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Abstract: Forest mensuration remains critical in managing our forests sustainably, however, capturing
such measurements remains costly, time-consuming and provides minimal amounts of information
such as diameter at breast height (DBH), location, and height. Plot scale remote sensing techniques
show great promise in extracting detailed forest measurements rapidly and cheaply, however, they
have been held back from large-scale implementation due to the complex and time-consuming
workflows required to utilize them. This work is focused on describing and evaluating an approach
to create a robust, sensor-agnostic and fully automated forest point cloud measurement tool called
the Forest Structural Complexity Tool (FSCT). The performance of FSCT is evaluated using 49 forest
plots of terrestrial laser scanned (TLS) point clouds and 7022 destructively sampled manual diameter
measurements of the stems. FSCT was able to match 5141 of the reference diameter measurements
fully automatically with mean, median and root mean squared errors (RMSE) of 0.032 m, 0.02 m,
and 0.103 m respectively. A video demonstration is also provided to qualitatively demonstrate the
diversity of point cloud datasets that the tool is capable of measuring. FSCT is provided as open
source, with the goal of enabling plot scale remote sensing techniques to replace most structural forest
mensuration in research and industry. Future work on this project will seek to make incremental
improvements to this methodology to further improve the reliability and accuracy of this tool in most
high-resolution forest point clouds.

Keywords: deep learning; segmentation; forest; point cloud; lidar; photogrammetry; terrestrial laser
scanning; structure from motion; automated; digital terrain model

1. Introduction

Remote sensing technologies are revolutionizing the way forests are measured in
many ways; however, at plot scales, manual forest mensuration with simple tools remains
commonplace in industry and research. While the high initial cost of remote sensing tools
such as light detection and ranging (LiDAR) likely slows their uptake, the capture of high-
resolution point clouds is becoming increasingly efficient and scalable, while equipment
costs are declining. Mobile laser scanning (MLS) [1–4], terrestrial [5–8] and aerial [9,10]
close-range photogrammetry (TP and AP) and terrestrial laser scanning (TLS) [11–23] are
capable of generating high accuracy and high-resolution point clouds of forests consider-
ably faster than a human could measure them manually. While forest point clouds can be
captured relatively quickly, they are simply an array of points in 3D space; thus, they can be
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of limited use without further processing. To make such point clouds more broadly useful,
a means of rapidly, efficiently, and ideally, automatically extracting meaningful information
from them is required. Many fields could benefit from improved forest measurement
capabilities, including forestry, conservation [24], restoration, habitat management [25,26],
climate change and carbon stock monitoring [27–29], bushfire management and moni-
toring [30] and more [31]. Planet-scale remote sensing technologies have shown a lot of
promise for mapping our forests at relatively low-resolutions [29,32,33]; however, high-
quality field references remain necessary to ensure the validity of these large-scale models,
both during development and over time, as our climate and environmental conditions
change. High-resolution point clouds hold the potential to be used as high-quality inputs
to these models and can be considerably more efficient to capture than conventional field
reference information, while simultaneously capturing far greater detail than simple mea-
surements could capture. While there are many potential uses for these high-resolution
point clouds, reliable and fully automated measurements from such point clouds are
required to make widespread adoption both feasible and practical.

While numerous approaches and tools for extracting information from high-resolution
forest point clouds have been described in the past [15,17,34–56], uptake is still relatively
limited in the forestry industry and in applied forest research. This limited and lagging
uptake suggests that there are still important practical challenges to overcome in replacing
diameter tapes and calipers with more advanced tools such as LiDAR and photogrammetry.
With many of the existing point cloud tools and approaches, it is common to require com-
plicated and/or time-consuming workflows, manual tuning of parameters, combinations
of multiple methods (requiring software development skills), or re-implementation of
methods from papers. Further, highly-complex forest structures, commonly present in
native Australian forests, present considerable challenges to such tools. For these reasons,
our goal was to develop an easy-to-use, open-source tool to turn diverse and complex,
high-resolution forest point clouds into a set of simple outputs fully automatically and
without manual tuning of parameters. In this paper, we present the first version of our
Python package called the Forest Structural Complexity Tool (FSCT). This tool may be grad-
ually improved upon and updated over time, with the goal of making a highly-robust tool,
which can fully automatically extract directly useful information from point clouds cap-
tured using TLS, MLS, very-high-resolution aerial laser scanning (ALS) and high-resolution
photogrammetry, even in highly complex forests. This paper does not seek to evaluate the
performance of FSCT relative to other existing tools; instead, FSCT is evaluated against a
large-scale set of manually collected reference measurements. While a comparison against
other point cloud tools would be interesting, FSCT was created out of a need for fully
automated and reliable plot measurements from complex and diverse forest point clouds,
which was not satisfied by our searches of the relevant literature, nor by our testing of
existing software.

Our approach involves initially using a deep learning technique based upon Point-
net++ [57] to semantically segment forest point clouds into four categories: terrain, vege-
tation, coarse woody debris (CWD) and stems. This deep learning approach was trained
with the goal of working on structurally diverse point clouds captured using most high-
resolution point cloud generation techniques. This approach was described and evaluated
in our previous paper [58], and forms the starting point from which this paper continues.
This paper describes how we exploit the segmented point cloud to extract highly detailed
measurements from forest point clouds, both robustly and completely automatically on
point clouds from multiple sensor types. We believe that this tool makes it practical for
manual forest mensuration of structural features to be replaced with plot scale remote
sensing techniques, due to its ability to function in high levels of structural complexity,
where prior existing tools were less effective or required considerable amounts of parameter
tuning and/or manual corrections to be effective.

One of the major differences of our approach to others in the literature is that we obtain
measurements before sorting points into individual trees, rather than identifying individual
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trees and then measuring them. This approach allows the tool to exploit the orientation
information of the branches/stem segments to segment them into individual trees, even
in the presence of considerable occlusions in the data. By exploiting the semantically
segmented point clouds, the vegetation, terrain and CWD classes are simply ignored when
taking initial measurements of the trees, allowing considerable robustness to high levels of
structural complexity. The details of this approach are discussed in the following section.

2. Materials and Methods

This methodology is broken up into seven sections. First, we present a condensed
explanation of the workings of FSCT. This explanation does not cover every detail of the
implementation; however, it is intended to provide an overview of the important concepts
and approaches used. If further information is required, the code and relevant documen-
tation are made openly available on GitHub here: https://github.com/SKrisanski/FSCT
(accessed on 19 November 2021). The second and third sections describe the collection and
scope of the destructively sampled reference datasets and the TLS point clouds, respectively.
The fourth and fifth sections describe the automated measurement validation process and
a qualitative video demonstration of the tool on additional datasets. The sixth section
describes the computational resources used. Lastly, the additional outputs of FSCT beyond
stem measurements are described.

2.1. Forest Structural Complexity Tool Overview

This work builds upon our previous paper [58], relying upon the semantically seg-
mented point clouds as a starting point for our other algorithms. Figure 1 shows a schematic
diagram of how FSCT is designed, and how it is connected to our previous semantic seg-
mentation paper. This approach to forest measurement was developed with the goal of
being fully automated, and robust to structurally complex and diverse forest point clouds
captured using most types of high-resolution remote sensing techniques. Suitable point
clouds can be from MLS, TLS, both aerial and terrestrial close-range photogrammetry
(AP/TP), and even high-resolution ALS.
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Figure 1. Schematic diagram describing how this research, which focuses on tree and vegetation measurement extraction, fits
into our larger goal of creating a fully automated forest point cloud measurement tool. The “previously published” research
refers to our previous paper on this project, which focused on the semantic segmentation of complex forest point clouds [58].
This open source tool is available here: https://github.com/SKrisanski/FSCT (accessed on 19 November 2021).
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In the context of this paper, “high-resolution” is used to refer to a point cloud with
sufficient accuracy, precision, completeness of coverage, and point density with which one
could reasonably expect to measure the diameter of a stem. Based on informal testing of this
tool on a variety of datasets, high-resolution ALS data is on the borderline of functionality,
so only the highest resolution ALS datasets are suitable for the tool in this version. Figure 2
provides an indication of the minimum point density that the point clouds must be for
FSCT to function as intended.
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Figure 2. Left shows an example of an aerial laser scanned point cloud, which is approaching the lower limit of resolution
that FSCT was designed to tolerate. Top-right shows this same dataset with the volume density (ball radius = 0.1 m) shown,
and bottom-right shows 0.4 m tall cross sections of two of the trees.

