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Abstract: Lung cancer is the leading cause of cancer death and morbidity worldwide. Many studies
have shown machine learning models to be effective in detecting lung nodules from chest X-ray
images. However, these techniques have yet to be embraced by the medical community due to
several practical, ethical, and regulatory constraints stemming from the “black-box” nature of deep
learning models. Additionally, most lung nodules visible on chest X-rays are benign; therefore, the
narrow task of computer vision-based lung nodule detection cannot be equated to automated lung
cancer detection. Addressing both concerns, this study introduces a novel hybrid deep learning and
decision tree-based computer vision model, which presents lung cancer malignancy predictions as
interpretable decision trees. The deep learning component of this process is trained using a large
publicly available dataset on pathological biomarkers associated with lung cancer. These models are
then used to inference biomarker scores for chest X-ray images from two independent data sets, for
which malignancy metadata is available. Next, multi-variate predictive models were mined by fitting
shallow decision trees to the malignancy stratified datasets and interrogating a range of metrics to
determine the best model. The best decision tree model achieved sensitivity and specificity of 86.7%
and 80.0%, respectively, with a positive predictive value of 92.9%. Decision trees mined using this
method may be considered as a starting point for refinement into clinically useful multi-variate lung
cancer malignancy models for implementation as a workflow augmentation tool to improve the
efficiency of human radiologists.

Keywords: lung cancer; chest X-ray; malignancy predictive models; artificial intelligence; machine
learning; computer vision; model mining

1. Introduction
1.1. Background

Lung cancer is the leading cause of cancer-related deaths worldwide [1], with over
two million new cases documented in 2018 and a projected 2.89 million cases by 2030 [2].
There is a long history of research into the automated diagnosis of lung cancer from medical
images using computer vision techniques encompassing linear and non-linear filtering [3],
grey-level thresholding analysis [4], and, more recently, machine learning including deep
learning techniques [5–7]. Despite many lab-based successes of computer vision medical
image diagnostic algorithms, the actual regulatory approval and clinical adoption of
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these computer vision techniques in medical image analysis is very limited [8]. Clinical
use of medical image AI is held back by the dissonance of evidence-based radiology [9]
with the black-box nature of deep learning systems, along with data quality concerns
and legal/ethical issues such as responsibility for errors [10]. As of September 2020, the
U.S. Food and Drug Administration (FDA) has approved only 30 radiology related deep
learning or machine learning based applications/devices, of which only three utilize the
X-ray imaging mode [11], with the subject of one being wrist fracture diagnosis [12] and
the other two being for pneumothorax assessment [13,14].

In contrast to the limited number of field applications relating to clinical use of
machine learning in radiology, there exists a massive corpus of published research in this
field [15,16]. The Scopus database [17] returns over 700 results for a title and abstract search
on (“Computer Vision” OR “Machine Learning” OR “Deep Learning” AND chest AND
X-ray). The overwhelming majority of these papers have been authored in the past decade,
as shown in Figure 1.

Figure 1. Scopus bibliographic histogram relating to machine learning/deep learning and chest
X-ray showing exponential growth in published works over the past decade.

Driving this huge interest in medical computer vision research is a desire to provide
tools to improve the productivity of medical clinicians by providing an automated second
reading to assist radiologists with their workloads [8]. This ambitious goal has technically
been met by development studies under lab conditions [18], but persistent challenges
including dataset size and diversity, along with bias detection/removal and expertise in
oversight and safe use of such systems remain hinderances to clinical adoption [19].

1.2. Study Goals and Process Overview

The primary goal of this paper is to present a novel framework that automatically
generates interpretable models for the stratification of lung cancer chest X-ray (CXR) images
into benign and malignant samples. Rather than aiming to provide a narrow, automated
CXR second reading using a feature extraction model for lung nodules as exhaustively
discussed in [20], our objective is to autonomously create a range of reasonable and
explainable decision tree models for lung cancer malignancy stratification using multiple
pathological biomarkers for lung cancer as features. Our intention is that that these models
can be used by the medical community as a data driven foundation for interpretable
multivariate diagnostic scoring of lung cancer and form the basis of useful workflow
augmentation tools for radiologists.



Sensors 2021, 21, 6655 3 of 23

We extend the well-researched method of training a deep learning algorithm, typically
a variant of the Convolutional Neural Network (CNN) architecture [21], in lung nodule
detection and classification into a two-step approach that combines deep learning feature
extraction with the fitting of shallow decision trees.

Firstly, we investigate lung pathology features that are considered biomarkers closely
associated with lung cancer. We then use CXR examples of these pathologies to train a
multi-class deep learning algorithm. Secondly, the score for each pathological feature is
inferenced from the trained model for two independent lung cancer CXR datasets for which
malignancy scoring metadata is available. Finally, this inferenced score tuple is fitted to
the malignancy data for each patient using a shallow decision tree, with the most accurate
decision trees extracted for discussion and further refinement. This process is illustrated
in Figure 2.

