terface layer provides all the APIs required for the system which makes it com-
plexity hidden from the end user, whereas, the system layer consists of eight
modules that provides additional functionality to the system. In [95], all the
components contributing to the delay in the training time, such as the overall
computation time, bandwidth link delays as well as the straggling effect, are
considered. They improved the system training speed and system throughput
by proposing a system design topology based on the max-plus theory of linear
systems. Fault mitigation is similar to mitigating stragglers in edge computing
as investigated in [31] and they proposed the FedFM (Federated Fault Mitiga-
tion Algorithm). In FedFM, experiments are conducted to analyse the effect of
increasing edge devices that fail due to network issues. Therefore, the authors
introduced a network architecture where the participating edge devices and the
server never changes their topology. Hence, they are static in nature. Further,
nodes can participate and can opt out dynamically. However, the concept of de-
vices joining and opting out dynamically can adversely affect system efficiency
as well as accuracy. The authors of [216] specify the synchronization approaches
and their subsequent results. For stragglers, decentralized algorithms are the
best option as they have better solutions for mitigating stragglers compared
to synchronous approaches which can get better convergence results. In the
enterprise federated learning platform [99], the authors consider that the par-
ticipating devices are moderate enterprises while the data they hold is large.
The concept of the proposed algorithm is to introduce a timeout parameter.
This timeout parameter allows the server to wait for a certain amount of time,
which enables the participating organizations to train and update their local
results. Hence, once the timeout timer expires then the aggregating server
doesn’t wait for the model update results from stragglers and finally aggregate
and form the global model. The concept of using a timer is generally used in
distributed systems in the literature. The timer gives a threshold allocated as
to how much duration of time a parameter server has to wait for the rest of
the participating devices before proceeding with the model aggregation for a
given training round. The authors of [69], proposed an adaptive algorithm for
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deadline determination. The deadline is adaptively chosen depending on the
performance of the participating edge devices. The following steps are involved
in the proposed algorithm: 1) Based on the collection information of comput-
ing resources, channel capabilities, the server calculates the transmission time
and other important system parameters for the participating devices; 2) Based
on the calculated transmission time and other parameters, the server provides
deadline to exclude stragglers from the training rounds. Therefore, server does
not wait for the straggling device to delay the aggregation process by fixing
a deadline onto the straggling devices local training for each training round.
Fixing a deadline for training rounds is a concept widely and generally adopted
in the literature in distributed learning. However, ideally deadlines for training
rounds alone are not sufficient for straggler mitigation. In [77], a training delay
is identified over fading channels as well as due to wireless connection issues.
Participants are allowed to perform one local update per global iteration round.
Further, saddle point approximation is introduced to deal with the delay distri-
bution in the wireless setting to ultimately make federated training efficient. A
different approach to straggler mitigation is adopted in [75] where the stragglers
are considered as the optical network units with limited bandwidth resources.
The main idea is to reserve bandwidth for the participating units which can
make federated learning efficient. Further, when the straggling units opt-in or
opt-out, the reserved bandwidth can be adjusted dynamically which increases
the utilization of resources, whereas the authors of [39], proposes a mechanism
which can help to improve training efficiency which otherwise is affected by
larger models. They introduced importance based pruning which helps in the
extraction of a sub network taken out of the original network as its footprint.
In another study, a tri-layer federated learning scheme is proposed to deal with
stragglers. The three levels are defined as follows: 1) sample-based pruning;
2) resource and activity aware client scheduling process; and 3) local objective
generalization for participating clients. In sample based pruning, model size is
reduced which will eventually reduces the computation overhead on the train-
ing clients. The pruned layers are the ones with the smallest absolute layer-wise
value which can have the least effect on its pruning. For pruning 1) the server
collects sample data from the environment. That is, the clients are asked to
provide a small amount of data they would like to share; 2) global model initial-
ized with the received data from clients and the model parameters are shared
with clients. Further, global model is updated in the subsequent rounds after
receiving new updates from all clients; 3) sample based pruning is performed
until the target pruned model is achieved; 4) the pruned model is shared to
the participating clients for federated training; 5) in the case of a shortage of
resources, the participating clients are allowed to submit their partial work to
the server. The server aggregates the received locally trained models to form a
global model. For the resource & activity aware scheduling process, the server
sends or pushes the task with the minimum required system requirements. The
available clients responds back with the resources available. These resources
could be bandwidth, RAM, or data capacity for training. The clients with the
appropriate system resources are selected for a given task. Finally, once the
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clients are selected, training is performed, and the results submission depends
on whether the participating client is submitting a complete result or partial
results. The clients are allowed to submit their half-way training results to
provide their contribution. Therefore, stragglers are not dropped out or ig-
nored. Instead, they are allowed to partially participate in the training process
to contribute to the training process. However, the partial results submission
can cause a decrease in accuracy as it causes gradient divergence. System het-
erogeneity in federated learning is an inevitable source of stragglers. With the
consideration of system heterogeneity in [2], the authors proposed quantization
as a possible solution which is a promising way of straggler mitigation. The
main idea is that the server makes per-client decisions and selects the version
of the model which is suitable for a clients and sends them the selected model
version. However, the server maintains the model in the floating-point format
and does model quantization based on the client’s capabilities at each round
during the configuration phase. Further, the quantized deep neural networks
are used for federated training which has the flexibility of adjusting the different
bit modes depending on the requirement. Similar to the other client selection
and scheduling mechanisms mentioned before in above literature, the authors
of [196] propose a joint mechanism for client selection as well as the effective
management of resources. The process used to select appropriate clients is as
follows: 1) all edge clients are sorted in ascending order based on the values of
ηi as mentioned in [196]; 2) if more clients are selected then it can eventually
increase the wait time for model aggregation thereby causing delay in model
convergence. Hence, each client-to-be is evaluated with the existing clients to
check if they align with the characteristics of the existing clients which will not
have an impact on training efficiency and can still meet the training deadline.
If a client can meet the deadline, then it is included in the training process else
it is excluded from the selection; 3) this process continues until the appropriate
number of clients are selected for the federated training.

Most recent works: In this section, we present some of the most recent
literature on stragglers in edge federated learning. In [34], the emergence of
stragglers due to communication resource limitations is considered. To deal
with these type of stragglers, fixed step size adaptive fastest k SGD is intro-
duced. Therefore, in the fastest k-updates algorithm, once the global model
fastest-k updates are obtained, the updated model is broadcasted to the par-
ticipating clients. Following this, the client calculates the partial gradients of
their local data and the previous updates from these clients are discarded. This,
therefore, improves the quality of the full gradient. In the adaptive fastest k-
updates algorithm, the number of clients for which the server waits increases
over time. However, if the number of stragglers increases then the wait time for
the server can delay the aggregation process. In addition to this, the work in [12]
introduces a straggler-resilient approach. The main idea is to combine a stale
synchronous parallel parameter server ( stale gradients are allowed in model ag-
gregation) with a back-up worker(some k-backup worker are considered which
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can utilized later when stragglers increases) scheme. The advantages of using
back up workers is that they allow the stale models to be used in global aggrega-
tion. This will ensure that all worker are busy and no one is idle after completion
of their tasks and waiting for others. In [158], authors measure the system ro-
bustness with respect to the probability of stragglers being present which can
hamper the training performance as well as accuracy. The results obtained
shows that there is only a 2% drop in the algorithm’s performance compared to
the benchmark algorithm. But, the results achieved are with respect to all the
clients participating in the training rounds. However, the problem of stragglers
is not completely solved in the study since the increase in the number of rounds
increases the client’s model overwriting, thereby decreasing the accuracy of the
global model. To mitigate stragglers, which wastes the computing resources
of other fast devices, authors in [70] proposed a clustering mechanism named
FedHiSyn. All devices are allowed to work at any given point of time which re-
duces the resource wastage which occurs while waiting for stragglers. FedHiSyn
is a tiered federated learning framework which combines both centralized and
decentralized federated learning frameworks and clusters devices based on their
computing capabilities. After the devices are clustered, the local models trained
are shared with the next devices in a ring topology before the final model can
be uploaded to the server for global model formation. Therefore, allowing local
models to be trained more between the devices increases the accuracy of the
local model and reduces the communication rounds with the server. The tiered
approach proposed in the study is similar to [13] where devices with different
computing resources are tiered and model training is performed at each layer.

The authors of [91], consider limited computation power, limited channel
bandwidth as the factors that causes the emergence of stragglers. Similar to
[99] where client scheduling is performed and a timer is fixed for the server to
wait for straggling clients before proceeding with the global model aggregation,
the threshold bases device selection is chosen to limit the impact of stragglers
on training performance. The authors consider two basic aspects that can be
utilized to deal with stragglers. They are 1) pruning ratio and 2) wireless chan-
nel conditions. The pruning ratio helps in evaluating the computing power of a
local participating device, whereas the channel conditions help in finding strag-
glers in the system. It is concluded that if a device has larger pruning ratio
values, it is more susceptible to becoming a straggler. However, once obtaining
the pruning ratio for all the participating devices, devices with larger pruning
ratio values can be removed to reduce the model aggregation error. Therefore,
despite achieving a global optimal model due to lower computational overhead,
the pruning ratio, allocation of resources to the end devices, and device se-
lection is not effective nor does it help to achieve a globally optimal model.
Further, to minimize the device associated cost, the authors in [211] proposes a
reinforcement learning based algorithm for training optimization. Similar to the
above defined algorithms, the proposed algorithm also focuses on client schedul-
ing. Hence, scheduling is now the most prevalent approach for optimizing and
making federated learning efficient in the presence of stragglers. In [176], both
system and statistical heterogeneity are counted as the source of impacting the
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model efficiency. The main role in this study is that of a scheduler which de-
termines the distribution type across participating clients. Scheduling decisions
are made based on the initial distribution information provided by participating
devices at the beginning of the model training. The steps are as follows: 1) the
participating device connects and shares a brief summary of the distribution
information to the server; 2) after receiving the information from the devices,
the server compares all summaries to identify devices with similar distribution
and clusters them as a group. Within these clusters, the fastest devices are
scheduled to perform the training rounds; 3) upon selection, the fastest devices
train the local model and share updates with the server for global model aggre-
gation. Hence, the client scheduling strategy has been the most commonly used
in federated learning to improve training efficiency. However, scheduling can be
just a part of the list of approaches involved for improved training efficiency.
Recently, coded computing has been proposed to deal with the delay associated
with stragglers. The proposed algorithm is termed the straggler-resilient FL
scheme, [180]. The main idea is to replicate some amount of data across all
participating clients while maintaining the same privacy level compared to the
traditional federated learning. The proposed scheme comprises of three phases:
They are as follows: 1) encryption; 2) data Sharing; and 3) computation for fed-
erated learning. In the encryption phase, the code MDPC is used and row-wise
encryption is performed. For the data sharing strategy, once the edge device
completes local training and returns its results after a threshold timing, the
server alerts the participating device with an error and allows it to share en-
crypted data to the faster worker. In the data sharing phase, the server monitors
the performance of the participating edge devices for all the training epochs. If
at any given point of time, a device responds after a certain threshold, an error
exception is sent to that device asking it to encrypt the data and send it to the
faster device which can resume the process and can remove the hurdle of node
failures and its effect on the training performance. Hence, data is shared with
the fast devices in the encrypted format and the performance is improved by
not halting the progress of a task in between the training process. During the
computation phase, the server decodes the values from the edge devices and ag-
gregates it into the final model. Additionally, when the information is decoded
if there are any error locations, then erasures are applied and model aggregation
is performed afterwards. Apart from stragglers originating from computation
overhead, stragglers from network overhead are considered in [46] by proposing
the iSample algorithm. Therefore, the client selection parameters are limited
as compared to network parameters. In iSample, there are two aspects of data
flowing - a model which consists of millions of parameters and selection pa-
rameters which are fewer compared to model parameters. Therefore, machine
learning model transfer depends on the network throughput whereas the selec-
tion parameters depends on network latency. iSample is designed to handle
devices with low performance to provide high training efficiency by selecting
the most efficient participating devices. Therefore, the clients considering both
computation heterogeneity as well as the network overhead are evaluated. The
main difference with iSample and benchmarks is, the latter uses the client selec-
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tion step before training and the client selection is done beforehand. However,
iSample makes sure that for subsequent training rounds, the aggregated model
is sent only to those clients who are identified or qualified to be the better one.
iSample achieved an improved training performance by 27% to 39% compared
to the benchmark algorithm, federated averaging. This study is similar to [102]
where FedCS is used for efficient client selection to improve training performance
and mitigate stragglers.

