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ABSTRACT 

The design of practice environments supportive of learning and performance is a contemporary 

challenge for practitioners in high performance sport. To address such a challenge, the coupling 

of contemporary pedagogical frameworks, such as the constraints-led approach, with the practical 

implementation of tools from sports analytics may be beneficial. This thesis explored the 

measurement and analysis of key task, environmental and individual constraints to guide practice 

design in professional Australian Football. Across five studies, various analytical techniques were 

used to evaluate different constraints and their interactions, and determine their effect on athlete 

and team behaviour. Spatiotemporal player tracking data was first analysed to determine a novel, 

continuous measure for the constraint of pressure and its influence on performance. Rule 

association and regression trees were applied to evaluate the influence of environmental, task and 

individual constraint interactions on athlete skilled behaviour. Univariate and multivariate change 

point analyses were applied to inform the duration of training activities to support skill learning. 

Rule association and classification trees were used to evaluate the influence of a numerical 

constraint manipulation on interacting technical, tactical, and physical team behaviours. 

Collectively, the findings from these studies not only assist practitioners in the design of practice 

tasks but show how constraint manipulations may challenge or promote various behaviours in 

team sports athletes. Moreover, this thesis demonstrates the utility of multivariate analytical 

techniques in the exploration of constraints interaction in sport. The suitability of such techniques 

for the measurement of complex and non-linear interactions between athletes, the task and 

environment, was highlighted. Practitioners can integrate and adapt these analytical tools, in 

conjunction with the constraints-led approach, to inform the design of practice tasks that facilitate 

learning and development in high performance sport.  
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CHAPTER ONE – INTRODUCTION 

Chapter Overview 

This chapter outlines the background and objectives of the thesis and offers an introduction to 

Australian Football to provide context for the analyses within the proceeding chapters. 
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1.1 Thesis background and objectives 

This thesis aims to contribute to sport practice and literature which may enhance how the 

constraints-led approach (CLA) is applied in team sport. The studies in this thesis seek to provide 

sport practitioners with tools which can support evaluations of player behaviour and inform 

training design. Specifically, data and analytics are utilised to improve constraint measurement 

and enhance the analysis of constraint interaction. Sport practitioners may adapt these techniques 

to support their decision making to facilitate athlete skill acquisition during training. The studies 

within this thesis are conducted in the applied environment of a professional Australian Football 

(AF) club to improve the practical utility and feasibility of their outcomes for sport practitioners.  

Practice is an essential exercise to achieve expertise in a variety of domains, including sport 

(Ericsson & Smith, 1991; Newell & Rovegno, 1990). While the accumulation of practice time is 

important to developing skill, the quality of such practice is also suggested as equally important 

(Davids, 2000). Coaches have expert domain-specific knowledge which informs the structure and 

design of training (Nash & Collins, 2006), which may be further supported by objective insights 

gained through research. Current theoretical insights which guide training design could be 

complemented with investigations of practical tools which may support coaches (Newcombe et 

al., 2019). This may help bridge the gap between training design theory and application, which 

exists in high-performance sport (Cushion et al., 2012; Kinnerk et al., 2021; Stone et al., 2021). 

For example, despite the discussed benefits of small-sided games (Davids et al., 2008, 2013), they 

can have limited implementation by some team-sport coaches, such as in Gaelic Football (Kinnerk 

et al., 2021). To support coaches in their implementation of such training tasks, tools which 

objectively evaluate the dynamic and interactive behaviour of athletes may be beneficial. This 

could support coaches by informing them of complex relationships between the design of training 

tasks and the emergent behaviour of their athletes. This information may guide coach decisions 

on training modifications required to achieve task goals (Correia et al., 2019). To interpret this 

information appropriately, principles of a skill acquisition framework are necessary to guide how 
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practice may be structured and designed (Woods, McKeown, O’Sullivan, et al., 2020; Woods, 

McKeown, Rothwell, et al., 2020). One such framework is the CLA (Davids et al., 2008). 

The CLA is a framework which may be used by sport practitioners to conceptualise the emergent 

movement of athletes (Davids et al., 2008). According to the CLA, sport practitioners can 

manipulate constraints during practice activities to facilitate skill acquisition and enhance sport 

performance (Chow, 2013; Renshaw & Chow, 2019). By manipulating constraints, coaches may 

guide or nudge athletes towards new or more useful coordinated movements (Renshaw et al., 

2010). The framework of the CLA, therefore, positions coaches as “learning designers”, which 

emphasises constructing and manipulating training environments which can guide an athletes 

exploration and learning (Woods, McKeown, Rothwell, et al., 2020). Constraints are defined as 

boundaries to the learners movement system which limit the functional solutions a learner may 

use to achieve a task (Newell, 1985). Thus, athletes’ skilled behaviour cannot be appropriately 

evaluated without the critical contextual information of constraints (Browne, Sweeting, et al., 

2019). Moreover, improved measurements of constraints may support more detailed 

understanding of athlete behaviour. The interaction between constraints is a key tenet to the CLA 

and thus, methods which can determine constraint interaction and their influence on skilled 

behaviour may be beneficial to support training design (Browne et al., 2021).  

Within sport, there has been an increased implementation of data and technology (Rein & 

Memmert, 2016). There is scope to harness technology and analytics, within the framework of 

the CLA, to provide tools and methods which can support the design of training environments 

(McCosker et al., 2021; Woods, Araújo, et al., 2021). Technology such as, player tracking systems 

and visual annotation software, can be harnessed to provide practitioners with information 

(Gudmundsson & Horton, 2017; Rein & Memmert, 2016). These technologies are capable of 

collecting a wide range of data on varying sport constructs including events, locations and 

distances (Glazier, 2010). Application of these technologies previously tended to investigate the 

output of the individual athlete however, has been expanded to explore the athletes relationship 

with the environment and collective team behaviours (Browne et al., 2021; McCosker et al., 
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2021). Accordingly, many key constraints which may be influencing athlete behaviour can be 

measured. Through analyses of this data, it may be possible to provide deeper insight on how 

athlete behaviour is being shaped by interacting constraints in training activities (Browne et al., 

2021). Improved analytical techniques, such as machine learning, may be applicable to support 

the implementation of the CLA as they are capable of discovering important relationships between 

interacting constraints and handling large datasets which are increasingly prevalent in sport 

(Browne et al., 2021). A further opportunity may be to leverage technology and analytics to 

improve constraint measurement using continuous data formats (Corbett et al., 2019; 

Gudmundsson & Horton, 2017; Gudmundsson & Wolle, 2014). The application of technology 

and analytics, within a skill acquisition framework such as the CLA, may have benefits to support 

coaches and sport practitioners to inform training design, with specific applications potentially 

existing in AF. 

1.2 Australian Football 

AF is an invasion style team sport consisting of 22 players on each team (18 on field and four 

interchange players) and one ball. As shown in Figure 1.1, AF is played on a large oval shaped 

field with lengths ranging between 135m-185m and widths ranging between 110m-155m 

(Australian Football League, 2021b). An AF match is played in four quarters of 20 minutes, plus 

time during stoppages in play (approximately 10 minutes). A six minute interval is provided at 

the end of the first and third quarter and a 20 minute interval at half-time. The current regulations 

allow a maximum of 75 player interchanges to occur at any time during the match (Australian 

Football League, 2021b). 

The aim of AF is to score more points than your opponents by kicking the ball through either the 

“goal” or “behind” posts. The two centre posts at either end of the field represent each team’s 

“goal” which award six points to the team. The two outer posts at either side of the goalposts 

represent “behinds” which award one point to the team. Players attempt to maintain possession 

of the ball and advance it down the field towards the goals to score. Players may pass the ball to 
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one-another through handballing or kicking. When handballing, players are required to punch the 

ball with a closed fist. Throwing the ball is not permitted. Players are also able to carry the ball 

indefinitely if the ball is bounced at least once every 15m. Players are generally allocated one of 

three positions: defender, midfielder or forward. Within this there are various sub-positions such 

as ruck, wing, half-back or half-forward. However, unlike other sports, such as netball, player 

positions are dynamic and not restricted to any portion of the field or governed by any specific 

rules. 

To compete in AF, players require high levels of technical skill proficiency and a range of physical 

qualities including aerobic fitness and agility (A. Gray & Jenkins, 2010; Johnston et al., 2018). 

During matches players can cover, on average, distances of 12.6 km at speeds of 129 m/min which 

Figure 1.1 Australian Football ground dimensions (Australian Football League, 2021) 
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is higher than other football codes including soccer and rugby league (Varley et al., 2014). 

Accordingly, to provide athletes with opportunities to develop skills and adapt physically, AF 

pre-season training can be approximately 17 weeks in length with a typical season of 23 weeks 

(Moreira et al., 2015). During training sessions, various modalities are utilised including 

resistance training, aerobic conditioning, games-based activities and closed technical drills 

(Farrow et al., 2008; Ritchie et al., 2016). 

AF is predominantly played in Australia with over 800,000 registered players at all levels of 

competition (Australian Football League, 2021a). The Australian Football League (AFL) is the 

single professional AF league which competes at a national level in Australia. A semi-

professional national Australian Football League Women’s also exists with additional semi-

professional state league competitions for both men and women. The AFL is highly regulated 

including strict “salary-caps” and “soft-caps” which limit the spending of each club on player 

wages and items relating to performance including staff salaries, equipment, or software. To 

equalise the recruitment of future talent, each season all clubs are awarded draft picks inversely 

related to their previous seasons final ladder position. Furthermore, rule changes are implemented 

regularly which has influenced the evolution of AF game styles (Woods, Robertson, et al., 2017). 

Thus, sport science literature has grown as teams seek performance benefits within the changing 

constraints of the league (Johnston et al., 2018). The physical and technical demands of AF 

competition, alongside the strict regulations on high-performance programs, present AF as a sport 

which may benefit from enhanced training methods to support athlete development. Thus, this 

thesis focusses on enhancing the design of practice activities to improve player performance and 

AF is used as an exemplar sport to demonstrate it’s applications.  

1.3 Thesis Outline 

The primary aim of this thesis is to develop methods for sport practitioners to evaluate skilled 

behaviour and inform training activity design, exemplified in AF.  

Following this introductory chapter, this thesis contains seven further chapters as outlined: 
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 Chapter One introduces the background and aim of the thesis. 

 Chapter Two reviews the relevant literature in AF and other team sports. 

 Chapter Three explores how spatiotemporal analysis of player tracking data may be used 

to measure the constraint of pressure on a continuous scale. 

 Chapter Four investigates how task and environmental constraints may be analysed 

together using a machine learning algorithm, association rules. Association rules are 

applied to evaluate player behaviour within constraint manipulations during AF training 

activities. 

 Chapter Five expands on Chapter Four by investigating how interactions between all 

constraint classes, individual, task and environmental, may be considered. This is applied 

during AF training to evaluate and inform activity design. 

 Chapter Six explores how continuous time-series analysis may evaluate player behaviour 

to inform training activity duration. A single AF training activity is used to exemplify this 

approach in univariate and multivariate formats. 

 Chapter Seven investigates how practitioners can evaluate the influence of a single 

constraint manipulation. Methods are exemplified which simultaneously consider player 

skilled actions, team coordination and physical running patterns. 

 Chapter Eight provides a summary of the preceding chapters and discusses the 

applications and implications for sport practitioners. It also outlines directions for future 

work in the area.  
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CHAPTER TWO – REVIEW OF LITERATURE 

Chapter Overview 

This chapter outlines the literature pertinent to the research contained in this thesis. The chapter 

sections overview literature relevant to training, skill acquisition and informing training design.  
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2.1 Training 

It has been well established that sport training, or practice, is an important component to skill 

development and achieving excellence. Although many factors, such as individual characteristics 

and environmental features, contribute to achieving excellence, practice is suggested as the most 

important (Ericsson & Smith, 1991; Howe et al., 1998; Newell & Rovegno, 1990). It has 

consistently been demonstrated that time spent in practice is associated with greater levels of 

expertise in a variety of domains such as chess (Charness et al., 2005; Simon & Chase, 1988),  

music (Ericsson et al., 1993; Krampe, 1994), mathematics (Gustin, 1985) and sport (Baker, Cote, 

et al., 2003; Helsen et al., 1998; Howe et al., 1998; Starkes et al., 1996; Ward et al., 2007). This 

notion is consistent with the “10 year rule”, where it was originally hypothesised that expertise 

could only be attained after 10 years of experience in a specific domain (Simon & Chase, 1988). 

This was further refined with the introduction of the deliberate practice paradigm which placed 

importance on activities with a specific purpose of increasing performance (Ericsson et al., 1993). 

Time spent in activities with the purpose of improving skill is thus critical to its development. 

This relationship was suggested to follow a power law function, where learning would occur 

rapidly during the beginning stages but the rate of learning would decrease over time (Newell, 

1991). To attenuate the diminishing returns of this relationship, a growing research interest 

focussed on optimising the design and structure of practice activities.  

Although it is clear practice quantity is important to gaining expertise it remains debatable as to 

the micro or macroscopic structures of practice which can most effectively enhance skill 

development (Janelle & Hillman, 2003; Williams & Hodges, 2005). The effective structure of 

practice may also be further influenced by the skill level of the learner (Guadagnoli & Lee, 2004; 

Orth et al., 2018). In sport, contrary to the notion of deliberate practice, the contribution of “play” 

has also been supported as important in the development of skill and expertise during early stages 

of learning (Côté, 1999; Côté et al., 2007). Furthermore, experience in other sports or activities 

can positively contribute to athletic development and expertise in a desired dominant sport (Baker, 

Cote, et al., 2003; Strafford et al., 2018). Such research suggests that greater insight into the 
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structure and format of practice activities is required to appropriately understand how expertise is 

influenced by practice. Indeed, the quality of practice should be considered at least as important 

as the quantity (Davids, 2000). To this end, a range of literature has explored how practice could 

be arranged to effectively improve the learning of various skills (Hodges & Williams, 2012).  

A number of motor learning principles and techniques have been developed and tested to 

determine how practice can be optimised for skill learning (Davids et al., 2008; Hodges & 

Williams, 2012). One such example is the contextual interference effect, which involves 

randomisation in the sequencing of practice conditions. The use of contextual interference has 

shown more positive relationships to retention and transfer tests, in comparison with “blocked” 

formats, in perceptual-cognitive skills such as tennis serve anticipation (Broadbent et al., 2015), 

or motor skills such as baseball pitching control (Tsutsui et al., 2013) or golf putting (Porter & 

Magill, 2010). Accordingly, implementation of the contextual interference effect during sport 

practice may enhance the acquisition of skills. This represents one example of how skill 

acquisition research may improve practice design. However, despite the recognised influence of 

practice principles to enhance skill acquisition, concepts emerging from skill acquisition in sport 

have been limited, compared to other areas such as physiology or biomechanics, in both the 

literature (Abernethy, 1996) and application in the field (Williams & Ford, 2009). More research 

is needed which applies skill acquisition principles in real world environments. 

Discrepancies exists in the skill acquisition literature, compared to other disciplines. This may be 

due to two predominant reasons. Firstly, the frequent design of experiments which utilise simple 

and non-transferable skill acquisition tasks has limited their impact.  Motor learning experiments 

were conducted in controlled laboratory scenarios involving simple tasks which may not properly 

represent applied environments (Wulf & Shea, 2002). Furthermore, although the significance of 

practice time has been reported (Ericsson et al., 1993), these experiments were often conducted 

within short time frames which may not provide enough time for skill learning to occur (Wulf & 

Shea, 2002). Moreover, the systematic implementation of long term skill acquisition plans in sport 

also remains largely unexplored (Farrow & Robertson, 2017). Secondly, there was a shortcoming 
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of accurate procedures which can evaluate skill learning. While the inclusion of retention or 

transfer tests have been useful in laboratory-based tasks (Porter & Magill, 2010), the 

implementation of such methods to evaluate skills performed in dynamic environments, such as 

sport, have posed a challenge to researchers (Handford et al., 1997). For these reasons, more work 

is needed to help advance the field of skill acquisition and translate practice design research to 

practitioners in the field.  

An additional reason for the translational gap in skill acquisition literature is the practical 

limitations and complexity of implementing practice in sport. The role of a coach or instructor is 

an integral environmental factor which can influence sport expertise (Baker, Horton, et al., 2003; 

Gould & Mallett, 2020). To facilitate skill development, coaches may utilise techniques including 

feedback, direct instruction, demonstration, goal setting or questioning (Correia et al., 2019; 

O’Connor et al., 2022; Otte et al., 2020). Within this, practice is a critical component to the 

coaching process (Hodges & Franks, 2002). However, planning practice is a complex and multi-

faceted task (Kinnerk et al., 2021). Coaches may  facilitate skill learning in athletes through the 

organisation and manipulation of a large number of variables in the sport environment (Nash et 

al., 2011). Coaches can consider the design of individual activities and tasks which can 

appropriately challenge their athletes to learn required skills (Otte et al., 2019). This could be 

simultaneously considered within the structure of a long term periodisation or plan (Farrow & 

Robertson, 2017). Furthermore, many constraints exist in the practical application of training 

design, such as the availability of resources or time, which can require adaptation from coaches 

away from their intended goal (Vickery & Nichol, 2020). Thus, due to these limitations and 

considerations in practice, skill acquisition literature has lacked practical application in the field 

(Cushion et al., 2012). Indeed, investigations into the structure of sport practice have shown that 

coaches prescribe more time on activities which focus on form and technique rather than game-

play based activities, despite literature recommendations (Ford et al., 2010; Low et al., 2013; 

Vickery & Nichol, 2020). It has also been suggested that the structure of practice tended to be 

shaped by sociocultural constraints, such as tradition and culture, rather than principles tested in 
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the literature (Roca & Ford, 2020; Rothwell et al., 2018, 2022). Accordingly, there is a gap in 

applied research which can support coaches in their design of training tasks.  

2.1.1 Supporting training design 

In sport, there may be opportunities to support practitioners to observe and evaluate their athletes 

to inform training design and facilitate skill development. To improve practice, it is essential that 

the coach can identify what skills need to be improved in their athletes. This may include which 

behaviours are functional, and understand the search and exploitation process of the learners 

(Correia et al., 2019). As these observations occur, they can inform how to facilitate the skill 

development of learners. Understanding the relationship between practice design and skilled 

behaviour is critical information, which can inform the design of appropriate learning 

environments (Renshaw & Chow, 2019). However, the reliability of the coaching eye has been 

questioned (Roberts et al., 2020). Humans are also limited in the volume of processible 

information (Robertson & Joyce, 2019). Furthermore, evaluations of movement behaviour are 

redundant without reference to specifying contextual information, such as constraints, increasing 

the complexity of the task (Pol et al., 2020). Therefore, practical tools which can objectively 

evaluate skilled athlete behaviour within the practice environment would be beneficial to support 

the coaching process and inform training design. Research in this area would also help bridge the 

gap between theory and practice (Newcombe et al., 2019) however, is currently lacking. 

Some tools and frameworks have sought to assist coaches to inform the structure and design of 

practice. Skill periodisation frameworks have been suggested to guide micro and macro planning 

and manipulation of skill variables to enhance skill acquisition (Farrow & Robertson, 2017; Otte 

et al., 2019). Additionally, questionnaires have been proposed to subjectively measure skill 

acquisition principles to guide the practitioners decisions during training sessions (Krause et al., 

2018; Lascu et al., 2021; Renshaw & Chow, 2019). Although useful, these methods remain 

limited to subjective observations from a coach’s eye within a single session. To this end, 

objective tools have also been demonstrated, capable of informing training designs which mimic 

match requirements (Browne et al., 2020; Woods, McKeown, et al., 2019). Other objective 
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analytical techniques have been demonstrated to assist coaches in  training activity prescription 

(Corbett et al., 2018). In this study, activity characteristics were determined, such as running loads 

and skilled involvements and were grouped using k-means clustering to identify similar activity 

types. The activities were also compared to match demands through z scores and specificity 

indexes (Corbett et al., 2018). This study demonstrated three unique analytical methods which 

could be implemented and flexibly interchanged according to practitioner needs or preferences 

(Corbett et al., 2018). Together, this body of work presented subjective and objective tools which 

coaches and sport practitioners may implement to assist the design and prescription of training 

environments. To expand this work, research may focus on developing tools which inform how 

practice features can be modified to influence athlete skill.  

There is scope for applied sport science research to focus on evaluating training tasks to enhance 

practice design. Such research may be used to support coaches and facilitate athlete learning by 

guiding decisions surrounding practice (Bergmann et al., 2021). One way to improve training 

design is through objective evaluations of athlete behaviour via performance analysis techniques 

(Rein & Memmert, 2016; Robertson, 2020). Information gained through this sub-discipline of 

sport may be used to compare training activities to particular training goals (Corbett et al., 2018) 

or the representativeness of training to competition (Browne et al., 2020; Woods, McKeown, et 

al., 2019). Accordingly, this information may be utilised to inform how practice tasks could be 

modified to better achieve these outcomes. The application of such research may be further 

improved by also leveraging opportunities to conduct investigations of practice design in the field.  

The appropriate design of sport science experiments is essential to ensure effective translation to 

applications in the field (Bishop, 2008). Indeed, the results of studies which compared training 

design approaches are limited in their generalisability and thus, lack a clear direction for coaches 

and sport practitioners (Bergmann et al., 2021). Consequently, there has been a call for more 

focussed research to be conducted within sporting practice landscapes to improve its practical 

utility (Bergmann et al., 2021; Davids et al., 2006; Newcombe et al., 2019; Renshaw & Gorman, 

2015). Traditionally, this has been a challenge for researchers, but given the rise of technology 
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and innovative methods to collect and analyse data in sport, there are more opportunities to 

achieve this (Newcombe et al., 2019; Rein & Memmert, 2016). Some examples include tracking 

systems which can automatically quantify player positioning (Torres-Ronda et al., 2022) or 

wearable sensors to measure limb movements during sport performance (Cust et al., 2021). Such 

technology may be utilised to measure changes to technical skill executions or team coordination 

strategies and used to support coaching and practice design. Further, there have been growing 

calls for researchers to work with sports practitioners to design relevant research questions 

enhancing how findings could be translated into the real world (Cushion et al., 2012; Greenwood 

et al., 2012; Renshaw & Gorman, 2015; Ross et al., 2018). Likewise, sport programs may benefit 

from engagement with a skill acquisition specialist to enhance their training efficacy and 

performance (Williams & Ford, 2009). Thus, research and sport practice can form a mutually 

beneficial relationship (Newell & Rovegno, 1990). However, it is pertinent that research directed 

towards enhancing practice design be interpreted with consideration of skill acquisition theory 

which can guide a practitioner’s decision making. 

To achieve research which can enhance skill development in sport, theoretical conceptualisations 

of skill acquisition are necessary to frame queries relating to the structure and design of practice 

activities. The theoretical underpinnings of skill acquisition research can inform the interpretation 

of practical insights for sport practitioners (M. O. Sullivan et al., 2021; Woods, McKeown, 

Rothwell, et al., 2020; Woods, McKeown, O’Sullivan, et al., 2020). For example, a dominant 

theoretical perspective in cognitive psychology views skill as an acquired “knowledge structure” 

within the brain (Adams, 1971; R. A. Schmidt, 1975). Accordingly, this conceptualisation would 

support a form of practice which focusses on rote repetition to build upon this knowledge. Thus, 

a coach would structure practice to permit a learner to perform many repetitions of a given task 

until the movement becomes autonomous. Contrastingly, an ecological dynamics rationale views 

skilled movement as a property of a learner’s interactions with the environment (Davids et al., 

1994; Handford et al., 1997). Hence, a coach may seek to design practice which guides a learner’s 

attention to key environmental features which can regulate their actions, encouraging exploration 
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rather than repetition (Chow et al., 2011; Renshaw et al., 2010). Thus, coaches should seek to 

align with a conceptualisation of skill acquisition to guide their practice design. Likewise, more 

sport research should be aligned with a theoretical perspective to frame the practical implications 

of the work (Bergmann et al., 2021). . 

2.2 Skill Acquisition 

Skill acquisition theory relates to concepts accounting for the progression of learning a variety of 

skills (DeKeyser et al., 2007). Skill acquisition has spanned a variety of domains including 

psychology, education and movement science and holds important implications for many fields 

such as physical education and sport. Skill acquisition, or skill learning, refers to relatively 

permanent changes in behaviour or knowledge and improvements in the capability to perform 

skills (Magill & Anderson, 2010; Soderstrom & Bjork, 2015). Skill acquisition is distinct from 

skill performance which refers to the momentary execution of movements resulting in observable 

behaviour (Soderstrom & Bjork, 2015). Importantly, skill acquisition is not directly measurable 

but is inferred from observations and evaluations of skilled performance (Magill & Anderson, 

2010). Accordingly, tools which can support coaches to achieve this are critical to facilitating 

skill acquisition. However, such tools should be grounded in a theoretical perspective of skill 

acquisition to appropriately frame their implications. 

2.2.1 Traditional Perspectives 

Dominant theories of skill acquisition have adopted perspectives which align with cognitive 

psychology. In this perspective, the mind is seen as a representational device which stores 

information used to control movement (Davids et al., 2008). This perspective has been suggested 

as a metaphor for a computer, favouring internal storage of representations of the world which 

may be processed and output as motor actions (Handford et al., 1997). Pre-programmed executive 

functions which exist in the central nervous system are executed to control the musculoskeletal 

system and create coordinated movement patterns (Keele, 1968; R. A. Schmidt, 1975). Procedural 

knowledge may be developed over time allowing faster and more accurate retrieval of conditioned 
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actions, similar to if-then statements, where motor programmes are selected according to relevant 

stimuli (Adams, 1971; Masson, 1990). Thus, the process of skill acquisition involves the 

enrichment of an internal structure or schema which becomes more detailed through repetition 

(Araújo et al., 2019).  

According to cognitive processing theories of movement control, implications for skill acquisition 

and practice design are based on the rote repetition of skills in controlled environments. A 

practitioner may enhance skill acquisition by increasing the transfer of information through 

modification of practice task difficulty (Guadagnoli & Lee, 2004; Guadagnoli & Lindquist, 2007). 

Motor learning may also be facilitated by factors such as motivation (L. Schmidt et al., 2012) and 

an external focus of attention (Abdollahipour et al., 2015), among others. These can strengthen 

the neural pathways and develop more robust connections between goals and actions (Wulf & 

Lewthwaite, 2016). Cognitive processing theories encourage the adoption of a single “correct” 

technique which may be reinforced or modified by coaches and instructors via techniques such 

as feedback or demonstrations (Adams, 1971; Davids et al., 2008). This perspective of practice 

views performance errors as noise which should be eliminated (Davids et al., 2008). Such 

worldviews of motor learning and control have been influential in the literature however, they 

have received a number of critiques, such as program storage or the computer metaphor, 

concerning philosophical, theoretical and methodological issues (Davids et al., 1994; Handford 

et al., 1997; Newell, 1991). 

2.2.1.1 Philosophical limitations  

From a philosophical perspective, in cognitive theories, the “mind” is conceptualised as a 

computer system capable of executing tasks. However, the application of such a metaphor to the 

study of organic matter, such as the brain, has been queried (Handford et al., 1997). In this 

conceptualisation the mind is constructed without substance and exists outside of the natural laws 

of the physical world (Handford et al., 1997). Accordingly, a major issue concerns how mental 

representations can be explained within physical biology. It has been argued that an appropriate 

theoretical approach for motor control should find agreement between conceptual constructs and 
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a neuroscientific explanation involving physiological and neural processes of the organism 

(Araujo & Davids, 2011).  

The cognitive control of movement requires organisms to perceive an environmental feature, 

interpret it’s meaning, match this to the relevant movement pattern and then execute the motor 

program (R. A. Schmidt et al., 2018). This traditional conceptualisation of symbolic 

representations of the world suggests an indirect access to its features. Accordingly, perceptual 

stimuli is considered ambiguous without the necessary cognitive interpretation to associate it with 

coordinative actions (Araujo & Davids, 2011). A symbolic representation system, therefore, 

requires memory or cognition to interpret the meaning of a perceptual stimulus for a relevant 

context-specific movement pattern to occur. However, symbolic representations have been 

critiqued as they must require, at some level, direct access to the world if their origin is to be 

explained (Warren, 2006). Otherwise their justification may result in explanatory regress, where 

the meaning of a representation is attributed to some other representation (Warren, 2006). 

Furthermore, given the ambiguity of symbols, a representational system would be unable to detect 

errors without external assistance (Golonka & Wilson, 2019). For example, learning to read is 

impossible without an external instructor providing feedback to help the learner discover the 

arbitrary relationship between letters and sounds (Golonka & Wilson, 2019). Accordingly, a 

theoretical perspective which appreciates a direct perception of the environment may be 

advantageous (Gibson, 1979). 

2.2.1.2 Theoretical limitations 

A predominant theoretical concern with cognitive perspectives is the significant burden imposed 

upon biological systems to store, retrieve and process internal motor programs. Motor programs, 

or schemas, must require enough detail to control numerous degrees of freedom (Bernstein, 1984). 

For example, human beings are composed of many muscles and joints capable of multi-planar 

movement. These components each represent multiple degrees of freedom which, as more joints 

are considered, have exponentially increasing combinations of coordinative states (Bernstein, 

1984). Hierarchical control, when assigned to the mind, is responsible for executing all actions to 
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individually control the abundance of joint positions to produce multi-joint coordinated 

movement. This process of control is further challenged in dynamic and temporally constrained 

environments, such as sport, where speed, flexibility and accuracy of movement solutions is 

essential (Davids et al., 1994).  

In dynamic situations, such as sport, movement systems have demonstrated characteristics of 

flexibility and degeneracy (Seifert et al., 2014). They are capable of achieving similar movement 

outcomes, with varying coordination patterns, as a functional adaptation to changes in 

environmental conditions (Kugler et al., 1982). To account for this in cognitive theories, feedback 

loops were postulated to update movement patterns in response to constantly changing contextual 

conditions (Adams, 1971; R. A. Schmidt, 1975). However, such processes would be cognitively 

demanding, requiring many computations per second (Handford et al., 1997). The speed of these 

processes to occur within 200-300 milliseconds has been questioned (Davids et al., 1994). 

Similarly, despite the presence of feedback, cognitive theories are unable to account for the 

performance of novel coordinative movements (Newell, 1991). New movement patterns should 

not be able to be performed without an existing representation of the relevant motor program. 

Accordingly, an alternative conceptualisation of movement execution processes, which can 

account for the speed and flexibility demonstrated in situations such as sport, may be necessary. 

2.2.1.3 Methodological limitations 

Methodologically, traditional theories have been primarily supported with lab-based experiments 

of simple tasks (Wulf & Shea, 2002). However, the results of such experiments may not be 

representative of more complex tasks performed in dynamic environments such as sport, music 

or the workplace (Handford et al., 1997; Wulf & Shea, 2002). Some examples include 

investigations into the influence of contextual interference or the distribution of practice, where 

simple tasks which are novel to the participant have been utilised such as golf putting (Porter & 

Magill, 2010), computerised paddle games (Metalis, 1985) or movement timing tasks (Lee & 

Genovese, 2013).  Highly controlled tasks in which a single variable is manipulated lack the 

dynamic information which is presented in an applied environment where individuals are required 
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to continuously adapt their actions (Brunswik, 1956). Thus, principles which have been derived 

from such evidence may not apply to the control of movement during sport. Accordingly, there 

have been calls for the design of studies which are more representative of environmental 

conditions to enhance their generalisability beyond the laboratory (Araújo et al., 2007; Brunswik, 

1956).  Due to this, there was a growing need to conduct research within the performance 

landscape to appropriately determine its application.  

The focus of  traditional theories of motor control and learning on cognitive processes have 

resulted in an organismic asymmetry in the literature (Davids & Araújo, 2010b; Dunwoody, 

2006). This has occurred due to the bias of skill acquisition theories to attribute the control of 

functional movement to cognitive processes alone. The result is a trend in motor control research 

which has over-emphasised the importance of the internal processing of the organism and led to 

a neglect of the environment the organism is situated in. The focus on internal processes has led 

to a reductionist paradigm in skill acquisition where investigations of skilled behaviour ignore the 

constraints external to the performer (Davids & Araújo, 2010b). Indeed, psychological sciences 

have a history of laboratory based experiments in which external variables are rigorously 

controlled and results are attributed to models of internal processing within participants 

(Brunswik, 1947; Handford et al., 1997; Wulf & Shea, 2002). The concept of organismic 

asymmetry has been suggested to also influence sport science and sport psychology research 

(Davids & Araújo, 2010b). Accordingly, there has been a call for sport science research to 

consider the interactions between the performer and the environmental context they are situated 

in (Davids & Araújo, 2010b; Dunwoody, 2006).  

An alternative perspective of motor learning and control, which contrasts the organismic 

asymmetry observed in cognitive theories, is ecological dynamics. Ecological dynamics is a 

contemporary theory which conceptualises the emergence of functional motor patterns in 

organisms as a reciprocal and functional relationship between an organism and the environment 

(Araújo et al., 2006). Such a conceptualisation de-emphasises the storage and retrieval processes 

in cognitive psychology and promotes a direct perception of the environment to regulate actions 
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(Davids et al., 1994). Accordingly, this position does not align with internal symbolic 

representations of knowledge which are enhanced during skill acquisition (Araujo & Davids, 

2011; Handford et al., 1997). Instead, skill acquisition is a process of improving the fit of 

coordinated actions with key regulatory information in the environment (Araujo & Davids, 2011). 

