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1. Abstract 

In Australia, 41% of industry injury claims are due to manual handling tasks, costing $14.58 billion 

annually. In the Australian Army, 78% of physically demanding tasks are considered manual handling, 

which increases the risk of musculoskeletal injury. Of injuries in active service personnel for the 

Australian Army, 22% occurred in the trunk [3, 4] with manual handling recognised as the cause for 

5% of all injuries [3, 4]. This has led to the need for an exoskeleton system that can support, move and 

adapt to repetitive, fatiguing tasks. The predecessor to this exoskeleton system is the development of 

an assist-as-needed control algorithm that will predict when personnel are lifting above their 

maximum acceptable weight of lift (MAWL), which is indicative of an increased injury risk. This 

algorithm could also be deployed on a simpler stand-alone wearable device that could assist 

personnel in reducing risk factors associated with injury due to manual handling tasks, through 

providing visual or auditory feedback. 

Laboratory experiments using biomechanical task analysis based on military manual handling 

protocols were performed with a sample size of 32 participants. Inertial measurement units (IMUs) 

were used in a six-segment spine model for data collection. The normalised (for time) kinematic 

output of the IMUs for participants during lift-to-platform tasks were analysed for the relationship 

between changes in spine kinematics and increasing external load. Statistical parametric mapping was 

performed to determine significance in the IMU variables. Additionally, polynomial correlation of 

discrete features were analysed for use as predictive factors of external loading above a participant’s 

capability which resulted in poor correlation.  

Machine learning was performed due to its ability to find trends and features in data that may not be 

apparent via statistical inference. Supervised machine learning algorithms capable of classifying 

multivariate time series data were compared. The Random Convolutional Kernels (ROCKET) algorithm 

had the highest accuracy for its ability to classify a high risk (at or above MAWL) or low risk (below 

MAWL) lift, with a 10-fold cross validation mean accuracy of 91.2 ± 2.7%. A moderate f1-score was 
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maintained through dimensionality reduction of the spine segments and data frames per feature. 

Reducing the spine segments to one (middle lower thoracic) and data frames to half (50) resulted in a 

f1-score of 86%. 

This research contributes an accurate novel predictive model that uses machine learning to classify 

spine kinematics from IMUs into high and low risk lifts, based on MAWL. In future work, the novel 

predictive model developed in this thesis will contribute to the development of a stand-alone device 

providing user-feedback. The model will also be part of an assist-as-needed control system for the 

development of an active exoskeleton that could provide augmentation to Defence personnel during 

manual handling. These devices aim to reduce injuries caused by lifting above an individual’s capacity. 
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Chapter 1. Introduction 

1. Project Funding and external collaboration 

This work was jointly funded by the Defence Science and Technology Group of the Department of 

Defence (Australia) and Victoria University through the Program in Assistive Technology Innovation 

(PATI). The group’s research aims were to research the design and development of assistive devices 

that could aid Australian Infantry soldiers to carry out loaded manual handling tasks. Thus, the 

research in this thesis falls within the PATI’s research focus by looking at Australian Defence Force 

manual handling tasks and how exoskeletons can play a part in the augmentation of soldier carrying 

out these tasks. 

Due to access limitations to Australian Infantry soldiers, experimental participants were recruited 

from the civilian population. The age (mean age 29.5 ± 5.6 years) and sex (66% Male & 34% Female) 

of the civilian population was recruited to reflect that of the Australian Defence Force (median age 31 

years for males and 29 years for females with 81% of the population Male and 19% Female) [5]. 

2. Problem Statement 

Back injuries are a real problem in manual handling (MH) industries around the world, they are 

painful, effecting personnel’s quality of life and their ability to perform workplace tasks [6]. They are 

expensive to companies, reducing productivity and adding costs for rehabilitation, retraining and loss 

of hours [6]. There is such a large body of research around the topic of back injuries, their many 

possible causes, procedures for preventing them, equipment interventions to reduce the risk of them, 

and still, they are extremely prevalent across all industries, especially with the Defence Force [7].  

Manual handling injuries are of particular concern in physically demanding Defence Force 

occupations. Musculoskeletal injuries make up 20% of the most common disorders supported for 

Australian Defence personnel returning from active service [8]. Studies looking into the prevalence of 

injuries in active service for the Australian Army found that between 21.2% and 22.8% of injuries 
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occurred in the trunk [3, 4]. Load carriage attributed to 20.7% of injuries (e.g., marching, patrolling, 

physical training, manual handling) [4] with manual handling recognised as the cause for 5% of 

injuries [3, 4]. Prevention methods for load carriage injuries can include training, practice, education 

and wearable interventions. 

When exploring some of the wearable interventions that have been introduced in literature (e.g., 

back braces, exoskeletons, posture garments, lifting devices), there did not seem to be a solution that 

took a person’s ability to perform a task into consideration. Many of these devices were always 

providing assistance, where perhaps it was not needed. A back brace is always providing intra-

abdominal pressure, this is not needed when walking through the warehouse. The exoskeleton can lift 

loads of 20 kg, but if the wearer is lifting 1 kg boxes, lifting for them could result in a reduction of 

strength and stamina. 

The benefit of an exoskeleton is that they can be turned off while still being worn and this can be 

automated via its control system [9]. The use of exoskeletons could be a solution to manual handling 

back injuries by providing augmentation and supported motion to the wearer, but it is important to 

consider that taking away all loading off the musculoskeletal system can cause more injuries in the 

long term [10]. It is vital that any intervention does not reduce the ability of the wearer over time, 

only assisting when there is a need, such as when the wearer is performing a dangerous motion. 

Dangerous motions are those that include hyperflexion or hyperextension, such as when lifting from 

the floor or above shoulder height [11, 12], performing tasks when fatigued and trying to lift more 

than an individual is capable of lifting [13]. 

A measure used by the Australian Defence Force of the limit of a person’s ability to lift is known as 

maximum lift capacity (MLC) whereas, a measure of a person’s limit to continue lifting safely is known 

as the maximum acceptable weight of lift (MAWL) [13]. Across seven strength-based lifting tasks the 

MAWL was determined to be 84 ± 8% of MLC [13]. Matching a person’s capability to the physical 
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demands of their job has been shown to reduce the occurrence of injury [14], therefore limiting 

external loads to below 84% of a person’s MLC may reduce injury risk. 

Understanding the effect that increased loads have on the spine and using this understanding to 

predict when a person has reached their capability limits could provide a way to reduce these costly 

injuries. Prediction can be achieved through machine learning algorithms. Machine learning (ML) 

classification algorithms have the ability to learn from past observations and make predictions on 

which class a new observation belongs to without needing to be explicitly trained for any new data 

[15].  

The use of a ML algorithm for prediction means that assistive devices would have the ability to 

augment movement without reducing the physical ability of the wearer. This can be achieved by only 

providing assistance when a threshold has been reached, such as MAWL, through assist-as-needed 

activation of the intervention, such as an exoskeleton. 

3. Theoretical Framework 

 

Intrinsic factors Extrinsic factors 

Number of 
repetitions 

Load mass Posture/ 
Kinematics 

Anthropometrics 

Injuries 

Lifting tasks 

Assistive device Predictive 
algorithm 

Control algorithm/ 
User feedback Chapter 2 

Chapter 6 

Chapter 3 & 4 

Chapter 5 

Future work 

Figure 1 Theoretical Framework for the thesis. 
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Figure 1 introduces the theoretical framework for the body of work. Use of an exoskeleton may be 

beneficial to avoid musculoskeletal injuries due to manual handling tasks [Chapter 2: Literature 

Review]; however, when an exoskeleton should begin to assist depends on multiple factors, such as 

the person's MAWL (a measure of an individual's physical capacity for continued load carriage). Given 

that increasing load may influence spine kinematics [Chapter 3: Systematic Review], a system of small 

sensors along the spine able to detect changes in kinematics due to an increase in loading that 

approaches MAWL [Chapter 4: Experimental Trials, Chapter 5: Statistical Analysis], could be used to 

create a predictive algorithm [Chapter 6: Machine Learning Application] and deployed as a control 

system in MH exoskeletons [Chapter 7: Future Work]. 

4. Research Aim 

The overall aim of this project is the design and development of a predictive model to identify 

(classify) whether an external load is above a person’s intrinsic ability to lift. This could then go on to 

be used as part of an assist-as-needed control system for an exoskeleton, to reduce risk injury factors 

during military manual handling tasks. The research contained within this body of work is based on 

the assumption that when a lifting load is standardised to a percentage of a person’s maximum lift 

capacity, the changes in spine kinematics caused by increased external load will be similar between 

participants and thus, could be used to create a predictive model. Therefore, the overarching 

research question was asked: 

Can spine kinematics be used in a predictive model that  

can determine an increased risk of back injury? 

The research objectives explored are: 

1. Determine the suitability of current exoskeleton technology to support military manual 

handling tasks (Chapter 2). 
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2. Determine the effect of increased external load on spine kinematics (Chapter 3 & 4).  

3. Determine the kinematic factors that can be used as predictive indicators of a user 

approaching their maximum acceptable weight of lift (Chapter 5). 

4. Develop a predictive model to classify when a lift is above the maximum acceptable weight of 

lift (Chapter 6). 

5. Thesis Structure 

 

Figure 2 Structure of the thesis. 

This body of work followed the structure seen in Figure 2, answering three main questions. The first 

question asked: ‘How can exoskeletons be used to assist in military manual handling tasks to reduce 

risk of back musculoskeletal injury?’, to answer this Chapter 2 evaluated how exoskeletons could be 

applied to assist personnel in the performance of manual handling tasks by assessing the current state 

of the systems available in literature and whether they can meet the needs for the predominant 

Can predicted maximum lift capacity be used for an assist-as-needed activation of an exoskeleton?

FUTURE WORK: Application of Predictive Algorithm for an Exoskeleton Control System

Can spine kinematics be used to predict the percentage maximum lift capacity being lifted?

Chapter 5 Statistical Analysis: Comparison of Percentage 
Maximum Lift Capacity

Chapter 6 Machine Learning Application: Early Prediction 
of Percentage Maximum Lift Capacity

What effect does an increase in external load during lifting have on spine kinematics?

Chapter 3 Literature Review: Effect of Loading on 
Spine Kinematics

Chapter 4 Experimental Trial: Lifting at Percentages 
of Maximum Lift Capacity

How can exoskeletons be used to assist in military manual handling tasks to reduce risk of back musculoskeletal injury?

Chapter 2 Literature Review: Application of Exoskeletons to Military Manual Handling Tasks (Published)

THESIS QUESTION

Can spine kinematics be used in a predictive algorithm that can determine an increased risk of back injury?
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Australian Defence Force tasks. Question two asked: ‘What effect does an increase in external load 

during lifting have on spine kinematics?’, Chapter 3 explored the effect that increasing external load 

had on spine kinematics during lifting tasks via a systematic literature review; followed by Chapter 4 

that assessed the relationship between an increase in load and spine kinematics via experimental trial 

data. The final question assessed in this body of work was: ‘Can spine kinematics be used to predict 

the percentage maximum lift capacity being lifted?’, Chapter 5 applied statistical analysis on the 

experimental trial data to determine if any correlation existed for the effect of increased load on 

spine kinematics and Chapter 6 applied machine learning techniques to the experimental trial data to 

predict to which percentage maximum lift capacity class the observation belongs. 

6. Contribution to Knowledge & Statement of Significance  

The use of spine kinematics to make predictions of when a person is approaching their MAWL could 

make a significant impact on many industries that require human involvement in manual tasks. 

Industries that involve manual materials handling (e.g., Defence, logistics, manufacturing) injuries are 

present [6]. They are painful and costly to both human quality of life and a workplace’s profit [6]. 

While the cause of injuries varies (e.g., hyperflexion, hyperextension, excessive lifting height) [16] a 

contributing factor is performing tasks above a person’s capability [13]. The ability to predict when a 

person is approaching the limits of their capability and then provide feedback or augmentation, has 

the ability to reduce the number of injuries seen in industry. The creation of an algorithm that can 

predict whether a lift is above or below MAWL based on spine kinematic changes has not been 

previously researched. 

This research contributes a novel predictive model that uses spine kinematics to classify IMUs data 

output into above or below a person’s MAWL. The novelty of this research is in the use of IMUs to 

gather data from six spine segments, using percentages of maximum lift capacity to normalise the 

effect of loading on spine kinematics across participants and applying multivariate time series 

classification algorithms to spine kinematic observations for prediction. This research makes a 
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significant contribution to knowledge as it demonstrates, for the first time, an accurate model for 

early prediction of loads above a person’s capability to lift based on spine kinematics is possible.  

In future work, when implemented across many manual handling tasks, it has the ability to be 

employed for the activation of wearable devices that provide augmentation or user feedback 

immediately as the lift has commenced, this would have the ability of reducing overexertion back 

injuries. The benefits of this could be applied to any industry setting where manual material handling 

tasks are performed, including the Defence Force.   
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Chapter 2. A review of the application of exoskeletons to military manual 

handling tasks  

This chapter is an amended version of the manuscript: Proud, J. K., Lai, D. T. H., Mudie, K. L., Carstairs, 

G. L., Billing, D. C., Garofolini, A., & Begg, R. K. (2022). Exoskeleton Application to Military Manual 

Handling Tasks. Human Factors, 64(3), 527–554. Published version in appendix A. This chapter focuses 

on determining whether current exoskeleton technology is capable of supporting military manual 

handling tasks to reduce the occurrence of back injuries. 

1. Introduction 

In Australia 43% of serious injuries in the workplace are due to traumatic joint, ligament, muscle and 

tendon injuries, at an annual cost of AU$19.5 billion for treatment, over-employment, overtime, 

retraining and investigation [6]. Forty-five percent of serious workplace injuries were due to manual 

handling, a term used to describe tasks in which human force is used to manoeuvre an object’s 

position [7]. Manual handling injuries are of particular concern in physically demanding Defence Force 

occupations. Most manual handling injuries are associated with the upper and lower limbs (37%) and 

the back/trunk (38%) [6]. This is an internationally recognised problem, as 43% of workers in the 

European Union experience back, neck or shoulder pain caused by manual handling related workloads 

and repetitive movements [17].  

Musculoskeletal injuries make up 20% of the most common disorders supported for Australian 

Defence personnel returning from active service. The Australian Government's Department of 

Veteran Affairs found that 7934 veterans (13%) from the East Timor, Solomon Islands, Afghanistan, 

Iraq and Vietnam conflicts receive support for lumbar spondylosis [8], a condition causing pain and 

restricted motion in the lower back attributed to overuse [18]. Also, common in Defence personnel 

were acute sprain and strain (4%), intervertebral disc prolapse (2%) and thoracic spondylosis (1%) [8]. 

These musculoskeletal disorders could be caused by manual handling tasks that involve movements 
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that contribute to an increased risk of musculoskeletal injuries. Exploring how exoskeletons can 

support the body during manual handling tasks may help in reducing the risk of musculoskeletal 

injuries. 

Factors contributing to manual handling injuries include hyperflexion or hyperextension of the lumbar 

spine caused by external torques, internal torsional forces, fatigue due to increased total work [16] 

and increased spinal flexion when performing lifting tasks from the floor [11, 12]. Additionally, lifting 

above an individual’s intrinsic capacity can be responsible for injuries [13].  

A comprehensive analysis of Australian Army personnel categorised 79% of all physically demanding 

tasks as manual handling [7] encompassing four movement patterns: vertical lifting (305 tasks), 

locomotion with load (153 tasks), push/pull (38 tasks) and repetitive striking (30 tasks). These 

movement patterns were further categorised into ten task-based clusters. While some tasks are 

unique to Defence personnel the two most common task-based clusters (lift-to-platform and lift-

carry-lower) are also prevalent in many manual handling industries. Therefore, this review could be 

extended to the application of exoskeletons in industries whose workers perform these movement 

patterns. 

Exoskeletons are an externally fitted biomechatronic or mechanical system, designed to assist the 

human user in order to reduce injury risk, amplify natural ability, rehabilitate movements or assist for 

physical challenges [9, 19]. Exoskeletons can be categorised by the intended purpose of the system: 

assistive systems, human amplifiers, rehabilitative systems and haptic interfaces [20]. An assistive 

system provides additional support to workers through joint bracing and control or transmitting 

forces away from the musculoskeletal system, a human amplifier increases the strength capabilities of 

the human body beyond their natural ability and rehabilitative systems assist in recovery of limb 

movement for people with limited function. A haptic interface exoskeleton provides feedback to the 

user when using tele-operation devices. This review explores assistive systems and human amplifiers 

for their use in supporting manual handling personnel. 
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The aim of this review was to analyse the current literature to identify characteristics of industrial 

exoskeletons that can be useful to military manual handling tasks. Therefore, the exoskeletons were 

classified based on: 1. which manual handling task the exoskeleton was developed to perform, and 2. 

which joint the exoskeleton supports.  

2. Methodology 

A study of the current exoskeleton literature was performed using Scopus, for articles published 

between January 1990 and December 2019. The search terms included exoskeleton, wearable robot 

or robot suit with the additional terms industrial, military, manual handling, material handling, lifting, 

carrying, pushing, pulling and striking. The included search terms were determined by using the 

definition of manual handling as set by research into Australian Army tasks [7].  

Original studies were considered eligible if they met the following inclusion criteria: 1. the purpose of 

the exoskeleton was stated using terms such as industrial, military, manual handling, material 

handling, lifting, carrying, pushing, pulling or striking; 2. the conceptual design of the exoskeleton was 

progressed to a physical prototype; 3. the manual handling load was supported anterior to the user; 

4. the exoskeleton provided actuation on one primary supporting joint (e.g. knee, hip, spine, shoulder) 

used to execute lift-to-platform and/or lift-carry-lower tasks. We excluded any commercially available 

exoskeleton (see limitation section) that did not have published scientific evidence. 

The initial search resulted in 357 studies. The texts were screened, and 284 studies were excluded. In 

total, 73 studies were included in the review (Figure 3) that resulted in 67 individual exoskeleton 

systems. Included studies were categorised based on which movement patterns they permit (e.g., 

squat/deadlift, shoulder/chest press and isometric arm hold or any combination of these movement 

patterns) and to which joints they provided actuation. 
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See text for description of criteria. 

In order to categorise exoskeletons for their application to military manual handling tasks our focus 

was on the dominant two task-based clusters, the lift-to-platform cluster (198 tasks) and the lift-carry-

lower cluster (100 tasks) which comprised 56% of army manual handling tasks. There was 

commonality of the major movement patterns (shoulder/chest-press, squat/deadlift and isometric 

arm hold movements) and the supporting joints used to execute these tasks (Table 1). Exoskeletons 

were categorised into the key movement patterns they work on, then sub-categorised into the key 

supported joints (Table 1). We define the supported joint as the joint upon which the exoskeleton 

provides actuation. Therefore, an exoskeleton can be designed to assist a segment/joint (i.e., the 

spine) by providing actuation to – supporting – a joint (i.e., the hip).  

  

Studies excluded through 
title/abstract screening 

(n=122) 

 

Studies excluded through 
full-text screening (n=162) 

 

Studies excluded on the basis on inclusion criteria: 
Criterion 1. (n=94) 
Criterion 2. (n=3) 
Criterion 3. (n=9) 

Criterion 4. (n=16) 

 

Studies excluded on the basis on inclusion criteria: 
Criterion 1. (n=48) 
Criterion 2. (n=89) 
Criterion 3. (n=21) 
Criterion 4. (n=4) 

 

Studies identified through database search (n=357) 

 

Studies included  
(n=73) 

 

Figure 3 Schematic of the number of studies excluded on the basis on inclusion criteria during the search process.  
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Table 1 Key movement patterns and supporting joints for task clusters 

 
Lift-To-Platform Lift-Carry-Lower 

Key Movement Pattern Squat /Deadlift Shoulder/ chest-press 
Shoulder/ chest-press 

& Isometric arm hold 

Key Supporting Joints 
Knee Shoulder Shoulder 

 
Hip Spine Spine 

 
Spine   

 

Operational details included device name, purpose, targeted assistance, actuation method, actuators, 

degrees of freedom (DOF), device weight, control method, sensor system and load capability. The 

purpose of the exoskeleton was classified based on the principal function/s or the motivation for 

design. These were defined as: 1. “tool holding”, supporting the weight or reducing the transfer of 

vibrations from a tool to the user, particularly during overhead work; 2. “injury prevention”, reducing 

the transfer of external loads to the user’s joint and muscle; 3. “amplification”, typically full body suits 

taking the entire external load through their structure; and 4. “load carrying”, bearing an external 

load through the exoskeleton’s structure.  

Evaluation details included task analysis, testing performed, test details, sample size, participant 

details and test results. Task analysis outlined any assessments that were performed prior to the 

design of the exoskeleton to determine its requirements. Testing performed on the exoskeletons 

were categorised into the following analyses: 1. “exoskeleton structural design”, analysed for how it 

moves, the workspace it requires and the forces it is able to withstand/exert; 2. “human-exoskeleton 

analysis” how it interacts with the user to provide assistance, the forces it applies to the user and how 

the user’s natural motion can be changed by the addition of the device; 3. “accuracy of the sensor 

system” analysed for its accuracy, resolution, efficiency, speed and output; and 4. “response 

characteristics of the control system” how the mechatronic system interacts with the user and can be 

measured by accuracy, speed, sensitivity and complexity.  



Know your limits. Predicting lift capacity using time series spine kinematics for a military manual handling task.  

 

 Jasmine K. Proud   |  29 
 

3. Results 

3.1. Operational details 

3.1.1. Movement patterns and supported joints  

Twenty-four percent of exoskeletons permitted shoulder/chest press and isometric arm hold motions 

(Table 2), this includes devices that support the elbow and shoulder joints concurrently (n=9) and the 

shoulder joint only (n=7) (Figure 4). Sixty-four percent of exoskeletons permitted the squat/deadlift 

movements (Table 3), this includes devices that support the ankle, knee and hip synchronously 

(n=20), the knee joint only (n=4) and the hip joint only (n=19) (Figure 4), while 12% of exoskeletons 

permitted major joints for shoulder/chest press, isometric arm hold and squat/deadlift (Figure 4) (e.g. 

spine (n=5) and full body devices (n=3)) (Table 3).  

3.1.2. Purpose 

Load carrying was the most common exoskeleton purpose (42%), followed by 22% targeting load 

carrying and injury prevention (Figure 4). Load carrying included lifting, lowering and/or carrying of 

external loads. Injury prevention exoskeletons focused on trying to reduce injury risk factors of the 

lower back while tool holding devices, making up 15% of this review, focused on supporting the 

shoulder joints through unloading.  

 



Know your limits. Predicting lift capacity using time series spine kinematics for a military manual handling task.  

 

 Jasmine K. Proud   |  30 
 

 

Figure 4 Breakdown of exoskeletons classified into their movement patterns, supporting joints and purpose. 
a) Shoulder/ chest press & isometric arm hold (Table 2) b) Squat/deadlift (Table 3) c) Shoulder/ chest press, isometric arm 
hold & squat/deadlift movements.  
 

3.1.3. Actuation system  

Ninety percent of the included studies reported the actuation method used (Figure 4); these systems 

have been classified into four categories: electric (n=38), hydraulic (n=5), pneumatic (n=6) and passive 

(e.g., springs, pulleys, cables) (n=15). Seventy-eight percent of exoskeletons in this review were active, 

meaning they provide movement to the user through a mechatronic system and the creation of 

mechanical power through the use of actuators, while 22% were passive exoskeletons, meaning they 

used an exclusively mechanical system to provide support.  

3.1.4. Task requirement  

Task requirements were identified prior to exoskeleton design in 30% of the studies. These studies 

looked at kinematic modelling (n=10), gait analysis (n=5), or biomechanical analysis (n=5) to optimise 

their design for specific task requirements by quantifying the range of motion (ROM), DOF, joints 

supported, and additional torque provided. 
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3.2. Evaluation details 

Human-exoskeleton integration analysis was the most prevalent form of evaluation with 68% of 

devices included in this review (Figure 5). Evaluations performed included biomechanical, 

physiological and psychophysical testing. Biomechanical evaluation was the most frequently used 

measure (n=39), followed by physiological evaluation (n=37) (Figure 5). Many studies used both 

physiological and biomechanical evaluations to indirectly evaluate device performance. 

Biomechanical testing captures the kinetics and kinematics of user’s joint movement [21], while 

physiological tests measure the user’s energy cost [22], and psychophysiological tests measure user’s 

perception (subjective feedback) whilst using the exoskeleton [23]. Biomechanical evaluations vary 

and included motion capture (n=9), ground reaction forces (GRF) (n=2) and inertial measurement 

units (IMUs) (n=6); physiological tests included electromyography (EMG) (n=32), while psychophysical 

tests included rate of perceived exertion and self-questionnaires (n=5). Only four studies measure 

performance using a direct method (time to completion).  

All studies that tested muscle activation (recorded via EMG) reported reductions in some EMG signals 

(n=32). Such a reduction in EMG was considered a measure of how the exoskeleton reduced muscle 

work and thus the risk of injuries. Specific to the back, eight studies reported reductions of muscle 

activation of the erector spinae muscles between 15% and 54%; one study reported no changes, and 

one reported increased activation of the antagonist muscles.  
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Figure 5 Breakdown of exoskeletons classified into their movement patterns, testing performed and type of evaluation. 
a) Shoulder/ chest press & isometric arm hold (Table 2) b) Squat/deadlift (Table 3) c) Shoulder/ chest press, isometric arm 
hold & squat/deadlift movements (Table 4). * = Some studies have carried out multiple analysis. 

Due to the early stage of development for the majority of devices, participant sample sizes were 

relatively low (< 13). However, there were two studies [24] and [25] proposing commercially available 

exoskeletons (the Leavo (Table 3, Row 31) and Airframe (Table 2, Row 15)) that had larger participant 

cohorts with 18 and 29 participants respectively. The Airframe was also tested with a smaller cohort 

of 11 participants in a automotive factory environment performing controlled real-work tasks [26], 

and the Daewoo Shipbuilding & Marine Engineering Hydraulics Wearable Robots (DSME-HWR) (Table 

3, Row 20) performance was observed during in-field trials at a shipbuilding yard [27].  
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Table 2 Exoskeleton classification for shoulder/chest-press and isometric arm hold  
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Operational Details Evaluation Details  

1 

Elbow – 
shoulder 

  
  
  
 
 
  

Exhauss 
Stronger 

LC 
& IP 

Arm – 
Lifting 
assist 

P 
Not 

reported 
Not 

reported 
9 Not applicable 

Not 
applicable 

Not 
reported 

Not reported 
Human-

exoskeleton 
analysis 

Lift, carry, place task. 
With & without exo 

condition. EMG, IMUs, 
HR, RPE, CoP, time to 

complete. 

8 

4F (31 ± 2 
years, 62 ± 

10 kg, 166 ± 
4 cm) 4M 

(33 ± 3 
years, 78 ± 3 
kg, 179 ± 3 

cm) 

 Reduction of anterior deltoid 
muscle activity (54%) & 

stacking/unstacking (73%) 
tasks. No significant 

difference in back muscle 
activation. Increased 

antagonist muscle activity, 
postural strains, 

cardiovascular demand & 
changes in upper limb 

kinematics 

[28] 

2 

Power assistive 
exoskeleton 

robot system 
for the human 

upper 
extremity 

LC 
Arm – 
Load 
assist  

A 
Not 

reported 
8 

Not 
reported 

Human-robot 
cooperative 

control 

Force 
sensors 

Not 
reported 

Not reported 
Human-

exoskeleton 
analysis 

Holding a 10kg load. 
With & without exo 
conditions. EMG for 
elbow & shoulder 
flexion/ extension. 

Not 
reported 

Not reported 
Reduction in EMG signals of 

the arms and shoulders while 
wearing the exoskeleton 

 [29] 

3 
Stuttgart Exo-

Jacket 
TH 

Arm - 
Stabilising 

A 
Electric (EM 

& HD) 
12 

Not 
reported 

PID control 
Hall 

sensors 
Not 

reported 

Biomechanical 
analysis - 

MoCap & IMUs 

Human-
exoskeleton 

analysis 

Subjective 
questionnaire on device 

comfort while 
performing flexion & 

extension. 

3 Not reported Not reported [30, 31] 

4 

Iso-elastic 
upper limb 
exoskeleton 

TH 
Arm – 
Limb 

support 
P Passive (S) 

Not 
reported 

1.9 Not applicable 
Not 

applicable 
7.5 Not reported 

Human-
exoskeleton 

analysis 

Using 4 masses and a 
spring balance, the 

effective lifting force at 
7 different angles was 

measured  

Not 
applicable 

Not 
applicable 

For higher loads there is a 
discrepancy between 

calculated and measured 
forces. Capable of supporting 
loads in the range of 40–120 

N 

[32] 

5 

Under-
actuated 

upper-body 
backdrivable  

LC  
Elbow –

Load 
assist 

A 
Not 

reported 
1 

Not 
reported 

Artificial 
neural 

network with 
a model-based 

intensity 
prediction 

Myo-
Armband 

Not 
reported 

Kinematics 
Human-

exoskeleton 
analysis 

Varying torques in the 2 
directions available 

7 
6 M and 1 F, 

(20 to 35 
years) 

RMS Error of 3.8 ± 0.8N at 
the end effector 

[33] 

6 

 4 DOF 
exoskeleton 

rehabilitation 
robot 

LC 
& IP 

Arm – 
Limb 

support 
A 

Cable-
driven 

parallel 
mechanism 

4 
Not 

reported 

IPC (Industrial 
Personal 

Computer) 

 Cable 
tension 

and 
encoder 

Not 
reported 

Kinematics 
Characteristics 
of the control 

system 

The exoskeleton drove 
robotic arm repetitively 

track the cubic 
polynomial trajectory 

Not 
applicable 

Not 
applicable 

Trajectories 
tracking capability was 

demonstrated 
[34] 

  



Know your limits. Predicting lift capacity using time series spine kinematics for a military manual handling task.  

 

 Jasmine K. Proud   |  34 
 

 
 Table 2 continued… 
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Operational Details Evaluation Details  

7 

Elbow – 
shoulder 
 

Upper-limb 
exoskeleton 

TH 
Arm – 
Load 
assist 

A 
 Electric 

(EM) 
5 9.5 Not reported 

Not 
reported 

Not 
reported 

Physiological  
Human-

exoskeleton 
analysis 

Perform a movement of 
raising the arm with a drill 
above the head wearing or 

not the arm exoskeleton 

10 

8 M and 2 F, 
all right-
handed, 

(28.8 ± 3.4 
years, 173.3 

± 6.4 
cm,72.32 ± 
11.97 kg) 

Exoskeleton reduces muscle 
activity 

[35] 

8 

 4-DOF upper-
body 

exoskeleton 
LC 

Arm – 
Load 
assist 

A 
Not 

reported 
4 

Not 
reported 

 Admittance 
control & 

gravity 
compensation 

 Force 
Sensitive 
Resistor 

Not 
reported 

Biomechanics 
Human-

exoskeleton 
analysis 

With the passive 
exoskeleton, in which 

three different payloads in 
the range of 0 kg to 5 kg 

were lifted 

5 (20-30 years) 
the developed method is 
able to estimate the load 

carrying status 
[36] 

9 

Wearable 
upper arm 

exoskeleton  
TH  

Arm – 
Load 
assist 

A  
Electric 

(EM) 
1  2  

PD adaptive 
control  

Not 
reported 

4.5  Physiological  
Human-

exoskeleton 
analysis  

Holding position with no 
mass, repeated with a 1.5, 

3, 4.5kg load. With & 
without exo conditions. 

EMG for elbow & shoulder 
flexion/ extension.  

5  
(23-28 years, 
168-183 cm) 

The IEMG of every muscle is 
significantly decreased when 

the user wears the 
exoskeleton  

[37]   

11 Shoulder 
 PAEXO passive 

exoskeleton 
TH 

Shoulder 
– Joint 

support 
P Passive (S) 

Not 
reported 

Not 
reported 

Not applicable 
Not 

applicable 
Not 

reported 
Physiological  

Human-
exoskeleton 

analysis  

T1: Screwing nuts 
continuously, and T2: 

Drilling using an electric 
drill (1.3 kg) 

12 

6 M and 6 F 
(24 ± 3 

years, 176 ± 
15 cm, 73 ± 

15 kg) 

The mean EMG amplitude of 
all evaluated muscles was 
significantly reduced when 
the exoskeleton was used. 
This was accompanied by a 
reduction in both heart rate 

and oxygen rate. The 
kinematic analysis revealed 
small changes in the joint 
positions during the tasks. 

[38] 

12  

 Parallel-
structured 
upper limb 

exoskeleton 

LC 
Arm – 
Load 
assist  

A Hypoid gear 2 12 
Force-position 

hybrid 
Angle 

sensors 
Not 

reported 
Kinematics 

Human-
exoskeleton 

analysis  

Assisted by the 
exoskeleton, operator try 

to lift a 20kg load 
1 Not reported 

Structure can lift load up to 
1.5 times of the 

exoskeleton’s mass 
[39] 

 
(includes 
wrist) 

ABLE 
exoskeleton 

TH 
Arm – 
Load 
assist 

A 
Not 

reported 
7 

Not 
reported 

Force-position 
control 

Not 
reported 

Not 
reported 

Not reported 
Human-

exoskeleton 
analysis 

Biomechanical task analysis 
- tool holding above head 

with 5 shoulder 
compensation torques. 

With & without exo 
condition. 

8 

(24 ± 7 
years, 63 ± 

11 kg, 170 ± 
5 cm) right-

handed 

Setting compensation to 
1.935 kg.m led to 

disturbance of subjects’ 
natural movements. 

Excluding Trial 5, strongest 
arm torques reduction 

occurs for Trial 3 (38.8%) 

[40, 41] 
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Operational Details Evaluation Details  

13 

Shoulder 

Shoulder 
exoskeleton 

TH 
Shoulder 

– Joint 
support 

P Passive (S) 
Not 

reported 
2 Not applicable 

Not 
applicable 

Not 
applicable 

Physiological  
Human-

exoskeleton 
analysis  

Repetitive lifting and placement 
work 

5 (20-24 years) 
Exoskeleton can reduce the 
muscle activity of shoulder 

muscle 
[42] 

14 

Hyundai Vest 
Exoskeleton 

(H-VEX) 
TH 

Arm – 
Limb 

support 
P Passive (S) 1 2.5 Not applicable 

Not 
applicable 

Not 
reported 

Physiological  
Human-

exoskeleton 
analysis  

Biomechanical task analysis - tool 
holding above head. With & 

without exo conditions. High & low 
task, with & without load. 

10 

(34.9 ± 3.96 
years, 173.7 
± 6.20 cm, 

72.1 ± 12.85 
kg) 

Assistive torque provided by 
H-VEX was shown to 
significantly decrease 

activation of the shoulder-
related muscles during 

target tasks 

[43] 

15 Airframe LC 
Arm – 
Limb 

support 
P 

Not 
reported 

Not 
reported 

Not 
reported 

Not applicable 
Not 

applicable 
Not 

reported 
Not reported 

Human-
exoskeleton 

analysis 

Static task - 3.5 kg on forearm. 
Repeated manual handling task - 

pick & place 3.4 kg. Precision task - 
tracing a continuous wavy line at 

shoulder height. Cognitive 
assessment -RPE. Time to complete. 

With & without exo condition. 

29 

M (51.5 ± 4.7 
years, 81.6 ± 
9.1 kg, 174.9 

± 2.3 cm) 

Static = 31.1% relative 
longer time length with exo. 
Manual handling = Results 

are comparable. Precision = 
A significant 33.6% increase 

of the number of traced 
arches with exo. 

[25, 26] 

              

Controlled real work tasks: 
Mounting the clips of brake hoses 

underbody, sealing underbody 
using the sealing gun & mounting 
the seal on the rear door. With & 

without exo condition. 

11 

(177.2 ± 5.0 
cm, 81.1 ± 

7.3 kg, 45.8 ± 
6.9 years) 

Workers provided positive 
feedback for the exo as it 
helped to carry out tasks 

with less physical & mental 
effort. There was some 

potential interference of 
the exo during the 

mounting task.  

[26] 

16 
(includes 
hip) 

CANE IP 
Back – 
Joint 

support 
A 

Pneumatic 
(PnC) 

Not 
reported 

Not 
reported 

Flow solenoid 
valve 

IMUs 
Not 

reported 

Biomechanical 
task analysis - 

IMUs 

Human-
exoskeleton 

analysis 

Lift concrete blocks from the floor 
to 0.4m platform and return for 3 

mins. With & without exo 
conditions. IMUs. 

4 Not reported 

A reduction in angle of 
waist bend by 32 degrees & 

shoulder twist by 17 
degrees was seen while 

wearing the exo. 

[44] 

Note: Results interpreted by authors were ‘Purpose’, ‘Task Analysis’ and ‘Testing Performed’. 

Key:  

PURPOSE: IP=injury prevention, LC= load carrying, TH= tool holding, Am= amplification.  

ACTUATION METHOD: A= active, P= passive.  

ACTUATORS: EM= electric motor, BoC= Bowden cable, AM= artificial muscle, PnC= pneumatic cylinder, LA= linear actuator, S= spring, HD= harmonic drive, HyC= hydraulic cylinder.  

CONTROL METHOD: PI= proportional-integral, PD= proportional-derivative, PID= proportional-integral-derivative, EMG= electromyography. 

SENSORS: FSR= force sensitive resistor, IMUs= inertial measurement unit, EMG= electromyography. 

EVALUATION DETAILS: exo= exoskeleton, ROM= range of motion, GRF= ground reaction force, EMG= electromyography, CoP= centre of pressure, CoG= centre of gravity, HR= heart rate, RPE= rate of 

perceived exertion, IMUs= inertial measurement unit, M= male, F= female  
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Table 3 Exoskeleton classification for squat/deadlift 
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  Operational Details Evaluation Details  

1 

Ankle – 
knee - 

hip 
 

Fortis TH 
 Arm – Load 

transfer 
P 

Passive (S & 
counter- 
weight) 

Not 
reported 

Not 
reported 

Not 
applicable 

Not 
applicable 

Not 
reported 

Not reported Not reported Not reported 
Not 

reported 
Not 

reported 
Not reported [45] 

2  HEXAR-CR50  LC 
Leg – Load 

assist 
A 

Electric (EM 
& HD) 

7 
Not 

reported 
PID control 

Muscle 
volume 
sensor 

30 

Gait analysis for 
ROM, peak 
moments & 
peak power 

Human-
exoskeleton 

analysis 

Walking at 3 km/h with 10 
& 20 kg loads. With & 
without exo condition. 

EMG, GRF. 

1 
(29 years, 

75 kg) 

Reduction in leg muscle 
activations & GRF during 30 -

70% walking phases while 
wearing the exo.  

[46] 

3  

Lower 
extremity 

exoskeleton 
with power-
augmenting 

purposes 

LC 
Leg – 

Walking 
assist 

A 
Electric (EM 

& HD) 
14 

Not 
reported 

Swing 
control 
method  

 Absolute/ 
incremental 
encoders, 

strain-gauge 
sensor 

Not 
reported 

Not reported 
Human-

exoskeleton 
analysis  

Left leg swings back & 
forward, EMG measured at 

the quad. 
1 

M (34 
years) 

Reduction in quad muscle 
activation 

[47] 

4  
Lower 

extremity 
exoskeleton 

LC & 
Am 

Leg – 
Walking 

assist 
A 

Hydraulic 
(HyC) 

Not 
reported 

30 
PID & H∞ 

control 

Encoders, 
force 

sensors 
60 

Kinematic 
modelling 

Characteristics 
of the control 

system 

Walking carrying 60 kg 
load. Squat with no load. 

Not 
reported 

Not 
reported 

Walking bearing 60 kg load 
and squat action with no 
external load are realized 

effectively by this proposed 
control method 

[48, 49]  

5  

Servo 
controlled 

passive joint 
exoskeleton 

LC 
Leg – Load 

transfer 
A 

Electric (EM 
& ratchets) 

8 6 Not reported Force sensor 30 Not reported 
Exoskeleton 

structural 
design 

Finite element analysis for 
joint reaction forces & 
moments & resultant 

deformation of the 
structure during postural 

changes.  

Not 
applicable 

Not 
applicable 

The ankle joint sees the 
largest amount of stress and 

deformation compared to the 
knee and hip.  

[50]  

6  

Lower-limb 
anthropo-
morphic 

exoskeleton 

LC & IP 
Leg – 

Walking 
assist 

A Electric (EM) 8 
Not 

reported 

Impedance 
& 

supervisory 
control 

Torque, 
position & 

GRF sensors 

Not 
reported 

Gait cycle  
Human-

exoskeleton 
analysis 

Walking carrying 10 kg load 
for 10 m. With exo in 

passive mode, with exo in 
active mode & without exo 

conditions. EMG. 

4 

(25 ± 5 
years, 77 

± 7 kg, 
169 ± 2 

cm) 

An average reduction in 
muscle activity of 43.4% (Right 
Vastus intermedius) & 60.4% 

(Right Gastrocnemius) was 
seen when the exo was worn 
in active mode compared to 

no exo. 

[51] 

7  HIT-LEX LC 
Leg – Load 

assist 
A 

Electric (EM 
& S) 

14 
Not 

reported 
PID control 

In-Sole 
Sensing Shoe 

- Film 
pressure 

force 
sensors, 

strain 
sensor, 
angle 

sensors 

Not 
reported 

Gait cycle 
Characteristics 
of the control 

system 

Two experiments of foot 
lifting & landing & single leg 

stepping forward. 

Not 
reported 

Not 
reported 

Exo could rapidly identify 
different working conditions & 

flexibly follow the swing leg 
movement.  

[52, 53] 
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 Table 3 continued… 
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  Operational Details Evaluation Details  

8  

Hydraulically 
Powered 

Exoskeletal 
Robot 

(HyPER) 

LC 
Leg – Load 

assist 
A 

Hydraulic 
(HyC) 

10 
Not 

reported 
Not reported 

Inclinometer
, absolute 
encoders, 

insole 
sensor, FSRs 

Not 
reported 

Gait cycle for 
force 

transmission 
ratio 

Characteristics 
of the control 

system 

Stand-to-sit movement & 
walking experiment (0.83 
m/s, 0 % grade, 10 min) 

with no load, 10, & 20 kg. 
GRF. With & without exo 

condition. 

1 

M (35 
years, 

75.1 kg, 
176 cm) 

In the standing position the 
GRF was not affected by a 

change in the payload & was 
reduced below wearers body 
weight in a semi-squat with 

exo. 

[54, 55] 

9  

Lower 
Extremity 

Exoskeleton 
System 

LC 
Leg – Load 

assist 
A 

Hydraulic 
(HyC) 

10 
Not 

reported 
PI control 

Force 
sensors in -
shoe, load 

cells 

Not 
reported 

Not reported 
Exoskeleton 

structural 
design 

Mechanical simulation in 
Matlab. 

Not 
applicable 

Not 
applicable 

Not reported [56, 57] 

10  
PRMI 

Exoskeleton 
LC & IP 

Leg – 
Walking 

assist 
A 

Electric (EM 
& HD 

10 
Not 

reported 

Global fast 
terminal 

sliding mode 
& PD control 

Encoders, 
inclinometer

s, foot 
pressure 
sensors 

20 
Kinematic 
modelling 

Characteristics 
of the control 

system 

Walking experiment (4.7 
km/h) with a 20 kg load. 

1 

M (25 
years, 61 
kg, 175 

cm) 

The joint position tracking 
errors are maximum of 2◦ at 

the hip joint and 4◦ at the 
knee joint. These results 

confirm that the exoskeleton 
swing leg is able to shadow 
human motions in time by 

using the proposed controller. 

[58] 

11  

Under-
actuated 

lower 
extremity 

exoskeleton 

LC 
Leg – Load 

assist 
A 

Electric (EM, 
HD & 

springs) 
6 

Not 
reported 

PID control 

Muscle 
volume, 
insole 

sensors 

Not 
reported 

Not reported 
Characteristics 
of the control 

system 

Measure the effect of the 
exo on percentage 

maximum voluntary 
contraction via EMG. With 
& without exo condition. 

Not 
reported 

Not 
reported 

Average decrease in 
%maximum voluntary 

isometric contraction of the 
leg muscles of 40.5% on level 
surface and 12.5% climbing 

stairs when wearing the exo. 

[59] 

12  

Lower 
extremity 

exoskeleton 
(LEE) 

LC 
Leg – Load 

assist 
A 

Electric (EMs 
& LA) 

5 
Not 

reported 

Zero 
moment 

point control 

Force 
sensors in 
foot pad 

Not 
reported 

Gait cycle for 
CoP 

Characteristics 
of the control 

system 

Walking test forward & 
backward. 

Not 
reported 

Not 
reported 

The exoskeleton can walk 
stably with the user. 

[60, 61] 
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   Operational Details Evaluation Details  

13 

Ankle – 
knee - 

hip 
 

HUALEX LC 
Leg – Load 

transfer 
A 

Electric (EM 
& HD) 

10 15 

Fuzzy-based 
variable 

impedance 
control 

Encoders, 
IMUs, FSRs 
in foot pad 

40 
Kinematic 
modelling 

Characteristics 
of the control 

system 

Walking test with 30 kg 
load at speeds of 0.30m/s 

to 1.20m/s. Comparing the 
fuzzy-based variable 

impedance control to 
normal impedance control. 

3 (70.83 kg) 

The control fuzzy based 
impedance control strategy 
tracked human motion well 
and decreased interaction 
forces across all walking 

speeds compared to normal 
impedance control. 

