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Abstract: The feasibility of reliably generating bioenergy from forest biomass waste is intimately
linked to supply chain and production processing costs. These costs are, at least in part, directly
related to assumptions about the reliability and cost-efficiency of the machinery used along the
forestry bioenergy supply chain. Although mechanization in forestry operations has advanced in the
last 20 years, it is evident that challenges remain in relation to production capability, standardization
of wood quality, and supply guarantee from forestry resources because of the age and reliability of the
machinery. An important component in sustainable bioenergy from biomass supply chains will be
confidence in consistent production costs linked to guarantees about harvest and haulage machinery
reliability. In this context, this paper examines the issue of machinery maintenance and advances in
machine learning and big data analysis that are contributing to improved intelligent prediction that
is aiding supply chain reliability in bioenergy from woody biomass. The concept of “Industry 4.0”
refers to the integration of numerous technologies and business processes that are transforming many
aspects of conventional industries. In the realm of machinery maintenance, the dramatic increase in
the capacity to dynamically collect, collate, and analyze data inputs including maintenance archive
data, sensor-based monitoring, and external environmental and contextual variables. Big data
analytics offers the potential to enhance the identification and prediction of maintenance (PdM)
requirements. Given that estimates of costs associated with machinery maintenance vary between
20% and 60% of the overall costs, the need to find ways to better mitigate these costs is important.
While PdM has been shown to help, it is noticeable that to-date there has been limited assessment
of the impacts of external factors such as weather condition, operator experiences and/or operator
fatigue on maintenance costs, and in turn the accuracy of maintenance predictions. While some
researchers argue these data are captured by sensors on machinery components, this remains to be
proven and efforts to enhance weighted calibrations for these external factors may further contribute
to improving the prediction accuracy of remaining useful life (RUL) of machinery. This paper reviews
and analyzes underlying assumptions embedded in different types of data used in maintenance
regimes and assesses their quality and their current utility for predictive maintenance in forestry.
The paper also describes an approach to building ‘intelligent’ predictive maintenance for forestry by
incorporating external variables data into the computational maintenance model. Based on these
insights, the paper presents a model for an intelligent predictive maintenance system (IPdM) for
forestry and a method for its implementation and evaluation in the field.

Keywords: intelligent predictive maintenance (IPdM); big data analytics; chipper; machine learning;
operator fatigue; remaining useful life (RUL)

1. Introduction

Energy consumption is rising year by year with rapid population growth and eco-
nomic development. Growing concerns about energy security and global warming trig-
gered by greenhouse gas (GHG) emissions from fossil fuel consumption have motivated
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more researchers to investigate developing sources of renewable energies including wind
turbines, solar panels, bioenergy, hydropower, geothermal, and ocean energies [1]. With
a great sense of responsibility, several nations have established a formal commitment to
boost the proportion of renewable energy [2]. In recent years, renewable energy production
has rapidly shifted into a profitable business, as evidenced by the numerous initiatives that
have risen [3]. Among all types of renewable energy resources, over the last two decades,
bioenergy has been under intense investigation with notable research efforts in different
countries to define and measure sustainable practices [4].

In forestry, trees are logged and transport to the timber company. Only a small portion
of the whole tree is utilized as a valuable timber for the furniture, construction etc., leaving
the remainder of the trees such as branches, leaves, bark, and tops for either paper, biomass
energy, or other uses. Biomass feedstock can be obtained from agricultural residues,
low-value material from industrial processes, municipal solid waste (MSW), wood, forest
residues, energy crops, animal manure etc. [5,6]. These residues remain on the sites after the
completion of the harvesting operations. A forest biomass supply chain is a combination
of organizations, human resources, activities, information, and biomass resources (bulk
residues, chips, bundles) involved in delivering residues from suppliers to customers. It
consists of the transformation of trees or tree components into a finished product (e.g., chips
for power generation, liquid fuels) that is transported to the end customer. These activities
include the harvesting, collection, pre-processing (e.g., chipping, grinding), storage, and
transportation from supply to demand points. Each of these activities has its sub-categories,
for example, pre-processing includes drying, palletization, ensiling, and pyrolysis [1].

Since the cost of the energy product provided from biomass is moderately low (i.e.,
0.16 € per kg for wood pellets [7]), to make this resource cost-efficient and viable, its supply
chain from collection, transport, storage to distribution (logistics) must be efficient and well
defined and optimized [8]. Modelling is an important phase in understanding the supply
chain process that leads to enhanced supply chain efficiency. Thus far, investigations that
utilize supply chain models have focused on assessing specific supply chain scenarios,
usually to minimize cost. However, the most considerable fraction of biomass energy cost
generated comes from logistics operations [9,10]. A reliable logistics strategy is essential
for all supply chain elements to operate harmoniously and ensures that the whole system
functions as efficiently as possible [11,12]. Logistics optimization has been recognized
as a unique chance for growth, profitability and competitiveness for organizations [13].
Emerging mobile machinery in biomass supply chain such as mobile wood chipper and
mobile pyrolysis systems provide an effective way to deal with biomass logistics [14], as
these units can be located close to feedstock sources or moved throughout a large region
with biomass resources [15]. This creates a dual benefit, as reducing biomass accumulation
in forest ecosystems reduces forest fire risks, and pyrolysis products are easier to store,
handle, and transport than raw biomass [16].

Despite the benefits, the repair and maintenance costs of the chipper and pyrolysis
machines are the major barrier that limits their efficiency and productivity [5]. Although
some research [17] ignored the effect of maintenance and downtime cost in productivity
of machinery during the operation, others estimated the costs associated with forest ma-
chinery maintenance (e.g., feller-buncher, forwarder, skidder, processor etc.) vary between
20% and 60% [18–24] of overall costs. In 2019, Spinelli et al. [18] indicated that chipper
repair and maintenance may represent between 1.5% and 29% of total production cost.
They declared that repair and maintenance costs are complicated to calculate as the rate,
scale, and severity of breakdowns are inherently variable [25], and different repairmen
or operators may record various cost figures for the same maintenance activity [26–28].
Many factors could increase the frequency and severity of failures and reduce safety, such
as careless equipment storage, poor preventive maintenance, and low quality of prior
repairs [18]. The latter being generally affected by time pressure that derives from the
seasonal character of operation [29]. One solution to overcome the problem is to develop
and perform a suitable maintenance plan for critical components of machinery.
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Over the last few decades, the concept of maintenance has evolved from a corrective
approach (repair tasks after a failure) to a preventive strategy (schedule maintenance
plan to reduce the breakdown) [30]. In the last two decades, with the accelerated growth
of computer science and emerging Internet of Things (IoT) technologies, maintenance
strategies have revolutionized from preventive maintenance (schedule-based maintenance)
to predictive maintenance (PdM). Remaining Useful Life (RUL) is the time left for a ma-
chine/component to offer its operative capabilities before a crash [25]. The maintenance
planner or decision-maker use this metric to plan the actual time that machinery needs
maintenance. Therefore, an accurate RUL prediction of critical assets is an important
challenge in predictive maintenance (PdM) to improve reliability, elude breakdown, and
diminish the maintenance costs [31]. Several studies reported the beneficial effect of
PdM system that could lead to a sustainable supply chain such as avoiding unnecessary
maintenance and estimate remaining lifetime [32], deep reductions in greenhouse gas emis-
sions [33], reduce fuel and lubricants consumption [32], enhance maintenance safety [34],
maintenance costs, and the availability of spare parts, avoid losing valuable production
time [35], and make the supply chain more resilient. Nowadays, emerging big data and
cloud-computing trends, offer a potential approach to enhance capture and analysis of a
huge amount of data to deliver intelligent predictive maintenance with data inputs coming
variously from maintenance archive data, sensor-based monitoring, and on-board devices
on machinery. However, predictive maintenance regimes are only good as the quality of the
input data [36], and the accuracy of the models depend on the relationships between these
data and the predictions being produced. Although many researchers have acknowledged
the importance and impact of external factors in RUL accuracy [37,38], it has not yet been
seriously and practically addressed. The first reason could be the lack of infrastructure and
process capability to store, process, and analyze the data collected from machine itself and
external factors [39]. The other reason might be the researchers’ perspective on solving the
problem, as using advanced IoT technologies and smart sensors, cause ignorance of other
potential data sources like external factor data.

