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Abstract

Exercise physiology and sport science have traditionally made use of the null

hypothesis of no difference to make decisions about experimental interventions. In

this article, we aim to review current statistical approaches typically used by exercise

physiologists and sport scientists for the design and analysis of experimental inter-

ventions and to highlight the importance of including equivalence and non-inferiority

studies, which address different research questions from deciding whether an effect

is present. Initially, we briefly describe the most common approaches, along with

their rationale, to investigate the effects of different interventions. We then discuss

the main steps involved in the design and analysis of equivalence and non-inferiority

studies, commonly performed in other research fields, with worked examples from

exercise physiology and sport science scenarios. Finally, we provide recommendations

to exercise physiologists and sport scientists who would like to apply the different

approaches in future research. We hope this work will promote the correct use

of equivalence and non-inferiority designs in exercise physiology and sport science

whenever the research context, conditions, applications, researchers’ interests or

reasonable beliefs justify these approaches.
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1 INTRODUCTION

An often-overlooked aspect when designing and analysing inter-

ventional studies in exercise physiology and sport science concerns

the type and direction of the research hypothesis(es) (Caldwell &

Cheuvront, 2019). Most studies use the null hypothesis of no effect

when making decisions about experimental interventions. That is,

researchers usually examine whether there is a statistical difference

between the experimental group and the control group on one

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.
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or more primary outcomes. However, other hypothesis tests might

be more appropriate when researchers are interested in whether

two interventions are similar in efficacy but differ substantially

with respect to factors such as cost-effectiveness, invasiveness or

administrative procedures (Hecksteden et al., 2018). The correct

approach to designing and analysing interventional studies in exercise

physiology and sport science continues to be discussed extensively

in the literature (Caldwell & Cheuvront, 2019; Hecksteden et al.,

2018; Hopkins et al., 1999; Mansournia & Altman, 2018). Recently,

Experimental Physiology. 2022;107:201–212. wileyonlinelibrary.com/journal/eph 201
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several researchers have recommended complementing the traditional

null hypothesis with tests of equivalence and non-inferiority, which

evaluate whether two interventions or conditions are similar or do not

differ by more than a given amount (Aisbett et al., 2020; Caldwell &

Cheuvront, 2019; Dixon et al., 2018).

In this article, we review and expand the statistical toolset that can

be used by exercise physiologists and sport scientists when designing

and analysing interventional studies. We refer to the best practices

as developed in biomedical, social and behavioural research, because

we recognize sufficient similarities with exercise physiology and sport

science regarding the design of interventional studies. To increase

understanding by exercise physiologists and sport scientists, we also

provide two worked examples from exercise physiology and sport

science research that highlight how typical research designs and

analyses conducted using traditional null hypothesis tests could be

re-imagined using equivalence or non-inferiority tests. Moreover, we

provide theoretical and practical recommendations to exercise physio-

logists and sport scientists who would like to apply the different

hypothesis tests in future research.

2 INVESTIGATING STATISTICAL DIFFERENCES
(SUPERIORITY)

Unless otherwise specified, most interventional studies in exercise

physiology and sport science have the implicit aim of determining

whether the efficacy of a given intervention is superior, or possibly

inferior, to a placebo, sham or reference intervention. In the most

common study design, researchers randomize participants to either

an experimental group or a control group. The observed difference in

groupmeansafter the interventionperiod (i.e., theeffect size) is used to

perform a hypothesis test examining a difference in population means.

Following traditional null hypothesis testing, a difference between

interventions can be concluded, while controlling the type I error

rate, whenever the P-value calculated from a particular test statistic

indicates that the observed or more extreme data are surprising (i.e.,

the P-value is less than or equal to the significance level, or α), assuming

that there is no difference between the interventions and that all other

modelling assumptions are met. Alternatively, researchers can choose

a confidence interval (CI) approach. Confidence intervals can be used

to inspect and interpret the point estimate and the lower and upper

limits of the interval in relationship to effects of practical importance.

Thus, a properly derived CI can also be used to evaluate superiority or

any other family of null hypotheses (Bauer & Kieser, 1996). The two

approaches lead to identical decisions in a hypothesis test, because P

is ≤ 0.05 when a 95% CI excludes the value that is tested against (i.e.,

zero for the traditional null hypothesis) (Figure 1a, first example).

Regardless of the inferential approach adopted, investigating

differences between interventions without taking into consideration

any meaningful value does not permit informed decisions regarding

the practical significance of the outcome(s). From an exercise physio-

logy and sport science perspective, testing the superiority of the

experimental intervention against an effect size that is exactly

zero might increase the risk of endorsing interventions, such as

exercise training protocols or nutritional strategies, that are expensive,

demanding or time-consuming but have no practical benefit; that

is, they do not provide a noticeable advantage over an existing

benchmark. For adequately powered tests (i.e., 80−90% power),

testing data against the nil (zero) effect using the smallest effect size

of interest (SESOI), which should be defined a priori and justified on

sound grounds, as a target mean difference might lead to concluding

efficacy for effects as low as the 60−70% of SESOI, the so-called

‘decision value’ (Chuang-Stein et al., 2011; Roychoudhury et al., 2018).

Chuang-Stein et al. (2011) recommended this approach as a reasonable

compromise between desirability and feasibility, stressing how this

approach also acknowledges the impact of sampling variation in

reducing theobserved intervention effect.However, althoughaneffect

as low as 60−70% of SESOI might be observed when the true effect

equals the SESOI, the opposite might not necessarily be true. By

rearranging the equation used to determine the decision value, it is

possible to obtain an adequate sample size that leads to rejecting the

null hypothesis when the decision value equals at least the SESOI.

In this way, statistical significance is ensured whenever practical

relevance is observed (Figure 1a, second example). For a deeper insight

into the statistical aspects of this approach (named ‘dual-criterion

designs’), we refer the reader to Roychoudhury et al. (2018).

An even more conservative criterion for assessing superiority

consists of determining whether the mean difference, after having

considered its uncertainty, is larger than the SESOI (Lakens, 2021)

(Figure 1a, third example). This approach leads to the same conclusions

as testing the shifted (non-zero) null hypothesis (Victor, 1987) or a

‘minimum-effect test’, whose null hypothesis assumes that the mean

difference between the interventions falls within a range of practically

irrelevant values (Murphy et al., 2014). However, raising the standard

of evidence to claim superiority comes at a cost. Testing data against

the SESOI can require sample sizes that are prohibitively large when

the ‘true’ effect size is close to the SESOI unless prespecifying

unrealistically large effect sizes with an attendant risk of type II error

(Gelman & Carlin, 2014). Therefore, researchers should decide very

carefully what standard of evidence they want to achieve for inter-

vention efficacy when designing their studies, taking into account the

implications of their findings and their resources.

Although the definition of SESOI is self-explanatory, exercise

physiologists and sport scientists should be aware that several

different methods exist to determine this value, depending on data

and applications (Cook et al., 2018; Lakens, 2021). The ‘anchor-

based’ method, which uses the researcher’s judgment, participant’s

experience or clinical endpoint(s) to define the SESOI, provides a

common approach to interpret study outcomes in clinical research. In

this field, the SESOI (also known as the minimal clinically important

difference) is often determined by examining the association between

a certain change in an outcome variable and a meaningful change in

a (hard) clinical outcome from prospective epidemiological data or

randomized controlled trials.

The expert panel approach, also known as the Delphi method, is an

alternative (although not necessarily straightforward) way to define

the SESOI based on expert consensus. Previous studies can give an

indication of the expected effect sizes. However, researchers should
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F IGURE 1 Testing for superiority, equivalence and non-inferiority
within a typical parallel-group design. The error bars indicate the 95%
confidence interval (CI) in relationship to the traditional
null-hypothesis test (a) and non-inferiority test (c) and the 90%CI in
relationship to the two one-sided test procedure (b). The stippled
areas indicate the rejection region for each hypothesis test. (a) From a
traditional perspective (i.e., deciding on the presence of an effect), the
superiority of the experimental group (EXP) comparedwith the
control (CON) can be concluded in the first three scenarios. However,
the standard of evidence to claim superiority differs between the
scenarios. In the first scenario, it is only possible to reject effects that
are smaller than zero. In the second scenario, it is also possible to claim
practical importance besides statistical significance. In the third
scenario, it is possible to reject any effect that is not practically

be aware that owing to publication bias, published effect sizes often

overestimate the true effect of interventions, and that the distribution

of effect sizes observed in the literature does not necessarily inform

about the SESOI, whose determination needs careful consideration

and justification.