[62] 

14 HUALEX LC 
Back – Load 

assist 
A 

Hydraulic 
(HyC) 

7 
Not 

reported 

Hybrid 
Control 

combining 
zero-force 

control and 
zero-load 

control 

tension and 
compression 

pressure 
sensor 

25 
Kinematic 
modelling 

Comparison of 
control systems 

Not reported 
Not 

applicable 
Not 

applicable 

Hybrid control strategy can 
reduce interaction force 

between the pilot and the 
exoskeleton efficiently 

[63] 

15 

Passive 
wearable 
moment 
restoring 

device 

LC & IP 
Back – Load 

assist 
P 

Passive (S & 
cables) 

Not 
reported 

Not 
reported 

Not 
applicable 

Not 
applicable 

Not 
reported 

Kinematic 
modelling 

Human-
exoskeleton 

analysis 

Lift and lower loads (4.5 & 
13.6 kg) twice. With & 

without exo conditions. 
Motion capture & EMG. 

6 

5M & 1F 
(27.7 ± 

6.0 years, 
67.7 ± 7.2 
kg, 175 ± 
0.06 cm) 

With the device, back muscles 
demonstrated a 54% 

reduction in muscle activity 
and calculations suggested a 
reduction in maximum spine 

compressive forces by 
approximately 1300 N. 

[64] 

16 ExoHeaver LC 
Leg – Load 

assist 
A Electric (EM) 

Not 
reported 

26 
Servo 

control 
Not reported 15 

Kinematic 
modelling 

Exoskeleton 
structural 

design 
Not reported 

Not 
reported 

Not 
reported 

Not reported [65] 

17 
Hip,knee, 

ankle 
exoskeleton 

LC 
Leg – Load 

assist 
A Electric (EM) 

Not 
reported 

Not 
reported 

Super 
twisting 

sliding mode 
controller 

Not reported 15 Simulation 
Characteristics 
of the control 

system 

Control of the transferring 
of the force to the hip of a 

lower extremity 
exoskeleton while carrying 

load 

Not 
applicable 

Not 
applicable 

It provides better control over 
PID with uncertainties and 

disturbances 
[66] 

18 

Biomimetic 
lower limb 

exoskeleton 
(BioComEx) 

LC 
Leg – 

Walking 
assist 

A 

Variable 
stiffness 

actuator & 
SEA 

Not 
reported 

15 

Closed-loop 
impedance 

control 
algorithm 

Force 
sensors 

Not 
reported 

Biomechanical 
Human-

exoskeleton 
analysis 

Not reported 1 
Not 

reported 

BioComEx is sufficiently 
satisfactory for walking 

applications 
[67] 
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   Operational Details Evaluation Details  

19 

Ankle – 
knee - 

hip 
 

Wearable 
lower-body 
exoskeleton 

LC 
Leg – Limb 

support 
A Electric (EM) 6 11 

Dual EKF 
sensor-less 
(user) joint 

torque 
estimation, 
LQG torque 

amplification 
control, and 
supervisory 

control 

Joint angle 
potentiomet

ers; and 
insole GRF 
sensors on 
each foot 

Not 
reported 

Biomechanical 
& physiological 

Human-
exoskeleton 

analysis 

Lift a box weighing 4.3 kg 
from the floor, hold for a 
while, and then drop back 

on the floor, six 
consecutive times with and 

without assistance from 
the prototype exoskeleton 

suit 

5 

(28 ± 5 
years, 

178 ± 2 
cm, 76 ± 

5 kg) 

Average recorded EMG signals 
taken at the right Vastus Inter- 
medius (Quadriceps) and right 
Gastrocnemius (calf muscles) 
of each participant revealed 
more than 36% reduction in 

muscle activity from the two-
muscle groups 

[68] 

20 DSME-HWR LC 
Leg – Load 

assist 
A Electric (LA) 2 4.5 

Compliance 
control 

algorithm - 
PD control 

Not reported 
Not 

reported 

Biomechanical 
analysis – 

MoCap & GRF 

Human-
exoskeleton 

analysis 

Knee joint optimisation. 
Original knee joint vs. 

optimised design for user 
exertion on exo with heavy 

load (30 kg). Force, joint 
angle & time to complete. 

1 M 

Original knee: Force = 392N, 
Time = 2.3s, Angular velocity = 
60.9deg/s. Optimised design 
1: Force = 43N, Time = 2.1s 

Angular velocity = 49.5deg/s.  
Optimised design 2: Force = 
147N, Time = 2.0s, Angular 

velocity = 60 deg/s. 

[27, 69-72] 

21 

Knee 

Knee Assist 
Robotic 

Exoskeleton 
IP 

Leg – 
Walking 

assist 
A 

Electric (EM 
& S) 

Not 
reported 

Not 
reported 

Torque 
control 

Not reported 
Not 

reported 
Not reported 

Characteristics 
of the control 

system 

The participant walked & 
performed a sit-to-stand 

motion. 
1 

M (26 
years, 85 
kg, 171 

cm) 

The exo performed as 
expected for its 3 different 

control phases. 
[73] 

22 
Soft knee 

exoskeleton 
IP 

Knee – Joint 
support 

A Electric (EM) 1 
Not 

reported 

Two-level 
configuratio

n 
architecture 
for torque 

control 

IMUs 
Not 

reported 
Biomechanics -
Physiological 

Human-
exoskeleton 

analysis 

15 squat cycles in six 
conditions (without 

wearing the exoskeleton, 
power-off exoskeleton, 

zero torque control, 10%, 
30%, and 50% assistance 

3 

subject1: 
(25 years, 
170 cm, 
70 kg) 

subject 2: 
(32 years, 
178cm) 

subject 3: 
(38 years, 
175 cm, 
85 kg) 

The assistive control reduced 
the muscle effort of knee 

extensor 
[74] 

23 
Knee 

exoskeleton 
LC & IP 

Knee – Load 
assist 

A Electric (LA) 1 
Not 

reported 
Arduino 

UNO 
EMG 

Not 
reported 

Biomechanics 
Human-

exoskeleton 
analysis 

Two cycles of the knee 
flexion and extension 

1 
(63 kg, 

160 cm) 

The experimental and 
theoretical values of the joint 

angle and shank’s angular 
velocities are validated for the 

kinematic design 

[75] 
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24 Knee 

Exoskeleton 
intelligent 
portable 
system 

LC 
Knee – Load 

assist 
A 

Electric & 
Hydraulic 

(EM & HyC) 
1 

Not 
reported 

Hydraulic 
pressure, 

PID control 

Pressure 
sensor, 
encoder 

30 Not reported 

Characteristics 
of the control 

system 
simulation 

Simulation of actual and 
expected knee angle and 

actuator location. 

Not 
applicable 

Not 
applicable 

Control method can follow the 
natural motion of the knee. 

[76] 

25 

Hip 

Muscle Suit LC 
Leg – Load 

assist 
A 

Pneumatic 
(AM) 

Not 
reported 

8.1 Switches Not reported 
Not 

reported 
Not reported 

Human-
exoskeleton 

analysis 

Hold load (20 kg) for 15 
seconds for 3 trials. With & 

without exoskeleton 
condition. EMG. 

10 
Not 

reported 

EMG values averaged across 
the 3 trials were reduced in 
the arms while wearing the 

exo. 

[77] 

26 
Lower-Back 

Robotic 
Exoskeleton 

LC & IP 
Back – Load 

assist 
A 

Electric (SEA 
& HD) 

4 11.2 

Admittance 
control & 

finite state 
machine 

Encoder, 
IMUs, 
torque 
sensor, 

strain gauge 

Not 
reported 

Not reported 
Human-

exoskeleton 
analysis 

Symmetrical loading (0, 5, 
10, 15 & 25kg) & lift origin 

asymmetry (45°) (15 & 
25kg) lifting & lowering 

task. With & without exo 
conditions. EMG. 

1 M 

The exo significantly reduces 
muscle activation of the back 
during symmetrical loading & 
for the lift origin asymmetry, 

larger muscle activations 
occurred with the device 

assisting the hips for 
flexion/extension & 

add/abduction. 

[78] 

27 H-WEX LC & IP 
Back – Joint 

support 
A 

Electric (EM, 
HD & Pulley) 

8 4.5 
Motion & 

torque 
control 

Hall sensor, 
IMUs 

15 Not reported 
Human-

exoskeleton 
analysis 

Pick 15kg load from ground 
to pelvic height. Squat & 

stoop posture conditions. 
With & without exo 

conditions. EMG for hip 
flexion/ extension. 

9 

M (33.4 ± 
2.4 years, 
73.0 ± 9.0 
kg, 173.2 
± 4.5 cm) 

Decrease in muscle activity of 
the muscles related to waist 

motions (back and 
abdominals) of between 10-
30% while wearing the exo. 

[79] 

28 APO LC & IP 
Back – Load 

assist 
A 

Electric (EM, 
SEA) 

4 
Not 

reported 
Lift 

detection 
Encoders, 

IMUs 
Not 

reported 
Not reported 

Characteristics 
of the control 

system 

2 sessions for training lift 
detection algorithm, using 
3 initial positions & 3 lifting 
techniques for 5 kg box. 1 

session for testing 
algorithm. EMG, IMUs. 

7 

M (27.9 ± 
2.3 years, 
70 ± 6.4 

kg, 178.1 
± 8.1 cm) 

Accuracy of 97.48 ± 1.53% was 
achieved for lift detection with 
a time delay of <160ms. EMG 

showed at least 30% reduction 
in back muscle activation 
when the exo provided 

torque. 

[80, 81] 

           Not reported 
Human-

exoskeleton 
analysis 

Walking on treadmill, 
varied speeds and level of 

exo assistance. With & 
without exo conditions. Hip 

joint angle, torque & 
motion capture. 

5 

(29.2 ± 
6.3 years, 
74.4 ± 6.8 
kg, 173 ± 

7 cm) 

Negligible interference of the 
exo in human kinematics. 

Small displacements in the 
exo-human interaction points. 

[82] 
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29 Hip 
Robo-Mate -

Mk2 
LC & IP 

Back – Load 
assist 

A 

Electric 
(Parallel 
elastic 

actuator - 
EM, HD) 

1 
Not 

reported 
PD & Torque 

control 
Torque 
sensor 

15 Not reported 

Characteristics 
of the control 

system 
simulation 

Evaluating the differences 
in the torque control 

transparency when used 
with the parallel elastic 

actuator and the actuator 
without parallel elasticity. 

Not 
applicable 

Not 
applicable 

Significant improvements in 
torque-control performance, 
thus encouraging the use of 
parallel-spring arrangements 

[83] 

            Not reported 
Human-

exoskeleton 
analysis 

Pick & place loads (7.5 kg 
,15 kg). With & without exo 
conditions. EMG, interface 

pressure, perceived 
comfort & usability. 

12 

M (27 ± 2 
years, 

75.38 ± 
10.1 kg, 
179.4 ± 

0.65 cm) 

Reduced muscle activity of the 
Erector Spinae (12%-15%) & 

Biceps Femoris (5%). 
[84] 

            Not reported 
Accuracy of the 
sensor system 

Compare 3 strategies for 
input into controller to 

follow user intention. IMUs, 
EMG & finger pressure 

sensor. Lift & lower load (2 
x no load, 5 & 10kg) for 

each strategy. 

13 

11M & 2F 
(28.9 ± 

4.3 years, 
69.8 ± 

10.6 kg, 
178 ± 6.6 

cm) 

The IMUs strategy generated a 
reference signal that shows 

little dependence on load, by 
contrast, the EMG & finger 
pressure strategies show a 

stronger relationship. 

[85] 

        11    
Biomechanics - 

Physiology 

Human-
exoskeleton 

analysis 

Lifting task with three 
different techniques; FREE, 
SQUAT and STOOP, once 
with NO EXO and three 

times with the EXO 
(INCLINATION, EMG 

&HYBRID) 

10 

25.0 ± 6.9 
years, 

70.9 ± 8.8 
kg,1.77 ± 
0.06 m 

Compression forces with the 
EXO were substantially lower 

compared to NO EXO. 
However, no single EXO 

control mode was superior 
over the others due to 

performance limitations of the 
actuators 

[86] 

            
Kinematic 
modelling 

Characteristics 
of the control 

system 

Walking, standing and 
bending 

1 
Not 

reported 

Study shows that it is possible 
to perform reliable online 

classification 
[87] 

30  

Stand-alone 
powered 

exoskeleton 
robot suit 

LC 
Back – Load 

assist 
A 

Electric (EM, 
HD) 

Not 
reported 

8 Not reported Encoders 
Not 

reported 
Biomechanical 

analysis 

Human-
exoskeleton 

analysis 

Flexion/extension of trunk 
with load (33 kg). Torque, 

time to complete 

Not 
reported 

Not 
reported 

The motion was completed in 
0.7 seconds with load, where 

this is 0.49 seconds longer 
than that of the no-load 

condition. 

[88] 
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31 

Hip 

Laevo IP 
Back – Joint 

support 
P Passive (S) 

Not 
reported 

Not 
reported 

Not 
applicable 

Not 
applicable 

Not 
reported 

Not reported 
Human-

exoskeleton 
analysis 

Objective & subjective 
measures for 12 functional 

tasks. 
18 

M (27.7 ± 
5.1 years, 
74.7 ± 8.0 
kg, 178 ± 

6 cm) 

Decreased the local 
discomfort in the back in static 
holding tasks and at the dorsal 
side of the upper legs in static 

forward bending. Showed 
adverse effects on tasks that 

require large ROM of trunk or 
hip flexion including walking. 

[24] 

           Physiology 
Human-

exoskeleton 
analysis 

Lift and lower a 10-kg box 
(0.39   0.37   0.11 m, with 
2.5 cm diameter handles) 

at a rate of 6 lifts per 
minute (for 5min) 

13 

28.9 
years 

(4.4), 1.80 
m (0.04) 
m and 
76.9 kg 
(12.0) 

Wearing the exoskeleton 
during lifting, metabolic costs 
decreased as much as 17%. In 

conjunction, participants 
tended to move through a 
smaller range of motion, 

reducing mechanical work 
generation 

[89] 

32 Laevo V2.4 IP 
Back – Joint 

support 
P Passive (S) 

Not 
reported 

Not 
reported 

Not reported Not reported 
Not 

reported 
Biomechanics - 

Physiology 

Human-
exoskeleton 

analysis 

Motion and surface EMG 
were measured during two 
consecutive periods of at 

least 30 min, one with and 
one without the 

exoskeleton 

10 

mean age 
and BMI 

of the 
participan

ts was 
respectiv
ely 45.6 

(SD 
11,64) 

and 26.9 
(SD 2,78) 

RMS values 
were significantly higher for 

the Trapezius muscle with the 
exoskeleton (Mdn = 44.02) 
compared to the measuring 
period without the device 

(Mdn = 34.83, T = 0, p < 0.05, r 
= −.73); No differences were 
found for Erector Spinae and 

Biceps Femoris muscle 
activity. Participants reported 
significantly higher discomfort 

scores for the upper 
back/chest and thigh region 

with the exoskeleton (both p < 
0.05, r = −.68). 

[90] 

33 
Robo-Mate 
exoskeleton 

LC & IP 
Back – Load 

assist 
A 

Electric 
(Parallel 
elastic 

actuator - 
EM, HD) 

Not 
reported 

Not 
reported 

Not reported Not reported 15 

Biomechanical 
analysis – 

MoCap, EMG & 
GRF 

Exoskeleton 
structural 

design 

Simulation of lifting and 
lowering tasks with exo to 
test actuator performance. 

Not 
applicable 

Not 
reported 

The results show the 
improvement in peak torque 
and peak power by 20%, 50% 

and 40% respectively as 
compared with the current 

prototype 

[91] 

         

Acceleration
-based 
torque 
control 

Trunk 
angular 

acceleration 

Not 
reported 

Physiology 
Human-

exoskeleton 
analysis 

Lifting and the lowering of 
an external load of 5kg and 

10kg, repeated at three 
different speed: fast, 

normal and slow 

7 
Not 

reported 

The data on peak muscular 
activity at the spine show 

promising trends 
[92] 
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34 

Hip 

Hip-type 
exoskeleton 

LC & IP 
Back – Load 

assist 
A Electric (EM) 1 

Not 
reported 

Not 
applicable 

Sensor-less 
force 

estimator 

Not 
reported 

Physiological 
Human-

exoskeleton 
analysis 

Lift load from 0 to 25 kg 
(5kg increments) load from 
the ground. With & without 

exo condition. EMG. 

10 

Average 
age 30 
years, 
height 

176 cm & 
mass 75 

kg 

EMG value was significantly 
lower when the exoskeleton 
on in all loading conditions 

[93] 

35 
Spine 

exoskeleton 
LC 

Back – Joint 
support 

A Electric (EM) 9 
Not 

reported 
Torque 
control 

Torque 
sensor 

Not 
reported 

Biomechanics - 
Physiology 

Human-
exoskeleton 

analysis 

Repetitive, stoop-lift of a 
10kg box at different 

speeds 
5 

(21 − 36 
years, 60 
− 82.12 

kg, 170 – 
182 cm) 

All cost functions reduced 
significantly the human torque 
loads. However, they result in 

different amounts 
and distributions of the load 
reduction as well as different 

contributions from the passive 
and active components of the 

exoskeleton 

[94] 

36 
VT-Lowe’s 

exoskeleton 
LC 

Back – Load 
transfer 

P 
Passive 
(Flexible 
beams) 

Not 
reported 

Not 
reported 

Not reported Not reported 
Not 

reported 
Physiology 

Human-
exoskeleton 

analysis 

Stoop, squat and freestyle 
lifting trials performed in 
the sagittal plane, plus lift 
origin asymmetry (60°) for 

0% and 20% of subject 
bodyweight, both with and 

without exoskeleton 

12 

22.75 
(4.35) 
years, 
178.92 

(6.05) cm, 
80.41 

(5.59) kg 
and 25.16 

(1.91) 
kg/m2 

Results demonstrated that the 
exoskeleton could reduce the 

average peak and mean 
muscle activation of back and 

leg muscles regardless of 
different levels of box mass 

and lifting types. 

[95] 

37 
Booster 

exoskeleton 
IP 

Back – Joint 
support 

P Springs 
Not 

reported 
Not 

reported 
Not 

applicable 
Not 

applicable 
Not 

reported 
Physiology 

Human-
exoskeleton 

analysis 

Carry and lift the object 
weighing 9.5 kg 

3 
Not 

reported 

With wearing the exoskeleton, 
the subjects' breathing, and 
heart rate were significantly 

reduced 

[96] 

38 
Back 

assistance 
exoskeleton 

LC 
Back – Joint 

support 
A 

Pneumatic 
artificial 
muscle 

Not 
reported 

7.6 Not reported Not reported 18 Physiology 
Human-

exoskeleton 
analysis 

Romanian deadlift motion 
of lifting 15 kg repeated 10 
times at a time, totalling 5 

times 

1 
Not 

reported 

Decreased level of 20% to 30% 
in muscle activation when 
lifting the loads with exo 

[97] 

39 
Wearable 

waist 
exoskeleton 

IP 
Back – Joint 

support 
A Electric (EM) 1 5 

Torque 
control 

Angle, 
angular 

velocity and 
current 

Not 
reported 

Physiology 
Human-

exoskeleton 
analysis 

Symmetrical lifting for six 
different objects (0, 5, 10, 
15, 20, 25 kg) under two 
conditions of with and 

without the exoskeleton 

10 

Average 
[26 years, 

70 kg, 
174 cm] 

The exoskeleton significantly 
reduced the back muscular 

activity during repetitive lifting 
tasks 

[98] 
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40 

Hip 

HAL IP 
Back – Joint 

support 
A Not reported 1 

Not 
reported 

EMG based 
control 

Triaxial 
acceleromet

er and 
potentiomet

ers 

Not 
reported 

Physiology 
Human-

exoskeleton 
analysis 

2 sessions (one with HAL 
and one 

without HAL) of stoop 
lifting/placing, until they 

feel they cannot continue. 
In each session, subjects 

were asked to lift and place 
a small box, (for males, 12 

kg, for females, 6 kg). 

20 
13 M, 7 F 

(31.5 ± 
6.6 years) 

Muscle coordination changes 
were dominated by changes in 

timing coefficients, with 
minimal change in muscle 

synergy vectors 

[99] 

41 SJTU-EX LC 
Back – Load 

assist 
A Electric (EM) 8 

Not 
reported 

Not reported Not reported 
Not 

reported 
Not reported 

Exoskeleton 
structural 

design 
Walking simulations 

Not 
applicable 

Not 
reported 

Not reported [100] 

42 

Wearable 
Exoskeleton 
Power Assist 

System 

LC & IP 
Back – Load 

assist 
A Electric (EM) 1 11 

User 
intention via 

EMG 
EMG 

Not 
reported 

Kinematic 
modelling 

Human-
exoskeleton 

analysis 

Lift and lower load 20 kg 
load from/to ground. With 
& without exo condition. 

EMG. 

Not 
reported 

Not 
reported 

Muscle activation of the thigh 
muscles was reduced when 

wearing the device. 
[101] 

43 SPEXOR LC & IP 
Back – Joint 

support 
P 

Passive 
(Flexible 
beams) 

4 
Not 

reported 
Not 

applicable 
Not 

applicable 
Not 

reported 
Not reported 

Human-
exoskeleton 

analysis 

ROM testing, trunk flexion/ 
extension, lateral bending 

& rotation. 4 exo 
configuration conditions. 

Motion capture. 

3 

M (30 
years, 66 
kg, 171.5 

cm) 

Using flexible beams as a back 
interface increases the trunk 

range of motion by more than 
25% compared to its rigid 

counterpart. With the flexible 
beams, the range of motion is 

only decreased by 10% 
compared to not wearing an 

exo. 

[102] 

Note: Results interpreted by authors were ‘Purpose’, ‘Task Analysis’ and ‘Testing Performed’. 
Key:  
PURPOSE: IP=injury prevention, LC= load carrying, TH= tool holding, Am= amplification.  
ACTUATION METHOD: A= active, P= passive.  
ACTUATORS: EM= electric motor, BoC= Bowden cable, AM= artificial muscle, PnC= pneumatic cylinder, LA= linear actuator, S= spring, HD= harmonic drive, HyC= hydraulic cylinder.  
CONTROL METHOD: PI= proportional-integral, PD= proportional-derivative, PID= proportional-integral-derivative, EMG= electromyography. 
SENSORS: FSR= force sensitive resistor, IMUs= inertial measurement unit, EMG= electromyography. 
EVALUATION DETAILS: exo= exoskeleton, ROM= range of motion, GRF= ground reaction force, EMG= electromyography, CoP= centre of pressure, CoG= centre of gravity, HR= heart rate, RPE= rate of 
perceived exertion, IMUs= inertial measurement unit, M= male, F= female 
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Table 4 Exoskeleton classification for shoulder/chest-press, isometric arm hold and squat/ deadlift 
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Operational Details Evaluation Details  

1 

Spine  

Passive 
spine 

exoskeleton 
IP 

Back – Joint 
support 

P 
Passive (S & 

pulley)  
1 

Not 
reported 

Not 
applicable 

Not 
applicable 

Not 
reported 

Kinematic 
modelling 

Human-
exoskeleton 

analysis 

Dynamic - 
flexion/extension for 
120 s with a constant 
speed.  Static - hold 3 

flexion positions (small, 
medium, & full-range) 
for up to 120 s. EMG, 
IMUs. With & without 

exo condition.  

3 

M (26.7 ± 3.3 
years, 68.3± 
6.7 kg, 172 ± 

12 cm) 

EMG reduction at lumbar 
(24%) & thoracic (54%) 

level with exo & a 
reduction of intervertebral 
bending moment (36N.m) 

& muscle force (479N). 

[103] 

2 

Spine-
inspired 

continuum 
soft 

exoskeleton  

IP 
Back – Joint 

support 
A BoC 

3 for each 
disc 

Not 
reported 

Virtual 
impedanc
e model 

Load cell 
Not 

reported 
Biomechanics 

Human-
exoskeleton 

analysis 
simulation 

Stoop lifting of 15 kg 
with 10 repetitions 

3 Not reported 
Able to successfully track 

the desired force with high 
accuracy. 

[104] 

3 FLx IP 
Back – Joint 

support 
P Passive 

Not 
reported 

1.08 
Not 

reported 
Not 

applicable 
Not 

applicable 

Biomechanics 

Human-
exoskeleton 

analysis 
simulation 

A 3 × 3 x 2 × 2 repeated 
measures design was 

employed in this study, 
in which all 

combinations of 
intervention (FLx exo, 

V22 exo, none), lift 
origin height (shin, knee, 

waist), lift origin 
asymmetry (0° & 45°), & 

load mass (9.07 kg & 
18.14 kg) were 

evaluated 

10 

(24.9 ± 5.0 
years, 81.1 ± 

16.1 kg, 179.4 
± 4.6 cm) 

FLx reduced peak torso 
flexion at the shin lift 

origin, but differences in 
moment arms or spinal 

loads attributable to either 
of the interventions were 

not observed. Thus, 
industrial exoskeletons 

designed to control posture 
may not be beneficial in 
reducing biomechanical 

loads on the lumbar spine. 

[105] 

4 V22 IP 
Back – Joint 

support 
P Passive 

Not 
reported 

1.29 
Effectors 
worn on 
the hand 

Not 
applicable 

68 

5 
Exoskeleton 
for the back 

LC 
& IP 

Back – Joint 
support 

A 
Pneumatic 

(PnC) 
Not 

reported 
Not 

reported 
User 

intention 
EMG 25 

Biomechanical 
simulation 

Human-
exoskeleton 

analysis 
simulation 

Measure of forces to the 
back based on a human-

machine model. 

Not 
applicable 

Not applicable 

A decrease of the forces by 
35% on the L5-S1 joint & by 

43% on the back muscles 
can be noted at the 
beginning of the lift. 

[106] 

6 
Full 

Body 

Robot Suit 
HAL 

LC 
Back – Load 

assist 
A 

Electric (EM 
& HD) 

14 
Not 

reported 

Torque 
control 

based on 
EMG 

EMG, 
potentiomet

ers, IMUs, 
ground 
reaction 

force sensors 

50 
Kinematic 
modelling 

Characteristics 
of the control 

system 

Measure joint angles 
and bio-signals while 
holding load (50 kg). 

1 M (26 years) 

The designed locking 
mechanism included in the 
power units kept the angles 
of the upper limbs steady 

while the user held the 
load, and the physical 

burden on the upper limbs 
of the user was reduced. 

[107] 

  



Know your limits. Predicting lift capacity using time series spine kinematics for a military manual handling task.  

 

 Jasmine K. Proud   |  46 
 

 
 

 

Table 4 continued… 

 

S
u

p
p

o
rt

e
d

 
J

o
in

t 

D
e
v

ic
e

 

N
a
m

e
 

P
u

rp
o

s
e

 

T
a

rg
e

te
d

 

A
s
s

is
ta

n
c

e
 

A
c
tu

a
ti

o
n

 

M
e

th
o

d
 

A
c
tu

a
to

rs
 

D
O

F
 

M
a

s
s

 (
k

g
) 

C
o

n
tr

o
l 

S
e

n
s

o
rs

 

L
o

a
d

 
C

a
p

a
b

il
it

y
 

(k
g

) 

T
a

s
k

 

A
n

a
ly

s
is

 

T
e

s
ti

n
g

 

p
e

rf
o

rm
e

d
 

T
e

s
t 

d
e

ta
il

s
 

S
a

m
p

le
 

s
iz

e
 

P
a

rt
ic

ip
a

n
t 

d
e

ta
il

s
 

R
e
s

u
lt

s
 

R
e
f.

 

  Operational Details Evaluation Details  

7 

Full 
Body 

UTRCEXO LC 
Leg – 

Walking 
assist 

A 
Electric (EM 

& HD) 
8 

 Not 
reported 

Position & 
torque 
control. 
Walking 

intention 

encoders, FSRs, 
force/torque 

sensor 

 Not 
reported 

Gait analysis 
for GRF & 

motion 
capture 

 Human-
exoskeleton 

analysis 

Walking with 10 kg 
mass. 

1 
(73 kg, 176 

cm) 

Detects step initiation 
using the insole type FSRs 
prior to movement. Allows 
the operator to easily walk 
with a 10 kg load. Does not 
take the operator’s desired 
step velocity into account. 

[108] 

8 
Body Extender 

(BE) 
LC & 
Am 

Full body – 
Load assist 

A 
Electric 

(EM) 
22 160 

User 
triggered 
motion 

Encoders, 
accelerometer, 
force/torque 

sensors 

50 Not reported 
Human-

exoskeleton 
analysis 

Assess the tracking (with 
and without load) and 
the grasping/ lifting/ 
handling (up to the 

rated load) capabilities 
of the device. 

Not 
reported 

Not reported 

Maximum resistance 
forces of 30 N are well 

tolerated by the user, good 
weight distribution of the 

device, walking phase 
somewhat unnatural. At 

max rated load the system 
equilibrium becomes 

unstable 

[109] 

 

Note: Results interpreted by authors were ‘Purpose’, ‘Task Analysis’ and ‘Testing Performed’. 
Key:  
PURPOSE: IP=injury prevention, LC= load carrying, TH= tool holding, Am= amplification.  
ACTUATION METHOD: A= active, P= passive.  
ACTUATORS: EM= electric motor, BoC= Bowden cable, AM= artificial muscle, PnC= pneumatic cylinder, LA= linear actuator, S= spring, HD= harmonic drive, HyC= hydraulic cylinder.  
CONTROL METHOD: PI= proportional-integral, PD= proportional-derivative, PID= proportional-integral-derivative, EMG= electromyography. 
SENSORS: FSR= force sensitive resistor, IMUs= inertial measurement unit, EMG= electromyography. 
EVALUATION DETAILS: exo= exoskeleton, ROM= range of motion, GRF= ground reaction force, EMG= electromyography, CoP= centre of pressure, CoG= centre of gravity, HR= heart rate, RPE= rate of 
perceived exertion, IMUs= inertial measurement unit, M= male, F= female 
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4. Discussion 

The aim of this review was to analyse the current literature to identify characteristics of industrial 

exoskeletons that can be useful to military manual handling tasks. The high percentage of 

exoskeletons targeting load carrying reflects the industry need for devices that can support manual 

handling workers by preventing injuries and improving productivity. Therefore, the application of 

these exoskeletons to Australian Defence Force personnel performing manual handling could help 

reduce the substantial personal and financial cost of injuries. 

Most of the exoskeletons included in this review are in early development and are designed to 

support manual handling via a number of methods, such as providing assistive torque to enhance the 

ability of joints to carry external loads (e.g., [28, 78, 79, 84], providing loading pathways that bypass 

the user’s joints (e.g., [51] and/or providing support or limiting the joint movement to prevent 

harmful motions (e.g., [103]).  

There were a large number of squat/deadlift (lower limb) exoskeleton devices (56%) with 27% of 

devices supporting the ankle, knee and hip joint and 26% solely supporting the hip. 95% of the hip 

supported devices aim to assist the lower back (e.g., [78, 80, 88]). This could be due to the prevalence 

of lower back injuries and their correlation to lifting from the ground [110] and hyperflexion of the 

lumbar spine [111], which is controlled by the hip joint (categorised as a part of the squat/deadlift 

systems). Exoskeletons assisting the back actuate from the hip to minimize the increased torques to 

the lower back caused by hyper flexion during lifting. However, since spine motion has multiple DOF 

[112], exoskeletons actuating from the hip on a single plane (1 DOF, i.e. flexion/extension) may result 

in movement restriction where physiological rotation and lateral bending of the spine are impeded 

resulting in increased effort [113] or reduced performance [114, 115].  

Task analysis prior to the design of an exoskeleton could be beneficial for better support of manual 

handling tasks. Thirty percent of studies in this review reported performing a priori task analysis. 

Through this analysis the operational complexity of the exoskeleton (type of actuation, DOF, the 
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control system and the method of power transmission) could be optimised for specific tasks. For 

instance, with biomechanical analysis of the task, it is possible to identify which joints undergo high 

moments and which ones are allowed free movement (e.g., [88]); this informs the choice of how 

many DOF should be allowed at a joint for that task, as well as how much support should be provided. 

As active actuators can face issues such as big size, heavy mass, bulkiness, inefficient force 

transmission, low speed and inaccurate control [9, 116], the power-to-weight ratio should be 

optimized in order to provide the minimum assistance needed to support the specific joint for the 

requirements of the task (e.g., [91]) and to replace some actively actuated joints with passive 

actuators where appropriate (e.g., [27, 30]).  Optimisation could therefore lead to a reduction in 

mass, inertia, friction, and complexity of the exoskeleton while increasing its efficiency, thus allowing 

for lower interaction force between the exoskeleton and the user and better control.  

Although the majority of studies indicated that exoskeletons could reduce muscle activation, evidence 

was not conclusive with studies reporting an increase in muscle activations of the antagonist muscles 

[28] (Table 2, Row 1). Therefore, EMG signals should be recorded from antagonist muscles, as well as 

from those muscles acting at joints other than the one supported by the exoskeleton [117]. Although 

methodologically challenging, the concomitant use of EMG on agonist and antagonist muscles will 

provide a measure of exoskeleton interference with pattern of muscle activation which are essential 

for proper movement coordination and low energy cost [99, 118, 119].  

Control strategies also play a large part in the optimisation of an exoskeleton system. Exoskeleton 

designers in this review tested the exoskeleton control strategies for 1. their ability to follow the 

user’s joint motions, 2. exoskeleton stability, and 3. load reduction for the duration of the task. A few 

exoskeleton systems looked into user intention (e.g., [106]) and task recognition (e.g., [80]) control 

strategies, as well as impedance control systems, that assist when a movement deviates beyond a 

threshold of the desired motion [120] (e.g.,[54, 59, 96]). These strategies could provide the 

information needed to develop smooth motion and predictive human-intention algorithms, creating 
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smarter, more efficient exoskeleton systems. With the development of predictive algorithms there is 

the ability to provide assist-as-needed control, reducing power consumption and preserving the 

musculoskeletal capacity of the user. 

Findings from this review demonstrated there were no consistent methodologies used to evaluate 

exoskeletons for manual handling. Further development of current exoskeleton testing and reporting 

standards (e.g., [23]) to include military manual handling tasks (e.g., ASTM F48 committee on 

exoskeletons and exosuits) is critical to enable valid and reliable comparisons between future devices. 

However, it is worth noting that none of the included studies were of a prospective nature and only 

performed analysis at a single time point. Prospective studies (and the accompaying standards) could 

be beneficial to validate the use of exoskeletons for injury prevention or augmentation.  

4.1. Military manual handling considerations  

While the tasks performed by Defence personnel may be similar to those performed in industry, there 

are additional considerations for the use of exoskeletons in a military workplace. For instance, in-field 

surfaces can be uneven and loose, requiring exoskeletons to be robust and flexible to compensate for 

unexpected perturbations. Military manual handling exoskeletons could also face a range of weather 

conditions, confined spaces where the device’s dimensions could be restrictive, limited access to 

power supply, large amounts of dust and dirt, and rough use, necessitating a durable and efficient 

exoskeleton design. Additionally, the necessity to integrate the device into Defence personnel’s 

uniform or body armour should be considered. 

Devices developed for load carriage, amplification or injury prevention could assist with minimising 

the risk of injury from carrying large loads and performing repetitive complex movements from the 

ground, as often performed by Defence personnel [121].  The loading required for military manual 

handling tasks is heavier than what would be required of personnel in many other industries [122, 

123]. For instance, in a military context lift-to-platform tasks (shoulder/chest-press movement) 

require loads of 25.6 ± 8.5 kg to be lifted while lift-carry-lower tasks (isometric arm hold movement) 
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require loads of 31.1 ± 17.1 kg to be carried distances of 127.8 ± 126.2 m [7]. In comparison, in an 

industry context, e.g., in large international airports, the mass of baggage handled by security 

personnel ranges between 10 and 23 kg [124]. This highlights the fact that workplace context can 

affect the demand of the job, thus the different need for assistance.  

Control systems within this review did not provide assist-as-needed control or take into account the 

wearer’s intrinsic abilities. Defence personnel are tested for their ability to perform tasks prior to 

being matched to work positions [7]. It is important that a person’s intrinsic ability matches that of 

the task that needs to be performed [13] and that the introduction of any intervention does not 

diminish that capacity. Control systems that recognise and activate an exoskeleton only when 

required are therefore vitally important.  

The findings from this review did not highlight whether current active or passive exoskeleton would 

be capable of sustaining the loads required by Defence personnel (Table 2-Table 4).  It was unclear 

whether the reported load capability referred to the load limits of the exoskeleton structure and/or 

actuators, the load limit that the user could support, or the maximum loads required by the task in 

industry. Additionally, lift-carry-lower tasks are mostly unilateral (load only on one side of the body) 

(74%) [7] and require asymmetrical muscle activation in the spine to maintain stability due to an 

increase in internal torsional forces. This review found no studies that tested unilateral loading. 

However, three exoskeleton devices in this review were tested for lift origin asymmetry (the lift starts 

at an angle away from the sagittal plane), which could also cause asymmetrical muscle activations, 

and found that this decreased muscle activation of the ipsilateral muscles while wearing the 

exoskeleton [78, 95, 105]. It would therefore be beneficial for an exoskeleton to actively compensate 

for unilateral loads and lift origin asymmetry. 

5. Conclusion 

The large portion of devices targeting load carrying reflects the industry and military need for devices 

that can support manual handling workers with the aim of preventing injuries and improving 
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productivity. The joint requirements for the two most common tasks in military manual handling are 

well represented in the current state of exoskeleton systems. The unique considerations of the 

military such as heavy external loads, load asymmetry, harsh environments, as-needed assistance and 

uniform integration mean that an adaption of current technology or a military specific design would 

be required for introduction into the Australian Defence Force.  

6. Key points 

• Although this field is fast growing, the majority of the included exoskeletons were in an early 

stage of development. 

• Determining exoskeleton design challenges through task analysis could be useful for 

understanding how to better support military manual handling tasks. 

• Control systems within this review did not anticipate when augmentation/ assistance was 

needed. 

• It would be beneficial for an exoskeleton to actively compensate for unilateral external loads 

due to their prevalence in military manual handling tasks. 

• It was unclear whether current active exoskeleton would be capable of sustaining the loads 

required by Defence personnel. 

• Adaption of current technology would be required for the introduction of exoskeletons into a 

military setting. 

7. Summary 

Control systems within this review did not anticipate when augmentation was needed, they were 

either always providing assistance (e.g., [23,24,29]) or were triggered by the user (e.g., [71,95]). An 

exoskeleton intervention would need to contain a smart control system that can determine when the 

wearer is lifting beyond their safe limits and assist accordingly. A large consideration for the adaption 

of new technologies into the military setting is its effect on the fitness for duty of the personnel [7]. 

An intervention that would decrease its wearers strength over time due to it replacing the need for 
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the wearer to apply force rather than augmenting the wearers’ intrinsic ability would be detrimental 

[10]. 

An assist-as-needed control system should be able to recognise when the wearer is entering into 

movements with increased risk of injury, such as lifting above MAWL [14]. This could be done through 

the recognition of changes in spine kinematics due to the external load being heavier than the wearer 

can safely lift (at or above MAWL). However, before being able to develop a predictive model that 

uses spine kinematics to determine when a person is lifting in a safe range, the effect of increased 

load on spine kinematics needed to be determined. Specifically, of interest were the features or 

variables of the lift that were affected by increased load so that they could be implemented within the 

model. It was also of benefit to understand the method of collection (e.g., equipment used, locations 

of analysis) to determine the best way to collect a dataset for use in the model. 
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Chapter 3. Systematic Review: Effect of increased external load on spine 

kinematics during a manual handling lifting task. 

This chapter aimed to determine what effect an increase in external load has on spine kinematics 

during a lifting task through a systematic review of the available literature. Of interest were what 

levels of the spine that saw an effect, what kinematics were affected (e.g., acceleration, velocity, 

angle), what discrete kinematics were affected (e.g., mean, peak, minimum) and how were the 

kinematics recorded (e.g., motion capture, IMUs). This is of importance because in order to make 

predictions on when a person is performing a high-risk lift, where and how this is reflected in motion 

needs to be understood, so those variables are made available to the algorithm. Additionally, to 

create a database of observations for the predictive algorithm an appropriate method of data 

collection needed to be performed. 

1. Introduction 

Lifting is a full body movement; however, it is the back that sustains many of the injuries associated 

with MH tasks. Biomechanical studies have researched technique, box shape, lifting height and speed 

of lift for ways to reduce lower back injuries, though for Defence force applications many of these 

variables cannot be altered.  

It has been recognised that matching physical capability to job demands may be a way to reduce 

musculoskeletal injuries. Analysing changes in spine kinematics, determining the spine segments that 

are most affected and points of interest in kinematic trace, may be a way to predict when a person is 

approaching the limits of their physical capability to perform a task.  

The aim of this review was to understand the effect that lifting an external load has on spine 

kinematics. The segments of the spine and the variables that see significant differences due to the 

increase in load would be used as predictors for classifying kinematic observations into their %MLC. 

Determining this was done by reviewing previous studies and extracting data to determine how 
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external load alters spine kinematics and if it differs with increasing mass, if any segment is more 

affected than others and how, and the data collection and analysis techniques. 

2. Methodology 

2.1. Search strategy 

English language journal article searches of Scopus, PubMed and Web of Science were conducted on 

16 July 2021 for this review. The following search syntax was included: (lifting OR "manual handling" 

OR "manual material handling”) AND (spine OR "lower back") AND (biomechanics OR kinematics) AND 

(load OR weight OR mass). 

2.2. Inclusion criteria 

All studies included in the review met the following inclusion criteria: 1. evaluated human spine 

kinematics during experimental trials without the use of an intervention; 2. included healthy adults 

with no reported pathology; and 3. used two or more load conditions of symmetric external loads 

held in the hands for a lifting task.  

2.3. Data extraction 

The following data was extracted from the included studies (Table 5): 1. authors and year of study; 2. 

participant numbers and demographics; 3. study design; 4. tasks performed; 5. loads lifted; 6. 

equipment used for recording kinematics; 7. data and statistical analysis; and 8. kinematic results.  

Various methods were used to determine the loads lifted such as maximum lift capacity (MLC), 

maximum isometric back strength (MIBS), percentage of body weight (%BW) or subjective loads. 

Most studies using participant specific loads, used MIBS and MLC, which were determined using load 

cell machines, that involved pulling an isometric bar to determine force exerted, while three studies 

[125-127] defined the loads using task specific methods. Where specific loads (kg) were not given, the 

mean load (e.g., mean %MLC, mean body weight) was used to interpolate it in Figure 10. 
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3. Results 

3.1.  Search results 

The flow diagram of the search process is presented in Figure 6. Of the initial 5574 results, 138 full-

text articles were read and assessed for eligibility. From the 138 full-text articles, 31 studies were 

included. 

 

Figure 6 Flow diagram of search process. 
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Table 5 Extraction of kinematic spine data from reviewed articles 
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1 [128] 2015 
14 (8M, 6F, 19-

30y) 

Two trials per load (known, 

progressing low to high) 

measuring lumbar segmental 

extension of the L2-S1 

vertebrae. 

Stoop lifting from height of 

30cm (~75° flexion) to 

standing upright. 

4.5, 9.1, 

13.6kg 

Dynamic Stereo 

X-ray 

Results of 11 participants 

(7M, 4F). Trials normalised 

to initial flexed starting 

position (0%) & static 

upright position (100%). 

Effect of load on lumbar 

spine segment 

contribution. 

L4-L5 was the largest contributor 

to segmental motion (31.0 ± 

3.1%). The increase in external 

load caused no significant change 

in the segmental contribution. 

2 [129] 2017 
14 (8M, 6F, 19-

30y) 

Two trials per load (known, 

progressing low to high) 

measuring lumbar AP & SI 

instantaneous centres of 

rotation (ICR) of the L2-S1 

vertebrae. 

Stoop lifting from height of 

30cm (~75° flexion) to 

standing upright. 

4.5, 9.1, 

13.6kg 

Dynamic Stereo 

X-ray 

Results of 11 participants 

(7M, 4F). Trials normalised 

to initial flexed starting 

position (0%) & static 

upright position (100%).  

Effect of load on the ICR of 

the lumbar spine. 

Lifting the heaviest load 

contributed a larger migration in 

the SI ICR than the lighter loads in 

the L2-L3 & L5-S1 segments. 

3 [125] 2012 
30 (10M, 20F, 

18-22y) 

Three trials per load 

(progressing low to high) 

measuring thoracic & lumbar 

spine joint angles. 

Lifting from a bench to just 

above head height. 

0.85kg 

(minimal) 

 & safe 

maximal lift (5-

11kg F, 8-

19.4kg M) 

Video Analysis 

Joint angles were extracted 

from digital video footage. 

Effect of maximum safe 

load on spine angles. 

During the maximal lift there was a 

significant increase in thoracic and 

lumbar extension in the final 3rd of 

the lift when compared to the 

minimal lift. 

4 [130] 1996 

24 (M, 25.1 ± 

4.0y, 1.77 ± 

0.07m, 73.4 ± 

10.2kg) 

Three trials per load & start 

angle for lift & place of a box, 

measuring lumbar angular 

position, velocity & 

Lift box (three loads) from 

asymmetrical start 

placement (three angles) at 

0.76m, using one or two 

3.4, 6.8, 

10.2kg 

Lumbar motion 

monitor 

Univariate ANOVA for 

effect of increased load on 

kinematics. 