The authors of [213] adopt theformation of two different groups for feder-
ated training. The first group is where the inexact ADMM is used to update the
model parameters and the second group is where the server can put stragglers so
such that they avoid the training process which will reduce its impact from train-
ing and improve efficiency. This method is a good choice to improve training
efficiency since stragglers are removed and kept it in a separate group. However,
the training accuracy can be affected since any valuable information from the
stragglers is avoided completely. This approach is similar to the benchmark al-
gorithm, federated averaging, which avoids the incorporation of stragglers from
the training process. Adaptive optimization is focused more in [50] since it has
improved the performance of training in the literature and reduced the training
associated with communication and computation costs. They proposed the the-
oretical principle and designed adaptive optimization techniques for federated
settings. The authors of [38] proposed coded offloading techniques to improve
training efficiency. Offloading techniques improve the overhead associated with
computation.

In [103], ClusterFL is proposed which gives high system performance with
improved accuracy and reduced communication latency associated with strag-
glers. Further, guidelines on choosing the hyper-parameters for training are
provided. In addition to this, ClusterFL has two mechanisms: 1) cluster based
straggler removal; and 2) worker node selection based on the correlation. That
is, stragglers are dropped from within a cluster once they are identified by the
server. The results show that the method of identifying stragglers among all
the working nodes is less effective than the one where stragglers are identified
within a cluster and then removed from training. Similarly, correlation-based
worker node selection, selects the participating nodes only if the correlation is
high within a cluster. Hence, this will increase collaborative learning. If for
instance, a worker node in a cluster 1 and another worker node in cluster 2 have
weaker correlations with other nodes within the cluster, then removing those
worker nodes during the intermediate phase of training can cause accuracy drop
only within the same cluster. Therefore, there will only be minor degradation
within the cluster with respect to cluster accuracy.

To accelerate federated learning in edge computing, the authors of [172]
proposed FedCH for heterogeneous settings. The main idea behind FedCH is
that it determines the optimal number of clusters with resource constraint par-
ticipating edge nodes and forms cluster topology for hierarchical aggregation.
Further, to extend FedCH to more dynamic setting, the authors proposed two
approaches as follows: 1) fixed re-cluster formation; and 2) an adaptive re-cluster
formation. In fixed re-cluster formation, all participating nodes are clustered
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after fixed number of epochs. However, this approach has to wait for an epoch
threshold before clustering can proceed. Therefore, it cannot adapt itself to
changing network conditions nor any sudden changes to network status due to
stragglers. Due to this issue, another approach known as adaptive re-cluster
formation is proposed which is more flexible compared to fixed re-clustering. It
monitors the condition of each cluster and identifies if any cluster has stragglers
based on its performance. If stragglers are identified, then the time for aggrega-
tion between two consecutive global aggregation rounds is increased such that
sufficient time is given to stragglers for their contribution in global model aggre-
gation. Hence, the latest algorithm is known as Dyn- FedCH. Hence, the real
time delay associated with computing as well as communication delay together
with corresponding information for cluster formation is introduced. The system
challenges of participating edge devices in federated learning is investigated in
[107]. The system challenges include fault-tolerance or straggling-effect due to
failed worker nodes in the system. To deal with stragglers in heterogeneous
settings, a synchronous scheme for model aggregation is adopted.

The authors of [58] introduces the heuristics for stragglers in federated edge
networks. The main idea is that, in the aggregation phase, some of the infor-
mation only from the fastest worker nodes are utilized in aggregation. Further,
this can be performed for local as well as network wide global aggregations.
Semi-synchronous scheme for federated learning is proposed in [137]. The main
idea is to make convergence faster with reduction in communication as well
as energy associated costs thereby mitigating straggling effect, particularly in
heterogeneous settings with computational overhead. The proposed scheme is
known as SemiSync, defining a synchronization time as to when all the partic-
ipating workers can share their local models and obtain the global community
model. We can achieve faster convergence by fixing a synchronization point
such that the data processed by each participating worker does not become
contradictory. Further, compared to the synchronous synchronization schemes
for federated learning, participating workers do not remain idle or waste their
computation resources thereby improving the efficiency degraded by stragglers.
That is, the synchronization point is independent of epoch completion time.
Since, the approach utilizes batch-processing, it allows more flexibility in ob-
taining fine-grained control over what is a contribution to the global commu-
nity model. Hence, SemiSync seeks to balance the communication costs and
better resource utilization which deteriorates in the presence of stragglers. In
the study in [178], the focus is on node selection for federated training. The
authors proposed a probabilistic node selection framework known as FedPNS
to change the probability of each node selection dynamically. This change in
probability depends on the output of optimal aggregation where a subset of
participating devices is obtained reflecting the optimal subset of local updates
of the already participating local devices. Hence, these nodes which previously
helped in faster convergence have a greater probability of being selected in the
subsequent training round’s node selection. The main idea in SemiSync is that
a node selection policy is identified with respect to the data heterogeneity of
participating workers to identify nodes which can improve model convergence.
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SemiSync calculates the product of local and global updates which eventually
reflects the difference in distribution between the nodes as well as the overall
distribution. The nodes whose distribution can affect the local updates and
convergence are identified and excluded from being picked up for the training
rounds. That is, participating nodes with a higher possibility of making local
updates worse and degrading convergence get lower-to-no probability of being
selected for federated training. Therefore, only the nodes with a high possibility
of decreasing the global loss have a high probability in its selection. Hence, this
can speed up the convergence compared to the benchmark algorithm, federated
averaging.
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Chapter 4

Proposed Research

Overview

Edge federated learning faces many challenges, such as massive client distribu-
tion, system and statistical heterogeneity. Of all the challenges, system het-
erogeneity causes differences in the computational timings of participating edge
devices while statistical heterogeneity also has a negative impact on training
accuracy and efficiency. These heterogeneities cause a straggling effect where
the edge devices slow down the training efficiency due to their computational
and statistical variances. Our aim is to focus on system and statistical het-
erogeneities arising from the limited computational power of edge devices and
the large number of parameters from high dimensional data, since federated
training involves thousands of devices, all of which have some form of hetero-
geneity. Hence, training with the current benchmark algorithm, FedAvg [81]
with the aforementioned challenges of stragglers can reduce training efficiency.
In FedAvg and most of the algorithms for federated learning, the server waits
for all the de- vices for model aggregation. Therefore, the delay increases and
efficiency decreases. In this chapter, we obtain an optimal solution by introduc-
ing a balance between system and statistical heterogeneity where information
from the stragglers is incorporated in the training without ignoring them, as
in FedAvg. Furthermore, we improve the training efficiency by reducing the
number of parameters involved in each round of the training process. We intro-
duce the elastic optimized distributed algorithm for stragglers in edge federated
learning. We discuss the problem of stragglers in edge federated learning and
their mitigation, aiming to improve training performance in terms of accuracy
over the communication rounds. We set the percentage of stragglers as 10% and
50% of the edge devices during federated training, as a realistic scenario. Since
we consider stragglers as 10% or 50% during federated training, we mean the
this means that 10%/50% of edge devices do not perform all training rounds
but submit their partial results at the end of the training process, thereby per-
forming a random number of iterations in each iteration. Further, the reduction
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in the number of parameters speeds up the training process.

Heterogeneity and convergence: As previously mentioned, we consider
system and statistical heterogeneity in our work. The incorporation of sys-
tem heterogeneity implies that devices which cannot complete their required
number of local iterations in training can perform any random number of itera-
tions and contribute to model aggregation. High dimensional data with a larger
number of parameters is a long-standing statistical problem in the literature
which contributes to statistical heterogeneity causing the straggling effect. The
divergence of edge devices from the local objective is due to statistical hetero-
geneity which worsens when the number of model parameters is very large and
when computationally-inefficient straggling devices contribute their incomplete
results in model aggregation. In the literature, different notations are used to
specify the intensity or degree of heterogeneity as per the variances in the local
objective assumptions. For instance, in [81], ], the bounded dissimilar gradient
assumption is analyzed, whereas the work in [189] first used the term gradient
diversity which measures the dissimilarity degree of individual gradients of the
loss functions. Therefore, the gradient is larger when the products between the
gradients are small. Its ratio is defined as follows

∇(ω) =

∑N
i=1||∇fi(ω)||22

||
∑N

i=1∇fi(ω)||22
(4.1)

4.1 Methodology:

In this section, we describe the model developed in our research and present the
mathematical details of the regularized stochastic gradient descent.

4.1.1 Logistic regression:

Logistic regression is the most common technique used in statistics to explain
the relationship between dependent and explanatory variables. Similar to other
regression analysis techniques, logistic regression is used for predictive analysis.
It helps in describing the data and its relationship between one independent
variable and one or more existing nominal independent variables. It can describe
the connection between the output predictor, y and the input feature, x, such
that the best fitting solution for the model parameters is obtained by minimizing
the equation as follows:

f(x) =
N∑
i=1

(yi − f(xi))
2 (4.2)

where yi is the i-th output predictor and xi is the i-th input feature. The best
fit line for linear regression can be formulated as follows:

y = γ0 + γ1x (4.3)
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We consider N edge devices represented by n = 1,2,...,N in edge federated
learning. We consider logistic regression for image classification. The logistic
regression probability has the form of

p = γ0 + γ1x (4.4)

Therefore, the model is as follows:

log
p

1− p
= γ0 + xγ1 (4.5)

where γ1 and γ0 are coefficients. X is the vector of parameters.
Let us apply an exponent on both sides of eq (4.4):

exp[log

(
p

1− p
)

]
= exp(γ0 + γ1x) (4.6)

Figure 4.1: Linear and Logistic regression curves
source: www.datacamp.com

But, to compare of the label probabilities, the above function is not suit-
able. Therefore, to output the values in the range of [0,1] for the classification
probabilities identified, the sigmoid function can be used. The sigmoid function
g for a function f(x) can be written as follows:

g(f(x)) =
1

1 + e−f(x)
(4.7)

The following hold for the sigmoid function:

Prob[Yi = positive] =
1

1 + e−f(x)
(4.8)

Prob[Yi = negative] = 1− 1

1 + e−f(x)
(4.9)
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where the probability is either +1 or −1.
The coefficients are obtained by maximizing the log likelihood with an elastic

penalty imposed on the L1 and L2 norm of the coefficients for logistic regression.
Therefore, we can write the penalized logistic regression loss function as follows:

l(γ0, γ, λ1, λ2) = −l(γ0, γ) + λ1|γ|1 + λ2||γT ||2 (4.10)

where l indicates log likelihood, and λ1 and λ2 are the tuning parameters
controlling shrinkage intensity.

4.1.2 Optimization

The optimization has been as been an interest in solving machine learning prob-
lems in literature.

As described in earlier chapters, stragglers emerge for various reasons such
as statistical heterogeneity and system heterogeneity. We incorporate system
heterogeneity in our framework to exploit the benefits of data from straggling
devices with varied computational capabilities. However, since these heteroge-
neous devices cannot complete all training rounds, they are allowed to submit
the results from a random number of rounds as per their capabilities. Hence,
we call this heterogeneous partial results. Further, the heterogeneous partial
results submitted causes gradient divergence as the local minima is difficult to
find because of the full and partial results submission.