As point density reduces below what is shown in Figure 2, the stems will be incor-
rectly segmented as part of the vegetation class. As FSCT is reliant upon the semantic
segmentation step, FSCT cannot detect a stem unless the segmentation process accurately
labels it as a stem.

2.1.1. Point Cloud Semantic Segmentation

The first major step of the tool is to perform semantic segmentation of the point cloud
using the method described in our previous paper [58]. This uses a point cloud deep
learning technique based on the Pointnet++ [57] architecture to segment the point clouds
into four categories: terrain, vegetation, CWD and stems. Please see the previous paper for
details, or the code for the implementation.
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2.1.2. Digital Terrain Model

The second step is to use the terrain points extracted by the segmentation model as
input to create a digital terrain model (DTM). The DTM method described in our previous
work [58] was modified to reduce RAM consumption and to improve reliability/robustness
on steep terrain. Our new DTM algorithm prioritises the use of the terrain segmented
points, but if insufficient terrain points are present in an area, it will use the vegetation,
stem and CWD points instead. While the altered DTM implementation is not the focus of
this paper, it is available in the provided code.

2.1.3. Point Cloud Cleaning after Segmentation

The height of all points relative to the DTM are computed, allowing us to relabel any
stem, CWD and vegetation points which are below the DTM height + 0.1 m as terrain
points. Any CWD points above 10 m over the DTM are also removed, as, by definition, the
CWD class is on the ground; therefore, any CWD points above 10 m would be incorrectly
labeled in almost all circumstances. Any terrain points greater than 0.1 m above or below
the DTM are also considered erroneous and are removed.

2.1.4. Stem Point Cloud Skeletonization

Before the method is described, we will define our coordinate system with the positive
Z-axis pointing in the upwards direction. The orientation of the X and Y axes do not
matter in this method, other than being within the plane of the horizon. The first step
of the skeletonization process is to slice the stem point cloud into parallel slices in the
XY plane. The point cloud slices are then clustered using the hierarchical density based
spatial clustering for applications with noise (HDBSCAN) [59] algorithm to get clusters of
stems/branches in each slice. For each cluster, the median position in the slice is calculated.
These median points become the skeleton shown in the right of Figure 3. For each median
point that makes up the skeleton, the corresponding cluster of stem points in the slice is set
aside for the next step. This is visualised in Figure 3.

2.1.5. Skeleton Clustering into Branch/Stem Segments

These skeletons are then clustered using the density based spatial clustering for
applications with noise (DBSCAN) algorithm [60,61], with an epsilon of 1.5× the slice
increment, which has the effect of separating most of the individual stem/branch segments
into separate clusters. This value of epsilon was chosen through experimentation. If the
epsilon is too large, the branch segments would not be separate clusters, and if it is too
small, clusters would be too small for the cylinder fitting step. Points considered outliers
by the clustering algorithm are then sorted to the nearest group, provided they are within
a radius of 3× the slice-increment value of any point in the nearest group. The clusters
of stem points, which were set aside in the previous step, are now used to convert the
skeleton clusters into clusters of stem segments as visualised in Figure 4.
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Figure 3. (Left): the original point cloud input. (Middle): the segmented stem-only points are sliced
horizontally for clustering using HDBSCAN. The median value of each cluster in each slice becomes
the skeleton shown on the (right).

2.1.6. Cylinder Fitting

The skeleton clusters and corresponding stem segment clusters are passed to the
cylinder fitting function. Singular value decomposition (SVD) is used on each skeleton
cluster to obtain a vector representing the major axis of the stem/branch segment. Starting
from the lowest skeleton point, the five nearest neighbors are found. These points define
the locations of two planes perpendicular to the major axis. The stem/branch segment is
sliced between these two planes to get ideally circular slices of points from the stem/branch.
These sets of points are rotated using Rodrigues rotation from the major axis to the Z-axis
(up). Two-dimensional random sample consensus (RANSAC) [62] circle fitting is applied
to these sets of points in the X and Y axes to extract the circle centre, radius, and the
Circumferential Completeness Index (CCI) defined in [9]. A cylinder is only kept if the
CCI is greater than 0.3 in order to reject a large number of poorly fitted cylinders. These
processes are most easily understood visually in Figure 5.

Once the first set of neighboring points has been processed, the lowest point in the
skeleton is removed, and the process is repeated until there are less than five skeleton points
remaining (i.e., all skeleton points have been used). The result is a number of unsorted
cylinders defined by the fitted circles and the major axis of each skeleton segment. These
cylinders must be now sorted into individual trees.
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Figure 4. The skeleton (Left graphic) is clustered using DBSCAN, such that separate branch segments form into separate
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as shown in the right graphic. At this point in the process, individual trees remain undefined; only groups of points
representing branches/stem sections and their skeletons are defined.
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Figure 5. A visualisation of the circle fitting method. First, the major axis is identified from the skeleton segment, then the
lowest point and its five nearest neighbours are identified. Two planes perpendicular to the major axis and on the boundaries
of the selected six points are used to slice the stem segment. This slice is rotated to be vertical, allowing 2-dimensional
random sample consensus (RANSAC) circle fitting to be performed to define the cylinder radius and centre coordinates.
The result of this process is visualised on the right of the figure.

2.1.7. Sorting Cylinder Measurements into Individual Trees

The sorting process consists of two main stages. The first stage assigns tree iden-
tification (Tree_ID) numbers to the individual measurements. This step is described in
Algorithm 1 and visualised in Figure 6.
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Algorithm 1. Cylinder Sorting Algorithm Part 1.

1. Start with an array of cylinders represented by a point with X, Y, Z coordinates, a major axis
vector (Vx, Vy, Vz), radius, CCI, cluster number, and Tree_ID (currently set to 0). We will
call this array “unsorted_points”.

For clarity, we will label a variable “TREE_ID” as uppercase and the tree_id belonging to a
cylinder point as “assigned_tree_id”.

2. Create another array called “sorted_points”.

Loop until unsorted_points is empty.

1. Find the lowest point in unsorted_points. We will call this the “current_point”.
2. If current_point’s assigned_tree_id equals 0:

4.1. Set current_point’s assigned_tree_id to the value of TREE_ID.
4.2. Increment the variable TREE_ID by 1.3.
4.3. Move current_point from unsorted_points to sorted_points.

3. Find all points in unsorted_points within search radius of current_point. For all of these
points:

5.1. Find the angle between the major axis vectors of point 1 and point 2.
5.2. If angle is within angle_tolerance: continue.
5.3. Find the angle between the translation vector from point 1 to point 2 and the major

axis vector of point 1. If this angle is within the valid search angle range: assign the
assigned_tree_id of point 1 to the assigned_tree_id of point 2.
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This initial sorting process results in the measurements being grouped at the individ-
ual tree level; however, there are typically some groups which need re-sorting. The second 
part of the measurement sorting process is focused on handling the small clusters of meas-
urements which were incorrectly identified as individual trees. This step runs through all 
of the clusters that potentially could be individual trees after sorting into groups in the 
previous step. These clusters will either be left as a tree or meet the requirements to be 
assigned to an existing tree or will be removed. The process is described in Algorithm 2 
and visualised in Figure 7. 

  

Figure 6. Three main rules are used to determine if points are to be grouped as the same tree in this step. First (Left), all other
cylinders within a search sphere of Cylinder 1 are found. All of these cylinders are then checked against two angle-based
rules using the angle between the two major axis vectors (angle tolerance), and the angle between the translation vector
from Cylinder 1 to Cylinder 2, and the major axis vector of Cylinder 1 (search angle).

This initial sorting process results in the measurements being grouped at the individual
tree level; however, there are typically some groups which need re-sorting. The second
part of the measurement sorting process is focused on handling the small clusters of
measurements which were incorrectly identified as individual trees. This step runs through
all of the clusters that potentially could be individual trees after sorting into groups in the
previous step. These clusters will either be left as a tree or meet the requirements to be
assigned to an existing tree or will be removed. The process is described in Algorithm 2
and visualised in Figure 7.
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Algorithm 2. Cylinder Sorting Algorithm Part 2

1. Start with array of sorted cylinder points (output from Algorithm 1).
2. For each tree cluster identified in the previous sorting step:

2.1. Search for cylinder points within a search radius of the lowest point of the current
tree cluster.

2.2. Find cylinder points within a specified “search_angle” of the major axis of the
lowest point.

2.3. If other tree points are found, the current tree_id is assigned the same tree_id value
as the lower tree cluster.

2.4. If no other tree points are found, the same process above is applied from the highest
point of the current tree cluster.