Cohen’s classical benchmarks (Cohen, 1988), developed for the

social and behavioural sciences, are not recommended as guidance

on identifying the SESOI in exercise physiology and sport science,

because an effect size of interest is context dependent and should be

decidedbasedona substantive researchquestion (Caldwell&Vigotsky,

2020). Although some authors (Hopkins et al., 1999; Rhea, 2004) have

developed scales for assessing the magnitude of effect sizes in some

specific areas of exercise physiology and sport science, researchers

should be aware that determining the SESOI is not a straightforward

process, and it can be challenging in many sporting and physiological

contexts.

Interpreting inconclusive evidence for superiority, or interpreting

failure to reject the null hypothesis, as evidence for the equality of two

interventions, is a common misconception (Altman & Bland, 1995). A

statistically non-significant result (e.g., P> 0.05) cannot be interpreted

as the absence of an effect (Figure 1a, fourth example). To be able to

conclude that an effect is absent, one needs to specify the alternative

hypothesis explicitly and perform a test that rejects the alternative

hypothesis statistically. The traditional null hypothesis testing rejects

only the null hypothesis, and, especially in small studies, a statistically

non-significant result is not informative about whether the alternative

hypothesis can be rejected. Exercise physiologists and sport scientists

must keep in mind that no correct conclusions other than superiority

or inferiority can be drawn using traditional hypothesis tests. Given

that a well-designed study is informative about both the presence

and the absence of an effect of interest, researchers should consider

complementing traditional null hypothesis tests with equivalence and

non-inferiority tests.

3 INVESTIGATING EQUIVALENCE
AND NON-INFERIORITY

Proving that two interventions or conditions are perfectly equal in

efficacy is impossible from a statistical standpoint. What is possible

in a statistical test is to reject the presence of a difference that

is large enough to be relevant practically, defined by the upper

(∆U) and lower (∆L) equivalence margins (Hodges & Lehmann, 1954;

important [i.e., an effect that is smaller than the smallest effect of
interest (SESOI)]. Superiority cannot be concluded in the fourth
scenario, because the 95%CI extends beyond zero, which reflects in a
P-value> α. (b) It is possible to conclude equivalence between the
interventions only in themiddle example, because in the upper and
lower examples the 90%CI spans beyond the lower (∆L) or the upper
(∆U) equivalencemargin. (c) The observed data are identical to those
in (b). Despite the wider CI, the absence of an uppermargin allows
conclusion of non-inferiority in both themiddle and lower scenarios
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Lakens, 2017). Although various approaches exist to perform an

equivalence test (Meyners, 2012), equivalence is typically investigated

via the ‘two one-sided tests’ (TOST) procedure, which is a simple

variation of a traditional hypothesis test (Schuirmann, 1987). In this

procedure, the null and alternative hypotheses within each set are

reversed, and data are tested against ∆U and ∆L in two one-sided

tests, each carried out at the α level (conventionally set to 0.05 or even
to 0.025 in some regulated settings). Equivalence can be concluded

at the α level only if both tests statistically reject the presence of

effects equal to or larger than the equivalence margins. It is common

to report only the greater P-value of the two one-sided tests when

testing for equivalence, because this P-value is also the one for the

overall equivalence test (Berger & Hsu, 1996). The TOST procedure is

operationally identical to concluding equivalence whenever the two-

sided 100(1 − 2α)% CI for the mean difference between the inter-

ventions lies entirely within the equivalence margins (Schuirmann,

1987;Westlake, 1981) (Figure 1b, middle example).

Equivalence studies are very common in clinical research, in which

new drug formulations or generic versions of the product are often

compared with brand-name pharmaceuticals to prove bioequivalence

(Senn, 2021). Moreover, this design has attracted growing interest

in the social and behavioural sciences for its utility in evaluating

replication results and corroborating risky predictions (Lakens, 2017;

Lakens, Scheel et al., 2018). The latter application of equivalence hypo-

theses might also make them valuable for exercise physiology and

sport science, which suffer from a shortage of replication experiments

(Halperin et al., 2018). Nevertheless, until recently, investigating

equivalence did not appear to be a common practice among exercise

physiologists and sport scientists, who have so far restricted the use

of equivalence tests mostly tomeasurement agreement research as an

alternative or complementary approach to the Bland–Altman method

(Dixon et al., 2018).

If there is an interest, along with a solid rationale, in investigating

whether a given intervention is not unacceptably worse than a

standard one, with no restriction for its maximal efficacy, researchers

can opt for a non-inferiority study. This is usually the case when

the new intervention has better cost-effectiveness, is safer, is easier

to implement or is less demanding than the standard intervention.

Non-inferiority studies can also be useful to evaluate modifications

to well-established interventions and extend applicability to special

populations. These research questions can also apply to exercise

physiology and sport science. In non-inferiority testing, the non-zero

null hypothesis is shifted towards the negative side of the nil effect,

favouring the standard. It follows that, when applying the CI approach,

non-inferiority is conventionally concluded when the lower margin

of the two-sided 95% CI for the mean difference between the inter-

ventions lies above the non-inferiority margin (∆NI) (Senn, 2021)

(Figure 1c, middle and lower examples).

Compared with classical parallel-group studies, the design

and analysis of non-inferiority studies face several additional

methodological challenges, which include the suitability of the

reference intervention, the determination of the ∆NI and sample size

estimation. We briefly review and discuss the main aspects of each of

these challenges in the following sections. Given that some of these

issues also apply to equivalence studies, we expand those parts where

relevant.

3.1 Suitability of the reference intervention

From a clinical perspective, the non-inferiority of an experimental

intervention can be concluded firmly only when compared with a

reference intervention of well-established efficacy (Committee for

Medicinal Products for Human Use, 2005; Committee for Proprietary

Medicinal Products, 2000; InternationalConferenceonHarmonisation

of Technical Requirements for Registration of Pharmaceuticals for

Human Use, 1998, 2001). The design characteristics of the reference

intervention (population selection, intervention protocol, primary

outcome measures, etc.) should be replicated as closely as possible to

reduce the risk of violating the ‘constancy assumption’, which requires

consistencybetween the effect of the reference group in thenewstudy

and the historical effect estimated from the literature. Violating this

assumption can increase the chances of incorrectly concluding non-

inferiority for inefficacious or even harmful interventions.

When considering the extreme paucity of replication experiments

(Halperin et al., 2018), along with the small sample sizes characterizing

exercise physiology and sport science research (Speed & Andersen,

2000), it becomes self-evident that satisfying the prerequisite for

the choice of the comparator arm represents the first crucial issue

to be addressed by exercise physiologists and sport scientists inter-

ested in conducting non-inferiority studies. Even when a discrete

amount of evidence is available, the large sampling variability related

to studies with small sample sizes (e.g., 8−16 participants per group)

makes it difficult to identify an intervention whose efficacy had

been demonstrated consistently across the literature. Moreover,

questionable practices, such as publication bias and P-hacking (i.e.,

the manipulation of data collection and analysis to obtain statistically

significant results), tend to overestimate the intervention effect in

meta-analyses and thus impact the ‘assay sensitivity’ of the new

investigation, which is the ability of a study to distinguish between

an efficacious and less efficacious intervention. Several graphical and

statistical approaches seeking to quantify or adjust for publication bias

in meta-analyses have been developed (Carter et al., 2019; Simonsohn

et al., 2014).However,most of thesemethods lack large-scale empirical

validation, do not work well when there are few studies or large

heterogeneity in effect sizes, and their performance and efficiency

are often highly sensitive to deviations from the model assumptions.

Note that the problem of publication bias and P-hacking would

be reduced dramatically if pre-registration or Registered Reports

Protocols became common practice in exercise physiology and sport

science (Caldwell et al., 2020; Lakens & Evers, 2014). In this regard,

the recent initiative of Experimental Physiology to publish Registered

Reports Protocols (Stewart, 2021) deserves credit.