A significant increase in peak 

sagittal flexion & range of motion 

& lateral average flexion & ROM 

for the trunk was seen, as well as 
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acceleration. hands, to 1.37m platform. increased peak lateral & average 

sagittal velocity. 

5 [131] 2018 20 (M) 

Repeatedly lift & lower each 

load (randomly selected) till 

fatigue, measuring absolute 

spine angles at T1, T12 & S1. 

Repeated lifting (10 per/min) 

in stoop or squat posture 

from the ground to bench at 

waist level, placed & 

returned. 

5, 10 & 15% of 

MLC 
3 x IMUs 

Flexion/extension, lateral 

bending & axial rotation of 

segments T1-T12 & T12-S1. 

There was no significant difference 

in lumbar or thoracic spine angles 

when lifting the different loads. 

However, stoop lifting & increased 

load did present higher absolute 

flexion angles. 

6 [132] 2018 14 (19-30y) 

Two trials per load (known, 

progressing low to high) 

measuring facet joint 

translations of the L2-S1 

vertebrae. 

Stoop lifting from height of 

30cm (~75° flexion) to 

standing upright. 

4.5, 9.1, 

13.6kg 

Dynamic Stereo 

X-ray 

Results of 10 participants. 

Trials normalised to initial 

flexed starting position 

(0%) & static upright 

position (100%).  Effect of 

load on lumbar spine. 

The increase in external load 

caused no significant change in the 

facet translations. 

7 [133] 1992 

4 (31-34y, 79.4-

104.3kg, 1.7-

1.8m) 

Experienced 

weightlifters 

Three trials (known, no load & 

max load) measuring spine 

kinematics of the lumbar 

vertebrae. 

First trial was to fully flex & 

extend the trunk with no 

load. Second & third trial 

involved a deadlift style lift 

with self-selected load on a 

barbell. 

0kg & self-

selected 

(183.7 – 210.9 

kg) 

Fluoroscopy   

X-ray 

Spine joint angles, distance 

between ligament 

attachment points and 

shear & compressive 

displacements. 

Loaded trials had a reduction in 

range of motion and less flexion of 

the lumbar spine when compared 

to unloaded trials.  

8 [134] 2018 

14 ([8M, 24 ± 2, 

78 ± 9kg, 1.8 ± 

0.07m], [6F, 25 

± 2y, 61 ± 8kg, 

1.7 ± 0.06m]) 

Two trials per load (known, 

progressing low to high) 

measuring facet joint 

translation angles of the L2-S1 

vertebrae. 

Stoop lifting from height of 

30cm (~75° flexion) to 

standing upright. 

4.5, 9.1, 

13.6kg 

Dynamic Stereo 

X-ray 

Results of 11 participants 

(6M, 5F). Trials normalised 

to initial flexed starting 

position (0%) & static 

upright position (100%).  

Effect of load on lumbar 

spine. 

An increase in load caused a 

significant increase in flexion of 

the L2-L5 facet joints and lateral 

bending of the L5-S1 during the 

middle phase of the lift. 

9 [135] 2020 

26 (26.9 ± 4.7y, 

1.7 ± 0.08m, 

64.8 ± 11.8kg) 

Three trials per load & posture 

measuring trunk kinematics 

from sensors placed under the 

Lifting load from ground to 

standing & return in correct 

(squat) & incorrect (stoop) 

1, 2, 5kg 2 x IMUs 

ANOVA of kinematic 

parameters & use of an 

SVM classifier for posture. 

No significant effect on anterior-

posterior trunk displacement from 

differences in load.   
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suprasternal notch & the 

posterior pelvis. 

postures. 

10 [136] 2012 

10 (F, 30.5 ± 

9.2y, 61.6 ± 

10.3kg) 

Lifting with no trunk, lower 

trunk or upper trunk support 

measuring angular 

displacement of T9 & L3. 

Lifting from hip-height 

standing workstation to hip 

or shoulder height at an 

angle of 45° left 

0, 5kg Motion capture 

Three-way repeated 

measures ANOVA of total 

trunk flexion. 

No significant effect on flexion 

ROM from differences in load. 

11 [137] 2000 

15 (M, 22.5 ± 

2.0y, 1.1 ± 

0.05m, 73.4 ± 

6.6kg) 

Lift, carry and place box (any 

posture) measuring lumbar 

angular position, velocity & 

acceleration. 

Lift box from knee height, 

carry 1.5m & place on self at 

elbow height at 4.3 lifts/min 

9.1, 11.8, 14.5, 

17.2, 20.0, 

29.9, 32.7, 

35.4, 38.1, 

41.7kg 

Lumbar motion 

monitor 

ANOVA of change in load 

on kinematic parameters. 

No significant effect on peak 

lumbar positions from differences 

in load. The lowest two loads 

resulted in the highest sagittal 

velocities while the two heaviest 

loads had the lowest velocities. 

12 [138] 2015 

18 (4F, 14M, 

26.8 ± 4.9y, 1.8 

± 0.1m, 73.3 ± 

14.8kg) 

Three trials per load (known & 

unknown, any posture) 

measuring lumbar angular 

position, velocity & 

acceleration. 

Lift box from knee height to 

chest height while the load is 

known or unknown. 

1.1, 5, 15kg 
Lumbar motion 

monitor 

Repeated measures 

ANOVA for effect of load 

knowledge at each load 

level. 

Load had a significant positive 

effect on sagittal & lateral angles. 

Also present was a negative effect 

for sagittal angular acceleration. 

13 [139] 2009 

9 (M, 36 ± 14y, 

1.8 ± 0.08m, 89 

± 14kg) 

Lift, carry & place masonry 

blocks (any posture) 

measuring lumbar flexion, 

lateral flexion & twist angle. 

Lift building block from pallet 

(top & bottom layer), turn, 

carry & place on wall (floor, 

iliac crest & shoulder level) 

using one or two hands. 

6, 11, 14, 16kg Motion capture 

Generalised estimate 

equation regression 

analysis for effect of lift 

height, place height, block 

load & number of hands, 

on lumber angles. 

Lumber angle decreased when 

lifting and placing at floor level, 

while there was no difference 

when placing at hip level and 

flexion increased when placing at 

shoulder level due to increased 

load. Lateral flexion was largest 

when lifting single handed with 

lighter loads. 

14 [140] 1999 

14 (7M, 7F, 

31.4 ± 2.7y, 1.7 

± 0.03m, 71.6 ± 

4.2kg) 

Two trials per condition 

measuring orientation & 

position of L1 – S1. 

Flexion of the trunk from 

standing position with no 

load & 5kg barbell. 

0, 5kg 

Tethered 

electromagnetic 

sensors 

Results of 13 participants 

using linear regression, 

ANOVA & t-test for range 

of motion & movement 

No significant different in ROM or 

movement pattern could be 

attributed to the introduction of 

load. 
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patterns. 

15 [141] 1999 

14 (M, 22-34y, 

1.79 ± 0.05m, 

74.7 ± 7.0kg) 5 

experienced 

handlers 

Ten trials per condition 

(randomised) measuring 

angular position, velocity & 

acceleration. 

Lift box (two loads) from 

knee height to standing from 

0° & 60° to the right and at 

preferred & faster-than-

preferred velocity. 

13.6, 27.3kg 
Lumbar motion 

monitor 

Intra-class correlations, 

Repeated measures 

ANOVA & post-hoc 

analysis. 

A significant reduction in sagittal 

velocity & acceleration was seen 

due to increased box mass. It also 

reduced the standard deviation 

associated with sagittal extension 

velocity & acceleration. 

16 [142] 2000 

18 (5F, 13M, 

23.8 ± 3.1y, 

1.71 ± 0.04, 

76.8 ± 13.6kg) 

Flex & extend trunk with 

straight legs measuring lumbar 

spine motion of T10 & S1. 

Lift loads (two) from 90° 

trunk posture to upright at 

three trunk velocities (15, 30 

& 60 °/s). 

0.1, 10kg 

Tethered 

electromagnetic 

sensors 

Repeated measures 

ANOVA. Trials normalised 

to initial upright posture 

(0%). Effect of load & 

speed on lumbar 

kinematics. 

A significant increase in the lumbar 

to pelvis angle ratio (L/P) was seen 

due to increased load. 

17 [143] 2010 

14 (7F, 7M, 

23.6 ± 3.7y, 1.7 

± 0.08m, 69.5 ± 

9.5kg) 

Two trials per condition 

(randomised) at two lifts/min, 

measuring angular position, 

velocity & acceleration. 

Lift box (two loads, no 

handles) in stoop posture 

from platform (three 

heights) to elbow height & 

return using four hand 

positions. 

5, 10kg 
Lumbar motion 

monitor 

MANOVA, univariate 

ANOVA & post-hoc 

analysis. 

A significant decrease in peak 

sagittal acceleration was seen due 

to an increase in load. This also 

increased the probability of high-

risk membership, especially when 

combined with the lowest starting 

height & asymmetric hand 

positions. 

18 [144] 2007 

20 (10F, 35.8 ± 

14y, 1.7 ± 

0.06m, 70.8 ± 

16.8kg; 10M, 

30.3 ± 8.1y, 1.8 

± 0.05m, 77.1 ± 

10.1kg) 

Lift known, unknown & same 

mass boxes using any posture 

measuring lumbar angular 

position, velocity & 

acceleration at eight lifts/min. 

Lift box (three loads, no 

handles) from shin height in 

front to conveyor located 90 

to the left at waist height, 

with three box 

presentations. 

4.54, 9.07, 

13.61kg 

Lumbar motion 

monitor 

MANOVA, repeated 

measures ANOVA & post-

hoc analysis. 

A significant effect was seen 

between load & sagittal flexion. 

19 [145] 1998 
5 (22.0 ± 1.6y, 

1.8 ± 0.07m, 

Six trials lifting with load 

(increasing load, any posture) 

Lift box (six loads) from 

0.45m to standing knuckle 

6 – 66% of 

body weight 

Lumbar motion 

monitor 

Qualitative trend 

assessment & unpaired t-

There was a significant increase in 

movement time between the first 
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79.6 ± 6.8kg) measuring lumbar angular 

position, velocity & 

acceleration. 

height. (6.32 ± 0.57 – 

65.45 ± 

1.12kg) 

test. Data was normalised 

to 100% movement time. 

four trials (lighter) & last two 

(heavier), also the start of lumbar 

extension occurred earlier in the 

heavier trials. During the extension 

phase the mean and peak angular 

velocities decreased & the 

acceleration curve becomes multi-

peaked with heavier loads. 

20 [126] 2014 
28 (18F, 10M, 

20.8 ± 1.02) 

Three trials at each load 

(increasing till max is reached) 

measuring joint angle of the 

lumbar spine at L3. 

Lift box (two loads) from 

bench (0.7m) to floor & 

return, load is increased until 

maximum safe lift is reached. 

Minimum 

(7kg) & 

maximum 

loads (F 12.5-

19.0kg, M 

15.0-34.8kg) 

Video analysis 

Intra-class correlations, 

paired t-test & two-tailed 

t-test. 

A significant increase in lumbar 

extension was seen when lifting 

the minimum load than with the 

maximum load. This trend is seen 

throughout the lift. 

21 [146] 1996 

7 (M, 25 ± 

2.98y, 1.79 ± 

0.08m, 82.9 ± 

6.3kg) 

Eight trials per condition (hand 

position randomised, load 

increasing) measuring lumbar 

angular position, velocity & 

acceleration. 

Lift box (seven loads, no 

handles) for the floor to 

standing & return with 

different hand positions. 

4.5, 9, 13.5, 

18, 22.5, 27, 

31.5kg 

Lumbar motion 

monitor 

Trials normalised to initial 

upright posture (0%). 

When looking at the box with 

handles, a slight decrease in 

lumbar angle is seen as the load 

increases while the velocity 

becomes incrementally less 

negative & acceleration decreases. 

22 [147] 2019 

20 (10F, 10M, 

26.0 ± 3.0y, 

1.72 ± 0.1m, 

70.7 ± 11.5kg) 

Ten minutes per condition 

(load, box start position, 

randomised) measuring 

lumbar angular position, 

velocity & acceleration. 

Lift box (two loads, six 

lifts/minute) from 80% or 

120% of knee height in front 

to conveyor located 90 to 

the left at standing elbow 

height. 

5 & 10% of 

body weight 

Lumbar motion 

monitor 

Repeated measures 

ANOVA, post-hoc analysis. 

Effect of load & starting 

height on spine kinematics. 

No significant effect due to the 

increased load was seen. However, 

when the load was increased and 

starting height decreased a 

significant increase in peak 

transverse velocity was noted. 

23 [148] 2021 

17 (2F, 15M, 36 

± 10y, 1.75 ± 

0.08m, 82 ± 

15kg) 

Four trials per condition (load, 

start & end height, pace, carry 

distance) measuring lumbar & 

trunk angles at T6 -T7 & S1-S2. 

Lifting box (two loads, no 

handles) from pallet, carry & 

place on pallet. 

10, 20kg Motion capture 

Four-way repeated 

measures ANOVA, post -

hoc analysis. Effect of load, 

height, pace & distance on 

Increased load had no significant 

effect on lumbar or trunk angles. 
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experienced 

handlers 

spine kinematics. 

24 [149] 2013 

30 (15F, 23.0 ± 

2.6y, 1.70 ± 

0.06m, 66.3 ± 

11.7kg, 15M, 

24.2 ± 2.9, 1.85 

± 0.08m, 85.4 ± 

10.7kg) 

Thirty trials per load (10 

lifts/minute, any posture) 

measuring thoracic & lumbar 

joint angles at C7, T12 & S1. 

Lift box (two loads) from 50% 

of participants height to floor 

& return. 

0 & 10% of 

MLC 
Motion capture 

Principal component 

analysis, repeated 

measures ANOVA, post-

hoc analysis. Trials 

normalised to length of lift.  

Effect of sex & load on 

spine kinematics. 

P-value of <0.001. A significant 

effect of load on lumbar spine 

flexion (decrease) was seen. 

25 [150] 1995 

15 (M, 35.1 ± 

7.6y, 1.79 ± 

0.06m, 85.83 ± 

12.61kg) 

experienced 

handlers 

Twelve lifts per load 

(increasing & decreasing, 

squat posture) measuring 

lumbar joint angles at C7, T12, 

L3 & S1 

Lift box (five loads) from 

floor to upright posture & 

return. 

15%, 30%, 

45%, 60% & 

75% of MLC 

Video analysis 

Repeated measures 

ANOVA. Trials normalised 

to length of lift. Effect of 

load on spine kinematics. 

There was a small but significant 

decrease in lumbar joint angle at 

the onset of the lift between the 

15% & 75% lifts. As the load 

increased, lumbar extension 

started later in the lifting process 

compared to the knee. 

26 [151] 2016 

25 (14F, 23.3 ± 

1.9y, 1.64 ± 

0.07m, 65.2 ± 

15.4kg, 11M, 

24.1 ± 4.5y, 

1.78 ± 0.05m, 

80.2 ± 13.1kg) 

Five trials per load (10 

lifts/minute) measuring 

thoracic & lumbar joint angles 

at C7, T12 & S1. 

Lift box (three loads) from 

50% of participants height. 

10, 20 & 30% 

of MLC 
Motion capture 

Principal component 

analysis, repeated 

measures ANOVA, post-

hoc analysis. Trials 

normalised to length of lift. 

Effect of sex & load on 

spine kinematics. 

P-value of < 0.005. No significance 

effect was found of increased load 

on lumbar & thoracic joint angles. 

27 [152] 2014 

23 (10F, 13M, 

20 - < 55y) 11 

younger & 12 

older 

Three trials per condition 

(load, lift height, randomised) 

measuring trunk joint angles 

from C7/T1 to L5/S1. 

Lift box from floor to 

platform (three heights, 

wrist, elbow & shoulder). 

5%, 15% & 

25% of MLC 
Motion capture 

Repeated measures 

MANOVA, repeated 

measures ANOVA & post-

hoc analysis. Effect of age, 

height & load on spine 

kinematics. 

A significant increase was seen in 

trunk angle due to increase load at 

the ending position of the lift. Also, 

peak trunk extension velocity 

decreased with increased load. 

28 [153] 2014 23 (10F, 13M, Three trials per condition Lift box from floor to wrist 5%, 15% & Motion capture Repeated measures Significant effects of load were 
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20 - < 55y) 11 

younger & 12 

older 

(load, randomised) measuring 

trunk joint angles from C7/T1 

to L5/S1. 

height, 60° to the right of the 

participant. 

25% of MLC MANOVA, repeated 

measures ANOVA & post-

hoc analysis. Effect of age 

& load on spine kinematics. 

seen on peak values of lateral 

flexion velocity & acceleration & 

transverse twisting acceleration 

during the lifting phase. Also, 

sagittal flexion angle, lateral 

flexion acceleration & transverse 

twisting angle during the 

depositing phase. The depositing 

phase kinematics increased with 

increased load; however, the 

lifting phase saw 15% MLC have 

the highest peak values. 

29 [154] 2000 

9 (M, 22.4 ± 

1.5y, 1.80 ± 

0.07m, 72.7 ± 

7.9kg) 

Eight trials per condition (load, 

known/unknown, randomised, 

any posture) measuring 

lumbar joint angles at T1 & 

L5/S1. 

Lift box from floor (four 

loads) to standing as quickly 

as possible. 

1.6, 6.6, 11.6, 

16.6kg 
Motion capture 

Trials normalised to initial 

upright posture (0%). 

Repeated measures 

ANOVA & paired t-test. 

Effect of load & unknown 

load on spine kinematics. 

A trend of increasing lumbar angle 

was seen with increased load. 

Significance was seen in lumbar 

angles when participants expected 

to lift 1.6kg and lifted 11.6kg % 

angles of lifting 11.6kg. 

30 [127] 2018 
28 (19F, 9M, 18 

-22y) 

Three lifts per load (any 

posture) before increase till 

maximum safe lift was reached 

measuring thoracic & lumbar 

joint angles at C7, T7, L3 & S2. 

Lift box from bench to 

shoulder height & return. 

Minimum 

(5.5kg) & 

maximum 

loads (F 8.5 – 

13kg, M 12 – 

23.2kg) 

Video analysis 

Intra-class correlations & 

paired t-test. Effect of 

maximum safe load on 

spine kinematics. 

A significant decrease in mean 

thoracic joint angles due to 

maximum load was seen in the 

ascending part of the lift. No 

significance was found in the 

descending part of the lift. 

31 [155] 2003 

10 (5F, 19-23y, 

1.7 ± 0.04m, 

59.5 ± 12.6kg, 

5M, 19-23y, 1.8 

± 0.06m, 81 ± 

7.7kg) 

Two lifts per trial (load, lift 

speed) measuring lumbar 

range of motion at C7, T7 & L2 

to L5. 

Lift box (five loads) from the 

floor to a shelf (chest height) 

using preferred and faster 

that preferred velocity. 

2.3, 4.5, 6.8, 

9.1, 11.3kg 
Motion capture 

Univariate ANOVA, 

MANOVA & post-hoc 

analysis. Effect of load & 

speed on spine kinematics. 

A significant effect of load on time 

to peak velocity (increase) was 

seen on the L2 vertebrae & also, 

on peak gradient (decrease) on the 

L5 vertebrae. 
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3.2. Internal factors 

The spine can be segmented into four main vertebral sections: cervical (C1 – C7), thoracic (T1 – T12, 

lumbar (L1 – L5) and sacral (S1 – S5 fixed). The segment of the spine analysed (Figure 7) in the majority 

of studies was the lumbar spine (90%). 

Three studies reported a decrease in lumbar angle [133, 146, 150] 

and two studies a decrease in lumbar acceleration [141, 146] due 

to increased load, however reported conflicting effects on lumbar 

velocity [141, 146]. No other studies reported the same kinematic 

metrics.  

Two separate studies looked at the lumbar spine as multiple 

segments [133, 134] both using X-ray technology, this allowed for 

exact measurements from the bone landmarks but is invasive, as it 

applies a small amount of radiation to the participants and can only 

be measured in a laboratory setting. However, this level of detail 

did show significant differences in the separate lumbar segments 

when placed under increased load.  

The thoracic vertebrae were measured in 16% (5) of studies. While not all studies found significant 

changes in thoracic kinematics due to increased load, two studies [125, 127] found there was a 

significant decrease in the mean thoracic joint angle. Both of these studies compared minimum to 

maximum safe loads to head and shoulder height, respectively. While the three other studies [131, 149, 

151] found no significant difference in thoracic kinematics, all performed lifts to waist height. 

The trunk was analysed in 13% of studies, where the thoracic and lumbar spine are a singular segment. 

Two of the studies [152, 153] found a significant increase in sagittal trunk angle due to increased load 

during the end phase of the lift (depositing). While two studies [135, 148] found no significance due to 

Figure 7 Percentage of studies that 
investigated each segment of the spine. 
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increased load, both these studies analysed lifts to standing height, as did [153]. All loads were relatively 

small (< 25% MLC), apart from in [148], where maximum load was 20kg. 

3.3. External factors 

The effect of load on lumbar spine kinematics varied and one metric for variation was the end height of 

the lift (Figure 8). The most studied end height was to standing position/ wrist height (45%) mimicking 

that of a deadlift movement. Of these, 38% reported no significant effect. 

Lifts to the waist/hip height were performed in 14% of studies (Figure 8), of these 80% saw no significant 

effect on the thoracic or lumbar spine when lifting to waist height [131, 136, 139, 151]. However, a 

decrease in lumbar spine angle with increased load was present in [149] at waist height and this effect 

was also present in [139] when lifting to shoulder height. 

The method for recording experimental data (Figure 9) shows that motion capture (MoCap) (29%) and 

the lumbar motion monitor (LMM) (29%) are both most commonly used, while X-ray (16%), inertial 

measurement units (IMUs) (7%), wired sensors (6%) and video (13%) were less prevalent.  

 

 

   

Figure 8 Percentage of studies that performed 
to the lifting height. 

Figure 9 Percentage of studies for each 
method of recording experimental data. 
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3.4. Kinematic Results 

The spine kinematics studied in this review were varied. The most common being mean angle, velocity, 

and acceleration, maximum flexion, velocity 

and acceleration and mean range of motion in 

the sagittal plane. Many studies also included 

results from the coronal and transverse 

planes. To determine if increased external load 

had an effect on spine kinematics, load was 

plotted against the results from four kinematic 

variables that had the most results (Figure 10). 

Additionally, 11 studies reported no significant 

changes in kinematics due to increased load. 

As can be seen the results for the three 

kinematic variables (Figure 10), the effect of 

load on spine kinematics is not clear. The 

results between each study are greatly varied, 

this is especially obvious in Figure 10A, each of 

the studies appears to have very little change 

in angle due to load and the results from each 

study are very spread out. In Figure 10, the 

pink samples are taken from the study [146]. Particularly in Figure 10B and Figure 10C this study has 

much larger peak velocities and accelerations. The experimental protocol included using a box with no 

handles, this protocol was also used in [154] (Figure 10A) the yellow sample, this would place the 

participant in an extreme flexed starting position, possibly explaining the higher peak velocity and 

acceleration. The approximate trend in Figure 10A for all except [146] is a positive correlation, with 

Figure 10 Results of load effects on spine kinematics.  
Each colour represents a separate study. 

A 

B 

 

C 
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increased load there is an increase in the peak angle. For Figure 10B and Figure 10C the correlation is 

negative, with increased load the peak velocity and acceleration decreases. These trends help to form an 

understanding of external loads effect on spine kinematics, however there was not a consensus across 

studies especially as more than 1/3 reported no significant effect. 

4. Discussion 

While trends in the data were present; with four studies reporting an increase in sagittal spine angles 

with an increase in load [138, 152-154], and four studies reporting a decrease in sagittal spine angles 

with an increase in load [126, 127, 146, 150], the spine segment, mass of loads, method of recording and 

discrete variable attributed to these studies varied. It is therefore difficult to make assertions of the 

effect of increased load on spine kinematics. 

The lumbar spine was the segment most studied in literature. Although this is the area most studied, 

research referring to whether injuries are more prevalent in the lumbar spine than the thoracic or sacral 

spine was not able to be located as injury reporting for Australia and Europe referred to the lumbar and 

thoracic spine as the back [6, 17]. However, each segment contributes to the transfer of external load 

forces to the ground and therefore it stands to reason that there would be kinematic variability in all 

other spine segments as well.  

Studies within this review found no effect on the thoracic spine when lifting load to the waist level or 

below. It could be that changes in thoracic kinematics are only present in lifts that are performed to 

above the waist level (e.g., [125, 127]). Additionally, for military tasks a large portion are performed to 

the chest, shoulder, head or above heights [156]. Factors contributing to manual handling injuries 

include hyperflexion or hyperextension of the lumbar spine [16], these motions could be more prevalent 

when performing lifts to heights greater than waist level (e.g., [125, 127, 130, 137, 138]). 

Of the studies that analysed the trunk (thoracic and lumbar as one section), 50% showed no significant 

effect of load on kinematics. It could be that analysing the trunk as a single joint does not provide 
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enough detail for the changes in the joint kinematics to be seen (e.g., [135, 136, 148]). No studies 

analysed the vertebrae higher than C7. The cervical spine has reduced visibility during lifting tasks as it 

can get covered by the head when the spine is in full flexion. Attaining a more detailed analysis of the 

spine’s kinematics by dividing the spine into multiple segments could help with understanding and 

predicting when there is a clear effect of load on the spine. 

Motion capture is considered the gold standard for motion analysis, however it along with X-ray and 

video require a direct line of sight, are restricted to a specific area, are not portable and require complex 

data analysis. Therefore, they have problematic limitations when it comes to in-field testing or use of the 

data for onboard analysis. The use of portable sensors allows for future development of onboard 

analysis, monitoring and prediction of kinematics that could lead to injury. IMUs and the LMM are both 

portable sensor systems that are affixed to the participant. Modern IMUs are small, highly sensitive 

sensors that contain a tri-axial magnetometer, accelerometer and gyroscope. They can be used to 

determine absolute position via fusion filters but can suffer from increasing error if not properly 

compensated for [157, 158]. The LMM is a device that uses an electrical sensor that measures joint 

angles to determine displacement, velocity and acceleration of the lumbar spine. It is a closed loop 

system consisting of the device and its own analysis software, making the data easily accessible but 

difficult for creating an onboard analysis system. Additionally, it only measures the lumbar spine as a 

single segment and does not include thoracic analysis. A more comprehensive analysis of kinematics for 

each of the spine segments may provide the detail necessary to make predictions about when injury risk 

may increase.  

Within this review, two studies analysed the spine as more than two segments, [133] using a three-

segment model and [134] using four-segment model. However, both analysed the lumbar spine only 

using X-ray. Significant differences in the motion of the smaller spine segments (e.g., multiple points in 

the thoracic segment) have been seen when using a multi-segmental (seven segments) spine model 

compared to one or three segments [2]. The seven-segment kinematic model allowed for differentiation 
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of the complex spine motions that occurred during sitting tasks. The use of a multi-segmental spine 

model could lead to an understanding of task dependant motions that differ with the introduction of 

varying loads. 

5. Conclusion 

Due to the number of different factors being analysed (spine segment, age, sex, hand placement, lift 

height, pace, posture etc.), the various kinematics that were analysed (displacement, velocity, 

acceleration, range of motion, angle, peak, mean etc.) and the differences in experimental protocols 

(loads, starting height, ending height, equipment), a consensus on what effect increased load has on 

spine kinematics is difficult to make, however many studies reported a significant effect. Overall, there 

are several reported trends in the data such as, decreased peak angular velocity with increased load and 

increased peak flexion angle at the beginning of the lift. However, not every study that reported this 

trend found the results significant.  

To determine what the effect is of increased load on spine kinematics, experimentation data needs to be 

collected that is specific to the task being assessed. In the case of military manual handling, lifting height 

to the shoulders or above is common and this increased lifting height could present a greater risk of 

hyperextension. To determine where these risky motions are occurring in the spine, experimental trials 

should include multiple points of analysis for each segment of the spine.  

IMUs present a small, portable, lightweight option for kinematic data collection. While they are not yet 

considered the gold standard for kinematic data collection many studies have validated their use in 

comparison to MoCap [157-159]. Using small, portable and readily available sensors, such as IMUs, for 

the collection of spine kinematics for future use as part of an assistive device with an onboard prediction 

model is logical. They are portable enough to be used in any location and small enough to be used at 

multiple points along the spine.  
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As MAWL has been stated to be 84 ± 8% of MLC for military manual handling tasks [13] across all 

participants in a study of 70 soldiers, MLC could be used as a method of normalising load between 

participants. Using task specific methods for determining MLC would give a more accurate load for an 

individual’s intrinsic ability to complete the specific lifting task, than use of a load cell machine.  

Performing statistical analysis would aid in the ability to determine which variables are suitable for use in 

prediction of lifts above MAWL. Studies in this review analysed discrete variables, namely mean and peak 

values of the spine kinematic. At most three points (start, middle and end) were taken from the duration 

of the lift for analysis. Therefore, an analysis of the entire lift, using the complete time series of the lift, 

comparing %MLC at each spine level and defining the points at which there are significant differences in 

the spine trajectories would be beneficial.  

6. Key points 

• A significant effect on spine kinematics due to an increase in external loading during manual 

handling tasks has been reported but there is not agreement across all studies. 

• The majority of studies look at the effect of increased external load in the lumbar spine with only 

two studies including multiple points of analysis for any segment of the spine. 

• Many methods of data collection lacked the ability to be used outside the laboratory 

environment while IMUs showed good consensus to MoCap data, are small, lightweight and 

portable and have the ability to be used in most environments. 

• MLC is a common method used for standardising loads and can be used as an indicator of MAWL 

loads, thus presenting a cut-off level for increased injury risk (lifting above safe intrinsic 

capability). 

7. Summary 

While many studies used %MLC as a metric for standardising the lifting load, no studies used this as a 

consideration for the participant’s ability to perform the task safely. Very few studies using technologies 
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for kinematic data collection would be able to be performed outside the laboratory environment. As this 

research aimed to show that spine kinematics could be used as a predictor for a lift at an increased risk 

of injury, it was important that the technology used for the collection of the dataset could be used within 

an assistive device (e.g., an exoskeleton) and at multiple levels of the spine. IMUs were shown to be a 

well-researched option that met this criterion for use in experimental trials, they have the benefit of 

being able to be used outside a laboratory environment and can are small enough to be used at multiple 

levels of the spine. Only two studies [133, 134] used multiple analysis points for a spine segment and of 

those none looked at the thoracic spine. When analysing multiple points along the thoracic and lumbar 

spine, it was expected that there would be inter-segmental variation in the kinematic results [133, 134]. 

These variations could provide invaluable information for the prediction algorithm as it could offer more 

unique variables and features for analysis.  These limitations were addressed in the development of a 

dataset through experimental trials using IMUs to measure kinematics at multiple points in the thoracic 

and lumbar spine and measuring for multiple % MLC, including 100% MLC.   



Know your limits. Predicting lift capacity using time series spine kinematics for a military manual handling task.  

 

 Jasmine K. Proud   |  71 
 

Chapter 4. Biomechanical analysis of military manual handling tasks – 

Participant laboratory study 

This chapter aimed to create a database of spine kinematics, that addresses the research limitations 

found in Chapter 3, for observationally determining points of interest for each variable. These variables 

were observed for the changes that an increase in external load has on the spine kinematics during a 

lifting task while performing a lift-to-platform task for seven %MLC loads. The data from six IMUs placed 

along the thoracic and lumbar spine was processed using the attitude heading reference system (AHRS) 

fusion algorithm. Of particular interest was whether a kinematic indicator of MAWL (between 80 – 90% 

MLC) could be found and any noteworthy differences in the levels of the spine, kinematics variables (e.g., 

acceleration, velocity, angle) and discrete kinematics (e.g., mean, peak, minimum) due to an increase in 

%MLC. This is of importance because in order to make predictions on when a person is performing a 

high-risk lift, where and how this change in motion is reflected needs to be understood, so those 

variables are made available to the algorithm.  

1. Introduction 

The prevalence of lower back injuries to manual handling personnel in the Australian Defence Force and 

industry reflects the need for devices that can support workers with the aim of preventing injuries and 

improving productivity. This has led to a need for an exoskeleton system that can support, move and 

adapt to repetitive, fatiguing tasks. The predecessor to this exoskeleton system is the development of a 

predictive model that can classify when a person is approaching their MAWL and thus be used as an 

assist-as-needed control system for the exoskeleton once validated. 

There are many contributing risk factors associated for musculoskeletal back injuries while performing 

manual handling tasks. These include hyperflexion or hyperextension of the lumbar spine caused by 

external torques, internal torsional forces, fatigue due to increased total work [16], increased risk when 

performing lifting tasks from the floor [11] due to increased spinal flexion [12] and, lifting above an 
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individual’s intrinsic capacity can be responsible for injuries [160]. An individual’s capacity to lift with 

minimised risk is known as their maximum acceptable lift. The maximum acceptable weight of a lift is 

defined as “the maximum amount that could be lifted comfortably and without strain” [160]. This can be 

equated to to 84 ± 8% of an individual’s maximum lifting capacity [13]. Sex does not need to be 

evaluated as a dependent variable, as it has been found male and female participants have similar lifting 

techniques when the load is standardised via MLC [149, 151]. 

Modelling of spine biomechanics has been done through both static and dynamic modelling. Static 

models do not take into account inertia of the external load and the human individual joint segments and 

therefore tend to underestimate internal joint forces [161]. Dynamic models are more complex and 

account for external forces, posture, kinetics and kinematics. Parida and Ray [161] suggest that current 

methods of biomechanical modelling for MH tasks are activity or body segment based and that a task-

specific dynamic biomechanical models would allow for better accuracy of joints and/or body segment 

motions, to tailor more appropriate solutions for particular tasks.   

A systematic literature review was performed to determine the effect of increased external load on spine 

kinematics and due to the number of different kinematics analysed and the differences in experimental 

protocols (loads, starting height, ending height, equipment) a consensus on the effect of load on spine 

kinematics is difficult to make (Chapter 3). There were several reported trends in the data such as, 

decreased peak angular velocity with increased load and increased peak flexion angle at the beginning of 

the lift. However, not every study who found this trend found the results significant. 

From Chapter 3 studies that used MLC to standardise load [125-127, 131, 149, 150, 152, 153], significant 

results were reported for differences in spine kinematics. It is therefore assumed that a participant’s 

spine kinematics would present with similarities in the shape and features of the trace when the load is 

standardised to a percentage of a participants MLC, even when the load magnitude is vastly different. 

Using standardised load (%MLC), a model that uses spine kinematics to predict a Heavy or Light load can 
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be generalised for the population tested in the experimental trials even if the mass of the load at a %MLC 

is very different. 

Laboratory experiments were performed involving a biomechanical task based on common manual 

handling lifting tasks performed by the Australian Army [160]. Categorisation of physically demanding 

tasks in the Australian Army found that 56% of manual handling tasks were lift-to-platform with 92% of 

those tasks starting at ground level and finishing at a height of 141.3 ± 19.2cm [156]. The majority of 

tasks (74%) involved lifting with two handles [156]. 

The aim of this study was to create a database of kinematic variables and determine the effect of 

increased load on spine kinematics within this database. This was achieved through experimental trials of 

32 participants performing a lift-to-platform task. This database of spine kinematics was used to perform 

a validation study of the IMUs output collected during the trials and to determine differences between 

the %MLC lifts at each spine segment level and between the %MLC for each variable. 

2. Methodology 

2.1. Participant eligibility 

A sample size of 32 participants was recruited from the civilian population for this study: 21 male and 11 

females with an age of 29.5 ± 5.6 years, height of 1.77 ± 0.10 metres and mass of 75.2 ± 12.7 kilograms. 

An age limit of between 18 years (age for adult consent) and 40 years was imposed. Participants were 

recruited from the student and staff cohort at Victoria University, occupation, prior experience and 

activity level varied. Prior to participation in the trial, participants were required to provide written 

confirmation of informed consent (Appendix C) and complete a health survey that gathered 

demographic information, injury and health history and anthropometric information (Appendix D). 

Participants were free from musculoskeletal injury and any illness and disease that put them at risk 

during intensive exercise. Prior to experiments being performed, institutional ethical approval was 

received from the Victoria University Human Research Ethics Committee (HRE18-231) (Appendix B). 
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2.2. Data collection 

2.2.1. Recording Systems 

All experiments were performed in the same testing space at the Victoria University Biomechanics 

Laboratory. Twelve motion capture cameras (Vicon Motion Systems Ltd., Oxford, UK) recorded the 

position of 36 9mm and 14mm reflective markers at a sampling frequency of 100 Hz. A force plate (AMTI, 

Watertown, MA, USA) recorded the ground reaction forces (GRFs) at a sampling rate of 1500 Hz. Six 

nine-axis inertial measurement units (IMUs) (ImeasureU, Vicon Motion Systems Ltd., Oxford, UK) were 

used to record acceleration (triaxial accelerometer ±16 g), angular velocity (triaxial gyroscope ±2000 °/s) 

and magnetic field strength (triaxial magnetometer ±4900 µT) at a sampling frequency of 500 Hz. IMUs 

trial data was recorded via the IMUs Research app (ImeasureU, Vicon Motion Systems Ltd., Oxford, UK) 

installed on an iPad (Apple Inc., CA, USA). 

2.2.2. Biomechanical Model 

Many studies have evaluated the head-trunk as a single segment dynamic model. One and two segment 

models do not exemplify the intricacy of spine motion; therefore, a multi-segment model is required to 

capture the complexity of the spine kinematics [1]. A seven-segment model (Figure 11) when tested 

against a two-segment model showed far more complex kinematic patterns are captured, in greater 

detail [1, 2].  

Figure 11 Example of the spine segments, marker placement, sensor placement and 
orientation used in the experimental trials.  
Figure image is adapted from [1, 2]. 
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In pilot studies it was found that markers and an IMU placed in the head and neck segment used in [1, 2] 

(Figure 11) caused discomfort to participants during the lift so the kinematic model was reduced to six 

segments. Segments were divided into upper thoracic (UT) (C7 - T3), middle upper thoracic (MUT) (T3 - 

T6), middle lower thoracic (MLT) (T6 - T9), lower thoracic (LT) (T9 - T12), upper lumbar (UL) (T12 - L3) and 

lower lumbar (LL) (L3 - S1) (Figure 11). The segments were defined using three markers, the superior 

markers were placed 5cm medial and lateral of the rostral vertebra and the inferior marker was placed 

on the lower vertebra (18 markers). Additionally, a VICON standard marker placements for the torso, 

upper limbs and lower limbs [162] was also used . The MoCap orientation (Figure 11) was X-axis in the 

anterior-posterior (posterior in the positive, anterior in the negative), Y-axis in the medio-lateral (positive 

to the left, negative to the right) and Z-axis in the vertical (up being positive, down being negative). 

The six IMUs were placed mid-way between the C7 -T3 (UT_IMUs), T3-T6 (MUT_IMUs), T6-T9 

(MLT_IMUs), T9-T12 (LT_IMUs), T12-L3 (UL_IMUs), L3-S1 (LL_IMUs) spinous process. Three reflective 

markers (9 mm) were placed on the IMUs sensors to track their trajectories via motion capture (18 

markers). The IMUs sensors orientation (Figure 11) was Z-axis in the anterior-posterior (anterior in the 

positive, posterior in the negative), X-axis in the medio-lateral (positive to the right, negative to the left) 

and Y-axis in the vertical (up being positive, down being negative). 

2.3. Testing procedure 

The manual handling task was a ‘lift-to-platform’, lifting a single crate with side mounted handles (e.g., 

supply boxes) from the ground to a 1.4m platform. This involved two procedures, the first utilising the 

MLC procedure and the second a quasi - randomised lift of the %MLC mass that was determined during 

the MLC procedure. These procedures quantify a participant’s physical capacity for load carriage. 

On arrival to the lab, participants were verbally informed of the testing procedure and any questions 

were answered. Participants then had reflective markers and IMUs sensors placed on their body, where 

possible these were placed directly onto the skin. A 3-minute warm up was performed followed by 

familiarisation with the task. Prior to each lift, participants were asked to perform a small jump, on the 



Know your limits. Predicting lift capacity using time series spine kinematics for a military manual handling task.  

 

 Jasmine K. Proud   |  76 
 

spot, in view of the cameras. The jump acceleration trace was used to help align the MoCap data to the 

IMUs data. Starting posture for lifting was standardised as per [13]; each lift was performed using a squat 

posture, with feet positioned parallel at either side of the box, the participants then extended to 

standing positions, the box was then lifted to the height required to place it on the platform and taking a 

step forward to a split stance posture, placed the box on the platform. 

The MLC procedure was then started with all participants beginning at a box mass of 10kg, this was 

increased by 5kg after each successful lift (in trials were a participant recorded a rate of perceived 

exertion (RPE) of three or below the first increase only was upped by 10kg). Three minutes rest was given 

(or more if requested) between each trial to minimise the effect of fatigue. MoCap, IMUs and RPE data 

was recorded for each trial. MLC is a one-off test that measures the maximum mass that can be lifted in 

a single repetition. Participants started with a small mass and completed the lifting task; the mass was 

then increased by 5kgs after every completion with correct technique (i.e., good posture) until the lift 

fails or technique deteriorates. Deterioration was characterised based on the lifting technique described 

in [21] as, a change in posture (stooped position instead of squat position), inability to maintain 

symmetry in the lift (leaning to one side, twisting), needing to take more than one step in order to reach 

the platform or excessive hyper-extension of the lumbar spine (where the line of the shoulders is 

posterior to the pelvis), which was monitored for each lift by two researchers, one being a qualified 

physiotherapist. The mass was then lowered by 2.5kgs and attempted again. If completed this 

determined the participants MLC or if failed the previous mass was the recorded MLC.  

Once a participants MLC was determined, a quasi-randomised procedure was then performed. 

Participants first lifted 100% of their MLC three times. Each percentage of MLC (20%, 50%, 60%, 70%, 

80% and 90%) was then lifted three consecutive times in a randomised order. Data from 30 participants 

was included in the analysis. One participant lost their LL sensor during the trial, and it didn’t come back 

online and another participant’s mocap data was missing a significant number of markers, so the start 

and end times of the lift could not be confirmed, these participant’s data was therefore excluded. Due to 
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the limitations of the box mass alone (8kgs) some participants were unable to perform the 20% and/or 

50% MLC lift, also one participant was unable to complete all three of their 100% MLC lifts. Table 6 lists 

the number of trials for each %MLC included in the analysis. 

Table 6 Number of trials included for each %MLC. 

Percentage MLC Number of trials included 

100 88 

90 90 

80 90 

70 90 

60 90 

50 86 

20 48 

In order to help with data visualisation, the approximate cycle of the lift (Figure 12) is represented by 

four phases. These phases were determined a priori and the percentage of the lift that the phases took 

was based on observation. The lift begins (0%) in the squat postion with hands placed on the box and the 

entire base of the box in contact with the force platform. Phase 1 (0-10%), the external load is 

transferred from the ground to being held entirely by the participant. Phase 2 (10-50%), the participant 

transitions from squat to standing position and the box at waist height. Phase 3 (50-70%), the participant 

lifts the box from waist height to the height required to clear the platform. Phase 4 (70-100%), the box is 

placed with its base coming into contact with the platform.  
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Figure 12 Approximate cycle of the ground to platform lift. 

2.4. Data Analysis 

2.4.1. Motion capture data analysis 

Motion capture data was processed using Vicon Nexus (Vicon Nexus 2, Vicon Motion Systems 2019). A 

static model was created from a recorded static pose performed by each participant prior to their first 

lift. A six-segment spine model was created that included the larger marker clusters for each spine 

segment (UT, MUT, MLT, LT, UL, LL) and the marker clusters placed on the IMUs (UT_IMU, MUT_IMU, 

MLT_IMU, LT_IMU, UL_IMU, LL_IMU) (Figure 11). Markers were checked for proper labelling and missing 

markers. 

Visual 3D (Visual 3D, C-Motion) was used to crop the trials to only include the lift data frames and export 

required variables. Marker positions were low pass filtered at 6Hz. Event labels were placed at the jump, 

start and end of the lift. The jump event was labelled at its peak positive acceleration of the UT segment. 

The start of the lift was determined to be 40 frames (0.4 seconds) prior to the force platform, on which 

the box was sitting, having zero ground reaction forces. Including the 40 frames proceeding zero ground 

reaction force was included so that the weight-acceptance phase of the lift (the period where the load of 

the box is fully on the ground, to when the load is completely supported by the participant) would be 

included in the analysis. The end of the lift was determined to be once the entire base of the box came in 

contact with the platform. The time from Jump-to-Start and Jump-to-End were exported into MATLAB 

0%: Start of lift entire base 
of box in contact with the force 

platform

0 - 10%: Weight-
acceptance

10 - 50%: Transistion to 
standing postition

50 - 70%: Lifting box to 
platform height

70 - 100%: Placing box 
on the platform

100%: Entire bottom of 
box in contact with the 

platform
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(The MathWorks Inc., Natick, MA, USA) to determine where the lifts were occurring in the IMUs data. 

Sagittal absolute angles and angular velocity (normalised to time) for the IMUs marker clusters were 

exported for trajectory comparison between MoCap and IMUs data. 

2.4.2. IMU data analysis 

All trial and time synchronisation data for each participant was downloaded off the ImeasureU devices 

(ImeasueU, Vicon Motion Systems Ltd., Oxford, UK) at the end of each laboratory session using the 

Lightning desktop application (ImeasueU, Vicon Motion Systems Ltd., Oxford, UK). Raw IMUs data was 

then imported in MATLAB (The MathWorks Inc., Natick, MA, USA); only trials that were completed were 

included (no failed lifts).  

