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Abstract: Forest inventories play an important role in enabling informed decisions to be made for
the management and conservation of forest resources; however, the process of collecting inventory
information is laborious. Despite advancements in mapping technologies allowing forests to be
digitized in finer granularity than ever before, it is still common for forest measurements to be
collected using simple tools such as calipers, measuring tapes, and hypsometers. Dense understory
vegetation and complex forest structures can present substantial challenges to point cloud processing
tools, often leading to erroneous measurements, and making them of less utility in complex forests.
To address this challenge, this research demonstrates an effective deep learning approach for seman-
tically segmenting high-resolution forest point clouds from multiple different sensing systems in
diverse forest conditions. Seven diverse point cloud datasets were manually segmented to train and
evaluate this model, resulting in per-class segmentation accuracies of Terrain: 95.92%, Vegetation:
96.02%, Coarse Woody Debris: 54.98%, and Stem: 96.09%. By exploiting the segmented point cloud,
we also present a method of extracting a Digital Terrain Model (DTM) from such segmented point
clouds. This approach was applied to a set of six point clouds that were made publicly available as
part of a benchmarking study to evaluate the DTM performance. The mean DTM error was 0.04 m
relative to the reference with 99.9% completeness. These approaches serve as useful steps toward a
fully automated and reliable measurement extraction tool, agnostic to the sensing technology used
or the complexity of the forest, provided that the point cloud has sufficient coverage and accuracy.
Ongoing work will see these models incorporated into a fully automated forest measurement tool for
the extraction of structural metrics for applications in forestry, conservation, and research.

Keywords: deep learning; segmentation; forest; point cloud; LiDAR; photogrammetry; terrestrial
laser scanning; structure from motion; automated; digital terrain model

1. Introduction

Forest measurements are important in a number of fields including, but not limited
to, forestry, climate science [1–3], fire risk management [4,5], and understanding habitat
structural complexity [6–8]. Modern remote sensing techniques such as Light Detection
and Ranging (LiDAR) and photogrammetry are enabling high-quality 3D reconstructions
of forests to be collected by operators with little or no surveying training. Particularly trans-
formative are techniques such as close-range photogrammetry, which enable researchers
and foresters to collect high accuracy and high-resolution 3D reconstructions of forests
with low-cost, consumer-grade cameras [9,10] and low-cost Unoccupied Aircraft Sys-
tems (UAS) [11,12]. While the capability to collect such rich datasets is becoming more
widespread and accessible, a major obstacle impeding the utility of such datasets is the
complexity of extracting reliable and useful measurements from them.

There are a number of tools available for extracting measurements from forest point
clouds [13–17]; however, many of these tools require manual tuning of parameters, manual
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interventions/point cloud editing, and can have complex end-user workflows. There
are many challenges such as occlusions, complex structures, understory vegetation, and
rugged terrain that are not yet well handled by existing approaches [18], resulting in
applied forest studies commonly resorting to time-consuming manual methods of extract-
ing measurements from forest point clouds [19]. Of particular note is that most point
cloud tools are intended primarily for very high-quality Terrestrial Laser Scanning (TLS)
point clouds and are rarely transferable to noisier point clouds captured by approaches
such as photogrammetry, Mobile Laser Scanning (MLS), or high-resolution Aerial Laser
Scanning (ALS).

A number of the previously mentioned tools begin with a similar processing pattern.
First, a Digital Terrain Model (DTM) is extracted, followed by extracting point cloud
slices parallel to this DTM. These slices will ideally contain circular clusters of points that
represent only stems, which can be clustered and measured with circle or cylinder fitting
algorithms. Some approaches will use these as seed points for applying more complex
information extraction techniques, while others will simply measure a slice in the vicinity
of 1.3 m above the DTM to measure Diameter at Breast Height (DBH). This approach is
relatively simple to implement and can be highly effective in situations without any leaves
or understory in the sliced region and when stems are well separated (such as in intensively
managed and pruned plantation forestry). However, this method can perform poorly when
points belonging to understory vegetation result in the incorrect clustering of multiple
trees into one or false detections of stems. In practice, it is common for forest point clouds
to contain understory vegetation, so it would be beneficial if we could automatically and
robustly segment stems and vegetation prior to the measurement process. It is relatively
simple for a human to visually differentiate stems from vegetation, even without color
information (as demonstrated in Figure 1), yet it is challenging to explicitly program an
algorithm to perform this task effectively.

Semantic segmentation refers to the separation of a dataset into meaningful subsets. In
the case of this paper, we are focused on separating parts of a forest into terrain, vegetation,
coarse woody debris, and stem categories from a point cloud. There have been many
different approaches to the segmentation of forest point clouds [20–34] so far. Some
approaches use heuristics [20,22,25,28,29] or morphological operations [27], while others
use supervised [23,26,30–33] or unsupervised [21,34] machine learning techniques. With
supervised machine learning techniques, the first major challenge to building a model
is to obtain or generate sufficient and appropriate training data. Some works in this
area [23,33] approach this through the use of artificially generated datasets, which are
made from simulating a forest and a terrestrial laser scanning operation to create perfectly
labeled point clouds on demand. This approach is certainly logical, as manually labeling
point cloud datasets is time-consuming and monotonous while also requiring skilled and
attentive operators; however, it can be difficult to generate synthetic datasets with all of the
same challenges present within real-world point clouds. Occlusions and ranging noise can
be generated in these workflows with relative ease; however, it is difficult to account for
all possible sensing difficulties and sources of error. Movement of the trees due to breeze,
imperfect reconstructions during photogrammetry, and variable optical properties of the
environment can all present sensing challenges and artefacts that are difficult to simulate
at this time.

The segmentation works described above were mostly designed with individual
sensing methods in mind, such as TLS [20–23,27,28,33,34], MLS [25,28], or ALS [26,28–32],
resulting in limited transferability to point clouds captured using other methods with the
exception of [28], whose approach was demonstrated on ALS, TLS, and MLS. To move
toward the idea of a fully automated and universal forest point cloud processing tool, the
goal of our work was to create a workflow capable of automatically segmenting forest point
clouds from a variety of sensors with varied point cloud accuracy, density, and mapping
challenges. We aim for this model to handle point clouds from TLS, MLS, high-resolution
ALS, and photogrammetry (terrestrial/aerial close range or aerial high-resolution nadir).
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Figure 1. Objects within a Mobile Laser Scanned (MLS) point cloud can still be interpreted with relative ease by a human 

despite having no color information. We can easily identify which points belong to terrain, vegetation, coarse woody 

debris, and stems in most cases. While this figure is only two-dimensional (making interpretation more challenging), these 

objects are considerably more recognizable when viewing the point cloud directly, as it is easier for us to perceive the 

structure while translating/rotating the point cloud. 