This paper aims first to review the current machinery maintenance strategy in the
forest sector, particularly chipper machines. In this research work, the operator fatigue
during the operation are two potential external factor data that will be added to the
standard IPdM model. Therefore, these two external factors will be studied in the literature
review. The paper further presents a conceptual framework for developing intelligent
predictive maintenance (IPdM) using big data technologies, machine learning algorithms,
and Internet of Things (IoT) technologies. The model will used for design, implementation,
and evaluation in biomass supply chain forestry. Lastly, according to the results, hypotheses
will be suggested to improve the maintenance strategy in forestry. The paper is divided
into six subsections. In the maintenance history, we first briefly describe the maintenance
revolution. Then, the different maintenance models will be explained in the following
section. Finally, the current chipper maintenance method will be described.

2. Maintenance

According to the Oxford Dictionary, maintenance is “the process of preserving a
condition or situation or the state of being preserved” [40]. Maintenance is used essentially
for anything worth repairing instead of replacing with a new one. It is not only used in
manufacturing processes but also to railways, vehicles, computers, and so on. Machines,
equipment, and devices production have always been subject to wear and repair and
maintenance requirements. Along with the improvement of manufacturing, there has been
a growth of maintenance. As far back as humankind began making devices that fulfilled
their needs, maintenance was required. Repair and maintenance records (dated 600 B.C)
can be seen in ancient Egypt document states a stoppage of supply of cedarwood needed
to maintain the sacred boat of Amun Ra [41]. There was a considerable advance in worker
productivity from the first Industrial Revolution due to new agriculture methods, advanced
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machinery, and other field cultivation methods. All this led to countries’ industrialization,
transforming the agrarian country into an industrial one [42].

The Industrial Revolution had other significant impacts on society as well. England’s
population multiplied while the mortality rate decreased, thanks to improved hygiene,
less hunger, and improved medical care. Urbanization formed, with large urban industrial
centers with factories, new roads, railroads, and bridges attracting people from rural
areas. Then, Manchester, Liverpool, Birmingham and Glasgow developed into the most
progressive cities. The method of “letting the device work until its breakdown” was the
first that humankind commonly employed. On first sight, it is the most comfortable and
straightforward way of maintenance. Machines were relatively simple, and therefore there
was no need for a technician who would know how to fix it, at the initial stage. Even
nowadays, according to Bloch and Geitner [43], over 55% of people still practice corrective
maintenance. With the growing complexity of machines, especially after the beginning
of the first Industrial Revolution, different maintenance methods have been developed to
reduce costs and improve the environment and operators’ safety.

2.1. Maintenance Models

Companies and industries have adopted various maintenance approaches and policies
to diminish maintenance expenses and enhance their productivity and risk management.
The concept of maintenance has evolved over the last few decades from a corrective ap-
proach [44,45] (maintenance actions after a failure) to a preventive approach (maintenance
actions to prevent the failure) and recently, key industrial manufacturers have invested in
predictive maintenance (PdM) to maximize the availability of machine parts and equipment
uptime and deploy maintenance more cost effectively [46]. Unlike traditional models, PdM
is designed to monitor the actual condition of the equipment to alert the system in advance
and determine whether maintenance will be required. Fault detection and condition moni-
toring are critical components of PdM and can potentially eliminate catastrophic equipment
failures in industrial manufacturing. Through the measurement using sensors, unknown
or abnormal patterns, events, or failures can be predicted using anomaly detection technol-
ogy [47]. Condition-Based Maintenance (CBM) is a relatively maintenance model (Aligned
with Industry 4.0 and digitalization) that has been utilized to plan for maintenance action
based on the condition of the machines and to prevent failures by solving problems in
advance. It uses sensors to monitor the performance of a system or a critical component
and a measurement system to control and evaluate signals. In such techniques, signal
data are used to forecast the RUL of the component unit through the relation between the
historical data and real-time condition monitoring information collected from the in-field
unit. Breakdown or failure is then determined as the occasion when a CM signal enters a
prespecified failure threshold. As can be seen from Figure 1, there are three main types of
maintenance methods, which will be described in the following subsection.
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2.1.1. Corrective Maintenance

In the Industrial Revolution, operators and workers were responsible for machinery
and equipment maintenance, known as corrective maintenance (CM). CM is performed
when the process or machine has a critical halt, and machine failure has already occurred.
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Production is halted as long as the maintenance takes time, causing a reduction in produc-
tion and a rise in costs. The repair time cannot be predicted, and in the worst-case scenario,
the failure can affect the other elements, further increasing the repair time. Therefore,
corrective maintenance is mainly employed in an environment where machinery break-
down does not impact the production. This strategy is based on the assumption that the
costs sustained for downtime and replacement in case of breakdowns are fewer than the
investment required for the maintenance program [48]. This approach may be economical
when faults occur rarely. However, the frequency and different types of breakdowns may
remarkably raise the plant’s downtime cost and the cost of equipment.

Figure 2 illustrates the functionality of corrective maintenance of machinery for a pe-
riod of time. The X-axis and Y-axis showed the level of machine health and operation time,
respectively. In the first 12 months of machinery operation, the machine’s health condition
reduced from excellent to average health and then the failure occurred. Accordingly, the
maintenance crew were present to identify the failure and order the machine’s spare parts.
This procedure typically takes a lot of time, and during the maintenance, the production
is down. Generally, the maintenance fleet is not able to repair the machine carefully and
accurately because they are under tremendous pressure to repair the machinery as soon as
possible. Many cases and incident reports have demonstrated the risk of injury or death
associated with maintenance activities [49]. The next failure of machinery occurred after
six months, which indicated that there is no pattern in the failure of the machines, and
an incident can happen anytime. Therefore, the maintenance crew must be available and
prepared for the upcoming failure. The main disadvantages of corrective maintenance are
that the production is stopped, the spare part is not available and must be purchased, the
repairman is under great stress to repair the machine, the possibility of injury or death is
high during the maintenance phase, the failed component might cause a failure of other
parts, the nature of breakdown might be unknown, the scale of damage is large, and the
overall cost is extremely high (e.g., machine maintenance and production down).
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2.1.2. Preventive Maintenance (PM)