The IMUs data was down sampled from 500 Hz to 100 Hz (down-sample function, factor of 5). The data 

was down-sampled so that it would match the frequency of the MoCap data. The data for each spine 

segment was aligned to the jump acceleration peak of the first lift. It was found that over the 

approximate hour of recording for each participants %MLC procedure, there was a difference of one to 

seven seconds of data (100 – 700 frames) between the spine segments. The data was divided into 

individual trials based on the vertical jump acceleration peak (Y-axis) to the next vertical jump 

acceleration peak, each individual trial for each spine segment had the vertical acceleration peaks 

aligned. 

The jump-to-start and jump-to-end times from the MoCap trials were imported into MATLAB. The data 

was cropped to include only the lift data points, based on the timing from the jump acceleration peak to 

the start of the lift and jump acceleration peak to the end of the lift.  

Once the %MLC procedure was divided into its individual lift trials, the orientation of each trial was 

reordered to align with the north-east-down orientation, X-axis in the anterior-posterior, Y-axis in the 

medio-lateral and Z-axis in the vertical. The acceleration, angular velocity and magnetometer data was 

passed through the attitude heading reference system (AHRS) fusion algorithm to estimate orientation 
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(Sensor fusion & tracking toolbox, The MathWorks Inc., Natick, MA, USA). The AHRS filter uses an indirect 

Kalman filter, containing an error model to adjust for orientation error, gyroscope offset error and 

magnetic disturbance error to correct orientation and signal estimates [163]. The AHRS filter then 

provides corrected Euler angles, quaternions and angular velocities outputs. Based on the quaternions 

derived from the AHRS filter, rotation matrices were used to align accelerometer data with the world 

axis. 

The mean %MLC was plotted to observe any trends in the data. Only variables in the sagittal plane were 

analysed as this is where the majority of motion for a two-handed squat lift will occur. The IMUs 

variables used for comparison were absolute angle and angular velocity around the Y-axis 

(flexion/extension motion), magnetic field strength in the X and Z-axis (flexion/extension motion), linear 

acceleration in the X-axis (anterior-posterior motion) and linear acceleration in the Z-axis 

(superior/inferior motion). 

3. Results – IMU Validation Study 

While the validity of IMUs for use in recording kinematics is well established [157-159], a small validation 

study was performed to assure the agreement of the particular IMUs used in these experimental trials 

(ImeasueU, Vicon Motion Systems Ltd., Oxford, UK) with the gold standard motion capture system (Vicon 

Motion Systems Ltd., Oxford, UK) for the performed lifting task. Data from 10 participants was used, 

these participants were selected as they had completed all lifts in the trials including 20% MLC. The LT 

thoracic segment was analysed as this represented the cleanest motion capture data requiring the least 

amount of processing due to missing or flipping markers. 

Bland-Altman plots, Root-Mean-Square-Error (RMSE) and Percentage-Root-Mean-Square-Error (%RMSE) 

analysis (Table 7) were performed comparing the LT peak absolute angles and peak angular velocity in 

the sagittal plane of the MoCap data to the IMUs data of 10 participants that included MLC20% lifts.  
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Table 7 Formulas for the statistical methods used for MoCap and IMUs agreement 

Variable Formula 

Bland Altman Plot 

 

𝑥 𝑎𝑥𝑖𝑠 𝑣𝑎𝑙𝑢𝑒𝑠 =  
𝑥−𝑦

2
  

𝑦 𝑎𝑥𝑖𝑠 𝑣𝑎𝑙𝑢𝑒𝑠 = 𝑥 − 𝑦 

𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝑏𝑖𝑎𝑠 =  
1

𝑛
∑ 𝑥 − 𝑦

𝑛

𝑖=1

 

𝑙𝑖𝑚𝑖𝑡𝑠 𝑜𝑓 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 =  (
1

𝑛
∑ 𝑥 − 𝑦

𝑛

𝑖=1

) ± 1.96 × 𝑆𝐷𝑥−𝑦  

Root Mean Square Error 

(RMSE) 𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑥 − 𝑦)2

𝑛

𝑖=1

  

Percentage Root Mean  

Square Error (%RMSE) %𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

𝑀𝑎𝑥 𝑅𝑀𝑆𝐸
 × 100 

 

The Bland-Altman Plots represents the agreement in the lift data between the MoCap and IMUs by 

plotting the difference of the MoCap and IMUs signal (y-axis) against the mean of both the signals(x-

axis).  

      

Figure 13 Bland-Altman Plots for IMU & MoCap agreement. 
A. Peak Absolute Angle & B. Peak Angular velocity. The dashed lines represent the upper & lower limits of agreement (± 1.96 
standard deviations). 

The Bland-Altman peak absolute angle plot (Figure 13A) shows the majority of signals falling between ± 

1.96 SD, indicating that there is good agreement between the MoCap and IMUs data, however there are 

a number of outliers. As the signals are distributed above and below the mean, there is no bias towards 

one method of measurement over the other.     

A B 



Know your limits. Predicting lift capacity using time series spine kinematics for a military manual handling task.  

 

 Jasmine K. Proud   |  82 
 

The Bland-Altman peak angular velocity plot (Figure 13B) shows that again majority of signals falling 

between ± 1.96 SD, indicating that there is good agreement between the MoCap and IMU data, however 

the outliers have more extreme difference and mean values. As the signals are distributed above and 

below the mean, there is no bias towards one method of measurement over the other for the peak 

angular velocity variable.     

The RMSE was used to quantify the agreement between MoCap and IMU measurement. The RMSE was 

calculated using the peak absolute angle and peak angular velocity of each signal. RMSE residuals were 

calculated as the difference of the MoCap data to the IMU data, of the peak absolute angles. The %RMSE 

was normalised using the ROM from the MoCap data and is used to give a magnitude to the error . 

      

 

Figure 14 Comparison of the Root-Mean-Square-Error for motion capture and IMUs peak angle for each %MLC of the upper 
thoracic (UT) segment. 

There is good agreement between the MoCap and IMUs peak angles. The majority of RMSE values for 

peak absolute angle (Figure 14A) sit below 10° (82% of trials), 50% of these trials have an RMSE below 5°. 

While 70% of trials have a %RMSE below 10 (Figure 14B) and 40% are below 5. 
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C D

 

E

 



Know your limits. Predicting lift capacity using time series spine kinematics for a military manual handling task.  

 

 Jasmine K. Proud   |  83 
 

 There are outliers present that sit outside the expected RMSE and %RMSE. Figure 14C has an RMSE of 

50.3° and %RMSE of 55.5% due to a vertical shift in the peak absolute angle, this is seen all the way 

through the lift signal. A larger vertical shift is seen in Figure 14D, resulting in a larger RMSE and %RMSE 

value of 41.9° and 54.0% respectively. A smaller vertical shift can be seen in Figure 14E, resulting in a 

RMSE of 38.7° and a %RMSE of 63.5%. The horizontal phase shift may be due to the effect of the 

magnetometer adjustments on the angle calculations in the AHRS filter, as the magnetometer can be 

sensitive to magnetic fields created by other equipment in the laboratory setting. 

       

 

Figure 15 Comparison of the Root-Mean-Square-Error for motion capture and IMUs peak angular velocity for each %MLC of the 
lower thoracic (LT) segment. 

While there is good agreement between MoCap and IMUs peak angular velocity, the RMSE values were 

expected to be lower, as a %RMSE for peak angular velocity of the trunk compairing MoCap and IMUs 

was reported to be less than 5% during higher speed activities [157]. The majority of RMSE values for 

peak angular velocity sit below 10 °/s (60%) (Figure 15A), with 28% of trials sitting below 5 °/s. While 90% 

of trials have a %RMSE of below 10 (Figure 15B). This is a better result to that of the peak absolute angle 

%RMSE.  
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The RMSE and %RMSE outliers still have similar trajectory traces but differ at the peak value. Figure 15C 

has an RMSE of 41.1 °/s and %RMSE of 24.2% due to a larger peak in the MoCap signal. Figure 15D, 

resulting in a similar RMSE and %RMSE value of 37.4 °/s and 25.5% respectively. A small spike closely 

followed by a large spike (160 °/s) in angular velocity can be seen in Figure 15E, resulting in a RMSE of 

29.2 °/s and a %RMSE of 19.5%. The differences in peak values could be due to the downsampling (the 

mean of every five values were taken, reducing the effect on the trace of spikes) or the AHRS filter. 

Magnetometer signals are sensitive to electro-magnetic interference and the presented signals were not 

filtered for noise disturbances. As no magnetic calibration was performed on magnetometer data, this 

could have an effect on the orientation data and therefore the output from the AHRS sensor (absolute 

angle). It is possible that agreement between the MoCap and IMUs data would be improved with 

magnetic calibration. In a study looking at the agreement between MoCap and IMUs during tennis 

groundstrokes and service for peak AngVel of the trunk in the sagittal plane, results reported an overall 

RMSE of 10.8 ± 4.1 °/s and a %RMSE of 4.5 ± 2.4 %, concluding good agreement [157]. As the results 

from this comparison study (Table 8) were similar to that of previous studies [157-159], it was concluded 

that further calibration (such as magnetic calibration) was not necessary to proceed with use of the IMUs 

data for analysis of the lifting task. 

      

Figure 16 Examples of angular velocity & angle lift trace with low RMSE & %RMSE. 
A. Lower thoracic angular velocity trace. B. Lower thoracic absolute angle trace. 

As shown in Figure 14A & B and Figure 15A & B, the majority of trial comparisons have low RMSE and 

%RMSE value and high agreement. Figure 16 are two examples of trials with low RMSE and %RMSE 
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values. Figure 16A has a RMSE value of 1.71 °/s and a %RMSE value of 1.20%, while Figure 16B has a 

RMSE value of 1.04 ° and a %RMSE value of 1.27%. 

Overall, there is good agreement between the MoCap and IMUs peak values (Table 8) with the %RMSE 

for both peak angle and peak AngVel being below 10%. The mean %RMSE values for all trial comparisons 

(Table 8) show that peak AngVel has a better agreement than peak angle. This could be due to AngVel 

coming directly from the IMUs and not being determined via integration of data values (AHRS filter) like 

the angle.  

Table 8 Overall mean RMSE & %RMSE values for peak angle & peak angular velocity IMUs & MoCap comparison. 

Variable Peak Absolute Angle Peak Angular Velocity 

RMSE 6.8 ± 7.5 9.4 ± 6.4 

%RMSE 8.9 ± 10.1 5.8 ± 3.8 

4. Results - Comparison Graphs for %MLC of IMU data 

The following analysis investigated the effect of increased load on spine kinematics. For comparison of 

the IMUs variables from the six spine segments, the mean of all the trials for each percentage MLC was 

plotted.  

The absolute angle kinematic results are in the sagittal plane with reference to the global axis (Figure 17). 

The sagittal plane represents 0°, with flexion creating a more negative signal and extension creating a 

more positive signal. 

0° 

-90° +90° 

Flexion  
(more negative) 

Extension 
(more positive) 

Figure 17 Direction of absolute angle. 
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4.1. Comparison of mean absolute angle change over the lift for %MLC 

   

   

Figure 18 Mean absolute angle for %MLC of all participants for each spine segment.  
A. Upper thoracic (UT) B. Middle upper thoracic (MUT) C. Middle lower thoracic (MLT) D. Lower thoracic (LT) E. Upper lumbar 
(UL) F. Lower lumbar (LL). 

The kinematic trace follows the expected trajectory (Figure 18). The position of highest flexion is in the 

initial 20% of the lift where the participant is in the squat position, just prior to them extending to 

standing position. Then during the standing position phase the angle becomes more positive quickly as 

the participant comes to an upright posture, this is followed by peak extension during the lift-to-

platform-height phase as the middle segments of the spine (MLT, LT, UL) (Figure 18C, D & E) go into 

hyper-extension in order to lift the box to head height or above. All segments, apart from the UT & LL, 

then return to a neutral posture once the box is placed on the platform. UT (Figure 18A) sits in a slightly 

flexed position once the box is placed on the platform, this could be reflective of the shoulders being in a 

forward position. LL (Figure 18F) also is in flexion, as participants use a split stance to place the box on 

the platform, the lower lumbar segment would remain in a forward tilt. 

Peak values for MLT to UL follow a trend of 100% MLC having the highest (positive & negative) peak 

value, next highest 90% MLC and this continues down to 20% MLC with the lowest peak value. UT (Figure 
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18A) and LL have the opposite trend at the peak angle, as the load increases the angle value is less 

negative (smaller), also these segments never enter into extension. The MUT segment (Figure 18B)  is of 

interest as only the heavier lifts (60 – 100% MLC) enter into extension, the 20% MLC remains in flexion 

and the 50% MLC returns to an vertical orientation at the peak. In the MUT segment 90% MLC has the 

highest extension peak value, followed by 100% MLC. 

Of note, extension occurs sooner during 20% MLC lifts for the upper spine segments (UT, MUT) (Figure 

18A & B) and the peak extension angle is lower. These segments also have a more negative 100% MLC 

trough occuring just after the weight-acceptance lift phase, indicating peak flexion due to the increased 

load.   

4.2. Comparison of mean angular velocity change over the lift for %MLC 

The angular velocity is based on the change in absolute angle in the sagittal plane with reference to the 

global axis. 

  

   

Figure 19 Mean angular velocity for %MLC of all participants for each spine segment. 
A. Upper thoracic (UT) B. Middle upper thoracic (MUT) C. Middle lower thoracic (MLT) D. Lower thoracic (LT) E. Upper lumbar 
(UL) F. Lower lumbar (LL). 
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The trough during the weight-acceptance phase is indicative of slight increased flexion speed just prior to 

to a rapid increase in extension as the participant comes to standing position (Figure 19). Once peak 

AngVel in extension is reached, a similar gradient downward is present as the AngVel slows before it 

plateaus during the place-on-platform phase. 

The standing position phase saw the fastest change in angle with the UT and MUT segments (Figure 19A 

& B) having similar peak angular velocity for the 100% MLC, 90% MLC and 80% MLC lifts. The rest of the 

spine segments have a consistent downward trend of reduced peak angular velocity with reduced %MLC.  

The larger the %MLC, the higher the peak AngVel for the lift (Figure 19). During the weight-acceptance 

phase a trough occurs and 100% MLC has the more negative signal for all spine segments, with the other 

%MLC, in a downward order, becoming more positive. A second trough occurs in the place-box-on-

platform phase which has the same distribution of %MLC variables as the weight-acceptance phase, 

however the AngVel values are more negative. This, combined with the peak AngVel values in the 

standing position phase correlating with the higher %MLC, means that the higher the %MLC, the greater 

the range in AngVel. 

Peak AngVel occurs earlier for 20% MLC, followed by 50% MLC and 100% MLC (Figure 19). So at the 

extremes of the %MLC, peak AngVel is reached sooner. The 20% MLC also has a higher starting AngVel of 

about 10-20 °/s, this could be due to the participant not needing to set their squat position and not 

needing to use a transfer of body weight to counteract the external load. 
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4.3. Comparison of mean vertical magnetic field strength change over the lift for %MLC 

   

   

Figure 20 Mean vertical magnetic field strength for %MLC of all participants for each spine segment. 
A. Upper thoracic (UT) B. Middle upper thoracic (MUT) C. Middle lower thoracic (MLT) D. Lower thoracic (LT) E. Upper lumbar 
(UL) F. Lower lumbar (LL). 

The UT and the MLT segments all %MLC follow a very similar kinematic trace (Figure 20A & B). For the 

MUT, MLT, UL and LL segments the 20% MLC differs in shape and values (Figure 20C-F). The MUT (Figure 

20B) and UL (Figure 20E) 20% MLC trace sits above the other %MLC values, meaning that these 

segments have less movement in the sagittal plane during the lift. The LT (Figure 20D) 20% MLC has less 

motion than during the lift than the other %MLC, the segment remains more upright during the weight-

acceptance phase and during the transition from squat to stand, it then does not go in hyper-extension 

during the lift-to-platform-height phase. The LL (Figure 20F) 20% MLC trace shows that the segment has 

more flexion at the beginning of the lift and stays in a more flexed position than the %MLC traces. 
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4.4. Comparison of mean horizontal magnetic field strength change over the lift for %MLC 

   

   

Figure 21 Mean horizontal magnetic field strength for %MLC of all participants for each spine segment. 
A. Upper thoracic (UT) B. Middle upper thoracic (MUT) C. Middle lower thoracic (MLT) D. Lower thoracic (LT) E. Upper lumbar 
(UL) F. Lower lumbar (LL). 

For all segments (Figure 21) of the lift there does not seem to be an observational relationship between 

%MLC and horizontal magnetic field strength. Of note the 20% MLC has a very different values in all 

spine segments. For the UT – LT (Figure 21A-C) segments it does follow the general shape of the trace 

but is very different for LT – LL (Figure 21D-F). 
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4.5. Comparison of mean horizontal linear acceleration over the lift for %MLC 

 

Figure 22 Mean horizontal linear acceleration %MLC of all participants for each spine segment.  
A. Upper thoracic (UT) B. Middle upper thoracic (MUT) C. Middle lower thoracic (MLT) D. Lower thoracic (LT) E. Upper lumbar 
(UL) F. Lower lumbar (LL). 

The peak during the weight-acceptance phase is indicative of an increase in horizontal acceleration while 

the load is being transferred from the ground to the participant (Figure 22). An acceleration trough 

transitions to a peak during the standing position phase indicative of a shift of motion from backwards to 

forwards. This peak carries over into the lift-to-platform-height phase. The peak could also be occuring 

when the participant steps into the split-stance posture. Once this peak occurs the accelerations plateau 

to little or no horizontal acceleration. 

A trend in the effect of mass on horizontal acceleration is not clear. The weight-acceptance phase peak 

for the lower spine segments does have trend of the heavier %MLC lifts having higher acceleration. For 

LT and LL (Figure 22D & F) the 100%, 90% and 80% MLC group together with the highest accelerations 

and 60% MLC sits slightly lower (for LL the 80% and 60% have similar values), followed by 70%, 50% and 

20%. The UL segment (Figure 22DE) has three groups during this initial peak with decending 

accelarations, 100% and 80% MLC followed by 90% and 70% MLC with 60%, 50% and 20% MLC grouped 

together. 
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4.6. Comparison of mean vertical acceleration over the lift for %MLC 

 

 

Figure 23 Mean vertical linear acceleration %MLC of all participants for each spine segment. 
A. Upper thoracic (UT) B. Middle upper thoracic (MUT) C. Middle lower thoracic (MLT) D. Lower thoracic (LT) E. Upper lumbar 
(UL) F. Lower lumbar (LL). * Plots have been reversed (multiplied by -1) so an incline represents upward motion and gravity has 
been deducted ( - 9.81). 

During the weight-acceptance phase there is a clear pattern of 100% MLC having the least negative value 

and becoming more negative as the %MLC increases (Figure 23), meaning that the higher the load during 

weight transition the less vertical acceleration and accordingly less vertical motion when under heavier 

loads. The peak acceleration occurs during the standing position phase (Figure 23), however there is not 

a consistent pattern for the order in which the %MLC occurs for all segments (e.g., highest to lowest 

peak). Peak acceleration for 20% MLC does occur first. 20% MLC in all spine segments transfers fastest 

for weight-acceptance to standing position. There seems to be very little differences in between the 

%MLC for the lift-to-platform-height and place-on-platform phases, this is expected as there would be 

little vertical movement in the spine for those phases. 

5. Discussion 

This chapter addresses the limitations identified in Chapter 3 through the method for data collection, 

using the combination of three factors: 1. the use of seven %MLC classes determined via a task specific 
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procedure, 2. the use of IMUs, and 3. the inclusion of six spine segments with multiple segments for the 

thoracic and lumbar spine. The presentation of the data as the mean %MLC (of all participants) for each 

of the spine segments and for the entirety of the lift (normalised for time) is a novel approach; typically, 

past studies have made conclusions about the effect of load on spine kinematics based on discrete (peak, 

mean, minimum) variables (Chapter 3). Additionally, using IMUs over MoCap means that the testing 

procedure laid out in this chapter is not limited to the laboratory for future data collection. 

Looking at only select spine segments and/or discrete variables does not allow the exploration along the 

entire spine and its trajectory for the duration of the lift. This exploration has revealed multiple points 

where comparison and analysis may be beneficial for determining the effect of increased load on spine 

kinematics. For example, many studies reporting significant differences at specific timepoints, such as 

the end frame of the lift [125, 127, 152, 153]. In this research, for the end frame of the lift the middle 

segments of the spine (MLT,LT) (Figure 18C, D & E) have a trend of increased flexion with increased load, 

while the UT, MUT, UL  and LL segments have decreased extension with increased load, however the  UT, 

MUT and LL segments do not extend past neutral posture (0°). This means the hyperextension (above 0°) 

occurs mostly in the thoracic portion of the spine. These finding are in agreement with other studies, 

with [125, 127] finding a decrease in angle when analysing the thoracic spine at C7 - T7 (UT - MUT) and 

an increase in angle for the lumbar spine [125]. These studies were a good comparison as they also 

performed minimum and maximum lifts to shoulder (or above) height, a similar procedure used in the 

experimental trials. 

50 – 100% MLC (apart from LL) follow the trend that the more mass, the larger the initial flexion. The 

larger flexion angle of 20% MLC at the onset of the lift may be due to less control of lumbar flexion when 

the mass is unexpectantly light. However, an interesting point along the kinematic trace occurs at 

approximately 15 – 20% of the lift, where there is a point of peak flexion. At the point of peak flexion, for 

all lifts except 20% MLC (15-20% of the lift) (Figure 18), the MLT to UL spine segments show a trend of 

increased flexion with and increase in load. Other studies showed similar results for the hip (10, 20 and 
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30% MLC) [151] and lumbar spine (3.4, 6.8 & 10.2 kg) [130].  However, [152, 153] found no trend for 

peak trunk flexion during the lifting phase.  

The peak flexion point for 20% MLC is at the onset of the lift (Figure 18), these lifts then transition 

straight to spine extension, this differs from all other %MLC lifts, as these have a higher peak flexion just 

prior to the onset of spine extension. This could be due to the participant not needing to adjust position 

once the full amount of the load is taken up by the arms. This position change of increased flexion just 

prior to transitioning into standing position may be a result of creating inertia in order to lift the box. 

While the LL segment (Figure 18F) shows a similar trend, the difference is that the lift is clustered into 

two groups, 20 – 60% MLC and 70-100% MLC. This shows that there may be very similar peak flexion 

angle in the LL segment when the load is light and when it is heavy.  

Peak extension angle occured during the lifting-to-platform-height phase (Figure 18) (except for the LL). 

This would be due to the spine going into hyperextension in order to get the box into its maximal vertical 

height. When the loads are lower (sub-maximal) there is less need for the body to be used to 

counterweight the external load. UT and LL never enter hyper-extension, while MUT only enters hyper-

extension with the heavier lifts. This highlights that the middle spine segments are the ones performing 

the hyper-extension necessary to place the box on the platform when the lifts get heavier. 

There was a trend of increased peak angular velocity with increased load in this study (Figure 19). This 

was not the case in previous studies [137, 141, 145, 146, 152, 153], all reported a trend of decreased 

peak angular velocity in the lumbar spine with increased load, however all these studies looked at lifting 

to hip height only (standing position). One study that observed lifting to chest height [130] reported an 

increasing trend in peak angular velocity with increased load. It may be that the trend in the effect of 

load on spine kinematics may change with the increase in height of the lift. This could be due to the 

effect of spine hyperextension when the box needs to be lifted above the hips, whereas hyperextension 

may not occur at lifts below this height. 
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6. Conclusion 

The effect of an increase in external load on spine kinematics, at all levels of the spine, is evident when 

comparing variables from the IMUs devices. The correlation is more apparent in Angle, AngVel and Acc Z, 

with clear positive and/or negative correlations. The use of multiple segments at the thoracic and lumbar 

spine levels provided detail of opposing trajectories (within that spine level) that would not have been 

apparent viewing the lumbar or thoracic spine as a whole. For example, the generalised kinematic traces 

(the mean from all participants) show an increase in the peak values (positive correlation) for Angle for 

the MLT, LT and UL, while the UT and LL had a negative correlation and the MUT segment had a positive 

correlation for loads at and above 60% MLC and negative for 50% MLC and below. A threshold 

representing MAWL (84%) was not observed in the kinematic traces. 

7. Summary 

A database of spine kinematic variables recorded using IMUs devices was established, and the kinematic 

traces observed for differences due to increased loading. Observing the kinematic trace of variables 

recorded for seven %MLC at six spine segments showed correlation between the increase in %MLC and a 

change in spine kinematics. In order for these variables to contribute to the creation of a predictive 

model, it was important to know whether these observed changes were significant.  

Statistical analysis on the complete kinematic time series (all data points) was performed to determine if 

the observed changes in the kinematic variables were due to the increase in %MLC. Study of the time 

series avoided limiting the analysis to discrete data points (peak, minimum, mean) or time frames (start, 

middle, end). Finding which variables showed significant differences in %MLC ascertained which 

variables would provide the most value in prediction of lifts above MAWL. In order to see the significance 

of the correlation, for each of the variables and spine segments, and where the significance lies along the 

kinematic trace, statistical parametric mapping (SPM) was used as it allowed statistical significance to be 

determined at each data point in the kinematic trace. Along with this, the shape of the trend and 

strength of trendline correlation was investigated for the possibility of regression modelling.   
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Chapter 5. Biomechanical analysis of military manual handling tasks – 

Statistical analysis 

This chapter aimed to determine the statistical significance of changes in spine kinematics due to 

increased %MLC from a database recorded during experimental trial (Chapter 4). Statistical significance 

of all sagittal variables (six) from six spine segments were identified through SPM one-way ANOVA and 

then the significance of the %MLC differences was found via SPM post-hoc ANOVA. Further, the strength 

of the linear and polynomial correlation of discrete features to an increase in %MLC was explored. The 

findings are important as statistical significance in the variables would be an indication that the use of 

spine kinematics for prediction of light and heavy lifts was possible. As, if the kinematic trace has 

features that are significantly different from another %MLC class, this will be recognised by the 

predictive model, triggering an exoskeleton/ wearable device to provide feedback only when needed.  

1. Introduction 

SPM was initially developed for neuroimaging, to map the functional changes in brain activation during a 

scanning session with greater precision than previous statistical models that compared discrete regions 

of interest [164]. It was then introduced into human movement and biomechanics to expand kinetic and 

kinematic statistical analysis from looking just into discrete points in time to make statistical inference on 

the whole time series [165]. The advantage of using SPM is that no assumptions on the point of interest 

need to be made as the full time series can be hypothesis tested [166]. The visualisation of the SPM 

results allows for better interpretation, for example when viewing a time series t-test plot, the point of 

interest where significance lies can be demonstrated at multiple points on the plot.  

A number of biomechanical studies into kinematics have used SPM for statistical inference (e.g., [165-

168]). For example, when exploring the variability in lower body joint kinematics, for experienced 

weightlifters, SPM was used to determine that there was significant intra and inter-participant variability 

in joint AngVel when performing barbell squat lifts [167]. SPM along with a six-segment spine model was 
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used to analyse the effect of lifting posture on spine loading finding that the recommendations for squat 

lifting may not be the best approach for every person. These studies showed SPM as a valuable tool, so 

as not to introduce a bias of what the expected features in the data would be and instead explore the 

time series trace in full. 

Many studies from the literature review into kinematic changes (Chapter 3) used discrete features (e.g., 

peak, minimum, mean, ROM) (e.g.,[127, 130, 137, 140, 145, 152, 153, 155]) and/or time period (e.g., 

start, middle, end) (e.g.,[125-127, 131, 150, 152, 153]) to explore the relationship between increased 

load and spine kinematics. The most commonly used discrete features were peak, mean and ROM and 

the variables analysed were angles, angular velocity and acceleration. Significant correlations between 

increased load and these discrete features were found in the literature (e.g., [125-127, 150, 152, 153]), 

such as a significant increase in trunk extension angle at the end stage of the lift [152, 153], decreased 

thoracic extension angle (T7) at the end stage of the lift [125, 127] and increase lumbar extension angle 

(L5) [125]. Observational correlations for an experimental data set were explored in Chapter 4 and it was 

found that these correlations were also present in the collected data. This chapter aimed to determine 

whether the observational trends in the experimental dataset were significant and discover any other 

features that may prove significant in the time series kinematic trace. 

The aim of this chapter was to determine which observations (spine segment and/or IMUs variable) and 

features (e.g., mean, min, max, ROM) show statistically significant differences in their kinematic trace 

due to an increase in %MLC. Statistical significance means that the changes in the data were due to 

increased %MLC and that those observations should be of benefit for prediction of light and heavy loads. 

Additionally, a strong correlation of change in features due to an increase in %MLC to a linear or 

polynomial trend means that classification may be possible through the use of regression. 

2. Methodology 

In order to see if the differences between the %MLC traces and if there are any significant differences, 

SPM technique was used from the open-source spm1d-package (spm1d.org, T. Pataky) in MATLAB (The 
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MathWorks Inc., Natick, MA, USA). One-way ANOVA (spm1d.anova1) and post-hoc ANOVA 

(spm1d.anova_posthoc) were used. SPM one-way ANOVA performs a F-test at each point along the time 

series for each repeated measure, while SPM post-hoc performs two-sample t-tests conducted on all 

group pairs for each point along the time series. %MLC (20%, 50%, 60%, 70%, 80%, 90%, 100%) was the 

active independent variable with the dependent variable being the time series observation (spine 

segment + IMUs variable). The alpha level was set at 0.05, with 7 repeated measures (%MLC) for the 

one-way ANOVA and Bonferroni corrected for the post-hoc ANOVA tests. For the one-way ANOVA, if 

significant (p<0.05), the p-value for the six sagittal variables of each spine segment was recorded (Table 

9). The post-hoc analysis was performed for variables that reported a significant p-value in the one-way 

ANOVA. For the post-hoc analysis the mean of all participants for Angle, AngVel, Mag X, Mag Z, Acc X and 

Acc X for each %MLC class was compared to another and the phase (e.g., weight-acceptance or lift-to-

platform) in which the significant difference occurred was reported (Table 10). The SPM plots that 

provided the results for Table 10 can be viewed in Appendix . 

Based on the findings from the SPM analysis, linear and 2nd order polynomial trends in the discrete 

variables for phases of the lift were plotted to determine the strength of their correlation. The peak 

(max), minimum (min) and range of motion (peak – minimum) of the angle was taken from each lift 

observation at each level of the spine. The correlation coefficient (R) for the predictability of the %MLC 

from the angle value were then recorded. This was performed in MATLAB (The MathWorks Inc., Natick, 

MA, USA) using polynomial fit and evaluation. 

3. Results 

3.1. Statistical parametric mapping  

SPM one-way ANOVA analysis shows that the variables with the largest number of significant differences 

(significance at all spine levels) between the %MLC variables are Acc Z, Angle Y and AngVel Y (Table 9). 

Statistical significance for these variables is present for all segments of the spine. Acc X has significance 
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for the MLT and UL segments, while vertical Mag Z show significance only in the MUT segment. Mag X 

has no significance in this dataset. 

Table 9 Results for one-way ANOVA of %MLC for each variable. 

 UT MUT MLT LT UL LL 

ACC X - - 0.000 - 0.000 - 

ACC Z 0.001 0.000 0.000 0.000 0.000 0.000 

MAG X - - - - - - 

MAG Z - 0.029 - - - - 

ANGLE Y 0.000 0.001 0.000 0.001 0.000 0.037 

ANGVEL Y 0.000 0.000 0.000 0.000 0.000 0.000 

SPM post-hoc ANOVA was performed on the variables from showed significant differences due to 

increase %MLC (Table 10). The majority of SPM significance occurs with values at the extremes of %MLC. 

So, comparing the lesser loads in the middle sections (50 – 70% MLC) to 100% MLC results in significant 

differences in the kinematic traces. Additionally, the section with the most significant results is the 20% 

MLC due to the same reason. Significant results occur up till the 70% MLC section with no results in the 

80% - 90% MLC sections.  All spine segments, apart from LL, have a similar number of significant results, 

with LL having less 

The UT Acc Z SPM significance mainly occurs during the weight-acceptance phase in the 20 and 50% MLC 

section showing significance in the weight-acceptance and standing position phase. The Angle 

significance occurs from the standing position to place-on-platform phases in the 20% MLC section and 

during the lift-to-platform-height to place-on platform phases in the 50% MLC. The AngVel significance 

occurs during the weight-acceptance to place-on-platform phases in the 20% MLC section and during the 

standing position phase in the 50% MLC section.  

The MUT segment shows very similar significant differences as the UT segment, however in the 20% MLC 

section Mag Z has significance occurring during the standing position phase. Acc Z significant differences 

occur during the weight-acceptance phase of the 20% MLC section and at the extremes of the 50 and 

60% MLC section showing results in the weight-acceptance phase. The Angle significant differences 

occur during the lift-to-platform-height and place-on-platform phases in the 20 and 50% MLC sections. 
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The AngVel significance occurs across the entire lift in the 20% MLC section and in all phases except lift-

to-platform-height in the 50% MLC section.  

The MLT segment Acc Z shows significance occurring during the weight-acceptance phase and standing 

phase for the 20-50% MLC sections and also at the extremes of the 60 and 70% sections. Acc X also 

shows results at the extremes of the 20% section for the standing position and place-on-platform phases. 

Angle has significance from the standing position to the place-on-platform phase for the 20 and 50% 

sections, with the 60% section having results in the lift-to-platform-height and place-on-platform. Results 

for AngVel are similar to MUT with the addition of the 60 vs. 100% MLC significance occurring in the 

weight-acceptance and place-on-platform phases. 

The LT segment has more significance in the extremes of the 60 and 70% sections. Acc Z shows 

significance in the weight-acceptance and standing position phases for the 20 to 70% MLC sections. 

Angle significance occurs in the standing position to place-on-platform phases for the 20 to 70% MLC 

sections. While AngVel significance occurs throughout the entire lift for the 20 and 50% section and 

during the weight-acceptance and place-on-platform phases for the 60 and 70% sections. 

The UL segment differs, as significant results are present sporadically for the Acc X variable, these are 

occurring in the weight-acceptance and standing position phases for the comparisons with the 80% lifts. 

The Acc Z variable shows significance in the weight-acceptance phase for the 20 – 70% sections, and also 

in the standing position phase in the 60% section. Significance for Angle occurs throughout the entire lift. 

This is also the case for the AngVel variable but for the comparisons between the heavier lifts (60% 

section) it is towards to end of the lift. 

The LL segment shows results in the Acc Z and AngVel variables. These occur in the weight-acceptance 

and standing position phase for Acc Z in the 20 – 60% sections. For AngVel significance occurs in the 

weight-acceptance, standing position and place-on-platform phases for the 20% MLC section and during 

the place-on-platform phase for the extremes of 50 and 60% MLC sections. 
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Table 10 Results for post-hoc ANOVA of %MLC for each variable. 
Numbers indicate significance (p< 0.05) and the phase of the lift that significance occurred in (1 = Weight Acceptance, 2 = Standing Position, 3 = Lift-to-platform-height, 4 = Place-on-platform). 

 

KEY: ACC = Linear acceleration, MAG = Magnetic field strength, ANGLE = Absolute angle, ANGVEL = angular velocity, X = sagittal Z = vertical, Y = lateral. 

 

UT 

  20-50 20-60 20-70 20-80 20-90 20-100 50-60 50-70 50-80 50-90 50-100 60-70 60-80 60-90 60-100 70-80 70-90 70-100 80-90 80-100 90-100 

Acc Z  - - 1 2 1 2 1 1 - - 1 1 1 - - - - - - - - - - 

Angle Y  3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 - 3 4 3 4 3 4 3 4 - - - - - - - - - - 

AngVel Y  1 2 1 2 1 2 1 2 3 1 2 3 4 1 2 - 2 3 2 - - - - - - - - - - - - 

 MUT 

  20-50 20-60 20-70 20-80 20-90 20-100 50-60 50-70 50-80 50-90 50-100 60-70 60-80 60-90 60-100 70-80 70-90 70-100 80-90 80-100 90-100 

Acc Z  - - 1 2 1 1 1 - - - - 1 2 - - - 1 - - - - - - 

Mag Z  - - 2 - 2 2 - - - - - - - - - - - - - - - 

Angle Y  3 4 3 4 2 3 4 2 3 4 2 3 4 2 3 4 - - 3 4 3 4 3 4 - - - - - - - - - - 

AngVel Y  1 2 1 2 1 2 3 4 1 2 3 4 1 2 3 4 1 2 4 - - 2 4 1 2 4 1 2 4 - - - - - - - - - - 

 MLT 

  20-50 20-60 20-70 20-80 20-90 20-100 50-60 50-70 50-80 50-90 50-100 60-70 60-80 60-90 60-100 70-80 70-90 70-100 80-90 80-100 90-100 

Acc X  - - - - - 2 4 - - - - - - - - - - - - - - - 

Acc Z  - - 1 2 1 1 1 2 - - 1 1 2 1 2 - - - 1 2 - - 1 - - - 

Angle Y  - - 2 3 4 2 3 4 2 3 4 2 3 4 - 3 4 2 3 4 3 4 3 4 - - 3 4 3 4 - - - - - - 

AngVel Y  1 2 1 2 1 2 3 4 1 2 3 4 1 2 3 4 1 2 4 - 1 2 4 1 2 4 1 2 4 1 2 4 - - - 1 4 - - - - - - 

 LT 

  20-50 20-60 20-70 20-80 20-90 20-100 50-60 50-70 50-80 50-90 50-100 60-70 60-80 60-90 60-100 70-80 70-90 70-100 80-90 80-100 90-100 

Acc Z  - - 1 2 1 2 1 1 - - 1 1 1 - - 1 2 1 2 - - 1 2 - - - 

Angle Y  - 2 3 4 2 4 2 3 4 2 3 4 2 3 4 - - 3 4 2 3 4 2 3 4 -  - 3 4 2 3 4 -  - 2 3 4    

AngVel Y  1 2 3 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 - 2 3 4 1 2 4 1 2 4 1 4 - - - 1 4 - - 1 4 - - - 

UL 

  20-50 20-60 20-70 20-80 20-90 20-100 50-60 50-70 50-80 50-90 50-100 60-70 60-80 60-90 60-100 70-80 70-90 70-100 80-90 80-100 90-100 

Acc X  - - - 2 - - - - 1 2 - 2 - - - - - - - - - - 

Acc Z  - - 1 1 1 1 - - - - 1 - - 1 2 1 2 - - - - - - 

Angle Y  - - 2 2 3 2 3 4 1 2 3 4 - - 3 4 2 3 4 2 3 4 - - 2 3 4 1 2 3 4 - - - - - - 

AngVel Y  1 2 1 2 1 2 4 1 2 4 1 2 4 1 2 4 - 4 2 4 2 4 1 4 - - 4 4 - - - - - - 

 LL 

  20-50 20-60 20-70 20-80 20-90 20-100 50-60 50-70 50-80 50-90 50-100 60-70 60-80 60-90 60-100 70-80 70-90 70-100 80-90 80-100 90-100 

Acc Z  - - - 1 1 2 1 2 - - - - 1 - - 1 2 - - - - - - - 

Angle Y  - - - - - - - - - - - - - - - - - - - - - 

AngVel Y  - 1 2 1 2 1 2 1 2 4 1 2 4 - - - - 4 - - - 4 - - - - - - 
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To visualise what is occurring for the values at the extremes of %MLC, the generalised mean trace of the 

%MLC lifts and the resultant SPM hypothesis test were plotted in Figure 24. This plot contains the Angle 

and AngVel comparisons of the lesser %MLC to the 100% MLC lifts, as these variables had the most 

results. Performing this analysis provided how and where the kinematic traces were differing in their 

trajectories when the %MLC was increased. 
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Figure 24 SPM examples of Angle and AngVel in the LT segment. 
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When looking at the extremes of %MLC for the Angle variable by comparing 100% to 20% MLC (Figure 

24A), there are two points at which there are significant differences, the minimum of 100% MLC and the 

maximum of both 100 and 20% MLC.  

The minimum Angle of the 100% MLC occurs at a different point to the 20% MLC (Figure 24A). The 100% 

minimum occurs at around 15% of the lift, beginning the lift at a less negative (less flexed) position and 

then dipping down to a more negative value (more flexion). While the 20% MLC minimum occurs at the 

onset of the lift, this is the posture of most flexion in the 20% MLC. While this difference can be seen 

when comparing 50 – 80% MLC to 100% MLC, only 60% MLC shows its minimum to be significantly 

different to the 100% MLC (Figure 24C). As the %MLC load increases more flexion occurs just prior to the 

transition to extension, more closely matching the 100% MLC trace. 

The peak Angle of the 100% MLC lifts is larger than that of the lesser %MLC. So as the load gets larger the 

peak angle gets larger, however there are only significant differences in the peak values from 20 to 70% 

MLC (Figure 24A-D). The significant difference in the peak value occurs between 40 – 100% of the lift, 

starting just prior to the lift-to-platform-height and ending once the box is placed on the platform. As the 

load gets closer to 70% MLC (Figure 24D), the significance range narrows to approximately 50 – 90% of 

the lift, encapsulating either side of the peak which is a period of hyper-extension. 

The Angle ROM is smaller when the load is smaller (Figure 24A-F). When the %MLC is smaller, it has a less 

negative minimum and a smaller peak value, this means that the ROM for the angle variable will also 

differ between the %MLC variables. Although, this would occur between 15 to 60% of the lift and this 

period is not represented in the area of significance for any of the angle traces. 

When comparing the %MLC extremes for AngVel (Figure 24G), there are three points where significance 

occurs. These are the local minima at the start of the lift, peak AngVel and minimum AngVel.  

The local minima at the beginning of the lifts for the 100% MLC represents the fast change in direction 

occurring during the weight-acceptance phase. This is reflective of the differences in the Angle curve, 
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where the lighter loads do not require extra flexion during the weight-acceptance phase, so there is not 

velocity in the negative and the heavier loads have a small period of hyper-flexion. The period of 

significance decreases towards the beginning of the lift as the loads get heavier and is only present in 20 

– 70% MLC (Figure 24G-J). After 70% MLC the velocities between the %MLC for this period of the lift 

becomes similar (Figure 24K-L). 

Peak velocity occurs during a phase of rapid extension and then slows as the participant goes into hyper-

extension. The significance of this period is only present between 30 – 45% of the lift, when comparing 

the 20 and 100% MLC (Figure 24G). Due to the large standard deviation of AngVel for the 100% MLC 

there was no further significance for other %MLC. 

The minimum value of AngVel is larger when the %MLC is heavier and occurs at 75 - 85% of the lift. The 

period of significance occurs between 75 – 100% of the lift, when the participant is placing the box onto 

the platform. In addition, the lighter the %MLC the earlier the minimum AngVel occurs.  

Within the SPM analysis, there were two of the six variables that showed very little to no statistical 

significance but did present with observational trends in the generalised data (Chapter 4). Those being 

Acc X and Mag Z. Plotting the mean and standard deviation clarified why there was no significance for 

these variables (Figure 25). 
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Figure 25 SPM examples of Mag Z & Acc X in the LT segment. 

In Figure 25A there are differences in the Mag Z trace between the 100 and 20% MLC, especially 

compared to that of the 90 – 100% MLC trace (Figure 25B). However, both traces have a very large 

standard deviation, indicative of a large variation in the Mag Z values for all the participants. This also 

means that the differences in the generalised trace would need to be quite large for there to be any 

significance. This is the same for Acc X trace (Figure 25C & D). While the standard deviation of the 20% 

MLC Acc X is much smaller, it is fully encapsulated by the 100% MLC standard deviation. 

The SPM analysis highlighted some key areas of interest for prediction of %MLC based on changes to 

spine kinematic. The segments of the spine of most interest are UT through to UL, as the LL segment 

shows less significant results for the IMUs variables. The variables with considerable significant 

differences are Acc Z, Angles and AngVel, with the discrete features of importance being minimum, peak 

and ROM. Due to Angle having less noise in the trace (filtered via the AHRS filter) and it having a large 

number of significant results in SPM, it was used to determine the shape of the relationship between the 

discrete features (minimum, peak and ROM) and an increase in %MLC at each level of the spine and 

phase of the lift, to determine which observations would be beneficial to make predictions. 

A C 

D B 
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3.2. Generalised correlation of discrete Angle variables with increased %MLC 

One method of predicting the light and heavy loads would be through regression. Overall, correlation of 

the variables to the trendlines was poor to moderate. The peak and ROM discrete features had a higher 

correlation, but the highest value did not exceed 0.48. The LT segment had the highest correlation for 

both these discrete features, with the MLT and UL returning slightly lower results. The highest result 

occurred when the time series included all data up to lift-to-platform-height. 
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3.3. Linear & Polynomial correlation of peak angle 

     

     

Figure 26 Linear & Polynomial correlation of peak angle during lifting phases. 
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In Figure 26 peak angle has low to moderate correlation in both linear and 2nd order polynomial 

trendlines. While some variables had no or only a marginal increase in correlation when looking at the 

polynomial trend compared to the linear, most variables saw an increased correlation in the polynomial 

trendlines. The weight-acceptance phase has no correlation (Figure 26A & E); the standing position phase 

has low correlation at all levels of the spine (Figure 26B & F); the lift-to-height (Figure 26C & G) and entire 

lift (Figure 26D & H) phases have moderate correlation; this would be due to the peak angle value for the 

lift occurring during the lift-to-height phase (Figure 18). The lower lumbar segment has a low correlation 

(<0.3) (Figure 26H), this reflects the results found in the SPM analysis of the lower lumbar segment (Table 

10). 