As learners explore the environment they become increasingly “attuned” to critical perceptual 

information, enhancing their functional interaction with the dynamic landscape around them 

(Araujo et al., 2009; Woods & Davids, 2021). The theoretical conceptualisation of ecological 

dynamics draws primarily from the domains of dynamical systems theory and ecological 

psychology (Araújo et al., 2006).  

2.2.2 Ecological Dynamics 

Ecological dynamics has been influenced by concepts within ecological psychology. A critical 

concept within ecological psychology is that the control of an organism is not attributed to an 

internal mechanism but is distributed across the organism-environment system (Gibson, 1979). 

The organism and the environment form a mutual relationship and are continuously regulated 

with one another. Perception and action are thus, tightly coupled and must be understood together 

(Bootsma, 1989). To this end, perception is essential for action and vice versa (Gibson, 1979).  

The notion of direct perception is important, indicating that invariant information perceived by 

an organism does not require interpretation or representation within the mind, but directly 

specifies action coordination (Araújo et al., 2006). Accordingly, there is no need for mental 

representations or symbols in the mind. For example, in sport, a gap between defenders is 

perceived directly according to its exploitability for passing (Davids & Araújo, 2010a; Fajen et 

al., 2008). This concept is commonly exemplified with the visual perceptual system however, 

importantly, it also applies to other perceptual systems, such as haptic or audio senses (Gibson & 

Carmichael, 1966). Movement control is cyclical and a continuously evolving process whereby, 

an individual acts on critical information which in turn, reveals further information which may be 

used to regulate action (Fajen et al., 2008). Via direct perception, the organism forms a deeply 
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intertwined and dynamic system with the environment, which has been conceptualised as a 

dynamical system (Araújo et al., 2006). 

The motor control system, conceptualised as a dynamical system, can form patterns through the 

organisation of its interrelated components (Kelso, 1995). The structure and organisation of an 

organism’s coordinative control system is influenced by constraints, which are boundaries to the 

system. Constraints act as limits to the possible coordinative structures (Clark, 1995). Constraints 

may exist within the organism, the environment or the task which is being performed (Newell, 

1986). The interaction between constraints and the organisation of coordinated movement may 

result in non-linear changes, where small changes in a few constraints may result in large changes 

to the overall system structure (Balague et al., 2013; Chow et al., 2011; Pol et al., 2020). The 

dynamical motor control system exhibits self-organising tendencies, where independent 

components can spontaneously form coordinated patterns within the boundaries of the constraints 

imposed on the system (Kauffman, 1993; Kelso, 1995). This (re-)organisation of coordinative 

structures occurs without external instruction or direction. A natural metaphor for the process of 

self-organisation can be found in the coordinated movement profiles of a flock of birds flying 

together or a school of fish swimming in a group (Davids et al., 2008). The self-organising 

tendencies of dynamical systems provide a contrasting conceptualisation to computer processing 

metaphors seen in traditional theories. In the neurobiological system, motor control was 

positioned as a challenge for executive processes to handle, given the numerous degrees of 

freedom required to control and the speed and accuracy demonstrated to achieve tasks (Bernstein, 

1984). However, the concept of dynamical systems relieves the burden of control to any 

hierarchical structure or function and distributes it across the entire system. This alleviates the 

issue of internal storage capacity required in information-processing theories of motor control 

(Kugler et al., 1980; Turvey, 1990).  

As an individual interacts with their environment, the perceptual landscape is explored, searching 

for stable solutions to movement problems (Araujo et al., 2009; Handford et al., 1997; Jacobs & 

Michaels, 2007). The continuously evolving interaction of the organism and the environment 
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allows for flexible and adaptable movement solutions within the presence of a dynamic 

environment, which commonly characterises sport. Within ecological dynamics, expertise is 

developed as performers become increasingly sensitive to the relevant information which can 

appropriately regulate their context specific actions (Seifert et al., 2013). This process leads to 

deep, intertwined relationships with the environment (Woods, Rudd, Gray, et al., 2021). 

Accordingly, there is an absence of internal knowledge enrichment or the acquiring of 

sophisticated representations. Indeed, a helpful ontological distinction of the skill acquisition 

process within an ecological dynamics rationale is re-phrasing “skill acquisition” to “skill 

adaptability” (Araujo & Davids, 2011). For practitioners, the design of learning environments, 

which align with concepts of ecological dynamics, will adhere to distinctly different principles 

than traditional theories of skill acquisition. Accordingly, to support sport practitioners in 

understanding and conceptualising skill acquisition, grounded in ecological dynamics, the 

constraints-led approach (CLA) is a useful framework. 

2.2.3 The Constraints-led Approach 

The theoretical underpinnings of ecological dynamics guide the principles of the CLA. The CLA 

is a framework which views the organism as a system, with interacting degrees of freedom which 

are shaped by constraints, internal and external to the organism (Davids et al., 2008).  Within this 

framework, constraints are emphasised as critical contextual information which are necessary to 

influence and understand skilled behaviour. It was suggested that the consideration and 

manipulation of constraints is beneficial for sport practitioners concerned with skill acquisition 

(Handford et al., 1997). The constraints model has been suggested as applicable for practitioners 

due to it’s simplicity (Glazier, 2010). The CLA has also been proposed as a grand unifying theory 

for sport science (Glazier, 2017) and suggested as a useful framework to promote interdisciplinary 

collaboration in the sport sciences (Browne et al., 2021; Glazier, 2017). Accordingly, the 

principles of CLA have important implications for understanding and enhancing sport practice. 

Newell (1986) first conceptualised a model of constraints as a framework to understand contextual 

factors which influence the emergence of coordinated movement. Constraints refer to boundaries 
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or limitations to a movement system (Newell, 1986). Accordingly, the self-organisational 

properties of the system facilitate the emergence of functional coordinative patterns which satisfy 

the constraints on their system according to task goals (Davids et al., 2008). According to 

Newell’s (1986) model, constraints were categorised into three groups; organismic, 

environmental and task (Fig 2.1). The interaction of these constraints reveals a landscape in which 

states of attraction exist drawing the system to stable organisational solutions (Warren, 2006). 

Thus, constraints not only provide limits but can accentuate or encourage certain coordinative 

patterns of movement. 

 

Figure 2.1 An adaptation of Newell's model of interacting constraints (Newell, 1986) 

Newell’s (1986) model of constraints formed the basis of the CLA (Davids, Araújo, et al., 2003; 

Davids et al., 2008). The CLA highlights how constraints can be manipulated by coaches and 

sport practitioners to shape the coordinative tendencies of learner’s  and improve skill acquisition 

(Renshaw et al., 2010; Renshaw & Chow, 2019) . Further, the CLA advocates for the mutual 

relationship between the performer and the environment, appreciating that actions and movements 

cannot be fully understood without references to the constraints which influence them (Davids & 

Araújo, 2010b). Accordingly, in sport practice, evaluating athlete skilled behaviour relative to 

contextual constraint information is pertinent to enhancing skill development. The information 

gained from skilled action evaluations could inform how practitioners can manipulate key 

constraints to facilitate a skill acquisition (Timmerman et al., 2019). Indeed, the CLA encourages 
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discovery learning, where constraints can be used to guide the search of learners to discover 

movement solutions (Davids, Araújo, et al., 2003).  

Within the CLA, constraints have varying characteristics which should be considered during 

implementation in sport practice. Constraints exist at many levels of analysis and may be time 

dependant or independent (Newell, 1986; Newell et al., 2001). Constraints may be structural, in 

that they change very little over time, or functional, which change frequently, over varying time-

scales including seconds, hours, weeks or years (Balagué et al., 2019; Newell, 1986). Thus, 

constraints are continuously evolving, such that movement properties are emergent and not pre-

determined at some particular time (Araújo et al., 2006). Additionally, constraints exist at 

different levels and interact between levels (Balagué et al., 2019; Pol et al., 2020). Accordingly, 

constraints can be viewed as “nested” where interactions may occur bi-directionally through time 

scales and levels (Balagué et al., 2019). For example, in sport, constraints which act upon an entire 

team, such as tactics or current score, will constraint an individuals’ action also. Likewise, slow 

changing socio-cultural constraints, such as values and philosophies of a club’s organisation, may 

influence the actions and structure of the team, including their tactics or recruitment strategies 

(Rothwell et al., 2018). Accordingly,  the CLA implies a multi-levelled and multi-time scaled 

approach to athlete development occurring over micro (sessions/weeks) and macro 

(months/years) time scales (M. O. Sullivan et al., 2021). Indeed, constraints influence has been 

demonstrated at multiple scales of analysis such as individual kinematics (Chow et al., 2007, 

2008), attacker-defender dyadic relationships (Cordovil et al., 2009; Passos et al., 2012), team 

and opposition positional interaction (Alexander, Spencer, Sweeting, et al., 2019; Bourbousson 

et al., 2014; Silva, Duarte, et al., 2014) or geographic and socio-cultural levels (Roca & Ford, 

2020; Rothwell et al., 2018, 2022). Thus, the complex interaction of constraints within sport may 

be a challenge to the practical implementation of the CLA. This presents an important area of 

opportunity to provide support. 
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2.2.3.1 Individual Constraints 

Individual constraints refer to constraints which exist internal to the action performer (Newell, 

1986). In the literature these are also referred to as organismic or performer constraints (Davids 

et al., 2008; Renshaw et al., 2010). Individual constraints may be structural or functional. 

Structural individual constraints remain relatively time independent, in that they are consistent 

over large time scales, indicative of the general rate of change. Examples of structural constraints 

are age (Almeida et al., 2016), height (Cordovil et al., 2009) or skill level (Silva, Duarte, et al., 

2014; Silva, Travassos, et al., 2014). Alternatively, functional individual constraints tend to have 

fast rates of change and are relatively time dependent. Such examples include emotions (Headrick 

et al., 2015), fatigue (Lyons et al., 2006) or previous performance (Pocock et al., 2018). Individual 

constraints are unique to each organism and may also include an organism’s intentions (Davids 

et al., 2008). A learner’s intentions relate to their perceived task goals and may be considered 

central in shaping the search and selection of affordances (Renshaw & Chow, 2019). Further, 

individual constraints will emerge and decay throughout the learning process (Renshaw et al., 

2010). Given the influence of individual constraints, there can be no universal optimal movement 

solutions for any given task (Glazier & Davids, 2009). Individuals may self-organise to different, 

yet each appropriate, coordinated movement patterns. Similarly, through practice over time, 

individuals display unique progressions of technique development (Chow et al., 2008). In sport, 

it is clear that individual constraints shape the actions of performers, guiding their attention 

towards movement solutions.  

2.2.3.2 Environmental constraints 

According to Newell’s (1986) model, environmental constraints can be considered as any 

constraint which exists external to the performer.  Although this definition has been regarded as 

ambiguous (Newell & Jordan, 2007), environmental constraints are generally considered as those 

not manipulated by practitioners (Renshaw et al., 2010; Renshaw & Chow, 2019). Like individual 

constraints, environmental constraints may be relatively time dependent or independent. 
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Constraints such as gravity or light remain consistent over long time-scales however constraints 

such as wind speed or game score may be relatively fast-changing (Balagué et al., 2019).  

Environmental constraints can be further classified into physical and socio-cultural (Renshaw & 

Chow, 2019). Physical constraints are substantial features of the environment such as gravity, 

light, weather or surface type (Brito et al., 2017). Alternatively, location, such as indoor gyms or 

outdoor parks, and competition, such as elite or sub-elite (Woods, Jarvis, et al., 2019), are 

important environmental constraints. Contrastingly, socio-cultural constraints are intangible and 

include the values or ethos of an organisation, or the cultural and social expectations of a group. 

Such environmental constraints are features of the “form of life” which shapes and influences 

behaviours and values of a community (Rothwell et al., 2018). For example, the industrialist 

history and tradition of the United Kingdom was suggested to influence autocratic coaching styles 

which limited the autonomy of player behaviour in Rugby Union (Rothwell et al., 2018). Socio-

cultural values can shape the ways players engage with their environment during training sessions 

(Rothwell et al., 2022). Similarly, the structure, or lack thereof, in practice sessions is influenced 

by national cultures and values (Uehara et al., 2018; Vaughan et al., 2021).   

2.2.3.3 Task Constraints  

Task constraints exist external to the performer and relate to aspects of the task being performed 

(Newell, 1986). These include constraints relating to the goal of the task, the equipment used or 

the rules which govern the performance (Newell, 1986). Task constraints can be further 

categorised as instructional or informational. Informational constraints are features in which 

information may be perceived to regulate motor patterns. For example, in cricket, the presence of 

a bowler is an informational constraint which batters use to regulate the timing and coordination 

of strokes (Pinder et al., 2009). Alternatively, instructional constraints exist as rules or directions 

which may be communicated visually or verbally, such as tactical instructions provided by a 

coach (Balagué et al., 2019). Task constraints may also be implemented for a specific or non-

specific movement outcome (Newell, 1986). A specific constraint would be used to limit the 

required movement outcome to a particular response. However, non-specific constraints permit 
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room for interpretation and variability in which a performer may exhibit a range of responses 

(Balagué et al., 2019; Newell, 1986). Instructions and rules may be manipulated by sport 

practitioners to constrain the skilled movement of their athletes however, are distinct from 

physical task constraints.  

Physical task constraints differ from goals and rules in that they are substantial and tangible 

(Newell, 1986). Physical constraints may inhibit or encourage a range of motor responses through 

a range of applications including the modification of equipment (Buszard et al., 2016), addition 

of wearable loads (Trounson et al., 2020) or the physical restriction of space when performing 

movements (Verhoeff et al., 2018). For example, in tennis, body scaling the racquets (Fitzpatrick 

et al., 2018) or the ball and net sizes (Farrow & Reid, 2010) promoted more functional movement 

solutions and elicited greater stroke learning outcomes. The addition of wearable resistance during 

running tasks is useful for promoting kinematic variability (Trounson et al., 2020). 

Task constraints have been proposed as the most important class of constraints as they can be 

readily manipulated by practitioners (Renshaw et al., 2010). For example, task goals, equipment 

or playing area dimensions may be easily modified during practice tasks to promote the 

emergence of particular skills. Task constraints may be accentuated or dampened to train decision 

making (Araujo et al., 2009; Davids et al., 2013; Passos et al., 2008), stabilise or perturb current 

movement solutions (Chow, 2013; Chow et al., 2011; Renshaw et al., 2009) or promote creativity 

(Orth et al., 2017; Santos et al., 2016; Torrents et al., 2021; Vaughan et al., 2019). Small sided 

games present effective modalities with which to implement task constraint manipulations whilst 

still maintaining an imitation of the performance environment (Davids et al., 2013). To effectively 

leverage task constraint manipulation practitioners should possess adept knowledge about the 

game to develop athlete’s knowledge in the game (M. O. Sullivan et al., 2021). 

Literature has investigated the influence that constraint manipulations may have on physical, 

skilled and tactical behaviour in various team sports. Typically, these studies are conducted during 

small side games as commonly seen in the training environment. Task constraints are the most 

frequently manipulated constraint in literature. Of these, manipulations of the number of players 
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and field dimensions are the most frequently manipulated (Ometto et al., 2018). For example, 

creating an outnumber for the attacking team increased kicking efficiency in AF (Bonney et al., 

2020) and the frequency of correct decision making in soccer (Vaeyens et al., 2007). Additionally, 

an attacking outnumber increased the mean distance between attackers and defenders during a 

small side game (Vilar et al., 2014). Decreasing the overall number of players as shown mixed 

results finding a decrease in the frequency of certain technical actions such as interceptions and 

passes in soccer (Owen et al., 2011) but an increase in passes (Timmerman et al., 2019) and action 

success in field hockey (Timmerman et al., 2017). Decreasing the number of players increases 

the physical demands (Abrantes et al., 2012; Bonney et al., 2020) however, small manipulations 

of one or two players per side have shown minimal influence in technical actions in soccer 

(Abrantes et al., 2012) and AF (Bonney et al., 2020).  

Field size manipulations are also prevalent in literature across multiple sports. Increases in field 

size were related to increased physical output but the reduction in certain technical actions such 

as tackles and turnovers or shots in AF (Fleay et al., 2018) and soccer (Kelly & Drust, 2009). In 

soccer, length and width manipulations influenced new positioning strategies and interactions 

between team mates and opposition to suit the demands of the task (Frencken et al., 2013). 

Increasing field size has also been shown to increase high intensity running demands and 

perceived intensity (Nunes et al., 2021).  

Other task constraint manipulations involve rule modifications or instructional directions. 

Relative starting positions of attackers and defenders influence action processes and outcomes 

such as crossing in soccer (Correia et al., 2012; Orth et al., 2014) and a try or tackle in rugby. 

Manipulations of scoring targets has been shown to influence technical actions in field hockey 

(Timmerman et al., 2019) and soccer (Almeida et al., 2016; Travassos et al., 2014) where the 

manipulation of additional targets increases the frequency of shots (Timmerman et al., 2019; 

Travassos et al., 2014) and elongated the distance between players (Almeida et al., 2016) and the 

removal of targets increases the frequency of passes (Timmerman et al., 2019). Tactical 

instructions provided to basketball players, such as a conservative play style, increased the time 
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to move the ball down the court to score (Cordovil et al., 2009). Together, the work investigating 

task constraint manipulations highlights the influence practitioners may have in shaping the 

behaviour of their athletes. To build upon this research, there are opportunities to examine how 

constraints may interact with one another. 

2.2.3.4 Constraint Interaction 

A key tenet to the CLA, is that constraints do not act in isolation but interact together dynamically 

and non-linearly (Balagué et al., 2019; Newell, 1985). Organismic movement systems are 

adaptive, with motor patterns continuously emerging and fitting their structure according to the 

changes and fluctuations of constraints (Davids, 2014). Due to the inter-relatedness of constraints 

it is likely that the presence, or modification, of one constraint will influence the structure of other 

constraints (Balagué et al., 2019). Constraints also emerge and decay across multiple time scales 

of learning, performance and development (Newell et al., 2001) and exist across multiple levels 

of analysis (Pol et al., 2020). The interactive nature of constraints increases the complexity for 

understanding emergent movement as a dependent property of contextual information. This 

conceptualisation of constraint interaction positions the CLA as complex, where components 

interact non-linearly along various spatiotemporal scales (Balague et al., 2013). The non-linear 

nature of a complex system implies that small changes in one constraint may lead to large re-

organisation of an entire system. Accordingly, it is important that sport practitioners evaluate 

constraints in context with one another. This may improve their interpretation and avoid over or 

under valuing their influence when considered in isolation.  

Literature examining constraint interaction is limited. This is due in part, to the reductionist 

paradigm which has been persistent in skill acquisition literature (Pol et al., 2020) but also to the 

methodological challenges the complexity of constraint interaction poses on researchers (Browne 

et al., 2021; Glazier, 2017; Robertson et al., 2019a). Literature which has considered constraint 

interaction is prevalent across numerous sports however, has generally been limited bivariate 

examinations. For example, in soccer, team coordination may be influenced by the interaction of 

field dimensions with skill level (Silva, Duarte, et al., 2014) or the number of players (Silva et al., 
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2015). Technical actions are influenced by interactions between number of players and game type 

(Abrantes et al., 2012), pitch surface type and playing position (Brito et al., 2017), or scoring 

mode and player age (Almeida et al., 2016). In field hockey, the interaction of game type and the 

number of players increased or decreased player actions according to the task goals and the 

available space (Timmerman et al., 2019). In long jump, kinematic changes during running 

emerged from interactions between performance environment and task goal manipulations 

(Panteli et al., 2016). Although limited, this body of work highlights the interactive nature of 

constraints on the emergent properties of individual and team behaviours in sport.  

Recent studies in AF have exemplified how measuring a greater quantity of constraints can reveal 

important non-linear constraint interactions (Browne, Sweeting, et al., 2019; Browne et al., 2020; 

Robertson et al., 2019a). One study compared a univariate analyses of isolated constraints with a 

non-linear multivariate model including six constraints (Browne, Sweeting, et al., 2019). It was 

shown that, compared to a multivariate model, a univariate analysis was misleading for evaluating 

kicking performance. However, as more constraints were included in the multivariate model (Fig 

2.2), non-linear associations were revealed which provided a more comprehensive evaluation of 

kick success (Browne, Sweeting, et al., 2019). A similar study performed a multivariate analysis 

of Rugby place kicking and discovered only two constraints, kick distance and angle, were 

significant contributors to predicting kick success (Pocock et al., 2018). However, these findings 

may be limited by the utilisation of a linear analysis incapable of measuring non-linear constraint 

interactions. Constraint interaction is evidently a pertinent aspect to the CLA to understand 

emergent movement. Moreover, considering a larger quantity of constraints is beneficial given an 

appropriate analytical technique is used. Regardless, the interaction of task, environmental and 

individual constraints should be considered by practitioners in the design of learning 

environments during the process of skill acquisition. Tools which assist coaches to consider 

constraint interaction may improve their practical implementation of the CLA. 
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2.3 Skill Acquisition: Implications for sport practitioners 

The theory of ecological dynamics presents a contemporary perspective on the emergence of 

coordinated movement patterns in neurobiological organisms (Davids et al., 1994). The CLA, 

underpinned by ecological dynamics, is useful to provide a framework for understanding the 

features which shape skilled and coordinated behaviour (Davids et al., 2008). Given the emphasis 

on constraints and the utility of self-organisation within human movement systems, the CLA 

holds new and important implications for strategies of skill acquisition (Renshaw et al., 2010; 

Renshaw & Chow, 2019; Woods, McKeown, O’Sullivan, et al., 2020). Such implications for 

enhancing skill acquisition are relevant for a number of domains including high performance sport 

(Farrow & Robertson, 2017; Woods, McKeown, O’Sullivan, et al., 2020) and physical education 

(Renshaw et al., 2010; Renshaw & Chow, 2019; Rudd et al., 2021). This is important for physical 

educators, coaches or sport practitioners who are responsible for the education and facilitation of 

movement and skill development in their students or athletes.  

An implementation of the CLA supports a non-linear pedagogical framework which places the 

athlete at the centre of the learning process (Chow, 2013; Renshaw et al., 2009). A non-linear 

pedagogy can complement the CLA by providing principles relevant to the practical execution 

Figure 2.2 An example of accumulative constraint interaction influencing kicking 

effectiveness in Australian Football (Browne et al., 2019) 
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and structure of learning activities (Chow, 2013; Correia et al., 2019). This learning paradigm 

contrasts with the principles of traditional skill acquisition theories which promote rote repetition 

to strengthen neural pathways (Wulf & Lewthwaite, 2016). A non-linear pedagogy, grounded in 

ecological dynamics, emphasises a mutual and reciprocal relationship between the organism and 

the environment where the aim is for the learner to establish deep couplings with the environment 

(Renshaw et al., 2009). Accordingly, this pedagogical approach encourages the careful 

manipulation of constraints to design learning environments which may achieve this (Chow, 

2013).  

2.3.1 Learning designers 

During skill acquisition, a learner establishes deep and adaptable relationships with the 

environment (Woods, McKeown, Rothwell, et al., 2020; Woods, Rudd, Gray, et al., 2021). 

Accordingly, the emphasis for the instructor facilitating skill development is education of 

attention. Contrasting with traditional theories, a non-linear pedagogy suggests appropriate 

learning environments guide a learners exploration of their perceptual-motor landscape towards 

areas of relevant information which regulate action to achieve the intended task goal (Chow et 

al., 2011; Chow, 2013; Davids, 2012; Renshaw et al., 2010). As learners are permitted to explore, 

over time, they develop deep coupling tendencies with affordances used to guide movement. This 

tendency, or predispositions for actions, are known as intrinsic dynamics (Davids, 2014). When 

intrinsic dynamics are aligned with critical information in the performance environment, effective 

transfer of learning can occur (Davids, 2014). Indeed, it is the information-action relationship 

which transfers from practice tasks to competition (Araujo & Davids, 2011). This has also been 

referred to as building knowledge of a task instead of knowledge about a task (Gibson & 

Carmichael, 1966). Indeed, learning environments should be designed exclusively to attenuate or 

magnify affordances and build perception-action relationships (Davids, 2012). This perspective 

emphasises a relational worldview of emergent behaviour and skill learning (Gibson, 2014; 

Gibson & Carmichael, 1966; Woods, Rudd, Gray, et al., 2021; Woods & Davids, 2021). It centres 

the learning process as one where learners engage meaningfully with their environment, through 
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a process of exploration, to self-regulate their actions and decisions (Woods, Rudd, Robertson, et 

al., 2020; Woods, Rudd, Gray, et al., 2021; Woods & Davids, 2021). Indeed, learning has been 

positioned as inseparable from dwelling and inhabiting a landscape of dynamic affordances to 

establish functional behaviours in relation to their environment (Woods, Rudd, Gray, et al., 2021). 

To support this learning process, ecological dynamics re-positions sport instructors and coaches 

as “learning designers” (Davids, 2012, 2014; Woods, McKeown, Rothwell, et al., 2020). This re-

positioning shifts the focus of practice from the instructor, imparting knowledge directly to the 

learner, to one where practice environments and tasks are constructed which can guide the learner 

to explore solutions to movement problems (Woods, McKeown, Rothwell, et al., 2020). The 

concept of the coach as a learning designer gives the learner autonomy and enables the discovery 

of individualised movement solutions (Chow, 2013). Accordingly, the role of the coach is to 

enhance the self-discovery of the learner through the careful construction of learning 

environments. The manipulation of constraints during dynamic tasks are intended to set up 

conditions where athletes are guided towards critical information sources, without explicitly 

providing solutions (Handford et al., 1997). This outlook on coaching has been termed “hands-

off coaching” due to the softer pedagogical influence of the instructor (Davids et al., 1994; 

Davids, 2014; Handford et al., 1997; Woods, McKeown, Rothwell, et al., 2020). This shifts 

coaching away from verbal instructions or explicit directions and towards a deep understanding 

of the learners’ interaction with the environment (Handford et al., 1997; Woods, McKeown, 

Rothwell, et al., 2020). 

Importantly, viewing the coach as a designer should not be misconstrued as a de-emphasis on the 

practitioner role. It may be interpreted that the practitioner has no place in the learning process 

but can let the “game be the teacher” (Renshaw et al., 2016; M. O. Sullivan et al., 2021). In such 

an approach the aim is to simply expose learners to game-like environments to improve their 

technical and tactical skill capabilities (Renshaw et al., 2016). There is little input from the 

instructor and less value is attributed to individual differences. On the contrary, learning and 

understanding during non-linear pedagogical practice occurs through engaging with an affordance 
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rich taskscape, with space for self-regulation within the guiding influence of an experienced 

practitioner (Woods, Rudd, Robertson, et al., 2020; Woods, Rudd, Gray, et al., 2021). The coach’s 

role remains as an integral component in the learning process but is re-conceptualised from a 

prescriptive source of knowledge to a guide and facilitator (Woods, Rudd, Gray, et al., 2021). 

Previously the coaching role was analogous to a GPS device, explicitly directing an athlete 

towards a destination. Contrastingly, the coaching role as a designer is required to nudge athletes 

towards critical landmarks which may inform the path towards their destination (Woods, Rudd, 

Robertson, et al., 2020). Critically, within this analogy, there is not one optimal route but several 

paths an athlete may explore to meet their goal. Coaches, educators and practitioners may lean on 

principles of a non-linear pedagogy to inform how a “hands-off” coaching approach may be 

implemented. Opportunities exist to support sport practitioners to achieve the implementation of 

a non-linear pedagogy. A key method to achieve this occurs through constraint manipulation. 

2.3.2 Constraint manipulation 

Through the lens of the coach as a learning designer a common strategy, and a critical skill, to 

enhancing skill development is the manipulation of constraints (Renshaw & Chow, 2019). In 

practice activities, constraints may be modified in such a way as to inhibit or encourage an athlete 

to perceive important information which may be used to regulate actions and decision making 

(Chow, 2013; Renshaw et al., 2010; Renshaw & Chow, 2019). This commonly involves the 

implementation or modification of task constraints. Constraint manipulations have been applied 

to influence a range of outcomes including to improve individual movement kinematics 

(Shafizadeh et al., 2019; Verhoeff et al., 2018), increase or decrease technical and physical 

outcomes (Bonney et al., 2020; Fleay et al., 2018; Timmerman et al., 2019), improve decision 

making capabilities (Vaeyens et al., 2007), influence the spatial interaction of players at a team 

level (Abrantes et al., 2012; Owen et al., 2011) or improve rehabilitation activities in return to 

play athletes (Allen et al., 2021). Indeed, coaching through the manipulation of constraints has 

been shown as more effective at developing skill than other methods including differential 

learning or prescriptive instructions (R. Gray, 2020; Komar et al., 2019).   
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The goal of constraint manipulation is to guide athletes to pick-up key information which is used 

to regulate movement (Renshaw & Chow, 2019). Their manipulation should magnify or attenuate 

specific affordances within the performance environment (Passos et al., 2008). For example, in a 

1v1 situation in Rugby Union, interpersonal distance was a constraint which influenced passing 

or running decisions in attackers (Passos et al., 2012). Accordingly, widening a field of play may 

accentuate the gaps between defenders, promoting attackers to recognise and exploit them. 

Constraints may be manipulated using systematic or unsystematic methods (Orth et al., 2019). 

Systematic manipulation changes specific constraints intended to guide the attention of athletes 

towards more optimal solutions or specific intended behaviours. For example, the use of an 

analogy was an effective informational constraint to improve the efficiency of arm-leg 

coordination patterns during breast-stroke practice (Komar et al., 2019). Unsystematic 

manipulation is used to promote variability in behaviour to encourage exploration and the 

development of degeneracy (Orth et al., 2019). This aligns closely with concepts of differential 

learning where the aim is to perturb a learner’s movement solutions through random fluctuations 

in task constraints (R. Gray, 2020; I. Schollhorn et al., 2012). For example, random adjustments 

in posture, equipment sizes or weights or interpersonal distances can improve a learner’s 

explorative processes requiring them to continuously adapt to new circumstances. Accordingly, 

such an approach achieves “repetition without repetition” (Ranganathan et al., 2020). Coaching 

within a CLA should be viewed as an ongoing task, involving the continuous manipulation of 

constraints throughout the dynamic learning process (Pol et al., 2020). However, applied research 

which can support this process is limited. Opportunities exist to support practitioners to evaluate 

constraint manipulations, in the field, to inform their efficacy.  

Some important caveats to the implementation of a CLA do exist. Firstly, constraints should only 

be manipulated to guide or nudge the attention of the athlete towards such affordances, while 

maintaining space for exploration of alternative options (Renshaw & Chow, 2019). Over-

constraining a task will not promote adaptable, self-discovered solutions but enforce them 

(Renshaw & Chow, 2019). Additionally, there is a tendency in sport to manipulate skills through 
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a global-to-local direction, such as in imposed tactical structure or plan (Ribeiro et al., 2019). 

Coaches should also not neglect the bi-directional self-organising processes of their athletes and 

look for opportunities to facilitate skill development through local-to-global directions. This is 

advantageous to promote degeneracy and develop adaptable performers (Ribeiro et al., 2019). 

Further, manipulating task constraints should always appreciate the pre-existing intrinsic 

dynamics of the individual (i.e. their individual constraints) (Orth et al., 2019; Renshaw et al., 

2016) and the interaction of constraints in the environment.  

To evaluate the efficacy of a practitioner’s constraint manipulations, a learner’s behaviour should 

be measured according to non-linear pedagogical skill acquisition principles (Chow, 2013; Chow 

et al., 2011). Given the implications for movement educators, a non-linear pedagogy has been 

explored most frequently in the areas of athlete development (Chow, 2013; Renshaw et al., 2009) 

and in physical education (Rudd et al., 2020). A non-linear pedagogy can provide a rationale for 

evaluating effective training design. For example, variability can hold a functional role in skill 

performance (Davids, Glazier, et al., 2003) and can be viewed as functional exploration of the 

learner as they search for optimal solutions (Newell & McDonald, 1992). Variability in movement 

performances can show an effective adaptation to changing constraints to achieve goal-orientated 

tasks (Davids, Glazier, et al., 2003; Seifert et al., 2013). Thus, effective constraint manipulations 

in practice may encourage variable performance from athletes. Similarly, faithful simulation of 

performance environments promotes effective skill transfer and is known in the literature as 

“representative learning design” (Pinder et al., 2011). Detailed sampling of variables available 

during competition is key to inform training environments (Davids, 2014). To support constraint 

manipulations during practice which can transfer to competition, athlete behaviour may be 

compared to competition to identify similarities, or dissimilarities (Browne et al., 2020; Ireland 

et al., 2019; Tribolet et al., 2022).. The principles within a non-linear pedagogy will inform the 

goals of practice which frame evaluations of practice design (Chow, 2013; Chow et al., 2011; 

Renshaw et al., 2009). Importantly, supporting coaches to evaluate athlete behaviour according 
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to such skill acquisition principles would guide their decisions regarding constraint 

manipulations. 