Semantic segmentation refers to the separation of a dataset into meaningful subsets. 

In the case of this paper, we are focused on separating parts of a forest into terrain, vege-

tation, coarse woody debris, and stem categories from a point cloud. There have been 

many different approaches to the segmentation of forest point clouds [20–34] so far. Some 

approaches use heuristics [20,22,25,28,29] or morphological operations [27], while others 

use supervised [23,26,30–33] or unsupervised [21,34] machine learning techniques. With 

supervised machine learning techniques, the first major challenge to building a model is 

to obtain or generate sufficient and appropriate training data. Some works in this area 

[23,33] approach this through the use of artificially generated datasets, which are made 

from simulating a forest and a terrestrial laser scanning operation to create perfectly la-

beled point clouds on demand. This approach is certainly logical, as manually labeling 

point cloud datasets is time-consuming and monotonous while also requiring skilled and 

attentive operators; however, it can be difficult to generate synthetic datasets with all of 

the same challenges present within real-world point clouds. Occlusions and ranging noise 

can be generated in these workflows with relative ease; however, it is difficult to account 

for all possible sensing difficulties and sources of error. Movement of the trees due to 

breeze, imperfect reconstructions during photogrammetry, and variable optical proper-

ties of the environment can all present sensing challenges and artefacts that are difficult 

to simulate at this time. 

The segmentation works described above were mostly designed with individual 

sensing methods in mind, such as TLS [20–23,27,28,33,34], MLS [25,28], or ALS [26,28–32], 

resulting in limited transferability to point clouds captured using other methods with the 

exception of [28], whose approach was demonstrated on ALS, TLS, and MLS. To move 

toward the idea of a fully automated and universal forest point cloud processing tool, the 

Figure 1. Objects within a Mobile Laser Scanned (MLS) point cloud can still be interpreted with relative ease by a human
despite having no color information. We can easily identify which points belong to terrain, vegetation, coarse woody debris,
and stems in most cases. While this figure is only two-dimensional (making interpretation more challenging), these objects
are considerably more recognizable when viewing the point cloud directly, as it is easier for us to perceive the structure
while translating/rotating the point cloud.

Our paper contributes a successful semantic segmentation approach based upon a
modification of the Pointnet++ [35] architecture. To train the model to perform on diverse
datasets, we manually segmented point clouds from a diverse set of sensors. As this
segmentation approach extracts the terrain points, we also provide a method to exploit this
information to create a Digital Terrain Model (DTM) that is robust to complex understory
vegetation, photogrammetry noise, and uneven terrain. Finally, we validated the accu-
racy and coverage of our DTM approach against six point clouds from an international
benchmarking dataset [18].

2. Materials and Methods
2.1. Methodology Overview

This work was motivated by the idea that a well-segmented point cloud would sim-
plify the forest point cloud measurement process in the presence of diverse and imperfect
datasets. Here, we describe the creation of our training and evaluation datasets, the archi-
tecture and training approaches for the deep learning model, an approach to the generation
of a Digital Terrain Model (DTM) from the segmented point cloud, and how these models
and approaches were validated. Figure 2 shows a schematic of how the methods described
in this paper fit into a larger-scale project that will incorporate the semantic segmentation
and DTM generation tools into a comprehensive forest structural measurement tool that
will be able to handle diverse forest point clouds (of high resolution).
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Figure 2. Schematic diagram describing how this research, which focuses on semantic segmentation and Digital Terrain
Model generation, fits into our larger goal of creating a fully automated forest point cloud measurement tool.

2.2. Class Selection Approach

The classes for semantic segmentation were chosen based on visual inspection of the
point clouds with color information omitted. While some implementations of Pointnet-
like architectures exploit Red, Green, and Blue (RGB) color information or LiDAR return
intensity/reflectance, our model is intended to work on spatial (X, Y, Z) coordinates
alone such that it can work on most (if not all) high-resolution* forest point clouds. The
point cloud visualization and editing tool CloudCompare [36] was used with “Eye-Dome-
Lighting” mode enabled for this step, which makes it possible to perceive the 3D structure
without a colored point cloud. Classes that the authors could reliably distinguish from 3D
structure alone were noise, terrain, vegetation, coarse woody debris (CWD), and stems.

A point is considered to be terrain if it appears to be part of the ground surface
(according to the human labeling the dataset). The vegetation class is used as a catch-all
class for any points that were not terrain, CWD, or stem points. As such, any nearby points
above or below the ground surface that were not considered to be terrain or CWD were
labeled as vegetation. The CWD class consists of any obvious fallen timber/branches
laying on the ground. While this class could have been merged with the stem class, it
was separated for the following reasons. First, we need to distinguish between a log
on the ground and a standing tree stem that may be adjacent. When clustering with
the Density-based spatial clustering of applications with noise (DBSCAN) algorithm in
post-segmentation processing steps (beyond the scope of this paper), these would be
considered one tree if they were not in separate classes, which is undesirable for our
processing approach. Secondly, the reconstructed CWD that we wish to classify included
more variable structures than the stem class. For example, we wish to detect partially
decomposed CWD, which can have a different structure to what the stem class is intended
to represent, particularly in photogrammetric datasets.

The stem and vegetation classes were intended to separate the well-reconstructed
woody material from the leaf material. We observed that as the reconstruction quality
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reduces, points that may be from a branch or stem become indistinguishable from points
that may belong to leaf material. As a result, there is typically a gradual transition from
stem to vegetation class (per our class definitions) as noise/measurement errors increase,
stem/branch sizes decrease, or occlusions lead to poor reconstruction. If a section of a
branch or stem is very poorly reconstructed, there is little use in trying to measure the
diameter of it, as it will almost certainly be incorrect; however, the points can still be useful
for measuring the amount of canopy vegetation.