For the standing position phase onwards (Figure 26F-H) the top spine segments (UT & MUT) show a 

logarithmic curve while the lower spine segments (MLT to LL) all show an exponential curve. This means 

the changes in peak angle, while still positive, slow as there is an incremental increase in MLC% for the 

UT and MUT spine segments, while the opposite is true for the MLT to LL spine segments, the change in 

peak angle increases faster with an incremental increase in MLC%.  

In all the plots (Figure 26A-H) the upper spine segments (UT & MUT) have a larger spread of the peak 

angle values than the other segments. It would seem that the peak angle for the UT and MUT segments is 

more variable. The lower spine segments (UL & LL) have a smaller spread of the data, it seems in the case 

of peak angle the higher the spine level the more the data spread. 
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3.4. Linear & Polynomial correlation of minimum angle 

  

   

Figure 27 Linear & Polynomial correlation of minimum angle during lifting phases. 
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 In Figure 27 the minimum angle has low to no correlation in both linear and 2nd order polynomial 

trendlines (<0.16) (Figure 27H). While all variables had very little correlation, there was an increase in 

correlation in the polynomial trendlines. There was a slight improvement in correlation from weight-

acceptance to standing position phases (Figure 27E & F), however, after that the correlations did not 

improve as the lift progressed (Figure 27G-H). This is in line with the observational results from Figure 18, 

showing that the minimum angle occurs in the first 15% of the lift. 

The extremes of the %MLC had the highest minimum values (most negative) (Figure 27E & H). This was 

seen in the angle comparison graphs (Figure 18), where 20% MLC had a low starting angle (0% of the lift) 

while 100% MLC had a similar angle occur just prior to the transition to extension (15% of the lift). Also, 

the variability in the minimum value of the data increases as the %MLC increases (Figure 27E & H), this is 

reflected in the large standard deviation for high %MLC values seen in Figure 24, this large distribution of 

values is also present in the discrete features. 
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3.5. Linear & Polynomial correlation of angle range of motion 

  

    

Figure 28 Linear & Polynomial correlation of angle range of motion during lifting phases. 
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In Figure 28 Angle ROM has low to moderate correlation for both linear and polynomial 

trendlines, with a small improvement in correlation when viewing the polynomial trendline. The 

weight-acceptance phase has low correlation (Figure 28A &E), while the standing position phase 

has low correlation for the upper and lower spine segments (UT, MUT & LL) (Figure 28B & F) 

and moderate correlation for the middle spine segments (MLT, LT & UL). There is an 

improvement to correlation for the lift-to-height phase (Figure 28C & G), that is preserved in 

the entire lift phase with the middle spine segments (MLT, LT & UL) maintaining a higher 

correlation (Figure 28D & H); this is due to the minimum angle occurring during or just after the 

weight-acceptance phase and the peak angle occurring during the lift-to-height-phase. 

For the standing position phase (Figure 28F-H) onwards all spine segments, apart from UT, have 

a parabolic curve that has an increase at the higher %MLC values and dips at the 50 -60% MLC 

values. The UT segment shows an almost positive linear relationship when fitted with a 

polynomial trendline. Overall, the relationship between increased %MLC and an increase in 

mean Angle ROM could be described as a positive linear correlation, without much loss in the R-

score (Figure 28D). 

4. Discussion 

The novel contribution this chapter makes to the body of research is that the change in 

kinematic variables: vertical acceleration, absolute angle and angular velocity, of the UT to UL 

spine segments show the most statistical significance due to increased external load (Table 10). 

Significant differences were most likely to occur at the minimum and peak values for Angle 

(Figure 24) and in the transition to standing for AngVel (Angle ROM). The upper and middle 

spine segments present more results for changes in spine kinematics than the LL segment. The 

LL SPM has very few significant results for the Angle variable. This is in agreement with studies 
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reviewed in Chapter 3 who focused on kinematic analysis of the lumbar spine segment and 

reported no significance for changes to angle [131, 132, 137, 140, 147, 148].  

This research found significant changes in angle with an increase in load (Table 10) for spine 

segments UT to UL, however the correlation for the peak angle and ROM variables were 

moderate. There are mixed results of the effect of load on the angle variable from reviewed 

studies (Chapter 3) on the lumbar and thoracic spine; some reporting a significant decrease in 

the angle with an increase in load [126, 127, 146, 150]; others reporting a significant increase in 

angle with an increase in load [138, 152-154]. The results from Figure 18 show that this is due 

to where on the spine the analysis is performed.  

The lumbar segment will have different results depending on whether the measurements are 

taken at the upper lumbar (T12 – L3) or lower lumbar (L3 - S1). When looking at the results in 

Figure 18F for the LL, at the lift peak, 100% MLC has the lowest angle value. The LL segment has 

a negative correlation to load, that being there is a decrease in peak angle with an increase in 

load, this is because this segment never goes into hyper-extension. The UL segment has a 

positive correlation to load, that being there is an increase in peak angle with an increase in 

load. 

Having many spine segments analysed in this research has allowed to see that each spine 

segment works in different ways with the introduction of load. Even within larger spine 

segments (e.g., thoracic & lumbar) there are differences in the way vertebrae react to increased 

load. This is shown in the shape of the polynomial correlation trend lines in Figure 26. The UT 

and MUT segment do not enter hyper extension and have a logarithmic shape to the curve. LL 

however has a more exponential curve even though it has a negative correlation. This could be 

due to the spread of peak values in the higher lifts.  
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There are variables that showed a trend in the comparison of mean data (Acc X, Mag X & Mag Z) 

(Chapter 4) but do not have significance in SPM due to the large standard deviation shown in 

Figure 25. For these variables to be useful for statistical predictions, a much larger sample of lift 

observations would be needed. For example, using the sample size calculation for comparing 

two independent means [169] (Equation 1) for the Mag Z LT data at the minima (at around 10% 

of the lift) (Figure 25a), where the 100%MLC mean is 29 and standard deviation is 19, the 

20%MLC mean is 23 and standard deviation is 18 and the level of significance is set to 5% and 

power to 90%; due to the large standard deviation in the data, an estimated sample size of 200 

would be needed to yield valid results. 

𝑛 =  
(𝜎1

2 + 𝜎2
2)(𝑍𝛼 + 𝑍1−𝛽)2

|𝜇1− 𝜇2|2
=

(18 + 19)2 (1.96 + 1.28)2

|29 − 23|2
= 199.75  

Equation 1 Comparing two independent samples to calculate sample size. 

The majority of SPM significance occurs with values at the extremes of %MLC, when comparing 

low %MLC trace to the 100% MLC trace. More significant differences are seen in the 70% MLC 

sections compared to that of the 80% and above phases. This could be reflective of the point 

where the increase load has changed the motion of the spine to compensate for the heavy 

boxes and so 80 vs. 90 vs. 100% MLC may all start to have similar kinematic traces. 

5. Conclusion 

While certain variables of the time series IMUs data show statistically significant differences in 

SPM post-hoc ANOVA, there was a low to moderate R-score when looking at linear and 

polynomial correlation for the predictability of the spine angles from %MLC. The correlation of 

all discrete values showed poor to moderate correlation to a linear trend and was only slightly 

improved with a 2nd order polynomial trend. Peak and ROM discrete features showed the 

highest correlation for the standing position phase onwards; however, it never surpassed an R-

score of 0.50. This could be due to the large spread of discrete angle variable values at each 
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level of the spine and for each %MLC. Using linear or polynomial regression for prediction 

would therefore result in poor accuracy. Further methods of prediction were explored in 

Chapter 6, this involved prediction of %MLC using machine learning multivariate time series 

classifiers.  

6. Summary 

Statistically significant changes in spine kinematics due to an increase in %MLC were present at 

all levels of the spine for Angle, AngVel and Acc Z variables. However, the predictability of %MLC 

based on discrete features of the spine Angle showed poor to moderate correlation and the use 

of polynomial regression would result in poor accuracy. Therefore, supervised machine learning 

was explored as a method for predicting light and heavy loads. 

Experimental trials (Chapter 4) resulted in a database of 30 participants, performing seven 

%MLC classes, with six IMUs of which six sagittal variables were processed. Chapter 5 showed 

that increasing the %MLC had a significant effect on many of these variables, specifically Angle, 

AngVel and Acc Z for all spine segments, however most of the effect is seen when comparing 

the extremes of %MLC (100% to 20%, 90% to 50%). Chapter 6 used the established database to 

train and test a machine learning algorithm to predict whether the lifted load was Light (below 

MAWL) or Heavy (at or above MAWL).   

Predicting whether a %MLC observation was in the light or heavy class was a multivariate time 

series classification problem. This is a branch of supervised machine learning that analyses 

labelled time series observations and then classifies unseen observations into the class it 

believes they belong. The benefit of machine learning over statistics is its ability to make 

predictions on unobserved data without needing to know the best discrete features, variables 

or spine segments to use [170].  
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For an exoskeleton to augment lifting early enough to reduce the risk of injury, it needs to assist 

as early in the lift as possible. This means using variables that show significant difference in the 

weight-acceptance and standing position phases. The variables that show the most promise for 

early prediction in are the upper and middle spine segments (UT, MUT, MLT, LT & UL) AngVel 

and Acc Z. Machine learning additionally allows for analysis of feature importance, it was 

thought that these variables would most affect the algorithm.  
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Chapter 6. Machine learning model for classification of lifts above 

MAWL 

This chapter aimed to create a machine learning model capable of accurately predicting the 

class to which a %MLC observations belonged, using the database of observations recorded in 

experimental trials (Chapter 4). Statistical inference of the database was established in Chapter 

5, with Angle, AngVel and Acc Z showing significance at all studied levels of the spine due to an 

increase in %MLC. The ML algorithm that showed the highest accuracy (ROCKET) was used in 

the model for dimensionality reduction (spine segment & number of data frames included in 

training and testing) based on feature importance. The importance of this chapter is in the 

model’s ability to predict whether a lift exceeds MAWL, if this can be done early and accurately 

in the lift, the model could be used for exoskeleton activation to supply assist-as-needed 

augmentation during the lift or in a feedback device that could indicate to personnel not to 

complete the lift (Future work), thus reducing injury risk. 

1. Introduction 

Statistics make inferences about the relationship of one variables effect on another through 

fitting a probability model that can quantify the level of confidence in the effect being true 

[170], while ML thrives in making predictions without needing to know the relationship 

between the variables. It is especially useful in data that has more variables than observations. 

The problem presented in this research is a multivariate time series classification problem. 

There are many architectures available for time series classification in the sktime library 

(https://www.sktime.org) [171]. Using the sktime library provides an array of machine learning 

architectures for time series problems. It is a scikit-learn (https://scikit-learn.org) compatible 

interface and an opensource resource using Python, supporting forecasting, classification, 

https://www.sktime.org/
https://scikit-learn.org/
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regression and clustering. Multivariate refers to multiple variables being observed for a single 

experimental recording. Time series is the analysis of data points in chronological order for 

extraction of meaningful statistical information. Classification is a supervised learning task, 

supervised - meaning the training data has been labelled with its class and the variables 

separated. Classification models make predictions on what class an observation belongs to, in 

the case of this research, it provides the ability to classify what %MLC an IMUs observation 

belongs to, without having to explicitly tell the model which variables and features to use. 

An example of human kinematic data being used for multivariate classification was performed 

by Conforti, et al. [135]. Kinematic data from six IMUs (nine axis), located at six locations along 

the spine was used to train a machine learning model to classify spine posture. A support vector 

machine (SVM) was used to classify full body kinematics (data from eight IMUs; Left and right 

hip, knee & ankle joints plus the sternum & S1 joint) into correct or incorrect lifting posture with 

an accuracy of 99.4%, while using trunk kinematics only (two IMUs positioned on the sternum & 

S1 joint) resulted in an accuracy of 76.9% [135]. The SVM classifier used discrete kinematic 

variables of ROM in the antero-posterior, medio-lateral and vertical planes and the features 

were normalised ( 
𝑓𝑒𝑎𝑡𝑢𝑟𝑒 − 𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 ). Stoop lifting was referred to as the incorrect posture, 

while squat lift was correct posture; participants were asked to put themselves into these 

postures while lifting the 1, 2 and 5 kg loads. Therefore, the prediction was based on artificial 

kinematics that were tightly controlled by the researcher. This method may be of value to 

inexperienced material handlers, who’s incorrect lifting posture is due to lack of training but 

would be less effective with dealing with Defence personnel with training and experience in 

lifting, where risky changes to posture would more likely be due to loads above their ability. 

As multivariate time series classification is a relatively new field, a large review of classification 

algorithms from the sktime (Python) and tsml (Java) toolkits was performed in Ruiz, et al. [172]. 
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It analysed 30 multivariate time series data sets using multiple machine learning architectures 

and rated performance via accuracy, seven of these data sets used accelerometer/gyroscope 

outputs. While the variables used for analysis are similar between the data sets used in Ruiz, et 

al. [172] and those used in this research, the size of the test/training data, number of 

dimensions (variables) and number of classes, are different. The top performing classifiers for 

the seven data sets were Dependent Warping (DTWd), HIVE-COTE (HC), Generalised Random 

Shapelet Forest (gRSF), Random Convolutional Kernel Transform (ROCKET), Random Interval 

Spectral Ensemble (RISE), Residual network (ResNet) and Inception Time (IT). The algorithms 

available with the sktime classifier library were DTWd, HC, gRSF, RISE and ROCKET. ROCKET is 

the recommended model for multivariate time series classification as an accurate and fast 

algorithm [172]. 

The aim of this chapter is to achieve an accurate prediction of lifts above MAWL based on spine 

kinematic variables collected from IMUs using ML algorithms. Additionally, it is of benefit to 

reduce the number of IMUs needed for prediction based on which were most valuable to the 

model. Furthermore, for the exoskeleton to provide most benefit in the reduction of injuries, 

early activation would be needed, this involved analysing how early the model could accurately 

predict the class (by limiting the number of data points provided). 

2. Methodology 

The dataset used for the machine learning model was prepared in MATLAB. Following the 

preparation of the data collected in Chapter 4, as shown in Table 11, all variables from a single 

lift (6 x spine segments, 6 x IMUs variables with 101 data points for each, normalised to time) 

were placed into a single row (3636 columns), with the last column containing the %MLC label 

for that lift (3637 columns), this is the class that the model classified the observation into. Each 

row contained a single lift observation (582 rows).  
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Table 11 Layout of data for Machine Learning models 

 Variable 1 Variable 2 Variable 3 Variable 4 Variable 5 Variable 6 Variable 7 Variable 8 
Var … 

n = 9: 36 
Label 

Observation 1 
UT Angle 

n = 1: 101 

UT AngVel 

n = 1: 101 

UT Mag X 

n = 1: 101 

UT Mag Z 

n = 1: 101 

UT Acc X 

n = 1: 101 

UT Acc Z 

n = 1: 101 

MUT Angle 

n = 1: 101 

MUT AngVel 

n = 1: 101 
… 100 

Observation  
2: 582 

. 

. 

. 

UT Angle 

n = 1: 101 

UT AngVel 

n = 1: 101 

UT Mag X 

n = 1: 101 

UT Mag Z 

n = 1: 101 

UT Acc X 

n = 1: 101 

UT Acc Z 

n = 1: 101 

MUT Angle 

n = 1: 101 

MUT AngVel 

n = 1: 101 
… 

e.g., 90,80, 

70, 60, 50, 

20… 

 

On completion of testing the seven-class classifier for accuracy of classification, the results were 

poor. As the ability of the model to perform exoskeleton activation is dependent only in 

recognising a need for assistance, it was thought that binary (two-class) classification may 

improve results as it increases the number of observations per class. Therefore, an additional 

label column was added to the dataset that contained Heavy or Light labels. All 80% MLC and 

above (inclusive) observations were labelled ‘Heavy’ taking into account, with a safety factor, 

that MAWL was observed to be 84% of MLC [13] and all 70% MLC and below were labelled 

‘Light’ (inclusive). 

The data was divided into training and testing sets using a one two thirds/ one third, test/train 

split. The training set consisted of 389 (66.6%) observations and the testing set consisted of 193 

(33.3%) observations. The Column Concatenator transformer was used to concatenate the 101 

time points for each of the 36 variables into a single time series column, so that the classifier 

can then be applied as to the single column as univariate data. Within the seven-class training 

dataset there were 29 20%MLC, 52 50%MLC, 54 60-90%MLC and 53 100%MLC class 

observations and 19 20%MLC, 34 50%MLC, 36 60-90%MLC and 35 100%MLC class observations 

for the testing data set (Figure 29). For the two-class classifier the training dataset there were 

200 Light and 189 Heavy class observations and 114 Light and 79 Heavy for the testing data set 

(Figure 29). 
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Figure 29 Training & Testing Splits for each class 

A number of sktime models were implemented and the results compiled for accuracy. Based on 

Ruiz, et al. [172] RISE, ROCKET, gRSF, HIVE-COTE and Elastic Ensemble (EE) (contains DTWd) 

models were implemented as well as some additional interval-based models, originally 

developed for univariate time series data [171, 173]. In total 17 sktime classifier models were 

tested: Time Series Forest Classifier, Random Interval Spectral Ensemble, Supervised Time Series 

Forest (STSF), Column Ensemble Classifier, Individual BOSS, Contractable BOSS, WEASEL, MUSE, 

Individual TDE, K-Neighbours Time Series Classifier, Proximity Tree, Proximity Stump, Canonical 

Interval Forest (CIF), Diverse Representation Canonical Interval Forest Classifier (DrCIF), Random 

Interval Spectral Ensemble, Shapelet Transform Classifier, Arsenal and ROCKET. The parameters 

changed from default settings for all algorithms are listed in Appendix H.  

The parameters changed from default settings for the top four performing algorithms are listed 

in Table 12. The number of estimators (n_estimators) is essentially the number of trees in the 

forest, the value of 500 was selected based on [172] who used 500 estimators for CIF and to 

compare the algorithms like for like, this value was used for all the forest type algorithms (STSF 
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CIF & DrCIF). The number of jobs for fit and prediction that can be ran in parallel is dictated by 

n_jobs, with -1 using all available computer processors. All other parameters were left at default 

for the algorithms. 

Table 12 Parameters used for top four performing algorithms for binary classification. 

Method Parameters changed from default 

Supervised Time Series Forest n_estimators = 500, n_jobs = -1 

Canonical Interval Forest n_estimators = 500, n_jobs = -1 

DrCIF n_estimators = 500, n_jobs = -1 

Shapelet Transform Classifier n_jobs = -1 

ROCKET Classifier Default n_jobs = -1 

 

The TSFC, STSF, CIF and DrCIF are time series adaptions of random forest classifiers. A random 

forest classifier is made of many decision trees working together as an ensemble, each decision 

tree in the forest makes a class prediction and the class with the most predictions is the result. 

A decision tree looks for features of an observation that mean that it can be split into groups 

that are significantly different from each other.  

HIVE-COTE, RISE, CEC and EE are ensemble classifiers specific to time series analysis. Ensemble 

classifiers use a number of models together to improve the overall accuracy. They do this by 

reducing the variance and bias that each single model may suffer from and then combine the 

individual model predictions. 

ROCKET and Arsenal are time series kernel-based classifiers. Kernel-based classifiers use a linear 

classifier to solve a non-linear problem by transforming the data. The observations are divided 

into kernels and the features within each kernel that are associated with different classes are 

extracted.  
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Due to computational limitations some models that were also tested failed to complete (not 

included in results), models were given 12 hours, were then interrupted or failed in this time. 

The HIVE-COTE model failed to complete after 12 hours of running, the computational cost of 

this model is noted to be the largest of the sktime models [172]. Additionally, the EE classifier 

also failed to complete within 12 hours. 

Results for comparison of the models were given as Accuracy and Precision for the seven-class 

classification, with the addition of an f1-score for the two-class classification (Table 13). 

Accuracy is the percentage of accurately classified observations, while precision is the 

percentage of positive predictions relative to the total number of positive predictions [174]. The 

f1-score takes into account the imbalance in the two-class dataset between the Heavy and Light 

classes, it is the harmonic mean of precision and recall, recall being the percentage of positive 

predictions relative to the total actual positives [174]. 

Table 13 Equations for ML accuracy results 

Result Formula 

Balanced Accuracy =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
 

Average Precision 
=  

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
 

Recall 
=  

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
 

f1-Score 
=  

2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) 
 

 

K-fold cross validation was used on the top performing classifier. K-fold cross validation is a 

method of evaluating machine learning models by dividing the dataset into ‘K’ number of non-

overlapping folds. In this investigation due to computational time, 10 folds were used. Each fold 
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is in turn held back as a testing dataset, while all others are used as a training dataset and the 

mean result is reported. 

Confusion matrices were used to see which classes were performing accurate classifications. A 

confusion matrix is a visual representation of the number of true positive/negative and false 

positive/negative results a model predicts. The outputs of the confusion matrices (true label, 

predicted label & observation number) were aligned with the original seven-class labels to 

determine which of the seven classes had the most incorrect predictions when using the binary 

classifier. 

Dimensionality reduction was performed via two methods on the top performing model. The 

first was permutation feature importance, which shows the variables that are most important to 

the model. Permutation feature importance is performed by altering the arrangement of the 

values within each of the features and seeing if there is an increase or decrease in the mean 

squared error between the original arrangement of the values and the altered arrangement. 

The larger the change in error, the more important the feature. The permutation method for 

feature importance has the benefit of being able to be used on any ML model. The spine 

segments that were shown to be less important to the algorithm were then removed from the 

training/testing dataset. 

The second method was reducing the series length (number of data points) for each variable 

being trained and tested by the model. The series length was determined via the phases of the 

lift cycle. 10 data points was approximate to the weight-acceptance phase, 50 data points for 

the standing position phase and 70 data points for the lift-to -platform-height phase. 
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3. Results 

3.1. Model accuracy and performance 

Table 14 shows the results for the five models used for the seven-class classifier. When trying to 

predict %MLC using the seven classes, it resulted in poor accuracy and precision. The STSF 

resulted in the highest accuracy of classification with 44.8%. The default accuracy (random 

selection) for seven-classes would be 14.3%, so this does see a three-fold improvement on 

random selection. However, these results are not sufficiently accurate for use in future work, 

based on the current size of the dataset.  

Table 14 Results of top five performing models for seven class classifiers. 

Method Balanced Accuracy Average Precision 

Time Series Forest Classifier 0.38 0.383 

Random Interval Spectral Ensemble 0.370 0.358 

Supervised Time Series Forest 0.448 0.420 

Column Ensemble Classifier 0.320 0.311 

ROCKET 0.311 0.327 

 

The use of a binary classifier, dividing the observations into ‘Heavy’ or ‘Light’, showed a large 

improvement in accuracy (Table 15). In total 17 models were tested for their accuracy 

(Appendix I), the top four model’s results are shown in Table 15. These classifier models used 

for the two-class classifier all record an accuracy above 90%. The ROCKET classifier showed the 

highest accuracy with an f1-score of 92.4%. The DrCIF also had good accuracy with an f1-score 

of 91.2%. 
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Table 15 Results of top four performing models for binary classifiers. 

Method Balanced Accuracy Average Precision f1-score 

Supervised Time Series Forest 0.884 0.877 0.903 

Canonical Interval Forest 0.890 0.884 0.907 

Diverse Representation Canonical 
Interval Forest 

0.895 0.888 0.912 

ROCKET 0.912 0.907 0.924 

 

K-fold cross validation of the ROCKET classifier showed that across each fold, a mean accuracy 

of 91.2% was achieved (Table 16). This means the accuracy achieved in the initial test is 

consistent across the rest of the dataset and a high accuracy can be achieved when predicting 

Light/ Heavy loads. 

Table 16 K-fold cross validation result for top performing binary classifier. 

Method Number of folds Mean accuracy 

ROCKET 10 91.24 ± 2.72% 

 

 The confusion matrices for the top four binary classifiers show which class is more accurately 

being predicted (Figure 30). When comparing the most accurate model (ROCKET), it is its ability 

to correctly classify the Heavy class that improves its performance. The reduced accuracy of the 

STSF and CIF is due to their ability to predict the Heavy class. While the similar accuracy of 

ROCKET and DrCIF is due to good accuracy across both classes. 

From the output of the confusion matrix for the ROCKET classifier, the data was able to be 

aligned with its original seven-class label to see which class of observations was causing the 

decrease in accuracy.  
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Table 17 shows the number of incorrect and correct classifications for each class. It shows that 

the classes with the highest incorrect classifications are the 70 and 80% MLC with 25.0% and 

18.2% of observations incorrectly classified, respectively. Moving away from the Heavy/Light 

threshold the 60% MLC observations error drops to 5.9%, while the 90% MLC error was 3.2% 

and the 50% MLC was similar at 3.5%. The observations at the extremes of Heavy and Light 

(100%, 90%, 50% & 20% MLC) were able to be classified with good accuracy. 

 

 

 

Figure 30 Confusion matrices for binary classifier performance. 
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Table 17 Binary classifier incorrect & correct predictions according to %MLC. 

Class labels Incorrect Correct 

Number Percentage Number Percentage 

LI
G

H
T

 

R20 0    0.00%      19 100.00% 

R50 1 3.45% 28 96.55% 

R60 2 5.88% 32 94.12% 

R70 8 25.00% 24 75.00% 

H
EA

V
Y

 

R80 4 18.18% 18 81.82% 

R90 1 3.23% 30 96.77% 

R100 1 3.85% 25 96.15% 

Total 17 8.81% 176 91.19% 

 

3.2. Dimensionality Reduction 

Based on the accurate performance of ROCKET in classifying light and heavy observations; this 

model was used to see if it maintained accuracy with dimensionality reduction. This was done 

via a reduction in the number of spine segments (IMUs) made available to the model and then 

by reducing the serial length for each variable (number of data points). Figure 31 shows each of 

the spine segments and which variables from each were most important to the model’s 

accuracy. 
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Figure 31 Permutation feature importance. 

The most important features according to Permutation Importance method (Figure 31) are LT 

Angle, MLT Angle, MLT Mag Z, UL Angle, LL Angle, MUT Mag Z, MUT Angle and LT Mag Z. The 

spine segments of highest importance are the MLT and LT segments. The Angle variable for the 

LT segment has the most effect on the accuracy of the model. This is followed by the MLT 

segment, then the MUT, with the Mag Z and Angle variable having a large effect of the model 

accuracy. The UL and LL segments have as similar contribution, while the UT segment shows the 

least contribution to model accuracy. 

For each spine segment the Angle has importance, and for the lower spine (MLT - LL) this is the 

variable with the largest contribution. For the upper to middle spine segments (UT – LT) Mag Z 
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is the next most important variable, followed by Mag X, however Acc Z makes no contribution 

to accuracy for these segments. Based on the most important features according to 

Permutation Importance method, spine segments were removed from the training and testing 

of the model, and it was retested to see the effect on the model’s performance (Table 18). 

Table 18 Spine segment (IMUs) dimension reduction results using ROCKET classifier. 

Spine segments included Balanced Accuracy Average Precision f1-score 

Six       (All Segments) 0.912 0.907 0.924 

Five    (MUT, MLT, LT, UL, LL) 0.897 0.892 0.911 

Four   (MUT, MLT, LT, UL) 0.882 0.877 0.897 

Three (MUT, MLT, LT) 0.894 0.897 0.898 

Two    (MLT, LT) 0.871 0.866 0.888 

One    (MLT) 0.843 0.838 0.866 

 

The ROCKET classifier maintained a moderate f1-score, even when reduced to only one spine 

segment (MLT). The spine segments were removed from the dataset one-at-a-time and the 

model retested (Table 18). The order in which the spine segments were removed was based on 

the importance of it to the accuracy of the model as shown in Figure 31.  

There is a drop of 1.3% in the f1-score when the UT segment is removed (91.1%), then a further 

decline of 0.4% when the LL is also removed (89.7%). The f1-score is maintained with the 

removal of the UL segment (increase in f1-score by 0.1%) (89.8%), indicating that the UL 

segment did not contribute to model performance. The f1-score then drops by 1% with the 

removal of the MUT segment (88.8%) and a further reduction by 2.2% when the model is tested 

on only one spine segment (86.6%). To further decrease the dimensionality of the dataset, the 

number of data points per variable for training and testing was reduced to see how early 

classification can occur with accuracy (Table 19). 
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Table 19 Spine segment (IMUs) and series length dimension reduction for early classification using ROCKET classifier. 

Spine segments included F1 Score for number of data frames included per feature  

 100 70 50 10 

Six       (All Segments) 
0.924 0.919 0.888 0.767 

Five    (MUT, MLT, LT, UL, LL) 
0.911 0.907 0.872 0.778 

Four   (MUT, MLT, LT, UL) 
0.897 0.892 0.876 0.754 

Three (MUT, MLT, LT) 
0.898 0.869 0.845 0.740 

Two    (MLT, LT) 
0.888 0.838 0.856 0.766 

One    (MLT) 
0.866 0.842 0.860 0.700 

 

Predicting within the first 10 frames using the ROCKET classifier shows poor accuracy. When 

comparing the f1-score from all spine segments and 100 data points to that of 10 data points 

there is a decrease of 15.7%. When classifying using 10 data frames, the highest f1-score is 

when using data from 5 spine segments (77.8%). With the next highest using all six spine 

segments (76.7%) and interestingly with a similar f1-score is using only two spine segments 

(76.6%). There is a drastic drop in the f1-score when using only the MLT spine segment and 10 

data frames to 70%. However, at 50 data points the reduction in f1-score from all spine 

segments and 100 data points is only 3.6%, maintaining much better accuracy. 

Removing the UT spine segment from analysis and reducing the data frames to 50 has a small 

impact on the model accuracy (-5.2%), with the f1-score dropping to 87.2%. There is a slight 

increase in accuracy with the removal of the LL segment (+0.4%), indicating it may not play a 

part in the prediction of load within the first 50 frames. There is a drop in accuracy with the 

removal of the UL segment (-3.1%) but again an increase with the removal of the MUT (+1.1%) 

and LT segment (1.5%), indicating these segments may be hindering accuracy for the early 

phases of the lift.  

Unlike the 10 and 50 data frame dimensionality reduction, the 70 data frame saw a reduction in 

accuracy with the removal of each spine segment, except for going from two to one segment. 
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The largest decrease was when the analysis went from three to two spine segments (-3.1%) 

with the removal of the MUT segment. There was a slight increase in accuracy (+0.4%) with the 

removal of the LT segment from the analysis. 

A reduction in the number of data points to only include the weight-acceptance to standing 

position phases (50 data points) with reducing the spine segments to one (MLT) maintains good 

accuracy of 86%, this is a reduction of 6.4% from the inclusion of all segments and all data 

points. With the removal of data frames there is a reduction in f1-score, with small reductions 

from 100 frames to 70 and 70 to 50 frames, then a large reduction from 50 to 10 frames, this is 

the case in all except the Two and One segment analysis. For these segments there was an 

increase in accuracy when going from 70 to 50 data frames of 1.8%. This shows that these spine 

segments may play more of a role in load prediction for the earlier phases of the lift. 

4. Discussion 

The novel contribution of this chapter is a machine learning model that can accurately predict 

whether a load is above a person’s MAWL, based on spine kinematics. To further broaden the 

application of the model, dimensionality reduction showed that within the first half of the lift 

early prediction can be performed using a single spine segment with an accuracy of 86.0%. 

While there is much room for improvement, this model is a proof-of-concept for predictive, 

assist-as-needed exoskeleton activation.  

The ability to predict the %MLC using a seven-class classifier showed poor accuracy. This could 

be due to limitations in the size of the data set, as there are only a small number of 

observations per class. Studies that looked into sample sizes for classification problems found 

that performance was greatly improved with 100 – 560 observations per class [175, 176]. The 

ability to classify all classes with accuracy could broaden the application of the model to more 

fields by allowing for adaption of the Light/Heavy threshold.  
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The benefit of being able to predict the %MLC that is currently being lifted is that the model 

could be adapted depending on the situation it is being used. For example, the MAWL threshold 

determined in Savage, et al. [13] was based on testing Australian Army Infantry, these are highly 

trained personnel that are required to maintain strength and fitness. This may not be the case 

for warehousing or manufacturing personnel, so the %MLC threshold, from which 

augmentation or feedback is given, could be reduced to 70% or 60% MLC, dependent on the 

requirements of the industry, using the same model. 

While a larger dataset could greatly improve accuracy it is possible that a seven-class classifier is 

not needed for the application explored in this research. The interest of the Australian Defence 

Force is in the reduction of back injuries, as lifting above MAWL has been reported to increase 

the risk of back injuries, having the Light/Heavy threshold that reduces this risk addresses the 

aim. 

The classes with the highest incorrect classifications are the 70 and 80% MLC. This was 

somewhat expected as the cut-off for the Light class was 70% MLC (inclusive). This indicated 

that at the threshold of Light versus Heavy lifts, the observations have similar features that are 

harder to distinguish from each other. As seen in Figure 25, the standard deviation of the 

observations is large and causes the classes to overlap and could be responsible for the errors in 

the classifier at the 70 and 80% MLC (Table 17). While it is expected that %MLC classes that are 

close together may have an overlap in their standard deviation, a larger sample of observations 

should provide the algorithm with more context (i.e., features) for which to make its predictions 

on. This is especially important as the variables that the classifier was listing as important (i.e., 

Mag Z) for model accuracy (Figure 31) have no statistical significance due to their large standard 

deviation (Figure 25).  With the inclusion of more data observations per class, this may improve 
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the model’s ability to distinguish features that differ between the 70 and 80% MLC classes [175, 

176]. 

Dimensionality reduction reduces the computational time for prediction of an unseen 

observation. Reducing the number of spine segments included had only a small effect on 

accuracy, as the largest decrease in accuracy was from two IMUs to one (Table 18), for this task 

a minimum of two IMUs would be needed to maintain accuracy. A reduction in the number of 

datapoints to 50, could also be done with a small reduction in accuracy (Table 19), this shows 

that early prediction within the first half of the lift is possible. Early prediction is vital in reducing 

injury risk due to lifting above capacity. However, in reducing the spine segments included in 

the model, it does limit when early prediction can occur. As seen in the comparison traces, 

different spine segments have greater contribution to the lift at different stages. 

5. Conclusion 

In this chapter, 17 machine learning algorithms were tested for their ability to predict whether a 

lift was above or below someone’s MAWL (set at 80% MLC). This chapter shows an accurate 

prediction model (>90%) that can classify whether a load is above a person’s intrinsic capability 

to lift is possible based on spine kinematics alone. In the future, this model can be implemented 

in a wearable device that provides user feedback when the load is above their capability, the 

user can then abort the lift and thus reduce their risk of injury. Additionally, the application of 

this model into an assist-as-needed control system for an exoskeleton means that the 

exoskeleton can be activated to provide augmentation when it is needed during higher risk lifts. 

The ROCKET algorithm proved to be the most accurate with a mean accuracy in k-fold cross 

validation of 91.2%. Dimensionality reduction showed that light/heavy loads can be predicted 

with accuracy and efficiency by reducing the number of IMUs and number of data frames per 

variable included to make accurate predictions. Accurate early prediction was shown to be 
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possible within the standing position phase of the lift using two IMUs (85.6%). Further work 

needs to be done to improve the accuracy of the model with the reduced dimensions. Reducing 

the number of spine segments included would improve computation time and prediction of 

MAWL within the weight-acceptance phase of the lift would further reduce the risk of injury, as 

it means that augmentation from an exoskeleton or user feedback from a wearable device can 

occur before the spine begins its extension phase. Chapter 7 provides a general summary of all 

findings in Chapters 2 – 6, the implications of the research in future work and outlines the 

limitations of each of the studies. 
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Chapter 7. Conclusion, Future Work & Limitations 

1. Thesis Conclusion 

This thesis investigated the ability of spine kinematics to predict when a lifting task is above a 

person’s capability. A novel predictive model was developed using a dataset established via 

IMUs recording at six points along the spine. The ML model with the highest accuracy was 

ROCKET for its ability to classify lifts above 80% MLC (MAWL), accurately predicting 91.2% of 

unseen observations. The aim and contribution of this thesis was presented across four 

objectives: 

1.1. Objective 1. Determine the suitability of current exoskeleton technology to support military 

manual handling tasks 

The problem presented was the human and financial cost of back injuries in the Australian 

Defence Force due to the physical demands of manual handling tasks [8]. One possible solution 

was an assistive device, such as an exoskeleton. In reviewing current exoskeleton systems for 

their application to military manual handling tasks (Chapter 2) a gap was identified; 1. Current 

exoskeletons do not provide predictive assist-as-needed control. Predictive assist-as-needed 

activation of an exoskeleton provides personnel with lift augmentation only when it was 

required, such as when a lift is above a person’s capability, so that the strength and stamina of 

Defence personnel would not be diminished.  

1.2. Objective 2.  Determine the effect of increased external load on spine kinematics 

As back injuries due to loading were the stated problem, the motion of the spine under load 

could provide a way for the exoskeleton to know when to offer assistance. To find this out, the 

effect of an increase in external load during lifting has on spine kinematics needed to be 

studied. A systematic review of the literature (Chapter 3) did not provide a definitive feature in 



Know your limits. Predicting lift capacity using time series spine kinematics for a military manual handling task.  

 

 Jasmine K. Proud   |  138 
 

the motion of the spine that could be used as a predictive indicator, but many studies reported 

that there were significant differences in spine kinematics due to an increased load, meaning 

that these differences may be able to be predicted with the development of a kinematic 

dataset. A number of limitations in the in literature were found: 1. Multiple points of analysis for 

the segments of the spine needed to be included, 2. Use of IMUs for recording kinematic data 

as they are not limited to a laboratory environment, and 3. %MLC was a way of standardising 

lifting loads but was not studied as a measure of a person’s capability to lift a load. These 

limitations were addressed in the experimental trials performed in Chapter 4.  

Experimental trials on 32 participants were performed, recording IMU data from six positions 

on the thoracic and lumbar spine, with the load standardised to seven %MLC (Chapter 4). The 

protocol was based on Savage, et al. [13], who determined that a limit to safe lifting was 84 ± 

8% of MLC, this threshold is known as MAWL. The task performed was a common Australian 

Army manual handling task, lift -to-platform [7, 156]. The mean of six sagittal variables from the 

IMUs were observationally analysed for trends caused by an increase in the %MLC. There were 

clear positive and/or negative correlations between a change in kinematics and an increase in 

%MLC for the Angle, AngVel and Acc Z variables. Additionally, the use of multiple analysis points 

for the lumbar and thoracic spine segments provided trajectory detail that would not have been 

available viewing the segments as a whole [1, 2]. However, there was no clear delineation in the 

data where MAWL occurred. To ascertain which of the differences observed in the data was 

due to loading effects, statistical inference was performed in Chapter 5. 

1.3. Objective 3. Determine the kinematic factors that can be used as predictive indicators of a 

user approaching their maximum acceptable weight of lift 

 In Chapter 5, SPM was used for statistical analysis, as no assumptions on the point of interest 

needed to be made, as the full time series can be hypothesis tested [164, 166]. One-way and 
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post-hoc ANOVA were completed for each of the six variables for the six spine segments. From 

SPM post-hoc ANOVA the kinematics variables with significant differences were Acc Z, Angles 

and AngVel at all, with the discrete features of importance being minimum, peak and ROM. 

Angle discrete features were analysed for their linear and polynomial correlation to %MLC, the 

predictibility (R-score) never surpassed 0.50, resulting in a poor to moderare correlation and a 

poor method for predicting %MLC. Therefore, supervised machine learning was explored in 

Chapter 6 as a method for predicting light and heavy loads. 

1.4. Objective 4.  Develop a predictive model to classify when a lift is above the maximum 

acceptable weight of lift 

Using the database of observations recorded in experimental trials (Chapter 4) multivariate time 

series classification algorithms were trained (66.6% of observations) and tested (33.3% of 

observations) for their ability to accurately predict the %MLC in which a kinematic observation 

belonged. Trying to classify the observations into seven classes (%MLC) resulted in poor 

prediction accuracy (42%). As the research was interested in prediction of an increased injury 

risk, the observations were divided into Light (20 – 70% MLC) and Heavy classes (80 – 100% 

MLC) with the threshold being just below MAWL at 80% MLC. This was tested on 17 algorithms; 

ROCKET was the best performer with an accuracy (f1-score) of 92.4%. K-fold cross validation of 

the model using the ROCKET algorithm resulted in a mean accuracy of 91.2% across 10 folds.  

Dimensionality reduction was completed via removal of spine segments and reduction of data 

frames included in the train/test dataset. Feature importance by permutation provided which of 

the spine segments could be removed from analysis without affecting the model accuracy, the 

benefit being less and therefore faster computation required for future predictions and less 

sensors needed for an assistive device. The benefit of reducing the number of data frames was 

in the early prediction and therefore early intervention in the lift. Accurate early prediction was 
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shown to be possible within the standing position phase of the lift (50 data frames) using two 

IMUs (MLT & LT) (85.6%).  

2. Limitations 

2.1. Chapter 2 

Only Scopus was used as the citation database for this review and while it is extensive in the 

literature it lists, important studies on current exoskeletons may not have been included. We 

also acknowledge that by searching for research studies, we omit some of the most widely used 

commercially available exoskeletons for which there are not any published research. 

Additionally, some of the data included in the tables was interpreted by the authors of this 

review rather than stated in the reviewed study. The search terms used were based on the 

definition of manual handling tasks by researchers of Australian Army tasks and may not be 

inclusive of all manual handling industries. The review applied a broad range of exoskeletons to 

two specific tasks (lift-to-platform and lift-carry-lower), the exoskeletons in the review were not 

always intended for these tasks. Furthermore, the review did not include exoskeletons that 

carried loads posterior to the user, it is possible that these devices could be adapted for these 

tasks. This review did not explore other systems that could be useful to military manual 

handling personnel such as smart sensor systems. 

2.2. Chapter 3 

Only two-handed lifting tasks were reviewed, this is by no means a comprehensive look at the 

effect of lifting tasks on spine kinematics but a narrow look at the effect of a sagittal lifting task. 

Additionally, only the sagittal kinematic effects were reported in the results, there will be lateral 

movement in any task being performed that was not considered. No meta-analysis was 

performed for the kinematic results reported in this chapter, so statistical inference of the 

reported results was not able to be made. Furthermore, some of the load masses included in 
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the plots was interpreted by the authors from the mean MLC mass reported in the reviewed 

studies. 

2.3. Chapter 4 

The task was based on the most common physically demanding task performed in the 

Australian Army, however due to access limitations the population included in the study was 

civilian. Only sagittal variables have been included in this research as the majority of motion for 

a ground-to-platform lift occurs in the sagittal plane, the inclusion of lateral variables would 

allow for the addition of asymmetric lifting without the need for extra sensors and were used to 

process the AHRS filter, so are readily available for analysis. Participants recruited for this study 

had no existing/recent injuries and aged between 18-40 years. If this research is to be applied to 

industries outside of Defence the tested population may not be reflective of their workplace. 

2.4. Chapter 5 

Using SPM for statistical inference means verifying the results against other studies, reviewed in 

Chapter 3, was not possible. The correlation of the linear and polynomial trends between 

discrete angle features and %MLC was poor, using light and heavy loads may have improved the 

correlation.   

2.5. Chapter 6 

The time series algorithms used on Chapter 6 were limited to the sktime framework, there are 

many more algorithms available that may outperform the models detailed. Additionally, the 

parameters for each algorithm could be tuned further to improve accuracy. The number of 

observations was limited to the amount of data collected in experimental trials, the addition of 

more observations for training may also be a method to improve accuracy. When performing 

dimensionality reduction, all the variables associated with a spine segment were removed from 
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the training/testing dataset, further dimensionality reduction could be performed by also 

removing individual variables (from any spine segment) that the model did not find important, 

this may improve computational cost. 

3. Future work and predictive ML model applications 

The data collection and processing outlined in this research, using time series data output from 

wearable sensors for the application of the machine learning model, could be used to create a 

large data base of tasks to which MAWL could be predicted. This could be implemented into 

embedded wearable devices for user feedback or assist-as-needed control algorithms for 

exoskeleton systems. 

In future work, this research may be extended to implement an expanded predictive model 

(that may include additional recognition for tasks beyond the scope of this research) into an 

exoskeleton control system, to provide an assist-as-needed trigger for activation. The barrier for 

implementation of ML models into embedded systems has historically been the limitations of 

computational processing (speed, performance, size, energy consumption) [177]. With the 

availability of compact, light and powerful computational processing, the implementation of ML 

models into a small, portable and wearable assistive device has become a reality [177]. A 

trained model, created from a large dataset may be implemented in a wearable device to make 

predictions in real time. A benefit of the ROCKET algorithm is that it is highly efficient when it 

comes to computational cost [178]. An initial iteration of an assistive device could be developed 

using embedded machine learning models that provide live feedback, via a basic signaling 

system, to Defence personnel during manual handling for when they are lifting above their 

MAWL. 

For these assistive devices to become a reality, larger datasets are needed to: 1. Improve the 

accuracy of predictions and 2. For task recognition and expansion of the prediction model to the 



Know your limits. Predicting lift capacity using time series spine kinematics for a military manual handling task.  

 

 Jasmine K. Proud   |  143 
 

main MH tasks performed by ADF. The novel wearable device would then be evaluated through 

objective and subjective measures during human laboratory trials for its ability to predict MAWL 

before being expanded into in-field testing. 
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Objective:  The aim of this review was to determine how 
exoskeletons could assist Australian Defence Force personnel 
with manual handling tasks.