The aforementioned aspects highlight the importance of gaining

reliable knowledge about effect sizes reported in the literature

before deciding whether to adopt a non-inferiority design. This also
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F IGURE 2 The two-step process commonly used to determine the
non-inferiority margin (∆NI) in clinical research. A pooled effect
estimate is calculated from ameta-analysis of hypothetical studies,
and themargin is determined using either the point estimate
(point-estimatemethod;∆NI–P) or the lower 95% confidence limit
(fixed-margin method;∆NI–C) of the effect size. The chosenmargin
(∆NI–C in the example) is thenmultiplied by a prespecified factor (λ;
usually 50%) to preserve a fraction of the active-control effect
(stippled area)

emphasizes the need for more collaborations across exercise physio-

logy and sport science departments to design and conduct studies with

high accuracy, and the need formore transparent research practices, as

stressed by several scientists in a recent call (Caldwell et al., 2020).

3.2 Determination of non-inferiority
and equivalence margin(s)

Once the reference intervention has been chosen, the next step in

designing non-inferiority studies concerns the choice for the margin.

An appropriate ∆NI should be based on a combination of statistical

reasoning and domain expertise (Committee for Medicinal Products

for Human Use, 2005; Committee for Proprietary Medicinal Products,

2000; International Conference on Harmonisation of Technical

Requirements for Registration of Pharmaceuticals for Human Use,

1998, 2001). The general principle states that the ∆NI should not be

larger than the smallest effect the reference intervention would be

reliably expected to have comparedwith a placebo.

Despite more sophisticated approaches being proposed (Snapinn

& Jiang, 2018a; Yu et al., 2019), the ‘point-estimate method’ and the

‘fixed-margin method’ are the most widely used for specifying the

margin in clinical research (Althunianet al., 2017). In thepoint-estimate

method, the ∆NI is based upon the pooled effect estimate of the active

comparator from a meta-analysis without considering the uncertainty

in the estimate (∆NI–P). In the fixed-marginmethod, the two-sided 95%

CI of the meta-analytical effect size estimate that is closest to the null

effect is used to determine the non-inferiority ∆ (∆NI–C) (Figure 2).

This makes the latter approach more conservative than the former,

especially when (as is often the case in exercise physiology and sport

science) the precision of the individual study estimates is generally low,

and the total number of studies is small. A third common approach

to analyse non-inferiority trials applies the same criteria as the fixed-

margin method to determine ∆NI but also adjusts the CI derived from

the non-inferiority trial to account for the sampling variability in the

effect of the active comparator against placebo (Althunian et al., 2017;

Holmgren, 1999). This ‘synthesismethod’ is slightlymore efficient than

the fixed-margin method, but it is also more sensitive to a violation in

the assumptions of assay sensitivity and constancy (Schumi & Wittes,

2011).

Regardlessof themethodused todetermine the∆NI, several factors,

such as the importance of the outcome measure, clinical or practical

considerations in terms of cost-effectiveness of the active comparator,

model misspecification or violation of the constancy assumption, can

make putative superiority over placebo alone an insufficient criterion

to establish non-inferiority, and additional assurance may be needed.

In this respect, prespecifying a percentage of the historical effect

of the reference intervention that must be retained by the new

one (usually 50%), the so-called ‘preserved fraction’ (λ), has become

common practice in non-inferiority clinical trials (Figure 2) (Snapinn,

2004; Snapinn & Jiang, 2018b). Despite its widespread use in clinical

research, it is important to note that there is no consensus on

whether setting the ∆NI by including a preserved fraction represents

an effective discounting approach (Snapinn, 2004; Snapinn & Jiang,

2018b).

Whether or not the stringency in the criteria to determine non-

inferiority should be adjusted further according to the degree of

magnitude of the historical effect of the comparator is a matter of

debate among clinical researchers (Schumi & Wittes, 2011). Although

the choice of the preserved fraction would have negligible implications

on the study conclusions for small to moderate effects, considerable

discrepancies might take place for largely efficacious standard inter-

ventions. In these cases, determining the fraction without any

adjustment for the historical effect of the comparator might rule out a

large part of the effect, eventually leading to the paradoxical situation

inwhich non-inferiority is established although the experimental inter-

vention is inferior compared with the standard (Althunian et al., 2018;

Schumi & Wittes, 2011). A maximum margin criterion that prevents

clinically important differences between the standard and the new

intervention canbeapplied in these situations (Schumi&Wittes, 2011).

(Bio)equivalencemargins in clinical trials are often set by regulatory

authorities (Committee for Medicinal Products for Human Use, 2010),

whereas several approaches to justify the equivalence range have been

proposed in the social and behavioural sciences (Lakens, 2017, 2021;

Lakens, Scheel et al., 2018). Among them, it is worth mentioning a

method based on the maximum sample size researchers are willing to

collect given the available resources. This approach can be taken for

those situations, also common in exercise physiology and sport science,

in which there are time, money or population size constraints that

limit the effect size that can be investigated properly, especially in new

lines of research. In such conditions, determining ∆U and ∆L based on

feasibility can be justified and can represent a starting point for future

studies aiming for a more precise assessment, if researchers see no

way to specify the SESOI based on theoretical predictions or practical

concerns.
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3.3 Sample size planning for non-inferiority and
equivalence studies

As we discussed previously, sample size estimation in superiority

studies conventionally aims to achieve the desired level of statistical

power (typically, 80 or 90%) against an alternative hypothesis,

expressed in terms of a target difference between interventions in the

primary outcome(s), at a given value of α (Cook et al., 2018).
Given that superiority and non-inferiority are logically opposite

tests, sample size estimation for non-inferiority studies follows the

same principles as for superiority studies. However, because the ∆NI

is usually smaller than the superiority difference, a larger sample size

is often needed. Owing to the nature of the TOST procedure, in which

each one-sided test must statistically reject effects as small as the

equivalence margins to prove efficacy, the power of an equivalence

test equals the power to detect the smallest margin. In the light of

the above, researchers should be aware that the adequate sample size

for equivalence and non-inferiority tests might be prohibitively large

for very small effects. For this reason, researchers should carefully

consider the target or expected effect size, along with the margin(s),

when planning equivalence and non-inferiority studies. Whenever

there is substantial uncertainty about the mean difference between

the interventions, or when it is plausible that the true effect is larger

or smaller than themargin the testwas powered to detect, researchers

can opt for sequential analysis (Lakens et al., 2021). This efficient

approach allows terminatiion of data collection while controlling the

type I error rate as soon as there is convincing evidence to decide on

the presence or absence of an effect.

Julious (2004) provided detailed overviews and approximations

to calculate power and sample size in superiority, equivalence and

non-inferiority studies. Researchers who wish to exact solutions for

power and sample size for equivalence designs might look at the paper

by Shieh (2016). Moreover, there are several spreadsheets (Lakens,

2017), statistical packages (Castelloe&Watts, 2015; Lakens, 2017) and

Web-based applications (Kovacs et al., 2021; Magnusson, 2016) that

exercise physiologists and sport scientists can use to estimate sample

sizes for equivalence and non-inferiority tests.

4 RE-IMAGINING INTERVENTIONAL STUDIES
USING EQUIVALENCE AND NON-INFERIORITY
TESTS

We provide two worked examples from exercise physiology and

sport science research comparing sprint interval training (SIT) against

moderate-intensity continuous training (MICT) to show how the

statistical approaches discussed above can be applied to real-world

data. We have included all the formulas used in these examples in an

accompanying workbook (openly available, along with the SAS and R

code used for validation, at https://osf.io/ndqhe/), which can also be

used to perform calculations based on summary statistics or complete

data sets.