Stochastic Gradient Descent:

An optimization problem generally involves the minimization of a mathematical
function. For instance, for a given function f(x) = x2, an optimization problem
involves finding the value of x which can minimize the function. To learn optimal
model parameter values ω, gradient descent is a prevalent strategy adopted in
the literature. The objective function can be minimized by using a number of
steps in the negative gradient direction

ωt+1 ← ωt − ηϕi(ω) (4.11)

where ϕ is the learning which can be a function of time. When ϕ decreases,
it ensures that the model will converge within a distance of ϵ.

Local SGD:

A very popular methods for solving distributed optimization problem of type
4.12 is known as local stochastic gradient descent (Local SGD). Each participat-
ing device performs gradient steps locally and returns the local updates to the
node performing final aggregation which could be done by a central server or a
device within the collaboration. Generally, when the number of local steps are
fixed with local SGD, training performance improves. Therefore, a fixed number
of local steps can improve communication efficiency. Further, if workers do not
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communicate in the local SGD then Local SGD performs even more better as
communication is reduced. According to [65], local SGD is a critical component
of federated learning. Further, the addition of a regularization term in local
SGD can improve generalization [204]. Local SGD applies stochastic gradient
descent as a local optimizer. However, there is no guarantee that using local
SGD can guarantee convergence without any assumptions. Therefore, the as-
sumption of the gradient bounds and dissimilarity is made in most of the works
in the recent literature. For instance, in [80], gradient dissimilarity is assumed
and the bound is made on the gradients. Generally, the common assumptions
of Lipschitzness, ∥∇Fj(ω) −∇Fj(ω

|)∥ ≤ L∥ω − ω|∥, is assumed for any of the
theoretical guarantees followed by bounded and dissimilar gradients.

Federated Optimization:

Generally, for any ML algorithm, the critical aspect of optimization is to improve
accuracy and reduce the number of rounds required to reach target accuracy
[24, 27, 54]. The number of communication rounds in federated learning plays
a crucial role as the rounds are usually higher in number in federated learning.
Therefore, the larger the number of communication rounds, the longer the server
would be idle, waiting for the responses from the edge devices. Optimization
in federated learning has many issues associated which is unlikely to occur in
the centralized machine learning. Some of the common characteristics are as
follows:

• Data heterogeneity: Data stored across the clients is never directly com-
municated with the server or with other clients as data privacy is one of
the basic aspects of federated learning. Clients have different quantities of
data that they hold. In traditional distributed settings, data is distributed
among the participating clients and various techniques are used to make
sure that the data is balanced among all the clients to achieve training
efficiency. Data heterogeneity is a critical aspect in federated optimiza-
tion as it accounts for training efficiency as well as accuracy of the global
model. Therefore, dealing with data heterogeneity in federated learning
training is of paramount importance.

• Communication inefficiency: One of the critical issues is communication
inefficiency when the clients cannot communicate with the server due to
network bandwidth or associated heterogeneities. This has resulted in the
requirement of communication efficient optimization algorithms for fed-
erated learning. Standard federated learning averages over many local
model updates and it still achieves efficiency with respect to communi-
cation between the participating clients and server as well as obtaining
global collaborative model similar to the model obtained in traditional
centralized training. However, the standard algorithm does not consider
stragglers in the training process. It simply ignores stragglers and allow
non-stragglers to be involved in federated training. The main idea is to
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identify how to reduce the number of communication rounds that are re-
quired for a model to converge. One way is to allow participating clients
to allow more local iterations or training rounds so that the local updated
model can then communicated with the server. Therefore, the number of
communication rounds can be reduces and training can be made efficient.
However, allowing straggling devices to perform more local iterations can
cause gradient divergence thereby causing accuracy degradation.

• System complexity and associated heterogeneity: Usually system hetero-
geneity refers to the compute and bandwidth resources differences among
the participating clients in federated learning. System as well as data het-
erogeneity can heavily impact on training time. We can associate data
heterogeneity with the following: 1)distribution of training samples across
each participating client; 2) feature distribution among the clients. For
federated learning, on-device hardware capabilities alone can play a cru-
cial role as the training speeds depends on the system capabilities of the
devices. Further, the participating client should be able to handle large
number of parameters associated with model training. If the memory of
the client is not sufficient to handle a large number of model parameters
during training, it can further degrade system efficiency causing a dead-
lock. One solution can be the use of transfer learning which allows the use
of an already trained model which does not require the model to be trained
from scratch. Hence, a generic model can be further trained to become
more specific with less training thereby improving system efficiency. In
addition to this, client-sampling can also play an important role as better
client selection can avoid training inefficiency. Further, resource alloca-
tion techniques can allow resource constrained devices to perform training
efficiently.

4.1.3 System Modelling and Analysis

In this section, we present our proposed model FedEN (Elastic Optimized Fed-
erated Learning) which is a customized version of FedAvg and FedProx. Sec-
ondly, we incorporate the contribution from stragglers. We set the percentage
of stragglers as 10% and 50% of the edge devices during the training process.
We describe the general edge federated learning framework, the stragglers in
the proposed framework and introduce the straggler-resistant optimization al-
gorithm. We first describe the learning based on edge computing and federated
learning to propose edge federated learning in the subsequent section. In edge
computing [133],to train an ML model [170], data is offloaded at the edge server.
The edge server then trains the offloaded data from the edge devices. The bene-
fit of this type of data offloading is that the data is easily accessible rather than
downloading data from the centralized server. Further, the communication time
with the centralized server is greatly reduced with the introduction of a server
at the edge level. Bandwidth is improved and latency is decreased. In federated
learning [96], the clients utilize their local datasets and perform local training
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instead of transferring the data to the server for training. The main advantage
is ensuring the privacy of the local data as it is not transmitted elsewhere for
training.

4.1.4 Edge Federated Learning

Edge federated learning is a term used for federated learning utilizing edge com-
puting. That is, federated learning is implemented at the edge of the network
thereby reducing data migration to a centralized location preserving privacy.
Heterogeneity will remain a challenge again in edge federated learning as most
of the edge devices are resource constraint with different computational capa-
bilities and differences in the distribution of data they hold as compared to the
overall population. In addition to this, the data edge devices hold depends on
their environment. The system heterogeneity can still be identified based on
the training performance. However, the data or statistical heterogeneity is diffi-
cult to identify. Consequently, designing efficient federated learning algorithms
needs the consideration of resource constraints as well as the heterogeneities
associated with system and client’s data. There are various aspects which needs
attention in edge federated learning which are defined as per [149]:

• Proper Device Selection: This refers to the selection of devices that will
participate in model training in edge federated learning. In the benchmark
algorithm, random clients are selected for federated training. However,
since stragglers are avoided in benchmark algorithm, the selection of ap-
propriate edge devices can reduce the overhead of training latency in the
context of edge federated learning.

• Appropriate Resource Allocations: For optimal training efficiency, appro-
priate resource allocations can be the solution. Meta heuristics can be
considered to help with computational complexity associated with chang-
ing edge federated learning environment.

• Aggregation process: The communication and aggregation frequency are
important as it can reduce the number of local computations required.
The benchmark algorithm, federated averaging, uses weighted average of
all the local updates received and follows a synchronous approach for syn-
chronization. However, the synchronous approach is not beneficial when
considering stragglers as it delays the aggregation process. Different to the
standard synchronization method used, asynchronous methods have been
adopted to incorporate delay associated with stragglers and allow faster
aggregation. However, asynchronous methods can include stale gradients
which deteriorates accuracy to a great extent. Hence, appropriate com-
bination of synchronous and asynchronous methods can be adopted for
faster aggregation with improved accuracy.

• Local learning optimization: It is important that all the participating
devices in federated training have identical objectives to achieve a better
collaborative model.
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• Optimization of time and energy: Time required for obtaining a global
collaborative model depends on the devices participating in the training
rounds as to how better clients are in terms of their system computational
power as well as their data distribution. Scheduling of clients plays an
especially significant role in optimizing the time and energy consumption
for federated training.

From the perspective of performance, the aforementioned two schemes are
limited by either a computation or communication barrier. In edge computing
learning, offloading data to the edge server can cause privacy issues. Further,
the data uploading time is relatively high if the datasets are large. On the
other hand, the parameter server architecture of FL is rigid and creates a bot-
tleneck when communicating the training results and when downloading the
initial model parameters.

We investigate an edge federated learning context which consists of an edge
server and N edge devices available for federated learning (FL). These N edge
devices can be represented as N = {1,2,...,N}. Only S ⊂ N are randomly
selected for the training process. Let T be the communication rounds required
for model aggregation and the index for representation be t. E is the total
number of updates performed by the edge devices for local training with the
index e. The model parameter is denoted as ω. For a edge device i in round t
with local update step e, the model parameter is represented as ωt

i,e.
The main objective for efficient EFL is to minimize the loss which can be

formulated as follows :

min
1

N

N∑
i=1

fi(ω) (4.12)

where fi(ω) is the loss function for device i for the sample (xi, yi).
For some j edge devices, the loss function is:

Fj(ω) =
1

Nj

∑
i∈βj

fi(ω) (4.13)

The global loss is defined as the summation over all the local loss functions
:

f(ω) =
J∑

j=1

nj

n
Fj(ω) (4.14)

The optimization problem in 4.12 can cover linear regression or logistic re-
gression and also complicated models such as neural networks. For any given
pair of input (x, y) and with a loss function, f , some of the examples are as
below:

• Linear regression

f(ω) = 1/2(xTω − y)2,∀i ∈ N (4.15)
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Figure 4.2: Edge federated Learning workflow

• Logistic regression

f(ω) = −log(1 + exp(−yxTω)),∀i ∈ N (4.16)

Generally, more complicated models for convex and non-convex problems in
the context of neural networks where the predictions are made through non-
convex function with gradients being computed using backpropagation method-
ology. For federated optimization, it must try to handle the data for training
with the characteristics listed below:

• Massive Distribution of Clients: The amount of devices which could par-
ticipate in federated training are massive.

• Unbalanced data: Different participating devices in federated training
might have unbalances training samples. That is, the amount of train-
ing data differs among the devices.

Generally, there are three steps in edge federated learning training as follows:
a) the edge server broadcast the model parameters server to the clients; b) clients
train and update the local model and the model is sent to the edge server; c)
the edge server aggregated the model and steps (a) to (c) are repeated until
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target accuracy is reached. The local update performed by the clients can be
modelled as follows:

ωt+1
i ← ωt

i − ηϕi(ω
t
i) (4.17)

where ωt+1
i is the model parameter for edge device i for rounds t + 1. After

E local model updates as in eq(2), the updated parameters are then aggregated
by the edge server as follows:

ωt+1 ← ωt +
ηϕ
|S|

∑
i∈S

(ωt
i − ωt) (4.18)

The aggregated model parameters then form a global model whose model
parameters are again broadcasted to the edge devices in an iterative manner.

Algorithm 2: Federated Averaging

Input: B, N, E, η
Output: federated trained global model
while target accuracy not achieved do

Global model parameters broadcast to edge devices;
Local model training at each client;
if complete local training after E updates then

send the updated parameters to the edge server;
end
if local updates received by the edge server then

perform aggregation using equation(3);
end

end

4.1.5 Elastic optimization

Elastic Net, introduced by [225], is a form of regularization which combines
both lasso and ridge regularization linearly. We propose an elastic net in the
optimization of federated local objective functions to produce sparser and better
generalized models which can deal with the emergence of stragglers due to large
number of parameters of high dimensional edge data and diverged parameters.