Background:  Musculoskeletal injuries due to manual 
handling are physically damaging to personnel and financial-
ly costly to the Australian Defence Force. Exoskeletons may 
minimize injury risk by supporting, augmenting, and/or ampli-
fying the user’s physical abilities. Exoskeletons are therefore 
of interest in determining how they could support the unique 
needs of military manual handling personnel.

Method:  Industrial and military exoskeleton studies from 
1990 to 2019 were identified in the literature. This included 
67 unique exoskeletons, for which Information about their 
current state of development was tabulated.

Results:  Exoskeleton support of manual handling tasks is 
largely through squat/deadlift (lower limb) systems (64%), with 
the proposed use case for these being load carrying (42%) 
and 78% of exoskeletons being active. Human–exoskeleton 
analysis was the most prevalent form of evaluation (68%) with 
reported reductions in back muscle activation of 15%–54%.

Conclusion:  The high frequency of citations of exoskel-
etons targeting load carrying reflects the need for devices that 
can support manual handling workers. Exoskeleton evaluation 
procedures varied across studies making comparisons diffi-
cult. The unique considerations for military applications, such 
as heavy external loads and load asymmetry, suggest that a 
significant adaptation to current technology or customized 
military-specific devices would be required for the introduc-
tion of exoskeletons into a military setting.

Application:  Exoskeletons in the literature and their 
potential to be adapted for application to military manual han-
dling tasks are presented.

Keywords: exosuits, wearable robotics, bio-
mechatronics, biomechanics, assistive technologies, 
manual materials, industrial

INTRODUCTION
In Australia, 43% of serious injuries in the 

workplace are due to traumatic joint, ligament, 
muscle, and tendon injuries, at an annual cost 
of AU$19.5 billion for treatment, overemploy-
ment, overtime, retraining, and investigation 
(Safe Work Australia, 2019). Forty-five percent 
of serious workplace injuries are due to manual 
handling, a term used to describe tasks in which 
human force is used to maneuver an object’s 
position (Carstairs et  al., 2018). Manual han-
dling injuries are of particular concern in phys-
ically demanding Defence Force occupations. 
Most manual handling injuries are associated 
with the upper and lower limbs (37%) and the 
back/trunk (38%; Safe Work Australia, 2019). 
Internationally, over 40% of workers in the 
European Union experience lower back, neck, 
or shoulder pain caused by manual handling-
related workloads and repetitive movements (de 
Looze et al., 2016).

Musculoskeletal injuries make up 20% 
of the most common disorders supported for 
Australian military personnel returning from 
active service. The Australian Government’s 
Department of Veteran Affairs found that 7934 
veterans (13%) from East Timor, Solomon 
Islands, Afghanistan, Iraq, and Vietnam con-
flicts receive support for lumbar spondylosis 
(Australian Government, 2017), a condition 
causing pain and restricted motion in the lower 
back attributed to overuse (Middleton & Fish, 
2009). Also common in military personnel were 
acute sprain and strain (4%), intervertebral disc 
prolapse (2%), and thoracic spondylosis (1%; 
Australian Government, 2017). These muscu-
loskeletal disorders could be caused by man-
ual handling tasks that involve movements that 
contribute to an increased risk of musculoskel-
etal injuries. Exploring how exoskeletons can 
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http://crossmark.crossref.org/dialog/?doi=10.1177%2F0018720820957467&domain=pdf&date_stamp=2020-11-18


Month XXXX - Human Factors2

support the body during manual handling tasks 
may help in reducing the risk of musculoskele-
tal injuries.

Factors contributing to manual handling 
injuries include hyperflexion or hyperexten-
sion of the lumbar spine caused by external 
torques, internal torsional forces, fatigue due 
to increased total work (Neumann, 2009), and 
increased spinal flexion when performing lift-
ing tasks from the floor (Ferguson et al., 2004; 
Ngo et al., 2017). Additionally, lifting above an 
individual’s intrinsic capacity can be responsi-
ble for injuries (Savage et al., 2012).

A comprehensive analysis of Australian 
Army personnel categorized 79% of all phys-
ically demanding tasks as manual handling 
(Carstairs et  al., 2018) encompassing four 
movement patterns: vertical lifting (305 tasks), 
locomotion with load (153 tasks), push/pull (38 
tasks), and repetitive striking (30 tasks). These 
movement patterns were further categorized 
into 10 task-based clusters. While some tasks 
are unique to military personnel, the two most 
common task-based clusters (lift-to-platform 
and lift-carry-lower) are also prevalent in many 
manual handling industries. Therefore, this 
review could be extended to the application of 
exoskeletons in industries whose workers per-
form these movement patterns.

Exoskeletons are an externally fitted bio-
mechatronic or mechanical system, designed 
to assist the human user in order to reduce 
injury risk, amplify natural ability, rehabil-
itate movements, or assist in physical chal-
lenges (de Looze et  al., 2016; Zaroug et  al., 
2019). Exoskeletons can be categorized by the 
intended purpose of the system: assistive sys-
tems, human amplifiers, rehabilitative systems, 
and haptic interfaces (Gopura et al., 2016). An 
assistive system provides additional support to 
workers through joint bracing and control or 
transmitting forces away from the musculo-
skeletal system. A human amplifier increases 
the strength capabilities of the human body 
beyond its natural ability, and rehabilitative 
systems assist in the recovery of limb move-
ment for people with limited function. A haptic 
interface exoskeleton provides feedback to the 
user when using tele-operation devices. This 
review explores assistive systems and human 

amplifiers with regard to their use in supporting 
manual handling personnel.

The aim of this review was to analyze the 
current literature to identify characteristics of 
industrial exoskeletons that can be useful to 
military manual handling tasks. We therefore 
classified the exoskeletons based on (a) which 
manual handling task does the exoskeleton per-
mit, and (b) what joint does the exoskeleton 
support.

METHOD

A study of the current exoskeleton literature 
was performed using Scopus, for articles pub-
lished between January 1990 and December 
2019. The search terms included exoskeleton, 
wearable robot, or robot suit with the additional 
terms industrial, military, manual handling, 
material handling, lifting, carrying, pushing, 
pulling, and striking. The included search terms 
were determined by using the definition of man-
ual handling as set by research into Australian 
Army tasks (Carstairs et al., 2018).

Original studies were considered eligible 
if they met the following inclusion criteria: 
(a) the purpose of the exoskeleton was stated 
using terms such as industrial, military, manual 
handling, material handling, lifting, carrying, 
pushing, pulling, or striking; (b) the concep-
tual design of the exoskeleton was progressed 
to a physical prototype; (c) the manual han-
dling load was supported anterior to the user; 
(d) the exoskeleton provided actuation on one 
primary supporting joint (e.g., knee, hip, spine, 
shoulder) used to execute lift-to-platform 
and/or lift-carry-lower tasks. We excluded 
any commercially available exoskeleton (see 
“Limitation” section) that did not have pub-
lished scientific evidence.

The initial search resulted in 357 studies. 
The texts were screened, and 284 studies were 
excluded. In total, 73 studies were included in 
the review (Figure 1), which resulted in 67 indi-
vidual exoskeleton systems. Included studies 
were categorized based on which movement 
patterns they permit (e.g., squat/deadlift, shoul-
der/chest press, and isometric arm hold, or any 
combination of these movement patterns) and 
which joints they provided actuation to.
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In order to categorize exoskeletons for their 
application in military manual handling tasks, 
our focus was on the two dominant task-based 
clusters, the lift-to-platform cluster (198 tasks) 
and the lift-carry-lower cluster (100 tasks), 
which comprised 56% of army manual handling 
tasks. There was a commonality of the major 
movement patterns (shoulder/chest press, squat/
deadlift, and isometric arm hold movements) 
and the supporting joints used to execute these 
tasks (Table 1). Exoskeletons were categorized 
into the key movement patterns they work on, 
and then subcategorized into the key supported 
joints (Table 1). We define the supported joint 
as the joint upon which the exoskeleton pro-
vides actuation. Therefore, an exoskeleton can 

be designed to assist a segment/joint (i.e., the 
spine) by providing actuation to—support-
ing—a joint (i.e., the hip).

Operational details included device name, 
purpose, targeted assistance, actuation method, 
actuators, degrees of freedom (DOF), device 
weight, control method, sensor system, and load 
capability. The purpose of the exoskeleton was 
classified based on the principle function(s) or 
the motivation for design. These were defined 
as: (a) “tool holding”—supporting the weight or 
reducing the transfer of vibrations from a tool 
to the user, particularly during overhead work; 
(b) “injury prevention”—reducing the transfer 
of external loads to the user’s joint and mus-
cle; (c) “amplification”—typically full body 

Figure 1.  Schematic of the number of studies excluded on the basis on inclusion criteria 
during the search process. See text for description of criteria.

TABLE 1: Key Movement Patterns and Supporting Joints for Task Clusters

Lift-to-Platform Lift-Carry-Lower

Key movement pattern Squat/deadlift Shoulder/chest press Shoulder/chest press and isometric arm 
hold

Key supporting joints Knee Shoulder Shoulder

Hip Spine Spine

Spine  �   �
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suits taking the entire external load through 
their structure; and (d) “load carrying”—bear-
ing an external load through the exoskeleton’s 
structure.

Evaluation details included task analysis, 
testing performed, test details, sample size, par-
ticipant details, and test results. The task analysis 
outlined any assessments that were performed 
prior to the design of the exoskeleton to deter-
mine its requirements. Testing performed on the 
exoskeletons was categorized into the following 
analyses: (a) “exoskeleton structural design,” to 
assess how it moves, the workspace it requires, 
and the forces it is able to withstand/exert; (b) 
“human exoskeleton analysis,” to assess how 
it interacts with the user to provide assistance, 
the forces it applies to the user, and how the 
user’s natural motion can be changed by the 
addition of the device; (c) “accuracy of the sen-
sor system,” to assess its accuracy, resolution, 
efficiency, speed, and output; and (d) “response 
characteristics of the control system,” to assess 
how the mechatronic system interacts with the 
user and can be measured by accuracy, speed, 
sensitivity, and complexity.

RESULTS
Movement Patterns and Supported Joints

Twenty-four percent of exoskeletons per-
mitted shoulder/chest press and isometric arm 
hold motions (Table  2); this includes devices 
that support the elbow and shoulder joints con-
currently (n = 9) and the shoulder joint only (n 
= 7; Figure  2). Sixty-four percent of exoskel-
etons permitted the squat/deadlift movements 
(Table 3); this includes devices that support the 
ankle, knee, and hip synchronously (n = 20), the 
knee joint only (n = 4), and the hip joint only 
(n = 19; Figure 2), while 12% of exoskeletons 
permitted major joints for shoulder/chest press, 
isometric arm hold, and squat/deadlift (Figure 2; 
e.g., spine, n = 5; and full body devices, n = 3; 
Table 4).

Purpose
Load carrying was the most common exo-

skeleton purpose (42%), followed by target-
ing load carrying and injury prevention (22%; 
Figure 2). Load carrying included lifting, low-
ering, and/or carrying of external loads. Injury 

prevention exoskeletons focused on trying to 
reduce injury risk factors of the lower back, 
while tool holding devices, making up 15% of 
this review, focused on supporting the shoulder 
joints through unloading.

Actuation System
Ninety percent of the included studies 

reported the actuation method used (Figure 2); 
these systems have been classified into four 
categories: electric (n = 38), hydraulic (n = 5), 
pneumatic (n = 6), and passive (e.g., springs, 
pulleys, cables; n = 15). Seventy-eight percent 
of exoskeletons in this review were active, 
meaning they provide movement to the user 
through a mechatronic system and the creation 
of mechanical power through the use of actu-
ators, while 22% were passive exoskeletons, 
meaning they used an exclusively mechanical 
system to provide support.

Task Requirement
Task requirements were identified prior to the 

exoskeleton design in 30% of the studies. These 
studies looked at kinematic modeling (n = 10), 
gait analysis (n = 5), or biomechanical analysis 
(n = 5) to optimize their design for specific task 
requirements by quantifying the range of motion 
(ROM), DOF, joints supported, and additional 
torque provided.

Evaluation Details
Human–exoskeleton integration analy-

sis was the most prevalent form of evaluation 
with 68% of devices included in this review 
(Figure  3). Evaluations performed included 
biomechanical, physiological, and psycho-
physical testing. Biomechanical evaluation 
was the most frequently used measure (n = 39), 
followed by physiological evaluation (n = 37; 
Figure 3). Many studies used both physiologi-
cal and biomechanical evaluations to indirectly 
evaluate device performance. Biomechanical 
testing captures the kinetics and kinematics of 
the user’s joint movement (Hamill & Knutzen, 
2006), while physiological tests measure the 
user’s energy cost (Gregorczyk et  al., 2010), 
and psychophysiological tests measure the 
user’s perception (subjective feedback) whilst 



TABLE 2: Exoskeleton Classification for Shoulder/Chest Press and Isometric Arm Hold

Row
Supported 

Joint

Operational Details Evaluation Details

Ref.Device Name Purpose
Targeted 

Assistance
Actuation 
Method Actuators DOF

Weight 
(Kg) Control Sensors

Load 
Capability 

(Kg) Task Analysis
Testing 

Performed Test Details Sample Size
Participant 

Details Results

1 Elbow–
shoulder

Exhauss 
Stronger

LC and 
IP

Arm–lifting 
assist

P Not reported Not 
reported

9 Not applicable Not 
applicable

Not 
reported

Not reported Human–
exoskeleton 

analysis

Lift, carry, place 
task. With and 
without exo 

condition. EMG, 
IMU, HR, RPE, 
CoP, time to 
complete.

8 4F (31 ± 2 
years, 62 ± 
10 kg, 166 

± 4 cm) 
4M (33 ± 3 
years, 78 ± 
3 kg, 179 ± 

3 cm)

Reduction 
of anterior 

deltoid muscle 
activity (54%) 
and stacking/

unstacking 
(73%) tasks. 

No significant 
difference in 
back muscle 
activation. 
Increased 
antagonist 

muscle 
activity, 
postural 
strains, 

cardiovascular 
demand, and 

changes in 
upper limb 
kinematics

Theurel et al. 
(2018)

2 Elbow–
shoulder

Power assistive 
exoskeleton 
robot system 

for the 
human upper 

extremity

LC Arm–load 
assist

A Not reported 8 Not 
reported

Human–robot 
cooperative 

control

Force sensors Not 
reported

Not reported Human–
exoskeleton 

analysis

Holding a 10-kg 
load. With and 

without exo 
conditions. 

EMG for elbow 
and shoulder 

flexion/ 
extension.

Not reported Not 
reported

Reduction in 
EMG signals 
of the arms 

and shoulders 
while 

wearing the 
exoskeleton

Lee et al. 
(2012)

3 Elbow–
shoulder

Stuttgart Exo-
Jacket

TH Arm–
stabilizing

A Electric (EM 
and HD)

12 Not 
reported

PID control Hall sensors Not 
reported

Biomechanical 
analysis: 

MoCap and 
IMU

Human–
exoskeleton 

analysis

Subjective 
questionnaire 

on device 
comfort while 
performing 
flexion and 
extension.

3 Not 
reported

Not reported Ebrahimi, 
Groninger 

et al. (2017); 
Ebrahimi 

(2017)

4 Elbow–
shoulder

Iso-elastic 
upper limb 
exoskeleton

TH Arm–limb 
support

P Passive (S) Not 
reported

1.9 Not applicable Not 
applicable

7.5 Not reported Human–
exoskeleton 

analysis

Using four 
weights and a 

spring balance, 
the effective 

lifting force at 
seven different 

angles was 
measured

Not 
applicable

Not 
applicable

For higher 
loads there is 
a discrepancy 

between 
calculated 

and measured 
forces. 

Capable of 
supporting 
loads in the 

range of 
40–120 N

Altenburger 
et al. (2016)

5 Elbow–
shoulder

Under-
actuated 

upper-body 
backdrivable

LC Elbow–load 
assist

A Not reported 1 Not 
reported

Artificial neural 
network with a 
model-based 

intensity 
prediction

Myo-
Armband

Not 
reported

Kinematics Human–
exoskeleton 

analysis

Varying torques 
in the two 
directions 
available

7 6 M and 1 
F, (20 to 35 

years)

RMS Error 
of 3.8 ± .8N 
at the end 
effector

Treussart 
et al. (2019)

5

(Continued)
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(Kg) Task Analysis
Testing 

Performed Test Details Sample Size
Participant 

Details Results

6 Elbow–
shoulder

4-DOF 
exoskeleton 
rehabilitation 

robot

LC and 
IP

Arm–limb 
support

A Cable-driven 
parallel 

mechanism

4 Not 
reported

IPC (Industrial 
Personal 

Computer)

Cable tension 
and encoder

Not 
reported

Kinematics Characteristics 
of the control 

system

The exoskeleton 
drove robotic 

arm repetitively 
track the cubic 

polynomial 
trajectory

Not 
applicable

Not 
applicable

Trajectories 
tracking 

capability was 
demonstrated

Wang et al. 
(2019)

7 Elbow–
shoulder

Upper-limb 
exoskeleton

TH Arm–load 
assist

A Electric (EM) 5 9.5 Not reported Not reported Not 
reported

Physiological Human–
exoskeleton 

analysis

Perform a 
movement 

of raising the 
arm with a 

drill above the 
head wearing 
or not the arm 
exoskeleton

10 8 M and 2 
F, all right-
handed, 
(28.8 ± 

3.4 years, 
173.3 ± 6.4 
cm,72.32 ± 
11.97 kg)

Exoskeleton 
reduces 

muscle activity

Blanco et al. 
(2019)

8 Elbow–
shoulder

4-DOF 
upper-body 
exoskeleton

LC Arm–load 
assist

A Not reported 4 Not 
reported

Admittance 
control 

and gravity 
compensation

Force 
Sensitive 
Resistor

Not 
reported

Biomechanics Human–
exoskeleton 

analysis

With the passive 
exoskeleton, 

in which three 
different 

payloads in the 
range of 0–5 kg 

were lifted

5 (20–30 
years)

The 
developed 

method 
is able to 

estimate the 
load carrying 

status

Islam and Bai 
(2019)

9 Elbow–
shoulder

Wearable 
upper arm 

exoskeleton

TH Arm–load 
assist

A Electric (EM) 1 2 PD adaptive 
control

Not reported 4.5 Physiological Human–
exoskeleton 

analysis

Holding 
position with 
no weight, 

repeated with 
a 1.5, 3, 4.5 

kg load. With 
and without 

exo conditions. 
EMG for elbow 
and shoulder 

flexion/ 
extension.

5 (23–28 
years, 

168–183 
cm)

The IEMG of 
every muscle 
is significantly 

decreased 
when the user 

wears the 
exoskeleton

Yan et al. 
(2019)

10 Shoulder PAEXO passive 
exoskeleton

TH Shoulder–
joint 

support

P Passive (S) Not 
reported

Not 
reported

Not applicable Not 
applicable

Not 
reported

Physiological Human–
exoskeleton 

analysis

T1: Screwing 
nuts 

continuously, 
and T2: Drilling 
using an electric 

drill (1.3 kg)

12 6 M and 6 
F (24 ± 3 

years, 176 ± 
15 cm, 73 ± 

15 kg)

The mean 
EMG 

amplitude of 
all evaluated 
muscles was 
significantly 

reduced 
when the 

exoskeleton 
was used. 
This was 

accompanied 
by a reduction 
in both heart 

rate and 
oxygen rate. 

The kinematic 
analysis 

revealed small 
changes in the 
joint positions 

during the 
tasks.

Schmalz 
et al. (2019)

TABLE 2  (Continued)
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Testing 
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11 Shoulder Parallel-
structured 
upper limb 
exoskeleton

LC Arm–load 
assist

A Hypoid gear 2 12 Force-position 
hybrid

Angle 
sensors

Not 
reported

Kinematics Human–
exoskeleton 

analysis

Assisted by the 
exoskeleton, 

operator try to 
lift a 20-kg load

1 Not 
reported

Structure 
can lift load 

up to 1.5 
times of the 

exoskeleton’s 
weight

Zhang et al. 
(2019)

12 Shoulder 
(Includes 

wrist)

ABLE 
exoskeleton

TH Arm–load 
assist

A Not reported 7 Not 
reported

Force-position 
control

Not reported Not 
reported

Not reported Human–
exoskeleton 

analysis

Biomechanical 
task analysis: 
tool holding 

above head with 
five shoulder 

compensation 
torques. With 

and without exo 
condition.

8 (24 ± 7 
years, 63 ± 

11 kg, 170 ± 
5 cm) right-

handed

Setting 
compensation 
to 1.935 kg.m 

to led to 
disturbance 
of subjects’ 

natural 
movements. 

Excluding Trial 
5, strongest 
arm torques 

reduction 
occurs for Trial 

3 (38.8%)

Sylla et al. 
(2014a, 
2014b)

13 Shoulder Shoulder 
exoskeleton

TH Shoulder–
joint 

support

P Passive (S) Not 
reported

2 Not applicable Not 
applicable

Not 
applicable

Physiological Human–
exoskeleton 

analysis

Repetitive lifting 
and placement 

work

5 (20–24 
years)

Exoskeleton 
can reduce the 
muscle activity 

of shoulder 
muscle

Zhu et al. 
(2019)

14 Shoulder Hyundai Vest 
Exoskeleton 

(H-VEX)

TH Arm–limb 
support

P Passive (S) 1 2.5 Not applicable Not 
applicable

Not 
reported

Physiological Human–
exoskeleton 

analysis

Biomechanical 
task analysis: 
tool holding 
above head 

With and 
without exo 

conditions. High 
and low-task, 

with and 
without load.

10 (34.9 ± 3.96 
years, 173.7 

± 6.20 
cm, 72.1 ± 
12.85 kg)

Assistive 
torque 

provided by 
H-VEX was 
shown to 

significantly 
decrease 

activation of 
the shoulder-

related 
muscles 

during target 
tasks

Hyun et al. 
(2019)

15 Shoulder Airframe LC Arm–limb 
support

P Not reported Not 
reported

Not 
reported

Not applicable Not 
applicable

Not 
reported

Not reported Human–
exoskeleton 

analysis

Static task: 3.5 
kg on forearm. 

Repeated 
manual handling 

task: pick 
and place 3.4 
kg. Precision 
task: tracing 
a continuous 
wavy line at 

shoulder height. 
Cognitive 

assessment: 
RPE. Time to 

complete. With 
and without exo 

condition.

29 M (51.5 ± 
4.7 years, 
81.6 ± 9.1 

kg, 174.9 ± 
2.3 cm)

Static = 
31.1% relative 

longer time 
length with 
exo. Manual 
handling = 
Results are 

comparable. 
Precision = 
A significant 

33.6% 
increase of 

the number of 
traced arches 

with exo.

Spada et al. 
(2017, 2018)

TABLE 2  (Continued)
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Joint
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Ref.Device Name Purpose
Targeted 

Assistance
Actuation 
Method Actuators DOF
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(Kg) Control Sensors

Load 
Capability 

(Kg) Task Analysis
Testing 

Performed Test Details Sample Size
Participant 

Details Results

Controlled real 
work tasks: 
mounting 

the clips of 
brake hoses 
underbody, 

sealing 
underbody 
using the 

sealing gun, 
and mounting 
the seal on the 
rear door. With 
and without exo 

condition.

11 (177.2 ± 5.0 
cm, 81.1 ± 
7.3 kg, 45.8 
± 6.9 years)

Workers 
provided 
positive 

feedback 
for the exo 
as it helped 
to carry out 
tasks with 

less physical 
and mental 

effort. There 
was some 
potential 

interference of 
the exo during 
the mounting 

task.

Spada et al. 
(2018)

16 Shoulder 
(Includes  

wrist)

CANE IP Back–joint 
support

A Pneumatic 
(PnC)

Not 
reported

Not 
reported

Flow solenoid 
valve

IMUs Not 
reported

Biomechanical 
task analysis: 

IMU

Human–
exoskeleton 

analysis

Lift concrete 
blocks from 
the floor to 

.4m platform 
and return for 
3 mins. With 
and without 

exo conditions. 
IMUs.

4 Not 
reported

A reduction in 
angle of waist 
bend by 32° 
and shoulder 
twist by 17° 

was seen 
while wearing 

the exo.

Cho et al. 
(2018)

Note. Results interpreted by authors were “Purpose,” “Task Analysis,” and “Testing Performed.” A = active; Am = amplification; CoG = center of gravity; CoP = center of pressure; EMG = electromyography; exo = exoskeleton; F = female; FSR = force-sensitive 
resistor; GRF = ground reaction force; HR = heart rate; IP = injury prevention; IMU = inertial measurement unit; LC = load carrying; M = male; P = passive; PD = proportional-derivative; PI = proportional-integral; PID = proportional-integral-derivative; ROM = range 
of motion; RPE = rate of perceived exertion; TH = tool holding.

TABLE 2  (Continued)
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using the exoskeleton (Mudie et  al., 2018). 
Biomechanical evaluations vary and included 
motion capture (n = 9), ground reaction forces 
(GRF; n = 2), and inertial measurement units 
(IMU; n = 6); physiological tests included 
electromyography (EMG; n = 32), while psy-
chophysical tests included rate of perceived 
exertion and self-questionnaires (n = 5). Only 
four studies measure performance using a direct 
method (time to completion).

All studies that tested muscle activation 
(recorded via EMG) reported reductions in 
some EMG signals (n = 32). Such a reduction 
in EMG was considered a measure of how the 
exoskeleton reduced muscle work and thus the 
risk of injuries. Specific to the back, eight stud-
ies reported reductions of muscle activation of 
the erector spinae muscles between 15% and 
54%; one study reported no change; and one 
reported increased activation of the antagonist 
muscles.

Due to the early stage of development for the 
majority of devices, participant sample sizes 
were relatively low (<13). However, there were 
two studies (Baltrusch et al., 2018, and Spada 
et al., 2017) proposing commercially available 
exoskeletons (the Leavo [Table 3, Row 31] and 
Airframe [Table  2, Row 15]) that had larger 
participant cohorts with 18 and 29 participants, 

respectively. The Airframe was also tested with 
a smaller cohort of 11 participants in an auto-
motive factory environment performing con-
trolled real-work tasks (Spada et al., 2018), and 
the performance of the Daewoo Shipbuilding 
and Marine Engineering Hydraulics Wearable 
Robots (DSME-HWR; Table  3, Row 20) was 
observed during in-field trials at a shipbuilding 
yard (Chu et al., 2014).

DISCUSSION

The aim of this review was to analyze the 
current literature to identify characteristics of 
industrial exoskeletons that can be useful to 
military manual handling tasks. The high per-
centage of exoskeletons targeting load carry-
ing reflects the industry need for devices that 
can support manual handling workers by pre-
venting injuries and improving productivity. 
Therefore, the application of these exoskeletons 
to Australian Defence Force personnel perform-
ing manual handling could help reduce the sub-
stantial personal and financial cost of injuries.

Most of the exoskeletons included in this 
review are in early development and are 
designed to support manual handling via a 
number of methods, such as providing assistive 
torque to enhance the ability of joints to carry 

Figure 2.  Breakdown of exoskeletons classified into their movement patterns, supporting joints and purpose. 
(a) Shoulder/chest press and isometric arm hold (Table 2). (b) Squat/deadlift (Table 3). (c) Shoulder/chest 
press, isometric arm hold, and squat/deadlift movements (Table 4).



TABLE 3: Exoskeleton Classification for Squat/Deadlift

Row
Supported 

Joint 

Operational Details Evaluation Details

Ref.
Device Name Purpose

Targeted 
Assistance

Actuation 
Method Actuators DOF

Weight 
(Kg) Control Sensors

Load 
Capability 

(Kg) Task Analysis
Testing 

Performed Test Details Sample Size
Participant 

Details Results

1 Ankle–
knee–hip

Fortis TH Arm–load 
transfer

P Passive 
(S and 

counter- 
weight)

Not 
reported

Not 
reported

Not applicable Not applicable Not 
reported

Not reported Not reported Not reported Not 
reported

Not reported Not reported Sokol (2014)

2 Ankle–
knee–hip

HEXAR-CR50 LC Leg–load 
assist

A Electric 
(EM and 

HD)

7 Not 
reported

PID control Muscle volume 
sensor

30 Gait analysis 
for ROM, peak 
moments, and 
peak power

Human–
exoskeleton 

analysis

Walking at 
3 km/h with 

10- and 20-kg 
loads. With 
and without 

exo condition. 
EMG, GRF.

1 (29 years, 
75 kg)

Reduction in leg 
muscle activations 
and GRF during 

30%–70% walking 
phases while 

wearing the exo.

Lim et al. 
(2015)

3 Ankle–
knee–hip

Lower 
extremity 

exoskeleton 
with power-
augmenting 

purposes

LC Leg–
walking 
assist

A Electric 
(EM and 

HD)

14 Not 
reported

Swing control 
method

Absolute/ 
incremental 

encoders, strain-
gage sensor

Not 
reported

Not reported Human–
exoskeleton 

analysis

Left leg swings 
back and 

forward, EMG 
measured at 

the quad.

1 M (34 years) Reduction in quad 
muscle activation

Choi et al. 
(2017)

4 Ankle–
knee–hip

Lower 
extremity 

exoskeleton

LC and 
Am

Leg– 
walking 
assist

A Hydraulic 
(HyC)

Not 
reported

30 PID and H∞ 
control

Encoders, force 
sensors

60 Kinematic 
modeling

Characteristics 
of the control 

system

Walking 
carrying 60-kg 

load. Squat 
with no load.

Not 
reported

Not reported Walking bearing 
60-kg load and 

squat action with 
no external load are 
realized effectively 
by this proposed 
control method

Guo et al. 
(2015, 
2016)

5 Ankle–
knee–hip

Servo 
controlled 

passive joint 
exoskeleton

LC Leg–load 
transfer

A Electric 
(EM and 
ratchets)

8 6 Not reported Force sensor 30 Not reported Exoskeleton 
structural 

design

Finite element 
analysis for joint 
reaction forces 
and moments 
and resultant 

deformation of 
the structure 

during postural 
changes.

Not 
applicable

Not applicable The ankle joint 
sees the largest 
amount of stress 
and deformation 
compared to the 

knee and hip.

Naik et al. 
(2018)

6 Ankle–
knee–hip

Lower-limb 
anthropo-
morphic 

exoskeleton

LC and 
IP

Leg–
walking 
assist

A Electric 
(EM)

8 Not 
reported

Impedance 
and 

supervisory 
control

Torque, position, 
and GRF sensors

Not 
reported

Gait cycle Human–
exoskeleton 

analysis

Walking 
carrying 10-kg 
load for 10 m. 

With exo in 
passive mode, 

with exo in 
active mode 
and without 

exo conditions. 
EMG.

4 (25 ± 5 years, 
77 ± 7 kg, 169 

± 2 cm)

An average 
reduction in 

muscle activity 
of 43.4% (Right 

Vastus intermedius) 
and 60.4% (Right 

Gastrocnemius) was 
seen when the exo 
was worn in active 
mode compared to 

no exo.

Sado et al. 
(2018)

7 Ankle–
knee–hip

HIT-LEX LC Leg–load 
assist

A Electric 
(EM and S)

14 Not 
reported

PID control In-Sole Sensing 
Shoe - Film 

pressure force 
sensors, strain 
sensor, angle 

sensors

Not 
reported

Gait cycle Characteristics 
of the control 

system

Two 
experiments 
of foot lifting 
and landing 
and single 

leg stepping 
forward.

Not 
reported

Not reported Exo could rapidly 
identify different 

working conditions 
and flexibly follow 

the swing leg 
movement.

Zhang et al. 
(2016); Zhu 
et al. (2016)

(Continued)
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Device Name Purpose

Targeted 
Assistance

Actuation 
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(Kg) Task Analysis
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Performed Test Details Sample Size
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8 Ankle–
knee–hip

Hydraulically 
Powered 

Exoskeletal 
Robot 

(HyPER)

LC Leg–load 
assist

A Hydraulic 
(HyC)

10 Not 
reported

Not reported Inclinometer, 
absolute 

encoders, insole 
sensor, FSRs

Not 
reported

Gait cycle 
for force 

transmission 
ratio

Characteristics 
of the control 

system

Stand-to-sit 
movement 

and walking 
experiment 
(.83 m/s, 0% 

grade, 10 min) 
with no load, 

10, and 20 kg. 
GRF. With and 
without exo 
condition.

1 M (35 years, 
75.1 kg, 176 

cm)

In the standing 
position the GRF 
was not affected 

by a change in the 
payload and was 
reduced below 

wearers body weight 
in a semi-squat 

with exo.

Kim et al. 
(2015); Lee 
et al. (2015)

9 Ankle–
knee–hip

Lower 
Extremity 

Exoskeleton 
System

LC Leg–load 
assist

A Hydraulic 
(HyC)

10 Not 
reported

PI control Force sensors in 
-shoe, load cells

Not 
reported

Not reported Exoskeleton 
structural 

design

Mechanical 
simulation in 

Matlab.

Not 
applicable

Not applicable Not reported Sahin et al. 
(2014a, 
2014b)

10 Ankle–
knee–hip

PRMI 
Exoskeleton

LC and 
IP

Leg–
walking 
assist

A Electric 
(EM and 

HD

10 Not 
reported

Global fast 
terminal 

sliding mode 
and PD control

Encoders, 
inclinometers, 
foot pressure 

sensors

20 Kinematic 
modeling

Characteristics 
of the control 

system

Walking 
experiment (4.7 
km/h) with a 20 

kg load.

1 M (25 years, 
61 kg, 175 cm)

The joint position 
tracking errors 

are maximum of 
2° at the hip joint 

and 4° at the 
knee joint. These 

results confirm that 
the exoskeleton 
swing leg is able 

to shadow human 
motions in time by 
using the proposed 

controller.

Ka et al. 
(2016)

11 Ankle–
knee–hip

Under-
actuated 

lower 
extremity 

exoskeleton

LC Leg–load 
assist

A Electric 
(EM, 

HD and 
springs)

6 Not 
reported

PID control Muscle volume, 
insole sensors

Not 
reported

Not reported Characteristics 
of the control 

system

Measure 
the effect of 
the exo on 
percentage 
maximum 
voluntary 

contraction via 
EMG. With and 

without exo 
condition.

Not 
reported

Not reported Average decrease 
in %maximum 

voluntary isometric 
contraction of 

the leg muscles 
of 40.5% on level 
surface and 12.5% 

climbing stairs when 
wearing the exo.

Kim et al. 
(2013)

12 Ankle–
knee–hip

Lower 
extremity 

exoskeleton 
(LEE)

LC Leg–load 
assist

A Electric 
(EMs and 

LA)

5 Not 
reported

Zero moment 
point control

Force sensors in 
foot pad

Not 
reported

Gait cycle for 
CoP

Characteristics 
of the control 

system

Walking test 
forward and 
backward.

Not 
reported

Not reported The exoskeleton 
can walk stably with 

the user.

Low et al. 
(2005, 
2006)

13 Ankle–
knee–hip

HUALEX LC Leg–load 
transfer

A Electric 
(EM and 

HD)

10 15 Fuzzy-based 
variable 

impedance 
control

Encoders, IMUs, 
FSRs in foot pad

40 Kinematic 
modeling

Characteristics 
of the control 

system

Walking test 
with 30-kg 

load at speeds 
of 0.30m/s 
to 1.20m/s. 
Comparing 
the fuzzy-

based variable 
impedance 

control 
to normal 

impedance 
control.

3 (70.83 kg) The control fuzzy 
based impedance 
control strategy 
tracked human 

motion well 
and decreased 

interaction forces 
across all walking 

speeds compared to 
normal impedance 

control.

Tran et al. 
(2016)

TABLE 3  (Continued)
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14 Ankle–
knee–hip

HUALEX LC Back–load 
assist

A Hydraulic 
(HyC)

7 Not 
reported

Hybrid Control 
combining 
zero-force 

control and 
zero load 
control

Tension and 
compression 

pressure sensor

25 Kinematic 
modeling

Comparison 
of control 
systems

Not reported Not 
applicable

Not applicable Hybrid control 
strategy can reduce 

interaction force 
between the pilot 

and the exoskeleton 
efficiently

Chen et al. 
(2019)

15 Ankle–
knee–hip

Passive 
wearable 
moment 
restoring 
device

LC and 
IP

Back–load 
assist

P Passive 
(S and 
cables)

Not 
reported

Not 
reported

Not applicable Not applicable Not 
reported

Kinematic 
modeling

Human–
exoskeleton 

analysis

Lift and lower 
loads (4.5 

and 13.6 kg) 
twice. With 
and without 

exo conditions. 
Motion capture 

and EMG.

6 5 M and 1 F 
(27.7 ± 6.0 

years, 67.7 ± 
7.2 kg, 175 ± 

.06 cm)

With the device, 
back muscles 

demonstrated a 
54% reduction in 
muscle activity 

and calculations 
suggested a 
reduction in 

maximum spine 
compressive forces 
by approximately 

1300 N.

Wehner 
et al. (2010)

16 Ankle–
knee–hip

ExoHeaver LC Leg–load 
assist

A Electric 
(EM)

Not 
reported

26 Servo control Not reported 15 Kinematic 
modeling

Exoskeleton 
structural 

design

Not reported Not 
reported

Not reported Not reported Yatsun 
and Jatsun 

(2018)

17 Ankle–
knee–hip

Hip, knee, 
ankle 

exoskeleton

LC Leg–load 
assist

A Electric 
(EM)

Not 
reported

Not 
reported

Super twisting 
sliding mode 

controller

Not reported 15 Simulation Characteristics 
of the control 

system

Control of the 
transferring 
of the force 

to the hip of a 
lower extremity 

exoskeleton 
while carrying 

weight

Not 
applicable

Not applicable It provides better 
control over PID 

with uncertainties 
and disturbances

Nair and 
Ezhilarasi 

(2019)

18 Ankle–
knee–hip

Biomimetic 
lower limb 

exoskeleton 
(BioComEx)

LC Leg–
walking 
assist

A Variable 
stiffness 
actuator 
and SEA

Not 
reported

15 Closed-loop 
impedance 

control 
algorithm

Force sensors Not 
reported

Biomechanical Human–
exoskeleton 

analysis

Not reported 1 Not reported BioComEx is 
sufficiently 

satisfactory for 
walking applications

Baser et al. 
(2019)

19 Ankle–
knee–hip

Wearable 
lower-body 
exoskeleton

LC Leg–limb 
support

A Electric 
(EM)

6 11 Dual EKF 
sensor-less 
(user) joint 

torque 
estimation, 
LQG torque 
amplification 
control, and 
supervisory 

control

Joint angle 
potentiometers; 
and insole GRF 
sensors on each 

foot

Not 
reported

Biomechanical 
and 

physiological

Human–
exoskeleton 

analysis

Lift a box 
weighing 

4.3-kg from the 
floor, hold for 
a while, and 

then drop back 
on the floor, 

six consecutive 
times with 

and without 
assistance from 
the prototype 
exoskeleton 

suit

5 (28 ± 5 years, 
178 ± 2 cm, 
76 ± 5 kg)

Average recorded 
EMG signals 

taken at the right 
vastus intermedius 
(quadriceps) and 

right gastrocnemius 
(calf muscles) of 
each participant 

revealed more than 
36% reduction in 

muscle activity from 
the two muscle 

groups

Sado et al. 
(2019)

TABLE 3  (Continued)

(Continued)
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Ref.
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Actuation 
Method Actuators DOF
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Load 
Capability 

(Kg) Task Analysis
Testing 

Performed Test Details Sample Size
Participant 

Details Results

20 Ankle–
knee–hip

DSME-HWR LC Leg–load 
assist

A Electric 
(LA)

2 4.5 Compliance 
control 

algorithm - PD 
control

Not reported Not 
reported

Biomechanical 
analysis: 

MoCap and 
GRF

Human– 
exoskeleton 

analysis

Knee joint 
optimization. 
Original knee 
joint versus 
optimized 

design for user 
exertion on exo 
with heavy load 
(30 kg). Force, 

joint angle, 
and time to 
complete.

1 M Original knee: Force 
= 392 N, Time = 2.3 
s, Angular velocity 

= 60.9 deg/s. 
Optimized design 1: 
Force = 43 N, Time 

vol 2.1 s Angular 
velocity = 49.5 

deg/s. Optimized 
design 2: Force = 

147 N, Time = 2.0 s, 
Angular velocity = 

60 deg/s.

Choo and 
Park (2017a, 
2017b); Chu 
et al. (2014); 
Jeong et al. 
(2014); Kim 
et al. (2014)

21 Knee Knee Assist 
Robotic 

Exoskeleton

IP Leg–
walking 
assist

A Electric 
(EM and S)

Not 
reported

Not 
reported

Torque control Not reported Not 
reported

Not reported Characteristics 
of the control 

system

The participant 
walked and 
performed a 
sit-to-stand 

motion.

1 M (26 years, 
85 kg, 171 cm)

The exo performed 
as expected for 

its three different 
control phases.

Noh et al. 
(2016)

22 Knee Soft knee 
exoskeleton

IP Knee–joint 
support

A Electric 
(EM)

1 Not 
reported

Two-level 
configuration 
architecture 
for torque 

control

IMUs Not 
reported

Biomechanics: 
Physiological

Human– 
exoskeleton 

analysis

15 squat cycles 
in six conditions 

(without 
wearing the 
exoskeleton, 

power-off 
exoskeleton, 
zero torque 

control, 10%, 
30%, and 50% 

assistance

3 subject 1: (25 
years, 170 
cm, 70 kg) 

subject 2: (32 
years, 178 cm) 
subject 3: (38 
years, 175 cm, 

85 kg)

The assistive control 
reduced the muscle 

effort of knee 
extensor

Yu et al. 
(2019)

23 Knee Knee 
exoskeleton

LC and 
IP

Knee–load 
assist

A Electric 
(LA)

1 Not 
reported

Arduino UNO EMG Not 
reported

Biomechanics Human–
exoskeleton 

analysis

Two cycles of 
the knee flexion 
and extension

1 (63 kg, 160 
cm)

The experimental 
and theoretical 

values of the joint 
angle and shank’s 
angular velocities 

are validated for the 
kinematic design

Jain et al. 
(2019)

24 Knee Exoskeleton 
intelligent 
portable 
system

LC Knee–load 
assist

A Electric 
and 

Hydraulic 
(EM and 

HyC)

1 Not 
reported

Hydraulic 
pressure, PID 

control

Pressure sensor, 
encoder

30 Not reported Characteristics 
of the control 

system 
simulation

Simulation 
of actual and 

expected 
knee angle 

and actuator 
location.

Not 
applicable

Not applicable Control method can 
follow the natural 

motion of the knee.

Li et al. 
(2012)

25 Hip Muscle Suit LC Leg–load 
assist

A Pneumatic 
(AM)

Not 
reported

8.1 Switches Not reported Not 
reported

Not reported Human–
exoskeleton 

analysis

Hold load 
(20 kg) for 15 

s for three 
trials. With 

and without 
exoskeleton 
condition. 

EMG.

10 Not reported EMG values 
averaged across 

the three trials were 
reduced in the 

arms while wearing 
the exo.

Muramatsu 
et al. (2011)

TABLE 3  (Continued)

(Continued)
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Method Actuators DOF
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(Kg) Task Analysis
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Performed Test Details Sample Size
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26 Hip Lower-Back 
Robotic 

Exoskeleton

LC and 
IP

Back–load 
assist

A Electric 
(SEA and 

HD)

4 11.2 Admittance 
control and 
finite state 
machine

Encoder, IMUs, 
torque sensor, 

strain gage

Not 
reported

Not reported Human–
exoskeleton 

analysis

Symmetrical 
loading (0, 
5, 10, 15, 

and 25 kg) 
and lift origin 
asymmetry 
(45°; 15 and 
25 kg) lifting 
and lowering 

task. With and 
without exo 
conditions. 

EMG.

1 M The exo significantly 
reduces muscle 

activation of 
the back during 

symmetrical loading 
and for the lift origin 

asymmetry, larger 
muscle activations 
occurred with the 

device assisting the 
hips for flexion/

extension and add/
abduction.

Zhang and 
Huang 
(2018)

27 Hip H-WEX LC and 
IP

Back–joint 
support

A Electric 
(EM, HD, 

and Pulley)

8 4.5 Motion and 
torque control

Hall sensor, IMU 15 Not reported Human–
exoskeleton 

analysis

Pick 15-kg load 
from ground to 
pelvic height. 

Squat and 
stoop posture 

conditions. 
With and 

without exo 
conditions. 
EMG for 

hip flexion/
extension.

9 M (33.4 ± 2.4 
years, 73.0 ± 
9.0 kg, 173.2 

± 4.5 cm)

Decrease in muscle 
activity of the 

muscles related to 
waist motions (back 

and abdominals) 
of between 10 and 
30% while wearing 

the exo.

Ko et al. 
(2018)

28 Hip APO LC and 
IP

Back—
load 
assist

A Electric 
(EM, SEA)

4 Not 
reported

Lift detection Encoders, IMUs Not 
reported

Not reported Characteristics 
of the control 

system

Two sessions 
for training 

lift detection 
algorithm, 
using three 

initial positions 
and three lifting 

techniques 
for 5-kg box. 
One session 
for testing 
algorithm. 
EMG, IMU.

7 M (27.9 ± 2.3 
years, 70 ± 

6.4 kg, 178.1 
± 8.1 cm)

Accuracy of 97.48% 
± 1.53% was 

achieved for lift 
detection with a 

time delay of <160 
ms. EMG showed at 
least 30% reduction 

in back muscle 
activation when 

the exo provided 
torque.