Manually labeling the point clouds requires some operator discretion; so for the sake
of consistency, only one person manually segmented the entire dataset.

* When we refer to “high-resolution” in this paper, we are referring to any forest point
clouds where tree stem diameters could be directly measured from the point cloud.

2.3. Segmentation Model Dataset Generation

The point clouds used in this study came from a variety of sources, forest conditions,
and sensor systems. These point clouds were captured using Terrestrial Laser Scanning
(TLS), Aerial Laser Scanning (ALS), Mobile Laser Scanning (MLS), and Unmanned Aerial
System (UAS)-based aerial photogrammetry (UAS_AP). Forest conditions included open
woodlands, pine plantations, and dense eucalyptus forests of varying structural complexity
and were collected in various locations throughout Australia and New Zealand. Seven
point clouds (described in Table 1) were manually segmented using the segmentation tool
in CloudCompare [36] into the 4 class categories (Terrain, Vegetation, CWD, Stem).

Table 1. Description of manually labeled point cloud datasets, their dominant plant species, and plot dimensions. Counted
stems were >100 mm diameter at breast height. Stem counts were automatically extracted and not manually measured.

Dataset IDs Sensing Method
(Sensor) Plot Details Forest Type Location Source

TLS_1
Terrestrial Laser

Scanner
(Riegl VZ400)

Square
20 × 20 m
11 Stems

275 Stems/ha

Dry Sclerophyll
Box-Ironbark

Woodland

Rushworth forest,
Victoria, Australia

Provided through the
TERN Data Portal

[1,37,38]

TLS_2
Terrestrial Laser

Scanner
(Riegl VZ400)

Square
20 × 20 m

7 Stems
175 Stems/ha

Dry Sclerophyll
Box-Ironbark

Woodland

Rushworth forest,
Victoria, Australia

Provided through the
TERN Data Portal

[1,37,38]

TLS_3
Terrestrial Laser

Scanner
(Leica_RTC360)

Square
20 × 20 m
32 Stems

800 Stems/ha

Pinus radiata
Plantation Rotorua, New Zealand Interpine Group Ltd.

VUX_1LR_1
Aerial Laser Scanner

(Riegl VUX-1LR,
helicopter mounted)

Square
20 × 20 m
10 Stems

250 Stems/ha

Pinus radiata
Plantation

Tumut, New South Wales,
Australia Interpine Group Ltd.

UAS_AP_1
Above canopy UAS

Photogrammetry
(DJI Phantom 4)

Square
20 × 20 m
18 Stems

450 Stems/ha

Eucalyptus
amygdalina

Open Woodland

Midlands, Tasmania,
Australia Collected by authors.

HOVERMAP_1 Mobile Laser Scanner
(Emesent Hovermap)

Square
20 × 20 m
25 Stems

625 Stems/ha

Pinus radiata
Plantation Rotorua, New Zealand Interpine Group Ltd.

HOVERMAP_2 Mobile Laser Scanner
(Emesent Hovermap)

Circular 40 m
diameter
74 Stems

589 Stems/ha

Pinus radiata
Plantation Rotorua, New Zealand Interpine Group Ltd.

When manually segmenting the point clouds, color information can be helpful for
the human operator to differentiate objects in the point cloud; however, care must be
taken to avoid the creation of contradictory training information. The model is relying
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on spatial coordinates alone, so any segmentation performed using the color information
must be carefully checked to ensure that the class of interest is able to be identified by
a human with only spatial information (i.e., no color). Particularly in the cases of the
photogrammetry datasets, CWD can be visible in colorized point clouds, but spatially, it
can not be reconstructed in a way that is distinct from the underlying terrain points. We
wish to train the model to predict CWD only when it is clearly present in the 3D structure.

Once segmented, these point clouds were split (0.5/0.25/0.25) into training, validation,
and test sets at the individual point cloud level. Figure 3 visualizes the data split and the
manually labeled point clouds. We did not split these datasets blindly, as it is necessary
to ensure that representative samples of each point cloud were present in the training,
validation, and test sets. This is necessary as the datasets are imbalanced simply due to
the structure of forests, as there were far more stem and vegetation points than CWD
points. If we were to take the approach of blindly splitting the data, we would run the
risk of providing insufficient CWD samples to the model during training or none during
validation/testing, leading to poor performance and/or an inappropriate evaluation of the
model’s performance.
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dataset labels represent the sensor used to collect the point clouds. The expanded abbreviations are as follows: Terrestrial
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(Krisanski, S. et. al, Sensor Agnostic Semantic Segmentation of Forest Point Clouds using Deep Learning (Part 1), https:
//www.youtube.com/watch?v=MGRQDZZ1QBo, accessed on 30 March 2021).

For the purposes of training and evaluating the model, the canopy was fully re-
moved from the HOVERMAP_1 dataset and partially trimmed from the TLS_3 and HOV-
ERMAP_2 datasets, as manually segmenting the multitude of small branches was both
unfeasible from a time perspective and also highly ambiguous. The ambiguity arises due
to choosing a boundary between points belonging to either the stem or vegetation class

https://www.youtube.com/watch?v=MGRQDZZ1QBo
https://www.youtube.com/watch?v=MGRQDZZ1QBo
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as stems/branches become noisier with increasing height due to the increasing sensing
distance, beam divergence effects, and occlusion effects (from a ground-based LiDAR).
Figure 4 shows a close-up section of the HOVERMAP_2 dataset, which visualizes the
ambiguity existing in the original point clouds. We cannot evaluate the model against
a human baseline in regions where a human cannot consistently label the points, so we
took the approach of removing the ambiguous regions from several of the training, testing,
and validation datasets as appropriate. The model was trained and evaluated on the clear
examples, leaving the model to choose the decision boundaries when used in practice,
based upon what was learned from the clear examples. For further clarity on the train-
ing, validation, and test datasets, we encourage readers to watch this visualization video
(Krisanski, S. et. al, Sensor Agnostic Semantic Segmentation of Forest Point Clouds using
Deep Learning (Part 1), https://www.youtube.com/watch?v=MGRQDZZ1QBo, accessed
on 30 March 2021).
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effects and increasing occlusion effects with height. (A) Shows a very clearly reconstructed stem. (C) Shows points from the
canopy which would be labeled as vegetation class per our definitions. (B) Shows the ambiguous region in between (A) and
(C), where stems are identifiable, but are in-between the stem (A) and vegetation (C) class definitions. Ambiguous regions
as shown in (B) were removed from several of the training, testing and validation datasets as needed.