In one method to effectively implement a CLA which adheres to non-linear pedagogical 

principles, practitioners have been encouraged to utilise small sided games (Davids et al., 2013). 

Games based training is often implemented by coaches to enhance skill and develop physical 

capacities (Gabbett et al., 2009). Indeed, small sided games have also been shown as equally 

effective for aerobic improvements as isolated running drills (Impellizzeri et al., 2006). Small 

sided games have been presented as a viable opportunity to coach with a hands-off approach 

(Davids et al., 2013). Small sided games allow for continuous inter and intra team interactions 

while providing appropriate opportunities for information-movement coupling (Davids et al., 

2013). The nature of small sided games maintains relevant match affordances during the practice 

tasks enhancing the transferability of skills to competition. The structure of small sided games 

may be easily modified by practitioners to accentuate or dampen constraints in the athletes task, 

such as number of players (Aguiar et al., 2015; Bonney et al., 2020; Vilar et al., 2014), field 

dimension (Fleay et al., 2018; Frencken et al., 2013; Timmerman et al., 2017) or task goals 

(Cordovil et al., 2009; Timmerman et al., 2019; Travassos et al., 2014). Small side games are 

advantages over full size games as they allow specific sub-phases of play to be represented 

providing increased frequency of opportunities for specific actions or time spent in particular 

scenarios (Davids et al., 2013). Additionally, in full size games, the increased number of players 

allows for more compensatory interactions to occur decreasing the tendency for the system to 

destabilise. Thus, small sided games promote more destabilisation of coordinated movement 

patterns, enhancing the adaptability and degeneracy of team coordination. A final benefit to the 

use of small sided games is they will likely present a more enjoyable opportunity for training, 

enabling more time spent in engaging activities (Davids et al., 2013). Tools which focus on 

supporting the design of small sided games are critical to facilitate skill development in team 

sports. 
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Given the important theoretical insights of the CLA and the practical principles of its 

implementation through a non-linear pedagogy, designing practice is a challenging proposition 

for coaches, physical educators and sport practitioners (Orth et al., 2019). The process of coaching 

has indeed been proposed as analogous to athletes exploring and attuning to their perceptual 

environments, requiring time and practice to develop expertise (Orth et al., 2019). Furthermore, 

the dense academic language of these concepts are perceived as a barrier for practitioners 

(Renshaw & Chow, 2019). Accordingly, the CLA has seen limited uptake from coaches (Stone 

et al., 2021). However, the implementation of effective practice environments is a critical factor 

to enhancing skill development and driving performance (Williams & Ford, 2009). In sport 

literature, there is a gap in applied research which supports coaches to implement a CLA to 

enhance athlete skill acquisition. To meet this need, there are opportunities to harness data and 

analytics to evaluate practice and inform training design according to skill acquisition principles 

of the CLA. 

2.4 Informing training design 

To inform training environments and support coaches as learning designers, within the CLA, it is 

essential to gain an understanding of athlete behaviour in such environments. In sport, evaluating 

athlete performance can occur for many purposes including talent identification (Larkin et al., 

2020; Vaeyens et al., 2008), team selection (Iyer & Sharda, 2009) or where human judgement is 

required to determine performance outcomes, such as figure skating or diving (Looney, 2004; 

Osório, 2020). In invasion style team sports, such as football or AF, the game is dynamic and 

complex with varying components interacting on different time scales (Balague et al., 2013; 

Gudmundsson & Horton, 2017). Therefore, it is difficult for coaches or domain experts to recall 

specific events or plays, including these large volumes of information that occur within invasion 

sports (Borrie et al., 2002). Further, coaches’ evaluations of talent are subjective and may lack 

reliability (Roberts et al., 2020) and performance judges have shown biases in their evaluations 

(Looney, 2004). Accordingly, to understand sport performance, practitioners have sought to 

measure behaviour through objective methods. This is achieved by retrieving information which 
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is normally unattainable with the coaches eye to enhance their observations (Borrie et al., 2002). 

Further, To overcome such biases, tools have been developed, such as decision support systems, 

to support the interpretation of information (Schelling & Robertson, 2020). These objective tools 

may also be integrated with subjective interpretations (McIntosh et al., 2019). However, the 

application of similar tools to inform training design, within a CLA, remains largely unexplored. 

With the rise in objective data in sport, the discipline of performance analysis has emerged.  

2.4.1 Performance Analysis 

Performance Analysis is a sub-discipline of sport science. Originally stipulated as a combination 

of biomechanics and notational analysis, performance analysis has since included disciplines of 

motor control (Hughes, 2004). The purpose of performance analysis is to advance the 

understanding of game behaviour with the purpose of improving future performances (McGarry, 

2009). Performance analysis has been utilised extensively across a variety of sport types including 

net and wall, striking and fielding and invasion (Hughes & Bartlett, 2002). Through the collection 

and analysis of data, key indicators of performance, such as the frequency of important events or 

behaviours, have been developed. These indicators may evaluate biomechanical, technical, and 

tactical aspects of team and individual performance. For example, frequencies of winners and 

errors provide insight into the technical performance of a player in tennis or squash while the 

number tackles won or lost can indicate tactical underpinnings in soccer (Hughes & Bartlett, 

2002). Such insights are presented to inform corrections or modifications to playing style or 

provide critical insight into opposition game structures which may be exploited. Common 

procedures within the discipline of performance analysis involve the use of video technology, 

systematic techniques of recording reliable observations and providing feedback to other 

practitioners, coaches and athletes (Bartlett, 2001). Literature has also explored how to improve 

the visual analysis of observational match data to enhance the interpretability for practitioners (G. 

Andrienko et al., 2017; Ryoo et al., 2018). To build upon this, the application of these techniques 

may also be used to inform training design.  
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A specific technique implemented by performance analysts is notational analysis. Notational 

analysis is the process of objectively quantifying behaviours that relate to the technical and 

tactical performance of players and teams (McGarry, 2009). It involves the manual notation of 

sequential events or behaviours, typically recorded in a discrete manner. Historically, such 

information was gathered using pen and paper methods, involving the scripting of live events as 

they occurred which could subsequently be tallied (O’Donoghue, 2009). However, the 

advancement of technology has greatly facilitated this process with the development of computer 

based annotation software or video tracking systems (O’Donoghue, 2009). The information 

gathered through notational analysis typically pertains to who, what, where and when (McGarry, 

2009). Notational analysis is used to collect data which may support coaches and sport 

practitioners in identifying performance trends. Importantly, notational analysis should provide 

complimentary information which is not already perceived by practitioners (Bartlett, 2001). 

Performance analysis can use notational data to develop key performance indicators which may 

support coaches in evaluating performance (Mackenzie & Cushion, 2013). This information is 

used to support coaches to inform decision making and draw relationships between behaviours 

and performance. However, opportunities exist to improve the application of performance 

analysis through a theoretical framework such as the CLA.  

2.4.1.1 Performance Analysis underpinned by a constraints-led approach 

Whilst the field of performance analysis  has revealed further understanding to many aspects of a 

sport, it has come under critique due a lack of an underpinning theoretical rationale guiding it’s 

processes (Glazier, 2010; McGarry, 2009). The relationships between indicators and performance 

cannot be appropriately established without an underlying theory to interpret the data (Vilar et al., 

2012). The performance indicators typically utilised to evaluate performance have been suggested 

as descriptive rather than explanative (Hughes & Bartlett, 2002; McGarry, 2009). For example, 

events such as passes or shots, are recorded with the exclusion of contextual information such as 

the field location or dyadic player interactions (McGarry, 2009). This has positioned the field of 

performance analysis as reductionist in nature, attempting to reduce the understanding of human 
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movement to particular outcome variables. Such rudimentary observations are unable to explain 

how or why such actions have occurred (Glazier, 2010; Vilar et al., 2012). Accordingly, a 

theoretical framework could enhance how performance analysis could be applied in sport 

(Glazier, 2017).  

Sport has been described as a complex system where behavioural outcomes are the emergent 

result of interactions between critical system components (Balague et al., 2013; Davids, 2014). 

To account for this, theories such as complex systems, dynamical systems or ecological dynamics 

have been suggested as suitable to underpin the work of performance analysis (Glazier, 2010; 

McGarry, 2009; Vilar et al., 2012). Such rationales recognise the complexity and non-linearity of 

dynamic interactions within sport environments. Accordingly, the consideration of interacting 

contextual information is a key tenet to evaluating emergent behaviour appropriately (Newell, 

1986). It has been suggested that the CLA is an appropriate theoretical framework due to its roots 

in ecological dynamics but involves less dense academic language which is more accessible to 

the practitioner (Glazier, 2010). Although the CLA was originally positioned to conceptualise the 

emergence of organismic motor patterns, the principles have application in the analysis of 

individual and team performance within complex sport environments. Constraints form the 

boundaries of the system which shape the emergence of stable behavioural patterns (Newell, 

1985). Thus, information pertaining to the constraints on sport actions have important 

implications for how or why such actions occurred and provide a deeper understanding of 

performance.  

Technology may augment the application of performance analysis within the CLA. Technology 

has been suggested as a useful tool to support the skill development process (Browne et al., 2021; 

McCosker et al., 2021; Woods, Araújo, et al., 2021). However it’s application should be 

considered carefully as its misuse may hamper learning (McCosker et al., 2021; Woods, Araújo, 

et al., 2021). Technology should be used to augment or complement a learner’s experience and 

be used as a tool to guide or question a learner’s behaviour. Accordingly, technology should be 

used to support how learners engage directly with the environment to support their perception of 
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critical information (Woods, Araújo, et al., 2021). Within training, technology may be utilised via 

equipment modifications, athlete movement tracking, video-based feedback or enhancements to 

performance analysis techniques (McCosker et al., 2021). Specifically, technology can be 

harnessed to improve measures of constraints or enhance the analysis of constraint interaction 

(Browne et al., 2021). In this vein, opportunities exist to build upon this work, harnessing 

technology and data to improve the application of performance analysis within the CLA.  Such 

insights, when applied within a practice environment, can improve how coaches and practitioners 

evaluate learning activities. 

 The discipline of performance analysis may be applied to inform training design. This work may 

be guided by the underpinning theoretical framework of the CLA. Accordingly, the field of 

performance analysis presents important techniques and opportunities to collect and analyse data 

pertaining to athlete behaviour. This may be harnessed to support coaches and sport practitioners 

to facilitate skill development and enhance performance.  

2.4.2 Enhancing the application of the constraints-led approach 

Data and analytics may be harnessed to improve the implementation of the CLA. In recent years, 

in sport there has been an exponential increase in the collection of data relating to performance at 

team and individual levels (Rein & Memmert, 2016). Importantly, given the conceptual 

framework of the CLA, the sampling of detailed constraint information is essential for 

appropriately evaluating player behaviours. This information may support the design of learning 

environments and consequentially, enhance sport performance. To improve the implementation 

of the CLA, and inform sport training design, sport practitioners may seek to leverage data and 

technology to i) increase the quantity of constraints, ii) improve the measurement of existing 

constraints and/or iii) improve the techniques used to analyse constraints.  

2.4.2.1 Increased quantity of constraints 

The more constraints which can be included in a model, the greater our understanding of how 

constraints are shaping performance (Robertson et al., 2019a). From a theoretical perspective, 

understanding of a dynamical system is incomplete if important constraints or context which 



43 

 

shapes it is unknown (Balague et al., 2013). In a comparison of univariate, bivariate and 

multivariate constraint analysis, the multivariate approach had more explanatory power given the 

inclusion of more constraints in the model (Browne, Sweeting, et al., 2019). To achieve sampling 

of additional constraints, analysts may be guided by coaches or expert practitioners. Coaches have 

vast experience in their specific sport with high levels of declarative and procedural knowledge 

(Nash & Collins, 2006). This experiential knowledge can be used complimentarily to enhance 

analytical methods (Greenwood et al., 2014). Specifically, it has been suggested that the expertise 

of coaches be harnessed to identify key constraints which shape the performance of athletes 

during training and matches (Greenwood et al., 2014; Pocock et al., 2020). Additionally, 

identifying which constraints are unable to be modified is important too (Renshaw & Chow, 

2019). For example, interviews with coaches were able to identify 11 important task, 

environmental and individual constraints which influence the difficulty of place kicking in Rugby 

Union (Pocock et al., 2020). It has also been suggested that performers in the environment are an 

additional rich source of information which should not be overlooked (Woods, Rothwell, et al., 

2021). Accordingly, athletes are intelligent learners whose experience can be utilised to assist in 

identifying key constraints which are shaping their behaviours. This information can be 

practically utilised by coaches to inform training design manipulations but may also serve as a 

source for performance analysts to identify key constraints which require measurement. 

Importantly, this process involves blending empirical and experiential knowledge which has been 

suggested as useful to inform practice design for sport performance (Woods, McKeown, 

O’Sullivan, et al., 2020).  

However, adding more constraints is not always the most effective solution to modelling their 

influence on performance. The measurement of more constraints usually increases the burden 

upon resources to collect this information. This investment should be cost effective. In analytics 

this concept is known as parsimony (Browne et al., 2021). Parsimony relates to the balance of the 

quantity of variables included in a model with the explanatory power of a model. Thus, if variables 

included in a model do not substantially increase the accuracy of the model’s predictions, they 
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can be removed. Although this may involve small reductions in the accuracy of the model, it 

increases the feasibility of data collection by reducing the quantity of necessary variables. The 

concept of parsimony is beneficial in complex sport environments where collecting large amounts 

of information is a challenge for practitioners (Browne et al., 2021). Measuring a greater quantity 

of constraints, while considering parsimony, may enhance the feasibility of applying the CLA to 

inform training design. 

2.4.2.2 Improved measures of constraints 

Given the theoretical implications of the CLA, performance analysts have sought to measure 

contextual information to inform player behaviour evaluations. Specifically, the technique of 

notational analysis has been applied to manually record contextual information pertaining to 

constraints on skilled actions during sport performance. For example, in AF, constraints such as 

pressure, possession time, opposition density or movement speed, have been collected and 

compared between competition and training environments (Browne et al., 2020; Ireland et al., 

2019; Woods, McKeown, et al., 2019). Similarly, constraints on kicking in elite and sub-elite 

competitions have also been compared to highlight performance demand differences (Browne, 

Sweeting, et al., 2019; Woods, Jarvis, et al., 2019). In Rugby, manually notated constraints such 

as, kick distance or angle to goal, influence the success of place kicking (Pocock et al., 2018) and 

long jumping (McCosker et al., 2019). Thus, important insights have been gained through the 

application of notational analysis to collect constraint information. However, opportunities exist 

to further improve these measurements. 

Whilst informative, the manual notation of events is laborious and prone to errors due to its 

subjective nature. Indeed, accurate measurement and analysis of constraints may be a challenge 

for practitioners due to the multi-levelled and abundant number of constraints (Glazier, 2017). 

For example, a commonly recorded constraint shown to be important in shaping skilled 

performance is time (Browne, Sweeting, et al., 2019; Browne et al., 2020; Ireland et al., 2019; 

Pocock et al., 2018; Woods, McKeown, et al., 2019). However, to simplify the collection of this 

constraint via notational analysis, this measure has been allocated into temporal epochs, such as 
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brackets of one or two seconds (Browne, Sweeting, et al., 2019; Woods, McKeown, et al., 2019) 

or ten minute intervals (Pocock et al., 2018). A more feasible method to collect this constraint 

could improve it through a continuous measurement. Accordingly, with continuous 

measurements, more precise insights may be gained during analysis.  

In sport there are increasing opportunities to exploit technologies to increase the feasibility and 

accuracy of data collection. Specifically, harnessing technology can potentially improve the 

quantity and/or quality of constraint information without increasing the burden on the practitioner 

to manually record the information. It has been suggested that technology and analytics have 

scope to improve how the implementation of the CLA in sport may be achieved (Browne et al., 

2021; Glazier, 2010, 2017; McCosker et al., 2021; McGarry, 2009; Vilar et al., 2012; Woods, 

Araújo, et al., 2021). Specifically, the use of technology to automatically detect movement or 

actions can improve the accuracy or reliability of measures which are manually recorded. For 

example, the implementation of athlete-worn inertial measurements sensors have seen an increase 

in sport application to detect movements (Cust, Sweeting, Ball, & Robertson, 2019). This 

technology has been applied to automatically record actions such as kick types (Cust et al., 2021), 

tackles (Chambers et al., 2019) and to quantify strokes in swimming (Fulton et al., 2009a, 2009b). 

Additionally, marker-less motion trackers have been used to quantify and grade player changes 

of direction in tennis match play (Giles et al., 2020). Further, the use of player tracking technology 

is common practice in many sport codes (Gudmundsson & Horton, 2017). The automatic and 

continuous tracking of players movements can be accurately and objectively determined 

(Gudmundsson & Horton, 2017). Determining player movement patterns by automatically 

detecting their spatial and temporal location on a playing field has been achieved through 

computerised vision and wearable sensors and used to gain important tactical insights (Castellano 

et al., 2014; Giles et al., 2020; Gudmundsson & Horton, 2017). The implementation of such 

technology could be similarly used to measure key constraints in the sport performance or practice 

environment, when guided by the CLA.  
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A particular example of a constraint which may benefit from improved measurement is pressure. 

Pressure is a highly prevalent concept in sport (G. Andrienko et al., 2017). Many metrics used to 

measure pressure have focussed on the physical presence of opponents on the field of play. The 

presence of opposition acts as a constraint on available space and time afforded to players and is 

generally considered to influence movements and actions. Pressure may be measured during 

crucial moments of skilled behaviour, such as catching or kicking a ball or as a general tactical 

strategy implemented throughout match play (G. Andrienko et al., 2017). The quantification of 

physical pressure has occurred through various methods. Using notational analysis, pressure 

measurements have been allocated to skill events according to the location of the opposing 

players. This is achieved by recording the location of the opposing players (e.g. frontal or chase) 

if they are within a given perimeter to the ball carrier at the moment of skill execution (Browne, 

Sweeting, et al., 2019; Ireland et al., 2019). This location may also be graded according to the 

distance (e.g. <5m or 5-15m) to the player with the ball (Ireland et al., 2019; Timmerman et al., 

2017, 2019). Alternatively, the quantity of opposition players in nearby proximity has also been 

used to measure pressure on the passer and also the passing receiver (Woods, Jarvis, et al., 2019; 

Woods, McKeown, et al., 2019). Measuring pressure via notational analysis has been useful for 

analysts and practitioners and some evidence exists to support it’s validity, specifically, it has 

been associated with unsuccessful kick outcomes in AF (Browne, Sweeting, et al., 2019). 

However, notational analysis retains a level of subjectivity which carries a margin of error during 

annotation. Thus, leveraging technology to automatically and objectively record this information 

may improve pressure measurement. Further, notational analysis provides a categorised value, 

which only considers the players within the immediate proximity of the ball carrier. The 

development of continuous metrics for pressure may be advantageous in measuring the constraint 

to determine it’s influence on skilled behaviour. 

2.4.2.3 Analysing constraints 

Analytics can be leveraged to find relationships within data by harnessing the mathematical 

computational power of machines. This can overcome limitations to human processing by 
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considering larger volumes of information and can alleviate human factors such as bias 

(Robertson & Joyce, 2019). Historically, performance analysts dealt with a paucity of information 

to explain sport performance however, in recent years data has become increasingly available 

(Rein & Memmert, 2016). The result is large, high dimensional datasets which may serve as a 

rich information source for analysts. Accordingly, there has been an increase in the application of 

non-linear, multivariate analytical techniques, such as data mining or machine learning, in sport 

(Dutt-Mazumder et al., 2011; Horvat & Job, 2020; Rein & Memmert, 2016). Specifically, due to 

the complexity of the sports environment and the abundance of data, enhanced analytical 

techniques are applicable to improve our understanding of the CLA (Browne et al., 2021). Such 

techniques are beneficial for sports analysis for two reasons. Firstly, on a practical level, given 

the increase in dataset sizes there is a need for analytical techniques which can cope with high 

volumes of variables (Browne et al., 2021). Indeed, the more constraints which can be measured 

the deeper the understanding of the system structure (Balague et al., 2013). In sport analyses of 

rich contextual information is essential to understanding how individual and team coordinative 

behaviour emerges. Secondly, from a theoretical perspective, according to the CLA constraints 

do not act in isolation but interact dynamically and non-linearly (Davids et al., 2008). Thus, 

univariate, or linear approaches cannot appropriately measure constraints and their interaction 

with one another. This is important for practitioners to avoid over or under valuing a constraint 

when considered within a larger constraint group. To this end, there is a need to utilise non-linear 

techniques, such as machine learning or data mining, to understand the complexity of sport 

environments. Enhancing the practical application of such analytical techniques can support the 

design of training and the implementation of the CLA in sport. 

2.4.3 Sport data and analytics 

To inform the design of training environments, data may be collected and analysed within the 

guiding framework of the CLA. Various data types are regularly collected in sport including event 

data, spatiotemporal data and physical output data. The integration and appropriate analyses of 

this data may provide deeper insights into player behaviour. This may support the field of 
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performance analysis and enhance the application of the CLA by increasing the quantity of 

constraints collected or improving their measurement or analysis. 

2.4.3.1 Event data 

Through the technique of notational analysis, objective observations of certain events are gathered 

to inform aspects of performance in a variety of sports. Such forms of data are often referred to 

as event data. In team sports, event data has commonly been analysed to provide frequency counts 

or ratios, which are indicative of technical or tactical behaviour (Hughes & Bartlett, 2002). This 

data has been used to enhance the understanding of team or individual performance which can be 

exploited by coaches or practitioners to improve match outcome. For example, event data has 

been used to measure aspects of team tactics in team sport (Hughes & Franks, 2005; Wedding et 

al., 2021; Woods, Robertson, et al., 2017). Particular tactical approaches may be adopted by 

coaches from the analysis of team performance trends, as seen in event data recorded during the 

FIFA World Cup (Hughes & Franks, 2005). Further, the longitudinal progression of league wide 

playing styles has been evaluated (Woods, Robertson, et al., 2017) and tactical approaches 

between teams differentiated (Wedding et al., 2021) through analyses of key event data. To inform 

coaching strategies the key skill event indicators, related to winning or scoring in sports, including 

men’s AF (Robertson et al., 2016), women’s AF (Black, Gabbett, Johnston, et al., 2019; Cust, 

Sweeting, Ball, Anderson, et al., 2019), Rugby Sevens (Higham et al., 2014), Rugby League 

(Woods, Sinclair, et al., 2017) and soccer (H. Liu et al., 2015) have been profiled. Event data has 

also been used in evaluating individual player performance during competition (McIntosh et al., 

2018b, 2019) and has other uses such as distinguishing between player roles and positions 

(McIntosh et al., 2018a), . To build upon the insights provided with event data, other data types, 

such as spatiotemporal data, may be collected to further contextualise individual and team 

performance. 

2.4.3.2 Spatiotemporal data 

Important contextual information during sport play is the location of events (i.e. passes or shots) 

or players, and their physical interaction in the playing area (Correia et al., 2012; Orth et al., 2014; 
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Passos et al., 2012). Spatiotemporal, or tracking, data describes the location of players or events 

in physical space and time (Gudmundsson & Horton, 2017). The use of spatiotemporal data is 

important to contextualise event data and provide further insights into tactical information 

(Glazier, 2010). Spatiotemporal data may be recorded as a global position (latitude and longitude) 

or as x and y cartesian coordinates relative to the court or field. Locational data is also 

timestamped at varying rates, commonly between 10-30 Hz (Gudmundsson & Horton, 2017) 

which results in a database with the time and the location of all players on the field. Two types of 

spatiotemporal data exist: object tracking or event logs. Object tracking involves the continuous 

capture of the location of objects, such as players and balls. Event logs involve the recording of 

field or court locations and times for specific events, such as shots or passes (Gudmundsson & 

Horton, 2017). Modern technology presents useful automated or semi-automated methods to 

analyse player movements (Rein & Memmert, 2016). Integrating player tracking technology may 

enhance player and team evaluations and may be applied to inform training design. 

Advancements in spatiotemporal data have seen increased adoption of tracking technology in 

sport (Rein & Memmert, 2016). Multiple technologies exist to track objects including wearable 

devices such as global positioning systems (GPS), local positioning systems (LPS) or computer 

based motion analyses of video footage (G. Andrienko et al., 2017; Barris & Button, 2008; 

Gudmundsson & Horton, 2017). For GPS or LPS systems, players are required to wear devices 

on their bodies, usually within a custom harness between their shoulder blades (Sweeting et al., 

2017). These systems do have an advantage over vision-based systems, which are unable to 

discern individual players. This is a common issue in invasion sports such as Rugby or American 

Football (Gudmundsson & Horton, 2017). Vision based technologies are capable of determining 

the location of players and/or sport articles (e.g. the ball). Although many tracking systems exist, 

mean error margins for player spatial locations in some systems have been reported at 23cm, 

96cm and 56cm for LPS, GPS and video technology, respectively (Linke et al., 2018). This 

highlights the importance of using a single system for reliable data collection. A caveat to data 

collected from some systems, particularly GPS or LPS, is that they are unable to identify the 
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orientation of players however, such information may been inferred by analysing consecutive 

tracking samples to determine direction (Spencer, Jackson, et al., 2019). Furthermore, the validity 

and reliability of these technologies to also measure player distances and speeds have been 

reviewed, encouraging their use in research and performance analysis (Barris & Button, 2008; 

Buchheit et al., 2014; Castellano et al., 2014).  

The adoption of spatiotemporal data analysis, has been encouraged to support the field of 

performance analysis (Glazier, 2010). Specifically, spatiotemporal data may be used to help 

contextualise match event data. For example, in basketball, shot charts are commonly used to 

detail trends in shot locations which may provide teams with a tactical advantage during match 

play or inform the shot types to focus on during practice (Reich et al., 2006). Similarly, continuous 

object tracking provides the location of players at regular intervals throughout an entire match. 

This may be analysed to determine player relationships to teammates, opponents, the ball and the 

field. It is possible to evaluate aspects of performance such as time spent in field areas, team 

spatial control or pressing tactics (G. Andrienko et al., 2017; Gudmundsson & Horton, 2017). In 

team invasion sports, performance cannot be wholly understood without reference to complex 

movements and interactions of players on the field (Gudmundsson & Horton, 2017).  

In team invasion sports, such as football, the movement of all players on the field is complex and 

changes frequently. Although complex, teams are composed of independent degrees of freedom 

which can form synergies to behave as a single functional unit (Araújo & Davids, 2016). 

Coordinative units (i.e. groups of players) can exhibit synergistic attributes such as dimensional 

compression or reciprocal compensation (Glazier, 2017). Here, many degrees of freedom (i.e. 

players) are capable of self-organising into stable behavioural patterns or performing  

compensatory movements to maintain a particular coordinative state (Araújo & Davids, 2016; 

Glazier, 2017). Accordingly, measuring the synergistic attributes of team behaviour gives insight 

into the individual players’ inter and intra team regulatory tendencies (Vilar et al., 2012). 

Spatiotemporal data, derived from tracking equipment, has been analysed to achieve this, 

measuring the physical interaction of players on a field in sports including soccer (Frencken et 
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al., 2011, 2013; O’Brien-Smith et al., 2021; Silva, Duarte, et al., 2014), field hockey (Timmerman 

et al., 2017), basketball (Bourbousson et al., 2010, 2014) and AF (Alexander, Spencer, Mara, et 

al., 2019; Alexander, Spencer, Sweeting, et al., 2019). Within this literature, various metrics have 

been demonstrated, such as dispersion or synchrony, which can measure collective team 

behaviour. Opportunities may exist to leverage such metrics to evaluate team behaviour and 

inform training design.  

Some metrics which have been developed are useful for measuring the dispersion or compression 

of a team. This is useful to determine how players regulate the physical space between one 

another. To achieve this, the relative positioning of players on a field may be measured at each 

relevant time point and then subsequently summarised to give an overall or an average for a time 

period, such as a match or quarter.  Some examples of these metrics include stretch index 

(O’Brien-Smith et al., 2021), surface area (Clemente, Couceiro, Martins, Mendes, et al., 2013) or 

density (Spencer et al., 2017). Stretch index was calculated as the average distance of each player 

to their team’s geometric centre (O’Brien-Smith et al., 2021). Similarly, surface area was 

calculated as the area within the boundary created by the outermost players and has been closely 

correlated with stretch index (Clemente, Couceiro, Martins, & Martins, 2013). Density was 

calculated using a kernel density estimation algorithm to determine the spread of players 

throughout the field (Spencer et al., 2017).Additionally, effective area involves calculating the 

area that a team covers which is not intercepted by an opponent (Clemente, Couceiro, Martins, & 

Martins, 2013). Finally, the dominant regions for each player on the field refer to the areas which 

a player can reach before any other (Taki et al., 1996). This is useful for determining the space on 

the field which is “owned” or controlled by a team. Sub-dividing the playing field according to 

dominant regions and subsequently summing their areas is an alternate measure for the spatial 

dispersion or compression of a team (Fonseca et al., 2013; Gudmundsson & Horton, 2017). These 

metrics each measure different aspects of team dispersion or compression and may be flexibly 

applied to determine tactical trends. However, team coordination may be influenced by other 

contextual factors within match play.  
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To form coordinative behaviour, players regulate their movement according to the positioning of 

one another (Araújo & Davids, 2016). However, the structure and organisation of a team is also 

dependent upon various match factors. For example, team behaviour variables are influenced by 

the phase (e.g. attack or defence) of play (Alexander, Spencer, Mara, et al., 2019; Alexander, 

Spencer, Sweeting, et al., 2019; Frencken et al., 2011; Sheehan et al., 2021), first half vs second 

half (Clemente, Couceiro, Martins, Mendes, et al., 2013), current score (Clemente et al., 2014), 

field area (Alexander, Spencer, Sweeting, et al., 2019) and numerical imbalances (Alexander et 

al., 2021). Accordingly, external constraints may shape the coordinative structures of players on 

the field, influencing the inter-player interactions. Through the lens of the CLA, a practitioner 

may seek to leverage external task constraints by manipulating them to guide their players towards 

more optimal organisational structures (Renshaw & Chow, 2019). For example, team behaviour 

has been influenced by skill level (O’Brien-Smith et al., 2021; Silva, Duarte, et al., 2014; Silva, 

Travassos, et al., 2014), playing number (Aguiar et al., 2015; Silva, Travassos, et al., 2014; Silva, 

Vilar, et al., 2016; Timmerman et al., 2017), field dimensions (Frencken et al., 2013; Silva, 

Duarte, et al., 2014), area per player (Silva, Vilar, et al., 2016; Timmerman et al., 2017) and the 

number of targets (Travassos et al., 2014). Furthermore, improved spatiotemporal synergies of 

team mates have been developed through practice (Silva, Chung, et al., 2016). This evidence 

suggests that the CLA is an appropriate framework to analyse and facilitate collective team 

behaviour. 

Given the prevalence of player tracking technology in sport, spatiotemporal datasets are now large 

and rich in detail (Rein & Memmert, 2016). This has led to the development of models which 

estimate different parameters in performance. For example, motion models are built using 

information pertaining to field location, current velocity and orientation of each player on the 

field to evaluate the spatial ownership of players and teams at any given moment during matches 

(Fernandez & Bornn, 2018; Gudmundsson & Wolle, 2014; Spencer, Hawkey, et al., 2019). This 

has tactical value by revealing which teams or players owned larger or higher valued territory 

during key moments during a match. Additionally, such datasets may be combined with manually 
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annotated match event data to give detailed contextual information to player actions. This has led 

to the development of models which assign a value to player or team actions. For example, in 

soccer, models have been developed which automatically evaluate passing performance (Horton 

et al., 2015), estimate moments of potential scoring opportunities (Link et al., 2016) or determine 

the likelihood of shot success (Lucey et al., 2014). Further, risk-reward profiling has been 

achieved by evaluating the difficulty of passes in reference to the potential benefit based upon the 

field location and scoring opportunity (Power et al., 2017). In AF, to evaluate decision making, 

similar risk and reward models have been developed (Spencer, Jackson, et al., 2019) and passing 

has been evaluated against all potential options to determine if the most optimal decision was 

made (Spencer et al., 2018). Together, this work demonstrates how novel analytical models have 

been advantageous for providing objective evaluations of player and team performance. However, 

the development of new metrics to evaluate player behaviour has not been applied to support 

training design. A specific area of application in analysing spatiotemporal data may be to improve 

the measure of pressure. 

Given the advancement of player tracking in sport, there are opportunities to utilise the 

spatiotemporal data derived from such technologies to develop new methods of pressure 

measurement. Synchronising spatiotemporal data with match event logs means it is possible to 

determine the location of players during key events, such as shots or passes. Pressure has 

previously been quantified in this way by calculating the distance of players to the ball (Taki et 

al., 1996). This method had been critiqued due to the exclusion of player direction in the model 

(Gudmundsson & Horton, 2017). Other spatiotemporally derived pressure metrics have used 

distance, orientation and angle of goal to build models which may quantify pressure constraining 

the player with the ball (G. Andrienko et al., 2017; Link et al., 2016). Each of these models are 

advantageous for determining a numerical measure of pressure which can be analysed 

continuously. This may improve the measure beyond manual notation methods which use 

categorised data. Additionally, sampling of the data can occur automatically and objectively, 

relieving the burden on human resources and improving the reliability of the measure. Thus, the 
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integration of spatiotemporal data has multiple applications to enhance the implementation of the 

CLA in sport.  