Let ω be the model parameter, x be the input feature, and y be the predictor
for the input feature. Taking expectation of the loss function, the new loss is
represented as follows

Ej [l(ω, x, y)] = l(ω, x, y) + π(ω) (4.19)

And
π(ω) = λ

[
(1− α)/2||ω||2 + α||ω||

]
(4.20)

Elastic net is particularly useful when the data set is high dimensional with
predictors(p) being larger than the observations(n). Elastic net has a tuning
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parameter, λ and a mixing parameter, α. The mixing parameter, α, regulate
the amount of weight given to lasso and ridge. When α = 0, elastic net is
equivalent to ridge regression. Similarly, when α = 1, elastic net penalization
becomes special case of lasso thereby imposing only l1 penalty on the model
parameters while training. l1 penalty helps in better feature selection thereby
giving sparse results. However, the l2 penalty adds smoothness to the objective
function by shrinking the model parameters. Therefore, ridge penalty shrinks
the model parameters so that the gradient divergence is reduced and local op-
tima is achievable. Despite being similar to the benchmark algorithms, FedAvg
and FedProx, our proposed algorithm, as shown in Algorithm 3, FedEN, has
the following difference:

• A fraction, C, of edge devices are selected for the training process

• Each edge device downloads a shared model, and uses their own dataset
to contribute in the collaborative model

• Each participating edge device have a different number of local epochs
depending on the percentage of stragglers in the training process.

• All participating edge devices after local training return results to the
server to aggregate the collaborative model

Algorithm 3: FedEN:Elastic Optimized Federated Learning

Input: B, N, E, η
Output: Trained global model
Edge Device: i = 1,2,...,N:
while target accuracy not achieved do

Global model parameters downloaded to edge devices;
Local model initialization and training using Eq4.19 ;
yi ← ω
ωt+1
i ← ωt

i − ηiϕ(ωt
i) + π(ωt

i)
if local training complete after E steps then

send the updated model parameters from model yi to the edge
server;

end
Edge Server:
if local updates received by the edge server then

perform aggregation using Eq4.18 ;
end

end

Selection of α: This experiment has the effect of mixing parameter α on the
performance of the proposed algorithm FedEN.
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The effect of mixing parameter on the performance of FedEN: When the
mixing parameter is between 0 and 1 (0 ≤ α ≤ 1), the test accuracy is affected
and fluctuates. Training efficiency increases with larger values of the mixing
parameter while smaller values are suitable for achieving optimal convergence.

4.2 Theoretical Assumptions and Convergence
Analysis:

We investigate the objective function, the straggler optimization problem, as
previously discussed in our convergence guarantees. We incorporate typical
assumptions on ML models for theoretical analysis. The following are some of
the examples of assumptions:

we employ the following standard assumptions ([81], [96]) for edge federated
learning algorithm:

Assumption 1 (Lipschitz gradient) : The Function f is L-smooth if its gra-
dient is L-Lipschitz continuous, i.e.,for any two model parameters, ω, ω|, Fj(ω)
is the Lipshitz gradient for each edge device j such that j ∈ 1, 2, ..., N . That is,
∥∇Fj(ω)−∇Fj(ω

|)∥ ≤ L∥ω − ω|∥.
Assumption 2 (B − Gradient Dissimilarity : The local gradients are B-

dissimilar from each other. That is, ∥∇Fj(ω)∥ ≤ B∥∇f(ω)∥
Assumption 3 (β−Inexact Local Solutions For a each device j such that j ∈

{1, 2, ..., N} and t communication rounds, local training results in β dissimilar
solutions, i.e., |∇fj(ωt+1

j , ωt)| ≤ β|∇fj(ω, ωt)|.
Assumption 4 BoundedGradients : For all model parameters, ω ∈ W and

the regularizing parameters in π(ω), we have bounded gradients assumed to be
|∇F (ω, x)|2 ≤ Bω.

Assumption 5 (BoundedV ariance) Let∇F (ω,X) be the stochastic gradient
for X, and a function f(ω, x, y)

Assumption 6 (BoundedDomain) : Assume the model parameters are from
devices from the same domain thereby having most of the data coming from
same distribution.

General convex loss function The loss function in 4.12 is strictly convex
and differentiable. For any prediction matrix, A, sub-gradient, Γ, lasso solution,
β‘, the KKT conditions for 4.12 can be presented as follows:

AT (−∇f)(Aβ‘) = λΓ,Γi ∈

{
sign(β‘), if β‘ ̸= 0

[−1, 1], ifβ‘ = 0
(4.21)

Where ∇f is the function of Rn. We can define the equicorrelation set and signs
as follows:

ξ = {i ∈ {1, 2, ..., p} : |AT
i (−∇f)(Aβ‘)| = λ},

s = sign(AT
ξ (−∇f)(Aβ‘))

(4.22)
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If A ∈ Rnxp is a prediction matrix with entries drawn from the continuous
probability distribution on Rnp, then for a strictly convex function, f, which is
differentiable and λ > 0, the objective function in 4.12 has a unique solution
with probability as 1. More generally, the results can be applied to any con-
vex, differentiable loss function, f , as in the following logistic regression loss as
follows:

f(ω) =
∑

i = 1n{−yixi + lof(1 + exp(xi))} (4.23)

A local minima of a convex objective function is also a global minimum. Let ω∗

be the ϵ− approximation optimum when the following holds:

∀ω∈W ,∃ f(ω∗) ≤ f(ω) + ϵ. (4.24)

The minimum of a function which is differentiable at a point is where the
derivative is zero as in the following:

∇f(ω) = 0 (4.25)

For a constrained optimization problem, the point where the model param-
eter has minimum value is where the inner product between : negative gradient
and the direction towards the W is not positive. This is supported by the KKT
optimality which considers more than one dimension of a function obtaining the
minimum such that the negative gradient points outwards.

Theorem 1 (Karush-Kuhn-Tucker): For any ω ⊆ Rd and
ω∗ ∈ minω∈W f(ω). Then for any y ∈W , it is said that

∇f(ω)T (y − ω∗) ≥ 0. (4.26)

Lemma 1: Local SGD can be defined as follows:

ωt+1 =
1

N

N∑
i=1

ωt − ηt∇f(ωt) (4.27)

Theorem 2: Let assumptions 1, 4, 5 hold. Then each round of convergence
of the optimized SGD with step size ηt ≤ 1/2l has the following properties:

E[f(ωt)− f(ωt+1)] ≥ E[
ηt
2
|∇f(ωt)

2|]− ηtσ
2 (4.28)

The convergence results with a variance zero, σ = 0, step size, ηt = 1/2l
is given by [119] as O (lB/T ). The amount of variance affects the convergence
time. The larger the variance, the longer it takes to reach convergence time.
Therefore, the use of an elastic term remediates this effect by utilizing the
elastic optimization approach which improves prediction accuracy and training
efficiency by reaching target accuracy in fewer communication rounds.

Theorem 3 (ϵ- optimal stability): An algorithm X(.) is ϵ optimal stable
if the datasets D1 = {d1, d2, ....., dn} and it twin D2 = {d‘1, d‘2, ....., d‘n} with d
being the data test sample have the following:

EX [|f(X(D1); d)− f(X(D2; d))|] ≤ ϵ (4.29)
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Therefore, ϵ− stability indicates that the generalization is bounded by ϵ.
Theorem 4 (Smooth Functions): Let F (ω) be a function which is γ −

smooth with step size, η = ϵ
γN2 and T be the number of communication rounds.

Then, after 2
ϵ2N

2γ(F (ω) − F∗) ≤ T updates with (1 + δ/2)ϵ ≥ E[||∇F (wi)||22]
where N2 = 1/n

∑
i = 1n||∇fi(ω)||22, ϵ− optimality condition, δ is a constant.

Theorem 3 and 4 have also discussed in [189] where the authors discuss the
informal convergence guarantees for gradient diversity to achieve an ϵ− optimal
solution by bounding the distance to the optimal by B times.

Theorem 5: Let Assumption 2 hold. That is, E∥∇Fj(ω)−∇f(ω)∥2 ≤ σ2.

For any ϵ, we have
√

1 + σ2

ϵ ≥ Dϵ. We follow the assumption of dissimilarity

as stated in [81]. We derive the relationship between gradient dissimilarity for
the local objectives and bounded variance for the gradients as follows:

Ej∥∇Fj(ω)−∇f(ω)∥2 ≤ σ2 (4.30)

We further expand the equation in (4.30) as follows:

Ej∥∇Fj(ω)−∇f(ω)∥2 (4.31)

Ej∥∇Fj(ωt+1)−∇f(ωt+1)∥2

Ej∥∇Fj(ωt+1)−∇f(ωt) +∇f(ωt)−∇f(ωt+1)∥2

Ej∥∇Fj(ωt+1)−∇f(ωt)| − |∇f(ωt+1)−∇f(ωt)∥2

The combined equation can be written as follows:

Ej∥∇Fj(ω)−∇f(ω)∥2 ≤ σ2 + |∇f(ωt+1)−∇f(ωt)∥2

We define the dissimilarity, B for |∇f(ωt+1)−∇f(ωt)∥2 ̸= 0 as follows:

B(ωt+1) =

√
Ej [∥∇Fj(ω)−∇f(ω)∥2]

|∇f(ωt+1)−∇f(ωt)∥2
(10)

B(ωt+1)2 =
Ej∥∇Fj(ω)−∇f(ω)∥2

|∇f(ωt+1)−∇f(ωt)∥2

≤ σ2

|∇f(ωt+1)−∇f(ωt)∥2
+ 1
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Theorem 5 and Assumption 2 quantify the dissimilarity between devices in
edge federated learning. The dissimilarity in local functions increases when
B(ω) ≥ 0. So, a larger B means a larger dissimilarity between edge devices.
For all ω there exist ϵ such that B(ω) ≤ Bϵ. We can say that there is a sub-
optimal ϵ solution which differs between the edge devices. When the gradients
are bounded by some non-negative constants, we have the following implication:

B(ωt+1) =

√
Ej [∥∇Fj(ω)−∇f(ω)∥2]

|∇f(ωt+1)−∇f(ωt)∥2

≤ Bϵ

≤
√

1 +
σ2

ϵ
(11)

Theorem 6 (Elastic Convergence) : The elastic net utilized two tuning
parameter λ1, λ2 ≥ 0. When λ2 > 0, the solution for the elastic net is unique.
We consider the fact that the for any fixed λ1 > 0, the elastic net converges to
the minimum of l2norm lasso solution. By fixing any input from X and λ1 > 0,
for almost every output predictor, y, the elastic net converges to LARS lasso l1
norm solution as λ2 → 0+

Proof: By lemma 13 [155], if for any output vector, y /∈ N , where N ⊆ Rn

the LARS lasso satisfies β‘LARS(λ1)i ̸= 0 ∀i ∈ ξ. To fix y /∈ N , we rewrite lasso
solution as follows:

β‘LARS
−ξ (λ1) = 0andβ‘LARS

ξ (λ1) = (AT
ξ Aξ)+(AT

ξ y − λ1s) (4.32)

We define the function,

f(λ2) = (AT
ξ Aξ + λ2I)−1(AT

ξ y − λ1s)forλ > 0f(0) = (AT
ξ Aξ)+(AT

ξ y − λ1s).
(4.33)

with the equicorrelation set, ξ, and fixed sign, s, the function f is continuous
on [0,∞). Therefore, for small λ2 > 0, the elastic net solution for both the
tuning parameters is given as follows:

β‘Elastic
−ξ (λ1, λ2) = 0 and β‘Elastic

−ξ (λ1, λ2) = f(λ2) (4.34)

We show that the above solution satisfies KKT optimality conditions for
lasso as in [155], for smaller values of λ2. Therefore, the KKT conditions for
the elastic net problem can be presented as follows:

AT (y −Aβ‘Elastic)− λ2β
‘Elastic = λ1Γ (4.35)

Where Γ is the subgradient from the KKT optimality condition
We have Γ for i-th subgradient defined as follows:

Γi ∈

{
sign(β‘Elastic), if β‘Elastic ̸= 0

[−1, 1], ifβ‘Elastic = 0
(4.36)
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Since, f(0) = β‘LARS(λ1) (equicorrelation coefficients of LARS lasso) at the
tuning parameter λ1 and y /∈ N , the continuity of f for small λ2. Further, we
know ||AT

−ξ(y − Aξf(0))||∞. Therefore, we get the following which verifies the
KKT conditions for small λ2 with I being the identity matrix which does not
have any inverse:

AT
ξ (y −Aξf(λ2))− λ2f(λ2) =

AT
ξ y − (AT

ξ Aξ + λ2I)(AT
ξ Aξ + λ2I)−1AT

ξ y+

AT
ξ y − (AT

ξ Aξ + λ2I)(AT
ξ Aξ + λ2I)−1λ1s

= λ1s.