At the beginning of the 20th century, industries began to add maintenance activities to
their business plans, and maintenance managers started to transform from solving failures
to preventing them, a process known as preventive maintenance (PM). PM is based on
periodic reviews of the system with the aim of preventing unplanned breakdowns and
failures [50]. This maintenance method is typically used outside the production time. The
objective of this type of employed maintenance is to reduce or eliminate the accumulated
deterioration through periodic checks and replacement of parts [51]. Preventive mainte-
nance is enacted to identify any anomalies or malfunctions in the elements of a system.
This method is regularly performed visually and physically on the machine [52–56]. This
maintenance method requires the strong administration and development of a plan that
must be performed by qualified staff. Besides, if it is not precisely used, there will be a
failure, which will cause damage and increase costs.
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As can be seen in Figure 3, regular maintenance is applied every three months to avoid
machinery breakdown. However, the failure might take place before or after the scheduled
maintenance time. As a result, arranging the maintenance program long before failure
can lead to unwanted maintenance costs, and postponing the maintenance can increase
the risk of breakdown. Compared with corrective maintenance, preventive maintenance
is much safer in terms of human injury and is reliable and cost-effective. However, for
many industries with complex machinery and systems such as aviation, marine, mining
and power energy industries, the method is still costly and requires a lot of improvements.
Diniz, Carlos Cézar Cavassin, et al. [57] used the World Class Maintenance (WCM) models
to estimate availability of mechanics, oil consumption (hydraulic/engine), and maintenance
costs as a basis for preventive maintenance. They observed a 5% increase in the availability
of mechanics and a 60% decline in oil usage. However, the cost of maintenance increase by
3% as a result of new machinery investment and the training of mechanics.
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2.1.3. Predictive Maintenance (PdM)

In the last two decades, with the accelerated growth of computer science and emerging
IoT technologies, maintenance strategies have revolutionized from preventive maintenance
to predictive maintenance (PdM) [58–60]. Recently, key industrial manufacturers have
invested in PdM to maximize the availability of machine parts and equipment uptime and
deploy maintenance more cost effectively [46]. The possibility of conducting predictive
maintenance contributes to reducing machine downtime and costs and improving the
control and quality of production [61–64]. Unlike traditional preventive maintenance, PdM
is designed to monitor the actual condition of the equipment to alert the system in advance
and determine whether corrective maintenance will be required. Fault detection and condi-
tion monitoring are critical components of PdM and can potentially eliminate catastrophic
equipment failures in industrial manufacturing. Through measurements using sensors,
unknown or abnormal patterns, events, or failures can be predicted using anomaly detec-
tion technology [47]. Condition-Based Maintenance (CBM) is a new maintenance model
(Aligned with Industry 4.0 and digitalization) utilized to organize maintenance activities
based on the machines’ status and limit breakdowns by solving the barriers in advance. It
uses sensors to monitor the performance of a system or a critical component and measure-
ment system to control and evaluate signals. In such techniques, the data of CM signals
are adopted to anticipate the RUL of the component unit through the relation between the
archive data and real-time data obtained from the in-field machines. The breakdown is
then determined as the incident when a CM signal exceeds the failure threshold.

There are different maintenance strategies aimed at enhancing the prediction accu-
racy of RUL. The PdM approaches organized into the following four levels according
to their basic methods, i.e., knowledge-based methods [65,66], physics model-based ap-
proaches [67–69], data-driven (statistics-based, pattern recognition, or artificial intelligence
(AI) and models based on machine learning algorithms) [70–73], and hybrid approaches.
RUL is the time remaining for a component/part to fulfil its operative capabilities before a
crash. Using the Internet of Things (IoT) and connected technology, it is feasible to observe
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the health of a system by performing continuous measurements, performing analytics,
and predicting its future degradation and RUL of equipment [74–79]. An accurate RUL
prediction of critical assets is an important challenge in PdM to improve reliability and
safety, avoid fatal breakdown, and reduce maintenance costs. Several studies reported the
beneficial effect of PdM systems that could lead to a sustainable supply chain by avoiding
unnecessary maintenance and estimating the remaining lifetime of a machine part [32],
reducing greenhouse gas emissions [33], reducing fuel and lubricant consumption [32],
enhancing maintenance safety [34], overseeing the maintenance costs and availability of
spare parts [80], avoiding valuable production time [35], and making the supply chain
more resilient. Figure 4 shows that most of do not occur immediately, and usually there are
some degradation symptoms from the normal state to failure. Hence, the actual conditions
and trends should be estimated and predicted during the degradation process, and relevant
maintenance actions should be considered before breakdown occurs [81]. From Figure 4, it
is clear that the machine was initially in a healthy condition. Over time, its health reduced.
The fault occurred after passing the “Good” machine health indicator and from that point,
the machine’s health began to degrade, as indicated by the dashed lines. The machine or
component broke down after 135 days and the optimum maintenance plan was enacted
right before the failure. However, in the real-world, the prediction is inaccurate and could
take place sooner or later.

Forests 2021, 12, x FOR PEER REVIEW 8 of 27 
 

 

 
Figure 4. Machinery health conditions in the predictive maintenance model. 

Although there is a huge interest in using PdM method in diverse industries [82], 
some researchers and industries have reported that PdM is expensive [83,84], complex 
[85], and has difficulty obtaining reliable and accurate RUL prediction [86,87]. In 2005, Li 
et al. [88] asserted that the complexity of the manufacturing environment and PdM tech-
nology and information technology limitations are significant challenges to implementing 
a predictive maintenance system. Kombe (2009) [89] pointed out that the placement of 
sensors and the proper interpretation of data by personnel are major challenges. Mondal 
et al. (2013) [90] emphasized high costs as the principal disadvantage in the selection of 
the predictive maintenance policy. Tiago et al. (2020) [61], in their review article, declared 
that several challenges and opportunities are needed to be addressed including real time-
based PdM application [91,92], most of the tests applied in PdM use simulation benches 
[93], linking the PdM to the production process [91], a vision of the computing within 
Industrial applications. Sutrisno et al. [94] compared three methods for estimating the re-
maining useful life of ball bearings. The methods used several features for tracking deg-
radation and three different approaches for estimating RUL. The limited amount of train-
ing data led to high uncertainties among all three approaches. The authors also mentioned 
the multiple challenges in analyzing the data, including limited training samples, no in-
formation about failure modes, no fixed failure threshold, and a wide range of failure 
times. Despite new solutions for data-driven RUL prediction using advanced deep learn-
ing and big data technologies, Ren et al. [95] declared that significant challenges, such as 
optimal feature selection and extraction, and efficient feature compression, need more ex-
ploration. In another study Ellefsen et al. [96] stated that the accuracy of RUL predictions 
based on data-driven methods strongly depends on the quality of the constructed run-to-
failure training data labels. Li et al. [97] used an ensemble prognostics method to classify 
the stages of the whole degradation process utilizing locally weighted linear regression, 
and then determined the optimal degradation-dependent weights by reducing cross-val-
idation training errors (only during offline training). Lastly, they selected the degradation-
dependent weights to the member prognostic algorithms of an ensemble. They stated that 
the accuracy of partitioning the entire degradation process into multiple degradation 
stages needs improvement. In order to address the aforementioned challenges, a new gen-
eration of maintenance strategy emerged, dubbed Intelligent PdM. 

2.1.4. Intelligent Predictive Maintenance (IPdM) 
Emerging big data, the internet of things (IoT) concept, and cloud computing are ex-

ponentially increasing processing and storage capabilities. With data inputs coming vari-
ously from maintenance archive data, sensor-based monitoring, and external contextual 
variables, big data analytics offers a potential approach to enhance capture and analysis 

Figure 4. Machinery health conditions in the predictive maintenance model.