The training dataset (shown in Figure 3) was cloned twice with each clone being scaled
by a factor of 0.5 and 2.0, respectively. The cloned point clouds that were downscaled to 0.5
of their original size were subsampled to 0.01 m resolution (minimum distance between
points) to provide training examples of smaller sized objects at the same 0.01 m resolution
as the original dataset. The upscaled clone was not subsampled as doubling the point
cloud scale halves the effective point cloud resolution.

https://www.youtube.com/watch?v=MGRQDZZ1QBo
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2.4. Network Architecture

The architecture we used was based upon Pointnet++ [35], which was chosen due to its
ability to perform semantic segmentation of unordered point clouds directly and efficiently
without the need for voxelization. The main changes we made from the Pointnet++
architecture were to increase the size of the model to increase the learning capacity enough
to handle up to 20,000 points per sample versus 1024 points per sample in the original paper.
For detailed explanations of the set abstraction and feature propagation modules, please
see the original Pointnet [39] and Pointnet++ papers [35]. The Pytorch Geometric [40]
implementation of the Pointnet++ segmentation architecture was used as the starting point
for this work, with our modified architecture shown in Figure 5. We have described the
architecture in the same structure as the Pytorch Geometric segmentation examples for
ease of implementation.
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Figure 5. The network architecture used in this paper was based upon the Pytorch Geometric [40]
implementation of Pointnet++ [35] with some modifications to increase the size and learning capacity
of the network. Abbreviations: Multilayer Perceptron (MLP), 1 Dimensional Convolution (Conv1D),
Rectified Linear Unit (ReLU).

2.5. Data Pre-Processing

While the Pointnet++ [35] architecture is able to process point clouds directly, it was
not made to ingest large point clouds all at once (such as TLS point clouds, which may
contain greater than 1 billion points). For segmentation in the original Pointnet++ paper,
they used subsets of the point cloud with 1024 points or less. Our approach involves slicing
the point cloud into cube-shaped regions of side length 6 m with a minimum of 500 and a
maximum of 20,000 points. If one of these cubes contains greater than 20,000 points, points
are removed at random until 20,000 points remain. If a cube contains less than 500 points, it
is not used to avoid processing empty or nearly empty cube samples. Then, 6 m cube sized
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samples with less than 500 points were typically difficult for humans to correctly classify,
so they were considered to be sub-optimal examples for the model to learn from. The 6 m
size is an arbitrary size chosen during early experimentation to capture enough context that
humans could identify objects in the samples in most cases, while a sample was limited to
20,000 points. Smaller sample boxes offered less context, making them more difficult to
classify. Larger sample boxes become lower resolution if we retain the 20,000 point cut-off
we assigned and again become more difficult to classify by humans and machines alike.

These cube regions are overlapping in X, Y, and Z dimensions with 0.75 overlap used
for training data, 0.5 overlap used for validation, and 0.5 overlap for testing data.

Each cube is shifted to the origin prior to inference to avoid floating point precision
issues when dealing with large numbers from global coordinates. Pre-processing is per-
formed before training or inference, and each sample is stored in a file. During training,
the samples are seen repeatedly, so we need not pre-process each sample multiple times
this way. During inference, the pre-processing will bottleneck our inference process, so
loading each sample from a file allows the Graphics Processing Unit (GPU) to be working
at near full capacity. By pre-processing the data before training or inference, we can also
take advantage of parallel processing more easily. To minimize computational time, our
pre-processing approach takes advantage of vectorization as much as possible through
extensive use of the NumPy [41] package.

2.6. Data Augmentation and Model Training

Data augmentation is applied for training samples in the form of random rotations
about X, Y (±15◦), and Z (±180◦) axes and random scale changes by multiplying coor-
dinates by a factor of 0.8 to 1.2. If there is no terrain or CWD present in a sample, the
X and Y axis rotations are randomly chosen between ±90◦ instead of ±15◦. We did this
because we do not wish to train the model to predict terrain class on vertically oriented
surfaces (such as on the side of a particularly large diameter tree), but valid stems can be
completely horizontal.

For each cube-shaped sample, there was a 50% chance of adding random noise to the
X, Y, and Z coordinates with a randomly chosen standard deviation of between 0.01 m and
0.025 m and a mean of 0 m, applied at a per-point level. The training dataset consisted
of 112,758 samples prior to the random augmentation, which was applied throughout
training to minimize the risk of overfitting and to aid the generalizability of the model to
unseen data.

To minimize contradictory training information, if a sample contains CWD but no
ground points, the CWD is relabeled to Stem class during training. The intent behind this
condition is for the model to learn that CWD should be near the ground and that CWD is
similar to the Stem class in some circumstances.

All training and testing were performed on a desktop computer with an Intel i9-10900K
CPU, 128 gigabytes (GB) of DDR4 RAM, and an Nvidia Titan RTX graphics processing unit
(GPU) with 24 GB of Video Random Access Memory (VRAM). The model was trained for
300 epochs with a batch size of 8 (limited by GPU VRAM), taking approximately 3 days.
Figure A1 shows the changes in accuracy and loss of the train and validation sets over the
300 epochs.

The model was trained using cross-entropy loss with an initial learning rate of
5 × 10−5, which was reduced to 2.5 × 10−5 after 150 epochs. The initial learning rate
was chosen through experimentation, where we found that higher learning rates lead to
erratic loss values or exploding gradients.

2.7. Model Inference

When used for inference, the model is used with a sliding box overlap of 0.5 in X,
Y, and Z axes. For each point in the segmented point cloud, up to 16 nearest neighbors
are found within a maximum search radius of 0.1 m. The median prediction scores are
computed for each class prediction, followed by an argmax function to select the final point
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label. The initial segmented point cloud may be down-sampled in some regions through
the process of enforcing a maximum of 20,000 points per sample region, so to label the
full original point cloud, each point in the original point cloud is assigned the label of its
nearest neighbor in the segmented point cloud.