2.4.3.3 Physical output data 

In high performance sport the measurement of physical output is widely accepted to improve 

physical capacities such as aerobic conditioning and minimise the risk of injury associated with 

over-training (Buchheit & Simpson, 2017; Burgess, 2017). Although the relationship between 

output and injury is debated (Carey et al., 2018) it remains an important facet to high performance 

sport programs. Furthermore, measures of physical output may be used to infer levels of fatigue 

which may constrain coordination tendencies (Davids et al., 2000; Glazier, 2017; Rodacki et al., 

2001). Thus, it’s measurement is also valuable to performance analysts as contextual information 

for player evaluation (Glazier, 2017). Physical output monitoring is achieved through a variety of 

objective and subjective measures such as rating of perceived exhaustion, heart rate monitoring 

and distances run (Borresen & Lambert, 2008). A common technique in research and applied 

sport science is the implementation of player tracking devices. Player tracking devices have been 

used extensively to measure the external work demands of players during match play (Aughey, 

2010; Clarke et al., 2018; A. Gray & Jenkins, 2010; Mooney et al., 2011; C. Sullivan et al., 2014). 

This may inform the design of training environments (Chandler et al., 2014), inform long term 

periodisation (Haff, 2010) or determine worst case scenario workloads (Fereday et al., 2020). 

Physical player output may also be relevant to movement coordination as compensatory actions 

have also been observed in fatigued athletes seeking to maintain a performance outcome (Bonnard 

et al., 1994; Dorel et al., 2009). Accordingly, physical output measures may be used to 

contextualise individual and team performance evaluation (Glazier, 2017).  

Many facets of external workload or work rate can be determined using player tracking devices. 

For example, absolute measures such as total distance or max velocity (A. Gray & Jenkins, 2010), 

or time relative measures such as metres per minute or high intensity metres per minute (Aughey, 

2010; Mooney et al., 2011; M. O. Sullivan et al., 2021) may be used. Typically, velocity is 

discretised into “bands” or “zones” which can represent paces for walking, jogging, running or 
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sprinting (A. Gray & Jenkins, 2010). Accordingly, time or distance accumulated by players in 

each zone may be reported and can be used to evaluate work rate. Alternatively, other measures 

such as frequency or distances of accelerations can be derived from player tracking technology 

(Sheehan, Tribolet, Spurrs, et al., 2020). Although the measures for external load are numerous, 

methods to reduce the complexity of key variables have been demonstrated to relieve the burden 

on sport practitioners (Oliva-Lozano et al., 2021; Sheehan, Tribolet, Spurrs, et al., 2020). 

Furthermore, the implementation of GPS or LPS player tracking devices are useful to measure 

player output during small sided training games (Bonney et al., 2020; Fleay et al., 2018; Nunes et 

al., 2021; Timmerman et al., 2017, 2019). Indeed small sided games are an effective training 

modality to improve aerobic capacity and skill development simultaneously (Gabbett, 2006; 

Impellizzeri et al., 2006). Thus, measuring player output allows practitioners to consider the 

physical constraints alongside the skilled behaviours of players to inform training design. 

However, physical output is typically determined on an individual level, without reference to 

constraints which may shape player movements. To build upon this further, physical and skilled 

behaviours may also be considered within time.  

2.4.3.4 Time series 

A common technique in sport performance evaluation is the use of aggregate measures. Aggregate 

measures may summarise individual or team actions across seasons (Woods et al., 2018) or 

matches (Woods, Robertson, et al., 2017). Within matches, performance has also be aggregated 

into periods, such as halves or quarters (Cust, Sweeting, Ball, Anderson, et al., 2019), the phase 

of play (Rennie et al., 2020) or on field stints (Corbett et al., 2017). For example, total match 

distance may be used to evaluate an individual’s physical load or the volume of skill involvements 

to measure skilled performance. While the use of such metrics has given valuable insight into 

describing player performance or developing key performance indicators they are insensitive to 

the fluctuations in behaviour which may have occurred over time. Analysing sport performance 

as a function of time provides contextual information which may reveal deeper insight into how 

or why events have occurred (Glazier, 2017). In AF, players reduce their physical and technical 
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output following periods of peak intensity during match play (Black et al., 2016) or during the 

second half of match play (Black, Gabbett, Naughton, et al., 2019). In soccer, first half activity 

levels are inversely related to second half activity levels (Sparks et al., 2016). Rugby place kick 

success is also reduced in the 10 minutes prior to half time (Pocock et al., 2018). Accordingly, 

time sensitive analytical techniques are appropriate when evaluating sport performance.  

Time series analyses can be applied to sequentially obtained data to measure it’s change (Cryer 

& Chan, 2008; Fu, 2011). To this end, player output is typically reported as sub-sets of match 

duration. For example, player output has been analysed using predetermined periods such as five 

minute blocks in soccer (Carling & Dupont, 2011) or eight minute blocks in AF  (Black, Gabbett, 

Naughton, et al., 2019). However, discrete pre-determined time periods underestimate peak 

intensity, by up to 25% compared to rolling windows, and should therefore be interpreted with 

caution (Varley et al., 2012). Subsequently, rolling time windows have been applied across a 

range of durations, between one and ten minutes, to measure physical and skilled performance in 

Rugby (Delaney et al., 2015, 2016) and AF (Black et al., 2016; Delaney et al., 2017). To build 

upon this work, the analysis of time-series data in a continuous manner may be advantageous.  

In sport, time series analyses may benefit from continuous analytical techniques. Sport research 

has primarily analysed subsets of a sequence according to pre-determined periods or rolling 

windows of varying durations (Black et al., 2016; Delaney et al., 2017). Although such analytical 

techniques have been useful, any measures which exist outside of the time windows are excluded 

from analysis. To further inform the insight which time series analysis can provide, continuous 

measures may be advantageous as they consider the entire data sequence rather than subsets of it. 

However, continuous time-series analyses have rarely been applied in sport. This may be due to 

the more complex nature of continuous analytical techniques or perceptions of difficulties in 

communicating findings to key stakeholders (Browne et al., 2021). One example from AF applied 

a continuous time series segmentation technique to potentially identify more optimal interchange 

moments during match play (Corbett et al., 2019). This approach was beneficial for dividing 

player’s velocity profiles into unequal segments without relying on pre-determined durations. 
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Specifically, change point detection involved identifying time points in a time series where 

statistical characteristics meaningfully change (Killick & Eckley, 2014). Users may specify 

parameters of the algorithm including the number of change points to search for, the statistical 

property to evaluate, and may apply penalties to increase or decrease the sensitivity of change 

point detection (Aminikhanghahi & Cook, 2017; Killick & Eckley, 2014). Change point detection 

has been applied widely in other fields such as medical monitoring, climate change or speech 

recognition (Aminikhanghahi & Cook, 2017). Previously, such analyses have been limited to 

univariate approaches however, recent advances to change point detection permit multivariate 

analysis (Bardwell et al., 2019). This approach combines multiple sequences into a single time 

series with multiple observations. Thus it allows the integration of simultaneously occurring time 

series to determine their interaction as a function of time. Such a technique is advantageous in 

sport where many observations of physical, tactical and skill data occur (Stein et al., 2017). 

Accordingly, multivariate techniques would allow the integration of different data types to 

evaluate a single match or activity (Browne et al., 2021; Glazier, 2017). Continuous time series 

analytical techniques, such as change point detection, remain unexplored to evaluate training. 

However, continuous time series analyses are supported within the framework of the CLA. 

To further support the continuous analysis of temporal data, a key tenet of the CLA is that 

constraints emerge and decay along multiple time scales of performance, learning and 

development (Newell et al., 2001). This refers to multi-levelled dynamical systems which evolve 

and interact across varying time-scales such as, years, weeks, hours or seconds. More simply 

constraint time-scales have been termed structural (slow changing) or functional (fast changing) 

(Balagué et al., 2019). Examples of slow changing constraints include personality, 

anthropological measurements or gravity which contrast with fast changing constraints such as 

fatigue, player positioning or weather (Balagué et al., 2019). Changes in constraints may not be 

isolated to a single time scale but distributed across many (Wijnants et al., 2012). Analysis of 

constraints as a function of time is pertinent to appropriately contextualising performance. 

Accordingly, the framework of the CLA encourages the use of continuous time-series analytical 
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techniques. Moreover, the utilisation of more sophisticated multivariate analytical techniques may 

further the understanding of constraints to inform training design.  

2.4.3.5 Analytical techniques 

To enhance the implementation of the CLA in sport it may be beneficial to improve the analysis 

of various sport data types. This may include the application of multivariate analytical techniques, 

such as machine learning or complex statistical techniques. Machine learning is the process of 

discovering and identifying novel trends or patterns within datasets (Horvat & Job, 2020; Ofoghi 

et al., 2013). Machine learning algorithms can be grouped into supervised, unsupervised or 

reinforcement learning categories, within which, a number of analytical techniques fall, including 

regression, rule association, classification and decision trees (Mohammed et al., 2016). Such 

techniques can search through large datasets to determine non-linear patterns or build models for 

outcome predictions. Specifically, machine learning algorithms are capable of identifying 

patterns, determining variable interaction and building models to predict outcomes based upon 

associated relationships learned from historical, or exemplar, data (Mohammed et al., 2016; 

Zhang, 2020).  

In supervised machine learning, an algorithm is trained with a dataset of predictor variables 

labelled with associated outcomes (Mohammed et al., 2016; Zhang, 2020). Given this, the 

algorithm can learn trends and patterns within the data which are related to outcomes specified 

by the user. These learned relationships are often then applied to previously unseen sets of data 

to make predictions. Examples of supervised techniques include regression models or decision 

trees (Fahrmeir et al., 2013; Loh, 2011). In contrast, unsupervised approaches are not trained with 

a dataset labelled with outcomes. Accordingly, the algorithm is tasked with discovering important 

patterns and features which exist within the data without prior knowledge of correct outcomes. 

Examples of unsupervised techniques include clustering or rule association (B. Liu et al., 1998; 

Solanki & Patel, 2015). Many problems in sport are treated as class prediction, such as win/loss 

or goal/miss, or numerical prediction, such as forecasting score lines (Horvat & Job, 2020). Thus, 

supervised and unsupervised techniques are often applied in sport to suit such classification and 
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regression tasks (Horvat & Job, 2020). Furthermore, the utility of (un)supervised techniques, 

including rule association or decision trees, to visualise and communicate constraint interaction 

in sport has been demonstrated (Browne et al., 2022). Although supervised and unsupervised 

classes represent most machine learning techniques, some approaches may be classed as semi-

supervised if they fall between criteria. Alternatively, a final branch of machine learning is 

reinforcement learning, where models are trained through a trial and error process, however, this 

has seen limited applications in sport (Horvat & Job, 2020). 

An advantage of machine learning is the ability to measure the non-linear interaction between 

multiple variables. Within motor learning and skill acquisition, the dominant type of research 

design has been limited to laboratory tasks. In such tasks experimental rigour is maintained at the 

loss of constraints which reflect the sport performance setting (Wulf & Shea, 2002). Typically, 

only one or two constraints are measured and manipulated. To develop a deeper, and more 

accurate, understanding of sport performance there has been a call for more scientific studies to 

be conducted within practical real-world environments (Newcombe et al., 2019). Technology and 

analytics may be harnessed to help collect and analyse data in these messy and noisy environments 

(Newcombe et al., 2019). Importantly, according to the CLA, constraints do not act in isolation 

but are interactive in nature, where the presence of one will likely influence another, and their 

confluence results in non-linear movement outcomes (Newell, 1986). Considering constraint 

interaction is pertinent to understanding sport performance and facilitating skill development 

through the design of training environments. As the feasibility of constraint collection increases 

in sport, with the advancement of technology and resources, including improved computer 

processing power, there is a need for advanced analytical techniques which can address the 

interaction between constraints, especially considering the exponential number of relationships 

which may exist (Robertson et al., 2019a). Data mining and machine learning algorithms are 

capable of measuring such interactions and can leverage upon advanced computing power to 

process increased data resolution (Browne et al., 2021).  
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The application of machine learning has been explored in AF, specifically using association rules 

and decision trees, to measure the interaction of constraints which shape kicking outcomes 

(Browne, Sweeting, et al., 2019; Browne et al., 2022; Robertson et al., 2019a). This type of 

analysis was able to determine which constraints commonly occur together and which sets of 

constraints are associated with effective or ineffective performance outcomes. A rule association 

analysis was also used to build a classification model where kick outcomes could be predicted, 

with 70% accuracy, according to the set of constraints present (Robertson et al., 2019a). This 

research progressed to explore constraint interaction across sequences of passes to compare the 

skill involvements in training activities with competition (Browne et al., 2020). In Rugby, 

constraint interaction has been measured using binomial logistic regression models to predict 

place kick outcome (Pocock et al., 2018). Of the five independent variables included in the model, 

it was shown that place kick success was most influenced by distance and angle to the goal 

(Pocock et al., 2018). Accordingly, this analytical method was additionally useful for determining 

which constraints were most valuable for explaining kick outcome. Thus, machine learning 

techniques permit a deeper understanding of the CLA and there is scope to build upon previous 

work to provide practical tools which may inform training design. One specific technique which 

may be applied is rule association. 

One commonly implemented unsupervised learning technique is Rule Association. Rule 

association, or rule mining, are algorithms that are able to discover interesting relationships 

between variables (Agrawal et al., 1993; Agrawal & Srikant, 1994). Rule association is easily 

interpretable as it closely resembles the human process of heuristics. Rule association can be 

applied to transactional datasets to discover the items which most frequently occur together. A 

simple example of this algorithm can be seen in supermarket basket analysis (Agrawal et al., 

1993). Retail companies have harnessed the insights gained from rule association to determine 

trends in consumer purchases, such as which items are typically purchased together (Solanki & 

Patel, 2015). An example statement from a supermarket basket analysis may be that 90% of 

customers who bought milk and eggs, also bought bread (Agrawal et al., 1993; Agrawal & 
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Srikant, 1994). Rule mining has also seen applications in other domains such as medicine or stock 

analysis (Altaf et al., 2017; Solanki & Patel, 2015). Two important measures in rule association 

are support and confidence. Support is the frequency of a given rule within a dataset while 

confidence is the likelihood that the rule is true. The most commonly implemented rule 

association algorithm is the Apriori algorithm (Agrawal et al., 1993). When executing the Apriori 

algorithm, the user can specify limits to parameters, such as support and confidence, to constrain 

the amount of rules which are produced. This filters the rules to find the most important ones for 

the user. Rule association can also be augmented through the integration of a classification 

approach (Nguyen et al., 2012, 2012). This approach can train a model using an example data set 

to predict class outcomes given the set of mined rules. This model can then be applied to new data 

to make classification predictions. 

In AF, rule association has been implemented to evaluate player kicking during match play 

(Browne, Sweeting, et al., 2019; Browne et al., 2020; Robertson et al., 2019a). The Apriori 

algorithm was used to determine the interaction between up to six constraints which may 

influence kicking (Browne, Sweeting, et al., 2019; Robertson et al., 2019a). This analysis 

provided a way to measure kicking during match play to inform how representative learning 

environments could be designed during practice. This analysis was expanded to include 

temporally sequenced events, such as passing chains in AF, and was enhanced with an integration 

of a classification based on association approach to model predictions (Browne et al., 2020). This 

approach was useful to draw comparisons between small-sided games, match simulations and 

competition play. Rule association has also been applied in netball to discover frequently 

recurring passing trends to provide deeper match insight for performance analysts and coaches 

(Browne, Morgan, et al., 2019). There is an opportunity to build upon this work to evaluate player 

behaviour during training as a tool to support practitioners in their training design. 

Regression analysis is another commonly implemented supervised approach to estimate the 

relationship between a single outcome variable and numerous explanatory variables. Specifically, 

the dependent variable of interest is modelled as a response to a set of independent covariates 



62 

 

(Fahrmeir et al., 2013; Welc & Esquerdo, 2018). Accordingly, regression models may be built to 

predict outcomes. Different types of regression models exist and are predominantly classified 

according to the explanatory data type such as, continuous, ordinal, or binary (Welc & Esquerdo, 

2018). Regression models can range from simple, when only one explanatory variable is used, to 

multiple, where numerous explanatory variables are related to the outcome. Regression analysis 

has multiple uses including prediction, parameter estimation and model specification (Gunst & 

Mason, 2019). Furthermore, regression models are capable of determining how covariates interact 

to influence an outcomes prediction (Fahrmeir et al., 2013).  

Linear regression models are advantageous given their flexibility to handle multiple data types 

and thus, have been widely applied in fields such as economics (Harvey et al., 1986), 

epidemiology (Suárez et al., 2017) and real estate (Ghosalkar & Dhage, 2018). However, linear 

regression models assume linear relationships (Gunst & Mason, 2019) and thus, their application 

to non-linear problems, such as the nature of sport, is limited. Despite this, linear regression 

models have seen useful applications in sport. For example, regression models have been used to 

predict performance outcome in Rugby League (Woods, Sinclair, et al., 2017), the model the age 

effects on skill and physical adaptations in soccer (Fransen et al., 2017), or the predict place kick 

outcome in the Rugby Union World Cup. Indeed, the last example demonstrates a modelling 

approach within a CLA framework. Model prediction was explained with constraints such as kick 

distance, angle to goal, time of game or previous kick success (Pocock et al., 2018). However, 

given the theoretical insights of the CLA (Newell, 1986), a non-linear analytical technique 

approach would be more useful to determine the interaction effects between constraints. Such 

approaches may provide more accurate models giving practitioners a deeper insight into athlete 

behaviour. 

Decision trees are a popular non-linear machine learning technique which involve the prediction 

of a single outcome variable using several predictor variables (De’ath & Fabricius, 2000). 

Decision trees can be used for classification purposes, to make predictions on categorical data, or 

using regression, to predict continuous data (Loh, 2011). Classification and regression trees work 
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by recursively partitioning a dataset, one variable at a time, into homogenous and mutually 

exclusive groups. Each partition splits the dataset into two groups, which are in turn partitioned 

uniquely into two groups again (Gupta et al., 2017). The recursive partitioning technique 

considers interaction between features of the dataset (Morgan et al., 2013). Accordingly, branches 

are grown, where each branch represents a rule defined by the splits in variable values. Branches 

are continually grown until the predictive power of further splits no longer improves the model 

(Morgan et al., 2013). This technique is useful given its flexibility to incorporate various data 

types including categorical, numerical and missing data and is advantageous for producing an 

easily interpretable visual output for the end user (De’ath & Fabricius, 2000). However, caution 

should be exercised as decision trees are prone to over-fitting which may limit their predictive 

accuracy when applied to new data (Morgan et al., 2013) The application of decision trees, similar 

to other machine learning techniques, commonly involve training a model (building or growing 

the branches) using a training dataset and subsequently applying this model to predict outcomes 

on an unseen dataset.  

Decision trees have been applied in a range of sport settings. For example, random forest models 

have been grown for the purpose of automatic movement classification using wearable sensors in 

AF (Cust et al., 2021) or computer vision in tennis (Giles et al., 2020). Random forest models 

have also been applied to sport injury diagnosis (Zelič et al., 1997) and prediction (Carey et al., 

2018) however, with limited success. Regression trees have been applied to individual AF match 

play statistics to predict player ratings (McIntosh et al., 2019), predict shot outcome (Browne et 

al., 2022) or to predict the outcomes in 1v1 situations, based on spatiotemporal characteristics of 

the players, in field hockey (Morgan et al., 2013). Finally, conditional inference trees have seen 

limited success in predicting skilled involvements according to on-field stint duration and 

physical running parameters (Corbett et al., 2017). Accordingly, decision trees may be a viable 

tool for sport analyses however their application in AF practice environments has not been 

demonstrated.  
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2.5 Australian Football  

AF is a complex invasion style sport (Pill, 2014). To compete at the elite level players are required 

to have a high capacity for physical output while maintaining effective skill involvements 

(Johnston et al., 2018). The free-flowing nature of the game, unlike other codes such as rugby or 

American football, the lack of distinct phases increases the difficulty of analysis (O’Shaughnessy, 

2006). Research within AF is broad with studies ranging from elite men and women competitions, 

sub-elite and junior players. Predominantly, research in AF has focussed on developing a deeper 

understanding of match play while literature which has examined AF practice has remained 

limited.  

A number of descriptive studies have examined skilled and/or physical behaviour during match 

play. In AF, performance analysis techniques have been applied to identify trends or key 

performance indicators during matches. Such studies have highlighted the evolution of gameplay 

over several seasons (Lane et al., 2020; Woods, Robertson, et al., 2017) or aggregated measures 

over entire matches (Black, Gabbett, Johnston, et al., 2019), quarters (Cust, Sweeting, Ball, 

Anderson, et al., 2019) or phases of play (Rennie et al., 2018, 2020). This has been further broken 

down into positional differences (Clarke et al., 2018; Dawson et al., 2004b). Further comparisons 

have been drawn across competition tiers including elite, sub-elite and junior (Browne, Sweeting, 

et al., 2019; McIntosh et al., 2021; Woods, Jarvis, et al., 2019). The descriptive profiling of 

competition demands has been useful to provide benchmarks or standards which can inform 

training requirements.  

To further profile the behaviours of players and teams during competition, spatiotemporal data 

has been used. Spatiotemporal data derived from player tracking devices has been explored 

extensively to determine team interaction tendencies and tactical trends within the context of 

influential match factors such as phase of play (Alexander, Spencer, Mara, et al., 2019; Spencer 

et al., 2017) or field position (Alexander et al., 2021; Alexander, Spencer, Sweeting, et al., 2019). 

Additionally, methods have been demonstrated which can model player decision making and 

evaluate choices according to risk and reward ratios (Spencer, Jackson, et al., 2019) or alternative 
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options (Spencer et al., 2018). To improve the practical application of complex data, methods to 

simplify many variables to explain key components in tactical and physical performance have 

been demonstrated (Sheehan et al., 2021). 

Deeper insight into AF match play has been revealed through novel applications of analytical 

techniques. This has been used to enhance performance analysts in their development of key 

performance indicators. For example, a change point analysis was used to identify potentially 

more optimal interchange locations by identifying time points in player velocity profiles where a 

meaningful change occurred (Corbett et al., 2019). Rule association, a branch of machine 

learning, has been applied to identify the most commonly occurring sets of constraints on kicking 

in AF matches (Browne, Sweeting, et al., 2019; Browne et al., 2020; Robertson et al., 2019a). 

Such insights can be used to inform the design of training environments which mimic competition. 

Principle component analysis has been applied to reduce the dimensions of variables which are 

used to describe aspects of player or team performance including skill (Sheehan, Tribolet, 

Watsford, et al., 2020a), physical (Sheehan, Tribolet, Spurrs, et al., 2020), or team interaction 

(Sheehan et al., 2021, 2022; Sheehan, Tribolet, Watsford, et al., 2020b). These sophisticated 

analytical techniques have shown valuable insight into understanding match play however their 

application into AF training is yet to be explored.  

A range of AF studies have drawn comparisons between practice environments and competition 

environments to determine training specificity. It has been shown that running demands and 

technical action frequencies differ between the two playing formats (Dawson et al., 2004a; Ireland 

et al., 2019). Differences also exist in constraints on technical involvements, such as pressure or 

possession time (Ireland et al., 2019) and cooperative passing networks (Tribolet et al., 2022). 

Although insightful, the reported discrepancies may not translate to other teams or competition 

tiers, and can not be applied to other sports. Accordingly, tools have been developed, and 

exemplified in AF, to identify where and to how much training differs from competition (Browne 

et al., 2020; Corbett et al., 2018; Woods, McKeown, et al., 2019). Multiple techniques have been 

demonstrated including magnitude based analysis (Woods, McKeown, et al., 2019), specificity 
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index (Corbett et al., 2018; Woods, McKeown, et al., 2019), K-means clustering (Corbett et al., 

2018), or a classification based on association approach (Browne et al., 2020). The classification 

based on association was advantageous for its consideration of constraint interaction and temporal 

sequencing of events (Browne et al., 2020). Although such tools are useful for measuring the 

differences between training activities and matches, they have limited capability to inform which 

constraints should then be manipulated by practitioners. Thus, tools which may evaluate 

constraint manipulations in AF may guide the design of training activities which promote player 

behaviour more representative of competition.  

Research which has examined AF practice has been less extensive than match play. Due to this, 

there is limited insight for AF coaches in the construction of appropriate learning environments. 

Indeed, the CLA has been specifically proposed as a supportive framework to analyse AF and 

inform practice activities (Pill, 2014). In agreement with CLA principles it was shown that open 

AF drills, which are more dynamic representations of competition, were more cognitively and 

physically demanding than closed drill types (Farrow et al., 2008). Despite the important 

influence of the CLA, limited studies have examined the influence of constraints on skilled AF 

player behaviour. In some notable exemptions, creating an attacking outnumber can increase 

kicking efficiency and decrease the proportion of kicks to covered players (Bonney et al., 2020). 

Alternatively, increasing the field size during a small side game increased the physical output and 

reduced the occurrence of technical actions such as tackles and turnovers (Fleay et al., 2018). In 

an examination of cooperative networks, it was shown that during small side games, the frequency 

of shots on goal is positively correlated with team connectedness (Tribolet et al., 2021). 

Accordingly, designing practice tasks which encourage shots on goal can promote team 

interaction tendencies. Although this work is insightful, the generalisability to other participant 

groups, such as other competition tiers or teams, is limited. More AF research which can 

exemplify practical tools for sport practitioners and coaches would be useful.  
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2.6 Summary 

Practice is essential for the development of sport skills (Ericsson & Smith, 1991; Howe et al., 

1998). Although this is evident in the literature, there is still much that is unknown about the best 

methods to structure practice tasks which optimise skill development. To appropriately guide 

practice design decisions, the CLA, a contemporary conceptualisation of motor control, is suitable 

to frame this problem (Newell, 1986). The CLA approach is grounded in ecological dynamics 

which conceptualises the performer and the environment as a complex and dynamical system, 

with many interacting components (Davids et al., 1994; Handford et al., 1997). Constraints form 

boundaries of the performer-environment system and shape the coordinative structures of 

emergent actions. Accordingly, this framework holds important implications for practitioners, 

positioning them as learning designers who construct appropriate practice environments through 

the manipulation of constraints (Chow et al., 2011; Woods, McKeown, Rothwell, et al., 2020). A 

key tenet to the CLA is that constraints do not act in isolation but interact, non-linearly, with one 

another to influence behaviour. Accordingly, constraint interaction is a prominent consideration 

in the application of the CLA for designing training environments in sport. Within sport science 

and performance analysis, there is scope to improve the collection and analysis of constraints to 

more effectively evaluate player behaviour in a manner which supports coaches and sport 

practitioners (Browne et al., 2021). This process may involve the measurement of additional 

constraints, improving the measure of existing constraints or enhancing the analysis of constraint 

interaction. Specifically, this application within practice environments remains limited. Many 

forms of data are routinely collected in the sport landscape which are useful for evaluating player 

behaviour including event data, spatiotemporal data, or physical load data (Rein & Memmert, 

2016). Sophisticated analytical techniques, such as machine learning algorithms, may be applied 

to integrate such data sources and measure constraint interaction. Harnessing technology and 

analysis may be useful to provide tools which can assist practitioners inform training design. 
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CHAPTER THREE – STUDY I 

Chapter Overview 

Chapter Three is the first of five studies contained in this thesis. Physical pressure is an important 

constraint which may shape many behaviours in team sports. Thus, this thesis first sought to 

improve the measurement of the constraint of pressure to understand it’s influence on skilled 

athlete behaviour. Specifically, this study explores how spatiotemporal analysis of player tracking 

data may be used to determine a continuous measurement for the constraint of pressure.  

The content of this chapter is an accepted manuscript of an article published by Taylor & Francis 

in Journal of Sports Sciences on 3rd July 2021, available at: 

http://www.tandfonline.com/10.1080/02640414.2021.1886416  
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Application of a continuous pressure metric for Australian football 

3.1 Abstract 

Pressure is an important constraint on sports performance and is typically measured through 

manual notational analysis. A continuous representation of pressure, along with semi-automated 

measurement, would serve to improve the efficiency of practice design and analysis, as well as 

provide additional context to player competition performance. Using spatiotemporal data 

collected from wearable tracking devices, the present study applied Kernel Density Estimation to 

estimate the density of players, relative to the ball carrier, at point of skill execution during elite 

Australian Football training. Two environmental constraints were measured (area per player and 

number of players) to determine the relationship between these training design manipulations and 

density. Density was also compared with existing notational analysis measurements of pressure. 

Results indicated that a higher density on skills was associated with successful skill executions. 

The opposite relationship was found between notational analysis pressure measurement and skill 

effectiveness. A strong inverse relationship was found between environmental constraint 

manipulation and density, whereby increasing field size and playing number decreased the density 

on skill involvements. The findings offer insight into the continuous measurement of pressure and 

encourage practitioners to utilise training design manipulations to influence density as a constraint 

on skills.  
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3.2 Introduction 

The constraints-led approach (CLA) is a theoretical framework that situates movement as an 

adaptive property of the performer-environment system (Davids et al., 2008). Constraints act 

internally and externally to an individual, interacting and changing over time to shape movement 

and behaviour (Newell, 1986). It is therefore critical, that constraints be measured with sufficient 

detail and accuracy to gain insight into how and why particular movements and behaviours emerge 

(Glazier, 2017; McGarry, 2009). For sport practitioners, the measurement of constraints that 

shape the behaviour of athletes would likely provide important contextual information for 

evaluating player behaviour and designing learning environments intended to develop skill 

(Davids, 2012; Woods, McKeown, Rothwell, et al., 2020). To this end, improving the 

implementation of the CLA in sport can be achieved through: i) the measurement and 

consideration of additional constraints, ii) the application of enhanced analytical techniques or, 

as in the current study, iii) the improved measurement of an existing constraint.  

In team sports, a commonly measured constraint is pressure, which is typically defined as the 

presence of opposition players in a nearby location at the time of skill execution (G. Andrienko 

et al., 2017). Given this definition, it is often used interchangeably with density (Link et al., 2016). 

A common method to measure pressure is to subjectively assign levels (e.g. low, medium and 

high) via notational analysis, according to the distance between an attacker and the nearest 

defender during skill execution. This has been applied in basketball (Csataljay et al., 2013) and 

field hockey (Timmerman et al., 2017, 2019). During futsal shots on goal, the distance of 

defending players to ball trajectory has also been used as an indicator of pressure (Vilar et al., 

2013). In soccer, other methods have utilised spatiotemporal data derived from Global Positioning 

Systems (GPS), such as distance, velocity, and direction of players, to develop numerical 

measures for pressure (G. Andrienko et al., 2017; Link et al., 2016). The majority of pressure 

metrics have focused on physical pressure, but other construct definitions of pressure have also 

been reported in the literature. These include situations incentivising optimal or maximal 
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performance (Baumeister & Showers, 1986), which can manifest through increases in anxiety or 

emotional responses and thus may negatively impact skill performance (Eysenck, 2013). 

In Australian Football (AF), the quantification of pressure has been represented in multiple ways. 

Types of pressure have been allocated to a skill execution according to the location of defending 

players, for example, side, frontal, chase or physical (Browne, Sweeting, et al., 2019; Ireland et 

al., 2019; Robertson et al., 2019b), along with the number of players within a 3 m boundary to 

the ball carrier (Woods, Jarvis, et al., 2019). Opposition presence around pass receivers has also 

been recorded as a means of capturing indirect pressure on the passer and direct pressure on the 

receiver (Browne, Sweeting, et al., 2019; Ireland et al., 2019; Woods, Jarvis, et al., 2019). Some 

evidence exists to support the validity of pressure being measured in these ways, specifically due 

to the association with unsuccessful kicks (between 14.6% and 38.5% efficiency) during AF 

match play (Browne, Sweeting, et al., 2019).  

As spatiotemporal data pertaining to players is available in elite AF (with the exclusion of 

opposition data) there are opportunities to utilise it to improve the sophistication of existing 

pressure measurements. Thus, a measure of player density was recently developed by applying 

Gaussian mixture modelling to spatiotemporal datasets during match play (Spencer et al., 2017). 

This method captured the interaction of all players on the field simultaneously. The work 

highlighted the changing congestion of players throughout a match, revealing that successful 

possession chains have large changes in density (Spencer et al., 2017). An adaptation of this type 

of analysis may provide a valuable metric to improve upon the current measures of pressure by 

providing a continuous metric. It may also facilitate consideration of the influence of players not 

within the immediate vicinity of the ball carrier.  

The present study seeks to adapt the methodology of Spencer et al. (2017) to use density 

estimation as a proxy for pressure in AF. The first aim was to determine the extent of the 

relationship between pressure and the effectiveness of skill involvements. The second aim was to 

determine the extent to which environmental constraints, as part of training design, influence the 

pressure on skill execution during training drills. A third aim was to compare pressure derived 



81 

 

from density estimation with pressure derived from notational analysis. Establishing these 

relationships may inform how pressure can be utilised in practice design, while providing 

additional context to player competition performance. 