Figure 2. Automated lung cancer malignancy decision tree mining process showing deep learning
flow for feature scoring, and decision tree flow for multi-variate model generation.

This more holistic approach emphasizes the importance of multiple pathological
biomarkers as lung cancer features, avoiding automation bias by the promotion of in-
terpretability and expert human judgement in the creation of medical computer vision
applications. It is hoped that this change of focus may help overcome the hurdles that have
held back the adoption medical artificial intelligence algorithms into clinical workflow by
enabling radiologists to oversee the advice provided by computer vision models, thereby
promoting evidence-based and safe use of the technology [19].

1.3. Novelty and Major Contributions

Our key contributions stem from our novel combination of simple, proven techniques
into an end-to-end process that mines interpretable models for the diagnosis and stratifi-
cation of lung cancer. This process provides the medical community with two key novel
elements. Firstly, we show that automated lung nodule detection from CXR alone is insuffi-
cient to indicate lung cancer malignancy. We therefore train our deep learning classifier
on additional pathologies associated with lung cancer outside of the well-studied and
narrow lung nodule classification task. This more closely matches the partially subjective
workflow process of human radiologists [8] than other published studies. Secondly, our
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process provides an interpretable and logical explanation of model output for lung can-
cer malignancy stratification rather than the simple ‘black box’ score and visual, but not
necessarily interpretable, saliency mapping that is common to other studies.

2. Related Work
2.1. Automated Lung Cancer Diagnosis

Although the Computed Tomography (CT) imaging mode has attracted most of
research into machine learning based automated lung disease diagnosis, there are several
studies that show the usefulness of CXR for this task. Best results against the very large
ChestX-ray14 dataset [22] have been achieved using deep learning combined with trainable
attention mechanisms for channels, pathological elements, and scale [23], achieving an
average AUC of 0.826 for 14 thoracic conditions. Other recently published approaches
include incorporation of label inter-dependencies via LSTM modules to improve prediction
accuracy using statistical label correlations [24], augmenting deep learning with hand
crafted shallow feature extraction [25] to improve classification accuracy over pure deep
learning, and consideration of the relationship between pathology and location in the lung
geometry as spatial knowledge to improve deep learning classification accuracy [26]. Each
of these approaches improved upon the accuracy obtained from a pure deep learning
approach by finding and exploiting additional information from the ChestX-ray14 dataset,
however, none of these studies considered whether the additional information gleaned
is generalizable. For instance, some label interdependencies may be specific to the clinic
and radiologist population from which the ChestX-ray14 dataset was sourced and labelled.
Likewise, the shallow feature extraction approach from [25] evaluated and tuned feature
extraction algorithms to produce the best results against the ChestX-ray14 dataset, without
experimenting to assess whether and to what extent this approach was generalizable to an
independent dataset.

Very good results in lung nodule detection using deep learning have been achieved by
teams using nodule-only datasets, with a systematic survey for this research being provided
by [27]. State of the art lung nodule detection from CXR was achieved by X. Li et al. [6]
using a hand-crafted CNN consisting of three dense blocks, each with three convolution
layers. In this study, images from the Society of Radiological Technology (JSRT) dataset [28]
were divided into patches of three different resolutions resulting in three trained CNNs,
which were then fused. This scheme detected over 99% of lung nodules from the JSRT
dataset with 0.2 false positives per image and achieved an AUC of 0.982. Despite these
excellent results, this study did not stratify the detected nodules into malignant or benign
categories, nor did this study perform generalization tests to confirm that the proposed
model performed well against independent datasets.

Stratification of the JSRT dataset into malignant and benign nodule cases was achieved
by [5] using a chained training approach. In this paper, a pretrained DenseNet-121 CNN
was firstly trained on the ChestX-ray14 dataset [22] followed by retraining on the JSRT
dataset. This model achieved accuracy, specificity, and sensitivity metrics for nodule
malignancy of 0.744, 0.750 and 0.747, respectively. Once again, there were no generalization
tests performed in this study.

Lung nodule classification studies typically utilize the Japanese Society of Radiological
Technology (JSRT) dataset [28] as a machine learning training corpus. This dataset includes
150 samples with a nodule size of 3 cm or less, but only four samples with a nodule size
greater than 3 cm. Use of the JSRT datasets in this manner is potentially problematic for two
reasons; firstly, a lung nodule is defined as measuring ≤3 cm in diameter [29] with larger
nodules or masses under-represented in these studies, even though these may indicate
more serious and likely malignant cancers, and secondly, most pulmonary nodules are
benign [30]. The CXR imaging mode is much more sensitive to calcified benign nodules
(due to associated higher opacity) than non-calcified nodules or ground-glass opacities [31],
which are more likely to be a sign of lung cancer [32]. These factors combined could lead
to deep learning systems trained only on CXR nodule detection tending to under-diagnose
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serious nodules and/or masses over 3 cm in diameter, which is obviously undesirable. It is
these concerns that have led us to investigate biomarker features other than visible nodules
alone in the detection and malignancy stratification of lung cancer malignancy from CXR.