Although there is a huge interest in using PdM method in diverse industries [82], some
researchers and industries have reported that PdM is expensive [83,84], complex [85], and
has difficulty obtaining reliable and accurate RUL prediction [86,87]. In 2005, Li et al. [88]
asserted that the complexity of the manufacturing environment and PdM technology and
information technology limitations are significant challenges to implementing a predic-
tive maintenance system. Kombe (2009) [89] pointed out that the placement of sensors
and the proper interpretation of data by personnel are major challenges. Mondal et al.
(2013) [90] emphasized high costs as the principal disadvantage in the selection of the
predictive maintenance policy. Tiago et al. (2020) [61], in their review article, declared that
several challenges and opportunities are needed to be addressed including real time-based
PdM application [91,92], most of the tests applied in PdM use simulation benches [93],
linking the PdM to the production process [91], a vision of the computing within Industrial
applications. Sutrisno et al. [94] compared three methods for estimating the remaining
useful life of ball bearings. The methods used several features for tracking degradation
and three different approaches for estimating RUL. The limited amount of training data led
to high uncertainties among all three approaches. The authors also mentioned the multiple
challenges in analyzing the data, including limited training samples, no information about
failure modes, no fixed failure threshold, and a wide range of failure times. Despite new
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solutions for data-driven RUL prediction using advanced deep learning and big data
technologies, Ren et al. [95] declared that significant challenges, such as optimal feature se-
lection and extraction, and efficient feature compression, need more exploration. In another
study Ellefsen et al. [96] stated that the accuracy of RUL predictions based on data-driven
methods strongly depends on the quality of the constructed run-to-failure training data
labels. Li et al. [97] used an ensemble prognostics method to classify the stages of the whole
degradation process utilizing locally weighted linear regression, and then determined the
optimal degradation-dependent weights by reducing cross-validation training errors (only
during offline training). Lastly, they selected the degradation-dependent weights to the
member prognostic algorithms of an ensemble. They stated that the accuracy of partition-
ing the entire degradation process into multiple degradation stages needs improvement. In
order to address the aforementioned challenges, a new generation of maintenance strategy
emerged, dubbed Intelligent PdM.

2.1.4. Intelligent Predictive Maintenance (IPdM)

Emerging big data, the internet of things (IoT) concept, and cloud computing are
exponentially increasing processing and storage capabilities. With data inputs coming
variously from maintenance archive data, sensor-based monitoring, and external contextual
variables, big data analytics offers a potential approach to enhance capture and analysis of
these data to deliver an accurate failure prediction of machineries and components. Some
researchers have integrated these tools with artificial intelligence methods and machine
learning approaches, calling their models “intelligent”. For example, in El Kihel et al. [98]
implemented intelligent predictive maintenance tools to optimize industrial energy per-
formance through different vibration, energy, and temperature parameters in real-time.
Pech et al. [99] put forth a Smart and Intelligent Predictive Maintenance (SIPM) system
derived from the full-text analysis of associated papers. They investigated several re-
search papers related to PdM and IPdM and collected their methods and approaches.
“Sensor/smart sensors” and “Big Data” are two major keywords that have been used by
the researchers in IPdM. In [100], Michal et al., mentioned that the “implementation of
Industrial Internet of Things (IIoT), Condition Monitoring, Big Data, Cloud computing,
virtual and augmented reality in maintenance methods will significantly improve the
effectiveness and quality of manufacturing processes and eliminate human factors”. They
proposed an approach to provide intelligent predictive maintenance control by visualizing
varying types of information using augmented reality. Mateusz Marzec et al. [101] investi-
gated various machine-learning techniques and proposed a procedure to automatize the
intelligent predictive maintenance process. There are many research studies regarding the
design and implementation of IPdM approaches in the literature and the majority of them
characterized the models based on the following technologies [100,102–108]:

• Autonomous Robot
• Big Data
• Cloud Computing
• Industrial Internet of Things
• Cybersecurity
• Augmented (AR) and Virtual Reality (VR) technologies

As researchers have mentioned regarding IPdM systems, new technologies play a key
role in revolutionizing systems from PdM to I(intelligent)PdM. We can store and analyze
much more data with new technologies to improve prediction accuracy, but this does not
necessarily mean the data quality will change much in this revolution. IPdM regimes are
only good as the quality of the input data that they use and the accuracy of the assumptions
underpinning the relationships between these data and the prediction algorithms being
produced. For example, different data quality measures such as the experience and age of
operators, environmental changes, operator behavior/fatigue, weather conditions, slope,
etc., could make the condition of the machinery in operation clearer. Although many
researchers have acknowledged the importance and impact of external factors in RUL
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accuracy [109–111], it has not yet been seriously and practically addressed. The first reason
could be the lack of infrastructure and process capability to store, process, and analyze
the data collected from machine itself and external factors. The other reason might be
the researchers’ perspective on solving the problem, as most research is based on using
advanced algorithms and techniques, enriching collected data, and taking advantage of
high-precision sensors to improve the RUL performance and accuracy.

This paper aims to design a conceptual framework to develop an intelligent predic-
tive maintenance (IPdM) model using external factor data for chipper machines. In the
following section, the external factors data will be described.

2.2. Forest Machinery Maintenance

It has been noted that the harvest system mechanization leads to higher levels of
productivity in the supply chain. A disadvantage is that as mechanization improves, costs
also increase [112]. Cost and safety are two major criteria in the repair and maintenance
of harvesting and biomass machinery in forestry. Repair and maintenance, fuel, and
labor costs describe as the three highest costs for transport companies. The overall forest
machinery cost was estimated from 20% to 60%, depending on different factors such as
machinery age, usage, operator experience, vegetation, weather condition during the
production, maintenance strategy etc. [18–24]. The right maintenance plan, enhancing
decision-making in maintenance, and performing work properly can cause cost reductions,
boost efficiency, and advance vehicle reliability. It is usually inefficient when the machine
is idle, as it decreases its operating hours per year. An unplanned breakdown in forestry
not only delays delivery but can also cause damage to the whole supply chain. According
to recent studies, unplanned downtime induced by an inadequate maintenance plan
diminishes a plant’s overall productive capacity by up to 20% and costs about $50 billion
each year [113]. Unplanned downtime attributes to the time the element/machinery is
unavailable due to unscheduled maintenance in the form of breakdowns. Unplanned
downtimes conflict with the maintenance function and result in costs for a fleet. This is
typical for all system elements, including electrical breakdowns, mechanical breakdowns,
accidental damage [114]. A higher availability can be accomplished by regularly replacing
components. However, this strategy can be costly, not only because of regular observations
but also because of components costs. Hence, failure prognostics and flexible maintenance
are vital for fleet managers [115]. Effective maintenance is also profitable from sustainable
development, as heavy forest machinery are also significant polluters [116].

The other important issue that could rise during the maintenance of forest machinery
is safety. An estimated 13.7 million people are employed formally in the forestry sector
worldwide, and millions more are engaged informally, particularly in developing coun-
tries [117]. In fact, accident reporting systems are infrequently available in the forestry
sector in developing countries [118]. Forestry has been known in many countries as an
industry with high percentages of work-related injury [119–122]. Although the num-
ber of accidents has not been recorded in global data, it is likely (using agriculture as a
guide) that the number of injuries in professional forest operations worldwide exceeds
170,000 per year [117]. Forestry industries have a higher rate of accidents compared with
other sectors where comparative statistics are available [123–125]. Fatigue related to long
working hours, sleeplessness, fast-paced and intensive work along with financial pressures
and inadequate training [126] could lead to logging injuries [121,127]. Melemez [118]
(2015) ranked personal factors (32%) and organizational factors (22%) as the two most
major causes of fatal forest harvesting accidents in the Western Black Sea region of Turkey.
Wang et al. [128] stated that loggers incur 26% more injuries than the average industrial
worker, and are 19 times more likely to be killed on the job. Several research studies have
been conducted to minimize forestry accidents and identify the leading cause of accidents
as well as the best prevention methods. In this research study, the chippers’ maintenance
activities were identified as one of the main causes of different injuries and fatal death in
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forestry operation. We believe that implementing the IPdM system would improve the
maintenance regime and enhance safety in this industry.