3.3 Methodology 

3.3.1 Participants 

Participants were listed male players from a single professional AF club (n = 43, 24.2 ± 3.5 y, 

186.8 ± 7.7 cm, 84 ± 7.8 kg). All players provided written informed consent and were injury free 

at the time of participation. Ethical approval was obtained from the relevant University Ethics 

Committee.  

3.3.2 Data collection 

Data were collected during the 2020 Australian Football League pre-season. A total of 32 training 

activities were selected for analysis, consisting of eight different drills and 1014 skill 

involvements (72% handballs and 28% kicks). Drills that were selected were characterised as 

small sided games (by the club’s coaching staff) and consisted of two opposing teams with equal 

numbers. Team selection was quasi-randomised by the clubs coaching staff to standardise skill 

level and player experience. The objectives of each drill were nuanced, they generally required 

teams to score by kicking a goal or completing a pass into a zone at one end of the field. Further, 

the drills covered all aspects of AF including ball movement, decision making, offensive and 

defensive actions. Drills ranged from 46.88 m2 per player to 570 m2 per player and the total 

number of players ranged from eight to 20. 

To obtain records of each skill involvement, drills were filmed with a two-dimensional camera 

from either a side-on or behind-the-goals perspective. Cameras were situated in a fixed position 

and vision angle varied depending on location of the drill at the time of performance. To quantify 

skill involvements and the surrounding task constraints, notational analysis software was used 

(Sportscode, version 12.2.10, Hudl). A custom code window was created whereby each skill 

involvement was recorded live, during the session, according to the method (kick or handball) 
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and the outcome (effective or ineffective). Disposal outcome was defined in accordance with 

Champion Data (Melbourne, Pty Ltd), the commercial statistics provider for the Australian 

Football League. A handball or kick less than 40 m was deemed effective if the intended target 

retained possession of the ball. A kick greater than 40 m was deemed effective if kicked to a 50/50 

contest or better for the attacking team. Post training, the Sportscode window was used to attribute 

additional, notational analysis labels to each skill involvement, according to the type of pressure 

present. Pressure was categorised into four levels; None, Frontal, Chase and Physical (Robertson 

et al., 2019b). These levels were also used to determine a binary pressure measurement by 

combining Frontal, Chase and Physical into ‘Present’ and using None as ‘Absent’. Coders 

followed club procedure on “what to look for” when performing notational analysis to ensure 

consistent interpretations. To assess the intra-rater reliability of the skill involvement coding, 

three activities consisting of 145 involvements were coded on two separate occasions with at least 

14 days between. The Kappa statistic (Landis & Koch, 1977) was used to assess intra-rater 

reliability of effectiveness and pressure. Agreement was “almost perfect” for effectiveness (0.93) 

and binary pressure (0.83) and “substantial” for pressure (0.79). All skill involvement data was 

exported, according to their drill, into a custom Microsoft Excel spreadsheet. 

Spatiotemporal data for each player was collected with 10 Hz GPS units (Vector S7, Catapult, 

Catapult Sports Ltd, Melbourne). Devices were placed in a vest in a custom pouch between the 

athlete’s shoulder blades prior to the session beginning. Players wore the same device during each 

session to reduce inter-unit error. During the session, splits were created marking the beginning 

and end of each activity in the manufacturer’s software package (Openfield, version 2.5.0). To 

create a reference point to join skill data with spatiotemporal data, a start label was also coded in 

Sportscode at the start time of each drill. After session completion, raw spatiotemporal data was 

exported from Openfield into Microsoft Excel for each player and for each training activity. To 

differentiate teammate and opposition locations, using the recorded footage, each player’s 

spatiotemporal data was arbitrarily assigned a team label for each training activity.  
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To determine player location for each skill involvement, exported spatiotemporal data and skill 

involvement data were joined according to their timestamp for each training activity. For both 

datasets, timestamps were adjusted relative to the beginning of each activity. Latitude and 

longitude for each player was converted to x and y coordinates, in metres, relative to the ball-

carrier position which was set at 0,0. Using assigned teams, each player location was labelled as 

opposition or teammate, relative to the player performing each skill involvement. Kernel density 

estimation, a method of estimating the probability density function of a dataset via smoothing of 

individual points, was used to estimate the density of players at each skill involvement (Simonoff, 

1996). The kernel function and bandwidth dictate the shape and smoothness of the resultant 

probability density function, respectively. Density was estimated using Gaussian kernels and the 

bandwidth was arbitrarily set to 0.00006 for all samples. A visual example of a sample is 

presented in Figure 3.1. Density was calculated across two groups; all players and opposition 

players only.  

 

Figure 3.1 Example representation of a single skill involvement. Points represent player 

positioning relative to the ball-carrier which is at 0,0. Contours and colour 

represent density (z score), with positive values indicating higher density. 
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To measure constraint manipulation with respect to training design, two environmental 

constraints were recorded for each training activity. The constraints selected were area per player 

and total number of players, which have shown relationships with player density (Silva et al., 

2015; Timmerman et al., 2017). Number of players was defined as the total number of players 

participating in the drill. The area per player was defined as the total playing area of the field, as 

designated by markers and manually measured before each activity, divided by the number of 

players. All constraint manipulations for each training activity were recorded and databased in a 

custom Microsoft Excel spreadsheet. 

3.3.3 Statistical Analysis 

All statistical analyses were performed in R (R Core Team, 2019) using base R functions. Density 

estimation scores were normalised to the mean, as z scores, for both groups: all players and 

opposition players. To address the first aim, logistic regression models were constructed to 

determine the relationship between density and skill effectiveness (effective or ineffective). 

Visual inspection of the distribution of density revealed no substantial differences when 

considered as only defending players or all players from both teams combined. Consequentially, 

the remainder of the analysis considered all players from both teams. Three models were 

constructed; considering either i) only handballs, ii) only kicks or iii) all skill involvements. To 

address the second aim, a multiple linear regression model was constructed to determine the 

relationship between the two manipulated environmental constraints (area per player and number 

of players) and density. To address the final aim, two logistic regression models were constructed 

to determine the relationship between i) notational analysis pressure according to location and ii) 

notational analysis pressure as binary (present or absent) and skill effectiveness (effective or 

ineffective).  

3.4 Results 

For the entire dataset, 83.2% of involvements were effective. Density scores for each involvement 

were a normalised value, where mean = 0 and SD = 1 and where a higher value represents more 
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density on the skill involvement and vice versa. A visualisation of the distribution of density for 

the entire sample is provided in Figure 3.2. Logistic regression analysis revealed that for handballs 

only (B = -0.04, z = -0.334) and for kicks only (B = 0.347, z = 0.976), there was a very weak 

positive relationship between density and effectiveness. Across all skill involvements, logistic 

regression analysis revealed that density and effectiveness were positively associated (Model 1 in 

Table 3.1). This indicates when density was higher, it was more likely for an effective disposal to 

occur, however the association was weak (z = 2.437). Mean density for effective disposals was 

0.034 SD and mean density for ineffective disposals was -0.171 SD. 

 

Figure 3.2 Distribution of density for effective and ineffective skill involvements. A: Each 

dot represents a single skill involvement. Box and whisker plots indicate the 

median, interquartile range, minimum and maximum values. Half violin plots 

represent a continuous distribution of density. B: Histogram bars are stacked 

according to disposal effectiveness with labels above each bin representing 

disposal effectiveness (%) 
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Table 3.1 Results of logistic regression models. Model 1 shows the relationship between 

density and skill effectiveness. Model 2 shows the relationship between each level 

of pressure measured through notational analysis and skill effectiveness. Model 

3 shows the relationship between pressure as a binary notational analysis 

measurement and skill effectiveness. Coefficient and test statistic (z) presented 

for each variable. 

*p<0.05, **p<0.01, ***p<0.001 

aNotational Pressure: “None” used as reference category 

  Effectiveness 

 Model 1  Model 2  Model 3 

Density 

0.212
*
 

    

z = 2.437 

Notational Pressure: Chasea 
 

-0.328 

 
z = -1.212 

Notational Pressure: Frontala 
 

-0.366 

 
z = -1.798 

Notational Pressure: Physicala 
 

-1.147*** 

 
z = -4.315 

Notational Pressure: Binarya   

-0.523
**

 

z = -3.089 

(Intercept) 

1.617*** 1.858*** 1.858*** 

z = 18.987 z = 14.969 z = 14.969 

Akaike Inf. Crit. 914.858 906.45 910.594 
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To address the second aim, 32 training drills were analysed. Descriptive statistics are reported as 

a mean and standard deviation. The mean number of involvements was 31.7 ± 12.2, the mean 

disposals per minute was 9.9 ± 4.3, the mean number of players was 11.6 ± 3.5 and the mean area 

per player was 176.9 m2 ± 165.2 m2 per drill. Results of the multiple linear regression analysis 

are shown in Table 3.2. Overall, the model explained 54% of the variance in density. Area per 

player and number of players each showed a significant inverse relationship with density, with 

area per player (t = -15.427) showing a slightly greater effect than number of players (t = -13.612). 

This indicated that as area per player and number of players increased, density on skill 

involvements was more likely to decrease (Figure 3.3).  

Table 3.2 Results of the multiple regression analysis estimating the relationship between 

manipulated environmental constraints (area per player and number of players) 

and density. Coefficient (B) and test statistic (t) presented for each variable. 

*p<0.01 

 

 

 Density 

 B t 

Area per Player -0.003
*
 -15.427 

Number of Players -0.099
*
 -13.612 

Constant 1.729
*
 22.969 

Adjusted R
2
 0.543 
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Across all skill involvements the proportion of each level of the pressure constraint represented 

in the data was; No Pressure = 55%, Physical = 8%, Frontal = 25%, Chase = 12%. To address the 

third aim, results of the two logistic regression models are shown in Table 3.1 (Models 2 and 3). 

Using No Pressure as the reference category, only Physical pressure was shown to have a weak 

relationship with skill effectiveness (z = -4.315), reducing the likelihood of an effective skill 

involvement (Model 2). When notational analysis pressure was made a binary variable, a 

significant inverse relationship with skill effectiveness is shown (Model 3). This indicated that a 

skill involvement performed under the constraint of pressure, regardless of location, was more 

likely to be ineffective than effective, however this association was weak (z = -3.089).  

Figure 3.3 Relationship between environmental constraints (area per player and number 

of players) and density. Each point represents a skill involvement. 
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3.5 Discussion 

The overarching objective of this study was to apply a continuous density metric to represent the 

constraint of pressure in AF. To achieve this, the first aim examined the relationship between 

density and skill effectiveness, which revealed that density had a weak, positive association with 

disposal effectiveness. This was contrary to expectation, as in other spatiotemporal derived 

methods for pressure measurement, pressure is seen as increasing when distance to a defender 

decreases (G. Andrienko et al., 2017; Link et al., 2016). However, unlike in other studies (i.e., 

Andrienko et al., 2017; Link et al., 2016), the present study’s metric is the measurement of 

displacement for all players on the field, relative to the ball carrier. This suggests that this type of 

measurement presents differently to measurements which only value opposition players within an 

immediate vicinity. Multiple explanations are offered for this. Firstly, lower density levels around 

the ball carrier can indicate a wide spread of players across the playing field. This suggests that 

defending players are well placed to cover large portions of the field, increasing the difficulty on 

the ball carrier in finding open space around a passing target. Indeed, in AF there is a tendency 

for players to favour targets with lower density (Spencer et al., 2017). It may also be partially 

explained by the tactical constraints which shape decision making by players (Pill, 2014). For 

example, it is a common tactic among AF players to “draw” opponents closer, creating open 

spaces around teammates before executing a pass. Therefore, increased density on the ball carrier 

is likely to be related to lower densities for passing targets, potentially increasing the likelihood 

for a successful pass. It should also be noted that in the current sample, 83.2% of involvements 

were effective which represents a higher efficiency than noted during the 2019 competition 

(71.5%; www.afl.com.au/stats). Thus, these models may infer different results in competition. 

Pertaining to the second aim, the relationship between density and environmental constraints 

showed that both area per player and number of players were inversely associated with density, 

with area per player having a larger effect than number of players. To date, no work has measured 

this type of density under constraint manipulation, rather density has been measured as a 

collective team behaviour through total surface area of players during a training activity (Silva et 
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al., 2015; Timmerman et al., 2017). Findings in the present study support results observed in 

soccer (Silva et al., 2015), and to some extent, in field hockey (Timmerman et al., 2017). In field 

hockey, density has been shown to be influenced by environmental constraints, whereby the 

number of players is more influential than area per player (Timmerman et al., 2017). In AF, 

pressure on the kicker, as measured through notational analysis, is not solely influenced by 

manipulating the number of players in a drill (Bonney et al., 2020). This differs to the current 

study’s measure of pressure. However, notational pressure may not be sensitive enough for small 

constraint manipulations, such as in Bonney et al. (2020), to illicit change. The present study has 

shown that environmental constraints influence density, relative to the ball carrier, and it is 

encouraged that practitioners consider this in training design. When designing training, 

environmental constraints may be strategically manipulated to expose players to skill executions 

in specific densities, depending on the focus of the session.  

The final aim compared pressure measured via notational analysis with the density-derived 

pressure metric. For the former method, only physical pressure showed a meaningful relationship 

with skill effectiveness. This was expected, as intuitively, skill performance under physical 

contact from an opponent would be more challenging than other forms of pressure. This is also 

in agreement with other work examining kicking in AF (Browne, Sweeting, et al., 2019). 

However, when pressure was dichotomised as “present” (combining all categorisations of 

pressure) or “absent”, a weak negative association was shown, meaning players were more likely 

to perform an unsuccessful pass when under pressure. This result contradicts the relationship 

found between density and skill performance. A potential explanation may be in the strict 3 m 

proximity, within which pressure was measured, through notational analysis. Unlike the density 

metric, no account is provided of player location beyond this vicinity. While originally 

hypothesised as a limitation, these results suggest this may be advantageous in understanding skill 

performance. Providing a value for the underlying distribution of players throughout an entire 

field may undermine the influence of defenders within the immediate vicinity of the ball carrier. 

For example, an unsuccessful pass which is measured as under pressure through notational 
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analysis, may also measure low in density, due to the wide spread of players across the rest of the 

field. It may be concluded that density is not a replacement metric for pressure, as measured 

through notational analysis, but still contributes to understanding skill performance. 

Practically, the results of this study show that density is inversely related to pressure. 

Consequently, more information may need to be considered in order to explain skill effectiveness 

more accurately. Specifically, including a measure of pressure or density surrounding targets 

would be advantageous to better understand the task constraints on skilled behaviour. It is clear 

that accurate modelling of skill performance requires the measurement of more than a single 

constraint (Browne, Sweeting, et al., 2019; Lucey et al., 2014; Pocock et al., 2018; Vilar et al., 

2013). Such multivariate analyses have shown how constraints including pass distance, 

locomotive velocity and time in possession influence kicking performance in AF (Browne, 

Sweeting, et al., 2019).  

The density metric used in this study also contains multiple limitations which should be noted. 

Notably, measuring player density via kernel density estimation does not reflect player velocity 

and orientation. Logically, players can apply more pressure to space they are travelling towards 

(Fernandez & Bornn, 2018). Additionally, whilst density considers the relative locations of 

opponents, outputting density as a continuous, numerical value does not convey information about 

the direction of pressure being applied to the passer. Traditionally, pressure is measured 

categorically in AF by recording the location of pressuring opponents to the player. For example, 

‘chasing’ pressure signifies opponents are applying pressure behind the player with possession 

(Browne, Sweeting, et al., 2019; Ireland et al., 2019; Robertson et al., 2019b). Future work should 

address these limitations through utilisation of a measure of spatial occupancy that considers 

player velocity and orientation (e.g., Fernandez & Bornn, 2018; Spencer et al., 2018). Other 

limitations of the present study include the synchronisation of spatiotemporal and skill event data, 

which carries inherent error due to a reliance on human communication to determine 

synchronisation points, along with timing errors which may occur during event logging of skill 

data. Additionally, no inter-rater reliability analysis was conducted on skill data. Further, density 
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was limited to a static measurement at the time point of skill executions. While this presents a 

method which is simple in application, density as a pressure metric may be suited to a measure 

which occurs over time, such as the seconds leading up to a skill execution or during the entire 

period of a player’s ball possession. It is suggested that future work examine density as it is 

temporally distributed over such time periods. It is also important to note that density is limited 

to measurements in a two-dimensional plane however, AF is a three-dimensional sport where 

player jumping ability and height may attenuate or increase pressure. Finally, the analysis in this 

study was conducted on data collected from training sessions. It is likely that disparities between 

player behaviour in match and training conditions exist, so future work adapting density as a 

pressure metric should be directed to match play. In AF, it is suggested that match simulations be 

utilised to achieve this as opposition data is currently restricted during official Australian Football 

League matches.  

3.6 Conclusion 

This study analysed spatiotemporal data using kernel density estimation to estimate density of 

players in a continuous manner. This metric was applied in AF training as an alternate measure 

for the constraint of pressure. Density, relative to the ball-carrier at skill execution, was weakly 

and positively associated with successful skill performance. These findings contrast with pressure 

measured through notational analysis. It is suggested that density surrounding the target of a skill 

execution be considered in future to provide an improved representation of pressure on skill 

involvements. Increasing the area per player and the number of players in a drill decreases the 

density on skill involvements. The methods presented here may also be transferred to other sports 

and be used to contextualise player behaviour in competition and for consideration when 

designing training environments.  
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CHAPTER FOUR – STUDY II 

Chapter Overview 

Chapter Four is the second of five studies contained in this thesis. Following the specific 

analysis of a single constraint in chapter three, this chapter moves to investigate training 

activities more broadly, examining the influence of multiple interacting constraints on player 

behaviour. Specifically, this study investigates how association rules machine learning 

algorithm may be applied AF to inform the design of training activities.  

The content of this chapter is an accepted manuscript of an article published by Taylor & Francis 

in the European Journal of Sport Sciences on 26th July 2021, available at: 

http://www.tandfonline.com/10.1080/17461391.2021.1958011
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The influence of environmental and task constraint interaction on skilled behaviour in 

Australian Football 

4.1 Abstract 

The design of sports practice environments can be informed through data collected and analysed 

according to principles of the constraints-led approach. In this study, three manipulated 

environmental (area per player, number of players and team outnumber) and two task (activity 

objective and disposal limitations) constraints were measured during professional Australian 

Football training activities (n = 112) to determine their relationship with skilled behaviour. Linear 

regression modelling of the five manipulated constraints explained 68% of the variance in 

disposal frequency but only 22% in skill efficiency. Activities with scoring objectives, limited to 

kicking or which permitted all disposals, reduced the disposal frequency per player. Activities 

which permitted all disposals were also weakly, negatively associated with skill efficiency. A 

Classification Based on Association analysis measured the interaction between manipulated 

constraints and their relationships with possession time and pressure. When compared to the null 

model, the analysis improved pressure classification accuracy by 5.9% and did not improve 

possession time classification accuracy. This indicates skills were often performed under varying 

spatial and temporal constraints during many of the training activities. This study presents 

multivariate analytical methods which consider constraint interaction, enhancing how 

practitioners can evaluate and inform training design in sport.  
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4.2 Introduction 

Designing practice environments that support athlete learning and improve performance is an 

important consideration for sports practitioners (Davids, 2012). A framework commonly used to 

guide the design of such practice environments is the constraints-led approach (Newell, 1986). In 

this framework, constraints are viewed as boundaries, occurring over varying timescales, that 

shape emergent behaviour of individuals and groups (Newell et al., 2001). Constraints can be 

categorised into task, performer and environmental classes (Newell, 1986). In sport, task 

constraints relate to the intent of the activity, inclusive of the rules or equipment used. Performer 

constraints pertain to the individual, including their anthropometric attributes and physiological 

qualities. Environmental constraints typically include features external to the performer, and may 

include the weather, lighting or field dimensions (Newell, 1986).  

By identifying constraints which are most influential on athlete behaviours during competition, 

practitioners can carefully design them into practice tasks – amplifying or dampening them to 

help channel or guide certain behaviours during training (Renshaw et al., 2010). These 

manipulations should encourage problem-solving and facilitate athlete-environment interactions 

(Woods, McKeown, Rothwell, et al., 2020). Evaluation of these manipulations can then determine 

whether the desired behavioural outcome is being functionally achieved. Athlete behaviour 

responses to the intentional manipulation of constraints in practice design have been examined 

across a variety of sports. For example, manipulations of field size can be inversely related to the 

frequency of some team-sport actions, such as interceptions, shots on goal or tackles 

(Casamichana & Castellano, 2010; Fleay et al., 2018). Decreasing the number of players in a 

practice task can increase the number of actions performed per player, such as (un)successful 

passes or dribbles (Sarmento et al., 2018; Timmerman et al., 2019), while creating a team 

imbalance (i.e., 6 vs 5) may increase the proportion of successful passes completed in Australian 

Football (AF) small side games (Bonney et al., 2020).   

An ongoing methodological challenge in the modelling of athlete behaviour during training and 

competition is that constraints do not function in isolation, but interact dynamically and often 
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non-linearly (Newell, 1986). For example, in youth football, playing space and the distance 

between players may be influenced by the interaction of field dimensions (environmental 

constraint), skill level (performer constraint) and playing numbers (task constraint) (Silva, Duarte, 

et al., 2014; Silva et al., 2015). In field hockey, both field characteristics and playing numbers 

influenced action frequencies – increasing or decreasing them based on the emergent time and 

task goals (Timmerman et al., 2019). Considering how constraints interact may provide 

practitioners with greater context, potentially improving their understanding on how they can 

design training environments to facilitate athlete learning. Therefore, measuring multiple 

constraints and utilising analytical methods which account for these interactions is recommended 

(Browne, Sweeting, et al., 2019; Robertson et al., 2019a). Practically, constraint measurement is 

typically limited by resources and costs, meaning no model can be fully complete. However, as 

the feasibility of capturing constraints in the field is increased due to technological improvements, 

furthering this methodology presents a worthwhile exercise. Rule induction represents one such 

analysis approach that is fit for the purpose of this exercise. Specifically, it focusses on identifying 

the most commonly occurring and influential patterns in data, an approach that closely matches 

the human method of heuristics (Agrawal et al., 1996). In a scenario of growing data volume, this 

encourages the user to focus on only those non-linear interactions which are most important in 

terms of modelling a phenomenon of interest.  

A rule induction method for analysing constraint interaction was recently utilised to evaluate kicks 

during AF match play (Robertson et al., 2019a) and has been contrasted with univariate analysis 

(Browne, Sweeting, et al., 2019). For example, Browne et al. (2019) noted that when compared 

with univariate analysis, rule induction provided a more comprehensive insight into the kicking 

performance of Australian footballers. This was manifest in kicks under physical pressure being 

more accurate when coupled with task constraints of longer possession time and kicks to targets 

that were unmarked or unopposed. Using similar analysis, the current study aims to ascertain the 

strength of relationship between task and environmental constraints manipulated as part of the 
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training design, and a) their effects on the frequency and effectiveness of skill involvements, and 

b) the prevalence of constraints on skill involvements. 

4.3 Methodology 

4.3.1 Participants 

Participants were listed players (n = 43; 24.2 ± 3.5 y; 186.8 ± 7.7 cm; 84 ± 7.8 kg) from one 

professional AF club. All participants provided written informed consent and were injury free at 

the time of participation in the selected activities. Ethical approval was obtained from the 

University Ethics Committee.  

4.3.2 Data Collection 

Data collection occurred during the club’s 2020 Australian Football League pre-season training 

period. Training activities (n = 112) with environmental and task constraint manipulations were 

captured, consisting of 20 different activity types and 3907 skill involvements. To obtain 

information on training design, five manipulated constraints were used: three environmental and 

two task constraints (Figure 4.1). The constraints selected were based on the literature (Bonney 

et al., 2020; Timmerman et al., 2019) and consultation with expert AF coaches at the club. For 

each drill, the total number of players and team outnumber were recorded, with the field 

dimensions manually recorded using a measuring wheel. Activity objective (i.e., possession or 

scoring) and disposal limitation (i.e., handballs, kicking or all disposals) were additionally 

recorded.  



108 

 

 

Figure 4.1 Manipulated environmental and task constraints (left) and constraints on skill 

involvements (right) with associated levels where appropriate. 

To record each skill involvement, activities were filmed at 25 Hz with a two-dimensional camera 

(Canon XA25/Canon XA20) from either a side-on or behind-the-goals perspective. Cameras were 

situated in a fixed position and vision angle varied depending on location of drill at the time of 

performance. To quantify skill involvements and the surrounding task constraints, notational 

analysis software was used (Sportscode, version 12.2.10, Hudl). A customised code window was 

created whereby each skill involvement was recorded according to ‘type’ (kick or handball) and 

‘outcome’ (effective or ineffective). The effectiveness of the skill involvement was defined in 

accordance with Champion Data (Melbourne, Pty Ltd), with a handball or kick <40 m deemed 

effective, if the intended target retained ball possession. A kick >40 m was deemed effective if 

kicked to a 50/50 contest or outnumber to the advantage of the attacking team. Effectiveness was 

represented as skill efficiency (%), defined as the number of effective skill involvements in each 

drill relative to the total number of skill involvements. Disposal frequency was represented as the 

total number of disposals relative to the duration of the activity and the number of players in the 
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activity (disposals / min / player). To capture the task constraints on each skill involvement, the 

Sportscode window was used to add additional labels, defined through consultation with club 

coaches and adapted from the literature (Robertson et al., 2019a). As shown in Figure 4.1, time 

in possession was discretised into two groups; <2 s or ≥2 s and pressure was categorised as present 

or absent. Pressure was defined by the presence of an opposition player within 3m of the passer 

at moment of ball disposal (Robertson et al., 2019a). Efficiency, disposal frequency, time in 

possession and pressure were then exported, according to their drill, into a custom Microsoft 

Excel spreadsheet. Constraint manipulation data and skill involvement data were then joined 

according to the training activity, forming a single database.  

To assess the intra-rater reliability of the skill involvement coding, three activities consisting of 

145 involvements were coded on two separate occasions with at least 14 days between. The Kappa 

statistic was used to assess intra-rater reliability of each variable (Landis & Koch, 1977). 

Agreement was “almost perfect” for time in possession (0.83) and effectiveness (0.93) and 

“substantial” for pressure (0.79). 

4.3.3 Statistical Analysis 

All statistical analysis occurred in R (R Core Team, 2019). To address the first aim, two multiple 

linear regression models were used to determine the relationship between the manipulated 

environmental constraints (area per player, number of players and team outnumber) and task 

constraints (drill objective and disposal limitations) and their effect on a) disposal frequency and 

b) skill efficiency.  

To determine the influence of task and environmental constraints on the time in possession and 

pressure of each skill involvement, a Classification Based on Association (B. Liu et al., 1998) 

approach was utilised. The Classification Based on Association (B. Liu et al., 1998) creates a 

model to predict the class of a variable based upon association rules mined in a dataset. A default 

rule is also generated in the model for which a class prediction is made for items which do not 

meet the mined rules. Each rule is presented with associated support and confidence levels. 
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Support (%) is a measure for how frequently a rule appeared in the database and confidence (%) 

measures the frequency of a class, given the associated rule.  

The ArulesCBA package (Hahsler & Johnson, 2020) was used to run the CBA algorithm (B. Liu 

et al., 1998) to construct two models; classification of time in possession and pressure. A random 

sample of 70% (2734 skill involvements) of the dataset was selected for classifier training. To 

prepare the data for analysis, discretisation of the area per player, number of players and team 

outnumber variables was conducted through the ArulesCBA package which used the minimum 

description length principle to bin data. The breaks for each discretisation in the time in possession 

model were: area per player; 93, 249, 276, 267, 590, number of players; 15 and team outnumber; 

1, 4.5. The breaks for each discretisation in the pressure model were: area per player; 131, 235, 

263, 276, 451, 522, number of players; 9 and team outnumber; 4.5. Parameters for both 

constructed models were set with a minimum support of 0.03 and minimum confidence of 0.5. 

Both models were required to use rules with five items representing each of the manipulated 

constraints and pruning occurred with the M1 method. The models constructed from the training 

data were then used to predict classification of time in possession and pressure on the remaining 

30% (1173 skill involvements) of the dataset. Classification accuracy of the two models were 

evaluated with a confusion matrix.  

4.4 Results 

All descriptive statistics are reported as a mean and standard deviation. Across all activities, the 

mean area per player was 338 ± 269 m2, mean number of players was 12 ± 4.3 and mean team 

outnumber was 0.7 ± 1.2. Within the dataset, 40% of activities were limited to handballs, 12% 

were limited to kicks and 48% permitted all disposals. Activities with possession-based objectives 

comprised 15% of the dataset whilst activities with scoring-based objectives was 85%. Mean skill 

efficiency across all activities was 80.9 ± 9.13% and mean disposals per player per minute was 

0.81 ± 0.38.  
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As displayed in Table 4.1, the linear regression models showed the manipulated environmental 

and task constraints had a stronger relationship with disposal frequency (Adjusted R2 = 0.679) 

than skill efficiency (Adjusted R2 = 0.216). The relationship between manipulated constraints and 

disposal frequency and skill efficiency is visualised in Figure 4.2. Activities permitting all 

disposals (t = -7.475), limited to kicking only (t = -5.536) or with a scoring objective (t = -4.220) 

had strong negative relationships with disposal frequency. Area per player (t = 1.079) and team 

outnumber (t = 0.646) had weak positive associations with disposal frequency (Table 4.1). 

Activities permitting all disposals (t = -3.502) also had a strong negative relationship with skill 

efficiency. Area per player (t = 1.123), the number of players (t = -0.748), team outnumber (t = 

1.685) and scoring objectives (t = -1.309) each had weak associations with skill efficiency (Table 

4.1).  
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Figure 4.2 Relationship between manipulated environmental (area per player and number 

of players) and task (activity objective and disposal limitations) constraints and 

disposal frequency (A) and skill efficiency (B). Disposal frequency is reported 

as disposals, per min, per player and skill efficiency is reported as the number 

of effective involvements relative to total involvements (%). Each point 

represents a single training activity. 
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Table 4.1 Results of multiple linear regression analysis between manipulated 

environmental and task constraints and disposal frequency (Model 1) and skill 

efficiency (Model 2). 

 Model 1 
Disposal Frequency 

Model 2 
Skill Efficiency 

 B SE t B SE t 

(Intercept) 
1.880 *** 0.145 12.954 

93.596 
*** 

5.508 16.992 

Area per Player (m2) 0.0001 0.0001 1.079 0.007 0.006 1.123 

Number of Players -0.014 * 0.006 -2.436 -0.163 0.218 -0.748 

Team outnumber 0.014 0.021 0.646 1.373 0.815 1.685 

Activity Objective: 
Scoringa 

-0.632 
*** 

0.150 -4.220 -7.435 5.682 -1.309 

Disposal Limits: 

Kickingb 

-0.945 

*** 
0.171 -5.536 -14.753 * 6.480 -2.277 

Disposal Limits: No 

Limitsb 

-0.707 

*** 
0.095 -7.475 

-12.582 

*** 
3.593 -3.502 

Adjusted R2 0.679 0.216 

*** p < 0.001, ** p < 0.01, * p < 0.05.  

B = coefficient, SE = standard error of the coefficient, t = test statistic.  

aActivity Objective: Possession used as reference category. 

bDisposal Limits: Handballs used as reference category. 

 

For the time in possession constraint, the proportion of each class was: <2 s = 66% and ≥2 s = 

34%. For the pressure constraint, each class was: None = 58% and Pressure = 42%. The time in 

possession classifier resulted in seven rules, and the pressure classifier five, as displayed in Table 

4.2. Excluding the default rule, which makes a prediction for items which do not meet the rules 

produced in the model, rules produced to classify time in possession ranged from 60% to 95% 

confidence. Rules to classify pressure ranged from 74% to 84% confidence. The confusion matrix 

revealed the time in possession and pressure classifiers had accuracies of 66% and 63.9%, 

respectively. Using the majority constraint class in the dataset (<2 s = 66%) as a threshold, the 
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time in possession classifier did not improve class prediction accuracy. However, the pressure 

classifier slightly improved class prediction accuracy (+5.9%), compared to the majority 

constraint class (None = 58%).  
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Table 4.2 Rulesets for the time in possession and pressure Classification Based on Association models. The time in possession and pressure class is 

predicted based on the five associated manipulated constraints with support and confidence provided for each rule. Rules are ordered by 

confidence with a default rule provided for each model. 