(4.37)

Further, assuming ω∗ is an optimal solution for objective 4.12, then the differ-
ence between the optimal function values and the expected function values at
some point, ωt after t iterations is given in [181] as follows:

Ef(ωt)− f(ω∗) ≤ 1√
t
() (4.38)

4.3 Summary

We propose algorithm, FedEN, for optimization of stragglers in edge federated
learning. FedEN improves training performance by reaching the target accu-
racy in less communication rounds. Given the factors that affects the feder-
ated training efficiency, distributed elastic optimization is adopted to constraint
model from diverging and improving training efficiency. By utilizing the mixing
parameter α in the local objectives of participating edge devices, FedEN allows
the edge device to use local loss function which is smooth due to ridge regression
as well the computational load of large number of parameters is reduced with
the help of lasso penalization. Results show that the number of communication
rounds required to reach target accuracy is reduced as compared to the bench-
mark algorithms. In this work, we simulate the training at client side as well
at server side by writing modules in pytorch. We consider system heterogeneity
in terms of percentage of straggling devices present in the system. We allowed
stragglers percentage to be 10%, 50% into the simulating environment. How-
ever, in real world scenario the percentage can vary can be more heterogeneous
in terms of system capabilities as well as wireless connectivity.
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Chapter 5

Experiments and Results

Overview

To achieve our aim, we use logistic regression as the loss function as discussed
in section 5.1. To optimize the loss function, we perform elastic optimization of
the edge device’s local loss function using elastic net regularization

5.1 Datasets

This section includes a brief description of the datasets used for the FL training
experiments. Further, a brief comparison of the datasets is given in table below.

MNIST: The Mixed National Institute of Standards and Technology (MNIST)
data set is the most popular data set for handwritten image classification. It
is publicly available and is used as benchmark data set. The data set consists
of gray-scale images of 60,000 training samples and 10,000 testing samples of
handwritten digits (0 - 9). The training set consists of handwritten digits from
250 people and the test set contains handwritten digits from different people.
Each image is 28X28x1 in size. The intensity of the images is in the range 0
(black) to 1 (white).

CIFAR-10: The data set consists of 50,000 training samples and 10,000 test-
ing samples. These are color images sized 32x32. The images are of 10 different
classes. CIFAR-10 images have been cropped to 28x28 in size and trained on
CNN as per the specification shown in table below:

Dataset Edge devices Train samples Test samples Train rounds
MNIST 100 60000 10000 200
CIFAR-10 100 50000 10000 200

Table 5.1: Data sets
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Figure 5.1: Mnist data sample observations

Figure 5.2: CIFAR10 data sample observations

CIFAR-10 is trained on CNN with specifications provided in training FedAvg.
The CNN for CIFAR-10 has two convolutional layers with 64 5x5 filters followed
by two fully connected layers with 394 and 192 neurons.

The network used is a convolutional neural network with the specifications
used in [96]. The full network architecture for MNIST and CIFAR-10 is shown
in the Figure 5.3. Each architecture consists of two convolution layers followed
by the max pooling layers. ReLu is the activation functions with soft max at
the final layer for classification. Further, the output and number of parameters
at each layer is also specified.

Data Partitioning: The data are partitioned among the participant edge
devices so that each device gets at least two of the same class samples for local
training. Modules which performs data partitioning are defined so that the edge
device or the edge client receives data from only some subset classes and doesn’t
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Figure 5.3: MNIST CNN

Layer Output shape #trainable
params

MNIST 100 60000
CIFAR-10 100 50000

Table 5.2: MNIST CNN Network Architecture

receive data from the overall distribution. Below is the pseudo code for data
partitioning:

def data_partition(dataset, edge_clients):

{

data_per_client = int(len(dataset)/edge_clients)

clients = {}

image = [i for i in range(len(dataset))]

for i in range(edge_clients):

clients[i] = set(np.random.choice(image, data_per_client))

image = list(set(image) - clients[i])

return clients

}

5.2 Experiments and Results Analysis

In this section, we analyse the performance of our proposed algorithm, Elastic
Federated Learning (FedEN) in the presence of stragglers in edge federated
learning. Further, we verify the effectiveness of FedEN in the case of statistical
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Figure 5.4: CIFAR10 CNN

heterogeneity imposed due to partial results submission of heterogeneous edge
devices, otherwise known as stragglers. We also discuss the effect of mixing
parameter α in the local objectives of the participating edge devices. We then
compare FedEN with the benchmark algorithms, FedAvg and FedProx. For
simplicity, we consider federated training at one edge layer. The experiments
are implemented with a well-known deep learning framework, PyTorch [110]
with Python modules. The set up is described as follows:

System Heterogeneity: We set the percentage of stragglers as 10% and 50%
of the edge devices during federated training, as a realistic scenario. This means
that 10%/50% of edge devices do not perform all training rounds Therefore,
10% of computational heterogeneity (alias to system heterogeneity), mean the
straggling devices are 10% out of total participating clients. Similarly, a 50
percentage of heterogeneity indicate that half of the participating edge devices
are stragglers and the variance in data will be high causing divergence from the
local objective.

Statistical Heterogeneity: Our primary objective is to perform image clas-
sification using the MNIST and CIFAR-10 datasets. MNIST consists of 60,000
training samples and 10,000 testing samples, whereas CIFAR10 has 50,000 train-
ing samples and 10,000 testing samples. We assume the edge devices have half
of the data from a similar distribution. Hence, only half of the data of all the
devices is not from the overall distribution. Therefore, we divide the data be-
tween the edge devices in such a way that each device has some data from the
same distributions. In our case, each device will have some data from each of
the 10 classes from the MNIST and CIFAR10 data set. Further, we consider
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two sources of statistical heterogeneity contributing to emergence of stragglers.
The incomplete results or partial results submission causes the edge devices to
diverge from the local objectives which enhances the straggling effect, thereby
contributing to statistical heterogeneity. Similarly, the high dimensional data
from the edge devices have a large number of parameters which further adds
to data variance (statistical heterogeneity). Hence, the specified heterogeneity
sources causes stragglers.

Training Hyper-parameters: For training on image classification using MNIST
and CIFAR-10, we use convolutional neural networks. The hyper-parameter
used is as follows:

Parameter value
local epochs 10
local batch size 10
communication rounds 100
edge devices 100
client selection fraction (C) 0.01
learning rate 0.01

Table 5.3: Data sets

5.2.1 Implementation Details:

In this section, we describe in detail the implementation of our experiments
along with some additional experiment results. The proposed algorithm is
implemented using pytorch. Different modules are implemented for federated
training such as local training, data aggregation at the server, random epoch
generation based on the percentage of heterogeneity assumed in the system such
as 10% and 50% of stragglers in the system.

We start with the pseudo code used for each of the modules used for im-
plementing federated learning. Data Partitioning: MNIST and CIFAR-10
datasets are used for model training. Both datasets are publicly available. In
real world, there will be no data sharing as data remains at the source where
it is generated and only model parameters downloaded from the server are up-
dated during local training and are returned to the server. In data partitioning
module, data is shuffled and split between the selected clients. This shuffled
data is then returned as a dictionary of indexed images to each of the client.

Models used in training: A simple convolutional neural network with
two convolutions (one of them consisting of 32 channels and the other with 64
channels) are used. Next, a max pooling layer followed by fully connected layer
consisting of 512 units. The activation function used is ReLu and the final
output layer consists of softmax layer.

Local epochs generation: Based on the percentage of heterogeneity in
a training round, the number of epochs required can be generated for selected
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clients. For instance, ’A’ number of epochs are 10% of straggling devices. when
the heterogeneity in the system is assumed as 10% then 10% of the clients
or devices send their partial trained model results to the server and when the
heterogeneity is 50% then 50% of the clients send their partial training results
contributing in the global model. If there is no heterogeneity in the system,
that is the number of stragglers in the system are zero which is an unrealistic
situation in the present world due to the availability of millions of smart devices,
then the specified number of epochs are run by the participating clients. In the
other case, where the heterogeneity is present in the system and then the number
of epoch performed by each client differs and are not the same.

Local Training at the Client Side: The weights of the global model are
used with added elastic penalization in the local loss function of each client.
Therefore, loss is calculated with the presence of elastic term. Different param-
eters are used by local training module such as the samples dataset, learning
rate, number of epochs set for the local training. The optimizer used for model
training is stochastic gradient descent. For a given set of local epochs, model
parameters are updated and updated parameters are then returned to the server
as a dictionary and total loss for that round of iteration. More local training
can be performed by the clients to avoid frequent communications with the
server thereby reducing the delays associated with server communication. Gen-
erally, when more local explorations are performed by the participating client in
federated learning, it can cause the gradient to diverge from the local optima.
However, this can be culminated by using elastic penalty which helps in making
the objective function smooth and causing the parameters to shrink keeping all
the parameters as close as possible to the local optima. Server side Train-
ing: After certain number of epochs for each training round by the participating
clients, the server received the updated model parameters dictionary which then
is used for model weights aggregation which is the average of all the received
weights. Once, all the weights are averaged then the model is returned to the
selected clients for further training rounds.

PSEUDO CODE FOR LOCAL TRAINING: Here is the pseudo code
for local edge device training:

class LocalTraining():

def __init__(self, dataset, batch, lr, e , id, mu, alg):

self.training_loader = DataLoader()

self.lr = lr

self.e = e

def training(self, model_type):

criterion = nn.CrossEntropyLoss()

p_criterion = nn.MSELoss(reduction=’mean’)

opt = torch.optim.SGD(model.parameters(), lr=self.lr, momentum=0.51)
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Global_m = copy.deepcopy(Model_received)

start_t = time.time()

e_loss = []

for e in range(1, self.e+1):

training_loss = 0.0

Model.training()

for data, labels in self.training_loader:

if torch.cuda.is_available():

data, label = data.cuda(), label.cuda()

opt.zero_grad()

out = model(data)

_, pred = torch.max(out, 1)

if self.algorithm <> ’feden’:

elastic term = 0.0

# iterate through the current and global model parameters

for w, w_t in zip(Model.parameters(), Global_m.parameters()) :

loss = criterion(output, labels) + (elastic term)

else:

loss = criterion(output, labels)

loss.backward()

# optimization

opt.step()

# loss

training_loss += loss.item()*data.size(0)

# average of loss

training_loss = training_loss/len(self.training_loader.dataset)

A_loss.append(train_loss)

total_loss = sum(A_loss)/len(A_loss)

return Model.state_dict(), total_loss, (time.time() - start_time)
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PSEUDO CODE FOR SERVER TRAINING

def server_training(Model, r, batch, lr, ds, data, test_data, K, E, C

, mu, pe, test_accuracy):

# global model weights

Global_wght = Model.state_dict()

# training loss

training_loss = []

# test accuracy

testing_acc = []

# store last loss for convergence

final_loss = 0.0

# total time taken

tot_time = 0

for curr_round in range(1, rounds+1):

W, loc_loss, local_train_time = [], [], []

M = max(int(C*K), 1)

hetero_epochs = LocalEpochs(p, size=M, max_e=E)

hetero_epochs = np.array(hetero_epochs)