2.2.1. Chipper

The production of renewable energy resources (e.g., biofuels, wind turbines, solar cells
etc.) is fundamental for sustainable development [129]. Various nations have committed to
improving renewable energy sources. Recently, renewable energy production has rapidly
converted into a valuable business. The European Union has established new aims for
biomass utilization by encouraging all members to increase biofuel usage [3]. Nevertheless,
biofuel prices are comparatively low and could make the biomass supply chain risky [130].
The potential development and expansion of the biofuel sector primarily rely on efficiency
in the supply chain to avoid increasing fuel costs [131].

The wood fuel supply chain system consists of multiple steps. The initial phase,
which is the costliest one, consists of converting green waste into woodchips. The chipper
machine is responsible for accomplishing this task. Various chippers and grinding systems
are adopted for different biomass sources, including branches, leaves, and whole trees [132].
Chippers are divided into two main categories based on their functionality and usage,
including household and industrial chippers. While the first chipper category is driven
by farm tractors, the second category is self-propelled machinery and built-in machines.
In terms of mobility, the device is divided into two categories: fixed and movable with
disc and drum tools [133]. Mobile woodchippers are now available for different purposes
in a wide range of sizes and configurations to convert the branches and tree trunks into
chips, thus making them easier to transport [134]. Mobile chippers are placed on a trailer or
transported using the tractor, truck, or forwarder. Industrial chippers generally deliver high
productivity, quality, and fuel efficiency significantly when the settings are appropriately
adjusted. In 2006, Naimi et al. [135] reviewed different commercial-scale size reduction
units, chipping systems, and performance properties for woody biomass. The carrier
engine (e.g., tractor) could provide the power chipper required during operation or be
provided with an independent engine. It can be seen from the Figure 5 that there is also
another type of mobile chipper with an autonomous motor.

Forests 2021, 12, x FOR PEER REVIEW 11 of 27 
 

 

driven by farm tractors, the second category is self-propelled machinery and built-in ma-
chines. In terms of mobility, the device is divided into two categories: fixed and movable 
with disc and drum tools [133]. Mobile woodchippers are now available for different pur-
poses in a wide range of sizes and configurations to convert the branches and tree trunks 
into chips, thus making them easier to transport [134]. Mobile chippers are placed on a 
trailer or transported using the tractor, truck, or forwarder. Industrial chippers generally 
deliver high productivity, quality, and fuel efficiency significantly when the settings are 
appropriately adjusted. In 2006, Naimi et al. [135] reviewed different commercial-scale 
size reduction units, chipping systems, and performance properties for woody biomass. 
The carrier engine (e.g., tractor) could provide the power chipper required during opera-
tion or be provided with an independent engine. It can be seen from the Figure 5 that there 
is also another type of mobile chipper with an autonomous motor. 

  
(a) (b) 

Figure 5. (a) displays mobile chipper during operation, and (b) illustrates where the autonomous 
motor of chipper with red color [136]. 

2.2.2. Chippers’ Maintenance 
According to the literature [137], fuel consumption, depreciation, and repair and 

maintenance costs are the main chipper costs. The chippers perform a cumbersome task, 
and high wear and tear of their components is unavoidable [2]. Therefore, in order to 
avoid the failures of the chippers machine, regular maintenance is crucial. However, the 
maintenance cost estimation is complicated, as the frequency and severity of failures are 
variable, and the maintenance cost for two seemingly identical chippers could be differ-
ent[18]. Moreover, the local maintenance costs of parts and labor could affect operators 
records for the same maintenance intervention [138]. Although there has been different 
research work on chipper costs in fuel consumption and depreciation [139], repair and 
maintenance costs are less considered a cost element. However, the chipper maintenance 
cost, especially some particular components such as chipper knives and anvil, play a vital 
role in the overall agricultural and forestry equipment expense. In 2001, Spinelli and 
Hartsough [140,141], in their survey, declared that chippers operators report more exten-
sive maintenance demands than the rest of their fleet in agriculture. Spinelli et al. [18] 
stated that the chipper repair and maintenance cost is between 1.5% and 29%, including 
fuel and labor. Besides, maintenance cost is the main reason that the machinery is replaced 
with a new one after the optimum replacement age [142]. As the frequency and severity 
of machinery failures increase, supply chain productivity goes down. Different companies 
design different plans to overcome the maintenance challenge to meet the expected 
productivity. 

3. External Factors 
In recent decades, due to advances in science and technology and demand for cost 

effectiveness in supply chains, a great number of PdM methods have been introduced to 
optimize the prediction accuracy of machinery failure and enhance performance [143–
145]. A considerable amount of research papers used laboratory and benchmark data 
sources to design, implement, and evaluate their methods. Generally, researchers used 

Figure 5. (a) displays mobile chipper during operation, and (b) illustrates where the autonomous motor of chipper with
red color [136].

2.2.2. Chippers’ Maintenance

According to the literature [137], fuel consumption, depreciation, and repair and
maintenance costs are the main chipper costs. The chippers perform a cumbersome task,
and high wear and tear of their components is unavoidable [2]. Therefore, in order to avoid
the failures of the chippers machine, regular maintenance is crucial. However, the mainte-
nance cost estimation is complicated, as the frequency and severity of failures are variable,
and the maintenance cost for two seemingly identical chippers could be different [18].
Moreover, the local maintenance costs of parts and labor could affect operators records for
the same maintenance intervention [138]. Although there has been different research work
on chipper costs in fuel consumption and depreciation [139], repair and maintenance costs
are less considered a cost element. However, the chipper maintenance cost, especially some
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particular components such as chipper knives and anvil, play a vital role in the overall
agricultural and forestry equipment expense. In 2001, Spinelli and Hartsough [140,141], in
their survey, declared that chippers operators report more extensive maintenance demands
than the rest of their fleet in agriculture. Spinelli et al. [18] stated that the chipper repair and
maintenance cost is between 1.5% and 29%, including fuel and labor. Besides, maintenance
cost is the main reason that the machinery is replaced with a new one after the optimum
replacement age [142]. As the frequency and severity of machinery failures increase, supply
chain productivity goes down. Different companies design different plans to overcome the
maintenance challenge to meet the expected productivity.

3. External Factors

In recent decades, due to advances in science and technology and demand for cost
effectiveness in supply chains, a great number of PdM methods have been introduced to
optimize the prediction accuracy of machinery failure and enhance performance [143–145].
A considerable amount of research papers used laboratory and benchmark data sources
to design, implement, and evaluate their methods. Generally, researchers used archive
data (e.g., machine and component information, stored sensor data, maintenance history
etc.) and real-time sensor data as primary inputs. However, some researchers argue that
there are some other types of elements that could impact the prediction accuracy of models.
Recent advances in psychology and the cognitive sciences have shown that emotions
(such as fear, anger, distraction, stress, and fatigue) play a significant role in a person’s
behavior [146]. The study of automobile drivers’ behavior has attracted a lot of research
attention, and studies are being conducted to discover the crucial factors that contribute to
road accidents and that can potentially affect a person’s ability to drive safely [147]. Driving
behavior is regarded as a complicated system in which the environment, driver, and vehicle
influence factors. Other elements are fatigue, drowsiness, distraction, memory, workload,
traffic, vehicle safety features, and discomfort caused by long driving hours, training, and
experience [148]. Numerous researchers in the field of psychology believe that drowsiness
and fatigue are the leading causes of road accidents. Other vital factors in road accidents
are drunk driving and driving at a high speed. Accordingly, driver behavior detection is
emerging as a growing research interest in the real-time monitoring of driving states [149].