2.8. Semantic Segmentation Evaluation Method

The segmented point cloud was evaluated on an individual point basis against the
manually segmented point cloud dataset. The Python package Scikit-Learn [42] was used
to evaluate the model and generate a confusion matrix of the results. As manually labeling
point clouds is highly time-consuming, there was a practical limit to how many point
clouds we could quantitatively evaluate the segmentation model on. In the interests of
transparency and in order to demonstrate the utility and limitations of the tool on a larger
range and scale of datasets, we have provided a fly-through video of several additional
datasets segmented by the model. These datasets are described in Table 2.

Table 2. Description of unlabeled point cloud datasets shown in the fly-through video. Counted stems were > 100 mm
diameter at breast height. Stem counts were automatically extracted and not manually measured.

Dataset IDs Sensing Method
(Sensor) Plot Details Forest Type Location Source

TLS_4
Terrestrial Laser

Scanner
(Riegl VZ 400i)

Circular
30 m diameter

110 Stems
589 Stems/ha

Araucaria
Cunninghamii Queensland, Australia Interpine Group Ltd.

HOVERMAP_3 Mobile Laser Scanner
(Emesent Hovermap)

Circular
50 m

205 Stems
1556 Stems/ha

Pinus Radiata
Plantation Rotorua, New Zealand Interpine Group Ltd.

UAS_AP_2
Above canopy UAS

Photogrammetry
(DJI Phantom 4)

Square
90 × 90 m
350 Stems

432 Stems/ha

Eucalyptus
Amygdalina

Open Woodland

Midlands, Tasmania,
Australia Collected by authors.

VUX_1LR_2 *

Aerial Laser Scanner
(Riegl VUX-1LR—

helicopter
mounted)

Rectangle
120 × 60 m
220 Stems

306 Stems/ha

Pinus Radiata
Plantation

Carabost, New South
Wales, Australia Interpine Group Ltd.

UC_UAS_AP_1
Under canopy UAS

Photogrammetry
(DJI Phantom 4)

Circular
26 m diameter

47 Stems
885 Stems/ha

Eucalyptus Pulchella
Native Forest

Fern Tree, Tasmania,
Australia

Collected by authors,
same point cloud as

“Plot 1” in [11]

* CloudCompare’s “Statistical Outlier Removal” was applied to VUX_1LR_2 with the default settings prior to processing to speed up the
processing time.

2.9. Digital Terrain Model Generation

Once a point cloud has been segmented by the model, the points labeled with “terrain”
class can easily be extracted for use in the generation of a Digital Terrain Model (DTM). In
Figure 6, we provide a pseudocode describing the process used to generate a DTM using
the segmented point cloud.
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Figure 6. Pseudocode for our method of generating of a Digital Terrain Model (DTM) from a segmented terrain point cloud.
DBSCAN and KDTree implementations were from [42] and [43], respectively.

2.10. Digital Terrain Model Evaluation Method

To evaluate the performance of our Digital Terrain Model (DTM), we applied it
to 6 point clouds made publicly available by a TLS benchmarking study [18]. In their
study, they generated the reference DTMs by first classifying the ground points using
the TerraScan software [44], followed by manual removal of non-ground objects. They
applied a 20 cm resolution grid for rasterization and used the mean height of the ground
points within each cell. In cases without points, the height value was interpolated using
the average of the neighboring cells.

To compare our DTM height measurements against the reference DTMs provided by
the benchmarking study, we used a 20 cm grid resolution in our algorithm, followed by
2D linear interpolation to the positions of the reference DTM, as there was a small offset
between predicted and reference grid point positions due to minor differences in how the
grid is generated.

The benchmarking study also introduced a measurement called DTM Coverage. The
DTM coverage is the ratio of the covered reference DTM points and the total reference
DTM points. For each point in the reference DTM, the nearest neighbor from our DTM was
found. If the distance to the nearest neighbor was less than 0.2 m, the point was “covered”.
A score of 1 implies the predicted DTM completely covered the region of the reference
DTM. This approach accounts only for the points in the reference DTM that are or are
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not covered and it does not consider the possibility of covering a greater area than the
reference DTM.

3. Results
3.1. Semantic Segmentation Evaluation

The semantic segmentation results are visualized in Figure 7, with the manually
segmented reference point clouds on the left and the model’s predictions on the right of
each pair. These point clouds are the “Test” dataset first shown in the top half of Figure 3.
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Figure 7. Visualization of the semantic segmentation results. For each pair, the left point cloud shows the manually labeled
reference and the right point cloud is the model’s label predictions. The predicted labels are visually very similar to the
reference dataset, with the most obvious differences being the few misclassifications of coarse woody debris (CWD) as
stems in TLS_2, and some terrain being misclassified as stem in VUX_1LR_1.

The predictions were visually very similar to the reference dataset. Of the 4 class
labels, we observed that the model was least accurate at segmenting the CWD class, with
the clearest examples of this in the TLS_1, TLS_2, and HOVERMAP_2 datasets. Ground
points that were misclassified as stem points can be seen in the VUX_1LR_1 dataset, and the
stem was not extracted as far up the tree as in the human segmented point cloud. It appears
to be uncommon for ground points to be misclassified as stem points in our other testing
datasets, but when they do occur, it tends to be on the edges of the point clouds where the
ground does not completely cover the sample box region. These observations align with
what we would expect based upon the quantitative results shown in the confusion matrix
in Figure 8.
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Figure 8. Confusion matrix showing performance of the semantic segmentation process compared against manually
segmented points.

The terrain, vegetation, and stem classes had notably greater accuracy than the CWD
class, with stems being predicted with the greatest accuracy on this test dataset. Table 3
presents the per-class recall and precision scores, as well as the overall accuracy, precision,
and recall. Per-class accuracies are shown in the confusion matrix in Figure 8.

Table 3. Semantic segmentation results.

Terrain Vegetation CWD Stem

Recall 0.959 0.960 0.550 0.961
Precision 0.926 0.974 0.610 0.948

IoU 0.891 0.936 0.407 0.913

Overall

Accuracy 0.954
Precision 0.864

Recall 0.858

We have also provided a comparison of our segmentation results against others
in the literature in Table 4; however, it should be stressed that without identical test
datasets and agreement on per-class definitions, it can only be used as an indication of
their relative performances.