2.2. Automated Diagnostic Scoring

Interest in pathology severity scoring from CXR images has received much recent
focus due to the COVID-19 pandemic commencing in 2020. A combination of deep learn-
ing feature extraction and logistic regression fit to severity has shown to be predictive
of the likelihood of ICU admission for COVID-19 patients [33]. Many papers relating to
classification and stratification of lung nodules detected from the CT imaging mode have
been published employing various deep learning techniques [34,35], however few such
papers have been published for the CXR imaging mode. This is due to the CXR imag-
ing mode having lower sensitivity in comparison to the CT imaging mode [36], making
nodule characterization and stratification difficult using segmentation and shape analysis
techniques developed for higher resolution CT images.

The most comprehensive study into the use of CXR for pathological scoring was
performed by [37], where deep learning was used to score long-term mortality risk from
prostate, lung, colorectal and ovarian cancer across two randomized clinical trials. Patients
were stratified into five risk categories (very low, low, moderate, high, and very high)
based on a pre-trained inception [38]. CNN-based scoring of the patient’s initial CXR [37]
concluded that the deep learning classifier was capable of accurate stratification of the
risk of long-term mortality from an initial CXR. The study noted that most of these deaths
were from causes other than lung cancer and speculated that the developed CNN and risk
stratification reflected shared risk factors [39] apparent as biomarkers on CXR. This study
shares our use of a CNN to score a range of pathologies for downstream generation of risk
models, although it should be noted that our study aims to stratify lung cancer malignancy
rather than long-term mortality.

3. Materials and Methods
3.1. Data Sourcing

To achieve our objective of automatically generating explainable lung cancer ma-
lignancy models, two logical datasets are needed. The first is a large corpus of labelled
CXR data that can be used to train a deep learning classifier as a multi-pathology feature
extraction component. The National Institute of Health ChestX-ray14 dataset [22] provides
112,120 frontal-view X-ray images of 30,805 unique patients. ChestX-ray14 images are
uniformly 1024 × 1024 pixels in a portrait orientation with both Posterior-Anterior (PA) and
Anterior-Posterior (AP) views. The second logical dataset must comprise CXRs with malig-
nancy metadata, indicating whether lung cancer is present in the image and, if so, whether
the cancer is considered by expert radiologists to be benign or malignant. There are two
publicly available CXR datasets meeting these criteria. Firstly, the Lung Image Database
Consortium Image Collection (LIDC-IDRI) [40] provides malignancy diagnosis metadata
for 157 patient studies, of which 96 include PA view CXR images. Secondly, the Japanese
Society of Radiological Technology (JSRT) [28] database provides 154 patient studies in
the form of PA CXR images with malignancy diagnosis metadata. The JSRT dataset was
labelled for lung nodule malignancy and subtlety by a panel of 20 experienced radiologists.
The JSRT dataset is provided in Universal image format (no header, big-endian raw data),
which was converted to Portable Network Graphics (PNG) format using the OpenCV [41]
python library. The LIDC-IDRI dataset is provided in “Digital Imaging in Medicine” (DI-
COM) format and these files were converted to PNG format with the Pydicom [42] library
using a grayscale colormap.

The LIDC-IDRI dataset has been manually labelled by four radiologists with access
to corresponding patient CT scans. The label metadata has been provided at the patient
level, meaning that there are some images provided where the nodule location is known
and logged from the CT scan but not visible on the CXR image. Normally, any such
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inconsistency between the dataset and labels would be problematic for a computer vision
diagnosis, since the image data would not support the label ground truth. Similarly,
the JSRT dataset contains some nodules that are very subtle. For these subtle nodules
of size 1–10 mm, human expert radiologist sensitivity was measured at only 60.4% [28].
Our proposed classification process should be relatively robust against these problems,
since the presence of obvious nodules is only one of several lung cancer biomarkers
under consideration.

3.2. Data Curation

The ChestX-ray14 data set was labelled using natural language processing to extract
disease classes for each image from the associated radiology report, which the dataset
authors report is of greater than 90% accuracy. Many of the images have a mix of disease
classes. Since our objective is to achieve explainable lung cancer scores, we have restricted
this study to images labelled with only a single disease class.

Of the 13 disease classes included in the ChestX-ray14 data set, not all are associated
with lung cancer. To either exclude or include the classes, the simple rule was applied.
If the literature noted a general indicative connection between lung cancer and the class
in question, then that class was extracted from the ChestX-ray14 set for further analysis.
The only exception to this inclusion rule is the “No Finding” class, which was included to
enrich the generated models with a pathology contra-indicator. This resulted in five classes
of interest for this study being Atelectasis, Effusion, Mass, No Finding, and Nodule. Once
filtered in this way, the totals for images in this dataset are as shown in Table 1.

To address class imbalance during training, each class was under-sampled to 2000 examples
of each class. The remaining class imbalance caused by the “Mass” and “Nodule” labels as
minority classes (with 1367 and 1924 samples, respectively) was addressed in training by
employing a weighted random sampler in the data loader.