Model 

Area per 

Player (m2) 

Number of 

Players 

Team 

Outnumber 

Activity 

Objective 

Disposal Limits 

Constraint 

Class 

Support (%) 

Confidence 

(%) 

Time in 

Possession 

248-263 0-15 1-4.5 Possession Kicking <2 sec 9.9 95.4 

92.9-248 0-15 1-4.5 Possession All Disposals <2 sec 3.5 84.4 

0-92.9 0-15 0-1 Scoring Handballs <2 sec 10.6 83.4 

263-276 0-15 1-4.5 Possession Kicking <2 sec 4.6 72.1 

92.9-248 0-15 0-1 Scoring Handballs <2 sec 14.9 62.5 

276-590 15-Inf 0-1 Scoring All Disposals >2 sec 8.8 60.3 

     <2 sec 65.8 65.8 

Pressure 

235-263 9-Inf 0-4.5 Possession Kicking None 8.7 84.1 

523-Inf 9-Inf 0-4.5 Scoring All Disposals None 13.1 76.4 

131-235 9-Inf 0-4.5 Scoring Handballs Pressure 3.1 75.8 

276-451 9-Inf 0-4.5 Scoring All Disposals None 8.7 73.6 

     Pressure 42.4 42.4 
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4.5 Discussion 

This study demonstrated how environmental and task constraint manipulations can be evaluated 

to determine their influence on skilled behaviour in AF. The constraints manipulated in the current 

study were more influential on disposal frequency than skill efficiency, with disposal frequency 

more predictable than skill efficiency. Further, using an analysis approach such as Classification 

Based on Association highlighted the non-linearity of constraint interaction. The analysis only 

slightly improved, upon the majority class threshold, the classification accuracy of pressure and 

did not improve possession time classification accuracy. This demonstrated the tendency for 

activities to comprise skill involvements in different classes of constraints, indicating variable 

participant behaviour. This means participants were exposed to skill involvements in a range of 

performance contexts. Measurement of athlete skill variability can assist practitioners to evaluate 

if training aims are being achieved. 

Linear regression modelling was used to determine the relationship between manipulated task and 

environmental constraints and disposal frequency, explaining 67.9% of the variance in disposal 

frequency. This result highlights the capability of models to predict, with some certainty, the 

disposal frequency of players in activities. This information could be beneficial for practitioners 

when estimating skill volumes, which has application for planning training designs (Farrow & 

Robertson, 2017) and prescribing training loads for rehabilitating athletes. A caveat to this 

application is that behaviour will still vary between players, manifest through things like playing 

position, ability, age (Almeida et al., 2016), height (Cordovil et al., 2009), and/or previous 

experience (Pocock et al., 2018), which will require consideration. This caveat serves as an 

important avenue for future work to extend on the current findings. Area per player did not 

influence disposal frequency, which is in agreement with similar work in AF (Fleay et al., 2018) 

and other team-sports (Casamichana & Castellano, 2010; Kelly & Drust, 2009). However, area 

per player can influence other action frequencies not measured in the current study, such as tackles 

and interceptions (Casamichana & Castellano, 2010; Fleay et al., 2018; Kelly & Drust, 2009).  
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Activities with a scoring objective, limited to kicking only or which permitted all disposals, were 

most associated with decreasing the mean disposal frequency per player. Accordingly, permitting 

kicks to occur within a drill, in addition or exclusion to handballs, decreased disposal frequency. 

Execution of the kicking action takes longer than the handball, however this result may also be 

partially explained by the rules of AF. In AF, catching a kicked pass over 15 m (a “mark”) results 

in a stoppage of play which acts as a task constraint on behaviour. When kicking is permitted, 

players may be exploiting this task constraint to afford themselves additional time for decision 

making. This behaviour slows the play of the drill, reducing the volume of disposals accrued. AF 

practitioners may want to consider this when determining the length of time for activities to 

provide players enough time to accrue desired action opportunities. More generally, it is advised 

that sport practitioners consider how task constraints may increase or decrease the frequency of 

action opportunities provided to their athletes.  

Manipulating the number of players in the drill was also shown to influence disposal frequency, 

albeit to a lesser extent than disposal limitations or drill objective. This result is similar to research 

in field hockey (Timmerman et al., 2019), but dissimilar to other work in AF (Bonney et al., 

2020). Results from the present study may be due to the larger manipulations of playing number. 

Importantly, reducing playing number increases opportunities for players to explore possible 

movement solutions (Davids et al., 2013), while offering a simple and effective constraint 

manipulation available for coaches.  

Modelling of skill efficiency was not as accurate as for disposal frequency, explaining only 26% 

of the variation. Similar results were observed when modelling rugby place kick performance 

during match play, explaining 28% variance (Pocock et al., 2018). Additional, or alternative, 

constraints may be required to predict skill efficiency more accurately. Skill efficiency, or relative 

frequency of skill errors, may be indicative of how challenging a training drill is for players 

(Farrow & Robertson, 2017). This is an important consideration for training design as an 

appropriately challenging environment may promote exploration for new movement solutions 

(Davids et al., 2013; Renshaw et al., 2010). It should be noted that the 2019 competition average 
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disposal efficiency was 71.5% (obtained from https://www.afl.com.au/stats) compared to 80.9% 

in the present study. This may mean that the constraints manipulated during training presented a 

less challenging environment to players. 

In the present study, activities which permitted all disposals or were limited to kicking only were 

most associated with reducing skill efficiency. This may indicate that kicking was a more difficult 

skill to execute than handballing. Similarly, in soccer, the success of passes and interceptions 

during small side games has been influenced by manipulating the task constraint of scoring mode 

(Almeida et al., 2016). Manipulating the team outnumber or area per player did not influence skill 

efficiency in the present study, which conflicts with other small sided game research in AF 

(Bonney et al., 2020) and field hockey (Timmerman et al., 2017).  These results may be explained 

by the higher skill level of the current study’s participants who can express greater skill 

proficiency adapted across a variety of conditions.  

A multivariate analysis is more appropriate for understanding skilled behaviour (Browne, 

Sweeting, et al., 2019; Robertson et al., 2019a). In the present study, a Classification Based on 

Association approach determined the interactions between manipulated task and environmental 

constraints and their influence on the possession time and pressure on skill involvements. The 

variable rulesets, and associated confidence levels produced in the two models demonstrate the 

non-linearity of environmental and task constraint interaction during training. The complexity of 

constraint interaction is similarly exemplified during match play in other AF work (Browne et al., 

2020; Browne, Sweeting, et al., 2019). It is suggested that coaches seeking to apply principles of 

the constraints-led approach should measure and analyse constraint manipulations in a 

multivariate manner to appropriately contextualise player behaviour during training. Capturing 

detail in this way can provide further insight into how and why certain behaviours emerge 

(Glazier, 2017). 

Each rule presented in the models demonstrate the adaptive behaviour of players within training 

activities. Accordingly, this highlights how practitioners can facilitate skill development through 

the design of training environments (Woods, McKeown, Rothwell, et al., 2020). Practically, 
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Classification Based on Association can be utilised to assist coaches in achieving this by 

informing training design. For example, a coach may seek to develop player skill by increasing 

the temporal demands on players when passing. The rules presented in the possession time 

classifier (Table 4.2) can inform the coach of the relevant constraint manipulations which achieve 

this. For example, the top row of Table 4.2 shows the set of constraint manipulations which 

maximise the frequency of skill involvements with <2 s possession time (95%). Thus, using 

Classification Based on Association, a practitioner could evaluate the behaviour of players within 

training activities and use this to inform future drill prescription.     

Neither classification model was able to substantially improve, upon the majority class threshold, 

the accuracy of predicting time in possession or pressure. Accordingly, this indicates that many 

of the activities in the dataset did not constrain participants to a high frequency of skill 

involvements in a single class of time in possession or pressure. This demonstrates the inherent 

variability of AF small side games which can promote movement performance in a range of 

contexts (Davids et al., 2013). These results may be an example of training which encourages 

athletes to explore different movement solutions to achieve tasks (Chow, 2013). Thus, evaluating 

the accuracy of predictive models may help practitioners measure the functional variability in 

training, where low prediction capability is not always viewed as a negative outcome.  

Importantly, it should be noted that the proportion of constraint classes and manipulations across 

the dataset are representative of the participant coaching and playing styles. Team strategy and 

coaching philosophies will likely influence the focus of training sessions, guiding the design and 

selection of training activities. Results of the current study are population specific and 

practitioners are encouraged to utilise a similar methodology, as presented here, to inform their 

own training. Through a multivariate analysis, such as Classification Based on Association, 

practitioners can further contextualise their athlete’s behaviour, evaluating and informing their 

own constraint manipulations in the field. 

Given the applied nature of this study, there were some limitations which should be stated. Skill 

involvement data were collected in the field where constraint manipulation was not systematic 
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but designed by coaches as desired for any given session. The representation of some constraint 

manipulations and constraint classes in the dataset are unequal, potentially influencing some 

results. Future work should be directed to collecting additional constraints to include in analyses 

to aide in constructing more sophisticated models. Environmental constraints such as weather or 

performer constraints such as age or playing experience may play an important role in influencing 

skilled behaviour during training. The inclusion of coach experiential knowledge is recommended 

to identify these key constraints (Greenwood et al., 2012; Pocock et al., 2020). 

4.6 Conclusion 

This study examined the relationship between environmental and task constraint manipulations 

with skilled behaviour in elite AF. Constraint manipulations explained more variance in disposal 

frequency than skill efficiency. Designing activities that have a scoring objective and permitted 

kicking tended to reduce the disposal frequency of players. Designing activities which permitted 

any disposal method were most associated with a decrease in skill efficiency, creating a more 

challenging environment for players. A Classification Based on Association approach highlighted 

the variability of training activities and demonstrated how multivariate analysis can be used to 

determine constraint interaction, including influencing possession time and pressure on skill 

involvements. To enhance athlete skill development, practitioners are encouraged to measure 

interacting constraint manipulations, using similar multivariate analysis, to evaluate and inform 

their own training design.  
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CHAPTER FIVE – STUDY III 

Chapter Overview 

Chapter Five is the third of five studies contained in this thesis. This chapter builds upon the 

Chapter Four by including the additional class of individual constraints in the analysis of training 

activities and by applying alternative analytical techniques. Specifically, this study explores how 

the interaction between individual, environmental and task constraints may be measured to 

evaluate skilled behaviour and inform training design in AF.  

The content of this chapter is an accepted manuscript of an article published by Taylor & Francis 

in Journal of Sports Sciences on 16th September 2022, available at: 

https://www.tandfonline.com/doi/full/10.1080/02640414.2022.2124013 
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The influence of individual, task and environmental constraint interaction on skilled 

behaviour in Australian Football training 

5.1 Abstract 

An important consideration for sport practitioners is the design of training environments that 

facilitate skill learning. This study presented a method to determine individual (age, games 

played, height, mass, and position), environmental (activity type) and task (pressure and 

possession time) constraint interaction to evaluate player training behaviour, which can be used 

to inform training design. Skill actions (n=7301) were recorded during training activities (n=209) 

at a single professional Australian Football club and four measures of player behaviour were 

determined for each activity: disposal frequency, kick percentage, pressure and possession time. 

K-means clustering assigned training activities into four groups, with regression trees used to 

determine the interaction between constraints and their influence on disposal frequency and type. 

For most regression tree models, only the environmental constraint was included. This showed 

all players adapted similarly to the constraints of each training activity. In one exception, a critical 

value of 60 games experience was identified as an individual constraint which interacted with 

activity type one to influence disposal frequency. This individual constraint value could be used 

to inform training design by grouping similar players together. This study is presented as a 

practical tool for sport practitioners and coaches, which considers constraint interaction, to 

evaluate the performance of their players during training and inform the training design. 
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5.2 Introduction 

An important consideration for sport practitioners relates to the design of training environments 

that can facilitate skill learning (Davids, 2012). Training, then, is an important component of the 

coaching process, especially in high performance sport (Hodges & Franks, 2002; Orth et al., 

2019). Moreover, it is the design of game-like training tasks that are particularly important to 

support the development of an athlete’s skill (Chow, 2013; Davids et al., 2008). What makes 

training design challenging, is that skill is an emergent phenomena that results from the various 

interactions of the person (i.e., the athlete), the environment they perform in, and the task they are 

undertaking (Araújo et al., 2006; Newell, 1986). In other words, it is a confluence of interacting 

constraints that shapes the emergence of skill, and the goal of the coach in training design, then, 

is to nudge or guide athletes towards useful movement and performance solutions (Woods, 

McKeown, Rothwell, et al., 2020). 

The constraints-led approach (CLA) is a framework that can be used to help practitioners with 

the design of practice tasks (Davids et al., 2008; Renshaw et al., 2010). In this framework, 

constraints are understood as boundaries, which exist along multiple time-scales, that shape the 

emergent actions of individuals (Newell, 1986; Newell et al., 2001). Broadly, constraints are 

classified into one of three classes: task, environmental and individual (Newell, 1986). In sport, 

task constraints typically relate to the intent of an activity; what needs to be achieved and within 

what time. Environmental constraints include features external to the performer, such as ambient 

weather conditions, ground surface properties, and field size. Individual constraints pertain to 

characteristics of a performer, like anthropometric and physiological qualities, or emotional states 

and arousal levels. 

In harnessing tenets of the constraints-led approach, practitioners can guide athlete behaviour 

through the careful manipulation of constraints in practice tasks (Renshaw et al., 2010; Renshaw 

& Chow, 2019). For example, reducing field size can increase the frequency of interceptions in 

soccer (Casamichana & Castellano, 2010), or manipulating a team outnumber can increase the 

frequency of passes to uncovered players in Australian Football (AF) (Bonney et al., 2020). The 
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manipulation of key constraints encourages problem-solving and facilitates an athlete’s 

exploration for movement solutions (Woods, McKeown, Rothwell, et al., 2020). Thus, to assist 

with athlete learning, the evaluation of constraint manipulations, and how they have shaped 

emergent behaviour, can be of use for sports practitioners (Teune, Woods, et al., 2021a).  

A challenge for practitioners in evaluating athlete behaviour is that constraints do not function in 

isolation but interact, often non-linearly (Newell, 1985). Accordingly, constraint interaction is 

important to consider, to protect against the influence of a constraint being over or under valued 

when contextualised within larger constraint sets. This increases the complexity of implementing 

constraint manipulations during practice and understanding their combined influence. In field 

hockey, for example, the number of players (i.e., an environmental constraint) and the intent of 

the task, have been shown to interact, influencing the frequency of certain actions (Timmerman 

et al., 2019). Moreover, studies in AF have examined the multivariate interaction between task 

and environmental constraints to evaluate match play kicking performance (Browne, Sweeting, 

et al., 2019; Robertson et al., 2019a), goal kicking performance (Browne et al., 2022) and skilled 

behaviour during training activities (Teune, Woods, et al., 2021a). Together, this work 

demonstrates how considering the interaction of multiple constraints may garner more precise 

insights to support practice design. However, investigations of constraint interactions have mainly 

been limited to environmental and task constraint classes. To build upon this work, studies which 

include individual constraint interactions with environmental and task constraints are largely yet 

to be explored. One exception in Rugby Union modelled place kicking effectiveness using logistic 

regression including interaction between game time (environmental constraints), score margin 

(environmental constraint), previous kick success (individual constraint), distance (task 

constraint) and angle (task constraint) to goal (Pocock et al., 2018).  

Multivariate analytical techniques which can consider non-linear constraint interaction are 

important to appropriately contextualise player behaviour (Browne et al., 2021). Some analytical 

techniques, such as rule induction or decision trees, have such capabilities and have been applied 

to constraint analysis in AF match play (Browne et al., 2022; Browne, Sweeting, et al., 2019; 
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Robertson et al., 2019a) and practice (Browne et al., 2020; Teune, Woods, et al., 2021a). Further, 

unsupervised machine learning techniques such as k-means clustering algorithms have been 

applied to AF practice to group training activities according to similarities in player performance 

(Corbett et al., 2018). Specifically, k-means clustering has been useful to identify associations 

between training activity design and player performance (Corbett et al., 2018). These techniques 

provide interpretable outputs that make them applicable for end users in sport, such as coaches. 

An adaptation of such techniques may be beneficial as a practical tool for practitioners to evaluate 

team sport training while considering constraint interaction between all three classes. Therefore, 

the aim of this study was to present a method to measure the relationship between interacting task, 

environmental and individual constraints on disposal frequency and kick percentage during AF 

training. 

5.3 Methods 

5.3.1 Participants 

Participants were listed Australian Football League players (n = 54, height = 187cm ± 7.83, mass 

= 84.7 kg ± 7.73, age = 24.4 years ± 3.42) at a single club during the 2021-2022 seasons. All 

participants provided written informed consent and were injury free at the time of participation. 

Ethical approval was obtained from the University Ethics Committee (application number: 

HRE20-138). 

5.3.2 Data Collection 

Data were collected on 209 training activities, consisting of 34 different activity designs. All 

activities were characterised as a small sided game, where two teams competed against each other 

within a specified field of play. Each activity type varied in the task goals, rules, field size or 

number of players. Skill involvement data were collected via filming with a 25 Hz two-

dimensional camera (Canon XA25/Canon XA20) from a side-on or behind-the-goals perspective. 

Skill involvements during each activity were coded via notational analysis software (Sportscode, 

version 12.2.10, Hudl) using a customised code window whereby each skill involvement (or 
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“disposal”) was labelled according to the type (kick or handball) and the player’s name who 

performed the skill (n = 7301). Each disposal was further labelled with two task constraints: 

pressure (present or absent) and possession time (<2 s or >2 s). Pressure was defined as a disposal 

performed within 3 m of an opponent, while possession time was defined as the time between 

receiving and disposing the ball. Inter-rater reliability of the notational coding was assessed using 

a hold-out sample of 168 disposals, not included in the main analysis, resulting in a Kappa statistic 

(Landis & Koch, 1977) of “almost perfect” (>0.8) for all variables. Intra-rater reliability was 

conducted after a 14-day washout period resulting in Kappa statistics ranging from “substantial” 

(0.67-0.8) to “almost perfect” (>0.8) across three coders. 

Individual constraints for each player were recorded at the beginning of each season which were 

height (cm), weight (kg), number of games played (#) and playing position (defender, midfielder, 

forward or key position). Age (years) was also determined as the time period between the player’s 

date of birth and the date of training activity occurrence. Playing positions were assigned in 

consultation with the club’s coaching staff who were familiar with individual player roles. 

Distributions of each individual constraint are shown in Figure 1. Skill involvement data was 

labelled with individual constraints according to the player’s name associated with each disposal. 

For every training activity, each player’s skilled performance was then summarised according to 

four measures: disposal frequency, kick percentage, pressure and possession time. Disposal 

frequency was calculated as the total disposals divided by the activity duration in minutes, while 

kick percentage was represented as the percentage of kicked disposals. Pressure was represented 

as the percentage of pressured disposals, and possession time was represented as the percentage 

of disposals < 2 s. These calculations resulted in 2499 individual training activity performances.  
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Figure 5.1 Distribution of each individual constraint included in analysis. 

5.3.3 Statistical Analysis 

To determine the influence of constraint classes, and their interactions, on player skilled 

behaviour, four analyses were conducted. This approach was taken to demonstrate the influence 

of constraint classes when considered both in isolation and in combination.  

In the first analysis, to estimate the interaction between constraints, regression trees were used 

(Morgan et al., 2013). To determine the influence of individual constraints alone on player 

performance, two regression trees were grown, estimating disposal frequency and kick 

proportion, respectively. To determine the interaction between individual and task constraints, 

two further regression trees were grown to estimate pressure and possession time. All statistical 

analysis occurred in the R programming environment (R Core Team, 2019), with regression trees 

grown using the rpart package (Therneau & Atkinson, 2022). The five individual constraints were 

included as predictors in each of the models, and parameters were specified with a minimum split 

of 20 observations and a complexity parameter of 0.01.  
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In the second analysis, k-means clustering was used to identify the training activities which result 

in similar player outputs and were grouped accordingly to determine the influence of 

environmental constraints on skilled behaviour (Corbett et al., 2018). A scree plot was first 

generated to determine the appropriate number of clusters to use in analysis. 10 maximum 

iterations were permitted with, each training activity then assigned to one of the cluster 

memberships according to the results of the k-means clustering.  

In the third analysis, to determine the interaction between environmental and individual constraint 

classes on skilled behaviour, regression trees were grown to estimate disposal frequency and kick 

percentage. Each of the five individual constraints and the environmental constraint of activity 

type, were included in the two models using the same parameters as previous models.  

In the fourth analysis, to determine the interaction between environmental, individual and task 

constraint classes, two regression trees were grown to estimate pressure and possession time. The 

five individual constraints and the environmental constraint of activity type were included as 

predictors in the model. The same model parameters were used as previous models.  

5.4 Results 

Across 2499 training activities, the mean and standard deviation was 0.59 ± 0.46 disposals per 

minute, 60.2% ± 40% kicks, 40.7% ± 39.5% pressured disposals, and 51.2% ± 40% disposals <2 

s. For the two regression tree models which included only individual constraints, the first 

estimated disposal frequency with a mean squared error of 0.22 disposals / min. The second model 

estimating kick percentage had a root mean squared error of 44.02 %. For the two regression trees 

which estimated task constraints using only individual constraints as predictors, the model 

estimating pressure had a root mean squared error of 39.49 % . The model estimating possession 

time had a root mean squared error of 39.98 %. 

Visual analysis of the scree plot resulted in four clusters being selected. The four cluster centres 

resulting from the subsequent k-means clustering analysis is shown in Table 1. The distributions 

of the player performance metrics (disposal frequency, kick proportion, pressure and possession 
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time) within each activity membership are shown in Figure 2. Cluster one was distinguished as 

handball only activities, with high levels of disposal frequency, pressure and lower possession 

times. Cluster two had the highest proportion of kicked disposals and disposals < 2 s and the 

lowest level of pressure. Cluster three had the lowest disposal frequency, a high proportion of 

kicks with low pressure and time constraints. While cluster four was similar to cluster one in 

terms of pressure and possession time, but involved predominantly kicked disposals with a lower 

disposals frequency. 

Table 5.1 Cluster centres (averages) of each training performance metric for drill activity 

memberships 

 

Cluster 

membership 

Disposal 

Frequency 

(p/min) 

% Kicked 

Disposals 

% Pressured 

Disposals 

% Disposals <2 

s 

1 1.11 0 61.6 66.0 

2 0.69 82.0 21.3 79.4 

3 0.39 78.5 28.3 33.8 

4 0.45 69.5 76.2 53.0 
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Figure 5.2 Distribution of training performance metrics; disposal frequency (A), kick 

percentage (B), pressure (C) and possession time (D) within each activity 

membership. Note, in panel B, data for cluster membership one has not been 

displayed given that no kicked disposals were recorded in this membership. 

The regression trees that included environmental and individual constraints, estimating disposal 

frequency and kick percentage, are shown in Figures 3 and 4, respectively. The results of the tree 

estimating disposal frequency had a mean squared error of 0.129 disposals / min and an R squared 

value 0.40. Games played was the only individual constraint included in the model which was 

shown to positively influence disposal frequency for activities in membership one. The regression 

tree estimating kick percentage had a root mean squared error of 29.83 % and an R squared value 

of 0.54. No individual constraints were included in this model. 
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Figure 5.3 Regression tree modelling disposal frequency (disposals / min). Environmental 

constraints (cluster memberships) and individual constraints (age, games 

played, height, mass, position) were included as independent variables. The top 

number reported in each node represents the estimated outcome value 

(disposals / min). The bottom values in each node represent the frequency and 

percentage of cases within each node. 
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Figure 5.4 Regression tree modelling disposal type (% of kicked disposals). Environmental 

constraints (cluster memberships) and individual constraints (age, games 

played, height, mass, position) were included as independent variables. The top 

number reported in each node represents the estimated outcome value (% of 

kicked disposals). The bottom values in each node represent the frequency and 

percentage of cases within each node. 

The regression trees that included environmental and individual constraints, used to estimate task 

constraints, pressure and possession time, are shown in Figures 5 and 6, respectively. The results 

of the model estimating pressure had a root mean squared error of 34.69 % and an R squared 

value of 0.22. The model estimating possession time had a root mean squared error of 35.62 % 

and an R squared value of 0.21. Neither of these models included any individual constraints to 

partition the data.  
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Figure 5.5 Regression tree modelling pressure (% of pressured disposals). Environmental 

constraints (cluster memberships) and individual constraints (age, games 

played, height, mass, position) were included as independent variables. The top 

number reported in each node represents the estimated outcome value (% of 

pressured disposals). The bottom values in each node represent the frequency 

and percentage of cases within each node. 
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Figure 5.6 Regression tree modelling possession time (% of disposals < 2s). Environmental 

constraints (cluster memberships) and individual constraints (age, games 

played, height, mass, position) were included as independent variables. The top 

number reported in each node represents the estimated outcome value (% of 

disposals < 2s). The bottom values in each node represent the frequency and 

percentage of cases within each node. 

5.5 Discussion 

This study demonstrated a method to evaluate player performance in a team sport training 

environment by considering the interaction of individual, environmental and task constraints. 

Results showed that the environmental constraint of activity type was the most influential on 

player performance, indicating that players adapted their performance to suit the training activity 

design. The individual constraints collected in this study had limited influence on player 

performance, suggesting that coaches achieved activity designs that constrained player behaviour 

in a similar way, regardless of individual characteristics. In one exception however, games played 
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showed an interaction with activity type one, suggesting that experienced players were better able 

to perform more disposals than less experienced teammates. Task and environmental constraint 

interaction was also demonstrated, indicating the environmental constraint of activity types 

influenced the levels of pressure and possession time however, the individual constraints collected 

in this study did not influence this. 

Individual constraints, when considered alone, did not influence disposal frequency or kick 

percentage, nor did they influence the task constraints of pressure or possession time. This 

contradicts other work where individual constraints have been influential on skilled performance 

(Almeida et al., 2016; Cordovil et al., 2009; Pocock et al., 2018, 2021). This result may be 

explained by the wide range of varying activity types included in the current study, leading to 

variability in performance. Individual constraints are perceived by coaches as an important feature 

to consider in practice design (Pocock et al., 2020). However, these results indicate that there 

were no general trends in player performance which were applicable across all activity types. 

Further context to these constraints is required, thereby helping coaches evaluate player 

performance more effectively. This result may also mean that different or more sensitive, 

individual constraints need to be considered in future research, inclusive of physiological qualities 

or psychological attributes. 

The k-means clustering was beneficial to determine associations between the practitioner’s 

activity designs and player performance whereby, activities which result in similar player 

performances can be identified. For example, the activities included in cluster one were limited 

to handballs only and represented tasks with a rule constraint which did not permit kicking. 

Contrastingly, cluster two activities were designed with constraints which encouraged a high 

proportions of quick kicks with low levels of pressure. This suggests, within this group of 

activities, that players were able to identify passing options quickly and dispose of the ball before 

defensive pressure could be applied. K-means clustering could be helpful for activity prescription 

allowing coaches to select a range of activities from particular groups which meet certain training 

targets, such as a focus on kicking or performing disposals under pressure. Accordingly, coaches 
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may use this to inform an approach which emphasises training design rather than direct 

instruction, to shape player behaviour and facilitate skill development (Woods, McKeown, 

Rothwell, et al., 2020). Additionally, the clustering approach is flexible to be applied to any team 

and across any parameters deemed important by practitioners.   

Including the environmental constraint of activity type with individual constraints in the 

regression trees was able to improve the model’s accuracy. This result was expected as activity 

type was previously grouped according to the player performance metrics. However, the 

individual constraints included in the models had limited capacity in explaining further variance 

within each activity type. This result highlights the capability of the coaches to design activities 

that constrain player performance similarly. Thus, the minimal influence of individual constraints 

is a beneficial insight for practitioners, identifying the consistent influence of their activity design 

across all players, regardless of individual characteristics. In one exception, an interaction 

between activity type one and games played influenced disposal frequency. According to the 

cluster centres, activity type one was characterised as a fast game with high disposal frequency 

using all handballs, high levels of pressure and high levels of temporal constraints. Accordingly, 

within this group of activities, experience was important in shaping how often a player performed 

a disposal. This may be due to the higher skill of experienced players to perform under the high 

temporal and pressure constraints, positioning themselves more optimally to receive and dispose 

the ball. Alternatively, experienced players may be more frequently sought out by teammates as 

passing options. Importantly, the model identified a critical value for experience of 60 games, 

which may be leveraged by coaches to inform individual differences in performance during this 

activity type. In this case, players could be divided into “more experienced” (> 60 games) and 

“less experienced” (< 60 games) groups. Coaches may utilise this grouping to achieve their 

training goals, purposefully accelerating the skill development of less experienced players by 

placing them against more experienced ones. Alternatively, less experienced players may train 

against other less experienced players, potentially increasing their disposal frequency and 

providing them with more learning opportunities. Less experienced players could also be 
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provided additional training activities after the session, or the activity could be run for longer to 

allow these players to accrue more disposals. This result exemplifies how the analysis can be 

practically implemented to assist a coach’s ability to structure and plan training sessions while 

considering important individual differences (Chow, 2013).  

The environmental constraint interacted with the two task constraints of pressure and possession 

time however the regression trees were only able to explain 22% and 21% of the variance in these 

constraints, respectively. This indicated that these constraints were highly variable within activity 

types and may be a result of constraint manipulations implemented by coaches which were not 

collected in this study. For example, field dimension or the number of players may have been 

manipulated from session to session, according to changes in player availability or to directly 

influence player performance. Indeed, field dimension and the number of players has been shown 

to influence player performance in AF (Bonney et al., 2020; Fleay et al., 2018; Teune, Spencer, 

et al., 2021; Teune, Woods, et al., 2021a). In the present study, only the environmental constraint 

was shown to influence the task constraints, with none of the individual constraints included in 

the resulting models. Accordingly, alternate or improved measures of individual constraints may 

need to be collected to determine their influence on player performance. For example, players 

were allocated into one of four positions; forward, midfield, defender or key position. However, 

unlike some sports, such as netball, the nature of positions in AF is dynamic. More detailed 

position groupings may influence the models such as including small general forwards and 

defenders, or rucks, as used in other AF work (McIntosh et al., 2018a). 

Given the applied nature of the current study, there are limitations that require recognition. First, 

specific constraints such as field dimensions, number of players or task rules were not collected. 

This could have been manipulated by coaches between sessions and may therefore have 

influenced behaviour. Additionally, environmental constraints, like fluctuations in wind, rain, 

ambient temperature or time in session of practice task were not collected, which may have 

influenced player performance. Finally, given the broad time range in which data collection 

occurred, it is possible that player performance adapted over time according to changes in tactical 
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directions of coaching staff. Thus, future work may benefit from measuring training performance 

adaptations over longitudinal timelines to inform training design (Farrow & Robertson, 2017).  

5.6 Conclusion 

This study developed a method to measure interaction between individual, environmental and 

task constraints during AF training. The environmental constraint, activity type, was the most 

influential on individual training performance highlighting the achievement of coaches to design 

training which constrains all players similarly. The individual constraint of player experience 

interacted with one activity type. It was shown how the analysis can be used to identify critical 

constraint values, such as 60 games played, which can inform training design by allocating players 

into specific groupings. This study is presented as a practical tool for sport practitioners and 

coaches to evaluate the performance of their players during training and inform the design and 

structure of training activities. 
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CHAPTER SIX – STUDY IV 

Chapter Overview 

Chapter Six is the fourth of five studies contained in this thesis. While Chapters Two and Three 

supported sport practitioners in their evaluation and design of training activities, Chapter Six 

explores how to inform the duration of such activities. This builds upon the previous chapters 

by addressing an additional component of training prescription and by integrating a measure of 

the athlete’s physical output, Specifically, this study investigates how univariate and 

multivariate change point detection may be applied to inform activity duration in AF.  

The content of this chapter is an accepted manuscript of an article published by PLoS Journals in 

PLoS ONE on 21st March 2022, available at: 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0265848
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A method to inform team sport training activity duration with change point analysis 

6.1 Abstract 

Duration is a key component in the design of training activities in sport which aim to enhance 

athlete skills and physical qualities. Training duration is often a balance between reaching skill 

development and physiological targets set by practitioners. This study aimed to exemplify change 

point time-series analyses to inform training activity duration in Australian Football. Five features 

of player behaviour were included in the analyses: disposal frequency, efficiency, pressure, 

possession time and player movement velocity. Results of the analyses identified moments of 

change which may be used to inform minimum or maximum activity durations, depending on a 

practitioner’s objectives. In the first approach, a univariate analysis determined change points 

specific to each feature, allowing practitioners to evaluate activities according to a single metric. 

In contrast, a multivariate analysis considered interactions between features and identified a single 

change point, reflecting the moment of overall change during activities. Six iterations of a training 

activity were also evaluated resulting in common change point locations, between 196 and 252 

seconds, which indicated alterations to player behaviour between this time period in the training 

activities conduction. Comparisons of feature segments before and after change points revealed 

the extent to which player behaviour changed and can guide such duration decisions. These 

methods can be used to evaluate athlete behaviour and inform training activity durations.   
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6.2 Introduction 

Sport practitioners often use games-based training activities, or drills, to facilitate the 

development of physiological capacities and skill qualities of team sport athletes (Corbett et al., 

2018; Gabbett et al., 2009)]. A key component of the design of such training activities relates to 

their duration, with practitioners needing to consider the appropriate time for skill learning to 

occur, while balancing physiological targets needed to improve performance and minimise injury 

risk (Vickery & Nichol, 2020). When evaluating training duration, contextualising player 

behaviour as a function of time provides more detailed insights into how and why certain 

outcomes have occurred (Glazier, 2017). For example, Australian football (AF) players reduce 

aggregate physical and technical performance following periods of peak physical intensity in 

match play (Black et al., 2016) or during the second half of match play (Black, Gabbett, Naughton, 

et al., 2019). In football, second half physical activity is influenced by first half activity levels 

(Sparks et al., 2016). Accordingly, such insights allow training to be designed more specifically 

to player activity levels. Suitable time sensitive data analyses may help inform training duration 

by providing measures of the fluctuation of player behaviour during training activities, which may 

indicate a decline in the efficacy of the aims of a particular activity. However, specific techniques 

to achieve this have not yet been applied to support training prescription. 