Remote Sens. 2021, 13, 1413 14 of 24

Table 4. Comparison of segmentation results against similar studies. Bold numbers denote the top score in each metric.

Study Method Stem
Precision Stem Recall Vegetation

Precision
Vegetation

Recall
Overall

Precision
Overall

Accuracy

[26] *

3D Fully
Convolutional

Network
0.595 0.771 0.985 0.971 0.790 -

3D Fully
Convolutional
Network (with

LiDAR intensity)

0.652 0.744 0.985 0.975 0.819 -

Pointnet 0.517 0.572 0.976 0.959 0.747 -
Pointnet (with

LiDAR intensity) 0.554 0.727 0.985 0.960 0.770 -

[23]
Pointnet++

inspired
approach

- - - - - 0.900 **

[24]
Custom Feature
Set + Random

Forest
- - - - - 0.910

[21] Unsupervised
Learning - - - - - 0.888

[34] Unsupervised
Learning - - - - - 0.925 ***

Ours
Modified

Pointnet++
approach

0.948 0.961 0.974 0.960 0.961 ****
0.864 *****

0.961 ****
0.954 *****

* We compared against the Tumut dataset from [26] as it had higher scores than their Carabost dataset. ** Referred to as “Close to 90%” in
original paper. Exact value not reported. *** Updated accuracy value since original paper (Wang, D., et al., Unsupervised tree leaf-wood
classification from point cloud data. Available online: https://github.com/dwang520/LeWoS, accessed on 10 February 2021) **** Including
only stem and vegetation classes. ***** Including all of our classes (terrain, vegetation, CWD, stem).

3.2. Video Demonstration of Semantic Segmentation Performance

The segmentation model was also applied to additional point clouds that were not
manually segmented (nor seen to the model during training in any way) to qualitatively
identify the performant aspects of the model and identify the weaknesses under various
scenarios. To present our results as transparently as possible, a fly-through video of the
unseen datasets is provided here (Krisanski, S. et. al, Sensor Agnostic Semantic Segmen-
tation of Forest Point Clouds using Deep Learning (Part 2), https://www.youtube.com/
watch?v=v0HwNu6SK6g, accessed on 30 March 2021).This video shows five datasets from
five different sensor types as described in Table 2 in the methodology section. The datasets
shown in the video are also visualized in Figure 9.

https://github.com/dwang520/LeWoS
https://www.youtube.com/watch?v=v0HwNu6SK6g
https://www.youtube.com/watch?v=v0HwNu6SK6g
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Figure 9. This figure presents five additional larger-scale point clouds from five different sensing techniques/sensors that
were automatically segmented by the model. We provide a fly-through video of these datasets with the intent of transparently
showing the strengths and weaknesses of the model (Krisanski, S. et. al, Sensor Agnostic Semantic Segmentation of Forest Point
Clouds using Deep Learning (Part 2), https://www.youtube.com/watch?v=v0HwNu6SK6g, accessed on 30 March 2021).

Below, we have provided comments on the fly-through video with associated times-
tamps. These timestamps are linked to the video sections in the description on YouTube.
We also provide Figure A2 in the appendix to show an example of the per-class feature
maps of the TLS_4 dataset.

3.2.1. TLS_4

• Successfully identified CWD can be seen (00:30).
• Some understory vegetation is misclassified as stem (00:38).
• TLS_4 has some point cloud registration errors in the canopy, which is potentially

due to wind during data capture; however, this does not appear to have affected the
predictions negatively (00:48).

3.2.2. UAS_AP_2

• As this was captured by above-canopy nadir aerial photogrammetry, many stems
were not well reconstructed (01:13)

• Rocks can be seen to be classified as CWD. This was not considered a misclassification
since we never provided examples of rocks; however, this suggests rocks could be
worth including into future models for quantifying habitat (01:23).

https://www.youtube.com/watch?v=v0HwNu6SK6g


Remote Sens. 2021, 13, 1413 16 of 24

• The bases of many stems were classified as CWD (01:35).
• The upper regions of some CWD were misclassified as stem (01:40).
• Some canopy vegetation was misclassified as stem (01:48).

3.2.3. HOVERMAP_3

• Mostly desirable performance on the Hovermap dataset.
• Some minor branches/stems were mislabeled as vegetation; however, most of these

examples are in the ambiguous region between our definition of stem and vegetation,
where it would be difficult to measure accurate diameters from the point cloud even if
they were detected as stems (02:39).

3.2.4. VUX_1LR_2

• The bases of many stems in this dataset were misclassified as vegetation (03:05).
• CWD was not well detected in noisy point clouds, which is likely as a result of limited

training examples in this data type (03:15).
• Upper stems were misclassified as vegetation (03:33).

3.2.5. UC_UAS_AP_1

• A major stem (leaning almost horizontally) and some minor branches/small stems
were missed by the model and labeled as vegetation (04:32).

• The main CWD object in the point cloud was partially correctly segmented but was
misclassified as vegetation in some regions and misclassified as stem where the CWD
contacts a standing stem (04:33).

• A small patch of terrain points were misclassified as stem (04:36).

3.3. Digital Terrain Model Evaluation against Benchmarking Dataset

Our approach to DTM generation was able to cover the entirety of the reference DTM
in five out of six cases, with the exception being effectively completely covered also at
0.991 coverage. Table 5 shows the results of the DTM evaluation against the benchmarking.

Table 5. Digital Terrain Model evaluation results.

Plot Difficulty DTM Coverage Mean Error (m) RMSE (m)

1 Easy 1.0 0.018 0.079
2 Easy 1.0 0.020 0.066
3 Medium 1.0 0.085 0.250
4 Medium 1.0 0.038 0.137
5 Difficult 0.991 0.051 0.166
6 Difficult 1.0 0.025 0.110

Overall Mean 0.999 0.040 0.135

3.4. Processing Times

We have provided Table 6 to demonstrate the processing times on the desktop com-
puter described in Section 2.6. We have also provided Figure A3 in the appendices to
visualize these numbers more clearly. A high-resolution TLS point cloud TLS_4 was able to
be processed from start to finish in 29 min. However, the VUX_1LR_2 dataset exceeded the
128 GB of RAM available on our desktop computer, which meant that it needed to spill
over onto swap space on the M.2 solid state drive for the excess (≈200 GB of swap space
was used).
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Table 6. Processing times of our method with respect to the number of points (after subsampling to 0.01 m minimum
distance) between points.