4.1 Example 1: Use of equivalence hypothesis

In a comprehensive study investigating the effects of 4 weeks of

SIT (60 min per week) or MICT (300 min per week) on cardio-

respiratory, musculoskeletal and metabolic characteristics in obese

men, Cocks et al. (2016) concluded that SIT and MICT have equal

benefits on aerobic capacity, because no statistical difference was

observed between the two groups with respect to the changes in

maximal oxygen uptake (V̇O2 max). As already stated, the absence of

an effect cannot be concluded based on P > 0.05 from the traditional

null-hypothesis test. However, we wanted to determine whether the

authors’ conclusions concerning the absence of an effect between the

groups can indeed be inferred from the observed data. Unfortunately,

the authors did not report the nominal P-value for the time × group

interaction in the 2 × 2 mixed analysis of variance (ANOVA) model, or

any other necessary information about the differences in the changes

in V̇O2 max between the groups. Given that the authors did not make

the raw data available along with the manuscript, we cannot perform

a proper covariate-adjusted analysis; nonetheless, we can still appraise

the between-group differences by extracting summary data from the

paper. Specifically, we can estimate the standard deviation (SD) of

the change score within each group by imputing different plausible

correlation coefficients (r) between pre- and post-training scores,

construct the two-sided 90% CI for the mean difference between the

groups using the different SD estimates, and then perform a sensitivity

analysis on the results (Higgins et al., 2019). For r = 0.5, the SIT–MICT

90%CI around the observedmeandifference of−2.3ml/kg/min ranges

from −7.1 to 2.5 ml/kg/min. The SDs of the change scores decrease at

greater values of r, and the 90% CI narrows by ∼17% (ranging from

−6.3 to 1.7 ml/kg/min) when r = 0.7. However, even in the optimistic

scenario in which r= 0.9, the 90%CI for the between-group difference

ranges from−5.2 to 0.6 ml/kg/min, which indicates a large imprecision

of the parameter estimate. Given that a difference in V̇O2 max as small as

1 ml/kg/min has been associated with a 9% instantaneous relative risk

reduction for all-cause mortality (hazard ratio 0.91) (Laukkanen et al.,

2016), the mean difference between SIT and MICT that was observed

by Cocks et al. (2016) of−2.3ml/kg/min is hardly trivial, let alone after

having considered its uncertainty.

If we wish, we can also test formally for equivalence against

symmetric margins ∆U and ∆L of 1 ml/kg/min by using the TOST

procedure, which is very similar to Student’s unpaired t-test when

assuming equal population variances. This equivalence test examines

the question ofwhetherwe can reject the presence of an effect as large

or larger than 1 ml/kg/min, which we know is large enough to have

practical benefits.

For∆U:

tU =
M1 −M2 − ΔU

SDP

√
1

n1
+

1

n2

,

where tU is the test statistic for the one-sided t-test on ∆U;M1 andM2

are the means of the SIT and MICT group, respectively; n1 and n2 are
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the sample sizes in each group; and SDP is the pooled SD:

SDP =

√
(n1 − 1) SD

2
1 + (n2 − 1) SD

2
2

n1 + n2 − 2
,

where SD1 and SD2 are the SDof the SIT andMICT group, respectively.

In this example,

SDP =

√
(8 − 1) 2.1

2
+ (8 − 1) 4.2

2

8 + 8 − 2
= 3.3.

Therefore:

tU =
2.4 − 4.7 − 1

3.3

√
1

8
+

1

8

= −2

which corresponds to a P-value of 0.03 from the t-distribution with 14

degrees of freedom (d.f.) for a left-sided test.

For∆L:

tL =
M1 −M2 − ΔL

SDP

√
1

n1
+

1

n2

,

with tL being the test statistic for the one-sided t-test on∆L.

In this example,

tL =
2.4 − 4.7 − (−1)

3.3

√
1

8
+

1

8

= −0.8,

which corresponds to a P-value of 0.78 from the t-distribution with 14

d.f. for a right-sided test.

Given that the one-sided test with the greater P-value is not

statistically significant [t(14) = −0.8, P = 0.78] based on an α = 0.05,

we cannot reject differences larger than 1 ml/kg/min. Therefore, we

cannot conclude that the difference between the two interventions is

too small to matter (given a SESOI of 1 ml/kg/min) with respect to the

changes in V̇O2 max.

It is important to note that, unlike in traditional hypothesis

tests where effects that are substantially greater than expected

can compensate small sample sizes, underpowered tests inevitably

increase the risk of inconclusive results in equivalence studies. If we

want to estimate how many individuals Cocks et al. (2016) should

have recruited and tested to reach an adequate level of power (e.g.,

80%) for the TOST procedure at the desired α level (e.g., 0.05), the

most informative approach is to perform an a priori power analysis.

For the sake of simplicity in calculations, we can define equivalence

margins that are symmetric around a zero difference in population

means (μ1 – μ2). Moreover, we assume that the estimated pooled SD

represents the true SD for the two populations (σ). We rely on the

normal approximation of the power equation for equivalence tests

(Julious, 2004) and estimate the sample size (n) required in each group

to achieve the desired power against∆U and∆L as:

nU =
(r + 1) 𝜎2

(
z𝛼 + z𝛽∕2

)2
r|ΔU|2

and

nL =
(r + 1) 𝜎2

(
z𝛼 + z𝛽∕2

)2
r|ΔL|2 ,

where r is the allocation ratio (n1/n2), and zα and zβ/2 are the

standardized normal deviates corresponding to the levels of α and β/2
respectively (with 1 – β that represents the desired power). With an

equal allocation (1:1 ratio), the two equations above are reduced to:

nU = nL =
2𝜎2

(
z𝛼 + z𝛽∕2

)2
|ΔU = ΔL|2 .

In this example,

n =
2 × 3.32(1.6 + 1.3)

2

12
= 192,

which indicates that the minimum sample size that Cocks et al. (2016)

should have recruited to have a properly powered test for equivalence

was 24 times larger than the n = 8 per group that was collected in

that study. Even using a much more liberal SESOI of 3.5 ml/kg/min,

associated with ≤25% risk reduction in mortality (Ross et al., 2016),

the minimum sample size should have been double the one collected.

Note that these also represent optimistic estimations; any situation in

which some inequality between interventions can be expected (i.e., the

expected difference is not zero) would increase the required sample

size, all else being equal.

4.2 Example 2: Use of non-inferiority hypothesis

Gillen et al. (2016) investigated whether 30 min per week of SIT was a

time-efficient exercise strategy to improve indices of cardiometabolic

health in healthymen to the same extent as 150min perweek ofMICT.

Although the time × group interaction in the 3 × 2 mixed ANOVA

model was significant for V̇O2 max, the authors were unable to reject a

nil effect and conclude statistical differences between the groups after

12 weeks of training intervention. The exact P-value and the 95% CI

for the between-group comparison were not reported; however, given

that the authors reported the 95% CI for the change scores of the two

groups, in addition to their sample sizes, we can obtain the information

we need from statistical first principles (Higgins et al., 2019). The

calculations reveal a P-value of 0.94 and a 95% CI ranging from −2.9

to 2.7 ml/kg/min constructed around a mean difference between the

interventions of −0.1 ml/kg/min. From a superiority standpoint, the

study is inconclusive regarding the ability of SIT to improve the V̇O2 max

compared withMICT. Given the rationale supporting the study, a more

informative research question might be whether the improvements

in the V̇O2 max induced by SIT are not substantially lower than those

induced by a standard MICT programme. To answer such a question,

we must initially define the ∆NI that we will use to test our hypothesis.

The net effect of MICT against no-exercise control on V̇O2 max has

been estimated to be 4.9 ml/kg/min, with a 95% CI ranging from 3.5

to 6.3 ml/kg/min (Milanović et al., 2015). If we assume that the MICT

protocol prescribed byGillen et al. (2016) is sufficiently representative
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F IGURE 3 Testing for both equivalence
and superiority. The thin error bars indicate the
95% confidence interval (CI) in relationship to
the traditional null-hypothesis test, whereas
the thick error bars indicate the 90%CI in
relationship to the two one-sided tests
procedure. The continuous vertical lines
indicate the traditional null hypothesis,
whereas the stippled area indicates the
equivalence region. Conclusions for hypothesis
tests are reported next to each example

of the ‘typical’ MICT from which the average intervention effect has

been estimated and we prefer a conservative approach to the margin

determination without further need for a preserved fraction, we can

rely on the fixed-margin method and test the SIT–MICT difference

against a∆NI of−3.5ml/kg/min. The calculationof the t-statistic for the

non-inferiority test is identical to those for the one-sided test against

the∆L in the TOST procedure:

tNI =
M1 −M2 − ΔNI

SDP

√
1

n1
+

1

n2

,

With tNI being the test statistic for the non-inferiority test.