To inform and evaluate training in team sports, data are typically collected from multiple sources, 

such as player tracking devices or manual annotation. Commonly, these data are reported using 

aggregate measures such as distance run, average speed or the volume of skill executions (Corbett 

et al., 2018; Gabbett et al., 2009). Such measures have also been compared with aggregate match 

data to determine the extent to which training activities reflect match demands (Browne et al., 

2020; Corbett et al., 2018; Ireland et al., 2019). However, aggregate measures remain limited in 

utility as they do not represent the fluctuation of such measures as a function of time. In attempts 

to alleviate this, player speed has been analysed during matches as subsets of varying time periods 

such as rolling (between one and ten minutes) time windows (Clarke et al., 2021), five-minute 
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blocks (Carling & Dupont, 2011), sub-phases of play (Rennie et al., 2020) or player on-field stints 

(Corbett et al., 2017).  

Analyses of measures in a continuous format may yield further detailed insights. The use of 

continuous measurement is further supported by the framework of the constraints-led approach 

(Davids et al., 2008). This framework conceptualises constraints, such as pressure and time, as 

boundaries of the performer-environment system which shape the emergence of skilled 

behaviour. Specifically, constraints emerge and decay over varying time scales, and capturing this 

change over time is crucial in understanding and contextualising athlete behaviour (Balagué et 

al., 2019; Newell, 1986). Accordingly, a continuous time-series analysis, which evaluates 

changing contextual information and identifies when meaningful change has occurred, could be 

beneficial in informing training durations.  

Change point detection, also known as time series segmentation, is an analytical method of 

determining specific locations in a time-series when a meaningful change has occurred. This 

algorithm can be used to detect single or multiple change points and has been widely applied in 

areas such as medical monitoring and climate change detection (Aminikhanghahi & Cook, 2017). 

In sport, change point detection has been applied in AF match play to segment player velocity 

data to identify potential interchange moments (Corbett et al., 2019). Recent advances to change 

point detection can also now perform multivariate analysis (Bardwell et al., 2019). In this 

approach, multiple sequences of data are combined to form a single time series with multiple 

observations, which allows for the detection of change points common across multiple time series 

(Bardwell et al., 2019). Multivariate change point detection may be beneficial in sport where 

multiple sources of data can be integrated to evaluate a single activity (Browne et al., 2021; 

Glazier, 2017). For example, athlete physical and skilled behaviour could be analysed together to 

detect moments of change within specific team-sport training activities. This may inform activity 

duration by objectively identifying when skilled and/or physical behaviour deviates meaningfully 

from specific training objectives. Thus, this study aimed to apply change point analysis as a 

method to inform team sport training activity duration, exemplified in AF.   
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6.3 Methodology 

6.3.1 Participants 

Participants were a convenience sample of listed players from a single professional AF club (n = 

43; 84 ± 8.2 kg; 187 ± 8.1 cm; 24.5 ± 3.6 y). All players were injury free at the time of 

participation. Ethics approval was obtained from the Victoria University Human Research Ethics 

Committee (application number: HRE20-138). Written consent was provided by the club to use 

de-identified data collected as regular procedure during practice. 

6.3.2 Data Collection 

Data were collected during the 2021 Australian Football League pre-season. Through consultation 

with coaching staff and the literature (Corbett et al., 2018; Teune, Woods, et al., 2021b), five 

features of player behaviour were identified to evaluate a training activity (disposal frequency, 

efficiency, pressure, player possession time and player velocity). Skill event data and player 

tracking data were collected for each training activity repetition (n = 6) as it occurred during 

regular pre-season training sessions. The training activity was a small sided game with even 

teams, with each team being required to score at opposing ends of the ground. Each repetition 

ranged from ten to twelve players per team, depending on player availability, with a field area of 

approximately 90 x 60 m and a minimum duration of four minutes. For each activity repetition, 

team selection was quasi-randomised by coaching staff to standardise player positions and skill 

level. Typical AF rules were governed during the activities by a single coach. 

To determine velocity during each training activity repetition, each participant wore a 10 Hz 

Global Positioning System device (Vector S7, Catapult, Catapult Sports Ltd, Melbourne) placed 

on their backs between their shoulder blades. Each participant wore the same device during all 

activities to reduce inter-unit error. Upon completion of the training sessions, tracking data was 

downloaded for each activity using the associated software package (Openfield, v3.3.0). The 

tracking data comprised a velocity measurement at each 10 Hz timestamp, for each player and 

activity, before being subsequently exported for analysis.  
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All data analysis was completed using the R programming language with the RStudio software (R 

Core Team, 2019) (version 1.3.1093). Velocity data was down sampled to a rate of 1 Hz, by 

calculating the mean velocity across every 10 fixed samples. This sample rate was used to 

simplify the merging process with skill event data. To determine the movement velocity during 

each activity repetition, the average velocity across all players was calculated at each 1 Hz time 

point.  

To collect the skill event data, each training activity repetition was filmed with a two-dimensional 

camera (Canon XA25/Canon XA20) at 25 Hz from a side on or behind the goal perspective. After 

the training sessions, notational software (Hudl Sportscode, v12.2.44) was used to manually 

quantify the skill event data. A custom code window was used to record each kick or handball (a 

“disposal”) according to its type (effective or ineffective) and two constraints on the disposal; 

possession time (<2 s or >2 s) and physical pressure (pressure or absent). Effectiveness was 

defined in accordance with Champion Data (Melbourne, Pty Ltd), where a handball or kick <40 

m was deemed effective, if the intended target retained ball possession. A kick >40 m was deemed 

effective if kicked to a 50/50 contest or outnumber to the advantage of the attacking team. 

Possession time was defined as the time period between a player’s ball possession gain and the 

moment of ball disposal. Pressure was defined as the physical presence of an opposition player 

within 3 m of the ball-carrier at the time of ball disposal. Two coders notated effectiveness and 

three coders notated the constraints (pressure and possession time). To assess the reliability of the 

notational coding, 168 disposals across three activities – observations not used in analysis – were 

selected for testing. The Kappa statistic (Landis & Koch, 1977) resulted in “almost perfect” inter-

rater reliability for each variable (>0.8). Intra-rater reliability testing was completed after 14 days 

which resulted in Kappa statistics ranging from “substantial” (0.67- 0.8) to “almost perfect” across 

all coders (>0.8). All skill event data was then exported with a time-of-day timestamp rounded to 

the nearest second.  

For each training activity repetition, the skill event data was joined with the velocity data 

according to the timestamp. The first and last disposal marked the beginning and end of each 
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activity repetition and was used to determine a relative timestamp in the dataset where each 

repetition began at zero seconds. To determine disposal frequency as a time series, a rolling sum 

was applied using a 60 s window. This was achieved using the rollsum function from the zoo 

package (Zeileis & Grothendieck, 2005). A 60 s window was selected as practitioners commonly 

prescribe activity durations in whole minutes and this function would evaluate a metric analogous 

to those commonly reported (e.g. metres per minute) in physical training literature (Black et al., 

2016; Black, Gabbett, Naughton, et al., 2019). To determine efficiency as a time series, the 

proportion of cumulative effective disposals to cumulative total disposals was represented as a 

moving percentage over time. To determine pressure as a time series, the proportion of cumulative 

pressured disposals to cumulative total disposals was represented as a moving percentage over 

time. To determine possession time as a time series, the proportion of cumulative disposals with 

<2 s possession time to cumulative total disposals was represented as a moving percentage over 

time. This process resulted in four sequences to describe the skilled behaviour during each training 

activity: disposal frequency (p/min), efficiency (%), pressured disposals (%) and disposals <2 s 

(%). As an example, efficiency is represented via binning (Fig 6.1a) and as a continuous series 

via the above methods (Fig 6.1b) to contrast the effect of the time series conversion. 



170 

 

6.3.3 Statistical Analysis 

To estimate the time point during the activities when properties of the time-series change for each 

feature, the cpt_mean function from the changepoint package was used (Killick & Eckley, 2014). 

This function identifies the time point in a sequence where an abrupt change in the sequence mean 

occurs. The method chosen was AMOC (at most one change) which specifies the algorithm to 

search for a maximum of one change point in the sequence. This was specified due to the short 

duration of activities and for feasibility reasons for the end user. The change point algorithm was 

applied to the sequences of each of the five features for each activity. Each sequence was 

subsequently segmented according to its change point location.  

To determine a single time location common for all features during each activity repetition, a 

multivariate change point analysis was performed (Bardwell et al., 2019). To achieve this the mrc 

Figure 6.1 Example from a single activity repetition displaying disposal efficiency 

represented in 30 s bins (A) and continuously (B). Effective and ineffective 

disposal events are represented by the points. Three periodic annotations are 

provided to help describe the sequence calculation in panel B. 
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function from the Changepoint.mv package was used (Bardwell et al., 2020). This function 

determines common change point locations across multiple sequence inputs of the same length. 

The features of each training activity were normalised to allow comparison across different 

measures. The mrc function was applied across the normalised feature sequences for each activity. 

The function parameters were set where the cost was “mean”, specifying the algorithm to search 

for a change in the sequence means, and the maximum number of change points to search for was 

set to one. This parameter was chosen to locate a single change point common across all five 

features of the activity. Each activity was then segmented according to the identified multivariate 

change point location.  

6.4 Results 

Descriptive statistics are presented as means and standard deviations. Across six repetitions of the 

training activity, the mean duration was 298 ± 17 seconds, disposal frequency was 5.7 ± 1.1 

disposals/min, efficiency was 79.5 ± 9.1%, pressure was 40.6 ± 16.3%, possession time was 27.5 

± 19.6% and velocity was 127 ±.7.2 m•min-1. The total number of skill involvements and activity 

duration included in the sample was 185 and 29.2 minutes, respectively.  

To demonstrate the univariate and multivariate change point analysis approach, the results for a 

single activity repetition are reported in Fig 6.2 and 6.3, respectively. The left-hand column of 

panels visualises when the change points occurred and the right-hand column of panels visualises 

the feature distribution, before and after the change point, to describe the extent of change. The 

univariate change point analysis of disposal frequency, efficiency, pressure, possession time and 

velocity resulted in change point located at 85, 172, 124, 64 and 135 s respectively (Fig 6.2). For 

each feature the mean and standard deviation of the segments, before and after the changepoint, 

are reported in Fig 6.4. The multivariate changepoint approach resulted in a single changepoint 

for all skill features located at 204 seconds (Fig 6.3). For each feature the mean and standard 

deviation of the segments, before and after the changepoint, are reported in Fig 6.4.  
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Figure 6.2 A univariate changepoint analysis of a single training activity. The left-hand 

column of panels displays the feature and the calculated changepoint location 

(black vertical line). The right-hand column of panels displays the distribution 

of the feature in each segment, before and after the changepoint. 
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To inform activity duration, the results of the multivariate changepoint analysis on each activity 

repetition was visualised in Fig 6.5. Change point locations occurred at 196, 203, 205, 210, 219 

and 252 s. Across six repetitions the mean location was 214.2 s with a standard deviation of 20.1 

s. 

Figure 6.3 A multivariate changepoint analysis of a single training activity. The left-hand 

column of panels displays the feature and the calculated changepoint location 

(black vertical line). The right-hand column of panels displays the distribution 

of the feature in each segment, before and after the changepoint. 
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Figure 6.4 Summary statistics for segmented features according to a univariate and 

multivariate change point analysis of a single training activity. The orange point 

and error bars display the mean and one standard deviation of the segment, 

respectively. The black points each represent one second of the underlying 

segmented feature. 
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6.5 Discussion 

This study presented a univariate and multivariate approach to determining change points during 

training activities that could be utilised by practitioners to inform training duration. Results 

demonstrated that the univariate approach was advantageous for providing information specific 

to each activity feature, which is useful for evaluating training according to a single metric. 

Comparatively, the multivariate approach is advantageous in analysing the interaction between 

multiple data sources, providing a simple output for the end user to inform a moment of overall 

change in the training activity. To guide informed activity duration decisions, visualisations were 

Figure 6.5 The sequences and multivariate changepoint locations for each feature of six 

activity repetitions. The feature value through the duration of the activity is 

displayed with straight vertical lines indicating a change point location. For 

velocity, the rolling mean over the previous 60 s is displayed to improve its visual 

interpretability. Feature sequences and changepoint locations are coloured 

according to activity repetition. 
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provided, summarising the univariate change point analysis of six repetitions of the training 

activity. 

In the application of a univariate change point analysis, each of the five features were analysed 

separately. By resolving the change point location of each feature, a practitioner can identify when 

each feature meaningfully changed. To know the magnitude of change, the descriptive statistics 

comparing segments before and after the changepoint are shown in Fig 6.4. Fig 6.2 provides an 

example visualisation which may be useful for practitioners, displaying both when and to what 

extent each feature has changed during the activity.  

According to key ideas of the constraints-led approach, player behaviour is continuously shaped 

under the interaction of various constraints  (Davids et al., 2008). The change point analysis used 

here may, therefore, help practitioners identify periods of behavioural change in a continuous 

manner. For example, the change point for pressure was identified at 124 seconds, reducing the 

mean and standard deviation by 33.1% and 20.5%, relatively, after this point (Fig 6.4). A potential 

explanation for this observation is the effect of fatigue, which can impact a defending player’s 

capacity to physically pressure the ball-carrier. Thus, it is possible that defenders may have 

adapted how they defended – deciding to cover or protect space, rather than chasing the ball-

carrier. In this case, the change point could be used to identify how a new behavioural pattern has 

emerged, which can inform a practitioner’s decisions regarding training design and duration in 

future iterations of the activity. Indeed, research has measured the aggregate influence of 

constraints, such as field area (Fleay et al., 2018), game type (Nunes et al., 2021) or playing 

number (Bonney et al., 2020) on physical and technical behaviour, however this relationship as a 

function of time presently remains unknown. 

Determining a change point for each feature separately does have practical importance, allowing 

an activity to be evaluated according to a specific metric. For example, if a practitioner is seeking 

to ensure the efficiency of skills during a practice task does not drop below a certain level, a 

change point may be useful for noting when a meaningful shift has occurred, thereby allowing 

them to affect the design of the task. Further, univariate change point analysis has the potential to 
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benefit practitioners with varying responsibilities, such as a conditioning coach and a skills coach. 

A conditioning coach, for example, can examine the change point for velocity to monitor the 

physiological demands on the players, while the skills coach can examine the change point for 

efficiency to monitor the difficulty of the task. This analysis provides a platform for collaboration 

between coaches to inform the duration of training that provides adequate time to achieve both 

physiological and skill targets. Importantly, although analysis has occurred separately, each of 

the features can still be visualised together (Fig 6.2), further encouraging collaboration between 

staff when evaluating the activity (Browne et al., 2021).  

The multivariate change point approach analysed the interaction between features and identified 

one change point common across all features at 204 seconds (Fig 6.3). In the field, this approach 

provides a relatively simple output for practitioners, guiding decisions about practice design 

informed by a “general” or “overall” change point. As shown in Fig 6.4, the standard deviations 

of each feature after the change point were reduced. The larger variability of behaviour before the 

change point may, therefore, indicate exploratory actions of players searching for a stable solution 

suitable to the constraints of the task (Davids, Glazier, et al., 2003). Depending on the 

practitioner’s objective for the activity, the identified change point may then serve as a potential 

“cut-off” point for facilitating exploratory player behaviour or a “minimum duration” required to 

provide adequate time for players to attune to their environment. Thus the change point can serve 

to analyse acute changes in the learning process to inform training design however, these should 

be considered within the longer time-scales of the learning process, such as weeks and months  

(M. O. Sullivan et al., 2021). 

To further support a practitioner’s decision making regarding practice design, six iterations of the 

same activity were analysed, in a multivariate manner, to evaluate trends in their change points. 

The visualisation in Fig 6.5 presents an exemplar technique to communicate information to 

practitioners on change point locations and feature values during each activity repetition. Five of 

the six change points appear similar across each repetition (Fig 6.5). From a practice design 

perspective, this gives practitioners confidence that during this period there is a change in overall 
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player behaviour. This may serve as a more optimal activity duration to prescribe during future 

iterations of the activity, reducing time spent in undesired behavioural states. Importantly, 

variable behavioural states are likely to occur during match play and may reflect a training target 

for practitioners.  The analysis may then aide to increase the efficiency of training sessions by 

saving valuable training time. In Fig 6.5, each activity repetition has been colour-coded so 

practitioners may identify specific results, such as an outlier, if desired. Retrospective inspection 

of video footage may provide additional information (e.g. weather or player injuries) which may 

assist in explaining the result.   

An important practical aspect of change point analysis is that it accepts various metric 

representations, such as a rolling mean for disposal frequency and continuous velocity data from 

player tracking devices. This increases versatility in an environment, such as sport, where multiple 

data types are common. Specifying the algorithm to search for one change point provides a simple 

“before” and “after” summary of the data which improves the interpretability for practitioners. 

Moreover, as the advancement of technology continues in sport, the implementation of an on-line 

change point analysis could provide further benefits to practitioners, which could be applied to 

provide real-time feedback during an activity. This could identify the moment a behavioural 

change occurs to signal the end of an activity rather than relying on a predetermined time. 

Alternatively, the change point may present a critical moment for practitioner intervention during 

a practice task. For example, certain constraints could be manipulated to perturb or preserve the 

efficiency of disposals during a practice task, such as introducing number imbalances to make it 

easier or harder for a team’s offence. This may be used to disrupt the players transition into a 

stable state, encouraging further exploration, or can nudge the players towards more optimal 

stable solutions (Chow, 2013). Irrespective, this analysis demonstrates how empirical and 

experiential knowledge of practitioners can be blended, exhibiting a balanced interaction between 

“man and machine” (Robertson, 2020), while still preserving the domain specific expertise of 

practitioners (Greenwood et al., 2014).  
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Due to the applied nature of this research, there are some limitations. Only four skill features and 

one physical feature were collected. To increase to the understanding of player behaviour over 

time, other features, like target pressure, kick distance, high-speed running or sprint frequency 

could be included. Additionally, parameters for the change point analysis were set to search for 

one change point. Thus, future work could investigate the impact of multiple change points in 

analysing behaviour fluctuations during training activities. While a 60 s window was applied to 

determine disposal frequency, future work could investigate the influence of other rolling 

windows on the stability of this metric. Further, future work could explore change point analysis 

between athletes to account for potential individual differences which may exist. This may 

support the design of player-specific training durations, information which would be of use to 

conditioning and medical staff when re-integrating players into team training following injury. 

Finally, increasing the number of activity iterations presented here from six may help alleviate 

potential confounding factors of results, such as fluctuating weather conditions or teams.  

6.6 Conclusion 

This study applied a univariate and multivariate change point analysis to inform training duration. 

The univariate approach provided change points for each feature, information that would be 

beneficial for practitioners seeking specific guidance on the evaluation of key metrics to inform 

the duration of training activities. The multivariate approach provided a single time point of 

general change and may be broadly indicative of players transitioning into different behavioural 

states. Evaluating multiple repetitions of the same activity is useful for finding trends in 

behavioural change and can identify critical points during an activity which can guide decisions 

around activity duration or even constraint manipulation. Given the practicality of the results 

presented here, practitioners are encouraged to adapt similar analyses to inform their own training 

designs. 
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CHAPTER SEVEN – STUDY V 

Chapter Overview 

Chapter Seven is the fifth of five studies contained in this thesis. This chapter expands on the 

previous studies within this thesis, which focus on skilled behaviour, by integrating aspects of 

physical and tactical performance. Furthermore, where Chapters Four and Five explored training 

evaluation across multiple activities, this chapter supports the analysis of specific behaviours 

within a single activity. Specifically, this study explores methods to evaluate the influence of a 

team number constraint manipulation on interactions between technical, tactical and physical 

player behaviour.  

The content of this chapter is an accepted manuscript of an article published by PLoS Journals in 

PLoS ONE on 2n2 December 2022, available at: 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0278644 

  

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0278644
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Evaluating the influence of a constraint manipulation on technical, tactical and physical 

athlete behaviour 

7.1 Abstract 

Evaluating practice design is an important component of supporting skill acquisition and 

improving team-sport performance. Constraint manipulations, including creating a numerical 

advantage or disadvantage during training, may be implemented by coaches to influence aspects 

of player or team behaviour. This study presents methods to evaluate the interaction between 

technical, tactical and physical behaviours of professional Australian Football players during 

numerical advantage and disadvantage conditions within a small-sided game. During each 

repetition of the game, team behaviour was manually annotated to determine: repetition duration, 

disposal speed, total disposals, efficiency, and disposal type. Global Positioning System devices 

were used to quantify tactical (surface area) and physical (velocity and high intensity running) 

variables. A rule association and classification tree analysis were undertaken. The top five rules 

for each constraint manipulation had confidence levels between 73.3% and 100%, which 

identified the most frequent behaviour interactions. The classification tree included three 

behaviour metrics and identified two unique movement solutions for each constraint 

manipulation. These results may inform if player behaviour is achieving the desired outcomes of 

a constraint manipulation, which could help practitioners determine the efficacy of a training task. 

Sport practitioners can adapt these methods to evaluate constraint manipulations and inform 

practice design. 

  



197 

 

7.2 Introduction 

Practice is a crucial part of athlete development, supporting learning and performance (Davids et 

al., 2008). Sport coaches should therefore consider the design of practice tasks and activities 

which most effectively achieve their goals, whilst facilitating skill acquisition (Chow, 2013; 

Woods, McKeown, Rothwell, et al., 2020). A pedagogical approach, which may be used by 

practitioners to support the design of practice tasks, is constraint manipulation (Chow, 2013; 

Renshaw & Chow, 2019). Constraints represent boundaries or limitations to an athlete’s 

interactions with their environment and the task being performed (Newell, 1986). Constraint 

manipulations have been effective at guiding movement exploration and enhancing skill 

development in baseball batting (R. Gray, 2020) and swimming (Komar et al., 2019). Specifically, 

in team sports, constraints such as field size or task rules, may be modified to guide the intentions, 

perceptions and actions of athletes while performing a practice task (Seifert et al., 2017). Athletes 

therefore must adapt their tactical (e.g. spatiotemporal movements), physical (e.g. distance and 

speed of locomotion), and/or technical (e.g. ball passing movements) behaviours to form 

movement solutions which aim to satisfy the constraints of a given task (Torrents et al., 2016). 

Evaluating the influence of a constraint manipulation on athlete behaviour is useful to understand 

efficacy and potentially support practitioners in designing practice tasks (Teune, Woods, et al., 

2021a). The effect of constraint manipulations, including field size (Fleay et al., 2018; Nunes et 

al., 2021; Timmerman et al., 2017), the number of players (Bonney et al., 2020; Timmerman et 

al., 2019; Vilar et al., 2014) and task rules (Correia et al., 2012; Timmerman et al., 2019; 

Travassos et al., 2014), on multiple facets of team and athlete behaviour, have been examined. To 

exemplify, field size manipulations can influence the collective coordination of players on the 

same and opposing teams (Frencken et al., 2013; Travassos et al., 2014). Field size is also 

positively related to the physical output of players and can be negatively related to the frequency 

of some technical actions, such as tackles or passes, in Australian football (AF) and field hockey 

(Fleay et al., 2018; Timmerman et al., 2017). However, the interactions between a wider range of 
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player behaviours, including technical, tactical and physical attributes, when manipulating 

constraints in AF training remains to be explored. 

The constraints-led approach is a conceptual framework which advocates for constraint 

manipulation to facilitate skill development (Davids et al., 2008; Renshaw & Chow, 2019). 

According to the constraints-led approach, constraints do not act in isolation but interact with one 

another, often in a non-linear manner (Chow, 2013). Thus, a challenge for practitioners is to 

understand how the manipulation of a single constraint can impact the many facets of an athletes 

performance (Balagué et al., 2019). Accordingly, it is pertinent to measure constraint interaction 

in order to provide appropriate contextual information when evaluating player behaviour (Browne 

et al., 2020; Browne, Sweeting, et al., 2019). Importantly, contextualising constraint interactions 

highlights how the expression of a constraint changes when considered alongside other 

constraints. Further, from an applied perspective, the constraints-led approach has been suggested 

as an appropriate framework to support inter- and multi-disciplinarity in high performance 

support teams (Browne et al., 2021; Glazier, 2017). For example, evaluating the skilled and 

physical output of athletes, associated with constraints manipulation in practice tasks, can foster 

interaction and collaboration between high performance and sports coaching staff (Corbett et al., 

2018; Teune et al., 2022). To this end, tools or methods which can support practitioners to 

evaluate constraint interaction may enhance their training design. 

Multivariate analytical techniques are advantageous for understanding constraint interaction 

(Browne et al., 2021; Browne, Sweeting, et al., 2019). Multivariate techniques, including rule 

association or classification and regression trees, have been applied to evaluate AF match kicking 

(Browne, Sweeting, et al., 2019; Robertson et al., 2019a), goal kicking (Browne et al., 2022) and 

skilled actions during training activities (Teune, Woods, et al., 2021a). The advantages (and 

disadvantages) of these analytical approaches have been discussed regarding the prevalence of 

constraints during AF goal kicking (Browne et al., 2022). Specifically, the interpretability and 

flexibility of analytical outputs should be considered to suit the needs of coaches and facilitate 

practical implementation of findings. Accordingly, the application of these techniques to inform 
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team sport training design may be beneficial. Methods or tools which can inform training design 

may support practitioners’ decision making by condensing the volume of information required to 

consider complex constraint interactions (Browne et al., 2021; Pol et al., 2020). Thus, the current 

study aimed to demonstrate methods to evaluate the influence of a numerical constraint 

manipulation on the interaction between technical, tactical and physical player behaviour. 

7.3 Methodology 

7.3.1 Participants 

Participants were a convenience sample of professional players from one AF club (n = 41, height 

= 187.7 ± 8 cm, mass = 84.4 ± 8.6 kg, age = 24.7 ± 3.8 years). All players were injury free at the 

time of participation. Ethics approval was obtained from the Victoria University Human Research 

Ethics Committee (application number: HRE20-138). Written consent was provided by the club 

to use de-identified data collected from the participants, as regular procedure during practice.  

7.3.2 Data Collection 

Data were collected for a single training task repeated (n=69) throughout the 2022 Australian 

Football League pre-season training period (November 2021 – February 2022). Team selection 

was quasi-randomised by coaching staff on each occasion to balance team skill level. The training 

task comprised a small-sided game involving two teams of players competing against each other 

on a field approximately 85 m x 65 m. The aim of the task was to move the ball from one end of 

the field to the other, while the defending team aimed to oppose this ball movement. A team 

number constraint was manipulated by coaches whereby one team of seven competed against a 

team of eight, providing each team with either a numerical advantage (plus one) or disadvantage 

(minus one). At the halfway point during each training session, the conditions were swapped so 

that both teams experienced each numerical constraint manipulation, in attack and defence. Task 

repetitions were defined by the sequences of play during the training activities, beginning with 

the ball at one end of the field until completion with the ball at the opposite end. Accordingly, 
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repetitions were collected for both the numerical advantage (n = 32) and the disadvantage (n = 

37) conditions. 

To collect data pertaining to the technical skill of the players, the training activities were filmed 

from a side-on and behind-the-goals perspective with a two-dimensional camera (Canon 

XA25/Canon XA20). The two angles were subsequently aligned after the session for manual 

annotation. Skill data were collected via notational analysis software (Hudl Sportscode v12.4.2) 

using the aligned vision. Each pass (or “disposal”) was manually coded according to the type 

(kick or handball) and effectiveness (effective or ineffective). A kick or handball < 40 m, in which 

the intended target retained possession of the ball, or a kick > 40 m to a 50/50 contest or advantage 

to the attacking team, was deemed effective, in accordance with Champion Data (Melbourne, Pty 

Ltd), the commercial statistics provider for the Australian Football League. A single coder notated 

this information. Thus, intra-rater reliability was examined via the kappa statistic (Landis & Koch, 

1977), with a 14 day intra-reliability test resulting in “almost perfect” agreement (0.95). Using 

this information, the efficiency, percentage of kicks, disposal count and disposal speed were 

calculated for each repetition (Table 7.1).  
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Table 7.1 Player behaviour metrics and associated definitions. 1SD = one standard 

deviation. 

Type Metric Definition 

Technical 

Efficiency (%) Percentage of effective disposals to total disposals 

Percentage Kicks (%) Percentage of kicks to total disposals 

Total disposals (#) Total number of disposals performed 

Repetition duration (s) Time from beginning to end of repetition 

Disposal speed 

(disp/min) 

Total disposals divided by repetition duration in 

minutes 

Tactical 

Surface Area (m2) 

Average surface area of attacking team minus average 

surface area of defending team 

1SD Surface Area (m2) 

Standard deviation of surface area of attacking team 

minus standard deviation of surface area of defending 

team 

Physical 

Velocity (m/min) 

Average velocity of attacking team minus average 

velocity of defending team 

1SD Velocity (m/min) 

Standard deviation of velocity of attacking team 

minus standard deviation of velocity of defending 

team 

HIR (m/min) 

Average HIR metres per minute of attacking team 

minus average HIR metres per minute of defending 

team 

1SD HIR (m/min) 

Standard deviation of HIR of attacking team minus 

standard deviation of HIR of defending team 

 

To determine tactical and physical movement of players during the training tasks, spatiotemporal 

positioning and velocity of each participant was collected using 10 Hz Global Positioning System 



202 

 

devices (Vector S7, Catapult, Catapult Sports Ltd, Melbourne) which were placed on the 

participant’s back, between their shoulder blades. Each participant wore the same device during 

all activities to reduce inter-unit error. After session completion, tracking data for each participant 

was downloaded using the associated software (Openfield v 3.3.1) and exported for analysis. This 

data comprised latitude, longitude and velocity values at each 10 Hz timestamp for each 

participant. Each participant’s tracking data was then down sampled to a rate of 1 Hz by taking 

the mean latitude, longitude, and velocity across every ten fixed samples. This was done to 

simplify the subsequent merging process with skill event data. This, and all subsequent data 

analysis, was completed using the R programming language (R Core Team, 2019) with the 

RStudio software (v2021.09.2). 

Participant spatiotemporal data then was used to determine the surface area of each team during 

each task repetition. All latitude and longitude data were first converted to x and y coordinates, 

in metres, relative to the minimum x and y values in the dataset. Surface area was then calculated, 

at each 1 Hz time point, by determining the area (m2) between the outermost players, also known 

as a convex hull (Frencken et al., 2011). For each repetition, the mean and one standard deviation 

(1SD) of the surface area was determined for the attacking and defending team. These values 

were then converted to a differential between the attacking and defending team.  

The tracking data was also used to determine the velocity and high intensity running (HIR) metres 

of each team during each repetition. The mean velocity was calculated for each player during each 

repetition and represented as m•min-1. These values were then used to determine the mean and 

1SD in velocity for the attacking and defending team during each repetition. Similarly, HIR was 

calculated for each repetition, defined as any running speed > 250 m•min-1 (15 km/h). Mean HIR 

was calculated for each player during each repetition and represented as m•min-1. These values 

were then used to determine the mean and 1SD in HIR for each team during each repetition. Mean 

velocity, velocity 1SD, mean HIR, and HIR 1SD were represented as a differential between the 

attacking and defending team. 
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7.3.3 Statistical Analysis 

A correlogram was used to explore any univariate linear relationships between behaviour metrics. 

To determine the influence of the team number constraint manipulation on player behaviours, two 

multivariate analytical approaches were applied: rule association and classification trees. To apply 

rule association, each behaviour metric was first discretised into three arbitrary categories: low, 

medium and high. These categories were chosen to align with the preferences of the end-users 

(i.e., coaches of the football club). This was achieved using the discretizeDF function in the arules 

package (Hahsler et al., 2005), using a cluster method set for three groups. Rules for each 

numerical condition were then generated using the apriori function, which uses the Apriori 

algorithm (Agrawal & Srikant, 1994). For each numerical condition (advantage and disadvantage) 

parameters were set to a minimum support of 0.15, minimum confidence of 0.7, and a minimum 

rule length of four.  

The second approach applied a classification tree using the rpart package (Therneau & Atkinson, 

2022). The rpart function was used to classify the numerical condition of each task repetition 

based on the values of the behaviour metrics. The default parameters for the function were used 

with a complexity parameter of 0.01, a minimum split attempt of 29% (20 observations) and 

minimum terminal node observations set at seven (minimum split / 3). 