Str = np.random.choice(range(K), M, replace=False)

Str = np.array(Str)

# For Federated Averaging, stragglers are dropped

if algorithm == ’fedavg’:

straggler = np.argwhere(hetero_epochs < E)

hetero_epochs = np.delete(hetero_epochs, straggler)

Str = np.delete(Str, straggler)

for k, epoch in zip(S_t, hetero_epochs):

local_updates =Updates(dataset=ds, batch=batch, lr=lr, e=e, id=

data_dict[k], mu=mu, algo=algor)

Weights, loss, local_training_time = local_updates.training(Model=

copy.deepcopy(Model))

w.append(copy.deepcopy(Weights))

loss.append(copy.deepcopy(loss))

train_time.append(train_time)
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# global weights time

Global_time = time.time()

# global weights updating

Weights_avg = copy.deepcopy(W[0])

for k in weights_avg.keys():

for i in range(1, len(W)):

weights_avg[k] += W[i][k]

Weights_avg[k] = torch.div(Weights_avg[k], len(W))

Global_weights = weights_avg

Global_end_time = time.time()

# calculate time

total_time +=

(Global_end_t - Global_start_t) + sum(local_train_time)/len(

local_train_time)

# move the updated weights to our model state dict

model.load_state_dict(Global_weights)

# loss

Global_model= copy.deepcopy(Model)

if algorithm == ’fedEN’:

l_avg = (sum(l_loss) / len(l_loss))

# test accuracy

criterion = nn.CrossEntropyLoss()

testing_loss, testing_accuracy

= testing(Model, test_data, 128, criterion, number_classes,

classes_test)

training_loss.append(l_avg)

test_accuracy.append(test_accuracy)

if test_accuracy >= test_accuracy:

rounds = current_train_round

break

# update the last loss

last_loss = loss_avg

fig, ax = plt.subplots()

x_axis = np.arange(1, r+1)
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y_axis = np.array(training_loss)

ax.plot(x_axis, y_axis)

fig1, ax1 = plt.subplots()

x_axis0 = np.arange(1, r+1)

y_axis0 = np.array(test_accuracy)

ax1.plot(x_axis0, y_axis0)

return model

Network Architecture:

Various ML models can be used to address to the problem statement and require-
ments. Different models include linear regression, logistic regression, support
vector machines (SVM), neural networks (NN), and Bayesian regression. Any
of the aforementioned models could be used to find a solution to the problem.
As we aim for image classification using the MNIST and CIFAR-10 datasets, we
use convolutional neural networks. Convolutional neural networks are used for
training on the image classification tasks [194, 199, 207]. Training is performed
using the MNIST and CIFAR-10 image datasets. For MNIST, local training
is performed on the training set. The MNIST model network starts with the
input layer followed by the two convolutional layers of size 5x5. These convo-
lutional layers are used for feature extraction and the linear layer at the end of
the network acts as a classifier. Next, the convolutional layer is followed by max
pooling of size 2x2. The max pooling layer helps in dimensionality reductions.
The max pooling layer is followed by a fully connected layer of 512 units. The
activation function used is ReLu. Finally, the output layer consists of softmax
function for predicting the classification probabilities. For CIFAR-10, the CNN
model has 64 5x5 filters for two convolutional layers. Next, the convolutional
layers are followed by two fully connected layers. The first fully connected layer
consists of 394 neurons and the second fully connected layer consists of 192 neu-
rons. We use stochastic gradient descent (SGD) as the optimizer and a learning
rate of 0.01. We adopt a local mini-batch size of 10. The CNN structure spec-
ified earlier is similar to the one specified by [96]. Further, baseline algorithms
(FedAvg and FedProx) also use the same CNN architecture for a fair compari-
son. The CNN model architecture for both the MNIST and CIFAR-10 datasets
is shown in Tables 5.4, 5.3.

Data Import: Following is the pseudocode for data import in Pytorch:

mnist_train = transforms.Compose([

transforms.Resize((32, 32)),

transforms.RandomCrop((28, 28)),

transforms.RandomRotation(degrees=30),
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transforms.ToTensor(),\\

transforms.Normalize((0.5,), (0.5,)),

])

mnist_test = transforms.Compose([

transforms.ToTensor(),

transforms.Resize((32, 32)),

transforms.RandomCrop((28, 28)),

transforms.Normalize((0.5,), (0.5,)),

])

mnist_train = datasets.MNIST(’./data/mnist/’, train=True, download=True,

transform=mnist_train)

mnist_test = datasets.MNIST(’../data/mnist/’, train=False, download=True,

transform=mnist_test)

cifar10_train = transforms.Compose([

#transforms.Grayscale(num_output_channels=1),

#transforms.Resize((32, 32)),

#transforms.RandomCrop((28, 28)),

#transforms.RandomRotation(degrees=30),

#transforms.GaussianBlur(kernel_size=501),

transforms.ToTensor(),

transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)),

])

cifar10_test = transforms.Compose([

transforms.ToTensor(),

#transforms.Resize((32, 32)),

#transforms.RandomCrop((28, 28)),

#transforms.Grayscale(num_output_channels=1),

#transforms.GaussianBlur(kernel_size=501),

transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)),

])

Data Partitioning

for i in range(edge_clients):

random = set(np.random.choice(allocation_id, data_per_device, replace=False))

allocation_id = list(set(allocation_id) - random)
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for r in random:

edge_device_arr[i] = np.concatenate((edge_device_arr[i],

idxs[r*data_size:(r+1)*data_size]), axis=0)

return edge_device_arr

Mnist model

class mnist(nn.module):

def __init__(self):

super(mnist, self).__init__()

self.conv1 = nn.conv2d(1, 32, kernel_Size=5)

self.conv2 = nn.conv2d(32, 64, kernel_Size=5)

self.pool = nn.maxpool2d(2,2)

self.dropout = nn.dropout(0.2)

self.fullyconnected1=nn.linear(1024,512)

self.output=nn.Linear(512,10)

def Forward(self, x):

x = self.poo;(F.RELU(self.conv1(x)))

x=self.pool()

x=self.dropout()

x= torch.flatten()

x= F.RELU()

x=self.output(x)

output= F.log_softmax(x,1)

Return output

Cifar-10 model

class cifar10(nn.Module):

def __init__(self):

super(cifar10, self).__init__()

self.conv1 = nn.conv2d(3, 64, kernel_size=5)

self.conv2 = nn.conv2d(64, 64, kernel_size=5)

self.pool = nn.Maxpool2d(2,2)

self.dropout = nn.dropout(p=0.2)
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self.fullyconnectedc1 = nn.Linear(1600, 394)

self.fullyconnectedc2 = nn.Linear(394, 192)

self.out = nn.Linear(192,10)

def Forward(self, x):

x = self.pool(F.RELU(self.conv1(x)))

x = self.pool(F.RELU(self.conv2(x)))

x = self.Dropout(x)

x = torch.Flatten(x, 1)

x = F.relu(self.fc1(x))

x = F.relu(self.fc2(x))

x = self.Output(x)

Output = F.log_softmax(x,1)

return out

local epochs generation based on the edge devices heterogeneity aspect

5.2.2 Results Evaluation

The federated learning algorithms which we use as the benchmarks to compare
our proposed model are as follows:

• FedAvg: Local update rule involves simple stochastic gradient descent for
a number of iterations before communicating the results to the server.

• FedProx : Edge devices update their local model with a proximal term in
their objective function. Here, we consider it as a benchmark since it also
deals with statistical heterogeneity via a proximal term.

We compare the performance of our proposed model, FedEN, with these
benchmarks in terms of the target accuracy reached over the number of com-
munication rounds. We consider the partial device participation scenario where
the edge devices contribute their partial results to the edge server since it can-
not complete all training iterations. These devices are known as stragglers with
different computation capabilities. Hence, data heterogeneity also spikes due
to this type of participation. We use MNIST (consisting of 60,000 training
and 10,000 testing samples) and CIFAR-10 (consisting of 50,000 training and
10,000 testing samples) for the classification task. We implement our algorithm
in Python using PyTorch consisting of different modules for local training, and
server training. Further, we incorporate 10 % and 50 % of system heterogeneity
to replicate the real-world uncertainty of devices dropping out due to system
heterogeneity.
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h

Methods R50 R100 R150 R200
FedAvg [96] 64.44 68.99 75.02 83.91
FedProx [81] 67.80 75.01 78.99 86.9

FedEN 71.94 78.9 85.5 88.7

Table 5.4: CIFAR10 Test Accuracy : 10% Stragglers

Methods R50 R100 R150 R200
FedAvg 62.99 65.09 71.29 80.02
FedProx 65.80 73.99 76.02 83.50
FedEN 69.94 82.52 83.89 86.95

Table 5.5: CIFAR10 Test Accuracy : 50% Stragglers

Methods R50 R100 R150 R200
FedAvg 88.02 90.02 93.01 95.01
FedProx 89.9 91.5 94.5 96.09
FedEN 92.7 94.89 96.83 98.89

Table 5.6: MNIST Test Accuracy : 10% Stragglers

Methods R50 R100 R150 R200
FedAvg 87.21 89.5 92.15 94.3
FedProx 88.57 89.55 92.41 95
FedEN 91.81 92.89 95.98 97.05

Table 5.7: MNIST Test Accuracy : 50% Stragglers
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Methods R50 R100 R150 R200
FedAvg 0.048 0.043 0.043 0.040
FedProx 0.048 0.041 0.031 0.036
FedEN 0.046 0.038 0.037 0.034

Table 5.8: CIFAR-10 Train Loss: 10 % Stragglers

Methods R50 R100 R150 R200
FedAvg 0.051 0.045 0.040 0.042
FedProx 0.050 0.043 0.035 0.038
FedEN 0.046 0.040 0.033 0.035

Table 5.9: CIFAR-10 Train Loss : 50 % Stragglers

Methods R50 R100 R150 R200
FedAvg 0.039 0.029 0.028 0.025
FedProx 0.039 0.028 0.025 0.024
FedEN 0.036 0.027 0.025 0.022

Table 5.10: MNIST Train Loss: 10 % Stragglers

Methods R50 R100 R150 R200
FedAvg 0.042 0.040 0.032 0.030
FedProx 0.039 0.035 0.029 0.028
FedEN 0.038 0.030 0.029 0.025

Table 5.11: MNIST Train Loss: 50 % Stragglers
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Figure 5.5: CIFAR10 Test Accuracy With 10% Stragglers

Figure 5.6: CIFAR10 Test Accuracy With 10% Stragglers

5.2.3 Performance comparison

CIFAR-10 - Test accuracy comparison for 10% stragglers: Table 5.4
shows the test results for accuracy for the CIFAR-10 dataset with 10% of strag-
glers. The accuracy over the test data samples is demonstrated over 50, 100, 150
and 200 communication rounds. For communication round 50, the test accuracy
for FedAvg is 64.44 and for FedProx it is 67.80. However, FedEN achieves accu-
racy of 71.94 for 50 communication rounds. Similarly, for round 100, FedProx
achieves an accuracy of 75.01 compared with FedAvg which has an accuracy of
68.99. However, FedEN achieves an accuracy of 78.9, which is higher than both
FedAvg and FedProx. For communication round 150, FedEN again achieves
the highest test accuracy of 85.5 compared to FedAvg and FedProx at 75.02
and 78.99, respectively. A comparison of all previous training rounds shows
that FedEN always achieves better accuracy than the benchmark algorithms.
For communication round 200, the accuracy for FedEN is 88.70, compared to
FedAvg 83.91 and FedProx 86.9. Therefore, a comparison of all communica-
tion rounds shows that FedEN achieves the highest test accuracy for CIFAR-10
classification with 10% stragglers contributing to statistical heterogeneity.