In this example,

tNI =
5.9 − 6 − (−3.5)

2.9

√
1

9
+

1

10

= 2.6,

which corresponds to a P-value of 0.02 from the t-distribution with 17

d.f. for a two-sided test. If all the assumptions underlying the statistical

model are correct, the non-inferiority test is significant [t(17) = 2.6,

P = 0.02] for an α = 0.05. We can then reject a loss in the efficacy

of SIT compared with MICT larger than 3.5 ml/kg/min and conclude

that SIT is non-inferior to MICT regarding the increase in V̇O2 max.

Unsurprisingly, given the close relationship between P-values and CIs,

the CI approach leads to the same conclusion as the formal non-

inferiority test, because the lower 95% confidence limit of the SIT–

MICT difference (i.e., −2.9 ml/kg/min) is larger than the ∆NI (i.e., −3.5

ml/kg/min), which indicates that the entire set of plausible values for

the population parameter contained in the 95% CI is consistent with

the non-inferiority of SIT againstMICT.

5 SWITCHING BETWEEN HYPOTHESES

Switching the objective of a clinical trial from non-inferiority to super-

iority or vice versa can be possible at the analysis stage of the study;

however, the change is not always straightforward, and several points

need to be considered (Committee for ProprietaryMedicinal Products,

2000; Schumi & Wittes, 2011). From a statistical perspective, testing

first for non-inferiority and then for superiority does not require

a statistical penalty for multiple testing, because the closed testing

procedure properly controls the overall type I error rate of the two

tests. When the ∆NI has been prespecified and the trial design and

conduct have been strict, it is also possible to test for non-inferiority

after a superiority test that does not show any statistical benefit.

Despite being statistically appropriate, researchers should be warned

that this order of testing could result in paradoxical outcomes (i.e., a

new intervention that is both non-inferior and inferior to the standard),

especially for largely efficacious standard interventions. As stated pre-

viously, considering the SESOI as a criterion for the largest acceptable

∆NI might help tominimize this risk.

Departing from the initial aim of establishing equivalence does

not appear to be a common practice in clinical research (Senn,

2021). Moreover, the greater value of α usually adopted in such

investigations would lead to an inflated type I error rate if the

researcher attempted to draw straightforward conclusions on super-

iority or non-inferiority. Nonetheless, various comprehensivemethods

to investigate equivalence along with superiority have been pre-

sented recently in the social and behavioural sciences literature

(Lakens, 2017; Lakens, Scheel et al., 2018) (Figure 3). Exercise physio-

logists and sport scientists interested in conducting equivalence

and non-inferiority studies might benefit from exploring these

approaches.

It is alsoworthmentioning the possibility of testing against both the

nil effect and the SESOI in all those situations in which the researcher,

after having concluded that the effect is non-zero, is interested in

rejecting effects too small to be relevant.

6 LIMITATIONS AND ADDITIONAL
CONSIDERATIONS

In the present review, we have detailed how to expand the statistical

toolset used to design and analyse interventional studies in exercise

physiology and sport science. To achieve clarity and brevity, we

focused on parallel-group studies with means and variances

 1469445x, 2022, 3, D
ow

nloaded from
 https://physoc.onlinelibrary.w

iley.com
/doi/10.1113/E

P090171 by V
ictoria U

niversity, W
iley O

nline L
ibrary on [19/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MAZZOLARI ET AL. 209

What is my
research question?

NoYes Yes

Dual-criterion
design or

Minimum-
effect test

(Superiority)

Traditional

null

hypothesis
test

(Superiority)

Is there a well-
established reference

intervention?

Two one-sided tests

(TOST) procedure

(Equivalence)

Is this difference

meaningful?

Non-

inferiority

test
(Non-

inferiority) 

Assay

sensitivity and
constancy

violated: my

results may not

be informative

No

Is one intervention

different from the
other?

Are the two

interventions similar?

Is one intervention

not substantially
worse than the other?

F IGURE 4 Processes of decisionmaking for selecting the different hypothesis tests based on the research question that is being asked

determined from pairs of independent random samples of normally

distributed observations. Readers must be aware that the analytical

approach to other research designs or variables with different

probability distributions might differ slightly from the one presented

herein.

When discussing the acceptable standard of evidence, we

maintained consistency with the defaults commonly used in bio-

medical, social and behavioural research. Nonetheless, the optimal

error rates should be decided based on a cost–benefit analysis,

depending on the context, goals and resources (Lakens, Adolfi et al.,

2018).

It is worth keeping in mind that frequentist estimation (i.e., CI) and

hypothesis testing do not represent the only way to draw inferences

from data. Wald’s statistical decision theory provides a coherent

frequentist framework to use sample data to make decisions on inter-

ventions (Manski, 2019). Compared with hypothesis testing, the Wald

framework has the advantage of taking into account themagnitudes of

the losses that type I and II errors (whose probabilities are considered

symmetrically) yield as an integral part of the framework. Among

the alternative or complementary methods to frequentist statistics,

Bayesian statistics or likelihood approaches can also be used to

answer the questions that might be of interest to researchers (Lakens

et al., 2020; van Ravenzwaaij et al., 2019; Wang & Blume, 2011).

These approaches have the main advantage of allowing researchers to

make probabilistic statements about the (random) parameter of inter-

est. Whenever prior data are available from other studies, Bayesian

statistics also allow the incorporation of such information in the

analysis to update the (posterior) probability of the parameter and

provide the relative weight of evidence for the alternative hypothesis

compared with the null. Although presenting such methods to design

and analyse superiority, equivalence and non-inferiority studies was

beyond the scope of the present paper, exercise physiologists and sport

scientists should consider their use within the context of statistical

inference when deciding which method(s) is the most appropriate for

their research purpose(s).

7 CONCLUSIONS AND RECOMMENDATIONS
FOR FUTURE RESEARCH

Exercise physiology and sport science have largely relied on the

traditional null hypothesis test to make informed decisions in inter-

ventional studies. This approach, combined with underpowered tests,

has often led to the misinterpretation of a non-significant test result

as support for the equivalence between interventions. Although it

should be clear at this point that this is a statistical misconception,

exercise physiologists and sport scientists should also understand

that research should not be limited to investigating whether one

intervention is superior or inferior to another. Equivalence and

non-inferiority designs can be adopted whenever the research

context, conditions, applications, researchers’ interests or reasonable

beliefs justify them. Although these research hypotheses require

methodological considerations additional to superiority hypotheses to

be investigated properly, theymight also provide better answers to the

empirical question in which researchers are interested. Equivalence

and non-inferiority studies might help exercise physiologists and sport

scientists to answer questions that the traditional null hypothesis

cannot address. Figure 4 provides a flowchart to facilitate the decision-

making process about themost informative study design.

ACKNOWLEDGEMENTS

Thisworkwas fundedbyVIDIGrant 452-17-013 from theNetherlands

Organisation for Scientific Research.

COMPETING INTERESTS

None declared.

 1469445x, 2022, 3, D
ow

nloaded from
 https://physoc.onlinelibrary.w

iley.com
/doi/10.1113/E

P090171 by V
ictoria U

niversity, W
iley O

nline L
ibrary on [19/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



210 MAZZOLARI ET AL.

AUTHOR CONTRIBUTIONS

R.M. conceived the initial idea; all authors contributed to its

refinement. All authors contributed to the intellectual content

and drafting of the manuscript. All authors approved the final version

of the manuscript and agree to be accountable for all aspects of the

work in ensuring that questions related to the accuracy or integrity

of any part of the work are appropriately investigated and resolved.

All persons designated as authors qualify for authorship, and all those

who qualify for authorship are listed.

DATA AVAILABILITY STATEMENT

The workbook and the code used to perform all the calculations

reported in this review are openly available at: https://osf.io/ndqhe/

ORCID

RaffaeleMazzolari https://orcid.org/0000-0002-9923-6018

SimonePorcelli https://orcid.org/0000-0002-9494-0858

David J. Bishop https://orcid.org/0000-0002-6956-9188

Daniël Lakens https://orcid.org/0000-0002-0247-239X

REFERENCES

Aisbett, J., Lakens, D., & Sainani, K. L. (2020). Magnitude based inference in

relation to one-sided hypotheses testing procedures. SportRxiv. https://
doi.org/10.31236/osf.io/pn9s3

Althunian, T. A., de Boer, A., Groenwold, R. H. H., & Klungel, O. H. (2017).