Standard augmentations were applied only to the training ChestX-ray14 dataset with
random rotation of 1 degree of expansion, and random horizontal flip. Vertical flipping
was not used since CXR images were not vertically symmetrical. The images were resized
with a default classifier size of 299 × 299 pixels for ResNet-50 [43] and ResNext-50 [44]
and 244 × 244 pixels for other classifiers including DenseNet-121 [45], VGG-19 [46] and
AlexNet [47]. Training and testing were run with and without equalization.

The ChestX-ray14 dataset was split into an 80:20 training and validation pair, resulting
in 6641 images for training and 1661 images for validation. A set of 6085 images conforming
to the official test split for ChestX-ray14 was used as a holdout test set. These images were
drawn from the official test split to ensure that there was no patient overlap between the
data used for training/validation and testing.

Table 1. Summary of ChestX-ray14 images extracted for deep learning.

Classification Count Extracted Association

Atelectasis 2210 Y Documented as a first sign of
lung cancer [48].

Cardiomegaly 746 N

Not related to lung cancer
although in rare cases
misdiagnosed when underlying
condition is mass in same
geography of CXR [49].

Consolidation 346 N
Can sometimes accompany lung
cancer but usually associated
with pneumonia [50].
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Table 1. Cont.

Classification Count Extracted Association

Edema 51 N
Can be a complication from
treatment for lung cancer but
does not indicate lung cancer [51].

Effusion 2086 Y
Can be caused by a build-up of
cancer cells and a common
complication of lung cancer [52].

Emphysema 525 N Linked as a risk factor for lung
cancer but not an indication [53].

Fibrosis 648 N Linked as a risk factor for lung
cancer but not an indication [54].

Hernia 98 N Mistaken for lung cancer but does
not indicate lung cancer [55].

Infiltration 5270 N

Generic descriptor used
informally in radiological reports
and not actually an accepted
lung disease classification.

Mass 1367 Y A primary indication of
lung cancer [51].

No Finding 39,302 Y
Not lung (by definition) cancer
but included to enrich generated
models with a counter-indicator.

Nodule 1924 Y
A primary indication of lung
cancer [51,56] with about 40% of
nodules being cancerous.

Pleural
Thickening 875 N

This is often an indication of
mesothelioma caused by
exposure to asbestos. It is also a
very common abnormal finding
on CXR. It is not an indication of
lung cancer [57].

Pneumonia 176 N

Often a complication of lung
cancer [50] with 50–70% of
patients developing a lung
infection. Persistent pneumonia
can lead to a diagnosis of lung
cancer. Not typically used as
indicator of lung cancer.

Pneumothorax 1506 N Can be the first sign of lung
cancer but this is rare [58].

3.3. Model Development
3.3.1. Network Selection

Following experimentation with a number of classifiers, including VGG-19 [46],
AlexNet [47], DenseNet-121 [45], ResNet-50 [43] and ResNext-50 [44], we found that the
DenseNet-121 and ResNet-50 networks initialized with ImageNet [59] weights consistently
provided the equivalent and best results. We therefore selected the DenseNet121, and
ResNet-50 network architectures for this study, which is consistent with other studies relat-
ing to the use of deep learning classifiers on large CXR datasets [23,60–62], with DenseNet
being the most popular neural network architecture for lung CXR studies [63], and ResNet
allowing for larger input images which would theoretically improve nodule localization.
Noting that several state-of-the-art studies have employed network attention mechanisms
in computer vision applications we additionally tested with a variant of ResNet-50 using
a triple attention mechanism, which applies attention weights to channels and spatial
dimensions using three separate branches covering channel/width, channel/height and
width/height as described in detail by [64].
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We followed standard practice employed in transfer learning [65] and replaced the
network head fully connected layer (by default 1000 neurons) with the number of classifi-
cation outputs required by the experiment being five. These five output nodes matched
our five selected features being Atelectasis, Effusion, Mass, No Finding, and Nodule. This
network was then fine-tuned using the training data subset of ChestX-ray14, achieving
AUC-ROC results consistent with state-of-the-art for this dataset in consideration that we
have restricted classes to PA view only and under-sampled (Table 2). All models converged
well as shown in Figure 3, with the ResNet based networks being fully trained at 25 epochs
compared to Densenet-121, requiring around 50 epochs to fully train.

Table 2. Comparison of achieved AUC-ROC scores for ChestX-ray14 holdout test subset to other
published works using similar techniques.

Configuration Atelectasis Effusion Mass Nodule

Test A (Epoch 17) 0.782 0.858 0.811 0.705
Test B (Epoch 7) 0.780 0.833 0.808 0.760
Test C (Epoch 8) 0.770 0.863 0.808 0.739

Wang et al., (2017) [22] 0.700 0.759 0.693 0.669
Wang et al., (2021) [23] 0.779 0.836 0.834 0.777

Yao et al. [24] 0.772 0.859 0.792 0.717

Experimentation showed that the Adam optimizer [66] led to faster convergence and
more accurate results (by around 5%) over the SGD [67] optimizer, therefore we chose to
use the Adam optimizer with standard parameters (β1 = 0.9 and β2 = 0.999), along with a
cosine annealing learning rate scheduler with an initial learning rate of 0.001 for Densenet-
121 and 0.0004 for the Resnet-based classifiers. These rates were tuned by experimentation
to produce the highest holdout test accuracy. The cosine annealing scheduler was selected
because during model testing and hyperparameter optimization, it was noticed that the
model trained well with a more aggressive learning rate, leading to higher validation
accuracy at a lower number of epochs.