CIFAR-10 - Test accuracy comparison for 50% stragglers Table 5.5
shows the test accuracy for the CIFAR-10 dataset with 50% stragglers. The
accuracy over the test data samples is demonstrated over 50, 100, 150 and 200
communication rounds. For communication round 50, the test accuracy for Fe-
dAvg is 62.99 and for FedProx, it is 65.80. However, FedEN achieves accuracy
of 69.94 for around 50 communication rounds. Similarly, for round 100, FedProx
achieves an accuracy of 73.99 compared with FedAvg which has an accuracy of
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Figure 5.7: CIFAR10 Test Accuracy With 50% Stragglers

Figure 5.8: CIFAR10 Test Accuracy With 50% Stragglers

65.09. However, FedEN achieves an accuracy of 82.52, which is higher than Fe-
dAvg and FedProx. For communication round 150, FedEN achieves the highest
test accuracy of 83.89 compared to FedAvg and FedProx at 71.29 and 76.02,
respectively. A comparison of all previous training rounds shows that FedEN
always achieves better accuracy than the benchmark algorithms. For communi-
cation round 200, FedEN achieves an accuracy of 86.95, compared to FedAvg at
80.02 and FedProx at 83.50. Therefore, a comparison of all the communication
rounds shows that FedEN achieves the highest test accuracy for CIFAR-10 clas-
sification with 50% stragglers contributing to statistical heterogeneity causing
variances in local data.

MNIST - Test accuracy comparison for 10% stragglers: Table 5.6
shows the , test results for accuracy for the MNIST dataset with 10% of strag-
glers. The accuracy over the test data samples is demonstrated over 50, 100, 150
and 200 communication rounds. For communication round 50, the test accuracy
for FedAvg is 88.02 and for FedProx it is 89.9. However, FedEN achieves ac-
curacy of 97.2 for around 50 communication rounds. For communication round
100, FedProx achieves an accuracy of 91.5 compared with FedAvg at 90.02.
However, FedEN again achieves the highest accuracy of 94.89, compared to Fe-
dAvg and FedProx. For communication round 150, FedEN again achieves the
highest test accuracy of 96.83 compared to FedAvg and FedProx, at 93.01 and
94.5, respectively. For communication round 200, the accuracy for FedAvg is
89.01 whereas FedProx achieves an accuracy of 96.09. FedEN achieves an accu-
racy of 98.89. Therefore, a comparison of all the communication rounds shows
that, FedEN achieves the highest test accuracy for MNIST classification with
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Figure 5.9: MNIST Test Accuracy With 10% Stragglers

Figure 5.10: MNIST Test Accuracy With 10% Stragglers

10% stragglers contributing to statistical heterogeneity.

MNIST - Test accuracy comparison for 50% stragglers: Table 5.6
shows the , test results for accuracy for the MNIST dataset with 50% of strag-
glers. The accuracy over the test data samples is demonstrated over 50, 100, 150
and 200 communication rounds. For communication round 50, the test accu-
racy for FedAvg is 87.21 and for FedProx it is 88.57. However, FedEN achieves
an accuracy of 91.81 for 50 communication rounds. For round 100, FedProx
achieves an accuracy of 89.55 compared with FedAvg which has an accuracy
of is 89.50. However, FedEN achieves an accuracy of 92.89, which is higher
than both FedAvg and FedProx. For communication round 150, FedEN again
achieves the highest test accuracy of 95.98 compared to FedAvg and FedProx
at 92.15 and 92.41 respectively. For communication round 200, the accuracy for
FedAvg is 94.3 compared to FedProx which achieves an accuracy of 95 and .
FedEN which achieves an accuracy of 97.05. Therefore, a comparison comparing
with all commu- nication rounds shows that, FedEN achieves the highest test
accuracy for MNIST classification with 50% stragglers contributing to statistical
heterogeneity.

Experiment conclusions: The graphical representation of the experiments
dis- cussed earlier shows how the performance of federated training can be im-
proved in the presence of stragglers.
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Figure 5.11: CIFAR10 Test Accuracy With 50% Stragglers

Figure 5.12: MNIST Test Accuracy With 50% Stragglers

Figure 5.13: CIFAR10 Train Loss with 10% & 50% Stragglers

Figure 5.14: Mnist Train Loss With 10% & 50% Stragglers
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Chapter 6

Conclusions

Overview

The conclusion to this chapter details how the research questions have been
answered throughout the thesis.

6.1 Discussions

From the conclusions in chapter 3 and 4, the straggler problem is identified
and an elastic optimized algorithm is proposed for the edge federated learning
setting. In chapter 4, the theoretical framework for stragglers in edge federated
learning is defined where we formulated stragglers as a distributed optimization
problem. The setting mentioned above is a more realistic form of federated
learning where there are millions of edge devices and each device has its own
set of challenges in terms of participation. But, only the devices which satifsy
the following conditions can participate in federated learning:

• Devices must be connected to a wireless network (such as Wifi)

• Devices must not perform any other activities while training

• Devices must be on charge while performing training

The proposed algorithm, FedEN, has the following advantages over the bench-
marks in edge federated learning:

• FedEN allows data from stragglers to form the collaborative model where
we set the percentage of stragglers as 10% and 50% of the edge devices
during federated training which means that 10%/50% of edge devices do
not perform all training rounds.

• FedEN reduces the number of communication rounds to reach target ac-
curacy compared to the benchmark algorithms
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• A balance between a reduction in the number of parameters and their
shrinkage makes the objective function smooth and improves prediction
accuracy.

As a consequence, it can be seen that the proposed algorithm for the pro-
posed setting of edge federated learning can achieve a federated trained col-
laborative model which can better handle the inference of test data thereby
achieving improved accuracy compared to the benchmark algorithms in the lit-
erature, such as FedAvg and FedProx. Based on the experiment results using
the MNIST and Cifar-10 datasets detailed in chapter 5, it can be concluded that
the performance not only depends on the percentage of stragglers present but
also on the mixing parameter in the local objectives of edge devices. Numerical
experiments show that the fewer stragglers there are in the training process, the
better the accuracy of the collaborative predictive model. However, we cannot
always assume that the system does not have any stragglers nor should we ig-
nore them completely. We can instead make a trade-off between accuracy and
the percentage of stragglers in federated training. The elastic mixing parameter
controls the amount of lasso and ridge which is imposed in the local objection
loss function. The mixing parameter can range between 0and1 depending on
which penalization is imposed more in minimizing the local loss function.

6.2 Conclusion

The aim of our research was to deal with stragglers in edge federated learn-
ing with elastic optimization in the local objectives of the edge devices and to
evaluate its performance against benchmark algorithms. Two hypotheses moti-
vated our research. Our first hypothesis is that stragglers emerge due to high
dimensional data set parameters which are millions in number. These parame-
ters cause devices to perform delayed training as the device has to train all the
parameters. However, the L1 part of the elastic net helps in better feature selec-
tion and reduces the redundant parameters from training and improves training
efficiency. We consider λ = 1 as the tuning parameter. Our second hypothesis
the computational in capabilities of participating edge devices which can con-
tribute to stragglers.Therefore, the L2 part of the elastic net adds smoothness
to the objective function by shrinking the parameters so that the local optimal
can be found. Our experiments indicate that having elastic optimization in the
local objectives of the participating edge devices can improve training perfor-
mance by reducing the number of communication rounds required to achieve
target accuracy. Our proposed algorithm, Elastic Optimized Federated Learn-
ing (FedEN), performs better than benchmark algorithms such as FedAvg and
FedProx by achieving better accuracy and less training loss. FedEN is the re-
parameterization of FedAvg and FedProx such that the tuning parameter λ and
the mixing parameter can alter the training performance. When λ = 0, FedEN
is similar to FedAvg. Furthermore, when the mixing parameter α = 0, then
FedEN is similar to FedProx where the proximal term is used in the local
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objectives. Stragglers which emerge due to large number of parameters from
high dimensional data from IoT edge devices causes a computation burden on
edge devices. Similarly, when 10% and 50% of edge devices contribute partial
results, the statistical heterogeneity worsens thereby causing gradient diver-
gence.However, FedEN can balance between the two penalization mentioned
earlier which is lasso and ridge, thereby producing sparse models with better
prediction accuracy. In terms of test accuracy, our algorithm achieves better
accuracy of 88.7 over 200 communication rounds and 10% of stragglers. Further,
our algorithm achieves an accuracy of 86.95 with 50% of stragglers. Compared
to benchmark algorithms such as FedAvg and FedProx, our algorithm achieves
better accuracy over fewer communication rounds. Therefore, there are many
possible research directions that can be investigated for straggler mitigation.
For instance, each edge device data distribution can be analyzed using Bayesian
inference so that devices with the same distribution can be segregated into one
category and then federated learning can be performed, which helps in bet-
ter edge device selection, thereby preventing stragglers caused by non-iid data
distribution [112, 72, 60].Hence, by identifying the data distributions, edge de-
vices can be allocated to a domain with the same distribution, thereby more
accurate prediction models can be obtained. Finally, the verdict of optimizing
training performance due to stragglers in edge federated learning is that in a
real-time and dynamic setting, the observations made in the proposed algorithm
can improve training performance while improving test accuracy.

Limitations of FedEN: The main limitation of FedEN is the uncertainty
about the actual percentage of stragglers present in the training. Additionally,
the ad-hoc nature of wireless connectivity as well as system heterogeneity can
cause an edge device which is working perfectly at first to become a straggler
at any point in the training time or during any iteration round. We have only
investigated model training with convolutional neural networks. Training on
different neural networks has not been investigated which would open doors to
address many training challenges for edge devices. In addition to this, cross-
validation for tuning parameter could possibly be an option to further improve
the training and testing results of the proposed algorithm.

6.3 Future work

In future work, the existing studies related to edge device selection and inte-
gration with Bayesian inference can be further investigated which can improve
the process of distribution identification among the whole population of edge
devices. Dynamic algorithms can be integrated with FedEN which can make
decisions on the go depending on how the edge devices perform training in each
round and can categorize the devices of least priority in the tier of training
participation.

92



Bibliography

[1] Alaa Awad Abdellatif, Naram Mhaisen, Amr Mohamed, Aiman Erbad,
Mohsen Guizani, Zaher Dawy, and Wassim Nasreddine. Communication-
efficient hierarchical federated learning for iot heterogeneous systems with
imbalanced data. Future Generation Computer Systems, 128:406–419,
2022.

[2] Ahmed M Abdelmoniem and Marco Canini. Towards mitigating device
heterogeneity in federated learning via adaptive model quantization. In
Proceedings of the 1st Workshop on Machine Learning and Systems, pages
96–103, 2021.

[3] Md Momin Al Aziz, Md Monowar Anjum, Noman Mohammed, and Xi-
aoqian Jiang. Generalized genomic data sharing for differentially private
federated learning. Journal of Biomedical Informatics, page 104113, 2022.

[4] Mohammed Ali Al-Garadi, Amr Mohamed, Abdulla Khalid Al-Ali, Xiao-
jiang Du, Ihsan Ali, and Mohsen Guizani. A survey of machine and deep
learning methods for internet of things (iot) security. IEEE Communica-
tions Surveys & Tutorials, 22(3):1646–1685, 2020.

[5] Haider Al-Lawati and Stark C Draper. Gradient staleness in asynchronous
optimization under random communication delays. In ICASSP 2022-2022
IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 4353–4357. IEEE, 2022.

[6] Jonatha Anselmi and Neil Walton. Stability and optimization of spec-
ulative queueing networks. IEEE/ACM Transactions on Networking,
30(2):911–922, 2021.

[7] Ajay Badita, Parimal Parag, and Vaneet Aggarwal. Single-forking of coded
subtasks for straggler mitigation. IEEE/ACM Transactions on Network-
ing, 29(6):2413–2424, 2021.