2.5. If still no other tree points are found, AND the lowest point of the current cluster is
below 5 m above the ground, the current tree is kept. If the lowest point is not below
5 m above ground, it is deleted.
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at once. At this stage of the processing, the cylinder measurements are sorted into indi-
vidual tree clusters, however, there will be gaps in the cylinder measurements/points as 
seen in Figure 7. It is necessary to interpolate between these gaps in cylinder points to 
represent the tree metrics more accurately. For the sake of brevity, a summary of the con-
cept is described here instead of the exact implementation. When interpolating across 
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Figure 7. The second step of the cylinder sorting algorithm. All points shown are a point-based representation of a cylinder
with X, Y, Z coordinates, a major axis vector (Vx, Vy, Vz), radius, circumferential completeness index, and Tree ID. Left: A
simple example showing how three tree groups become two trees, as the lowest point of Tree 2 finds one of the points in
Tree 1 meets the matching criteria. Tree 2 is joined to Tree 1 as a result. Tree 3 does not find any other groups nearby. If the
lowest point of Tree 3 is below 5 m above the ground, it will be kept, and if not, it will be deleted. Right: A real example on
the same trees shown in Figures 3–5. The small orange, red and yellow groups of points were deleted, as they did not meet
the matching criteria and were greater than 5 m above the ground.
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2.1.8. Cylinder Measurement Interpolation

Please note: the following steps are operating on individual trees rather than all trees at
once. At this stage of the processing, the cylinder measurements are sorted into individual
tree clusters, however, there will be gaps in the cylinder measurements/points as seen in
Figure 7. It is necessary to interpolate between these gaps in cylinder points to represent
the tree metrics more accurately. For the sake of brevity, a summary of the concept is
described here instead of the exact implementation. When interpolating across these gaps,
it is common for a small branch to be interpolated to a larger stem. If a linear interpolation
was used for the radius value, a small branch would appear as a steeply angled cone when
interpolating to a larger stem, which is unlikely to be realistic. For this reason, the smallest
radius of the two cylinders is used to interpolate between measurements rather than a
linear interpolation from one radius to the other. The X, Y and Z coordinates are linearly
interpolated, and the major axis vector is set as the norm of the displacement vector from
one cylinder point to the other (i.e., in the direction of a straight line connecting both
cylinder endpoints).

As occlusions are common in forest point clouds, the lowest portion of a tree may
be missing from the point cloud. To address this, and to enable a DBH estimate for all
detected trees, FSCT uses the lowest diameter measurement of a detected tree, and vertically
projects this diameter down to the DTM. It is generally a safe assumption that a tree will be
connected to the ground, however, it is possible for a large hanging branch to be incorrectly
treated as a standalone tree from this behaviour. It is important to note that we chose not
to extrapolate the stem diameters to estimate DBH, as such extrapolations can be severely
influenced by a bulge in a tree or a minor measurement error, leading to either a wide
based frustum or tapering to an unrealistically narrow or even negative diameter base in
some cases, which is a nonsensical result. The X, Y coordinates were also not extrapolated,
as it is a reasonably safe assumption for most trees that the base is approximately straight
down. Further, extrapolating from a small error in position/angle can also lead to a larger
error than just going straight down. Extrapolations for both the diameter and position
were tried during development, but the simplest solution of using the lowest diameter and
going straight down was found to have far more predictable and reasonable behaviour.
The exact implementation is available in the code if further information is required.

2.1.9. Cylinder Measurement Smoothing and Cleaning

The cleaning process removes overlapping measurements and applies smoothing to
the cylinder measurements. This cleaning and volume extraction process operates on sets
of cylinders belonging to individual trees. The first step is radius smoothing; thus, for each
cylinder, its radius is changed to the median radius of the 10 nearest neighbour cylinders.
Next, the cleaning process starts with the lowest cylinder of a tree and finds all neighbouring
measurements within a specified radius, referred to as “cleaned_measurement_radius” in
the code. Of those neighbours, the median radius, major axis vector, and positions of the
measurements within the top 50% of CCI values (of the neighbouring measurements) are
assigned to a single point, while the rest of the neighbours are deleted. This process is
repeated until only the averaged points remain, effectively smoothing and cleaning the
measurement outputs.

2.1.10. Stem Volume Extraction

The volume extraction step is built into the smoothing/cleaning step described in
Section 2.1.9. and so also operates on sets of cylinders belonging to a single tree. This
process occurs after the cleaning and smoothing step. Starting from the lowest cylinder
point, the nearest neighbour cylinder point is identified. Using the distance between the
cylinder centres and the two radii belonging to the two points, the frustum volume is
calculated. The lowest point is removed, and the process repeats until all cylinder points
have been used. The frustum volumes are summed up, and the result is an estimate of the
total stem/branch volume of that tree.
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2.1.11. Individual Tree Segmentation of Vegetation and Stem points

The vegetation sorting process either assigns the vegetation points (labelled in the
semantic segmentation step) to understory vegetation, individual trees or, in the event that
points do not meet the criteria for assignment, deletes them. The first step is to separate the
understory vegetation from the canopy, so all vegetation points below a user configurable
height (we used 3 m) above the DTM are set aside as understory points. The tree ID of the
nearest cylinder measurement (2D distance in X, Y axes) within a user configurable range
(we use 1 m) is assigned to each of the vegetation points. Any vegetation points which
were not assigned to a tree are deleted. An example of the results of the vegetation point
sorting output is shown in Figure 8.

The optional stem point sorting process is similar to the vegetation sorting process;
however, it differs in that it finds the nearest cylinder measurement in a 3D distance rather
than the 2D distance used for vegetation. Like the vegetation sorting process, a user-
configurable parameter controls the maximum distance to search (we used 1 m in this
study, though this occurs after the measurement process and is not critical for standard
use cases). The stem sorting process is an additional output that is not used in this paper;
however, this addition means that complete, individually segmented trees are readily
available should future research using FSCT require them.

Both of these sorting approaches are rather simplistic in their current form, so usage
of the individually segmented trees for training datasets will likely require some manual
corrections to be made. These simplistic individual tree segmentation approaches were
designed to work acceptably well on most high-resolution forest point clouds; however,
this comes with the trade-off that these simple assumptions do not always hold true. For
example, by assigning vegetation points to the nearest stem in 2D, the tool is able to
extract tree heights from photogrammetry point clouds with occlusions and significant
gaps between the lower stems and the canopy. However, this comes at the price of
overestimating the height of small trees under closed canopies, by incorrectly assigning
the canopy directly above these small trees to them. As this tool is intended to work with
highly variable and imperfect datasets, an approach which works optimally in all situations
is difficult to achieve; thus, until superior generalizing approaches are developed (likely
deep learning based) or reliably complete point clouds without occlusions are consistently
and easily attainable, these compromises are required.

2.1.12. Automated Height Measurement Extraction

To extract the tree heights, the points representing cylinder measurements and the
assigned vegetation points are combined at the individual tree level. The highest of these
points is taken as the height measurement.

2.1.13. Automated Diameter at Breast Height (DBH) Measurement Extraction

The DBH (nominally 1.3 m above the ground) used in the analysis of this tool, is
calculated by taking the mean diameter and X, Y position of all cylinder measurements
(including projected measurements) between 1.0 m and 1.6 m above the DTM on a per
tree basis. This means that even if the lower section of the tree is missing, FSCT will use
higher up cylinder measurements, which have been projected to the ground, as the DBH
measurement. Please see Section 2.1.8 for greater details of this projection step.