Figure 3. Cont.
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Figure 3. Training and validation loss/accuracy curves for DenseNet-121 (a), ResNet-50 (b), and
ResNet-50 with Triplet Attention (c).

Upon inspection of the dataset images, we noticed a high degree of variation of
brightness and contrast, both within and across the ChestX-ray14 and LIDC-IDRI datasets,
as shown is Figure 4a,b. The JSRT dataset has consistent brightness and contrast since it was
automatically equalized at extraction from raw image format, as evident from Figure 4c.

There was some concern regarding these differences in image brightness and con-
trast, which would confound deep learning model training. To minimize the inter and
intra dataset differences in brightness and contrast, the models were trained and tested
with standard histogram equalization as part of the image pre-processing pipeline. The
experiments performed are summarized in Table 3.
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Figure 4. CXR montages for (a) ChestX-ray14, (b) LIDC-IDRI and (c) JSRT datasets showing inter
and intra dataset brightness and contrast variation.
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Table 3. Summary of Training/Test Scenarios.

Test Network Architecture

A Densenet-121 pretrained with ImageNet weights
B Resnet-50 pretrained with ImageNet weights
C Resnet-50 with Triplet Attention/pretrained with ImageNet weights

3.3.2. Deep Learning Model Performance

The results of 10 training/holdout testing runs are shown in Figures 5–7. The holdout
test split used was a subset of the recommended ChestX-ray14 test split containing the
extracted classes, as listed in Table 1.

Figure 5. Average AUC-ROC for 10 rounds of holdout testing (Test A).

Figure 6. Average AUC-ROC for 10 rounds of holdout testing (Test B).
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Figure 7. Average AUC-ROC for 10 rounds of holdout testing (Test C).

Excellent holdout testing results were achieved from all experiments. Test A achieved
a maximum average AUC value of 0.789 at epoch 17. Tests B achieved a maximum average
AUC value of 0.793 at epoch 5. Test C achieved a maximum average AUC value of 0.795
at epoch 10. Each of these results could be considered outliers from individual runs, and
the average lines plotted in Figures 5–7 give a better indication of real-world performance
accounting for error margins, being 0.770, 0.771, and 0.777 for tests A, B and C respectively.

The overall best results were achieved by experiment C, with 4 models achieving
average AUC above 0.790, and a superior mean profile in the range 10–20 epochs, which is
interpreted as a reduced tendency to overfit, thereby promoting our objective of generating
good decision tree fitted models in the downstream process. In contrast, experiment B
resulted in only one model with average AUC above 0.790 and experiment A resulted in
no single models with average AUC above 0.790.

Best AUC-ROC values for the extracted features for each tested configuration are
shown in Table 2. The AUC-ROC values for the same conditions from the original ChestX-
ray14 paper are also included as a baseline [22], along with the most relevant state-of-the-art
results from [23], using a triple attention network with a DenseNet-121 backbone, and [24],
which also considered additional pathologies in their multi-classifier, used mixed label
images, and did not restrict the CXR images to PA projections. These studies also did
not include the “No Finding” class in training or inferencing. Due to these differences in
methods, our results are not directly comparable to these studies; the results have been
compared only to establish that our deep learning models have comparable or better
performance than similar, but not identical development models, and are a good basis for
the following step of our process, being the fitting of shallow decision trees to these models.

3.3.3. Deep Learning Model Attention via Saliency Mapping

The ChestX-ray14 dataset provides bounding box co-ordinate metadata for the patholo-
gies present in a small subset of CXR images. These bounding boxes have been hand-
labelled by a board-certified radiologist [22] and are useful for disease localization ground-
truth comparison to classifier predictions. We used a Grad-CAM [68] visualization to
compare our models’ predictions to ground truth from the ChestX-ray14 dataset bounding
metadata with a selection of results shown in Figure 8a–p.
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Figure 8. Ground truth comparison localization vs. Grad-CAM visualized predicted location for tested network architectures.

These results were generated from the model with the highest validation score from
each experiment training round. Overall, the results showed a good correlation between the
model’s predicted localization and the provided ground-truth. We noted that experiments
B and C tended to produce the best localization results, with experiment C (being the
ResNet-50 triplet attention network) providing the best localization performance overall,
with particularly good results for the difficult “nodule” class, which was relatively poorly
localized in experiments A and B using networks without attention mechanisms.