7.4 Results 

For the 32 numerical advantage repetitions, the mean duration was 16.3 s ± 8.2 s and the mean 

disposal count was 2.9 ± 1.3. For the 37 numerical disadvantage repetitions, the mean duration 

was 22.7 s ± 12.8 s and the mean disposal count was 3.6 ± 1.6. The distribution of each metric, 

within each condition is displayed in Figure 7.1. The correlogram was presented in Figure 7.2. 

Univariate correlations between all behaviour metrics were within 0.5 and -0.5 with the exception 

of positive correlations between total disposals and repetition duration (0.84) and between 

velocity and HIR (0.8). 
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Figure 7.1 Distribution of each behaviour metric within advantage and disadvantage 

constraint conditions. 

 

Figure 7.2 Correlogram of each behaviour metric.  
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For the rule association approach, the resulting cut-off values used during discretisation are 

displayed in Table 7.2 and the counts within each category of the discretisation are displayed in 

Figure 7.3. From the results of the Apriori algorithm, nine rules were generated for the numerical 

advantage condition and six rules were generated for the numerical disadvantage condition. The 

top five rules, by confidence, for each condition are displayed in Figures 7.4 and 7.5. Confidence 

measures the frequency of the constraint condition given the associated ruleset. For the numerical 

advantage condition, confidence ranged from 80% to 100% and for the numerical disadvantage 

condition, confidence ranged from 73.3% to 85.7%.  

 

Table 7.2 Cut-off values used to discretise each behaviour metric. 

 

 

Metric Low Med High 

Repetition Duration (s) < 18.3 18.3 to 38.2 > 38.2 

Total Disposals (#) < 2.29 2.29 to 3.89 > 3.89 

Disposal Speed (disp/min) < 10 10 to 14.2 > 14.2 

Efficiency (%) < 61.3 61.3 to 88 > 88 

Percentage Kicks (%) < 69.3 69.3 to 88.8 > 88.8 

Surface Area (m2) < -28.3 -28.3 to 237 > 237 

Surface Area 1SD (m2) < 11.7 11.7 to 250 > 250 

Velocity (m/min) < 3.61 3.61 to 36.7 > 36.7 

Velocity 1SD (m/min) < -8.95 -8.95 to 21.5 > 21.5 

HIR (m/min) < -11.7 -11.7 to 27.1 > 27.1 

HIR 1SD (m/min) < 0.46 0.46 to 27.2 > 27.2 
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Figure 7.3 Results of the discretisation of each behaviour metric. Repetition counts for 

each category are displayed for the advantage and disadvantage constraint 

conditions. 

 

Figure 7.4 The top five rules generated for the advantage constraint condition, ordered by 

confidence. Each discretised metric is colour coded according to its category 

for visual interpretability. 
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Figure 7.5 The top five rules generated for the disadvantage constraint condition, ordered 

by confidence. Each discretised metric is colour coded according to its category 

for visual interpretability. 

The resulting model for the classification tree is displayed in Figure 7.6. The only variables used 

by the model to partition the data were surface area, repetition duration and velocity 1SD. Four 

terminal nodes are shown, two for each numerical condition with classification accuracies ranging 

from 71% to 94%. A visualisation of all behaviour metrics within each terminal node, scaled to 

allow comparison, was also provided (Figure 7.7). 
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Figure 7.6 The classification tree used to model the constraint condition (advantage or 

disadvantage). Terminal nodes are labelled with the predicted constraint 

condition while the decimals indicate the accuracy of the fitted value and the 

percentages indicate the accuracy of the fitted value and the percentages 

indicate the frequency of observations. 
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Figure 7.7 The average of each behaviour metric within the identified task solutions (1 and 

2) for each constraint condition (advantage and disadvantage). The bar plot 

values are scaled to a mean of zero and a standard deviation of one to allow 

comparability between metrics. 

7.5 Discussion 

The aim of this study was to demonstrate methods to evaluate a numerical constraint manipulation 

while considering the interaction of player technical, tactical and physical behaviour. A rule 

association and classification tree approach were used to analyse player behaviour, under the 

premise of supporting practice task design in team sport. The rule association provided a simple 

visualisation whereby coaches can identify associations between aspects of player behaviour. 

Additionally, the classification tree could be used to determine specific values of interest which 

can guide ongoing constraint manipulations in practice task designs.  

The results of the rule association analysis provide a simple heuristic to support coach decision-

making. The rules displayed in Figures 7.4 and 7.5 highlight which simultaneous behaviours 

players are exploiting to achieve the given task. This builds upon previous AF work using rule 
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association to evaluate training (Teune, Woods, et al., 2021a) and match play (Browne, Sweeting, 

et al., 2019; Robertson et al., 2019a) through the inclusion of tactical and physical behavioural 

metrics. Moreover, the rule association identified non-linear relationships between behaviour 

metrics which were not determined in the linear exploration shown in Figure 7.2. Discretising 

continuous variables is a necessary step to perform rule association and presents both advantages 

and disadvantages for interpretation. Binning values into three categories; low, medium and high, 

may suit the communication preferences of coaches although, other quantities of bins may also 

be used. Decisions on bin quantities should be aimed at improving the coaches’ ease of use and 

increasing the speed of their decision making, which therefore may vary. However, discretisation 

can reduce the explanatory power of continuous variables. For example, a range of values can be 

identified within each category but no specific values for player behaviour can be provided to the 

practitioner, limiting their utility for intervention. 

The results of the rule association suggest, that when playing with a numerical advantage, teams 

used their additional player to spread over larger areas than their opposition. This was indicated 

as four of the five top rules for the advantage condition included high levels of surface area. 

Additionally, within each of these four rules, high surface area was associated with medium levels 

of HIR. This may suggest that this level of physical running speed was required to achieve the 

levels of high surface area. Other metrics, including kick percentage and disposal speed, were not 

included in any of the top five rules. This indicated that the numerical advantage did not influence 

these behaviours, nor did they interact with others at a meaningful level. Contrastingly, in the 

numerical disadvantage condition, three of the top five rules involved low disposal speed. A team 

at disadvantage frequently exhibited a slower speed of play. Low disposal speed was also 

associated with medium surface area 1SD, medium velocity and medium velocity 1SD. Similar 

findings in investigations of other constraint manipulations, such as field density or team size, 

have reported simultaneous changes to skilled, physical and tactical behaviour of players in field 

hockey and soccer (Aguiar et al., 2015; Timmerman et al., 2017) however, their interactions were 

not determined. In the current study, results of the rule association showed how interactions 
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between the behaviours of players can be measured. Accordingly, these interactions are pertinent 

information for both a conditioning and skills coach. For example, a conditioning coach can 

monitor and prepare players for the specific work rates required to perform tactical manoeuvres 

influenced by the numerical constraint manipulation. This outcome highlights how the analysis 

can provide a platform for a multidisciplinary approach to support athlete development (Browne 

et al., 2021; Rothwell et al., 2020). 

In further results of the rule association, the second rule for the numerical advantage condition 

presented three unique variables, absent in any other rules, consisting of low repetition duration, 

low total disposals and low velocity. This indicates an alternate task solution was used by the 

players. In this solution, the ball is moved quickly down the field with a low quantity of disposals 

and lower running speed than the defence. This observation is similar to other work in AF, in 

which the inclusion of an additional attacker reduced the average velocity of the group (Bonney 

et al., 2020). This solution may emerge given a sudden exploitation of an opportunity, such as a 

lapse in defensive structure. Depending on the training objectives of coaches, training design may 

be modified to encourage or discourage performance of this solution. For example, to discourage 

this solution and further guide player’s attention toward using their numerical advantage to 

maximise surface area, an additional task constraint of a minimum pass count could be 

implemented during the advantage condition.   

Contrasted with rule association, the classification tree could be advantageous by enabling the 

data to be modelled in its continuous format. Accordingly, when using numerical data, critical 

values can be directly provided by the model which are influential on player behaviour. To 

exemplify, along the right branch of the tree (Figure 7.6), a common task solution for the 

numerically disadvantaged team was to slow the sequence of play down as indicated by the 

repetition duration of >8.4 s. This behaviour may have emerged as players sought additional time 

to create space against a team possessing an extra number, thereby maintaining possession of the 

ball. The repetition duration value of 8.4 s may be leveraged by a coach seeking to encourage 

greater exploration in task solutions. For example, a temporal constraint of 8 s may be introduced 
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to challenge the stability of this solution for the team with the numerical inferiority. This may 

lead to the emergence of a new behavioural pattern, as players search to exploit both the numerical 

inequality and temporal constraint. Only three behaviours were found to be influenced by 

manipulation of the numerical constraint: surface area, velocity 1SD and repetition duration. This 

suggested that all other behaviours remained predominantly stable despite the numerical 

constraint manipulation. Using this information, coaches may choose to manipulate additional 

constraints, such as field dimensions or task rules, to perturb player behaviours and encourage 

variability (Seifert et al., 2014).  

The partitions provided by the classification tree may be used to identify the different task 

solutions performed by teams within each numerical constraint. A similar approach has been 

reported in swimming where a clustering analysis identified if learners were exploiting or 

exploring task solutions during training (Komar et al., 2019). In the current study, the 

classification tree produced two terminal nodes for each numerical condition, suggesting two 

unique task solutions were exhibited within each constraint. The first solution was the most 

frequently used (advantage = 37%, disadvantage = 44%) and the second solution was the least 

frequently used (advantage = 10%, disadvantage = 10%). Figure 7.7 can thus highlight how 

technical, tactical and physical behaviours are organised simultaneously by teams to achieve the 

task goal. This may be advantageous as a complementary visualisation to the classification tree, 

reporting all behaviour metrics in addition to the three included in the classification tree. Thus, 

through evaluations of these behaviours, coaches may seek to guide or nudge players towards 

new or more optimal task solutions, according to their training objectives (Woods, McKeown, 

Rothwell, et al., 2020).  

Given the applied nature of the current study, some limitations exist which should be considered. 

Field sizes were approximately measured during data collection and some small variations may 

exist between training sessions. This, however, was controlled as closely as practically possible. 

Additionally, while players on each team were selected to balance skill level, player selection was 

inconsistent across each session. Accordingly, these factors may have influenced team behaviours 
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between task repetitions. Some instances occurred where there was an unused player on the 

sideline (due to irregular numerical grouping) and players were permitted to substitute between 

repetitions, which may have influenced the physical output of players. From an analytical 

perspective, only one measure of tactical behaviour was used during this study and future work 

may be directed to include other measures of collective team behaviour, such as centroid location, 

difference between team centroids, or team separateness. Finally, future work may seek to 

measure constraints on disposals, such as pressure or possession time, to provide further context 

to the technical actions performed during repetitions. The results, nonetheless, provide an enticing 

methodological platform for future work. 

7.6 Conclusion 

This study applied two multivariate analytical techniques, rule association and a classification 

tree, to evaluate the influence of a numerical advantage or disadvantage on the technical, tactical 

and physical behaviour of AF players during a small-sided training task. The rule association 

approach presented a simple and interpretable output for coaches which informed interactions 

between key behaviours during each constraint condition. The classification tree provided specific 

values of interest which may be used to inform further constraint manipulations to enhance 

practice task design. A visualisation of the different task solutions identified through the 

classification tree was provided to assist coaches in evaluating how players organise their 

movements within each constraint. These methods and visualisations are provided as tools which 

sport practitioners are encouraged to adopt to inform the design of their own training activities. 
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CHAPTER EIGHT – GENERAL DISCUSSION AND 

CONCLUSION 

Chapter Overview 

This chapter consolidates key findings of this thesis and discusses the broader implications for 

the sports industry and the practical applications for practitioners. 
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8.1 General discussion 

This thesis aimed to provide tools and methods to support sport practitioners with the design of 

practice tasks. While AF was used as the exemplar sport, the findings may be extended to other 

team invasion sports. Throughout the thesis, the CLA was used as the major theoretical 

framework with guiding principles for facilitating skill acquisition (Davids et al., 2008). Given 

constraint interaction was identified as a key tenet underpinning the CLA, various multivariate 

analytical techniques, including rule association and decision trees, were used to determine the 

interaction between various constraints during training activities.  

The studies within this thesis supported how the CLA may be implemented in sport to support 

practice task design. First, Chapter Three sought to improve the measurement of the constraint of 

physical pressure, which influences skill performance, to gain insight into how this constraint 

could be designed into practice tasks. A continuous pressure measurement was developed, which 

showed a positive relationship with skill effectiveness, contrasting with the discrete measurement 

of this constraint. Chapters Four and Five demonstrated how practitioners may determine the 

influence of task, environmental and individual constraint interactions on skilled behaviour 

through the implementation of various machine learning algorithms. Rule association and 

regression trees evaluated player behaviour within training activities, identifying important 

constraint interactions which may inform a practitioner’s training design. To further support 

practice design, a continuous time-series analysis – change point detection – was used to inform 

training activity duration (Chapter Six). Univariate and multivariate change point approaches 

identified critical time points in which player behaviour meaningfully changed, thereby indicating 

potential end times to activities. Finally, in Chapter Seven, the interaction between tactical team 

coordination, physical movement and technical skill behaviour was examined using rule 

association and classification trees. This was an exemplar method for evaluating constraint 

manipulations finding four different behavioural task solutions which can guide coaches in their 

ongoing constraint manipulations. 
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8.1.1 Implications for the sports industry 

Broadly, supporting the practical implementation of the CLA, as presented in this thesis, may 

facilitate skill acquisition, leading to greater competitive performances of athletes and teams. The 

AFL, like other sport leagues globally, is a highly regulated competition. Though specific 

regulations may differ between competitions they may involve strict rules implicating things like 

the frequency of training sessions players are allowed to complete, and the amount of spending a 

club can allocate to the recruitment of coaching and performance staff. While these organisational 

constraints can be limiting, innovative practice through carefully considered sport science and 

coaching interventions, present opportunities to gain a performance advantage (Johnston et al., 

2018). The practical application of techniques demonstrated in this thesis present such innovation, 

supporting sport practitioners and coaches to improve the design of their training activities, and 

increasing the effectiveness of their limited available training time. Improved training design may 

also complement other areas of sport organisations. For example, talent identification and 

recruitment may be accompanied by enhanced skill development processes, which for clubs 

unable to recruit the highest available talent, improved training design may expedite the skill 

development of currently rostered players. Further, appropriate training design may build upon 

the success of individual athlete recruitment by facilitating team cohesion, developing tactical 

skill acquisition to garner success at a team level.  

A main goal for practice design is to foster conditions in which player skill is improved. It is 

common within professional high-performance sport, such as AF, for staff and player 

performance to be evaluated according to team match performances and end of season rankings. 

To this end, the structure and design of training environments represents one area of improvement 

which can have important, positive effects on match performance. Indeed, the transfer of skills 

from training to competition is critical and is a key tenet of the CLA as the guiding theoretical 

framework underpinning this thesis (Davids, 2014; Renshaw et al., 2010; Renshaw & Chow, 

2019). The tools and techniques presented in this thesis, although intended to enhance various 

aspects of training, carry the overarching objective of improving match performance. Thus, 
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sporting organisations which adopt these methods may gain a performance advantage over their 

competition.  

This thesis supports the decision making of team sport coaches who are challenged with 

potentially complex and multi-faceted tasks, such as training design (Correia et al., 2019; 

Cushion, 2007). Decision support systems are commonly used in sport environments and are 

critical to progressing the field to optimise the accuracy and speed of practitioners’ decision 

making (Robertson, 2020; Robertson et al., 2017). Two advantages to decision support within the 

current thesis are proposed. Firstly, objective analysis of data may provide an unbiased 

perspective to player or team evaluations, which may help overcome human cognitive limitations, 

such as heuristics or biases (Schelling & Robertson, 2020). Secondly, data analysis techniques, 

such as rule association or decision trees, can determine complex non-linear interactions within 

large datasets and over long periods of time. This is important as large, multivariate datasets are 

increasingly common in high performance sport (Rein & Memmert, 2016), and human decision 

making processes are less capable of handling such large volumes of information (Robertson & 

Joyce, 2019). However, this thesis does not call for coach subjectivity to be replaced by the 

analytical techniques presented, but to be better supported and complemented by them (Bartlett, 

2001; McIntosh et al., 2019). Thus, an appropriate application of this thesis would emphasise the 

supporting role analytical tools play in practice design, presenting coaches with user-friendly 

visualisations that support, challenge or extend their experiential knowledge (Woods, Araújo, et 

al., 2021). For example, Chapter Six identified critical time points during a training activity where 

player behaviour meaningfully altered. This information may be used to direct the attention of 

coaches to this time period, supporting their perception of behavioural changes in their players 

and potentially informing further constraint manipulations. In another example, the analytical 

tools presented in Chapter Seven may support how practitioners determine the efficacy of a 

constraint manipulation. However, these techniques can not directly inform a coach which further 

constraint manipulations should be implemented to improve the training design. Thus, 
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implementation of this thesis is intended to support, not replace, key decision makers such as 

coaches.   

The tools presented within this thesis can also encourage collaboration between sport disciplines. 

Promoting inter-disciplinarity in sport may be advantageous to enhance the application of sport 

science (Browne et al., 2021; Rothwell et al., 2020; Woods, Rudd, Araújo, et al., 2021). To 

compete in elite team sport, athletes require many well-developed qualities including physical, 

both strength and aerobic, and technical and tactical skills. One way to facilitate the development 

of such qualities is through the implementation of sport training activities, such as small sided 

games, given their representation of competition interactions (Corbett et al., 2018; Farrow et al., 

2008; Gabbett et al., 2009). The design of such activities would benefit from collaboration 

between multiple high-performance staff, including strength, conditioning, technical and tactical 

coaches. Practice design, thus, should be addressed in a multi-disciplinary manner to improve 

multiple athlete qualities. However, multi-disciplinary teamwork has faced challenges in applied 

sport science – none more apparent than disciplinary siloing (Rothwell et al., 2020). This thesis 

supports multi-disciplinary operation through the integration of data types relating to various 

aspects of athlete performance, such as skill event data and physical output data. For example, in 

Chapter Six, skill and physical data were analysed together to examine how player behaviour may 

alter during a training activity. Exemplar visualisations were provided as a platform where 

physical conditioning and skill coaches may collaborate to uncover unique solutions which 

achieve their goals together. In a specific example from Chapter Seven, during a small-sided 

game, teams exploited the advantage of their additional player by exhibiting medium levels of 

high intensity running to spread over a larger physical area than their opposition. Accordingly, 

this interaction of tactical manoeuvres and physical output is pertinent information for both the 

skills coach and the conditioning staff, allowing them to measure how tactical decisions may 

influence the physical output of players and vice-versa. Understanding this interaction is helpful 

when evaluating the efficacy of constraint manipulations.  
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Further inter-disciplinary insights may be gained via the techniques in this thesis as they permit 

blurring of the boundaries between disciplinary metrics, such as physical output and technical 

skill executions. For example, high intensity running volumes may be indicative of (un)skilful 

running patterns, while technical kicking actions may also be viewed as a type of physical load 

experienced by players. Accordingly, enhanced insights may be gleaned by various disciplinary 

staff through the sharing of such information, via exemplar platforms presented in this thesis. In 

other broader applications, more data types relating to other aspects of performance could also be 

integrated within these analyses. For example, constraints such as joint kinematics or emotions 

could be measured and included within the same models. This would permit wider interactions to 

be understood when evaluating training design and may help to further improve a diverse range 

of athlete qualities. For example, measuring emotion may inform constraint manipulations which 

enhance athlete enjoyment, or contrastingly expose athletes to stressful match-like situations, 

while maintaining the desired physiological or skill training targets. This data may also inform 

session structures, such as prescribing high enjoyment activities prior to matches to support 

athlete confidence. Such outcomes will become more feasible in the future as technology which 

can automatically collect this data, such as inertial measurement sensors or computer vision, is 

more widely implemented.   

In this thesis, AF was used as an exemplar sport, however, the applications may be extended to 

other AF teams and other sports, with particular commonalities drawn between team sports which 

facilitate its translation. Practically, similar data capture technologies, such as tracking devices 

(Gudmundsson & Horton, 2017; Gudmundsson & Wolle, 2014) and video notation software 

(Rein & Memmert, 2016; Stein et al., 2017) are used across multiple sports. Theoretically, the 

application of the CLA as a guiding framework for training design has also been explored in other 

sports such as Rugby Union (Pocock et al., 2020), American football (Yearby et al., 2022) and 

soccer (Davids et al., 2013). It is recommended that practitioner’s experiential knowledge be used 

to guide adaptation of the tools within this thesis to different sports, such as informing the key 

constraint measurements which influence player performance (Greenwood et al., 2014; Pocock 
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et al., 2020). For example, the key constraints influencing Rugby Union place kicking such as 

wind, score margin, fatigue, and distance and angle to goalposts (Pocock et al., 2020) could be 

included in rule association or decision trees models, as demonstrated in the current thesis, to 

determine any non-linear constraint interactions. This may help practitioners profile players with 

constraint sets related to unsuccessful kicks which may then inform their training design. Thus, 

adaptations of the techniques demonstrated in this thesis would allow practitioners to model the 

key constraint interactions relevant to their own sport training environments. Moreover, the 

analytical techniques presented in this thesis are adaptable to achieve broader sporting 

applications. For example, given the sequential nature of sport at many organisational levels, 

change point detection (Chapter Six) may have a range of useful applications. In sports with 

congested schedules, such as basketball or baseball, change point analysis may inform appropriate 

practice periods by identifying time points of lower schedule intensity, such as periods of 

decreased opposition quality and reduced travel. Change point detection may also be applied to 

inform the design of injury rehabilitation sessions by identifying when athletes have progressed 

to the next phase of their rehabilitation plan. A continuous pressure measurement, demonstrated 

in Chapter Three, may be analysed during basketball match shooting to inform representative 

density levels during shooting practice. While in soccer, association rules or decision trees could 

be used to identify the key tactical and physical constraint interactions that facilitate goals, which 

can then be designed into practice tasks. In sum, many opportunities exist to adapt the tools 

demonstrated within this thesis for wider sporting applications.  

8.1.2 Practical applications for sport practitioners 

Two main themes for improving the application of the CLA are covered in this thesis: i) improved 

analysis of constraints, and ii) improved constraint measurement. To address the former, this 

thesis highlighted the importance of considering constraint interaction during training evaluation. 

Moreover, the studies of this thesis explored how constraint interaction may be analysed and 

presented in a meaningful way to practitioners in an applied sport setting. While constraint 

interaction has been recognised as theoretically important to sports performance (Balagué et al., 
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2019; Newell, 1986), in practice, it remains challenging to measure. This is due, in part, to the 

large volume of data and various types, such as player tracking or skill event data (Rein & 

Memmert, 2016), and the likely non-linearity of constraint interaction, which increases the 

complexity of determining constraint influence (Chow, 2013; Davids, 2012). With these 

challenges in mind, this thesis provided tools to support practitioners in understanding constraint 

interactions to inform their training design.  

Through the utilisation of machine learning techniques, such as rule association or regression 

trees, it was possible to determine how constraints manipulated during training, such as field size 

or task rules, interacted to influence athlete behaviour. For example, Chapter Four revealed the 

most prevalent sets of constraints that influenced possession time and pressure (Table 4.2) which 

can guide how coaches manipulate these constraint sets to increase or decrease levels of 

possession time and pressure. Although a broad range of literature has investigated the isolated 

influence of single constraint manipulations (for reviews in soccer see Ometto et al., 2018; 

Sarmento et al., 2018), few studies have determined how constraint interaction occurs. This is a 

limitation for coaches as they may over or under value the influence of a constraint without 

consideration of its interactive nature within a larger set of constraints. For example, in Chapter 

Five, athlete experience was only an influential constraint when considered within training 

activities which limited the disposal type to handballs. For this group of players then, the 

constraint of athlete experience should therefore be contextualised alongside the activity type to 

appropriately understand it’s influence on training behaviour.  Moreover, studies which have 

explored constraint interaction have been limited to bi-variate (Timmerman et al., 2019) or linear 

interactions (Pocock et al., 2018). This may be because the analytical approaches adopted in these 

investigations were not suited to determine multivariate, non-linear interactions. Accordingly, the 

studies within this thesis have built upon this work by exploring how multiple constraints may be 

considered together, using appropriate analytical techniques. Coaches may, therefore, be better 

informed as to the importance of considering constraint interaction during training design and 

how to measure it’s influence on athlete behaviour and enhance skill development.  
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A second theme throughout this thesis, for improving the implementation of the CLA in sport, 

was the improved measurement of constraints. Chapters Three and Six explored how athlete 

behaviour could be continuously represented. In Chapter Three, for example, the constraint of 

physical pressure on skilled actions was represented in a continuous manner, which contrasted 

with previous discrete measurements (Browne, Sweeting, et al., 2019; Ireland et al., 2019; 

Robertson et al., 2019a). The advantages of the continuous measurement were that it permitted 

the consideration of multiple opponents throughout the entire field, not just within a specific 

perimeter. In a second approach, Chapter Six analysed the continuous time-series of physical and 

skilled behaviour of players during a small-sided training activity. This analysis provided more 

detailed insight than could be achieved from aggregate or grouped measures, as has been the 

approach in previous work (Black et al., 2016; Black, Gabbett, Naughton, et al., 2019; Sparks et 

al., 2016). Together, Chapters Three and Six demonstrated how the utilisation of technology and 

more sophisticated analytical techniques could be applied in sport to improve existing measures 

for constraints (Browne et al., 2021). This is important, as with the sports industry continuing to 

advance, the frequency and detail of data collection will increase (Rein & Memmert, 2016). 

Alongside this, advancements in computer processing power, coupled with new technologies, 

could further enhance the speed and accuracy of gathering and reporting data. Accordingly, there 

is growing opportunity to leverage these continued advancements to support coaches. Continuous 

measurements, therefore, will gain more and more value in their application, allowing for deeper 

insights to be reported from more detailed data.  

Within high-performance sport, constraints exist at multiple scales and interact (Balague et al., 

2013; Balagué et al., 2019; Ribeiro et al., 2019). Aligning with this, the tools presented within 

this thesis evaluate training design at multiple scales of analysis whereby, a combination of these 

tools may support various aspects of coach decision making. For example, at one level, inter-

activity analyses explored the broad evaluation of many training activities, across weeks and 

seasons (Chapters Four and Five). This has application to inform high level session prescription 

(Corbett et al., 2018) or longitudinal training design (Farrow & Robertson, 2017) which a coach 
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may use to guide general weekly or monthly planning. Chapter Five may also be implemented to 

determine any potential individual differences in player behaviour which should be accounted for 

during this process. At a second level, intra-activity analyses explored the specific evaluation of 

features occurring within single activities (Chapters Six and Seven). These studies explored more 

detailed aspects of acute athlete behaviour, such as pressure on skill involvements or fluctuations 

in skill efficiency. Thus, these tools may be suitable to support coaches to make in-session 

constraint manipulations or adjustments. When integrated, the various tools presented across this 

thesis offer a multi-faceted approach to inform training design.  

Across the studies in this thesis, the flexibility and adaptability of analytical solutions was 

demonstrated. This aligns with other work in AF (Browne et al., 2022) and is highlighted as a 

beneficial outcome for high-performance sport practitioners who work in dynamic environments. 

Two of the notions explored in this thesis were: how a single analytical approach can be applied 

to multiple problems and, alternatively, how multiple analytical approaches can be applied to a 

single problem. To address the former, the two machine learning algorithms most prevalent in 

this thesis were rule association and decision trees, which in Chapters Four and Five, were applied 

to summarise a large quantity of constraint interactions across a range of activities. While in 

Chapter Seven, these same techniques were applied to evaluate the influence of a single constraint 

manipulation within one activity. Taken together, these chapters demonstrate the flexibility of the 

same analytical techniques to address various questions related to practice design. Alternatively, 

the rule association and decision tree analysis were also applied to evaluate the same activity in 

Chapter Seven. In this study, the rule association approach provided a simplified output of 

discretised constraint associations, whereas the classification tree could provide specific values 

of interest. Similarly, Chapter Six applied both a univariate and multivariate change point analysis 

to determine an activity’s duration, suggesting advantages and disadvantages to each approach. 

Chapters Six and Seven, therefore, demonstrate the benefits of performing multiple analyses to 

address a single query in different ways. This allows practitioners to view the same problem 

through multiple lenses which may help them gain new insights (Browne et al., 2022). 
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Furthermore, Chapters Six and Seven show the versatility of these techniques to query mixed data 

types, including discrete and continuous, which are often collected via various sports data sources, 

such as event logs or player tracking devices. The flexibility of these techniques may allow 

individualised solutions to be uncovered for coaches in the field, enhancing their ease of 

interpretation and the potential for findings to be implemented.  

8.2 Future directions 

This thesis has presented multiple avenues for future research. While this thesis provided tools 

useful for evaluating player behaviour during training, it did not examine any potential learning 

outcomes resulting from improved training design. There is scope to investigate how the tools 

within this thesis may improve the skill acquisition of athletes and their transfer to performance 

settings. To achieve this, a research design using randomised control trials could be conducted 

however, the feasibility of such a study is reduced in applied environments such as high-

performance sport. Consequentially, it is suggested that future work be directed to examining 

match data, where possible, to more appropriately evaluate player performance within match 

conditions (Browne, Sweeting, et al., 2019). For example, the relationship between constraints on 

kicking in training and the match performance of kicking under similar constraints could be 

explored to determine the extent to which training has influenced kicking performance. This 

would alleviate potential disruptions to high performance programs while providing insight into 

learning outcomes from training.  

The tools within this thesis may also be applied to inform the longitudinal structure and design of 

training, such as within a periodised framework (Farrow & Robertson, 2017; Otte et al., 2019). 

However, the long-term learning effects of skill acquisition programs remain largely unexplored 

in high performance sport. The tools within this thesis may be adapted to measure fluctuation in 

the constraints on skilled behaviour over time (e.g. weeks and months) and their relationship with 

skill learning. Studies of this nature would build upon the current work by supporting sport 

practitioners in their design of longitudinal training plans. This would also have broader impacts 
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in high performance sport to guide an organisation’s long term player development strategies, 

such as from youth academy systems through to the professional first team. 

The analytical techniques demonstrated in this thesis may be enhanced as the quality and quantity 

of constraints further improves in the sport training landscape. For example, while Chapter Three 

explored how the physical location of players on a field may be utilised to measure the constraint 

of pressure on a continuous scale, future research could use this data to capture information 

pertaining to player velocity or orientation, which would provide deeper insights into player 

pressure qualities (G. Andrienko et al., 2017; N. Andrienko & Andrienko, 2013; Link et al., 2016). 

Moreover, as technology becomes further integrated in high performance sport, there is ongoing 

opportunity to increase the quantity and sensitivity of constraints collected. For example, inertial 

measurement sensors may be used to automatically detect kicks and kick types during AF (Cust 

et al., 2021). As computer vision increases in AF this could be used to automatically collect 

constraints such as field dimensions or the quantity of players within a training activity. 

Automating these processes would allow current resources to be re-allocated to other data 

collection or more detailed analyses. For example, more individual constraints, such as emotional 

state, or task constraints including coach instruction and feedback could be included in analytical 

models to provide more detailed insights on how athlete behaviour is shaped during training. As 

this occurs, more accurate models may be developed capable of predicting player behaviour on 

unseen data, such as new constraint manipulations. This would support coaches to create new 

training activity designs with a greater confidence in expected outcomes. To this end, the 

analytical techniques demonstrated in this thesis provide a suitable methodological platform for 

future work. 

There is further scope to improve collaboration between high-performance staff with the inclusion 

of new metrics, utilising additional physical movement measures such as accelerations or change 

of directions (Sheehan, Tribolet, Spurrs, et al., 2020), or other measures of team coordination such 

as entropy or team separateness (Silva, Vilar, et al., 2016). This data is valuable to provide 

additional contextual information when evaluating player and team performance. A further 
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advancement in analytical technique application may seek to harness “live” information feedback. 

For example, the application of a retrospective change point analysis in Chapter Six, or the 

constraint evaluation in Chapter Seven, may be improved with a progression towards “on-line” 

analysis. Real time information feedback could be provided to coaches which signal when athlete 

behaviour drifts from the training objective. This could facilitate in-session training 

modifications, such as constraint manipulations or activity end times to support athlete learning 

and improve the efficiency of training time. Such advancements would enhance the current 

training design methods which are currently limited to pre-determined prescriptions.  

8.3 Conclusions 

The specific conclusions of this thesis are: 

1. Multivariate data analysis is useful to assist coaches to understand constraint interaction 

and evaluate the efficacy of their training design. 

2. A continuous pressure measurement was positively associated with skill efficiency which 

contrasted with a discrete pressure measurement.  

3. The application of a rule association analysis identified important constraint interactions 

which influenced pressure and possession time for players during training activities. 

4. The application of a regression tree analysis determined that individual players adapted 

similarly between activity types, with one exception during handball only activities where 

match experienced positively influenced disposal frequency. 

5. Univariate and multivariate change point analysis were useful to inform activity duration 

by determining time points when player behaviour meaningfully altered. 

6. Rule association and classification trees determined interactions between technical, 

tactical and physical player behaviour within a team numerical advantage and 

disadvantage constraint manipulation.  
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