2.2. Reference Data Collection—Destructively Sampled Manual Field Measurements

A total of 49 Eucalyptus globulus plantation plots, 27 in Western Australia and 22
in the Green Triangle region, were measured by PF Olsen (Aus) Pty. Ltd. to collect data
for the development of taper and growth models. Figure 9 shows the location of the sites
in Australia.
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Figure 8. Initially, any vegetation points less than 3 m above the DTM are classified as understory (black points). The
remaining vegetation points are assigned to be the same tree as the nearest cylinder measurement in X and Y coordinates,
provided that they are within a horizontal radius of 1 m (this can be adjusted). If there are no cylinders within a 1 m radius,
the points are deleted. The trees shown above are coloured by their assigned Tree ID. Please note that adjacent trees may
appear to be labelled as the same colour (due to random colour assignment), however, they were all successfully separated
as different trees in this example.
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The 49 plots were associated with and located adjacent to permanent sample plots
and represent plantations established between 2000 and 2017. Each plot was circular
and of a 0.04 ha area. All trees within the plot were measured for DBH using diameter
tape over bark and height using a Haglöf Vertex hypsometer. From each plot, 12 trees
representing the plot diameter range were selected at random for destructive sampling
and were measured for diameters at a series of heights: 0.1, 0.3, 0.8, 1.3, 2.0, and then at
1.5 m increments from 2 m up using diameter tape over bark. This resulted in a dataset of
7022 diameter measurements collected from 588 trees. The locations of these trees were
established using bearings and distances from a fixed plot centre marker. In some cases,
an expert geographical information system (GIS) operator made manual adjustments to
these tree locations in conjunction with the TLS point clouds of the plots, which were also
referenced to the fixed plot centre marker. Summary information of the plots is available in
Tables 1 and 2 for the Western Australia and Green Triangle sites, respectively.

Table 1. Sampled stem statistics for the 27 Western Australia plots.

Western Australia Sampled Tree Statistics (12 Trees per Plot)

Plot ID Min DBH
(m)

Mean DBH
(m)

Max DBH
(m)

Min Height
(m)

Mean Height
(m)

Max Height
(m) Stems/Ha

1 0.063 0.207 0.276 10 19 23 725
2 0.08 0.179 0.271 14 18 21 575
3 0.075 0.200 0.283 12 23 26 725
4 0.056 0.181 0.313 9 18 25 700
5 0.126 0.204 0.305 15 21 25 650
6 0.117 0.248 0.338 21 28 33 500
7 0.134 0.269 0.398 24 30 34 575
8 0.119 0.185 0.282 19 24 29 1150
9 0.107 0.199 0.286 16 24 29 900
10 0.071 0.120 0.184 8 11 14 775
11 0.035 0.083 0.148 5 8 12 775
12 0.071 0.094 0.114 7 9 10 1000
13 0.065 0.152 0.234 9 17 20 1100
14 0.036 0.124 0.208 6 12 16 1025
15 0.073 0.125 0.173 8 11 14 775
16 0.084 0.183 0.292 12 19 24 925
17 0.063 0.128 0.203 11 16 20 1000
18 0.052 0.130 0.242 7 12 19 600
19 0.062 0.170 0.259 8 18 25 650
20 0.065 0.184 0.341 10 19 31 500
21 0.130 0.193 0.279 17 22 26 625
22 0.024 0.091 0.173 3 10 14 1425
23 0.061 0.132 0.209 8 14 18 975
24 0.062 0.121 0.179 8 14 18 1575
25 0.057 0.141 0.187 9 16 20 775
26 0.076 0.191 0.293 12 22 32 750
27 0.043 0.125 0.243 6 15 23 1075

2.3. Data Collection—Terrestrial Laser Scanning of Plots

The point clouds of the plots were collected using multi-scan TLS with 5 to 8 scanning
positions per plot. The number of scans varied depending on the conditions of each site and
were decided at the discretion of the operator. The Green Triangle (GT) plots were scanned
by Gertzel Pty Ltd. (Dingley Village, Victoria 3172, Australia) using a Riegl VZ 400i LiDAR
(RIEGL Laser Measurement Systems GmbH, Austria), and the Western Australia (WA)
sites were scanned by BCE Surveying Pty Ltd. (Bunbury, Western Australia 6230, Australia)
using a Riegl VZ 1000 LiDAR. The point clouds were provided in *.LAS format using the
Geocentric Datum of Australia (GDA) 1994 coordinate system with the GT dataset in the
Map Grid of Australia (MGA) zone 54 and the WA dataset in MGA zone 50.



Remote Sens. 2021, 13, 4677 15 of 31

Table 2. Sampled stem statistics for the 22 Green Triangle (Victoria and South Australia) plots.

Green Triangle Sampled Tree Statistics (12 Trees per Plot)

Plot ID Min DBH
(m)

Mean DBH
(m)

Max DBH
(m)

Min Height
(m)

Mean Height
(m)

Max Height
(m) Stems/Ha

28 0.093 0.228 0.366 15 26 31 600
29 0.136 0.220 0.304 21 25 28 875
30 0.150 0.206 0.270 20 24 28 775
31 0.088 0.220 0.331 14 22 26 625
32 0.162 0.232 0.310 20 25 29 725
33 0.134 0.215 0.297 19 24 27 750
34 0.115 0.233 0.319 19 30 36 500
35 0.122 0.237 0.342 20 28 32 650
36 0.130 0.196 0.288 20 24 29 750
37 0.051 0.121 0.171 6 13 28 975
38 0.059 0.090 0.125 7 8 9 800
39 0.057 0.135 0.204 8 14 18 1000
40 0.070 0.123 0.185 6 10 12 725
41 0.084 0.183 0.266 12 19 23 625
42 0.107 0.168 0.263 14 17 20 675
43 0.05 0.113 0.201 8 13 19 1050
44 0.081 0.133 0.177 10 14 16 800
45 0.054 0.096 0.132 8 10 12 1000
46 0.063 0.129 0.192 9 12 15 775
47 0.074 0.169 0.260 9 16 20 750
48 0.072 0.175 0.273 12 20 25 800
49 0.064 0.147 0.215 6 16 22 850

2.4. Validation Process—Comparing Manual and Automated Point Cloud Measurements
2.4.1. Tree Matching

For each manually measured reference tree, all automatically measured trees’ base
coordinates within a 3 m radius are found. From these, the tree with the smallest difference
in DBH is chosen and removed from the pool of available trees. This prevents the double
counting of trees and is effectively the same method as used in [18]. This process is
repeated until all trees are sorted. If no unique tree is present within 3 m of a reference tree,
it is considered missing. Only the measurements of successfully matched trees could be
meaningfully compared.

2.4.2. Taper Measurement Matching

The destructively sampled measurements of diameter were collected on the largest
diameter of the tree at each measurement height. This results in a single taper profile
for each individual tree and does not account for forked trees or branches. As this is a
simplification of reality, it is necessary to extract similar simplified measurements from
the FSCT output for each tree. Therefore, for comparison against the reference, the largest
cylinder within ±0.2 m of each respective measurement height (relative to the DTM)
for each given tree was used. For example: for a measurement height of 2.0 m, the
largest cylinder in the tree between 1.8 m and 2.2 m above the DTM would be used in
the comparison.

2.4.3. Reference Volume

The reference volumes were calculated from the reference taper measurements by
summing the frustum volume between each measurement. This is a single stem model;
thus, it would typically underestimate the true volume of a stem, due to not accounting for
branching or forking.
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2.4.4. Plot Density

The reference plot density was calculated by dividing the number of trees by the area
(0.04 ha) of each plot. FSCT calculates this in the same way; however, it relies upon the
detected trees and a specified plot radius. If no plot radius is specified, FSCT will use the
area of a 2D (X, Y) convex hull of the DTM, as the DTM is cropped to the point cloud shape.

2.5. Qualitative Demonstration of FSCT on 5 Sensor/Structure Diverse Point Clouds

The validation data used in this study was only of a single, mostly even aged species
(eucalyptus globulus). Collection of additional reference datasets was beyond the scope of
this paper, so in order to demonstrate both the efficacy and the limitations of FSCT on point
clouds of greatly varying structure and sensing techniques, five additional diverse point
clouds were processed using FSCT. These point clouds are shown in an accompanying
video. The five-point clouds are of the following sensor techniques and species combina-
tions: fused above (nadir) and below canopy (close range) UAS photogrammetry (euca-
lyptus marginata), backpack-mounted MLS (pinus radiata), ALS (pinus radiata), above
canopy (nadir only) UAS photogrammetry (eucalyptus amygdalina), and TLS (araucaria
cunninghamii). Qualitative descriptions of notable moments in the video are provided.