Chen et al. 
(2018); 
Lanotte 

et al. (2018)

Not reported Human-
exoskeleton 

analysis

Walking on 
treadmill, 

varied speeds 
and level of exo 
assistance. With 

and without 
exo conditions. 
Hip joint angle, 

torque, and 
motion capture.

5 (29.2 ± 6.3 
years, 74.4 ± 
6.8 kg, 173 ± 

7cm)

Negligible 
interference of 

the exo in human 
kinematics. Small 
displacements in 
the exohuman 

interaction points.

D’Elia et al. 
(2017)

TABLE 3  (Continued)
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29 Hip Robo-Mate 
-Mk2

LC and 
IP

Back–load 
assist

A Electric 
(Parallel 
elastic 

actuator - 
EM, HD)

1 Not 
reported

PD and torque 
control

Torque sensor 15 Not reported Characteristics 
of the control 

system 
simulation

Evaluating the 
differences 

in the torque 
control 

transparency 
when used 

with the 
parallel elastic 
actuator and 
the actuator 

without parallel 
elasticity.

Not 
applicable

Not applicable Significant 
improvements in 
torque-control 

performance, thus 
encouraging the use 

of parallel-spring 
arrangements

Toxiri, 
Calanca 

et al. (2018)

Not reported Human-
exoskeleton 

analysis

Pick and place 
loads (7.5 kg, 
15 kg). With 
and without 

exo conditions. 
EMG, interface 

pressure, 
perceived 

comfort, and 
usability.

12 M (27 ± 2 
years, 75.38 ± 
10.1 kg, 179.4 

± 0.65 cm)

Reduced muscle 
activity of the 

erector spinae (12%-
15%) and biceps 

femoris (5%).

Huysamen 
et al. (2018)

Not reported Accuracy of 
the sensor 

system

Compare three 
strategies 

for input into 
controller to 
follow user 

intention. IMU, 
EMG, and 

finger pressure 
sensor. Lift and 
lower load (2 x 
no load, 5 and 
10kg) for each 

strategy.

13 11M and 2F 
(28.9 ± 4.3 

years, 69.8 ± 
10.6 kg, 178 ± 

6.6 cm)

The IMU strategy 
generated a 

reference signal 
that shows little 
dependence on 

load; by contrast, 
the EMG and finger 
pressure strategies 

show a stronger 
relationship.

Toxiri, 
Koopman, 

et al. (2018)

Biomechanics: 
Physiology

Human-
exoskeleton 

analysis

Lifting task with 
three different 

techniques; 
free, squat, 
and stoop, 

once with no 
exo and three 
times with the 

exo (inclination, 
EMG, and 

hybrid)

10 25.0 ± 6.9 
years, 70.9 ± 
8.8 kg, 1.77 ± 

0.06 m

Compression forces 
with the exo were 
substantially lower 
compared to no 

exo. However, no 
single exo control 

mode was superior 
over the others due 

to performance 
limitations of the 

actuators.

Koopman 
et al. (2019)

Kinematic 
modelling

Characteristics 
of the control 

system

Walking, 
standing and 

bending

1 Not reported Study shows that 
it is possible to 
perform reliable 

online classification.

Poliero 
et al. (2019)

(Continued)

TABLE 3  (Continued)
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(Kg) Task Analysis
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Performed Test Details Sample Size
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30 Hip Standalone 
powered 

exoskeleton 
robot suit

LC Back–load 
assist

A Electric 
(EM, HD)

Not 
reported

8 Not reported Encoders Not 
reported

Biomechanical 
analysis

Human–
exoskeleton 

analysis

Flexion/
extension of 
trunk with 

load (33 kg). 
Torque, time to 

complete

Not 
reported

Not reported The motion was 
completed in .7 s 

with load, where this 
is .49 s longer than 
that of the no-load 

condition.

Yu et al. 
(2015)

31 Hip Laevo IP Back–joint 
support

P Passive (S) Not 
reported

Not 
reported

Not applicable Not applicable Not 
reported

Not reported Human–
exoskeleton 

analysis

Objective and 
subjective 

measures for 
12 functional 

tasks.

18 M (27.7 ± 5.1 
years, 74.7 ± 
8.0 kg, 178 ± 

6 cm)

Decreased the 
local discomfort in 
the back in static 
holding tasks and 
at the dorsal side 
of the upper legs 
in static forward 

bending. Showed 
adverse effects on 
tasks that require 

large ROM of 
trunk or hip flexion 
including walking.

Baltrusch 
et al. (2018)

Physiology Human-
exoskeleton 

analysis

Lift and lower 
a 10-kg box 
(0.39, 0.37, 

0.11 m,  
with 2.5 cm 

diameter 
handles) at a 
rate of 6 lifts 
per min (for 

5 min)

13 28.9 years 
(4.4), 1.80 m 
(0.04) m and 
76.9 kg (12.0)

Wearing the 
exoskeleton during 
lifting, metabolic 
costs decreased 
as much as 17%. 
In conjunction, 

participants tended 
to move through 
a smaller range of 
motion, reducing 
mechanical work 

generation.

Baltrusch 
et al. (2019)

32 Hip Laevo V2.4 IP Back–joint 
support

P Passive (S) Not 
reported

Not 
reported

Not reported Not reported Not 
reported

Biomechanics: 
Physiology

Human–
exoskeleton 

analysis

Motion and 
surface EMG 

were measured 
during two 
consecutive 
periods of at 
least 30 min, 
one with and 

one without the 
exoskeleton

10 Mean age and 
BMI of the 
participants 

was, 
respectively, 

45.6 (SD 
11,64) and 

26.9 (SD 2,78)

RMS values were 
significantly higher 
for the trapezius 
muscle with the 

exoskeleton (Mdn 
= 44.02) compared 
to the measuring 
period without 

the device (Mdn = 
34.83, T = 0, p < 
.05, r = −.73); no 
differences were 
found for erector 
spinae and biceps 

femoris muscle 
activity. Participants 

reported 
significantly higher 
discomfort scores 

for the upper back/
chest and thigh 
region with the 

exoskeleton (both p 
< .05, r = −.68).

Amandels 
et al. (2019)

(Continued)
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33 Hip Robo-Mate 
exoskeleton

LC and 
IP

Back–load 
assist

A Electric 
(Parallel 
elastic 

actuator - 
EM, HD)

Not 
reported

Not 
reported

Not reported Not reported 15 Biomechanical 
analysis: 

MoCap, EMG, 
and GRF

Exoskeleton 
structural 

design

Simulation 
of lifting and 

lowering tasks 
with exo to 

test actuator 
performance.

Not 
applicable

Not reported The results show 
the improvement in 

weight, peak torque, 
and peak power 

by 20%, 50%, and 
40%, respectively, as 
compared with the 
current prototype

Masood 
et al. (2016)

Acceleration-
based torque 

control

Trunk angular 
acceleration

Not 
reported

Physiology Human-
exoskeleton 

analysis

Lifting and the 
lowering of an 
external weight 

of 5kg and 
10kg, repeated 

at three 
different speed: 

fast, normal, 
and slow.

7 Not reported The data on peak 
muscular activity 
at the spine show 
promising trends.

Lazzaroni 
et al. (2019)

34 Hip Hip-type 
exoskeleton

LC and 
IP

Back–load 
assist

A Electric 
(EM)

1 Not 
reported

Not applicable Sensorless force 
estimator

Not 
reported

Physiological Human-
exoskeleton 

analysis

Lift load from 
0 to 25 kg (5 

kg increments) 
load from the 
ground. With 
and without 

exo condition. 
EMG.

10 Average age 
30 years, 

height 176 
cm, and 

weight 75 kg

EMG value was 
significantly 

lower when the 
exoskeleton on in all 
loading conditions

Xia et al. 
(2019)

35 Hip Spine 
exoskeleton

LC Back–joint 
support

A Electric 
(EM)

9 Not 
reported

Torque control Torque sensor Not 
reported

Biomechanics: 
Physiology

Human–
exoskeleton 

analysis

Repetitive, 
stoop-lift of 
a 10-kg box 
at different 

speeds

5 (21−36 years, 
60−82.12 kg, 
170– 82 cm)

All cost functions 
reduced significantly 

the human torque 
loads. However, 

they result in 
different amounts 

and distributions of 
the load reduction 
as well as different 
contributions from 

the passive and 
active components 
of the exoskeleton

Harant et al. 
(2019)

36 Hip VT-Lowe’s 
exoskeleton

LC Back–load 
transfer

P Passive 
(flexible 
beams)

Not 
reported

Not 
reported

Not reported Not reported Not 
reported

Physiology Human–
exoskeleton 

analysis

Stoop, squat 
and freestyle 
lifting trials 

performed in 
the sagittal 
plane, plus 
lift origin 

asymmetry (60°) 
for 0% and 

20% of subject 
bodyweights, 

both with 
and without 
exoskeleton

12 22.75 (4.35) 
years, 178.92 

(6.05) cm, 
80.41 (5.59) 

kg, and 25.16 
(1.91) kg/m2

Results 
demonstrated that 

the exoskeleton 
could reduce the 

average peak 
and mean muscle 
activation of back 
and leg muscles 

regardless of 
different levels of 
box weights and 

lifting types.

Alemi et al. 
(2019)

TABLE 3  (Continued)
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37 Hip Booster 
exoskeleton

IP Back–joint 
support

P Springs Not 
reported

Not 
reported

Not applicable Not applicable Not 
reported

Physiology Human–
exoskeleton 

analysis

Carry and lift 
the object 
weighing 

9.5 kg

3 Not reported With wearing the 
exoskeleton, the 

subjects’ breathing, 
and heart rate were 
significantly reduced

Han et al. 
(2019)

38 Hip Back 
assistance 

exoskeleton

LC Back–joint 
support

A Pneumatic 
artificial 
muscle

Not 
reported

7.6 Not reported Not reported 18 Physiology Human–
exoskeleton 

analysis

Romanian 
deadlift motion 
of lifting 15 kg 
repeated 10 

times at a time, 
totaling five 

times

1 Not reported Decreased level 
of 20% to 30% in 
muscle activation 
when lifting the 
loads with exo

Shin et al. 
(2019)

39 Hip Wearable 
waist 

exoskeleton

IP Back–joint 
support

A Electric 
(EM)

1 5 Torque control Angle, angular 
velocity, and 

current

Not 
reported

Physiology Human–
exoskeleton 

analysis

Symmetrical 
lifting for 

six different 
objects (0, 5, 
10, 15, 20, 25 
kg) under two 

conditions 
of with and 
without the 
exoskeleton

10 Average age 
26 years, 

weight 70 kg, 
and height 

174 cm

The exoskeleton 
significantly reduced 
the back muscular 

activity during 
repetitive lifting 

tasks

Yong et al. 
(2019)

40 Hip HAL IP Back–joint 
support

A Not 
reported

1 Not 
reported

EMG based 
control

Triaxial 
accelerometer 

and 
potentiometers

Not 
reported

Physiology Human–
exoskeleton 

analysis

Two sessions 
(one with 

HAL and one 
without HAL) 

of stoop lifting/
placing, until 

they feel 
they cannot 
continue. In 

each session, 
subjects were 
asked to lift 
and place a 

small box, (for 
males, 12 kg, 
for females, 

6 kg).

20 13 M, 7 F 
(31.5 ± 6.6 

years)

Muscle coordination 
changes were 
dominated by 

changes in timing 
coefficients, with 
minimal change 

in muscle synergy 
vectors

Tan et al. 
(2019)

41 Hip SJTU-EX LC Back–load 
assist

A Electric 
(EM)

8 Not 
reported

Not reported Not reported Not 
reported

Not reported Exoskeleton 
structural 

design

Walking 
simulations

Not 
applicable

Not reported Not reported Miao et al. 
(2015)

42 Hip Wearable 
Exoskeleton 
Power Assist 

System

LC and 
IP

Back–load 
assist

A Electric 
(EM)

1 11 User intention 
via EMG

EMG Not 
reported

Kinematic 
modeling

Human–
exoskeleton 

analysis

Lift and 
lower 20-kg 
load from/to 
ground. With 
and without 

exo condition. 
EMG.

Not 
reported

Not reported Muscle activation of 
the thigh muscles 
was reduced when 
wearing the device.

Naruse 
et al. (2003)

18
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43 Hip SPEXOR LC and 
IP

Back–joint 
support

P Passive 
(flexible 
beams)

4 Not 
reported

Not applicable Not applicable Not 
reported

Not reported Human-
exoskeleton 

analysis

ROM testing, 
trunk flexion/ 

extension, 
lateral bending 
and rotation. 

Four exo 
configuration 
conditions. 

Motion capture.

3 M (30 years, 
66 kg, 171.5 

cm)

Using flexible beams 
as a back interface 
increases the trunk 
ROM by more than 
25% compared to 

its rigid counterpart. 
With the flexible 

beams, the ROM is 
only decreased by 
10% compared to 

not wearing an exo.

Näf et al. 
(2018)

Note. Results interpreted by authors were “Purpose,” “Task Analysis,” and “Testing Performed.” A = active; Am = amplification; AM = artificial muscle; BoC = Bowden cable; CoG = center of gravity; CoP = center of pressure; EM = electric motor;  
EMG = electromyography; exo = exoskeleton; F = female; FSR = force-sensitive resistor; GRF = ground reaction force; HD = harmonic drive; HR = heart rate; HyC = hydraulic cylinder; IMU = inertial measurement unit; IP = injury prevention; LA = linear actuator;  
LC = load carrying; M = male; P = passive; PD = proportional-derivative; PI = proportional-integral; PID = proportional-integral-derivative; PnC = pneumatic cylinder; ROM = range of motion; RPE = rate of perceived exertion; S = spring; TH = tool holding.

19
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TABLE 4: Exoskeleton Classification for Shoulder/Chest Press, Isometric Arm Hold, and Squat/Deadlift

Row
Supported 

Joint Device Name

Operational Details Evaluation Details

Ref.Purpose
Targeted 

Assistance
Actuation 
Method Actuators DOF

Weight 
(Kg) Control Sensors

Load 
Capability 

(Kg) Task Analysis
Testing 

Performed Test Details Sample Size
Participant 

Details Results

1 Spine Passive spine 
exoskeleton

IP Back—joint 
support

P Passive 
(S and 
pulley)

1 Not 
reported

Not 
applicable

Not applicable Not 
reported

Kinematic 
modeling

Human–
exoskeleton 

analysis

Dynamic: 
flexion/

extension for 
120 s with a 

constant speed. 
Static: hold 

three flexion 
positions (small, 

medium, and 
full-range) for 
up to 120 s. 

EMG, IMU. With 
and without exo 

condition.

3 M (26.7 ± 
3.3 years, 
68.3 ± 6.7 
kg, 172 ± 

12 cm)

EMG reduction 
at lumbar (24%) 

and thoracic 
(54%) level 

with exo and 
a reduction of 
intervertebral 

bending moment 
(36 Nm) and 
muscle force 

(479 N).

Zhang et al. 
(2016a)

2 Spine Spine-inspired 
continuum 

soft 
exoskeleton

IP Back—joint 
support

A BoC Three for 
each disc

Not 
reported

Virtual 
impedance 

model

Load cell Not 
reported

Biomechanics Human–
exoskeleton 

analysis 
simulation

Stoop lifting of 
15 kg with 10 

repetitions

3 Not 
reported

Able to 
successfully 

track the desired 
force with high 

accuracy.

Yang et al. 
(2019)

3 Spine FLx IP Back—joint 
support

P Passive Not 
reported

1.08 Not 
reported

Not applicable Not 
applicable

Biomechanics Human–
exoskeleton 

analysis 
simulation

A 3 × 3 × 2 × 
2 repeated-
measures 

design was 
employed in this 
study, in which 

all combinations 
of intervention 
(FLx exo, V22 
exo, none), lift 
origin height 
(shin, knee, 

waist), lift origin 
asymmetry (0° 
and 45°), and 
load weight 
(9.07 kg and 

18.14 kg) were 
evaluated

10 (24.9 ± 5.0 
years, 81.1 
± 16.1 kg, 

179.4 ± 4.6 
cm)

FLx reduced 
peak torso 

flexion at the 
shin lift origin, 
but differences 
in moment arms 
or spinal loads 
attributable to 
either of the 
interventions 

were not 
observed. 

Thus, industrial 
exoskeletons 
designed to 

control posture 
may not be 
beneficial 

in reducing 
biomechanical 
loads on the 
lumbar spine.

Picchiotti 
et al. 

(2019)
4 Spine V22 IP Back—joint 

support
P Passive Not 

reported
1.29 Effectors 

worn on the 
hand

Not applicable 68

5 Spine Exoskeleton 
for the back

LC and 
IP

Back—joint 
support

A Pneumatic 
(PnC)

Not 
reported

Not 
reported

User 
intention

EMG 25 Biomechanical 
simulation

Human–
exoskeleton 

analysis 
simulation

Measure of 
forces to the 

back based on a 
human–machine 

model.

Not 
applicable

Not 
applicable

A decrease of 
the forces by 
35% on the 

L5-S1 joint and 
by 43% on the 
back muscles 

can be noted at 
the beginning of 

the lift.

Durante 
et al. 

(2018)

(Continued)
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Row
Supported 

Joint Device Name

Operational Details Evaluation Details

Ref.Purpose
Targeted 

Assistance
Actuation 
Method Actuators DOF

Weight 
(Kg) Control Sensors

Load 
Capability 

(Kg) Task Analysis
Testing 

Performed Test Details Sample Size
Participant 

Details Results

6 Full body Robot Suit 
HAL

LC Back—load assist A Electric 
(EM and 

HD)

14 Not 
reported

Torque 
control 

based on 
EMG

EMG, 
potentiometers, 

IMUs, GRF 
sensors

50 Kinematic 
modeling

Characteristics 
of the control 

system

Measure joint 
angles and 

bio-signals while 
holding load 

(50 kg).

1 M (26 years) The designed 
locking 

mechanism 
included in the 

power units kept 
the angles of 

the upper limbs 
steady while the 

user held the 
load, and the 

physical burden 
on the upper 

limbs of the user 
was reduced.

Satoh et al. 
(2009)

7 Full body UTRCEXO LC Leg—walking 
assist

A Electric 
(EM and 

HD)

8 Not 
reported

Position 
and torque 

control. 
Walking 
intention

Encoders, FSRs, 
force/torque 

sensor

Not 
reported

Gait analysis 
for GRF 

and motion 
capture

Human–
exoskeleton 

analysis

Walking with 
10-kg weight.

1 (73 kg, 176 
cm)

Detects step 
initiation using 
the insole type 
FSRs prior to 
movement. 
Allows the 
operator to 

easily walk with 
a 10-kg load. 
Does not take 
the operator’s 
desired step 
velocity into 

account.

Cha et al. 
(2015)

8 Full body Body 
Extender (BE)

LC and 
Am

Full body—load 
assist

A Electric 
(EM)

22 160 User-
triggered 
motion

Encoders, 
accelerometer, 
force/torque 

sensors

50 Not reported Human–
exoskeleton 

analysis

Assess the 
tracking (with 
and without 

load) and the 
grasping/ 

lifting/ handling 
(up to the 
rated load) 

capabilities of 
the device.

Not 
reported

Not 
reported

Maximum 
resistance forces 
of 30 N are well 

tolerated by 
the user, good 

mass distribution 
of the device, 
walking phase 

somewhat 
unnatural. At 

max rated load 
the system 
equilibrium 
becomes 
unstable

Marcheschi 
et al. 

(2011)

Note. Results interpreted by authors were “Purpose,” “Task Analysis,” and “Testing Performed.” A = active; Am = amplification; AM = artificial muscle; BoC = Bowden cable; CoG = center of gravity; CoP = center of pressure; EM = electric motor; EMG = 
electromyography; exo = exoskeleton; F = female; FSR = force-sensitive resistor; GRF = ground reaction force; HD = harmonic drive; HR = heart rate; HyC = hydraulic cylinder; IMU = inertial measurement unit; IP = injury prevention; LA = linear actuator; LC = load 
carrying; M = male; P = passive; PI = proportional-integral; PD = proportional-derivative; PID = proportional-integral-derivative; PnC = pneumatic cylinder; ROM = range of motion; RPE = rate of perceived exertion; S = spring; TH = tool holding.

TABLE 4  (Continued)
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external loads (e.g., Huysamen et  al., 2018 
[Table  3, Row 29]; Ko et  al., 2018 [Table  3, 
Row 27]; Theurel et al., 2018 [Table 2, Row 1]; 
Zhang & Huang, 2018 [Table 3, Row 26]), pro-
viding loading pathways that bypass the user’s 
joints (e.g., Sado et al., 2018 [Table 3, Row 6]) 
and/or providing support or limiting the joint 
movement to prevent harmful motions (e.g., 
Zhang et al., 2016a [Table 4, Row 1]).

There were a large number of squat/deadlift 
(lower limb) exoskeleton devices (56%) with 
27% of devices supporting the ankle, knee, 
and hip joint, and 26% solely supporting the 
hip. Ninety-five percent of the hip-supported 
devices aim to assist the lower back (e.g., Chen 
et al., 2018 [Table 3, Row 28]; Yu et al., 2015 
[Table  3, Row 30]; Zhang & Huang, 2018 
[Table  3, Row 26]). This could be due to the 
prevalence of lower back injuries and their cor-
relation to lifting from the ground (Karwowski 
et  al., 2005) and hyperflexion of the lumbar 
spine (Kudo et  al., 2019), which is controlled 
by the hip joint (categorized as a part of the 
squat/deadlift systems). Exoskeletons assisting 
the back actuate from the hip to minimize the 
increased torques to the lower back caused by 
hyper flexion during lifting. However, since 
spine motion has multiple DOFs (Wilke et al., 
2016), exoskeletons actuating from the hip on 
a single plane (one DOF, that is, flexion/exten-
sion) may result in movement restriction where 

physiological rotation and lateral bending of the 
spine are impeded resulting in increased effort 
(Bellini et  al., 2007) or reduced performance 
(Burgess et  al., 2009; Ferguson & Steffen, 
2005).

Task analysis prior to the design of an exo-
skeleton could be beneficial for better support of 
manual handling tasks. Thirty percent of studies 
in this review reported performing a priori task 
analysis. Through this analysis, the operational 
complexity of the exoskeleton (type of actua-
tion, DOF, the control system, and the method 
of power transmission) could be optimized for 
specific tasks. For instance, with a biomechani-
cal analysis of the task, it is possible to identify 
which joints undergo high moments and which 
ones are allowed free movement (e.g., Yu et al., 
2015 [Table 3, Row 30]); this informs the choice 
of how many DOFs should be allowed at a 
joint for that task, as well as how much support 
should be provided. As active actuators can face 
issues such as big size, heavy weight, bulkiness, 
inefficient force transmission, low speed, and 
inaccurate control (Popov et al., 2017; Zaroug 
et al., 2019), the power-to-weight ratio should 
be optimized in order to provide the minimum 
assistance needed to support the specific joint 
for the requirements of the task (e.g., Masood 
et al., 2016 [Table 3, Row 33]) and to replace 
some actively actuated joints with passive actu-
ators where appropriate (e.g., Chu et al., 2014 

Figure 3.  Breakdown of exoskeletons classified into their movement patterns, testing performed, and type 
of evaluation. (a) Shoulder/chest press and isometric arm hold (Table  2). (b) Squat/deadlift (Table  3). (c) 
Shoulder/chest press, isometric arm hold, and squat/deadlift movements (Table 4). *Some studies have carried 
out multiple analysis.
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[Table  3, Row 20]; Ebrahimi, 2017 [Table  2, 
Row 3]). Optimization could therefore lead to a 
reduction in weight, inertia, friction, and com-
plexity of the exoskeleton while increasing its 
efficiency, thus allowing for lower impedance 
(interaction force between the exoskeleton and 
the user) and better control.

Although the majority of studies indicated 
that exoskeletons could reduce muscle activa-
tion, evidence was not conclusive with studies 
reporting an increase in muscle activations of 
the antagonist muscles (Theurel et  al., 2018 
[Table  2, Row 1]). Therefore, EMG signals 
should be recorded from antagonist muscles 
as well as from those muscles acting at joints 
other than the one supported by the exoskeleton 
(Weston et  al., 2018). Although methodologi-
cally challenging, the concomitant use of EMG 
on agonist and antagonist muscles will provide 
a measure of exoskeleton interference with the 
pattern of muscle activation that is essential for 
proper movement coordination and low energy 
cost (Lay et al., 2002; Tan et al., 2019; Wakeling 
et al., 2010).

Control strategies also play a large part in 
the optimization of an exoskeleton system. 
Exoskeleton designers in this review tested 
the exoskeleton control strategies for (a) their 
ability to follow the user’s joint motions, (b) 
exoskeleton stability, and (c) load reduction for 
the duration of the task. A few exoskeleton sys-
tems looked into user intention (e.g., Durante 
et al., 2018 [Table 4, Row 5]) and task recog-
nition (e.g., Chen et  al., 2018 [Table  3, Row 
28]) control strategies. These strategies could 
provide the information needed to develop 
smooth motion and predictive human-intention 
algorithms, creating smarter, more efficient 
exoskeleton systems. With the development of 
predictive algorithms, there is the ability to pro-
vide assist-as-needed control, reducing power 
consumption and preserving the musculoskele-
tal capacity of the user.

Findings from this review demonstrated 
there were no consistent methodologies used 
to evaluate exoskeletons for manual handling. 
Further development of current exoskeleton 
testing and reporting standards (e.g., Mudie 
et  al., 2018) to include military manual han-
dling tasks (e.g., ASTM F48 committee on 

exoskeletons and exosuits) is critical to enable 
valid and reliable comparisons between future 
devices. However, it is worth noting that none 
of the included studies were of a prospective 
nature and only performed analysis at a sin-
gle time point. Prospective studies (and the 
accompanying standards) could be beneficial to 
validate the use of exoskeletons for injury pre-
vention or augmentation.

Military Manual Handling Considerations

While the tasks performed by military per-
sonnel may be similar to those performed in 
industries, there are additional considerations 
for the use of exoskeletons in a military work-
place. For instance, in-field surfaces can be 
uneven and loose, requiring exoskeletons to 
be robust and flexible to compensate for unex-
pected perturbations. Military manual handling 
exoskeletons could also face a range of weather 
conditions, confined spaces where the device’s 
dimensions could be restrictive, limited access 
to power supply, large amounts of dust and 
dirt, and rough use, necessitating a durable and 
efficient exoskeleton design. Additionally, the 
necessity to integrate the device into military 
personnel’s uniform or body armor should be 
considered.

Devices developed for load carriage, ampli-
fication, or injury prevention could assist with 
minimizing the risk of injury from carrying 
large loads and performing repetitive complex 
movements from the ground, as often performed 
by military personnel (Sharp et al., 2006). The 
loading required for military manual handling 
tasks is heavier than what would be required 
of personnel in many other industries (Forde & 
Buchholz, 2004; Roja et al., 2016). For instance, 
in a military context, lift-to-platform tasks 
(shoulder/chest press movement) require loads 
of 25.6 ± 8.5 kg to be lifted, while lift-carry-
lower tasks (isometric arm hold movement) 
require loads of 31.1 ± 17.1 kg to be carried for 
distances of 127.8 ± 126.2 m (Carstairs et al., 
2018). In comparison, in an industry context, 
for example, in large international airports, the 
weight of baggage handled by security person-
nel ranges between 10 and 23 kg (Gebhardt, 
2019). This highlights the fact that workplace 
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context can affect the demand of the job, and 
thus the different need for assistance.

The findings from this review did not high-
light whether current active or passive exoskel-
etons would be capable of sustaining the loads 
required by military personnel (Tables 2–4). It 
was unclear whether the reported load capabil-
ity referred to the load limits of the exoskeleton 
structure and/or actuators, the load limit that 
the user could support, or the maximum loads 
required by the task in industry. Additionally, 
lift-carry-lower tasks are mostly unilateral (load 
only on one side of the body; 74%; Carstairs 
et  al., 2018) and require asymmetrical muscle 
activation in the spine to maintain stability due 
to an increase in internal torsional forces. This 
review found no studies that tested unilateral 
loading. However, three exoskeleton devices 
in this review were tested for lift origin asym-
metry (the lift starts at an angle away from the 
sagittal plane), which could also cause asym-
metrical muscle activations, and found that this 
decreased muscle activation of the ipsilateral 
muscles while wearing the exoskeleton (Alemi 
et al., 2019 [Table 3, Row 36]; Picchiotti et al., 
2019 [Table 4, Row 3]; Zhang & Huang, 2018 
[Table 3, Row 26]). It would, therefore, be bene-
ficial for an exoskeleton to actively compensate 
for unilateral loads and lift origin asymmetry.

CONCLUSION
The large portion of devices targeting load 

carrying reflects the industry and military need 
for devices that can support manual handling 
workers with the aim of preventing injuries and 
improving productivity. The joint requirements 
for the two most common tasks in military man-
ual handling are well represented in the current 
state of exoskeleton systems. The unique con-
siderations of the military such as heavy exter-
nal loads, load asymmetry, harsh environments, 
and uniform integration mean that an adaption 
of current technology or a military-specific 
design would be required for the introduction of 
exoskeletons into the Australian Defence Force.

LIMITATIONS
Only Scopus was used as the citation data-

base for this review and while it is extensive 

in the literature it lists, important studies 
on current exoskeletons may not have been 
included. We also acknowledge that by search-
ing for research studies, we omit some of the 
most widely used commercially available 
exoskeletons for which there isn’t any pub-
lished research. Additionally, some of the data 
included in the tables were interpreted by the 
authors of this review rather than stated in the 
reviewed study. The search terms used were 
based on the definition of manual handling 
tasks by researchers of Australian Army tasks 
and may not be inclusive of all manual han-
dling industries. The review applied a broad 
range of exoskeletons to two specific tasks 
(lift-to-platform and lift-carry-lower); the 
exoskeletons in the review were not always 
intended for these tasks. Furthermore, the 
review did not include exoskeletons that car-
ried loads posterior to the user; it is possible 
that these devices could be adapted for these 
tasks. This review did not explore other sys-
tems that could be useful to military man-
ual handling personnel, such as smart sensor 
systems.

Acknowledgment

The authors acknowledge the support of this 
research by Defence Science and Technology 
(DST) and Victoria University (VU), Melbourne, 
Australia. The views are those of the authors 
and not necessarily those of DST and VU.

KEY POINTS

●● Although this field is fast growing, the majority 
of the included exoskeletons were in an early 
stage of development.

●● Determining exoskeleton design challenges 
through a task analysis could be useful in under-
standing how to better support military manual 
handling tasks.

●● It would be beneficial for an exoskeleton to 
actively compensate for unilateral external 
loads due to their prevalence in military manual 
handling tasks.

●● It was unclear whether the current active exoskel-
eton would be capable of sustaining the loads 
required by military personnel.
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●● Adaption of current technology would be 
required for the introduction of exoskeletons into 
a military setting.
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Introduction

Important Information

Form Version: V.16­02. Last Updated: 6.7.2016.

IMPORTANT INFORMATION FOR ALL APPLICANTS:

Applicants are advised to follow the guidelines provided on the Human Research Ethics website prior to submitting this

application.

Ensure all questions are appropriately answered in plain language with correct spelling and grammar.

All applications must be sighted and approved by all members of the research team and any relevant parties. Applications will

not be reviewed without appropriate authorisation.

To avoid unnecessary delays, please ensure application is submitted in full by the submission deadline for the relevant HREC.

You are reminded that your project may not commence without formal written approval from the appropriate Human
Research Ethics Committee.

Contact: 

Ethics Secretary 
For help and further information regarding ethical conduct, refer to the Human Research Ethics website:
http://research.vu.edu.au/hrec.php or contact the Secretary for the Human Research Ethics Committee, Office for Research. 
Phone: 9919 4781 or 9919 4461 
Email: researchethics@vu.edu.au 

Quest Service Desk 
For technical help, refer to the Quest website: http://research.vu.edu.au/quest.php or contact a member of the Quest team. 
Phone: 9919 4278 
Email: quest.servicedesk@vu.edu.au

External Resources

NHMRC: National Statement on Ethical Conduct in Human Research
NHMRC: Human Research Ethics Handbook
NHMRC: Australian Code for the Responsible Conduct of Research

Quest Guide
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Quick Tips for Using Quest 

Need Help? For help and instructions, we strongly recommend that you download the full Quest Online Ethics Guide (.pdf). Your
questions may also be answered in the FAQ page on the Quest Website.

Answer All Questions: 

Most questions are mandatory and must be completed before the application can be submitted. These questions are marked

with a red asterisk (*)

Access Help and Tips: 

The   help icon, found next to questions and at the top of each page, will provide you with detailed advice on ethical content.

Remember to Save: 

Use the   floppy disk icon (and the   green tick in some sections) regularly to avoid losing any answers. Each page will save

automatically when you click Next   or Back  .

Print or Save a Copy of Your Application: 

You can use the   report icon at any stage to generate a printer friendly version of the form. Select HTML to print to screen.

To save as a .pdf file to your computer select PDF then save a copy from the pop up screen. (Don't forget to save a copy

before you submit!)

Submit Application: 

When you have completed your application, click on the Action tab in the left­hand column and click Submit Application. The

system will then convert the form to read­only and send it to the Ethics Secretary for review. 

You will receive an email confirmation at submission. Double check that your application has been submitted by viewing the

application status in the My Applications page.
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Responding to comments (if your application is returned) 

There may be stages throughout the application process in which the Ethics Secretary will instruct you to amend your application
form. These amendments will be communicated to you via 'Comments' within the eForm.

1.  Generate a List of All Comments: 

Click the   report icon, select Comments Report from the Document drop­down field and click OK. This list will show all

comments created in your application and which page they are applicable to. Click Cancel to return to the application form.

2.  Revise your Answers: 

Open the page which shows a   red flag; these denote an Action Comment which you are required to respond to. Revise the

relevant question(s) in your application form as required. Remember to click   save!

3.  Respond to Action Comments: 

AFTER you have revised your answers, you must provide a response to each Action Comment explaining to the Committee

how you have addressed their communication. Open the   Page Comments window and click   New Comment to enter your

response into the textbox. Click the   green tick to save your text.

4.  Mark Comments as Responded: 

Once you have revised your answers AND finished responding to all comments, reopen   Page Comments window, use the

checkbox to select the Action Comments and click Mark Selected Comments as Responded. The colour of the flag will

change to   yellow and the page will become Read Only. 

Important: DO NOT mark the comments as 'Responded' until you are completely satisfied with your revised answers ­ you

will lose access to edit the page and the comments.

5.  Submit Revised Application: 

Once you have addressed all of the Red Flags, open the Action tab and click Submit Revised Application. The system will

then send the form to the Ethics Secretary for review. Remember to save a copy of your application by clicking the   Report

icon and generating a PDF or printer­friendly version.

SECTION 1 ­ PROJECT OVERVIEW

General Details

1.1. Ethics Category*

Human

1.2. Project Title*

Development of an exoskeleton to reduce risk factors associated with injury during military manual handling tasks

1.3. Project Summary (Include brief details of aims, methods and significance of the project in plain language. Maximum of 2000 characters)*
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Aim: To determine the human kinetics and kinematics affected by military manual handling tasks (MHT). 
Method: Participants (sample size to be determined from a pilot study) aged 18­40 with an equal number of male and females will
complete two military MHT (lift to platform and lift­carry­lower). Weights used during these tasks will be determined via two
procedures that measure occupational proficiency in the Australian military (maximum lift capacity (MLC) and maximum acceptable
weight of lift (MAWL)), thus the tasks are tailored to the individuals ability. Prior to the tasks participants will be fitted with reflective
markers to allow precise postural measurement with 3D motion capture, inertial measurement units will be placed along the spine
to measure torso accelerations and velocities and electrodes will be placed on the skin above the targeted muscles of the torso
and upper legs to measure muscle activations. Subjective ratings of perceived exertion will also be collected. Changes in objective
measures will be evaluated with participants performing the three tasks: 
1. Lift to platform MLC procedure: Ground to 1.4m platform varying weights 
1. Lift to platform MAWL procedure: Ground to 1.4m platform varying weights 
2. Lift­carry­lower: Ground to anatomical height to ground carried 128m, weight set as MAWL 
Each trial will last no longer than 5 minutes. 
Significance: Injury due to manual handling costs government, insurance companies and industry $14.58 billion annually with 20% of
all injuries to the back (Safe Work Australia, 2017). With MHT posing significant musculoskeletal injury risk, a comprehensive task
analysis within the Australian Army was performed and found that 78% of physical demand tasks are manual handling (Carstairs,
2017). With the large amount of military tasks requiring risky movement patterns, empirical data is needed into the how military
MHT affect the body and how soldiers can be physically supported.

1.4. Primary College or Institute for Application*

COLLEGE OF ENGINEERING AND SCIENCE

Timeline and Funding

1.5. Period for which ethical approval is sought. Note: ethical approval is automatically granted for a period of 2 years from the project
commencement date. 
Project commencement date:*

Immediately upon receiving ethical approval
Other date

1.6. Date the data collection is expected to be completed:*

04/03/2019

1.7. How will the research be funded?*

External grant
VU grant or funding
Sponsor
Other
Unfunded

VU grant or funding source:*

PhD budget

1.8. Is the research a collaborative effort with another organisation?*

Yes
No

If YES, does the research need to undergo formal ethical review by the collaborating organisation's HREC?*

Yes
No

SECTION 2 ­ PROJECT INVESTIGATORS

Investigators
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2.1. Please list all investigators associated with this project. 
The research team is the group of investigators accountable for the conduct of the project. Include details of the Primary Chief Investigator
(primary contact for application), as well as all other Chief Investigators and Associate Investigators. Student details will be requested
separately. Other staff (e.g. technicians) may perform tasks within the project although they are not necessarily investigators. They should
be listed as "Other Staff" if appropriate.*

1 ID Number E5024943

Surname LAI

Given Name TZE HUEI

Full Name ASPR TZE HUEI LAI

College/Institute O6102

Email Address Daniel.Lai@vu.edu.au

Role in project Chief Investigator

Primary contact for application? 
Note: Although an application may have
multiple Chief Investigators, only one CI
may be nominated as the Primary
Contact. 
For student projects, the Chief
Investigator/Primary Contact must be the
supervisor, not the student.

No

Direct contact number 0413303554

Mobile number (for emergency use only) 0413303554

Qualifications, experience and/or skills
relevant to the project.

A/Prof. Lai has over 10years experience in machine learning, signal processing,
sensors and wearable electronics for monitoring human movement. He has worked
with over 30 industry partners on development products that range from mobile smart
classification software to wearable electronics for sports and health. He produced
over 110 referred publications focusing on machine learning, wireless
communications and nanomaterial sensors. He is currently the Defence Science
Institute liasion manager for Victoria University.

2 ID Number E5072330

Surname BEGG

Given Name REZAUL

Full Name PROF REZAUL BEGG

College/Institute P9102

Email Address rezaul.begg@vu.edu.au

Role in project Chief Investigator

Primary contact for application? 
Note: Although an application may have
multiple Chief Investigators, only one CI
may be nominated as the Primary
Contact. 
For student projects, the Chief
Investigator/Primary Contact must be the
supervisor, not the student.

Yes

Direct contact number 99191116

Mobile number (for emergency use only) 0425796031

Professor Begg has over 20 years experience in human gait and balance
biomechanics and associated experiments, and has made a number of significant
scientific contributions in developing new technologies and techniques with
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Qualifications, experience and/or skills
relevant to the project.

application to human gait pathologies. These techniques have largely been applied
in biomedical diagnostics as well as for the assessment of various interventions
aimed at improving gait functions. He has produced 231 refereed publications,
mostly focused on gait and balance. His research has been supported by external
funding sources including 5 ARC, one NHMRC project and one Defence, Science &
Technology (DST) Group grants.

3 ID Number E5108402

Surname MUDIE

Given Name KURT

Full Name DR KURT MUDIE

College/Institute VR301

Email Address Kurt.Mudie@vu.edu.au

Role in project Chief Investigator

Primary contact for application? 
Note: Although an application may have
multiple Chief Investigators, only one CI
may be nominated as the Primary
Contact. 
For student projects, the Chief
Investigator/Primary Contact must be the
supervisor, not the student.

No

Direct contact number 0405259557

Mobile number (for emergency use only) 0405259557

Qualifications, experience and/or skills
relevant to the project.

Dr Kurt Mudie is employed at the Department of Defence, Science and Technology
Group and holds an honorary fellowship position at Victoria University. He completed
his PhD (majoring in Biomechanics) in 2017 and completed a 2 year postdoctoral
research fellowship between 2016­2018 on assistive technologies at Victoria
University. He has lead 15 projects involving human movement, gait, physical
assistive technologies biomechanics and neuro­physiological experiments within a
laboratory and field setting, and has considerable experience in the experimental
setup and analysis of relevant data. Kurt has a special interest in physical assistive
technologies and their impact on human performance across a broad range of tasks.

Note: Please click the Question Help icon above for instructions on how to search for personnel and use this table. 
Once an Investigator record has been added, click on the name in the table above to open the record and edit the information required.

If you are unable to find a personnel record in this system which must be added to your application, please use the Request to Add
Personnel to Research Database form found on the Quest website.

Student Investigators

2.2. Will any students be involved in the conduct of this project?*

Yes
No

2.2.a. If YES, is the project:*

A STUDENT PROJECT for the degree in which the student is enrolled?
A STAFF PROJECT that involves a student(s) undertaking some part of the project?
Other

2.2.a.i. If the research is a STUDENT PROJECT, at what level?*

PhD
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* Has this project been approved by the Postgraduate Research Committee? (ie. during confirmation of candidature process)*

Yes
No

If NO, indicate why ethical approval for the project is being sought prior to gaining approval from the Postgraduate Research Committee.*

Confirmation of candidature took place on October 25th 2018 and was confirmed with minor amendments. The confirmation
proposal has been resubmitted and final approval is expected before the ethics committee meets but post application deadline.

2.2.b. Please list all student investigators involved in this project. 
Ensure the primary supervisor (not the student), has been marked as the Chief Investigator and primary contact for the application in
Q.2.1.*

1 Student ID S4173115

Surname Proud

Given Name Jasmine

Full Name MS Jasmine Proud

College/Institute P9102

Email Address jasmine.proud@live.vu.edu.au

Role in project Student

Direct contact number 0421878113

Mobile number (for emergency use only) 0421878113

Student's experience/qualifications
relevant to the procedures and
techniques to be used in the research
and/or to working with the specific
target population.

Jasmine Proud is a PhD candidate at Victoria University working in the development
of a postural control wearable robotic device. She has a Bachelor of Engineering
Science and experience assisting in experimental setup and analysis of human
movement trials when using physical assistive technologies. Jasmine’s research is
focused in bio­mechatronics, specifically wearable assistive technology.

Note: Please click the Question Help icon above for instructions on how to search for personnel and use this table. 
Once a student's record has been added, click on the name in the table above to open the record and edit the information required.

If you are unable to find a personnel record in this system which must be added to your application, please use the Request to Add
Personnel to Research Database form found on the Quest website.

 

2.2.c. What arrangements are in place for the supervision of student(s) when undertaking project activities?*

Regular meetings will occur between all investigators (fortnightly) to discuss project progression and any issues that have arisen
during the project.

Involvement of Other Individuals/Organisations

2.3. Will any individuals who are not members of the research team be involved in the conduct of this project? (e.g., medical
personnel involved in procedures, research contractors, teachers) *

Yes
No

SECTION 3 ­ NATURE OF THE PROJECT

Type of Project

3.1.a. Is the project a pilot study?*
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Yes
No

3.1.b. Is the project a part of a larger study?*

Yes
No

3.1.c. Is the project a quality assurance or evaluation project (e.g., related to teaching, health­care provision)?*

Yes
No

3.1.d. Does the research involve a clinical trial (of a substance, device, psychological or physical intervention)?*

Yes
No

3.1.e. Does the research involve the use of therapeutic/intervention techniques or procedures (non­clinical trial)?*

Yes
No

Target Population

3.2.a. Does the research focus on Australian Indigenous (Aboriginal and/or Torres Strait Islander) populations?*

Yes
No

3.2.b. Does the research involve participants under the age of 18 years?*

Yes
No

3.2.c. Does the research involve participants who are highly dependent on medical care?*

Yes
No

3.2.d. Does the research involve participants who have a cognitive impairment, intellectual disability or mental illness? *

Yes
No

3.2.e. Does the research involve participants in other countries?*

Yes
No

3.2.f. Does the research involve pregnant women (with a research focus on the pregnancy) and/or the foetus (in utero or ex utero)
or foetal tissue?*

Yes
No

3.2.g. Does the research involve participants who are likely to be highly vulnerable due to any other reasons?*

Yes
No

Intrusiveness of Project

3.3.a. Does the research use physically intrusive techniques?*

Yes
No

3.3.b. Does the research cause discomfort in participants beyond normal levels of inconvenience?*
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Yes
No

3.3.c. Does the research collect potentially sensitive data? (e.g., related to a sensitive topic or vulnerable group; personal
health/medical information; sensitive organisational strategies)*

Yes
No

3.3.d. Does the research involve deception of participants?*

Yes
No

3.3.e. Does the research involve limited disclosure of information to participants?

Yes
No

3.3.f. Does the research involve covert observation of participants?*

Yes
No

3.3.g. Does the research produce information that, if inadvertently made public, would be harmful to participants?*

Yes
No

3.3.h. Does the research involve accessing student academic records?*

Yes
No

3.3.i. Does the research involve human genetic or stem cell research?