[8] Kamalakant Laxman Bawankule, Rupesh Kumar Dewang, and Anil Ku-
mar Singh. Early straggler tasks detection by recurrent neural network in
a heterogeneous environment. Applied Intelligence, pages 1–21, 2022.

93



[9] Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan Par-
collet, Pedro PB de Gusmão, and Nicholas D Lane. Flower: A friendly
federated learning research framework. arXiv preprint arXiv:2007.14390,
2020.

[10] Rawad Bitar, Mary Wootters, and Salim El Rouayheb. Stochastic gradient
coding for straggler mitigation in distributed learning. IEEE Journal on
Selected Areas in Information Theory, 1(1):277–291, 2020.

[11] Baturalp Buyukates, Emre Ozfatura, Sennur Ulukus, and Deniz Gündüz.
Gradient coding with dynamic clustering for straggler-tolerant distributed
learning. IEEE Transactions on Communications, 2022.

[12] Dongqi Cai, Tao Fan, Yan Kang, Lixin Fan, Mengwei Xu, Shangguang
Wang, and Qiang Yang. Accelerating vertical federated learning. IEEE
Transactions on Big Data, pages 1–10, 2022.

[13] Zheng Chai, Ahsan Ali, Syed Zawad, Stacey Truex, Ali Anwar, Nathalie
Baracaldo, Yi Zhou, Heiko Ludwig, Feng Yan, and Yue Cheng. Tifl: A
tier-based federated learning system. In Proceedings of the 29th Interna-
tional Symposium on High-Performance Parallel and Distributed Comput-
ing, pages 125–136, 2020.

[14] Zachary Charles, Zachary Garrett, Zhouyuan Huo, Sergei Shmulyian, and
Virginia Smith. On large-cohort training for federated learning. Advances
in neural information processing systems, 34:20461–20475, 2021.

[15] Chen Chen, Qizhen Weng, Wei Wang, Baochun Li, and Bo Li. Acceler-
ating distributed learning in non-dedicated environments. IEEE Transac-
tions on Cloud Computing, 2021.

[16] Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal
Jozefowicz. Revisiting distributed synchronous sgd. arXiv preprint
arXiv:1604.00981, 2016.

[17] Zunming Chen, Hongyan Cui, Ensen Wu, and Xi Yu. Dynamic asyn-
chronous anti poisoning federated deep learning with blockchain-based
reputation-aware solutions. Sensors, 22(2):684, 2022.

[18] Shekha Chenthara, Khandakar Ahmed, Hua Wang, Frank Whittaker, and
Zhenxiang Chen. Healthchain: A novel framework on privacy preserva-
tion of electronic health records using blockchain technology. Plos one,
15(12):e0243043, 2020.

[19] Dalsu Choi, Hyunsik Yoon, and Yon Dohn Chung. Resky: Efficient sub-
array skyline computation in array databases. Distributed and Parallel
Databases, pages 1–38, 2022.

94



[20] Thinh Quang Dinh, Diep N Nguyen, Dinh Thai Hoang, Tran Vu Pham,
and Eryk Dutkiewicz. In-network computation for large-scale federated
learning over wireless edge networks. IEEE Transactions on Mobile Com-
puting, 2022.

[21] Kevin Dowd and Charles Severance. High performance computing. 2010.

[22] Sanghamitra Dutta, Jianyu Wang, and Gauri Joshi. Slow and stale gra-
dients can win the race. IEEE Journal on Selected Areas in Information
Theory, 2(3):1012–1024, 2021.

[23] Nuwan Ferdinand, Haider Al-Lawati, Stark C Draper, and Matthew Nok-
leby. Anytime minibatch: Exploiting stragglers in online distributed op-
timization. arXiv preprint arXiv:2006.05752, 2020.

[24] Yong-Feng Ge, Jinli Cao, Hua Wang, Zhenxiang Chen, and Yanchun
Zhang. Set-based adaptive distributed differential evolution for
anonymity-driven database fragmentation. Data Science and Engineer-
ing, pages 1–12, 2021.

[25] Yong-Feng Ge, Jinli Cao, Hua Wang, Jiao Yin, Wei-Jie Yu, Zhi-Hui Zhan,
and Jun Zhang. A benefit-driven genetic algorithm for balancing privacy
and utility in database fragmentation. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 771–776, 2019.

[26] Yong-Feng Ge, Maria Orlowska, Jinli Cao, Hua Wang, and Yanchun
Zhang. Knowledge transfer-based distributed differential evolution for dy-
namic database fragmentation. Knowledge-Based Systems, page 107325,
2021.

[27] Yong-Feng Ge, Maria Orlowska, Jinli Cao, Hua Wang, and Yanchun
Zhang. Mdde: multitasking distributed differential evolution for privacy-
preserving database fragmentation. The VLDB Journal, pages 1–19, 01
2022.

[28] Yong-Feng Ge, Wei-Jie Yu, Jinli Cao, Hua Wang, Zhi-Hui Zhan, Yanchun
Zhang, and Jun Zhang. Distributed memetic algorithm for outsourced
database fragmentation. IEEE Transactions on Cybernetics, 51(10):4808–
4821, 2021.

[29] Xinran Gu, Kaixuan Huang, Jingzhao Zhang, and Longbo Huang. Fast
federated learning in the presence of arbitrary device unavailability. Ad-
vances in Neural Information Processing Systems, 34:12052–12064, 2021.

[30] Jingjing Guo, Haiyang Li, Feiran Huang, Zhiquan Liu, Yanguo Peng,
Xinghua Li, Jianfeng Ma, Varun G Menon, and Konstantin Igorevich
Kostromitin. Adfl: A poisoning attack defense framework for horizontal
federated learning. IEEE Transactions on Industrial Informatics, 2022.

95



[31] Manupriya Gupta, Pavas Goyal, Rohit Verma, Rajeev Shorey, and Huzur
Saran. Fedfm: Towards a robust federated learning approach for fault
mitigation at the edge nodes. In 2022 14th International Conference on
COMmunication Systems & NETworkS (COMSNETS), pages 362–370.
IEEE, 2022.

[32] Rami Hamdi, Mingzhe Chen, Ahmed Ben Said, Marwa Qaraqe, and
H Vincent Poor. Federated learning over energy harvesting wireless net-
works. IEEE Internet of Things Journal, 9(1):92–103, 2021.

[33] Ahmad Hammoud, Hadi Otrok, Azzam Mourad, and Zbigniew Dziong.
On demand fog federations for horizontal federated learning in iov. IEEE
Transactions on Network and Service Management, 2022.

[34] Serge Kas Hanna, Rawad Bitar, Parimal Parag, Venkat Dasari,
and Salim El Rouayheb. Adaptive stochastic gradient descent for
fast and communication-efficient distributed learning. arXiv preprint
arXiv:2208.03134, 2022.

[35] Jing He, Songtao Guo, Mingyan Li, and Yongdong Zhu. Acefl: Feder-
ated learning accelerating in 6g-enabled mobile edge computing networks.
IEEE Transactions on Network Science and Engineering, 2022.

[36] Jing He, Songtao Guo, Dewen Qiao, and Lin Yi. Hetefl: network-aware
federated learning optimization in heterogenous mec-enabled internet of
things. IEEE Internet Things J, 2022.

[37] Jinyuan He, Jia Rong, Le Sun, Hua Wang, Yanchun Zhang, and Jian-
gang Ma. D-ECG: A Dynamic Framework for Cardiac Arrhythmia Detec-
tion from IoT-Based ECGs: 19th International Conference, Dubai, United
Arab Emirates, November 12-15, 2018, Proceedings, Part II, pages 85–99.
11 2018.

[38] Xiaofan He, Tianheng Li, Richeng Jin, and Huaiyu Dai. Delay-optimal
coded offloading for distributed edge computing in fading environments.
IEEE Transactions on Wireless Communications, 2022.

[39] Samuel Horvath, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis,
Stylianos Venieris, and Nicholas Lane. Fjord: Fair and accurate federated
learning under heterogeneous targets with ordered dropout. Advances in
Neural Information Processing Systems, 34:12876–12889, 2021.

[40] Seyyedali Hosseinalipour, Christopher G Brinton, Vaneet Aggarwal,
Huaiyu Dai, and Mung Chiang. From federated to fog learning: Dis-
tributed machine learning over heterogeneous wireless networks. IEEE
Communications Magazine, 58(12):41–47, 2020.

[41] Jiajia Huang, Min Peng, Hua Wang, Jinli Cao, Wang Gao, and Xiuzhen
Zhang. A probabilistic method for emerging topic tracking in microblog
stream. World Wide Web, 20(2):325–350, 2017.

96



[42] Shanfeng Huang, Zezhong Zhang, Shuai Wang, Rui Wang, and Kaibin
Huang. Accelerating federated edge learning via topology optimization.
IEEE Internet of Things Journal, pages 1–1, 2022.

[43] Shudong Huang, Wei Shi, Zenglin Xu, Ivor W Tsang, and Jiancheng Lv.
Efficient federated multi-view learning. Pattern Recognition, page 108817,
2022.

[44] Ting Huang, Yue-Jiao Gong, Wei-Neng Chen, Hua Wang, and Jun Zhang.
A probabilistic niching evolutionary computation framework based on bi-
nary space partitioning. IEEE Transactions on Cybernetics, 52(1):51–64,
2022.

[45] Ting Huang, Yue-Jiao Gong, Sam Kwong, Hua Wang, and Jun Zhang. A
niching memetic algorithm for multi-solution traveling salesman problem.
IEEE Transactions on Evolutionary Computation, 24(3):508–522, 2019.

[46] HamidReza Imani, Jeff Anderson, and Tarek El-Ghazawi. isample: In-
telligent client sampling in federated learning. In 2022 IEEE 6th Inter-
national Conference on Fog and Edge Computing (ICFEC), pages 58–65.
IEEE, 2022.

[47] Tayyebeh Jahani-Nezhad and Mohammad Ali Maddah-Ali. Berrut ap-
proximated coded computing: Straggler resistance beyond polynomial
computing. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 2022.

[48] Zeyu Ji, Xingjun Zhang, Jingbo Li, Jia Wei, and Zheng Wei. Ep4ddl:
addressing straggler problem in heterogeneous distributed deep learning.
The Journal of Supercomputing, pages 1–18, 2022.

[49] Zhongming Ji, Li Chen, Nan Zhao, Yunfei Chen, Guo Wei, and F. Richard
Yu. Computation offloading for edge-assisted federated learning. IEEE
Transactions on Vehicular Technology, 70(9):9330–9344, 2021.

[50] Jiayin Jin, Jiaxiang Ren, Yang Zhou, Lingjuan Lyu, Ji Liu, and Dejing
Dou. Accelerated federated learning with decoupled adaptive optimiza-
tion. In International Conference on Machine Learning, pages 10298–
10322. PMLR, 2022.

[51] Enamul Kabir. A role-involved purpose-based access control model. In-
formation Systems Frontiers, 14:809–822, 07 2012.

[52] Enamul Kabir, Jiankun Hu, Hua Wang, and Guangping Zhuo. A novel
statistical technique for intrusion detection systems. Future Generation
Computer Systems, 79:303–318, 2018.

[53] Enamul Kabir and Hua Wang. Conditional purpose based access control
model for privacy protection. In Proceedings of the Twentieth Australasian
Conference on Australasian Database, volume 92, pages 137–144, 01 2009.

97



[54] Md Enamul Kabir and Hua Wang. Microdata protection method
through microaggregation: a systematic approach. Journal of Software,
7(11):2415–2422, 2012.

[55] Md Enamul Kabir, Hua Wang, and Elisa Bertino. A conditional purpose-
based access control model with dynamic roles. Expert Systems with Ap-
plications, 38(3):1482–1489, 2011.

[56] Md Enamul Kabir, Hua Wang, and Elisa Bertino. Efficient systematic
clustering method for k-anonymization. Acta Informatica, 48(1):51–66,
2011.

[57] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet,
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