2.6. Computer Hardware Used for Run times

All development, testing and evaluation of FSCT was performed on a desktop com-
puter with an Intel i9-10900K central processing unit (CPU), 128 GB of DDR4 random
access memory (RAM), and an Nvidia Titan RTX graphics processing unit (GPU). While the
computer used to process this data is relatively high end, most recent gaming computers
with an Nvidia GPU will be able to use FSCT, provided the plot size is small enough to
meet the RAM requirements. This tool is computationally expensive to run; however,
because it is fully automated, it allows a user to simply select a batch of “.las” format point
clouds, or a directory containing the point clouds, and let the computer work through
them without intervention. Processing the 49-point cloud datasets used in this study took
approximately 3 days on the above-mentioned computer, using 18 of the 20 cores to keep
the machine responsive for other work.

2.7 Additional Measures Provided by FSCT
While the main focus of this paper is to describe and evaluate the tree measurement

processes, FSCT provides additional outputs which may be useful, but are not yet validated
against field data. All segmented points are extracted as separate point clouds for ease
of inspecting segmentation performance, and ease of creating additional training data to
refine future semantic segmentation models. A plot map showing the stem locations, CWD
points, understory vegetation, and contour map of the local terrain is generated as shown
in Figure 10. The following additional metrics are also calculated by FSCT: canopy gap
fraction, understory vegetation fraction, coarse woody debris coverage fraction, average
gradient of plot, summary statistics of the measured trees, number of points of each
segmentation class and run times of each section of FSCT.
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Figure 10. One of the outputs of FSCT is a plot map showing coarse woody debris, understory vegetation, contours
of the terrain, and the locations of the stems. There is a dirt road at the top of the figure, which is seen by the lack of
understory vegetation.

3. Results
3.1. Diameter at Breast Height (DBH)

A comparison of the manual reference DBH against the automatically extracted
measurements is visualised in Figure 11. Mean, median and RMS DBH errors were
−0.007 m, 0.008 m and 0.072 m respectively. Of the 588 reference trees, 535 or 90.98% were
successfully detected by FSCT. The mean and median errors are within the expected error
of the reference diameter measurements, suggesting minimal bias.
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3.2. Tree Height

The mean, median and RMS tree height errors were −0.139 m, −0.327 m and 3.524 m
respectively as shown in Figure 12. FSCT appears to slightly underestimate height relative
to the reference measurements, with a bias of −0.139 m; however, it is common for TLS
to not fully capture the top of trees [64,65], and this is also within the expected error of
hypsometer-based height measurements [66].

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 30 
 

 

 
Figure 11. Left shows a scatter plot of the automatically measured DBH compared with the reference tree DBH. The grey 
line shows what a perfect result would be (y = x). Right shows the distribution of the DBH errors. 

3.2. Tree Height 
The mean, median and RMS tree height errors were −0.139 m, −0.327 m and 3.524 m 

respectively as shown in Figure 12. FSCT appears to slightly underestimate height relative 
to the reference measurements, with a bias of −0.139 m; however, it is common for TLS to 
not fully capture the top of trees [64,65], and this is also within the expected error of hyp-
someter-based height measurements [66]. 

 
Figure 12. Left shows a scatter plot of the automatically measured tree height compared with the reference tree height. 
The grey line shows what a perfect result would be (y = x). Right shows the distribution of the height errors. 

  

Figure 12. Left shows a scatter plot of the automatically measured tree height compared with the reference tree height. The
grey line shows what a perfect result would be (y = x). Right shows the distribution of the height errors.



Remote Sens. 2021, 13, 4677 19 of 31

3.3. All Stem Diameter Measurements

Out of a total of 7022 reference diameter measurements, 5141 were matched to au-
tomatically measured TLS point cloud-based measurements. The mean, median and
root-mean-squared (RMS/RMSE) diameter errors were +0.032 m, +0.02 m, and 0.103 m,
respectively. This is visualised in Figure 13.
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3.4. Tree and Measurement Detection Completeness

The measurement completeness (the fractions of measurements detected out of the
total number of reference measurements) are shown in Figure 14. On the left, the complete-
ness for reference tree detection is shown, and on the right, the completeness of all diameter
measurements is shown. The tree detection completeness for 32 plots was between 0.95
and 1.0, with one plot (Plot 38) failing to detect any trees. Out of 49 plots, 30 had all trees
detected. The mean and median completeness values for tree detection were 0.91 and 1.

The measurement detection completeness was expected to be less than the tree detec-
tion completeness, as a tree detection requires only a few measurements (below 10 m above
the DTM) to be successful, while matched diameter measurements require successful mea-
surement at a specific measurement height on a specific tree. No plots matched every single
reference measurement; however, 32 plots had greater than 70% of reference measurements
successfully matched. The mean and median completeness values for individual taper
measurement detection were 0.71 and 0.76. Please see Tables A1 and A2 in the Appendix A
if additional details are desired.

3.5. Stem Volume

The mean, median and RMS errors of stem volume relative to reference were −0.678,
−0.467 and 1.669 m3. Given the simplistic, single stem approximation used to calculate
the reference volume, the wide spread of the results is expected, however, these results
provide a sanity check that the volume estimates appear reasonable. FSCT appears to
underestimate volume with a bias of −0.678 m3 as seen in Figure 15.
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3.6. Stem Density Estimates

FSCT was able to predict the plot density with a mean, median and RMS errors of −13,
67 and 256 stems per hectare. Some of the younger plots performed poorly due to failing
to accurately segment and thus detect the stems. This number is also expected to have a
reasonably large error relative to reference, as in the case of a 0.04 hectare plot: detecting 32
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trees would give a result of 800 stems/ha, a single tree difference (31 or 33) in such a plot
would mean ±25 stems/ha. This is shown in Figure 16. Small errors in stem counts are
magnified on small plot scales. Larger scale plots would enable a more accurate assessment
of stem density.
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3.7. Run Times

FSCT is a computationally expensive program to run; thus run times of the reference
plots on the hardware described in Section 2.6 are provided below in Figure 17. The
largest contributor to run time is the measurement process, with measurement run times
ranging from 0 min (plot 38 where no stems were correctly segmented), up to 60 min. The
measurement run time depends on the number of stem-labelled points more than the total
number of points in a point cloud, as a point cloud can have a lot of vegetation points and
few stem points (taking a short time to measure), or have few vegetation points and a lot
of stem points (taking a long time to measure). The pre-processing, semantic segmentation,
and post-processing steps were dependent on the total number of points in the point cloud.

3.8. Video Demonstration of FSCT on Other Point Cloud Datasets

In addition to a quantitative evaluation of the performance of FSCT, a video is provided
to qualitatively demonstrate the efficacy and limitations of FSCT on a broader range of
point cloud datasets from a variety of high-resolution mapping tools and techniques. The
tool is demonstrated on 5 datasets including combined above and below canopy UAS
photogrammetry in dense and complex native Australian forest, MLS using a Hovermap
sensor, ALS from a Riegl VUX-1LR LiDAR on a pinus radiata plantation, above canopy UAS
photogrammetry in an open Australia native forest, and TLS of araucaria cunninghamii.
The video is provided here: https://youtu.be/SIpl5HVqWcA (accessed on 19 November
2021) and Figure 18 visualises the diversity of the datasets in the video. Qualitative notes
with timestamps are provided in Appendix B.

https://youtu.be/SIpl5HVqWcA
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4. Discussion

In the DBH comparison, there was a sub-centimeter bias in the FSCT-based measure-
ments. Loose and hanging bark was common in this dataset and this was typically classified
as part of the stem by the segmentation model, as can be seen in Figure 3. This hanging bark
interferes with the diameter measurements in some situations, contributing to diameter
measurement errors. In some cases, occlusions of the lower stem were present such that
DBH could not be directly measured, so the automated DBH was based upon diameter
measurements further up the stem, also contributing to DBH and other diameter measure-
ment errors. Measurements from higher up the stems were more frequently incorrect or
missing. This would be explained by a combination of factors such as canopy movement
during capture in the event of a light breeze, denser vegetation being present (the canopy),
smaller stem sections and branches, the effect of occlusions reducing point density and
completeness towards the upper canopy, and beam divergence effects becoming more
significant. All of these factors result in more difficult measurement conditions for any
algorithm or set of algorithms to contend with, so at least some performance degradation
further up the stems is to be expected.