Despite the importance of external factors in RUL prediction accuracy, research in
this field is still very limited. A number of studies have argued for the importance of
external factors and their possible impact on the failure of machinery and components [49].
Most of the present research on condition monitoring signals imply that components have
similar attributes, function under similar external conditions, or that external factors do
not affect the failure and degradation process [150,151]. This hypothesis may not be true
in the real world. Machinery and components perform under diverse conditions (e.g.,
locations, pressures, weather condition, and speeds), the degradation of functioning units
can considerably decelerate or accelerate. Temperature and humidity are the two influential
external factors that Ren et al. [152] pointed out that affect RUL prediction accuracy of
battery use. Aydemir et al. [153] indicated that sensor measurements are influenced by
external factors, including environmental noise, sensor position, and operation conditions
(e.g., load), and each machine must to be characterized individually. Kontar et al. [37]
proposed a nonparametric framework for modelling the evolution of condition monitoring
(CM) signals under different external factors. According to the authors, external factors can
significantly affect the development of CM signals in real-life applications, incorporating
the effect of such external factors will improve the overall prediction of RUL accuracy.
In 2014, Marinelli [154] employed an artificial neural network (ANN) model to predict
the condition level of earthmoving trucks. The authors utilized capacity, age, kilometers
travelled, and maintenance level of trucks as predictors for the condition level of these
trucks. The performance of the model was compared with the corresponding prediction
accuracy of the statistical method of dissociation analysis (DA). Yang and Makis (2010)
propose an approach to detect and localize the occurrence of gear failure for a gearbox that
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operates under different load conditions [155]. In the following subsection, two important
variables including human (e.g., operator fatigue, experience, age), and environment factors
will be described in the transportation system.

It has been purported that workers are becoming a source of bottleneck for enhanced
productivity in forest industries [156,157]. Therefore, the investigation of the motives
behind the operators’ performance is essential. The value of particular human traits for
forestry work performance has been studied for over 60 years [158,159]. There are many
traits that have been described as important for successful harvesting work, such as con-
centration, decision making, memory, motivation, motor coordination, pattern recognition,
planning capacity, logic reasoning, and spatial perception [160–162]. In Sweden, human
screening during work was used in the 1960s. However, this approach’s popularity de-
clined as the use of psychological tests to evaluate a person’s suitability to perform a task
began to be examined in the 1970s [158]. Human screening has been applied in Brazil [163],
and as an entry test for some training programs in Sweden [158]. There are some other
factors that directly or indirectly affect a person’ performance and reduce productivity,
including fatigue, stress, and worker retention with longer hours and low pay.

Operator Fatigue in Forestry:
According to the Forest Safety Code of Tasmania (2020), “Fatigue is a state of tiredness

or exhaustion that results in a degree of impairment. This impairment may be physical
and/or mental and can result in an increased risk of workplace errors or accidents” [164].
In the harvesting operation, the extension of the working day has the potential to signif-
icantly influence an operator’s performance and safety. It can cause problems with the
accumulation of fatigue and its impact on behavior connected to maintaining safe working
practices, like the failure to keep attention and the tendency to take risky short cuts [165].
The number of working hours has been linked to increased fatigue and tiredness and
performance degradation, which is more significant at night [166]. Dinges (1995) [167] and
Spurgeon et al. (1997) [165] asserted that tiredness and fatigue could relate significantly to
performance loss and increased risk of accidents. There has been limited literature inves-
tigating the role of fatigue in accidents and injury among forestry operators despite the
financial consequences and dangerous nature of forestry work in different regions world-
wide. Most research to date has focused on the effect of the physical workload. Fibiger
and Henderson [168], in their research on physiological workloads, argued that tree fellers
could not maintain the expected high energy expenditure level over a 7-h workday. In 1994,
Parker and Kirk [169] stated that most forest tasks are much physically demanding with
planting, pruning, and chainsaw operation being the higher physiological workload tasks,
and machine operation being the lowest physiological workload task. It is described that
incident rise just before the first break in the day’s work, which is believed to correspond
with a reduction in workers’ energy levels and increasing fatigue [170–172]. According to
the [164], In the forest field, ISO31000 fatigue likelihood scores are designed to measure the
level of workers’ fatigue during their shift activities. The chipper operators’ fatigue during
operation and maintenance scored 3 in Table 1, which indicates a moderate level. However,
fatigue conditions can change to a high level when operators have inadequate rest quality
after their shifts, night shift, and extended shifts, or if working conditions change due to
the harsh terrain and climate, consecutive shifts, insufficient rest between shifts and during
shifts, and work with high physical demands. The likelihood of individual fatigue and the
severity of consequences are two factors that help measure the risk in forestry.

In many parts of the world, the forestry industries are constantly looking for ways
to improve the performance of their wood supply systems in order to compete in the
global wood products marketplace. Shift extension and multiple shift forest operations
are not new concepts in forestry to meet the growing demand for increased production
efficiency and overall pecuniary returns [173]. Generally, according to the literature, several
aspects can affect forest productivity and safety [173], such as human factor [174] (operator
experience [175], age, health condition, education level [175], and operator fatigue [176]);
the work objective (tree form and volume); the slope and terrain situations, shift work [173];
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and machine maintenance practices [177–179]. In this research work, we argue that there
is a possibility that chipper operators’ fatigue could increase the acceleration of wear and
tear of the chipper components, which could lead to an unpredicted breakdown during the
operation. Therefore, an IPdM model will be offered to extract the operator fatigue data
during chipper operation, and then feed this data along with archive and sensor data to
the machine learning model to predict the breakdown event.

Table 1. Chipper operator fatigue rate during operation and maintenance activities.

Role Sub Classification Activities Fatigue Consequence
Rating (from 1–5)

Machine Operator Machine Operator Chipper 3
Machine Operator Manual Tasks Inspections,

maintenance etc. 3

4. Conceptual Model for Design, Development, and Evaluation of IPdM Model

According to the literature, there are two maintenance management systems in forestry
companies: run-to-failure and scheduled check. In this research work, a state-of-the-art
intelligent predictive maintenance (IPdM) system will be introduced as an alternative to
overcome the maintenance cost and improve the safety of chipper operators. This study
aims to provide a conceptual framework for developing IPdM system for the maintenance
of mobile chippers machinery in a forest company. In general, the framework first uses
different sensor and embedded machinery devices to monitor and detect the fault in the
critical component of the chipper. Then, the current condition of machinery and parts
are transmitted to the detection engine system to identify the anomaly in real-time. Data
will be stored in a database for further processing and automate analysis. Since the data
collected have the volume, variety, and velocity characteristics, traditional computing
system are incapable of processing and analyzing the data. To overcome this challenge,
a novel approach based on big data technologies, cloud, machine learning algorithms,
and the Internet of Things (IoT) will be adopted to ensure the efficiency, scalability, and
availability of the system.