Yes
No

3.3.j. Does the research involve the use of ionising radiation?*

Yes
No

3.3.k. Does the research involve the collection of human tissue or fluids?*

Yes
No

3.3.l. Does the research involve any uploading, downloading or publishing on the internet?*

Yes
No

3.3.m. Does the research seek disclosure of information relating to illegal activities or is the research likely to lead to disclosure of
information relating to illegal activities?*

Yes
No

3.3.n. Does the research involve procedures that may expose participants to civil, criminal or other legal proceedings?*

Yes
No

3.3.o. Does the research involve gaining access to medical/health related personal information from records of a Commonwealth or
State department/agency or private health service provider?*

Yes
No

3.3.p. Does the research involve gaining access to personal information (not medical/health) from the records of a Commonwealth
or State department/agency or private organisation?*
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Yes
No

SECTION 4 ­ PROJECT DESCRIPTION

General Information

Note: All fields have a maximum of 4000 characters (unless otherwise specified) in plain text only.
If supporting documentation needs to be provided for the following questions (images, graphs etc), please upload as referenced
appendices in Section 11 ­ "Required Attachments" below.

4.1. Aims of the project. Provide a concise statement of the aims of the project (maximum 2000 characters in plain language).*

The aim of this research is to analyse the biomechanical, physiological and musculoskeletal parameters effected during military
manual handling tasks through human laboratory trials and biological computer simulation in order to develop a novel exoskeleton
system based on the objective (muscle activations, force loading) and subjective (comfort) human metrics affected. Using
established biomechanical apparatus and procedures,this data will be used to perform biomechanical analysis of the baseline
parameters of good lifting posture and provide quantitative kinematic and kinetic factors for the development of a prototype
intervention.

4.2. Briefly describe the relevant background and rationale for the project in plain language.*

In Australia 43% of serious claims in the workplace are due to traumatic joint, ligament, muscle and tendon injuries costing $14.58
billion annually as a result of treatment, over­employment, overtime, retraining and investigation (Safe Work Australia, 2017).
Additionally, 41% of serious injury claims are due to MH while lifting or carrying objects, with the majority of injuries in the upper and
lower limbs (49%) and back (20%) (Safe Work Australia, 2017). With MHT posing significant musculoskeletal injury risk, a
comprehensive task analysis within the Australian Army was performed and found that 78% of physical demand tasks are manual
handling (Carstairs, 2017). 

There are a number of tasks within the deployed and training soldier population that cause lower back pain. Unmounted soldiers
carry torso borne loads (e.g. armour, supply packs) for large distances, logistics personnel are required to perform repetitive
motions (e.g. manual lifting of supplies) and technical occupations require maintenance and repairs to heavy equipment often
involving awkward torso positions for prolonged periods. With the large amount of military tasks requiring risky movement patterns,
empirical data is needed into the how military MHT affect the body and how soldiers can be physically supported. Physical assistive
technologies, such as exoskeletons, may assist in maintaining a correct (neutral) posture and thus minimise the risk of workplace
musculoskeletal injuries. 

A number of factors in manual handling contribute to increased risk of back injury, such as external torque of the load, either
hyperflexion or hyperextension of the lumbar spine, internal torsional forces and fatigue due to increased total work (Neumann,
2009). Lifting a load away from the body's midline increases the external load torque placing greater force demands on the back
muscles. Creating a large and fast contraction of back­extensor muscles during hyperflexion in the lumbar spine can damage the
intervertebral discs, which can also be damaged through rotating the torso while lifting due to torsional forces (Neumann, 2009).
Hyperextension of the lumbar spine during back­extensor contraction can injure the apophyseal joints. This maximal flexion or
extension of the back can also be caused by prolonged lifting or carrying as it increases total work and muscular fatigue.
Additionally, the mismatch between personnel capability and job requirement (personnel don’t know what they are able to lift or
what is a safe weight lift) is seen as a contributor to injury risk (Savage, 2012). 

Testing of all the biomechanical and physiological factors effected is important in order to gain an understanding of how these tasks
act upon the body so that they can be supported correctly with as little impact on normal function as possible. The fundamentals of
back injury prevention during MH tasks are; i) maintaining the lumbar spine's neutral lordosis and, ii) preventing hyper­flexion and
hyper­extension of the torso. Therefore, the principal design features of a novel upper body exoskeleton will be guided by these two
factors. This research project will use the data gathered from this testing to design an adaptive postural control spine exoskeleton
for back injury prevention during military MH tasks, using an empathic design approach to ensure increased wearability. It will
actively support correct lumbar lordosis, provide a secondary loading pathway away from the spine to the hips and prevent spine
hyper­flexion/extension. 

The benefits of the project are the further development of equipment that will contribute to safer and less physically demanding
manual handling in military and other personnel such as logistics, agricultural and emergency service workers, who at present
undertake physically stressful load carrying without supporting devices. These devices have the potential to reduce the injury risk
factors associated with back injuries caused by manual handling tasks.

4.3. Methodology and procedures
Include specific details relating to any measures, interventions, techniques, and/or equipment used in the research.
Provide step­by­step details of the procedures with particular reference to what participants will be asked to do.
Provide details separately for different phases or conditions of the research or, where appropriate, different participant groups.*
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Participants will be female and male (50/50) volunteers aged 18 to 40 years who will be individuals recruited from the academic
community (staff and students) of Victoria University and neighbouring areas. Prior to testing informed consent will be obtained
using procedures approved and mandated by the Victoria University Human Research Ethics Committee. Data collection will be
undertaken at the Victoria University (Footscray Park Campus) Biomechanics laboratories (PB301). 

Participants will wear clothing appropriate to physical activity and appropriate shoes. A typical laboratory session will take
approximately 2 ­ 3 hours per participant, including marker attachment, rest periods and data collection. Rest breaks will be
provided as necessary between conditions. Two laboratory staff will be employed for data collection; one will operate the data
collection devices and the other will continuously monitor the participant to confirm their comfort and safety. Participants will take
part in a repeated measures trial, performing two MH tasks. The first MH task will involve two trials, the first trial utilising a maximum
lifting capacity (MLC) procedure and the second trial a maximal acceptable weight of lift (MAWL) procedure. 

MLC is a one off test that measures the maximum weight that can be lifted in a single repetition (Savage, 2012). Participants start
will a small weight and complete the lifting task, the weight is increased by 5kgs after every completion with correct technique (i.e.
good posture) until the lift fails or technique deteriorates. The weight is then lowered by 2.5kgs and attempted again. If completed
this determines the participants MLC or if failed the previous weight is the recorded MLC. 

MAWL procedure works by lifting light to heavy weight (starting at 33% MLC) and from heavy to light weight (starting 95% MLC) in
a random order (Savage, 2012). As the participants are increasing or decreasing their weight, they are asked if they want a small
(2.5kg), medium (5kg) or large (10kg) increase/decrease and the participant is blind to the change in mass. The test is complete
once they find a point where they feel comfortable to lift without strain or compromised technique. It is expected that the increasing
and decreasing weights will match. Lifting weights above MAWL is a large indicator of future injury. 

Objective and subjective measures will be taken. Objective measures will include: physiological (sEMG and time to complete), and
biomechanical (motion capture, IMU and ground reaction forces (GRF)) factors. Subjective measures will include psycho­
psychological (Borg 15­point rating of perceived exertion (RPE) scale on performance) factors. 
Measure details: 
i. Surface electromyography (sEMG): Electrical signals from muscle activations is measured via electrodes placed on the skin. 
ii. Motion capture: Reflective markers are attached to the participant and exoskeleton; movements made during the tasks are then
recorded using a motion capture system. 
iii. Ground reaction forces (GRF): A force plate embedded in the floor measures the ground reaction forces exerted from the
participant in three dimensions (3D). 
iv. Inertial measurement units (IMU): Small sensors that can measure acceleration, angular velocity, direction of a magnetic field
and ambient temperature of a body on which they are placed.

Use this textbox if additional room is required for Question 4.3.

The two tasks selected for this trial are the most commonly performed military MH movement clusters (Carstairs, 2017). The ‘lift to
platform’ will be a single crate with side mounted handles (e.g. supply boxes), while the ‘lift­carry­lower’ task weights will be divided
into two boxes with top mounted handles (e.g. jerry cans). 

Each participant’s trial will include familiarisation (i.e. procedure, laboratory and testing setup), marker attachment, sensor system
attachment, system calibration, movement instruction, recorded trials and rest intervals. Trials will take place on a force plate
embedded in the floor of the biomechanics laboratory, in the case of trials that have a carry element, three force plates will be used
(initial lift, walk across, final lower). The participants’ movements will be recorded using a 13­camera motion capture system
(VICON) that records the position of reflective markers attached to the participant. 

The first ‘lift to platform’ trial will be the MLC with the MAWL procedure to follow. The MAWL weight found during the trial will be
used for the ‘lift­carry­lower’ task. The ‘lift­carry­lower’ task will then be performed once. The tasks will be self­paced and RPE
monitored at set intervals (i.e. start, middle and end of trial) throughout with rest intervals in between tasks to minimise fatigue.

Data Collection

4.4. Indicate all types of data to be collected.*

Questionnaire / survey responses*
Individual interview responses*
Other data
Group interview or focus group responses*
Participant observations
Blood or tissue samples
Physiological measures
Biomechanical measures
Accessed health / medical records or data
Accessed student academic records or data
Archival data
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* Attach copies of questionnaires to this application in Section 11 ­ "Required Attachments" below.

4.5. Does the research only include the collection of anonymous and non­sensitive data (e.g. online survey, observational data)
that poses no foreseeable risks or discomfort to participants? Any foreseeable risk must be no more than inconvenience.*

Yes
No

4.6. Does the research only include the use of non­identifiable and non­sensitive data from an existing database? (e.g., data
mining). 
Such data should pose no foreseeable risks or discomfort to individuals whose information is contained in the database, or to
individuals/organisations responsible for the database.*

Yes
No

4.7. Does the research involve photographing or video recording of participants?*

Yes
No

4.7.a. Will the identification of participants, either directly or indirectly, be made available in the public domain at any time during or after the
research? e.g. In the reporting of research or in any display/presentation (audio or visual) of the research?*

Yes
No

4.7.b. Provide details of both aspects of collecting this data and it being made available.*

Any video recordings of participants will be made available for analysis with the participant's face obscured using a digitally
imposed screen.

4.8. Who will be collecting the data? (give details for all types of data collected and all persons involved)*

Jasmine Proud 
Rezaul Begg 
Kurt Mudie

4.9. Where will the data be collected? (give details for all types of data collected and all locations)*

Data collection will be undertaken at the Victoria University (Footscray Park Campus) Biomechanics and Exercise Physiology 
laboratory (PB301).

4.10. How will the data be analysed? (give details for all types of data collected)*

Data Processing and Analysis: 
i. Motion Analysis: Raw position time data captured by the Vicon system will be transferred to Visual 3D (CMotion,Canada) and
conditioned using a 4th order zerolag Butterworth Filter with a cutoff frequency of 6 Hz. From these smoothed data, kinematic
characteristics of the tasks will be computed such as position and timing of spine positions and the torso and lower limb joint
angles. 
ii. Ground Reaction Forces (GRF): 3D forcetime data from the treadmill will be transferred to Visual 3D for processing to determine
the effects on ground reaction forces at the lift and lower movements of the experimental conditions. 
iii. Electromyography: data will be transferred to Visual 3D for processing. Data will be filtered using a 4th 
order bidirectional Butterworth bandpass filter with a cutoff frequency of 50 – 500 Hz, full wave rectified and linear envelopes 
created using a 4th order bidirectional lowpass Butterworth filter with a 6 Hz cutoff frequency. 
iv. Rating of perceived exertion will be measured to determine the the perception of effort during the tasks. 

Statistical Analysis: 
Analysis of variance (ANOVA) will be used to analyse the effect that MH tasks (independent variable) have on the spine position,
peak and mean muscle forces of the trunk and upper limbs, and GRFs (dependant variables).

4.11. Who will have access to the data collected? (give details of all persons who will have access to the data)*

All investigators will have access to the data.

4.12. Will individuals or organisations external to the research team have access to any data collected?*

Yes
No
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SECTION 5 ­ PARTICIPANTS

Participant Group Details

5.1. Provide details of all distinct participant groups below. 
Please be as precise as possible, if specific details have not been determined you must indicate that they are approximate. 

Group 1
Details of specific participant population:*

Participants will include males and females aged between 18 to 40 years of age.

Number of participants: *

~20

Age range of participants:*

18 ­ 40

Source of participants:*

Potential participants will be recruited from the Victoria University student and staff population.

Record details for additional group? (Group 2)*

Yes
No

Participant Selection

5.2. Provide a rationale for the sample size.*

Previous biomechanical analysis of manual handling task studies have used 21 or less healthy participants (O'Sullivan, 2006;
Arjmand, 2005; Granata 2001; Hart, 1987), however a pilot study will be performed as apart of this project in order to determine the
required number of participants recruited to this study.

5.3. Does the project include any specific participant selection and/or exclusion criteria beyond those described above in
Question 5.1?*

Yes
No

If YES, provide details:*

Pre­experimental screening will comprise initial discussions with prospective participants to outline all aspects of the study,
including provision of Information to Participants (Attachment) and Informed Consent (Attachment). Prospective participants will
also be asked to complete a medical questionnaire (Attachment: Pre­exercise Health Screen) to exclude individuals with any of the
following: diabetes (Type 1 or 2), chronic heart disease, severe hypertension (systolic 160­179mmHg systolic, diastolic 100­
109mmHg), severely overweight/obese (BMI> 30), if they have had uncontrolled metabolic and/or cardiovascular disease, no
significant knee of back injury, any recent significant injury that will impede their ability to perform exercise during the study or any
other contraindications that will impede their ability/safety during exercise. Those who circle the “Yes” response on the
questionnaire will be further questioned by a Chief Investigator to ascertain the reliability/severity of any possible contraindication.
Those judged to be of no additional risk by the Chief Investigator will be allowed to proceed in the study. A common example of this
category might include subjects who consider themselves overweight, but who display weight within normal range. Should the Chief
Investigator have any uncertainty regarding the reliability/severity of any possible contraindication, the potential subject will not be
included.

5.4. Will there be a formal screening process for participants in the project? (e.g. medical/mental/health screening)*

Yes
No

If YES, provide details. You must provide a clear rationale for inclusion and exclusion in relation to participants.*

As per Item 5.3 (Attachment: ESSA Pre­Exercise Screening tool)
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5.5. Does the research involve participants who have specific cultural needs or sensitivities? (e.g., in relation to the provision of
informed consent, language, procedural details)*

Yes
No

5.6.a. Does the research involve a participant population whose principal language is not English?*

Yes
No

5.6.b. Will documentation about the research (e.g., Information to Participants form and Consent form, questionnaires) be
translated into a language other than English?*

Yes
No

SECTION 6 ­ RECRUITMENT OF PARTICIPANTS

Recruitment and Informed Consent

6.1. Will individuals other than members of the research team be involved in the recruitment of participants?*

Yes
No

6.2. How will potential participants be approached and informed about the research and how will they notify the investigators of
their interest in participating?
*Attach copies of the "Information to Participants Involved in Research" form and any flyers or other advertising material to be used in
the research in Section 11 ­ "Required Attachments" below.*

Participants will be recruited via advertisement and VU email alerts and posters on notice boards. Potential participants will be
then able to contact the investigators via phone calls or emails.

6.3. Will potential participants be given time to consider and discuss their involvement in the project with others (e.g. family)
before being requested to provide consent?*

Yes
No

6.4. How will informed consent be obtained from participants?*

Participants be required to sign an informed consent form
Consent will be implied e.g. by return of completed questionnaire
Verbal consent will be obtained and recorded (audio, visual or electronic)
Other

Attach copies of Consent Forms to be used in the research in Section 11 ­ "Required Attachments" below.

6.5. Provide procedural details for obtaining informed consent:*

Interested parties who have contacted the researchers will be called and, following phone call screening, and having met the
inclusion criteria will be asked for contact details so that more detailed information can be sent. Following this, at an agreed time a
member of the research team will contact the participant and, should they consent to participate, schedule them for testing at
Victoria University. Potential participants who attend the appointment will first be given the Information to Participants Form
(Attachment:Information­to­Participants­Involved­in­Research) to read the testing procedures then will have the option to fill and sign
the consent form to participate in the testing session or withdraw.

6.6. Will you be seeking consent in order to contact participants in the future for related research participation and/or use
participants' data for related research purposes?*

Yes
No

Competing Interests
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6.7. Will any dual relationship or conflict of interest exist between any researcher and potential or actual participants? (e.g., a
member of the research team is also a colleague or friend of potential participants)*

Yes
No

What is the nature of the dual relationship or conflict of interest?*

It is possible that colleagues or friends of the investigators may be interested in participating in the study.

How will ethical issues arising from the dual relationship or conflict of interest be addressed?*

The investigators will not solicit their friends or colleagues to participate in the study. Colleagues and friends will be treated in the
same manner as other participants if they do decide to participate in the study.

6.8. Does the research involve participants who are in dependent or unequal relationships with any member(s) of the research
team or recruiting organisation/agency (e.g. counsellor/client, teacher/student, employer/employee)?*

Yes
No

What is the nature of the dependent or unequal relationship?*

It is possible that some participants may be students of some of the investigators.

What measures will be taken to ensure that participants' voluntary consent is not compromised by the relationship?*

No investigator will be involved in any part of the recruitment process for any of their students.

What procedures are in place to ensure that the dependent or unequal relationship does not disadvantage or prejudice any participants?*

Potential participants will be informed that there is no obligation to participate and that they will not be penalised if they decide not
to be involved or to withdraw at any time

6.9. Will you be offering reimbursement or any form of incentive to participants (e.g., payment, voucher, free treatment) which are
not part of the research procedures?*

Yes
No

If YES, provide details:*

Typically reimbursement will be made for food, drink and parking for participants while attending their trial session.

6.10. Is approval required from an external organisation? (e.g., for recruitment of participants, data collection, use of premises)*

Yes
No

SECTION 7 ­ RISKS ASSOCIATED WITH THE RESEARCH

Physical Risks

7.1.a. Are there any PHYSICAL RISKS beyond the normal experience of everyday life, in either the short or long term, from
participation in the research?*

Yes
No

High probability risks:*

None are anticipated.

Low probability risks:*
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Exercise involves a risk of sudden death due to myocardial infarct (heart attack) or a vasovagal episode (slow pulse, a fall in blood
pressure, and sometimes convulsions). Signs and symptoms may include: sudden drop in heart rate during recovery or exercise;
drop in blood pressure; pale complexion; fixed facial expression; pupils constricted; participant becomes uncommunicative or slurs
words; restless and irritable; sweating; fatigue (if exercising). While vasovagal episodes are not uncommon, they are reversed
quickly when employing a vasovagal management plan, and longterm risks are minimal.

How will the risk(s) be minimised?*

Only those participants deemed acceptably low risk will be accepted into the study. All risks will be minimised by following standard
exercise laboratory procedures. 
To ensure subject safety during exercise testing the procedures will also be terminated immediately before completion if any of the 
following criteria are present: 
• subject wishes to stop 
• subject experiences chest pain, severe shortness of breath or any other pain related to, or caused by exercise. 
• subject wishes to continue but there are abnormal signs of metabolic, cardiorespiratory or thermoregulatory distress (e.g. facial 
pallor, unexpected large increase in HR or RPE). 
• subjects sweating responses are inappropriate to the environmental conditions in the laboratory 
In addition, subjects will be closely supervised and monitored (HR and RPE) at all times during exercise and testing sessions. All 
exercise testing procedures will be attended by staff with current CPR and First Aid certification in the unlikely event of an 
emergency.

How will these risks be managed if an adverse event were to happen?*

Investigators will follow the standard VU Management Plan. This includes the following important procedures: for a vasovagal 
episode, lay the person down on a soft floor mat as quickly as possible; immediately elevate legs and lay head flat (no pillow); if a 
medical practitioner is not in attendance, then call a medical practitioner or ambulance if the participant has not begun recovering 
within 35 minutes of implementing the management plan; attach and monitor ECG for one hour; monitor the participant continuously
and frequently give reassurance; during the later stages of recovery, test the person’s ability to sit, stand and walk while continuing 
to monitor ECG; once the participant has recovered sufficiently to leave the laboratory, check signs and symptoms again; 
accompany the person out of the building; discourage the person driving; encourage the person to go home to rest; follow up the 
next day with a phone call to check on stability of persons condition. For more serious adverse events during the exercise tests all 
tests will be supervised by an investigator with current CPR certificate. The investigators will manage any adverse event during the 
exercise tests. In the case of adverse events requiring any medical consultation, subjects will be given a single (half A4 size) sheet 
of paper describing their participation in this experiment, and the contact numbers for all investigators. In the event of more serious 
complications that might arise during any test procedures, an ambulance would be called using the telephone in the laboratory and 
the Western Hospital is a short distance away. In the event of a soft tissue injury, the recommended first aid treatment of rest, ice, 
compression, and elevation will be administered. The participant will also be advised to see a medical practitioner for assessment.

Psychological Risks

7.1.b. Are there any PSYCHOLOGICAL RISKS beyond the normal experience of everyday life, in either the short or long term, from
participation in the research?*

Yes
No

Social Risks

7.1.c. Are there any SOCIAL RISKS beyond the normal experience of everyday life, in either the short or long term, from
participation in the research. (e.g., possible inadvertent public disclosure of personal details or sensitive information)*

Yes
No

Other Risks

7.2. Does the research involve any risks to the researchers?*

Yes
No

7.3. Does the research involve any risks to individuals who are not part of the research, such as a participant's family member(s)
or social community (e.g., effects of biographical or autobiographical research)?*

Yes
No
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7.4. Are there any legal issues or legal risks associated with any aspect of the research that require specific consideration (i.e.,
are significant or out of the ordinary), including those related to:

participation in the research,
the aims and nature of the research,
research methodology and procedures, and/or
the outcomes of the research?

*

Yes
No

7.5. Risk­Benefit Statement: 
Please give your assessment of how the potential benefits to the participants or contributions to the general body of
knowledge would outweigh the risks. Even if the risk is negligible, the research must bring some benefit to be ethical.*

No direct benefits to the participant are expected from participation. However, they may receive an educational benefit from being
exposed to the scientific experimental research process

SECTION 8 ­ DATA PROTECTION AND ACCESS

Data Protection

8.1. Indicate how the data, materials and records will be kept to protect the confidentiality/privacy of the identities of participants
and their data, including all hardcopies, electronic files and forms. See help for definitions.*

Data and records will be entirely anonymous
Data and records will be coded and non­identifiable
Data and records will be coded and re­identifiable
Some or all of the retained data and records will include personally identifying information
Other

8.2. Who will be responsible for the security of and access to confidential data and records, including consent forms, collected in
the course of the research?*

The Chief investigator Prof Rezaul Begg

8.3. Where will data, materials and records be stored during and after completion of the project? Provide full details of the location for
all types of data. 
Note: The VU Research Storage provides secure digital storage and long term retention for research project data including graduate
research projects. 

During the project:*

Records will be kept in locked filing cabinets in Prof Rezaul Begg's office, which is also locked. Electronic data will be kept on 
computers (R: Drive) which are password protected.

Upon completion:*

Upon completion of the project, data will be stored in Prof Rezaul Begg's office for a further five years. The office is locked, as are 
the cabinets. After five years the electronic files will be deleted from the computers (R: Drive), and all hard copy files will be 
shredded.

8.4. Indicate the minimum period for which data will be retained. See help for definitions.*

Indefinitely
5 years post publication
7 years post publication
15 years post publication
25 years after date of birth of participants
Other

8.5. Who will be responsible for re­evaluating the data/materials after the retention period and considering a further retention
period for some or all of the data/materials?*

Prof Rezaul Begg will be responsible for this.
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8.6. Will you transfer your data or materials to a managed archive or repository during the project, after the project, or after the
retention period? Which discipline specific or institutional archives will be considered? 
Note: Some funding agencies and publishers may require lodgement with an archive or repository. Retain a copy at VU where
possible.*

No data will be transferred.

8.7. When further retention of data and materials is no longer required, responsible disposal methods should be adopted.
Disposal software should also be adopted if digital software, computer hardware, disks or storage media are reused or
retired. What methods of appropriate disposal or destruction will be employed? 
Note: Personal, sensitive or confidential information, both digital and hardcopy, will require secure destruction or disposal. For other
materials you may need to refer to the Hazardous Materials Policy, Animal Ethics Standard Operating Procedures, or the Ethics and
Biosafety site found on the VU Office for Research website. *

Hard copy files will be shredded and placed in secure destruction bins.

SECTION 9 ­ DISSEMINATION/PUBLICATION OF RESEARCH RESULTS

Publication Details

9.1. Indicate how the results of this research will be reported or published.*

Thesis
Journal article(s)
Book
Research report to collaborating organisations
Conference presentation(s)
Recorded performance
Other

9.2. Will any contractual agreement exist between the researchers and a third party that will restrict publication of the research
findings?*

Yes
No

9.3. Are there any other restrictions on publications or reports resulting from this project?*

Yes
No

Provide details:*

As detailed in the current contract between The Defence Science and Technology Group of the Department of Defence AND 
Victoria University, all future publications will be initially reviewed by DST group researchers and approval sought to determine the 
project is of a “nonclassified” nature prior to publication. Overall, DSTG encourage publication of results from this study as a journal 
article or conference presentation, whether adverse or positive, and it is not anticipated there will be any restrictions on the 
publication of results.

SECTION 10 ­ OTHER DETAILS

Comments

10.1. In your opinion, are there any other ethical issues involved in the research?*

Yes
No

10.2. Additional information and comments to support this application:

None

SECTION 11 ­ DOCUMENTS, ATTACHMENTS AND SUPPLEMENTARY FORMS
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Required Attachments

The following documentation must be attached to your application:

­ Scanned copy of the Declaration Form for External Investigators (if applicable)

­ Copy of the 'Information to Participants Involved in Research' form (Please use the templates provided on the Human Research
Ethics website)

­ Copy of Consent Forms to be used in the research (Please use the templates provided on the Human Research Ethics website)

­ Any flyers or other advertising material to be used in the research

­ Copy of questionnaires

11. Please attach each of the items specifically listed above as well as any other supporting documentation. 
All documentation must be accurately titled and referenced to within the body of your application where appropriate (i.e. "Appendix A ­
Declaration Form", "Appendix F ­ Risk Factor Assessment Questionnaire", etc.). Please limit file types to .doc, .docx, .xls, .xlsx, .pdf, or
small­medium images (ie, .gif, .jpg).*

Description Reference Soft copy Hard copy

Consent Form VU­HRE_Consent Form_JPROUD.doc

Information to Participants Involved in Research
VU­HREApplication­Information­to­
Participants­Involved­in­
Research_JPROUD.docx

Declaration Form for External Investigators VUHREC­Application­Declaration­Form­
External­Investigators_KM Signed.pdf

Reference List VU­HRE_References_JPROUD.docx

Advertising Material (flyers etc.) VU­HRE_Flyer_JPROUD.pdf

ESSA Pre­Exercise Screening tool ESSA Screen tool version_v1.pdf

Note: Please click the Question Help icon above for instructions on how to upload documents and use this table.

If you are certain that you do not need to supply a Consent Form or Information to Participants Involved in Research (both of which are
mandatory), please tick Hard Copy and type 'N/A' in the Reference field.

SECTION 12 ­ SUBMISSION DETAILS

Declaration

21/11/2018 Page 20 / 23  

http://research.vu.edu.au/ordsite/ethics/VU-HREApplication-DeclarationForm-ExternalInvestigators.docx
http://research.vu.edu.au/HRE_approvals.php
http://research.vu.edu.au/HRE_approvals.php


I / we, the undersigned, declare the following:

I / we accept responsibility for the conduct of the research project detailed above in accordance
with:
a.  the principles outlined in the National Statement on Ethical Conduct in Human Research

(2007);
b.  the protocols and procedures as approved by the HREC;
c.  relevant legislation and regulations.

I / we will ensure that HREC approval is sought using the Changes to the Research Project
process outlined on the Human Research Ethics website if:
a.  proposing to implement change to the research project;
b.  changes to the research team are required.

I / we have read the National Statement on Ethical Conduct in Human Research prior to
completing this form.

I / we certify that all members of the research team involved the research project hold the
appropriate qualifications, experience, skills and training necessary to undertake their roles.

I / we will provide Annual / Final reports to the approving HREC within 12 months of approval or
upon completion of the project if earlier than 12 months.

I / we understand and agree that research documents and/or records and data may be subject to
inspection by the VUHREC, Ethics Secretary, or an independent body for audit and monitoring
purposes.

I / we understand that information relating to this research, and about the investigators, will be
held by the VU Office for Research. This information will be used for reporting purposes only and
managed according to the principles established in the Privacy Act 1988 (Cth) and relevant laws
in the States and Territories of Australia.

*
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1 Staff/Student ID E5024943

Full Name ASPR TZE HUEI LAI

Role in project Chief Investigator

Personnel Type Internal

2 Staff/Student ID E5108402

Full Name DR KURT MUDIE

Role in project Chief Investigator

Personnel Type Internal

3 Staff/Student ID E5072330

Full Name PROF REZAUL BEGG

Role in project Chief Investigator

Personnel Type Internal

4 Staff/Student ID S4173115

Full Name MS Jasmine Proud

Role in project Student

Personnel Type Student

Sign Declaration? 
By clicking the checkbox below, you are agreeing to conduct the research project in accordance
with the above declaration.

Yes

Date Signed 21/11/2018

Note: Please click on your name in the table above to complete your declaration; or click on the name of an External Investigator to
acknowledge that their declaration has been supplied.

Declaration Instructions and Information

A digital signature must be supplied by each and every member of the research team using the declaration table above.

The 'Needs Signature' icon   shows which records you are responsible for signing.

Physical signatures are not required for VU staff and students in applications using form version v.13­07.

External Investigators do not have access to Quest. The Chief Investigator must supply a completed physical declaration on their

behalf by following the steps below:

1.  Send the person a copy of the full application form (including any attachments), as well as the Declaration Form for External

Investigators document.

2.  Once returned, attach the signed External Investigator Declaration Form document in 'Section 11 ­ Required Attachments'.

3.  Enter into the External Investigator's record in the above declaration table and mark the checkbox to indicate these steps have

been completed, include the date you have done so.

The 'sighted by' field will automatically populate with your name. (Only the Chief Investigator will have permission to complete

this step.)

The application cannot be submitted until all members of the research team have logged in and completed this declaration.

Finalise Application
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Reminders

All applications must be sighted and approved by all members of the research team and any relevant parties. Please ensure
each member of the research team has completed their declaration in 'Section 12 ­ Declaration' above, including any
declaration forms supplied on behalf of External Investigators. Applications will not be reviewed without appropriate
authorisation.

It is strongly recommended that you save a PDF version of your application before submitting as you will lose access to the
electronic record while it undergoes formal review.

You are reminded that your project may not commence without formal written approval from the appropriate
Human Research Ethics Committee.

Ready to Submit?

Once the form is complete and all documents are attached, click on the 'Action' tab above the left­hand form navigation,
then click 'Submit Application' to forward the application to the Ethics Secretary to be reviewed and assigned to a
Committee meeting.

You will receive an automatic email notification from Quest when your application has been successfully submitted.

Note: Only a Chief Investigator is able to submit an application for ethical approval. The Chief Investigator who is marked
as the primary contact for this application is:

PROF REZAUL BEGG
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Appendix C – Participant Information & Consent 

  



INFORMATION TO PARTICIPANTS
INVOLVED IN RESEARCH

You are invited to participate

You are invited to participate in a research project entitled: Development of a wearable device to reduce risk

factors associated with injury during manual handling tasks.

Prof Rezaul Begg, A/Prof Daniel Lai, Dr Kurt Mudie, Dr Alessandro Garofolini and Ms. Jasmine Proud from the

Institute of Health and Sport (IHES) at Victoria University.

Project explanation

The aim of the project is to determine the human biomechanics affected by manual handling tasks. These

results will be used to inform future design and development of a wearable assistive device. The primary

research question is to determine the baseline factors for good lifting posture during manual handling tasks. In

the experiments described below participants will take part in a repeated measures trial, performing one

manual handling tasks involving lifting loads. The project will be administered as part of the Victoria University

research and innovation Program in Assistive Technology Innovation (PATI); an association between the

Defence Science and Technology Group, Victoria University and The University of Melbourne.

What will I be asked to do?

If you agree to take part in the study, you will be required to visit Victoria University (Footscray Park). Before

testing you will be required to sign the Informed Consent Form, after you have read this Participant Information

Sheet and had any of your questions answered. A health screening involving questions around general health

and injury status will then be performed. The following assessment will be undertaken.

1. Participants' height, body mass and resting heart rate will be measured.

2. A standard three-dimensional (3D) motion capture camera system will be used to record the participants'

motion when performing tasks by time-sampling the position of reflective markers attached to the head, neck,

abdomen, back, hips, upper arms and legs.

5. Body segment accelerations and velocities will be measured via small sensors (IMUs) attached to the skin of

the back along the spine.

6. The manual handling task is ‘lift to platform’ with a single crate with side mounted handles (e.g. supply

boxes). This will involve two trials, the first trial utilising a maximum lifting capacity (MLC) procedure and the

second trial a randomised lift of the weights recorded during the MLC procedure. These procedures regulate

your physical capacity for load carriage.

All information collected during this study will be kept confidential, coded and secure. Any data published will

be non-identifiable. Privacy during marker, electrode and sensor attachment will be provided to ensure your

comfort throughout the trial process.

Although this testing session does not require any strenuous activity, you will be able to take as many breaks

as you require. You will be able to stop the testing session at any time if you no longer wish to continue.

What will I gain from participating?

V.1/2013 1 of 3



The study aims to further biomechanical knowledge of human performance during manual handling tasks, with

results used for the future development of a wearable assistive device for reduction of injury risk factors. No

direct benefits to you are expected from participation. However, you may receive an educational benefit from

being exposed to scientific experimental research process.

How will the information I give be used?

All questions, answers and results of this study will be treated with absolute confidentiality and will be retained

in a secure place. This information will be used to develop a research thesis, reports for publication and inform

future assistive device design. In any manuscripts, reports or other publications resulting from this study,

subject codes rather than names will be used.  Therefore, you will not be able to be identified in these

publications.

What are the potential risks of participating in this project?

As this study only requires you to perform short periods of physical activity with loads tailored to your

physical ability there is a low risk of any problems. However, exercise involves risk of muscle

soreness, muscle damage, a low risk of sudden death due to myocardial infarct (heart attack) or a

vasovagal episode (slow pulse, a fall in blood pressure, and sometimes convulsions). You will be

encouraged to rest between exercises to avoid this and all risks will be minimised by following

standard exercise laboratory procedures and providing correct lifting technique training prior to the

beginning of the trial. At no time in this study will you be required to perform any strenuous activity;

however, you will be able to take as many breaks as you require to ensure you do not become tired.

You will not be required to perform any activity that you do not feel completely comfortable doing.

How will this project be conducted?

Prospective participants will complete a questionnaire to confirm that they have no musculoskeletal

impairments or other medical conditions that may affect their ability to safely perform the experimental tasks.

Prior to testing informed consent will be obtained using procedures approved and mandated by the Victoria

University Research Ethics Committee. Data collection will be undertaken at the Victoria University (Footscray

Campus) Biomechanics and Exercise Physiology laboratories.

Participants will need to wear minimal clothing in order to ensure attachment of markers to the skin (shorts only

for males, shorts and sports bra for females). Appropriate comfortable shoes for exercise must also be worn. A

typical laboratory session will take approximately 3 hours per participant, including marker, electrode and

sensor attachment, practice trial(s), rest intervals and data collection. Rest breaks will be provided as

necessary between conditions. Two laboratory staff will be employed for data collection; one will operate the

data collection devices and the other will continuously monitor the participant to confirm their comfort and

safety. The second operative will also record heart rate and perceived exertion.

Trials will be performed on a force-plate embedded in the floor. Conditions will include the following: (i) ‘lift to

platform’ task with maximum lift capacity (MLC) procedure and (ii) Randomised ‘lift to platform’ task.

MLC is a one off test that measures the maximum weight that can be lifted in a single repetition. Participants

start will a small weight and complete the lifting task, the weight is increased by 5kgs after every completion

with correct technique (i.e. good posture) until the lift fails or technique deteriorates. The weight is then lowered

by 2.5kgs and attempted again. If completed this determines the participants MLC or if failed the previous

weight is the recorded MLC.

Who is conducting the study?



Principal Investigator(s) Prof Rezaul Begg rezaul.begg@vu.edu.au Ph. 03 9919 1116

A/Prof Daniel Lai daniel.lai@vu.edu.au Ph. 03 9919 4425

Dr Kurt Mudie kurt.mudie@dst.defence.gov.au Ph. 03 9626 7642

Dr Alessandro Garofolini alessandro.garofolini@vu.edu.au

Student Investigator Ms Jasmine Proud jasmine.proud@live.vu.edu.au Ph. 0421 878 113

Prof Rezaul Begg, Dr Alessandro Garofolini and Ms Jasmine Proud, Institute of Health and Sport, College of

Exercise and Sports Science, Victoria University. A/Prof Daniel Lai is with Institute of Health and Sport, College

of Engineering and Science, Victoria University. Dr Kurt Mudie, Defence Science and Technology (DST),

Melbourne, Victoria.

Any queries about your participation in this project may be directed to the Chief Investigator listed above.

If you have any queries or complaints about the way you have been treated, you may contact the Ethics

Secretary, Victoria University Human Research Ethics Committee, Office for Research, Victoria University, PO

Box 14428, Melbourne, VIC, 8001, email researchethics@vu.edu.au or phone (03) 9919 4781 or 4461.

mailto:rezaul.begg@vu.edu.au
mailto:daniel.lai@vu.edu.au
mailto:kurt.mudie@dst.defence.gov.au
mailto:alessandro.garofolini@vu.edu.au
mailto:jasmine.proud@live.vu.edu.au


CONSENT FORM FOR PARTICIPANTS

We are pleased to invite you to be a part of a study Development of an assistive device to reduce risk

factors associated with injury during military manual handling tasks. The aim of the project is to

determine the human kinetics and kinematics affected by military manual handling tasks. You are asked

to participate in the testing procedures outlined in the attached “Information for participants” documents.

I, ................................................................………………... give my consent to participate in the project

mentioned above on the following basis:

I have had explained to me the aims of this research project, how it will be conducted and my role in it.

I understand the risks involved as described in the Participant Information Sheet.

I am cooperating in this project on condition that:

● The information I provide will be kept confidential.

● The information will be used for this project and in future related projects.

● The research results will be made available to me at my request and any published reports of

this study will preserve my anonymity.

I understand that:

● There is no obligation to take part in this study.

● I am free to withdraw at any time.

I have been given a copy of the participant information sheet and consent form, signed by me and by

one of the principal investigators, as listed on the information sheet, to keep.

Signature of participant _______________________________

Name in full _______________________________

Date _______________________________

Signature of Research Investigator _______________________________

Name in full _______________________________

Date _______________________________

Should you have any complaints or concerns about the manner in which this project is conducted,

please do not hesitate to contact the researchers in person, or you may prefer to contact Victoria

University Human Research Ethics Committee at the following address:

Ethics Secretary, Victoria University Human Research Ethics Committee,

Office for Research, Victoria University, PO Box 14428, Melbourne, VIC, 8001, email

researchethics@vu.edu.au or phone (03) 9919 4781 or 4461.
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Appendix D – Health Survey 

  



PAGE 1V1 (2011)

ADULT PRE-EXERCISE SCREENING TOOL

STAGE 1 (COMPULSORY)
AIM: to identify those individuals with a known disease, or signs or symptoms of disease, who may be at a higher risk of 
an adverse event during physical activity/exercise. This stage is self administered and self evaluated.

1. Has your doctor ever told you that you have a heart condition or have
you ever suffered a stroke?

Yes No

2. Do you ever experience unexplained pains in your chest at rest or
during physical activity/exercise?

Yes No

3. Do you ever feel faint or have spells of dizziness during physical
activity/exercise that causes you to lose balance?

Yes No

4. Have you had an asthma attack requiring immediate medical
attention at any time over the last 12 months?

Yes No

5. If you have diabetes (type I or type II) have you had trouble
controlling your blood glucose in the last 3 months?

Yes No

6. Do you have any diagnosed muscle, bone or joint problems that you
have been told could be made worse by participating in physical
activity/exercise?

Yes No

7. Do you have any other medical condition(s) that may make it
dangerous for you to participate in physical activity/exercise?

Yes No

IF YOU ANSWERED ‘YES’ to any of the 7 questions, please seek 
guidance from your GP or appropriate allied health professional prior to 
undertaking physical activity/exercise

IF YOU ANSWERED ‘NO’ to all of the 7 questions, and you have no other 
concerns about your health, you may proceed to undertake light-moderate 
intensity physical activity/exercise

Name:  

Date of Birth: Male        Female Date:

Please circle response

This screening tool does not provide advice on a particular matter, nor does it substitute for advice from an appropriately qualified 
medical professional. No warranty of safety should result from its use. The screening system in no way guarantees against injury or 
death. No responsibility or liability whatsoever can be accepted by Exercise and Sports Science Australia, Fitness Australia or Sports 
Medicine Australia for any loss, damage or injury that may arise from any person acting on any statement or information contained in 
this tool.

I believe that to the best of my knowledge, all of the information I have supplied within this tool is correct.

Signature   Date



EXERCISE INTENSITY GUIDELINES

< 40%  
HRmax

≥ 90%  
HRmax

Very hard
RPE# ≥ 7

generally cannot be 
sustained for longer 
than about  
10 minutes

HIGH

70 to <90%  
HRmax

Hard
RPE# 5-6

which a conversation 
generally cannot 
be maintained 
uninterrupted

last up to about 30 
minutes

VIGOROUS

55 to <70%  
HRmax

Moderate to 
somewhat hard

RPE# 3-4

that is able to be 
conducted whilst 
maintaining a 
conversation 
uninterrupted

last between 30 and 
60 minutes

MODERATE

40 to <55%  
HRmax

Very light to light
RPE# 1-2

that does not cause a 
noticeable change in 
breathing rate

be sustained for at 
least 60 minutes

LIGHT

SEDENTARY
Very, very light

RPE# < 1

involve sitting or 
lying and that have 
little additional 
movement and a low 
energy requirement

INTENSITY  
CATEGORY

HEART RATE 
MEASURES

PERCEIVED EXERTION 
MEASURES

DESCRIPTIVE  
MEASURES

# = Borg’s Rating of Perceived Exertion (RPE) scale, category scale 0-10

PAGE 2V1 (2011)
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Development of a wearable device to reduce risk factors 
associated with injury during manual handling tasks

For more information please call/email:
Ms Jasmine Proud | jasmine.proud@live.vu.edu.au| 0421 878 113

WANTED: Healthy participants aged 18-40 for 2 - 3 hours.

VOLUNTEERS REQUIRED FOR SMART 
TECHNOLOGY RESEARCH @ VU

AIM: The study aims to further biomechanical knowledge of human performance during 

manual handling tasks, with results used for the future development of a wearable device. 

Participants will perform lifting tasks while being monitored with markers and sensors.
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Appendix F - SPM Post-Hoc ANOVA Plots 
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Appendix G - Linear & Polynomial correlation of mean angle 

    

Linear & Polynomial correlation of mean angle during lifting phases.
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Appendix H - Machine Learning Algorithm Parameters 

Method Parameters 

Time Series Forest Classifier min_interval = 10, n_estimators = 500, n_jobs = -1 

Random Interval Spectral Ensemble n_estimators = 500, n_jobs = -1 

Supervised Time Series Forest n_estimators = 500, n_jobs = -1 

Column Ensemble Classifier 
TimeSeriesForestClassifier (n_estimators = 500, n_jobs = -1)  

BOSSEnsemble (max_ensemble_size = 5) 

Individual BOSS n_jobs = -1 

Contractable BOSS n_jobs = -1 

WEASEL window_inc = 4 

MUSE window_inc = 4, n_jobs = -1 

Individual TDE n_jobs = -1 

K-Neighbors Time Series Classifier -  

Proximity Tree n_jobs = -1 

Proximity Stump n_jobs = -1 

Canonical Interval Forest n_estimators = 500, n_jobs = -1 

DrCIF n_estimators = 500, n_jobs = -1 

Shapelet Transform Classifier n_jobs = -1 

Arsenal n_jobs = -1 

ROCKET Classifier n_jobs = -1 
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Appendix I - Machine Learning Algorithm Results 

Method Balanced Accuracy Average Precision f1-score 

Time Series Forest Classifier 0.869 0.863 0.889 

Random Interval Spectral Ensemble 0.833 0.825 0.865 

Supervised Time Series Forest 0.884 0.877 0.903 

Column Ensemble Classifier 0.774 0.776 0.807 

Individual BOSS 0.627 0.663 0.690 

Contractable BOSS 0.773 0.765 0.842 

WEASEL 0.802 0.801 0.829 

MUSE 0.845 0.842 0.865 

Individual TDE 0.722 0.730 0.781 

K-Neighbors Time Series Classifier 0.763 0.760 0.825 

Proximity Tree 0.612 0.653 0.676 

Proximity Stump 0.500 0.591 0.000 

Canonical Interval Forest 0.890 0.884 0.907 

DrCIF 0.895 0.888 0.912 

Shapelet Transform Classifier 0.827 0.819 0.861 

Arsenal 0.878 0.870 0.899 

ROCKET Classifier 0.912 0.907 0.924 

 