3.4. Malignancy Model Generation

Of the 157 patient studies from the LIDC-IDRI annotated with patient level diagnosis,
120 DICOM files contained both CT and CXR images, with the remaining 37 containing
only CT scans. The 120 CXR images were extracted into a PNG format as earlier described
to match the classifier input data format. Twenty-four of these images were labelled
with a diagnosis of “Unknown” and were excluded from further analysis. The remaining
96 records were categorized by the LIDC-IDRI as follows in Table 4.
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Table 4. LIDC-IDRI patient level diagnosis metadata summary.

Diagnosis Description Number of Images

1 Benign or non-malignant disease 31
2 Malignant, primary lung cancer 17
3 Malignant metastatic 48

All 154 JSRT nodule CXR images were used in our experiments despite around 30%
of the nodules in these images being classified by the JSRT as either “Very subtle” or
“Extremely subtle”. Human radiologist sensitivity scores were relatively low for these
images as 69.4% and 60.4%, respectively as reported by the JSRT source paper. The JSRT
categorizes images as follows in Table 5.

Table 5. JSRT patient level diagnosis metadata summary.

Diagnosis Description Number of Images

Benign Benign lung nodule 54
Malignant Malignant lung nodule 100

For testing, the LIDC-IDRI and JSRT datasets were also combined by aligning diag-
nosis labels and assigning JSRT benign images to a diagnosis label of “1” and malignant
images to a diagnosis label of “2”.

The models for each training epoch up to 25 epochs were used to extract pathological
feature scores for the LIDC-IDRI, JSRT and combined image sets by inferencing. This
resulted in a total of 250 fitted decision trees per experiment. A seven-column csv template
was prepared containing columns for the Patient ID, placeholders for the five features of
interest (including the “No Finding” class), and the diagnosis score 1 to 3 as determined
by four experienced thoracic radiologists [69]. LIDC-IDRI diagnosis scores 2 and 3 were
combined into a single malignancy class with 65 images representing malignant diagnosis
and thereby allowing for a binary separation. Values for “Atelectasis”, “Effusion”, “Mass”,
“No Finding” and “Nodule” were inferenced from the deep learning models as a score tuple
and written to the placeholder columns to complete a data-frame of patients, inferenced
feature scores and diagnosis labels.

The data-frame was then randomly split into an 80:20 training/testing set, before
being used to fit a decision tree classifier with a limited maximum depth of 3 (to avoid
overfitting due to the small sample size), fitting on an entropy criterion. The fit accuracy
was captured and written to a CSV file, with the decision tree visualization captured as an
image file for any model with greater than 60% accuracy for further investigation of the
associated confusion matrix and tree as a potentially useful multivariate diagnostic and
malignancy stratification model.

4. Results

The experiment generated many fitted decision trees meeting the stated accuracy
objective of 60%. The process was especially effective for the combined LIDC-IDRI and
JSRT datasets, which yielded 633 such trees from a total of 750 candidate trees, representing
an 84.4% success rate. This is impressive considering that candidate trees were fitted for all
epochs, including undertrained early epochs where poor fit results were concentrated.

Experiment C, based on ResNet-50 with triple attention network, proved to be the
most consistent deep learning classifier, with 217 out of 250, or 86.8% success rate compared
to 86.0%, and 80.4% for experiments A and B, respectively. This aligned well with our
earlier deep learning holdout testing results presented in Figures 5–8, where experiment C
provided the best overall results. All fitted decision trees, along with confusion matrices
for each tree, have been made available as supplementary material.

Recognizing that accuracy alone is of limited statistical value, especially for small and
imbalanced datasets, we provide sensitivity, specificity, positive predictive value (PPV),
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false positive rate (FP Rate) and F1 value for each dataset as detailed in Tables 6–8 based
on best fitted tree/s for each experiment as determined by interrogation of the confusion
matrices for the fitted decision trees.

Table 6. Summary of automatically generated decision tree metrics for LIDC-IDRI images.

Test ID Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) FP Rate (%) F1

A 0.850 0.867 0.800 0.929 0.200 0.897
B 0.850 0.933 0.600 0.875 0.400 0.903
C 0.750 0.733 0.800 0.917 0.200 0.8148

Table 7. Summary of automatically generated decision tree metrics for JSRT images.

Test ID Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) FP Rate (%) F1

A 0.677 0.938 0.400 0.625 0.600 0.750
B 0.677 0.875 0.467 0.636 0.533 0.737
C 0.710 1.000 0.400 0.640 0.600 0.781

Table 8. Summary of automatically generated decision tree metrics for combined LIDC-IDRI and
JSRT images.

Test ID Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) FP Rate (%) F1

A 0.820 0.100 0.400 0.796 0.600 0.886
B 0.760 0.800 0.667 0.849 0.333 0.824
C 0.820 0.857 0.733 0.882 0.267 0.870

4.1. Model Analysis-Individual Datasets

The most accurate decision tree achieved 85.0% accuracy with sensitivity of 86.7%,
specificity of 80.0%, positive predictive value of 92.9% with one false positive. This result
was achieved for experiment from experiment A, using the LIDR-IDRI dataset. The
confusion matrix for this result is shown in Figure 9a.