The height measurements were consistent across the range of tree heights surveyed,
pendixwith a tendency to slightly underestimate the tree heights relative to the reference.
In terms of the accuracy of the reference tree heights, [66] studied the accuracy of the Vertex
III hypsometer, finding it to be on the order of 0.2 to 0.3 m; thus, some height error could
be explained as error in the reference information capture. FSCT’s height accuracy was
within this error estimate, with a small underestimation bias relative to the reference. Other
studies of measuring tree height with TLS [64,65] have found that TLS may not always
capture the highest point of the canopy due to occlusions (from ground-based capture),
which may also play a small role in the height underestimation.

As a result of designing the tool for generalisability on diverse forest point clouds, a
notable trade off was made with the vegetation assignment process. Vegetation points are
assigned to the nearest cylinder measurement point in 2D (X, Y), and as these are used in
the height measurement process, the result is that small trees under a closed canopy will
be assigned vegetation points from the closed canopy directly above them. Other, more
complex approaches were attempted during development, but this simple approach was
the only one which was able to provide reasonable and predictable height measurements
under most circumstances when there are significant gaps/occlusions between the lower
sections of the stem and their canopies. Such occlusions and gaps are particularly common
in UAS photogrammetry datasets as seen in the qualitative video demonstration.

The automated measurement matching process, which matches reference trees to the
automatically detected trees, is likely to result in some tree-mismatches; however, manually
matching 588 individual trees was not considered to be necessary for the scope of this
project. This will be a source of error in both the diameter and height measurements. The
reference measurements are a simplification of a tree’s structure, as they ignore forking
and branching; therefore, there will also be some inconsistency of measurement location
between point cloud and reference measurements. There is also a challenge of matching
measurement height on the trees relative to the ground. If the DTM is not at exactly the
same height as the ground height reference used during manual measurement, this will
introduce error in measurement height and consequently error in diameter measurement
values. These sources of error, while noteworthy, are difficult to avoid.

We found that FSCT worked relatively well in most of the reference plots, with 30/49
plots having all reference trees successfully detected; however, where it did perform poorly,
the plots were of younger trees with dense branching. For example, no trees were detected
in Plot 38 (2-year-old trees), as shown in Figure 19. The reason FSCT failed here is that the
young trees had a sufficiently different structure to the training data seen by the semantic
segmentation model, meaning that it did not correctly segment the stems. As high-quality
semantic segmentation is a critical first step for FSCT, the measurement aspects of FSCT
were completely unable to measure stems in this point cloud as a result.
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Figure 19. In Plot 38, no trees were detected as the segmentation model failed to segment the young (2 years old) stems.
This is likely due to the model not being trained on sufficiently similar tree structures as those in this plot. Future work will
see to the inclusion of young trees in the segmentation training dataset to improve the model performance under these
forest conditions.

With regard to stem volume accuracy, the reference data was based upon a single
stem model, which does not account for forking or branching, and would underestimate
the true stem volume. Therefore, automated volume predictions were expected to have a
sizeable error relative to these reference measurements. Such error could hypothetically
be minimised if every branch was measured and mapped in painstakingly great detail;
however, this is not feasible at the scales used in this study. Due to the richness and quality
of point cloud data compared to manual measurements, there are numerous attributes
which cannot be reasonably or accurately captured, and thus validated, without remote
sensing techniques. Simulation-based testing may be the only feasible solution to assess
such measurements fairly and accurately. While FSCT volumes do account for branching
and forking, FSCT does not typically segment the upper portion of stems accurately, so
this may be the main source of error.

The video of FSCT’s performance on MLS, ALS, fused above and below canopy UAS
photogrammetry, above canopy UAS photogrammetry and TLS demonstrates that the
tool is effective on a wide variety of point clouds under widely varying forest structural
conditions and species; however, there are several trade-offs made with regards to tree
height measurement and instance segmentation, which negatively impact the accuracy of
measuring small trees under a tall canopy.

We have also informally tested FSCT on ALS point clouds with lower resolution
than the ALS dataset shown in the video. As resolution reduces and noise/occlusions
increase, the stem and branch structures increasingly resemble what we defined to be the
vegetation class. This is discussed in more detail in our semantic segmentation specific
paper [58]. Future work may include lower resolution point clouds as part of the training
dataset to slightly extend the utility of FSCT for lower resolution point clouds. It should be
noted, however, that FSCT was not designed for typical ALS datasets, as the stem must be
well reconstructed for this tool, and only the highest resolution ALS point clouds will be
suitable inputs. Finally, while qualitative demonstrations on diverse point cloud datasets
are promising and appear generally useful based upon visual inspection, the accuracy of
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FSCT has not yet been quantitatively evaluated on datasets other than TLS in eucalyptus
globulus forest; thus, future work will need to see to the evaluation of this tool on point
clouds captured through additional sensing methods.

We intend to continue development of this package to improve sub-components over
time. The lowest-hanging-fruit performance enhancement would be to use this package
to automatically label a larger semantic-segmentation dataset than the original training
dataset. From which, we can make the required segmentation corrections and retrain the
model to further improve the robustness to more complex, diverse, and slightly lower reso-
lution datasets. The next step of this research project is to develop a method of quantifying
the coarse woody debris in a meaningful way and validating these measurements against
field observations. Future work may also look into species classification based upon the
metrics and single tree point clouds extracted by FSCT.

5. Conclusions

We presented a new open source Python package called the Forest Structural Com-
plexity Tool (FSCT), which was designed for the fully automated measurement of complex,
high-resolution forest point clouds. This tool was quantitatively evaluated on multi-scan
TLS point clouds of 49 plots using 7022 destructively sampled diameter measurements of
the stems. The tool was able to match 5141 out of the 7022 measurements fully automati-
cally, with mean, median, and root-mean-squared diameter accuracies of 0.032 m, 0.02 m,
and 0.103 m, respectively. The tool is also demonstrated qualitatively on a series of point
clouds captured under different forest conditions and species, and with different sensor
types in the form of a fly-through video and qualitative notes with timestamps, to further
demonstrate its efficacy and limitations on a more diverse set of point clouds. It is intended
that FSCT will serve as a useful framework from which to develop an even more robust,
accurate, and sensor-agnostic, automated forest point cloud tool. Future work should see
to improving the segmentation model’s performance on young trees and less dense point
clouds, improve stem measurement accuracy, add measures of the coarse woody debris for
habitat monitoring purposes, and reduce computational resources required to use the tool.
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Appendix A

Table A1. Western Australia.

Plot
#

Ref.
Trees

# Trees
De-

tected

Tree
Detection
Complete-

ness

# Ref.
Diameter

Measurements

# Matched
Diameter

Measurements

Diameter
Measurement
Completeness

Mean
Diameter
Error (m)

Root Mean
Squared Error

of Diameter (m)

1 12 12 1.00 158 148 0.94 0.074 0.120
2 12 12 1.00 151 110 0.73 0.057 0.102
3 12 12 1.00 187 140 0.75 0.006 0.106
4 12 10 0.83 150 107 0.71 0.013 0.112
5 12 12 1.00 177 140 0.79 0.004 0.128
6 12 12 1.00 228 186 0.82 0.048 0.140
7 12 12 1.00 248 201 0.81 0.048 0.154
8 12 11 0.92 189 160 0.85 0.067 0.131
9 12 12 1.00 190 156 0.82 0.048 0.137
10 12 12 1.00 86 60 0.70 0.006 0.046
11 12 12 1.00 72 60 0.83 0.018 0.040
12 12 12 1.00 78 56 0.72 0.006 0.028
13 12 12 1.00 124 73 0.59 0.034 0.085
14 12 12 1.00 87 66 0.76 0.003 0.048
15 12 11 0.92 96 60 0.63 −0.001 0.032
16 12 12 1.00 150 103 0.69 0.033 0.106
17 12 12 1.00 131 104 0.79 0.053 0.107
18 12 6 0.50 105 36 0.34 0.021 0.104
19 12 12 1.00 150 127 0.85 0.019 0.084
20 12 11 0.92 162 113 0.70 0.017 0.126
21 12 10 0.83 186 145 0.78 0.054 0.102
22 12 10 0.83 73 43 0.59 0.018 0.083
23 12 12 1.00 111 68 0.61 0.000 0.059
24 12 12 1.00 108 86 0.80 0.000 0.063
25 12 12 1.00 115 83 0.72 0.022 0.093
26 12 10 0.83 177 112 0.63 0.019 0.135
27 12 9 0.75 120 60 0.50 −0.008 0.102

Table A2. Green Triangle.