Processing Time (Min)

Dataset Number of
Points *

Number of
Sample Boxes Area ** (ha) Pre-Processing Inference Post

Processing Total Time

TLS_1 819,279 348 0.039 0.36 1.06 0.21 1.63
TLS_2 199,398 304 0.031 0.07 0.28 0.24 0.59
TLS_3 2,200,477 744 0.039 0.63 2.51 0.35 3.49
TLS_4 13,315,371 1343 0.068 10.72 16.81 1.45 28.98

HOVERMAP_1 3,085,477 312 0.040 0.73 1.85 0.42 3.03
HOVERMAP_2 11,328,579 2007 0.125 9.02 16.68 1.64 27.34
HOVERMAP_3 51,310,332 3462 0.212 61.28 45.39 6.81 113.48

UAS_AP_1 564,003 214 0.040 0.16 0.59 0.22 0.97
UAS_AP_2 36,613,477 3969 0.640 43.96 57.85 13.88 115.69

UAS_UC_AP_1 16,154,845 538 0.062 5.33 6.22 3.26 14.81
TLS_BENCHMARK_1 16,861,460 1233 0.103 19.92 24.19 3.32 47.44
TLS_BENCHMARK_2 16,211,608 1056 0.102 20.78 23.14 2.83 47.22
TLS_BENCHMARK_3 19,082,314 1206 0.093 24.39 25.98 2.12 53.02
TLS_BENCHMARK_4 19,982,845 1336 0.093 23.02 27.84 2.14 53.54
TLS_BENCHMARK_5 14,101,093 1206 0.098 20.99 24.81 1.91 47.71
TLS_BENCHMARK_6 11,089,765 1056 0.095 17.81 21.04 1.62 40.47

VUX_1LR_1 1,129,243 148 0.040 1.84 2.30 0.46 4.6
VUX_1LR_2 125,936,807 8175 0.720 252.21 262.94 21.46 536.61

* All point clouds were subsampled to 0.01 m minimum distance between points. ** Area was computed automatically using a convex hull
on the terrain labeled points.

In Figure A2, it can be seen that the post-processing step (consisting of the DTM
generation process) had a smaller impact on the processing time than the pre-processing
and inference steps, as is to be expected. Both pre-processing and segmentation steps
appear to have a similar relationship with respect to the number of points in the point
cloud. We have fitted a 2nd order polynomial to these points for the purposes of visualizing
the trend. From these trends, which appear to increase quadratically with respect to the
number of points, the best approach to using this model in practice would be to slice large
point clouds into sub-point clouds to be processed in batches before reassembling them (if
needed). The optimal slicing size will depend on the computational resources available, as
the classification model performs worse on the edges of point clouds (smaller slices means
more edges for an equivalent point cloud).

This model is currently only suitable for relatively high-performance desktop comput-
ers and up; however, due to the computational expense of working with such large point
clouds, it is a reasonable expectation that those interested in our approach will already
have a sufficiently powerful workstation. Lower-level computers cannot cope well with
point clouds containing hundreds of millions to billions of points, so our method is likely
out of reach of lower-end computers at this time.

4. Discussion
4.1. Segmentation

In Table 4, we presented our segmentation results alongside other forest point cloud
segmentation studies. This is not an exhaustive list of related works but is intended to
serve as an indication of the performance of our approach relative to similar studies. For
this comparison, we must acknowledge the limitations that we are not comparing these
methods on the same datasets, and that our definitions of stem and vegetation classes may
differ slightly from the other studies in the field. The top performing model we found
in the literature was [34], achieving an overall accuracy of 92.5%, which is a particularly
impressive result considering it was using an unsupervised learning technique, negating
the need for labeled training data. [24] achieved a 91% overall accuracy using a technique
based upon the random forest technique. [23] used a Pointnet++ inspired approach and
claimed an overall accuracy of “close to 90%”. [26] tested a variety of approaches, with their
best results being on their Carabost dataset. An overall accuracy was not reported; however,



Remote Sens. 2021, 13, 1413 18 of 24

we can compare with respect to overall precision. Using a 3D convolutional neural network
on voxels, they reported an overall precision of 79% without LiDAR intensity information,
and 81.9% with intensity. [26] also tested a Pointnet-based method that achieved 74.7%
without intensity information and 77% with intensity. Our model was able to achieve
96.1% overall accuracy (if only comparing stem and vegetation classes) or 95.4% overall
accuracy if comparing our model in its entirety (segmenting all four classes). Our model
scored a higher overall precision than all of the models tested in [26]. Whilst we cannot
conclusively compare these models in this form due to the above-mentioned limitations; of
those semantic segmentation studies we compared against, our model ranks among the
best performing at this task. This remains the case even while simultaneously segmenting
an additional two classes that the compared models did not need to segment.

A limitation of this work is the subjectivity associated with manually labeling forest
point clouds. While the majority of points can be segmented consistently, it is inevitable
that mislabeled points will be present due to the ambiguity of noisy sections and the limited
time that can be spent ensuring a point cloud is correctly labeled. Further to this, humans
are not well suited to highly repetitive tasks, and while all possible care was taken to
accurately label these point clouds during the two-week long labeling process, some minor
(human) misclassifications are almost guaranteed to be present. In synthetic forest point
cloud datasets, it is possible to precisely define vegetation and stem as separate categories;
however, in real-world point clouds, this distinction becomes less clear. As discussed in
Section 2.3, we described a continuous scale between the definitions of stem and vegetation,
where stem points begin to resemble vegetation points as the noise increases/reconstruction
quality decreases. As a result of this, the intent of our approach was to segment out well-
reconstructed stems from poorly reconstructed stems by labeling the difficult to measure
stems/branches as the vegetation class. This effect is clearly illustrated in the video
provided, which shows the segmentation results of the model on five point clouds. For
example, in TLS_4, a dataset with little noise, most of the stem is correctly classified as
stem, while noisier and less dense point clouds such as VUX_1LR_1 and VUX_1LR_2 have
comparatively more stem sections labeled as vegetation. We considered it to be preferable
to misclassify stems as vegetation rather than vegetation as stems. It is preferable to miss
a tree than to attempt to fit circles/cylinders to vegetation and risk overestimating the
volume of the forest. This undesirable behavior was difficult to avoid entirely with this
approach, but it may be possible to remove some of these vegetation-stem misclassifications
during post-processing with a well-designed and robust stem fitting approach applied to
the segmented stems. At the time of writing, our team is working on this problem as the
next step in this project.