This research study argues that the current maintenance platforms cannot capture
external factors that might affect machinery breakdowns, like operator fatigue. Although
external factors might cause machinery failure and safety issue, research study focus on
this research objective is still rare. A conceptual IPdM framework will be proposed to
consider the effect of external factors on prediction accuracy. As represented in Figure 6,
the proposed architecture contains the following modules:

Data Sources: Three types of archives, sensors, and telemetry data are considered for
this experiment. Two methods are commonly used to store archive data in forestry, includ-
ing computer-based (Excel sheet, software) and paper-based. A great deal of information is
recorded such as machinery number and type, spare part availability, maintenance crew
names and skills, breakdown date and time, breakdown type, maintenance time duration,
operators start and end work, and operators’ rest time. In this research work, archive data
will be used in two phases of the analysis. First, some information such as time and date of
previous failure, failure causes, operators who were responsible at the moment of failure
incident, the number and types of replaced spare parts, could help us better understand
the nature of failure in the chipper machine. Second, the archive data could be fed into
machine learning algorithms to improve the accuracy of RUL. Lastly, these data could
be used to design and develop a simulation model to compare the current maintenance
strategy with the IPdM model.

Distributed Message System: Develops a streaming data pipeline with horizontal
scalability and high throughput characteristics to distribute real-time data from the chipper
machinery to the pre-processing and analyzing modules. Many open-source distributed
messaging queue applications exist, such as Apache Kafka, Apache Flume, Apache Sqoop,
and RabbitMQ [39].
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Data Preprocessing: The pre-processing step is an essential part of architecture as it
converts the raw data sources to meaningful information that could be used to improve
data analysis and assist in the decision-making processes. The raw data are incomplete,
noisy, and inconsistent and must be cleaned using data cleaning techniques. The nominal
data (categorical variables) in archive datasets need to be transformed into numeric vari-
ables. One-hot encoding as feature transformation techniques would be a suitable option
for this operation, but the challenge is that the amount of numeric variables become too
large and complex to be analyzed [180]. The Autoencoder method is a possible solution to
achieve low-dimension and robust data. Data Scaling is another pre-processing activity to
redefine the attribute value scale into a smaller range to process rapidly. The replacement
method replaces attribute values with low-level values that can be easier to understand
by a machine. Lastly, the volume of data is reduced to a manageable size to achieve more
effective detection. There are different methods to perform this task, including unnec-
essary filter data, feature selection and data clustering, data compression, and selecting
representative data instead of the whole data [181].

Big Data Environment: The model requires the processing capability to analyze vast
amounts of batch and real-time data instantaneously. However, big and complex data
cannot be handled utilizing traditional techniques. Therefore, we have introduced the Big
Data Environment module to process and analyze data (with the characteristics of volume,
velocity, and variety) coming in streaming format and apply machine learning algorithms
to predict the RUL of the critical chipper component on a scalable distributed-computing
platform based on big-data technologies. The Stream Processing Layer transforms the
streaming data obtained from different sources into the standardized format in order to
be used for quick decision and real-time monitoring the condition of chipper. The Batch
Processing Layer uses pre-processed data and predicts the RUL of the chipping machine
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based on the machine learning algorithm. The results of the analytics then are stored on
the distributed Knowledge Base Layer for further analysis and visualization applications.
Apache Hadoop, and Apache Spark framework are two popular big data platforms could
be used to deal with big data challenges. Apache Spark [182], developed at UC Berkeley
AMPLab, is a large data-parallel computing framework that provides rapid in-memory
computing on a distributed system. Spark streaming is an essential component of Apache
Spark that uses the in-memory capability to process data in real-time. Accurate and quick
decision making based on machine learning technologies require high response speed that
spark streaming could provide this capability [183]. Spark MLlib is a scalable machine
learning library that provides different algorithms based on distributed implementations.
PySpark could be used as a programming interface, combining the simplicity of Python
and the power of Apache Spark.

Decision Making: The decision-making segment is responsible for providing clear
insight and guidance for assessing the status of the chipper. The data analysis results
are numeric and must be understandable by maintenance decision-makers. Therefore,
three visualization techniques, including interactive dashboard, real-time notifications, and
insights report, are adopted. The interactive dashboard supports maintenance decision-
makers and chipper operators to understand the analytics outcome on graphs, including
current and predicted machinery health conditions, the remaining useful life of each
component, and maintenance schedules. Additionally, the occurrence of critical events can
be communicated via SMS, e-mail in real-time. The system should allow decision-makers
to produce daily, weekly, or monthly reports based on their requirements.

In Figure 6, the overall picture of IPdM model is described. Now, the details of how to
measure the chipper operator fatigue and how to evaluate the new IPdM will be discussed.
In the next subsection, we briefly describe the method that could be used to obtain and
extract the operator fatigue data from chipper operator activities.

4.1. Operator Fatigue Extraction

Fatigue is a qualitative type of data and there is no solid method to collect this value.
Therefore, we must collect and analyze different data to provide the fatigue value. To do
so, three subsections have been designed, including data collection, data pre-processing,
data analysis.

4.1.1. Data Collection

The fatigue management (FM) rule is an essential tool of the National Heavy Vehicle
Regulatory (NHVR) [184] as it seeks to increase safety during heavy vehicle operation in
Australia. In forest industries, fatigue management has a great influence on operation
safety, so some forest industries in Australia have employed monitoring systems to gauge
the work/rest activities and sleep patterns of forest workers [184,185]. As can be seen
from Figure 7, the first phase of this model involves data collection from the chipper
operator daily shifts and measuring how the level of fatigue goes up and down base on
the hours of work/rest time. The operator action can be seen in several aspects, including
work (chip/hour), rest, moving distance, travel time, and operational delay. In order to
extract the operator fatigue during a workday of chipper operators, different types of
data need to be extracted from machinery such as chipping, travelling, and operators’ rest
time. Cadei et al. [186] collected chipper truck telemetry data from GSM/GNSS Teltonika
FM3612 receiver to evaluate wood chipping operation efficiency. They extracted useful
information from the devices including date-time stamp, chipper location (latitude and
longitude), travelling and engine speed of chipper, temperature of the engine, and fuel
consumption. Similar to Cadei et al., we use same telemetry device, and a web-server appli-
cation for a remote acquisition of data could be designed and developed. The data collected
could help us to extract the following feature from machinery to measure operator fatigue:
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• Operator working: (Travelling Speed < 1 km/h) AND (Engine Speed > 1500)
• Chipper in move: (Travelling Speed > 1 km/h) AND (Engine Speed > 0)
• Operator resting: (Travelling Speed = 0 km/h) AND (Engine Speed = 0)
• Operational delay: (Travelling Speed = 0 km/h) AND (Engine Speed < 1500)
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4.1.2. Data Pre-Processing

The collected data are in text format, so different pre-processing methods are required
to convert these data to the valuable data that could be used for analytics. The raw collected
data from the GSM/GNSS Teltonika FM3612 receiver might contain various errors because
of human, computing, and transmission faults. These errors include missing characteristics,
incorrect values, or consistent format. Data transformation generally consists of normal-
ization and generalization. Data scaling is another pre-processing activity to redefine
the attribute value scale into a smaller range to process data rapidly. The replacement
method replaces attribute values with low-level values that can be easier to understand
by a machine. Lastly, the volume of data will be reduced to a manageable size to achieve
more effective detection. There are different methods to perform this task, including un-
necessary filter data, feature selection and data clustering, data compression, and selecting
representative data instead of whole data.