Plot
#

Ref.
Trees

# Trees
De-

tected

Tree
Detection
Complete-

ness

# Ref.
Diameter

Measurements

# Matched
Diameter

Measurements

Diameter
Measurement
Completeness

Mean
Diameter
Error (m)

Root Mean
Squared Error

of Diameter (m)

28 12 12 1.00 202 172 0.85 0.046 0.098
29 12 12 1.00 193 146 0.76 0.000 0.065
30 12 12 1.00 205 159 0.78 0.068 0.121
31 12 11 0.92 174 127 0.73 0.067 0.123
32 12 12 1.00 197 166 0.84 0.027 0.079
33 12 12 1.00 186 164 0.88 0.028 0.071
34 12 11 0.92 226 155 0.69 0.019 0.100
35 12 12 1.00 213 183 0.86 0.034 0.093
36 12 12 1.00 187 146 0.78 0.030 0.101
37 12 4 0.33 88 21 0.24 −0.008 0.032
38 12 0 0.00 71 0 0.00 0.000 0.000
39 12 12 1.00 107 85 0.79 0.020 0.093
40 12 7 0.58 82 39 0.48 0.016 0.050
41 12 12 1.00 147 118 0.80 0.059 0.111
42 12 12 1.00 135 90 0.67 0.030 0.102
43 12 12 1.00 99 82 0.83 0.044 0.096
44 12 12 1.00 118 90 0.76 0.034 0.080
45 12 11 0.92 78 61 0.78 0.014 0.041
46 12 8 0.67 105 51 0.49 0.011 0.022
47 12 12 1.00 122 97 0.80 0.059 0.088
48 12 11 0.92 155 84 0.54 0.023 0.098
49 12 12 1.00 123 102 0.83 0.000 0.062
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Appendix B. Qualitative Demonstration Video Notes

Dataset 1 Observations and Notes—0:04 to 0:53
Capture method: Fused above and below canopy UAS photogrammetry
Sensor: DJI Phantom 4 Pro V2
Dominant species: Eucalyptus marginata (native forest)
Captured by: Sean Krisanski,
Capture funded by: Forest Products Commission Western Australia.
Location: Western Australia
0:11—This capture technique can often lead to a disconnection of the upper canopy and
the stem. Therefore, to accurately measure tree height in these datasets, the tool must be
able to bridge this gap.

0:28—FSCT uses a deep learning based semantic segmentation method to robustly reduce
the impact of understory vegetation on accurate tree measurement and instance segmenta-
tion in later steps. Dense understory in contact with the stems was correctly segmented,
and able to be ignored by the stem measurement algorithms.

0:31—Coarse woody debris was correctly segmented here even underneath understory
vegetation.

0:36—The floating text beside the trees shows the assigned tree number along with mea-
sured DBH, height, CCI corresponding to the diameter breast height, and stem volume
estimate. A selection of additional FSCT outputs (automatically calculated for each plot)
are shown on the left, including canopy gap fraction, CWD cover fraction, understory
vegetation fraction, number of trees detected, estimated stem density, and minimum and
maximum DBH and tree heights.

0:42—The vertical white lines show the height measurement for each tree. While some
of the small trees had their heights measured appropriately (with a minimum tree height
in the plot of 4.5 m), it can be seen that many of the small trees near the plot centre have
their heights overestimated due to the simple height measurement approach used. This
was one of the trade-offs made in the interests of being robust to the canopy/lower stem
disconnections

0:52—Individual tree segmentation is imperfect; however, it is, again, a result of a necessary
trade-off made for the sake of generalisability on diverse datasets.

Dataset 2 Observations and Notes—0:53 to 1:35
Capture method: Mobile Laser Scanning (MLS)
Sensor: Emesent Hovermap
Dominant species: Pinus radiata (plantation)
Provided by: Interpine Group Ltd.
Location: Rotorua, New Zealand
0:58—This dataset has a complex and dense understory containing small trees of multiple
different species underneath a ~36 m tall stand of pinus radiata. Being of completely
different species to Dataset 1, both have complex structure, but are quite different.

1:02–1:10—The semantic segmentation is performing mostly as intended with more poorly
resolved stems/branches being classified as vegetation, and well resolved stems being ac-
curately classified as stems. Even vegetation in contact with the stems is largely segmented
correctly. Small branches are not well resolved with this method of MLS, so they are not
labelled as stem/branches. Please see our previous paper [58] for further explanation on
the segmentation approach and why it works this way.
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1:12–1:26 The measurement performance on small branches is much worse than the perfor-
mance on the main stems. The interpolations can also lead to connections of trees which
should not be connected, but it works sufficiently well in most cases tested. Robustness to
complexity was of a higher priority than perfect measurements.

1:17—Per the FSCT outputs, this site had very little CWD, and this matches what was
expected based on inspection of the point cloud. Note the minimum tree height detected
was 21.9 m. This clearly overestimates the small trees due to the dense and closed canopy
above it. The closed canopy was quantified with the canopy gap fraction of 0.95, and the
understory fraction was 0.83, again, appearing reasonable upon inspection.

1:34—As mentioned in a previous note, the tree segmentation assigns vegetation directly
above a detected stem, so small trees are incorrectly assigned some of the upper canopy
vegetation above them, leading to overestimated heights.

Dataset 3 Observations and Notes—1:35 to 2:26
Capture method: Helicopter based Aerial Laser Scanning (ALS)
Sensor: Riegl VUX-1LR LiDAR
Dominant species: Pinus radiata
Provided by: Interpine Group
Location: New South Wales, Australia
1:45—The lowest parts of the stem were consistently labelled as vegetation. This may
be due to this dataset being at the lower end of the acceptable point density for FSCT to
function correctly. FSCT will project diameter measurements down to the DTM based on
the stem labeled points.

1:54—At this low resolution, the segmentation is less reliable at detecting CWD. Some
CWD can be seen labeled as either terrain (blue) or vegetation (green).

1:56—Diameter measurements were extracted typically about half-way up the tree in this
dataset. Height measurement lines can be seen going to the top of the canopy as intended.

2:24—The individual tree segmentation outputs appear cylindrical due to the way the
vegetation assignment works. The radius parameter can be adjusted/increased by the user,
which would enable the full canopy of each tree to be extracted, but doing so increases the
likelihood of inaccurate height measurements for small trees.

Dataset 4 Observations and Notes—2:26 to 3:14
Capture method: Above canopy UAS photogrammetry
Sensor: DJI Phantom 4 Pro V2
Dominant species: Eucalyptus amygdalina
Captured by: Sean Krisanski
Location: Tasmania, Australia
2:36—As this dataset was captured using above canopy, nadir UAS photogrammetry, the
stems are not well captured, but the point density is high enough for FSCT to function.
Where the stems are particularly occluded, a tree may not be detected.

2:43—This side had large amounts of CWD which was correctly identified. This dataset
is the easiest to compare the numerical CWD coverage fraction against observations in
the point cloud. FSCT predicted a CWD coverage of 0.26, which appears reasonable with
approximately a quarter of the ground area covered by CWD.

2:52—With the ability to measure heights of trees in the presence of large disconnections
between the stem and upper canopy, FSCT was able to extract suitable height measurements
for most of the detected trees in this dataset. Where stems were successfully detected, the
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stem measurements also appear to be acceptably accurate given the low point cloud quality.

Dataset 5 Observations and Notes—3:14 to 3:47
Capture method: Terrestrial Laser Scanning (TLS)
Sensor: Riegl VZ-400i LiDAR
Dominant species: Araucaria cunninghamii
Provided by: Interpine Group Ltd.
Location: Queensland, Australia.
3:25—Minor point cloud registration errors can be seen in the upper canopy branches,
possibly due to tree movement during capture. This does not appear to affect the results in
this case.

3:34—Small branches were not measured, but the stems were well measured up most of
the height of the trees.
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45. Trochta, J.; Krůček, M.; Vrška, T.; Král, K. 3D Forest: An application for descriptions of three-dimensional forest structures using

terrestrial LiDAR. PLoS ONE 2017, 12, e0176871. [CrossRef]
46. Lalonde, J.-F.; Vandapel, N.; Hebert, M. Automatic Three-Dimensional Point Cloud Processing for Forest Inventory; The Robotics

Institute, Carnegie Mellon University: Pittsburgh, PA, USA, 2006.

http://doi.org/10.1016/j.isprsjprs.2016.01.006
http://doi.org/10.3390/rs4010001
http://doi.org/10.1007/s40725-015-0025-5
http://doi.org/10.1080/01431160512331337961
http://doi.org/10.1016/j.isprsjprs.2019.03.007
http://doi.org/10.1017/S0376892919000092
http://doi.org/10.1016/j.foreco.2006.07.024
http://doi.org/10.1016/j.foreco.2005.08.034
http://doi.org/10.1890/080016
http://doi.org/10.1016/S0269-7491(01)00212-3
http://doi.org/10.1038/s41598-019-54386-6
http://doi.org/10.3390/rs12223705
http://doi.org/10.1016/j.srs.2020.100002
http://doi.org/10.1016/j.rsase.2015.06.002
http://doi.org/10.1111/2041-210X.13121
http://doi.org/10.1111/2041-210X.13342
http://doi.org/10.1016/j.isprsjprs.2020.04.020
http://doi.org/10.1007/s00371-020-01966-7
http://doi.org/10.5194/isprsannals-II-3-W4-189-2015
http://doi.org/10.1016/j.envsoft.2016.04.025
http://doi.org/10.3390/rs12091469
http://doi.org/10.3390/rs9010009
https://greenvalleyintl.com/software/lidar360/
https://greenvalleyintl.com/software/lidar360/
http://doi.org/10.1371/journal.pone.0176871


Remote Sens. 2021, 13, 4677 31 of 31

47. Ayrey, E.; Fraver, S.; Kershaw Jr., J. A.; Kenefic, L.S.; Hayes, D.; Weiskittel, A.R.; Roth, B.E. Layer Stacking: A Novel Algorithm for
Individual Forest Tree Segmentation from LiDAR Point Clouds. Can. J. Remote Sens. 2017, 43, 16–27. [CrossRef]

48. Ayrey, E.; Hayes, D.J. The Use of Three-Dimensional Convolutional Neural Networks to Interpret LiDAR for Forest Inventory.
Remote Sens. 2018, 10, 649. [CrossRef]

49. Fan, G.; Nan, L.; Dong, Y.; Su, X.; Chen, F. AdQSM: A New Method for Estimating Above-Ground Biomass from TLS Point
Clouds. Remote Sens. 2020, 12, 3089. [CrossRef]

50. Delagrange, S.; Jauvin, C.; Rochon, P. PypeTree: A Tool for Reconstructing Tree Perennial Tissues from Point Clouds. Sensors 2014,
14, 4271–4289. [CrossRef]

51. Hackenberg, J.; Spiecker, H.; Calders, K.; Disney, M.; Raumonen, P. SimpleTree—An Efficient Open Source Tool to Build Tree
Models from TLS Clouds. Forests 2015, 6, 4245–4294. [CrossRef]

52. Yan, D.; Wintz, J.; Mourrain, B.; Wang, W.; Boudon, F.; Godin, C. Efficient and robust reconstruction of botanical branching
structure from laser scanned points. In Proceedings of the 2009 11th IEEE International Conference on Computer-Aided Design
and Computer Graphics, Huangshan, China, 19–21 August 2009.

53. Raumonen, P.; Kaasalainen, M.; Åkerblom, M.; Kaasalainen, S.; Kaartinen, H.; Vastaranta, M.; Holopainen, M.; Disney, M.; Lewis,
P. Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data. Remote Sens. 2013, 5, 491. [CrossRef]

54. Stovall, A.E.L.; Vorster, A.G.; Anderson, R.S.; Evangelista, P.H.; Shugart, H. Non-destructive aboveground biomass estimation of
coniferous trees using terrestrial LiDAR. Remote Sens. Environ. 2017, 200, 31–42. [CrossRef]

55. Dalla Corte, A.P.; Rex, F.E.; Almeida, D.R.A.d.; Sanquetta, C.R.; Silva, C.A.; Moura, M.M.; Wilkinson, B.; Zambrano, A.M.A.;
Cunha Neto, E.M.d.; Veras, H.F.P.; et al. Measuring Individual Tree Diameter and Height Using GatorEye High-Density
UAV-Lidar in an Integrated Crop-Livestock-Forest System. Remote Sens. 2020, 12, 863. [CrossRef]

56. Aijazi, A.K.; Checchin, P.; Malaterre, L.; Trassoudaine, L. Automatic Detection and Parameter Estimation of Trees for Forest
Inventory Applications Using 3D Terrestrial LiDAR. Remote Sens. 2017, 9, 946. [CrossRef]

57. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. arXiv 2017,
arXiv:1706.02413.

58. Krisanski, S.; Taskhiri, M.S.; Gonzalez Aracil, S.; Herries, D.; Turner, P. Sensor Agnostic Semantic Segmentation of Structurally
Diverse and Complex Forest Point Clouds Using Deep Learning. Remote Sens. 2021, 13, 1413. [CrossRef]

59. McInnes, L.; Healy, J.; Astels, S. Hdbscan: Hierarchical density based clustering. J. Open Source Softw. 2017, 2, 205. [CrossRef]
60. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise;

Institute for Computer Science, University of Munich: Munich, Germany, 1996.
61. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
62. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and

automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]
63. Google. Map Showing Location of Study Site. Google Earth. 2019. Available online: https://earth.google.com (accessed on 16

June 2021).
64. Liu, G.; Wang, J.; Dong, P.; Chen, Y.; Liu, Z. Estimating Individual Tree Height and Diameter at Breast Height (DBH) from

Terrestrial Laser Scanning (TLS) Data at Plot Level. Forests 2018, 9, 398. [CrossRef]
65. Ojoatre, S.; Zhang, C.; Hussin, Y.A.; Kloosterman, H.E.; Hasmadi Ismail, M. Assessing the Uncertainty of Tree Height and

Aboveground Biomass From Terrestrial Laser Scanner and Hypsometer Using Airborne LiDAR Data in Tropical Rainforests.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4149–4159. [CrossRef]

66. Vasilescu, M.M. Standard error of tree height using Vertex III. Bull. Transilv. Univ. Brasov. For. Wood Ind. Agric. Food Eng. Ser. II
2013, 6, 76–80.

http://doi.org/10.1080/07038992.2017.1252907
http://doi.org/10.3390/rs10040649
http://doi.org/10.3390/rs12183089
http://doi.org/10.3390/s140304271
http://doi.org/10.3390/f6114245
http://doi.org/10.3390/rs5020491
http://doi.org/10.1016/j.rse.2017.08.013
http://doi.org/10.3390/rs12050863
http://doi.org/10.3390/rs9090946
http://doi.org/10.3390/rs13081413
http://doi.org/10.21105/joss.00205
http://doi.org/10.1145/358669.358692
https://earth.google.com
http://doi.org/10.3390/f9070398
http://doi.org/10.1109/JSTARS.2019.2944779

	Introduction 
	Materials and Methods 
	Forest Structural Complexity Tool Overview 
	Point Cloud Semantic Segmentation 
	Digital Terrain Model 
	Point Cloud Cleaning after Segmentation 
	Stem Point Cloud Skeletonization 
	Skeleton Clustering into Branch/Stem Segments 
	Cylinder Fitting 
	Sorting Cylinder Measurements into Individual Trees 
	Cylinder Measurement Interpolation 
	Cylinder Measurement Smoothing and Cleaning 
	Stem Volume Extraction 
	Individual Tree Segmentation of Vegetation and Stem points 
	Automated Height Measurement Extraction 
	Automated Diameter at Breast Height (DBH) Measurement Extraction 

	Reference Data Collection—Destructively Sampled Manual Field Measurements 
	Data Collection—Terrestrial Laser Scanning of Plots 
	Validation Process—Comparing Manual and Automated Point Cloud Measurements 
	Tree Matching 
	Taper Measurement Matching 
	Reference Volume 
	Plot Density 

	Qualitative Demonstration of FSCT on 5 Sensor/Structure Diverse Point Clouds 
	Computer Hardware Used for Run times 

	Results 
	Diameter at Breast Height (DBH) 
	Tree Height 
	All Stem Diameter Measurements 
	Tree and Measurement Detection Completeness 
	Stem Volume 
	Stem Density Estimates 
	Run Times 
	Video Demonstration of FSCT on Other Point Cloud Datasets 

	Discussion 
	Conclusions 
	
	Qualitative Demonstration Video Notes 
	References