Defining thenoninferioritymargin andanalysingnoninferiority:Anover-

view. British Journal of Clinical Pharmacology, 83, 1636–1642. https://doi.
org/10.1111/bcp.13280

Althunian, T. A., de Boer, A., Groenwold, R. H. H., & Klungel, O. H.

(2018). Using a single noninferiority margin or preserved fraction for

an entire pharmacological class was found to be inappropriate. Journal
of Clinical Epidemiology, 104, 15–23. https://doi.org/10.1016/j.jclinepi.
2018.07.004

Altman, D. G., & Bland, J. M. (1995). Absence of evidence is not evidence of

absence. British Medical Journal, 311, 485. https://doi.org/10.1136/bmj.

311.7003.485

Bauer, P., & Kieser, M. (1996). A unifying approach for confidence inter-

vals and testing of equivalence and difference. Biometrika, 83, 934–937.
https://doi.org/10.1093/biomet/83.4.934

Berger, R. L., & Hsu, J. C. (1996). Bioequivalence trials, intersection–union

tests andequivalence confidence sets. Statistical Science,11(4), 283–319.
https://doi.org/10.1214/ss/1032280304

Caldwell, A. R., &Cheuvront, S.N. (2019). Basic statistical considerations for

physiology: The journal Temperature toolbox. Temperature, 6, 181–210.
https://doi.org/10.1080/23328940.2019.1624131

Caldwell, A., & Vigotsky, A. D. (2020). A case against default effect sizes

in sport and exercise science. PeerJ, 8, e10314. https://doi.org/10.7717/
peerj.10314

Caldwell, A. R., Vigotsky, A. D., Tenan,M. S., Radel, R., Mellor, D. T., Kreutzer,

A., Lahart, I. M., Mills, J. P., Boisgontier, M. P., & Consortium for Trans-

parency in Exercise Science (COTES) Collaborators. (2020). Moving

sport and exercise science forward: A call for the adoption ofmore trans-

parent research practices. Sports Medicine, 50, 449–459. https://doi.org/
10.1007/s40279-019-01227-1

Carter, E. C., Schönbrodt, F. D., Gervais, W. M., & Hilgard, J. (2019).

Correcting for bias in psychology: A comparison of meta-analytic

methods. Advances in Methods and Practices in Psychological Science, 2,
115–144. https://doi.org/10.1177/2515245919847196

Castelloe, J., & Watts, D. (2015). Equivalence and noninferiority testing

using SAS/STAT® software (paper SAS1911-2015).Proceedings of the SAS

Global Forum 2015 Conference. SAS Institute. https://support.sas.com/

resources/papers/proceedings15/SAS1911-2015.pdf

Chuang-Stein, C., Kirby, S., Hirsch, I., & Atkinson, G. (2011). The role of the

minimum clinically important difference and its impact on designing a

trial. Pharmaceutical Statistics, 10, 250–256. https://doi.org/10.1002/pst.
459

Cocks, M., Shaw, C. S., Shepherd, S. O., Fisher, J. P., Ranasinghe, A.,

Barker, T. A., & Wagenmakers, A. J. (2016). Sprint interval and

moderate-intensity continuous training have equal benefits on aerobic

capacity, insulin sensitivity, muscle capillarisation and endothelial

eNOS/NAD(P)Hoxidase protein ratio in obesemen. The Journal of Physio-
logy, 594, 2307–2321. https://doi.org/10.1113/jphysiol.2014.285254

Cohen, J. (1988). Statistical power analysis for the behavioral sciences
(2nd ed.). Lawrence Earlbaum Associates. https://doi.org/10.4324/

9780203771587

Committee for Medicinal Products for Human Use. (2005). Guideline on
the choice of the non-inferiority margin. European Medicines Agency.

https://www.ema.europa.eu/en/documents/scientific-guideline/

guideline-choice-non-inferiority-margin_en.pdf

Committee for Medicinal Products for Human Use. (2010). Guideline on
the investigation of bioequivalence. European Medicines Agency. https://

www.ema.europa.eu/en/documents/scientific-guideline/guideline-

investigation-bioequivalence-rev1_en.pdf

Committee for Proprietary Medicinal Products. (2000). Points to consider
on switching between superiority and non-inferiority. European Medicines

Agency. https://www.ema.europa.eu/en/documents/scientific-

guideline/points-consider-switching-between-superiority-non-

inferiority_en.pdf

Cook, J. A., Julious, S. A., Sones, W., Hampson, L. V., Hewitt, C., Berlin, J.

A., Ashby, D., Emsley, R., Fergusson, D. A., Walters, S. J., Wilson, E. C. F.,

Maclennan, G., Stallard, N., Rothwell, J. C., Bland, M., Brown, L., Ramsay,

C. R., Cook, A., Armstrong, D., . . . Vale, L. D. (2018). DELTA2 guidance on

choosing the target difference andundertaking and reporting the sample

size calculation for a randomised controlled trial. British Medical Journal,
19, k3750. https://doi.org/10.1186/s13063-018-2884-0

Dixon, P. M., Saint-Maurice, P. F., Kim, Y., Hibbing, P., Bai, Y., & Welk, G.

J. (2018). A primer on the use of equivalence testing for evaluating

measurement agreement.Medicine&Science in Sports&Exercise,50, 837–
845. https://doi.org/10.1249/MSS.0000000000001481

Gelman, A., & Carlin, J. (2014). Beyond power calculations: Assessing type

S (sign) and type M (magnitude) errors. Perspectives on Psychological
Science: a Journal of the Association for Psychological Science, 9(6), 641–
651. https://doi.org/10.1177/1745691614551642

Gillen, J. B., Martin, B. J., MacInnis, M. J., Skelly, L. E., Tarnopolsky, M.

A., & Gibala, M. J. (2016). Twelve weeks of sprint interval training

improves indices of cardiometabolic health similar to traditional end-

urance training despite a five-fold lower exercise volume and time

commitment. PLoS One, 11, e0154075. https://doi.org/10.1371/journal.
pone.0154075

Halperin, I., Vigotsky, A. D., Foster, C., & Pyne, D. B. (2018). Strengthening

the practice of exercise and sport-science research. International Journal
of Sports Physiology and Performance, 13, 127–134. https://doi.org/10.
1123/ijspp.2017-0322

Hecksteden, A., Faude, O., Meyer, T., & Donath, L. (2018). How to construct,

conduct and analyze an exercise training study? Frontiers in Physiology, 9,
1007. https://doi.org/10.3389/fphys.2018.01007

Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J.,

& Welch, V. A. (2019). Cochrane handbook for systematic reviews of inter-
ventions (2nd ed.).Wiley. https://doi.org/10.1002/9781119536604

Hodges, J. L., & Lehmann, E. L. (1954). Testing the approximate validity

of statistical hypotheses. Journal of the Royal Statistical Society Series B
(Statistical Methodology), 16, 261–268. https://doi.org/10.1111/j.2517-
6161.1954.tb00169.x

Holmgren, E. B. (1999). Establishing equivalence by showing that a specified

percentage of the effect of the active control over placebo ismaintained.