Figure 9. Confusion matrices for best results from LIDC-IDRI and JSRT inferencing datasets
analysed individually.

Inspection of this confusion matrix shows that this result, whilst promising, is based on
a holdout test set of 20 images, being the 20% test split of the LIDC-IDRI dataset of size 96.
Nevertheless, the decision tree fitting this result, as shown in Figure 10, seems reasonable.
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Figure 10. Decision tree fitting best result from LIDC-IDRI Images.

Notably, a high score for the “No Finding” feature results in a branch that indicates
a benign condition unless a high score for “Effusion” is present, whilst a lower score
for the “No Finding” feature, along with a high score for the “Mass” feature results in a
malignancy classification.

The JSRT based experiments resulted in lower decision tree fit metrics than the LIDC-
IDRI tests. This is the expected result of our inclusion of subtle and very subtle nodule
sample images. When reduced from a native image size of 2048 × 2048 pixels to the
classifier default or 224 × 224 for DenseNet and 299 × 299 for the ResNet based classifiers,
it is unlikely that these subtle nodules ranging from 1 mm to 15 mm diameter would still
be visible as a detectable feature on the image. Nevertheless, we did achieve interesting
results for this dataset with an overall best result from experiment C, which achieved 71%
accuracy with good sensitivity of 100.0%, offset by limited specificity of 40%, positive
predictive value of 64%, and a high false positive rate of 60%. The confusion matrix for this
result is shown in Figure 9b.

Again, this result is based on a relatively small test set, being 31 holdout samples from
the JSRT test set. The decision tree fitting for this result is shown in Figure 11.

Figure 11. Decision tree fitting best result from JSRT Images.

The JSRT based model offers some interesting insights. Notably, the decision tree
is rooted in “Effusion”, with high values for this feature associated with malignancy.
Very low values for the “No Finding” feature in the presence of “Effusion” also lead to a



Sensors 2021, 21, 6655 17 of 23

malignancy classification. Once again, a high value for the “Mass” feature also leads to a
malignancy classification.

4.2. Model Analysis-Combined Dataset

The best models from the individual LIDC-IDRI and JSRT datasets are promising
but based on holdout test dataset of very limited size. To obtain the most statistically
reliable results, we proceeded to fit decision trees against the combined LIDC-IDRI and
JSRT datasets with aligned diagnosis labels.

The confusion matrices for the highest accuracy results of each experiment for the
combined LIDC-IDRI and JSRT datasets is shown in Figure 12a–c, with associated metrics
in Table 8. The best result for combined dataset testing was achieved by experiment C,
using a DenseNet classifier enhanced with a triple attention mechanism. Experiment C
represents the best balance between accuracy, sensitivity, and specificity with scores of 82%,
86% and 73%, respectively, resulting in a correct classification of 41 of the 50 test samples,
with only 4 false positives (26.7%). Experiment B also performed relatively well, correctly
classifying 38 of the 50 test samples with well-balanced accuracy, sensitivity, and specificity
metrics of 76%, 80% and 67%, respectively, with 5 false positives (33.3%). Experiment A
achieved a high accuracy of 82% by means of over-classification to the malignant class at
the expense of specificity for the benign class, resulting in a high false positive rate of 60%.

Figure 12. Confusion matrices for experiments A, B, and C using combined LIDC-IDRI and JSRT datasets.

Note that in the medical context, false positives are preferable to false negatives, since
follow-up radiology, such as CT scans and biopsy analysis, will achieve a more accurate
diagnosis [69–71] and eliminate the false positive. On the other hand, a false negative
result can lead to a missed diagnosis and inaction, which is particularly problematic in
the case of lung cancer, where early detection has been shown to significantly improve
outcomes [72]. The best model from experiment C achieved an accuracy of 82%, with a
sensitivity of 86% and specificity of range 73%, which (allowing for sensitivity/specificity
trade-off) is consistent with studies showing human radiologist performance in detecting
symptomatic lung cancer from CXR to have a sensitivity of 54–84% and specificity of up
to 90% [70].

The proposed experimental method is novel, and there are no directly comparable
studies against which we can compare these results. Studies presenting deep learning
classifiers for the ChestX-Ray14, and other CXR datasets do not typically test the gener-
alization characteristics of the presented models against independent datasets. Where
studies such as [6] do assess cross-database performance, this is done by fine-tuning the
model against the second datasets, thereby eliminating the independence of the second
dataset and preventing use as a generalization study. We purposefully did not fine-tune our
DenseNet-121 deep learning model against the LIDC-IDRI or JSRT datasets, preferring to
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preserve independence between the learning and inferencing datasets to promote unbiased
cross-dataset feature extraction and realistic decision tree fitting.

4.3. Combined Dataset Decision Tree Interpretation

Example decision trees corresponding to the combined dataset results are shown in
Figure 13a–c. These decision tree models explain the scores achieved by each test using a
decision path and serve to illustrate the result of the end-to-end technique presented in this
paper. Due to the small sample size of the combined LIDC-IDRI and JSRT datasets used
for inference, it is not possible to claim that these decision tree models are clinically viable.
However, even on this modest dataset, the results achieved are reasonable and could be
expected to be greatly improved by additional inferencing samples. For example, all three
decision trees are rooted at either the “Nodule” or “Mass” feature as expected, since these
are the primary features for lung cancer.

Figure 13. Cont.
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Figure 13. Best fit trees for combined LIDC-IDR and JSRT inferencing datasets for experiments A, B, C and D.

The model for experiment A shown as Figure 13a indicates that a high score for
“Nodule” with the presence of Effusion is associated with malignancy classifications.
Conversely, a high score for the “No Finding” feature results in a benign classification. The
decision tree generated for experiment B, in Figure 13b, shows a high score for “Mass”,
which leads to a malignancy classification, whilst a high score for “No Finding” leads to a
benign classification.

Experiment C yielded the best decision tree fitting results, as evident from Table 8.
Therefore, we expected the decision tree for experiment C, as shown in Figure 13c, to
provide the clearest insights into the relationship between our selected pathological features
and lung cancer malignancy. This model shows that a high score for “Mass” combined
with a low score for “No Finding” with “Effusion” leads to malignancy classification nodes.
Low scores for “No Finding” with Nodule scores greater than 0.01 also lead to malignant
classifications. A low score for “No Finding”, along with a high score for “Atelectasis”
leads to a benign classification, reflecting the weak relationship between this feature and
lung cancer, as found in our literature review. We intend to further refine these models
using clinical studies and may filter out this feature in future iterations.

Interestingly, both experiments A and C associate “Effusion” with malignancy, with
the decision tree for experiment A separating 73% of samples on this feature. This could
indicate that the models based on the combined dataset were sensitive enough to auto-
matically detect the build-up of fluid and cancer cells between the chest wall and lungs,
associated with malignant lung cancer known as Malignant Pleural Effusion [73].

In general, we found the higher levels of the generated decision trees correspond to
our understanding of the lung cancer condition, with the lower levels of the tree being less
consistent and sometimes counter-intuitive, especially for decision tree nodes containing
only a small number of samples.

5. Discussion

Using a novel hybrid of deep learning multiple feature extraction and decision tree
fitting, we have automatically mined lung cancer diagnostic models that are capable of strat-
ifying lung cancer patient CXR images from an independent dataset into benign/malignant
categories. Our best model using a combined LIDC-IDRI and JSRT dataset achieved sen-
sitivity and specificity of 85.7% and 73.3%, respectively, with a positive predictive value
of 88.2%. Our best model using the LIDC-IDRI dataset alone achieved sensitivity and
specificity of 86.7% and 80.0%, respectively, with a positive predictive value of 92.9%,
using a smaller holdout test set which leads us to favour the lower but more statistically
significant combined dataset result. These results are interpretable using human readable
decision tree diagrams. The decision tree models provide explanations into lung cancer
malignancy that may lead clinicians to consider factors that would otherwise be missed in
a high-pressure environment, where, on average, radiologists may be required to interpret
an image every 3–4 s in a workday [74].
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We consider this multi-variate approach to be more useful than a narrow automated
second reading for nodules only, since it aims to enhance the qualitative reasoning process
undertaken by trained physicians, potentially increasing efficiency and reducing errors [8].
It is possible to conceive an implementation of our system as an augmented reality applica-
tion presenting an interpreted overlay to radiologists, perhaps adapting to the clinician’s
eye movements to ensure that attention is given to parts of the CXR that are important but
have not yet captured the clinician’s attention.

The results presented in this research show the potential of hybrid machine learning
computer vision techniques in automatically mining explainable, multivariate diagnostic
scoring models from CXR image data. Whilst none of the developed models could be
considered fit for clinical purposes at this stage, our malignancy classification results
and good matching of decision tree structure to the medical literature, suggests that the
technique we have developed is able to capture important pathological information and is
worthy of further refinement and clinical trialling. Our technique provides an end-to-end
process, resulting in clearly explainable insights that are amenable to expert oversight,
thereby paving the way for clinical adoption.

6. Conclusions

Around 90% of missed lung cancer detections from radiological investigation stem
from the CXR imaging mode [75]. Interpretable computer vision would provide a useful
strategy to reduce radiologists’ observed error by broadening clinical attention to multiple
abnormalities. Such tooling would also help to minimize missed diagnosis, resulting from
early satisfaction of search [76], where obvious anomalies capture attention at the expense
of more subtle abnormalities.

Given the small size of the LIDC-IDRI and JSRT datasets used for the experiments di-
agnostic ground truth, our results suggest that with additional data and further refinement
of this method could be used to develop useful clinical methods to assist in the diagnosis
and malignancy stratification of lung cancer.

Our future directions include utilizing state-of-the-art signal-to-noise improvement
techniques applied to the CXR pre-processing pipeline, customization of the deep learning
feature extraction algorithm to include wavelet filtering, followed by reference implementa-
tion in a federated deep learning framework to reduce patient selection bias and guarantee
data privacy, thereby providing a path to clinical validation.
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