The idea behind combining these classes into a single multi-class segmentation model
was that the CWD class was intended to make use of the proximity to the terrain class
information. Due to the complex nature of the model, it is not clear if this idea was useful;
however, the approach was nonetheless successful. Our deep learning approach to CWD
detection differs considerably from the cylinder fitting approach used in [45] to detect fallen
deadwood. An advantage of our method is the capability of identifying highly irregular,
partially reconstructed, and decaying CWD rather than cylindrical CWD. Most of the CWD
we are detecting in our model is ill suited to being measured with cylinder-based models,
so our future work on measuring the volume of segmented CWD will approach this using
mesh-based techniques.

The misclassification of some terrain points as stem points (seen in UC_UAS_AP_1
for example) appears to mostly occur when the sample box region has cropped the terrain
on the edges of the point cloud or partially cropped into the terrain with the upper or
lower boundary of the box vertically. These cases can change the appearance of the terrain
such that even a human may have difficulty identifying it correctly. We suggest that this
problem is one of context, as when the sample is seen in context (i.e., with the rest of the
point cloud), it is easy for a human to identify these examples correctly as terrain, but
without context, a small slice of terrain may look very similar to CWD, a branch/stem in
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the air, or vegetation. Alternate sampling strategies to the box approach that could provide
a greater context to the model with minimal loss in effective resolution would be a useful
direction for future research to explore.

4.2. Digital Terrain Model

To quantify the performance of our DTM method, we tested our approach on point
clouds and reference DTMs provided by a benchmarking study [18]. Our Root Mean
Squared Errors (RMSEs) of heights relative to the reference DTMs were higher (worse) than
the best algorithms tested in the benchmarking study, but they were still within a similar
range as the other algorithms tested in that study. With that said, we must acknowledge
that we are not truly comparing the same data, as we are measuring only the six point
clouds that were made open access: a subset of the 24 point clouds in the original study.
Our method had effectively 100% coverage in all point clouds while also being relatively
consistent in performance amidst the variable complexity, missing data from occlusions,
and steep terrain conditions of some of the point clouds. Our approach generated a
smoother DTM surface than the reference DTM method, but we cannot confidently say
if one method was more accurate than the other with this test. In this comparison, we
are comparing our algorithm’s results to another algorithm’s results (with some manual
intervention in the case of the reference DTM); however, we consider this comparison to be
sufficient to validate our DTM generation method’s efficacy.

Extracting DTMs using Pointnet and Pointnet++-based approaches has been done
before on comparatively low-resolution ALS point clouds [32,41]; however, our approach
differs by applying a modified Pointnet++ architecture to simultaneously extract terrain,
vegetation, CWD, and stem points from a point cloud. A notable property of our DTM
generation method is its robustness to noise points below the ground surface, which
are common in photogrammetry datasets. This robustness emerges as a result of the
segmentation model classifying the below-ground noise points as vegetation and not
terrain points, allowing the DTM method to simply ignore those points.

The most significant limitation of our DTM method would be the computational
cost compared to other, simpler DTM generation methods. It is more computationally
expensive to segment an entire point cloud prior to generating the DTM; however, we
already segment the point cloud as part of our overall point cloud analysis approach, so this
is acceptable for our application. Our algorithm was capable of performing similarly to the
reference DTMs of the benchmarking study with no manual intervention required, which,
as stated in the benchmarking study, is difficult to achieve with a fully automatic algorithm.
The priority of our work at this time is reliability and the ability to truly automate forest
point cloud analysis, which leads us to the future directions of this project.

4.3. Future Research Directions

In future work on this project, we intend to use the trained model to expand our
training dataset by manually correcting the minor errors made by the model and retrain-
ing/adjusting the model iteratively until the desired model performance is reached. Once
the CWD segmentation performance is more reliable, there will be a need for further
research to measure and validate CWD quantities against reference data. This work is part
of an ongoing research effort into the development of a tool for fully automated and sensor
agnostic measurement of forest point clouds. Future work by the authors will focus on the
exploitation of reliable point cloud segmentation as the starting point for the extraction of
detailed tree models and structural complexity metrics under diverse forest conditions and
point cloud types.

While beyond the scope of our project, we also suggest that the modified Pointnet++
model we have presented is likely to be transferable to applications outside of forest
mapping, particularly where the smaller original Pointnet++ model may not capture
sufficient contextual information to segment the point cloud effectively. It would be
interesting to explore the effect of varying the number of segmentation classes on the
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overall accuracy of segmentation, as well as exploring if even larger models (allowing even
more contextual information) could perform better.

5. Conclusions

In this study, we presented and evaluated a methodology for sensor agnostic semantic
segmentation of high-resolution forest point clouds and a Digital Terrain Model (DTM)
approach that exploits the segmented point cloud. Our semantic segmentation approach
was able to achieve an overall accuracy of 95.4% relative to human labeled point clouds but
with the considerable benefit of being a fully automated workflow. Our model achieved
per class accuracies of 95.92% for terrain, 96.02% for vegetation, 54.98% for coarse woody
debris, and 96.09% for stems. Where human operators may require several days to manually
segment relatively small (20 × 20 m) point clouds, the presented methodology allows much
larger-scale point clouds to be segmented to an almost human-level accuracy at a rate of
up to several hectares per day (depending on point density) on a moderately powerful
consumer grade desktop computer. Furthermore, we can now use this model to build
larger-scale training datasets through an iterative process of model prediction and manual
human correction of errors. Through this process, it will become faster and cheaper to
generate reliable reference datasets for training and evaluation of new forest segmentation
models, until errors such as those seen in the videos can be mostly overcome. Future work
will see the segmentation and DTM extraction methods incorporated into a fully automated
forest point cloud measurement tool, which is intended to extract structural measurements
from diverse and complex point clouds from a variety of sensors and sensing techniques.
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