 1469445x, 2022, 3, D
ow

nloaded from
 https://physoc.onlinelibrary.w

iley.com
/doi/10.1113/E

P090171 by V
ictoria U

niversity, W
iley O

nline L
ibrary on [19/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://osf.io/ndqhe/
https://orcid.org/0000-0002-9923-6018
https://orcid.org/0000-0002-9923-6018
https://orcid.org/0000-0002-9494-0858
https://orcid.org/0000-0002-9494-0858
https://orcid.org/0000-0002-6956-9188
https://orcid.org/0000-0002-6956-9188
https://orcid.org/0000-0002-0247-239X
https://orcid.org/0000-0002-0247-239X
https://doi.org/10.31236/osf.io/pn9s3
https://doi.org/10.31236/osf.io/pn9s3
https://doi.org/10.1111/bcp.13280
https://doi.org/10.1111/bcp.13280
https://doi.org/10.1016/j.jclinepi.2018.07.004
https://doi.org/10.1016/j.jclinepi.2018.07.004
https://doi.org/10.1136/bmj.311.7003.485
https://doi.org/10.1136/bmj.311.7003.485
https://doi.org/10.1093/biomet/83.4.934
https://doi.org/10.1214/ss/1032280304
https://doi.org/10.1080/23328940.2019.1624131
https://doi.org/10.7717/peerj.10314
https://doi.org/10.7717/peerj.10314
https://doi.org/10.1007/s40279-019-01227-1
https://doi.org/10.1007/s40279-019-01227-1
https://doi.org/10.1177/2515245919847196
https://support.sas.com/resources/papers/proceedings15/SAS1911-2015.pdf
https://support.sas.com/resources/papers/proceedings15/SAS1911-2015.pdf
https://doi.org/10.1002/pst.459
https://doi.org/10.1002/pst.459
https://doi.org/10.1113/jphysiol.2014.285254
https://doi.org/10.4324/9780203771587
https://doi.org/10.4324/9780203771587
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-choice-non-inferiority-margin_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-choice-non-inferiority-margin_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-bioequivalence-rev1_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-bioequivalence-rev1_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-bioequivalence-rev1_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/points-consider-switching-between-superiority-non-inferiority_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/points-consider-switching-between-superiority-non-inferiority_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/points-consider-switching-between-superiority-non-inferiority_en.pdf
https://doi.org/10.1186/s13063-018-2884-0
https://doi.org/10.1249/MSS.0000000000001481
https://doi.org/10.1177/1745691614551642
https://doi.org/10.1371/journal.pone.0154075
https://doi.org/10.1371/journal.pone.0154075
https://doi.org/10.1123/ijspp.2017-0322
https://doi.org/10.1123/ijspp.2017-0322
https://doi.org/10.3389/fphys.2018.01007
https://doi.org/10.1002/9781119536604
https://doi.org/10.1111/j.2517-6161.1954.tb00169.x
https://doi.org/10.1111/j.2517-6161.1954.tb00169.x


MAZZOLARI ET AL. 211

Journal of Biopharmaceutical Statistics, 9, 651–659. https://doi.org/10.
1081/bip-100101201

Hopkins, W. G., Hawley, J. A., & Burke, L. M. (1999). Design and analysis

of research on sport performance enhancement. Medicine & Science
in Sports & Exercise, 31, 472–485. https://doi.org/10.1097/00005768-
199903000-00018

International Conference on Harmonisation of Technical Requirements

for Registration of Pharmaceuticals for Human Use (1998). ICH E9:
statistical principles for clinical trials. European Medicines Agency.

https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e-

9-statistical-principles-clinical-trials-step-5_en.pdf

International Conference on Harmonisation of Technical Requirements

for Registration of Pharmaceuticals for Human Use (2001). ICH E10:
Choice of control group in clinical trials. European Medicines Agency.

https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e-

10-choice-control-group-clinical-trials-step-5_en.pdf

Julious, S. A. (2004). Sample sizes for clinical trials with normal data.

Statistics in Medicine, 23, 1921–1986. https://doi.org/10.1002/sim.1783

Kovacs, M., van Ravenzwaaij, D., Hoekstra, R., & Aczel, B. (2021).

SampleSizePlanner: A tool to estimate and justify sample size for two-

group studies.MetaArXiv. https://doi.org/10.31222/osf.io/rm9dn

Lakens, D., & Evers, E. R. K. (2014). Sailing from the seas of chaos into

the corridor of stability: Practical recommendations to increase the

informational value of studies. Perspectives on Psychological Science, 9,
278–292. https://doi.org/10.1177/1745691614528520

Lakens, D. (2017). Equivalence tests: A practical primer for t tests,

correlations, and meta-analyses. Social Psychological and Personality
Science, 8, 355–362. https://doi.org/10.1177/1948550617697177

Lakens, D., Adolfi, F. G., Albers, C. J., Anvari, F., Apps, M. A. J., Argamon, S.

E., Baguley, T., Becker, R. B., Benning, S. D., Bradford, D. E., Buchanan, E.

M., Caldwell, A. R., Van Calster, B., Carlsson, R., Chen, S.-C., Chung, B.,

Colling, L. J., Collins, G. S., Crook, Z., . . . Zwaan, R. A. (2018). Justify your

alpha. Nature Human Behaviour, 2, 168–171. https://doi.org/10.1038/
s41562-018-0311-x

Lakens, D., Scheel, A. M., & Isager, P. M. (2018). Equivalence testing

for psychological research: A tutorial. Advances in Methods and
Practices in Psychological Science, 1, 259–269. https://doi.org/10.1177/
2515245918770963

Lakens, D., McLatchie, N., Isager, P. M., Scheel, A. M., & Dienes, Z.

(2020). Improving inferences about null effects with Bayes factors and

equivalence tests. The Journals of Gerontology, Series B: Psychological
Sciences and Social Sciences, 75, 45–57. https://doi.org/10.1093/geronb/
gby065

Lakens, D. (2021). Sample size justification. PsyArXiv. https://doi.org/10.
31234/osf.io/9d3yf

Lakens, D., Pahlke, F., & Wassmer, G. (2021). Group sequential designs: A
tutorial. PsyArXiv. https://doi.org/10.31234/osf.io/x4azm

Laukkanen, J. A., Zaccardi, F., Khan, H., Kurl, S., Jae, S. Y., & Rauramaa,

R. (2016). Long-term change in cardiorespiratory fitness and all-cause

mortality: A population-based follow-up study. Mayo Clinic Proceedings,
91, 1183–1188. https://doi.org/10.1016/j.mayocp.2016.05.014

Magnusson, K. (2016) Equivalence, non-inferiority and superiority testing –
An interactive visualization. R Psychologist. https://rpsychologist.com/d3/

equivalence/

Manski, C. F. (2019). Treatment choice with trial data: Statistical decision

theory should supplant hypothesis testing. The American Statistician, 75,
265–275. https://doi.org/10.1080/00031305.2020.1717621

Mansournia, M. A., & Altman, D. G. (2018). Invited commentary:

Methodological issues in the design and analysis of randomised

trials. British Journal of Sports Medicine, 52, 553–555. https://

doi.org/10.1136/bjsports-2017-09824515

Meyners, M. (2012). Equivalence tests – A review. Food Quality and Pre-
ference, 26, 231–245. https://doi.org/10.1016/j.foodqual.2012.05.003

Milanović, Z., Sporiš, G., & Weston, M. (2015). Effectiveness of high-

intensity interval training (HIT) and continuous endurance training

for VO2max improvements: A systematic review and meta-analysis of

controlled trials. Sports Medicine, 45, 1469–1481. https://doi.org/10.
1007/s40279-015-0365-0

Murphy, K. R., Myors, B., & Wolach, A. (2014). Statistical power analysis: A
simple and general model for traditional and modern hypothesis tests (4th
ed.). Routledge. https://doi.org/10.4324/9781315773155

Rhea, M. R. (2004). Determining the magnitude of treatment effects in

strength training research through the use of the effect size. The Journal
of Strength & Conditioning Research, 18, 918–920. https://doi.org/10.
1519/14403.1

Ross, R., Blair, S. N., Arena, R., Church, T. S., Després, J. P., Franklin, B.

A., Haskell, W. L., Kaminsky, L. A., Levine, B. D., Lavie, C. J., Myers, J.,

Niebauer, J., Sallis, R., Sawada, S. S., Sui, X., &Wisløff, U., American Heart

Association Physical Activity Committee of the Council on Lifestyle

and Cardiometabolic Health, Council on Clinical Cardiology, Council on

Epidemiology and Prevention, . . . Stroke Council. (2016). Importance of

assessing cardiorespiratory fitness in clinical practice: A case for fitness

as a clinical vital sign: A scientific statement from the American Heart

Association. Circulation, 134, e653–e699. https://doi.org/10.1161/CIR.
0000000000000461

Roychoudhury, S., Scheuer, N., & Neuenschwander, B. (2018). Beyond p-
values: A phase II dual-criterion design with statistical significance and

clinical relevance. Clinical Trials, 15, 452–461. https://doi.org/10.1177/
1740774518770661

Schuirmann, D. J. (1987). A comparison of the two one-sided

tests procedure and the power approach for assessing the

equivalence of average bioavailability. Journal of Pharmacokinetics and
Pharmacodynamics, 15, 657–680. https://doi.org/10.1007/BF01068419

Schumi, J., & Wittes, J. T. (2011). Through the looking glass: Understanding

non-inferiority. Trials, 12, 106. https://doi.org/10.1186/1745-6215-12-
106

Senn, S. (2021). Statistical issues in drug development (3rd ed.),Wiley.