4.1.3. Data Analysis

The system designed in this section was inspired by the architecture of intrusion
detection systems (IDS) [185]. According to the specification of fatigue regulation and
characteristics of the driving dataset, the rule-based approach can be recognized as the
most powerful choice to develop the signature database. A signature-based IDS detection
operation relies on comparing input data characteristics with a signature database. The
system’s output can define whether an operator obeyed or breached the forest fatigue
regulations for every shift, along with their working progress. Notably, it is designed as
a set of provisions of max-work and min-rest corresponding to each time frame, such as
5.5 h or 8 h. Thereby, the rule-based technique will ideally consider every rule clause under
the form of “IF . . . Then”. Using the rule based model [185], fatigue management rules
and regulations in forestry transform into the rulesets. Therefore, the work/rest time of the
chipper operator could be checked by rulesets in the detection engine, and the operator
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fatigue level becomes identifiable; we can say whether the operator obeyed or breached
the fatigue regulation.

An anomaly-based approach is applied to evaluate driver performance and investigate
unusual operator fatigue in a particular working period. Monitoring the performance
of operators is an essential task since there is a possibility of chipper breakdown. In
this case, the operator would receive the obey label even though the reason the operator
stopped working is not “rest”. Therefore, we need to ensure whether the operator meets
the production goal and whether their performance is good enough. Thus, these abnormal
data points can clarify their operating performance. Notably, they can show which day a
driver had their best and their worst performance. The core technique of the module is a
univariance statistics-based outlier detection method. The input dataset for this module,
the driver profile, contains multiple significant attributes that are produced from raw
dataset created by the driver fatigue manager application.

4.2. The Correlation between Operator Fatigue and Sensor Data

The wear and tear of critical components and the operator’s fatigue status should be
monitored and measured simultaneously. This helps to identify whether the collection
of the operator fatigue data could impact the acceleration of chipper failure. In general,
operator fatigue is monitored during the operation, and when the level of fatigue exceeds
the threshold, the vibration signals’ pattern could be checked to see whether it changes or
not. Any correlation between operator fatigue data and vibration sensor data could help to
improve the prediction accuracy of RUL. Figure 7 shows different steps and tools required
to measure the correlation between operator fatigue and vibration sensor data.

As mentioned earlier, accelerometer sensors and operator fatigue data (external factor
data) collect from the chipper machine. In the Section 4.1, we explained the way chipper
operator data could be obtained. Therefore, in this part, we discuss data collection using
vibration sensors and how to measure the correlation of operator fatigue with vibration
sensor data. The G-Link-200 accelerometer sensor could be a suitable option for monitoring
the critical component. Its measure range is between ±2 g and ±40 g, which could cover
the vibration frequency of the chipper machine. This sensor has already been tested and
was designed to monitor machinery in rugged environments like forestry and mining
industries. In the pre-processing step, as the sensor data are time series (time-domain
format), they need to be converted into frequency-domain. A Fast Fourier Transform
(FFT) algorithm [187] will be used to transform time-domain accelerometer sensor data
to frequency-domain data in pre-processing phase. The data pre-processing phase also
involves performing standard data preparations such as missing value imputations, data
aggregation at the hourly level, and outlier detection and treatments. In this phase, several
types of pre-processing methods will be employed for data cleaning, data normalization,
feature extraction, feature selection, and feature integration.

The operator fatigue data is integrated with the vibration sensor data, and in the
evaluation phase the correlation of fatigue and vibration sensor data could be evaluated in
different states using correlation methods such as Pearson’s correlation coefficient [188]
and correlation matrix.

4.3. IPdM Development and Evaluation

The success of the correlation test will lead us to the next step, where the IPdM model
will be proposed, and a method for the evaluation will be presented. Figure 8 demonstrates
different steps required to consider implementing the IPdM model. In this step, archive
data are integrated with the vibration sensor and operator fatigue data. Different prepro-
cessing techniques are applied to data to ensure the quality of the data. The proposed
IPdM is developed based on different machine learning algorithms, and the accuracy and
performance of each of them will be evaluated. According to the literature [189], the neural
network approach (e.g., CNN, FFBPN, RNN, LSTM) seems to be a promising solution
to predictive maintenance problems. The Root Mean Square Error (RMSE) [190] will be
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selected as an evaluation metric to measure the accuracy and the algorithm performance.
The RMSE is calculated by taking the square root of the average squared differences be-
tween the actual and predicted values. This value can represent the estimation of the
standard deviation σ of a typical collected value from the model’s prediction. In other
words, a lower RMSE value means a more accurate prediction. The prediction could also be
evaluated based on K-fold cross-validation, precision, recall, and false positive rate (FPR).
The expression of RMSE is:

RMSE =

√
n

∑
i=1

(ŷi − yi)

n
(1)
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In the Section 4, we already discussed the reasons why the proposed model designed
based on big data technologies. Since the volume, variety, and velocity of data are large
scale, a normal computer will not be able to handle the processing and analyzing part.
Therefore, state-of-art big data technologies are adopted to take care of the data challenges.

However, the RUL obtained from the analysis part needs to be evaluated. Maintenance
cost and safety are two criteria that will be evaluated based on two models. In the second
phase, the evaluation of the IPdM will be accomplished through simulation using archive
data to measure the potential improvements in “remaining useful life” and potential
impact on safety. First, the discrete-event simulation method [191] will be used to build a
contemporary maintenance method (integration of preventive and corrective model) in
forest harvesting using archive data (maintenance records) related to the maintenance of
chipper. The simulation model will be developed using Python (simply library) and Python
API TensorFlow, an open-source software library for numerical computations using data
flow graphs. The maintenance cost and operation safety will be compared between two
maintenance models to determine whether the IPdM model could offer any improvement
to the forest supply chain. Another possible system evaluation could be to compare the
IPdM model with and without the integration of external factors to measure the impact of
external factors on the accuracy of the prediction model.

This research work investigates forestry supply chains intending to examine the
possibility of promoting the prediction accuracy of RUL on chipping machinery. The
results generated by this research directly enhance the quality of information that can be
applied in decision-making for scheduling machinery maintenance in the forestry industry.
Providing this system could leads to a sustainable supply chain in the forest biomass
sector which can avoid unnecessary maintenance and estimate the remaining lifetime of
critical components, lead to deep reductions in greenhouse gas emissions, reduce fuel
and lubricants consumption, enhance maintenance safety, maintenance costs, and the
availability of spare parts, avoid valuable production time loss, and make the supply chain
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more resilient. Additionally, it is expected that the outputs of this research will contribute to
supporting the forest industry and government to promote sustainable production, protect
precious forests, and improve product safety.

5. Conclusions

This paper aims to highlight the importance of the external factor variables in intel-
ligent predictive maintenance models. We argued that predictive maintenance regimes
are only as good as the quality of the input data that they use and the accuracy of the
assumptions underpinning the relationships between these data and the predictions being
produced. With data inputs coming variously from maintenance archive data, sensor-based
monitoring and external contextual variables, big data analytics and cloud platforms offer
a potential approach to enhance the capture and analysis of these data to deliver intelligent
predictive maintenance. In this research, the challenges and opportunities for designing,
implementing and evaluating an IPdM system for forestry will be examined in the context
of contemporary research literature. Various external factors might influence machinery
failure, including operator behavior/fatigue, weather condition, terrain surface(e.g., slope),
etc. Among all these variables, there is limited research on the effect of operator fatigue on
machinery failure. This research has shown how operator fatigue data collect from chipper
truck telemetry data can improve the RUL prediction and evaluate the efficiency of wood
chipping operations. This conceptual model could help researchers implement IPdM in
the dynamic environment (e.g., forestry, mining, road construction) to reduce maintenance
costs and improve safety.
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