Shieh, G. (2016). Exact power and sample size calculations for the two one-

sided tests of equivalence. PLoS One, 11, e0162093. https://doi.org/10.
1371/journal.pone.0162093

Simonsohn, U., Nelson, L. D., & Simmons, J. P. (2014). p-Curve and effect

size: Correcting for publication bias using only significant results.

Perspectives on Psychological Science, 9, 666–681. https://doi.org/10.
1177/1745691614553988

Snapinn, S. M. (2004). Alternatives for discounting in the analysis of non-

inferiority trials. Journal of Biopharmaceutical Statistics, 14, 263–273.
https://doi.org/10.1081/BIP-120037178

Snapinn, S., & Jiang, Q. (2018a). Controlling the type 1 error rate in non-

inferiority trials. Statistics in Medicine, 27, 371–381. https://doi.org/10.
1002/sim.3072

Snapinn, S., & Jiang, Q. (2018b). Preservation of effect and the regulatory

approval of new treatments on the basis of non-inferiority trials.

Statistics in Medicine, 27, 382–391. https://doi.org/10.1002/sim.3073

Speed, H. D., & Andersen, M. B. (2000). What exercise and sport scientists

don’t understand. Journal of Science and Medicine in Sport, 3, 84–92.
https://doi.org/10.1016/s1440-2440(00)80051-1

Stewart, A. (2021). Experimental physiology publishes one of the

first registered reports in physiology. The Physiological Society.

https://www.physoc.org/blog/experimental-physiology-publishes-one-

of-the-first-registered-reports-in-physiology/

Van Ravenzwaaij, D., Monden, R., Tendeiro, J. N., & Ioannidis, J. P. A.

(2019). Bayes factors for superiority, non-inferiority, and equivalence

designs. BMC Medical Research Methodology, 19, 71. https://doi.org/10.
1186/s12874-019-0699-7

Victor, N. (1987). On clinically relevant differences and shifted null hypo-

theses.Methods of Information in Medicine, 26, 109–116. https://doi.org/
10.1055/s-0038-1635499

Wang, S. J., & Blume, J. D. (2011). An evidential approach to non-inferiority

clinical trials. Pharmaceutical Statistics, 10, 440–447. https://doi.org/10.
1002/pst.513

 1469445x, 2022, 3, D
ow

nloaded from
 https://physoc.onlinelibrary.w

iley.com
/doi/10.1113/E

P090171 by V
ictoria U

niversity, W
iley O

nline L
ibrary on [19/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1081/bip-100101201
https://doi.org/10.1081/bip-100101201
https://doi.org/10.1097/00005768-199903000-00018
https://doi.org/10.1097/00005768-199903000-00018
https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e-9-statistical-principles-clinical-trials-step-5_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e-9-statistical-principles-clinical-trials-step-5_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e-10-choice-control-group-clinical-trials-step-5_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e-10-choice-control-group-clinical-trials-step-5_en.pdf
https://doi.org/10.1002/sim.1783
https://doi.org/10.31222/osf.io/rm9dn
https://doi.org/10.1177/1745691614528520
https://doi.org/10.1177/1948550617697177
https://doi.org/10.1038/s41562-018-0311-x
https://doi.org/10.1038/s41562-018-0311-x
https://doi.org/10.1177/2515245918770963
https://doi.org/10.1177/2515245918770963
https://doi.org/10.1093/geronb/gby065
https://doi.org/10.1093/geronb/gby065
https://doi.org/10.31234/osf.io/9d3yf
https://doi.org/10.31234/osf.io/9d3yf
https://doi.org/10.31234/osf.io/x4azm
https://doi.org/10.1016/j.mayocp.2016.05.014
https://rpsychologist.com/d3/equivalence/
https://rpsychologist.com/d3/equivalence/
https://doi.org/10.1080/00031305.2020.1717621
https://doi.org/10.1136/bjsports-2017-09824515
https://doi.org/10.1136/bjsports-2017-09824515
https://doi.org/10.1016/j.foodqual.2012.05.003
https://doi.org/10.1007/s40279-015-0365-0
https://doi.org/10.1007/s40279-015-0365-0
https://doi.org/10.4324/9781315773155
https://doi.org/10.1519/14403.1
https://doi.org/10.1519/14403.1
https://doi.org/10.1161/CIR.0000000000000461
https://doi.org/10.1161/CIR.0000000000000461
https://doi.org/10.1177/1740774518770661
https://doi.org/10.1177/1740774518770661
https://doi.org/10.1007/BF01068419
https://doi.org/10.1186/1745-6215-12-106
https://doi.org/10.1186/1745-6215-12-106
https://doi.org/10.1371/journal.pone.0162093
https://doi.org/10.1371/journal.pone.0162093
https://doi.org/10.1177/1745691614553988
https://doi.org/10.1177/1745691614553988
https://doi.org/10.1081/BIP-120037178
https://doi.org/10.1002/sim.3072
https://doi.org/10.1002/sim.3072
https://doi.org/10.1002/sim.3073
https://doi.org/10.1016/s1440-2440(00)80051-1
https://www.physoc.org/blog/experimental-physiology-publishes-one-of-the-first-registered-reports-in-physiology/
https://www.physoc.org/blog/experimental-physiology-publishes-one-of-the-first-registered-reports-in-physiology/
https://doi.org/10.1186/s12874-019-0699-7
https://doi.org/10.1186/s12874-019-0699-7
https://doi.org/10.1055/s-0038-1635499
https://doi.org/10.1055/s-0038-1635499
https://doi.org/10.1002/pst.513
https://doi.org/10.1002/pst.513


212 MAZZOLARI ET AL.

Westlake, W. J. (1981). Response to T.B.L. Kirkwood: Bioequivalence

testing—a need to rethink. Biometrics, 37, 589–594. https://doi.org/10.
2307/2530573

Yu, B., Yang, H., & Sabin, B. (2019). A note on the determination of

non-inferiority margins with application in oncology clinical trials.

Contemporary Clinical Trials Communications, 16, 100454. https://doi.org/
10.1016/j.conctc.2019.100454

How to cite this article: Mazzolari, R., Porcelli, S., Bishop, D. J.,

& Lakens, D. (2022). Myths andmethodologies: The use of

equivalence and non-inferiority tests for interventional studies

in exercise physiology and sport science. Experimental

Physiology, 107, 201–212. https://doi.org/10.1113/EP090171

 1469445x, 2022, 3, D
ow

nloaded from
 https://physoc.onlinelibrary.w

iley.com
/doi/10.1113/E

P090171 by V
ictoria U

niversity, W
iley O

nline L
ibrary on [19/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.2307/2530573
https://doi.org/10.2307/2530573
https://doi.org/10.1016/j.conctc.2019.100454
https://doi.org/10.1016/j.conctc.2019.100454
https://doi.org/10.1113/EP090171

	Myths and methodologies: The use of equivalence and non-inferiority tests for interventional studies in exercise physiology and sport science
	Abstract
	1 | INTRODUCTION
	2 | INVESTIGATING STATISTICAL DIFFERENCES (SUPERIORITY)
	3 | INVESTIGATING EQUIVALENCE AND NON-INFERIORITY
	3.1 | Suitability of the reference intervention
	3.2 | Determination of non-inferiority and equivalence margin(s)
	3.3 | Sample size planning for non-inferiority and equivalence studies

	4 | RE-IMAGINING INTERVENTIONAL STUDIES USING EQUIVALENCE AND NON-INFERIORITY TESTS
	4.1 | Example 1: Use of equivalence hypothesis
	4.2 | Example 2: Use of non-inferiority hypothesis

	5 | SWITCHING BETWEEN HYPOTHESES
	6 | LIMITATIONS AND ADDITIONAL CONSIDERATIONS
	7 | CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH
	ACKNOWLEDGEMENTS
	COMPETING INTERESTS
	AUTHOR CONTRIBUTIONS
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES


