
Development of genetic-based models for predicting 
the resilient modulus of cohesive pavement subgrade
soils

This is the Published version of the following publication

Ghorbani, Behnam, Arulrajah, Arul, Narsilio, Guillermo, Horpibulsuk, Suksun 
and Bo, Myint Win (2020) Development of genetic-based models for predicting
the resilient modulus of cohesive pavement subgrade soils. Soils and 
Foundations, 60 (2). pp. 398-412. ISSN 0038-0806  

The publisher’s official version can be found at 
https://www.sciencedirect.com/science/article/pii/S003808062033554X?via%3Dihub
Note that access to this version may require subscription.

Downloaded from VU Research Repository  https://vuir.vu.edu.au/45163/ 



Available online at www.sciencedirect.comH O S T E D  B Y
www.elsevier.com/locate/sandf

ScienceDirect

Soils and Foundations 60 (2020) 398–412
Technical Paper

Development of genetic-based models for predicting the
resilient modulus of cohesive pavement subgrade soils

Behnam Ghorbani a, Arul Arulrajah a, Guillermo Narsilio b, Suksun Horpibulsuk a,c,⇑

Myint Win Bo d

aDepartment of Civil and Construction Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
bDepartment of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, Australia

cSchool of Civil Engineering and Center of Excellence in Innovation for Sustainable Infrastructure Development, Suranaree University of Technology,

Nakhon Ratchasima, Thailand.
dBo & Associates Inc., Mississauga, Ontario, Canada

Received 11 July 2019; received in revised form 29 January 2020; accepted 27 February 2020
Available online 19 April 2020
Abstract

The accurate determination of resilient modulus (Mr) of pavement subgrade soils is an important factor for the successful design of
pavement system. The important soil property Mr is complex in nature as it is dependent on several influential factors, such as soil phys-
ical properties, applied stress conditions, and environmental conditions. The aim of this study is to explore the potential of an evolution-
ary algorithm, i.e., genetic algorithm (GA), and a hybrid intelligent approach combining neural network with GA (ANN-GA), to
estimate the Mr of cohesive pavement subgrade soils. To achieve this aim, a reliable database containing the results of repeated load
triaxial tests (RLT) and other index properties of subgrade soils was utilized. GA was employed to develop a precise equation for pre-
dicting Mr of subgrade soils. In addition, GA was used as a tool for determining the optimal values of the weights and the bias of the
ANN-GA approach. The developed ANN-GA model was then transferred to a functional relationship for further application and anal-
yses. Several validation and verification phases were conducted to examine the performance of the developed models. The results indi-
cated that both GA and ANN-GA models could accurately predict the Mr of cohesive subgrade soils, and performed better than other
models in the literature. Finally, a sensitivity analysis was conducted to evaluate the effect of the utilized parameters on Mr.
� 2020 Production and hosting by Elsevier B.V. on behalf of The Japanese Geotechnical Society. This is an open access article under the CC BY-
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The successful design of a pavement system with various
material properties is affected by the stiffness and strength
https://doi.org/10.1016/j.sandf.2020.02.010
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of the pavement layers, i.e. surface, base, subbase, and sub-
grade. Among the pavement layers, the subgrade is consid-
ered the foundation of the pavement system that transfers
applied loads to the ground. To characterize the subgrade
material under different environmental and loading condi-
tions, the resilient modulus (Mr) has been introduced as a
fundamental material property that describes the inelastic
behavior of material under traffic loading (AASHTO,
2003). Since pavement layers undergo repeated traffic load-
ing, the subgrade soil experiences both recoverable and
permanent strains with each load repetition. When the
number of load repetitions is increased, plastic deformation
Japanese Geotechnical Society.
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decreases until it becomes all recoverable (Sadrossadat
et al., 2016). Mr can therefore be defined as the ratio of
the applied deviator stress to the recoverable strain
(AASHTO, 2003).

The Mr of subgrade soils is typically determined using
repeated load triaxial (RLT) tests on remoulded or undis-
turbed samples (AASHTO, 2003). In this test, varying
combinations of confining and deviator stresses are applied
to the specimen in various sequences to simulate the field
conditions. Despite their accuracy and reliability, perform-
ing RLT tests requires sophisticated equipment and skilled
personnel. In order to avoid performing time consuming
and uneconomical RLT tests, several relationships have
been proposed that formulate Mr in terms of stress states,
physical properties, and strength tests parameters.

Mr mainly depends on stress states and physical proper-
ties of the subgrade soils. Generally, models obtained for
the calculation of the resilient modulus of subgrade soils
can be classified into two main groups: (I) Correlations
with laboratory tests, and (II) in situ test results using con-
stitutive equations. Recently, P-wave and S-wave measure-
ments have also been used to estimate the resilient modulus
of pavement materials (Schuettpelz et al., 2010). A sum-
mary of some of the available equations to estimate the
Mr of cohesive soils are summarized in Table 1.

Correlations are typically developed by relating the Mr

value to the results of laboratory tests, such as the Califor-
nia bearing ratio (CBR) and the unconfined compressive
strength (UCS); in-situ tests, such as the cone penetration
test (CPT) and the dynamic cone penetrometer (DCP);
physical properties of the soil, like moisture content (w)
and dry density (cd); stress states, such as confining pres-
Table 1
Available prediction equations for Mr of subgrade soils.

Reference Equation

Seed et al. (1967) Mr ¼ k1 h
Pa

� �k2
Witczak and Uzan (1988) Mr ¼ k1Pa

h
Pa

� �k2 soct
Pa

� �k3
Puppala et al. (1996) MR ¼ k1Pa

r3
Pa

� �k2 rd
P a

� �k3
Kim (2004) MR

Pa
¼ k1

Paroct
s2oct

h ik2
Carmichael and Stuart (1985)

Mr ¼ 37:431� 0:4566PI � 0:6179w� 0:1424
þ0:1791r3 � 0:3248rd þ 36:422CH þ 17:097

AASHTO (2003) MrðMPaÞ ¼ 17:6ðCBRÞ0:64
Mohammad et al. (2007) MR ¼ 165:5

DCPI1:147
þ 0:0966 cd

w

� �
MR ¼ 151:8

DCPI1:096

Mohammad et al. (2002) MR
r30:55

¼ 1
r1

31:79qc þ 74:81 f s
w

� �
þ 4:08 cd

cw

Sadrossadat et al. (2018b) MR ¼ r3 þW opt þ ð3P#200 þ qu þ r3 � 2rd
�ðW c þ Sr þ 8r3 þ rd � 8ðPI �W opt þ 1:5Þ4

h: bulk stress ([r1 + 2r3]); Pa: atmospheric pressure (=101 kPa); roct: octahedr
3); r1: major principal stress ([r3 + rd]; r3: minor principal stress; rd: devi
percentage of soil particles passing through #200 sieve; CBR: California bearin
resistance; fs: sleeve friction resistance; qu: unconfined compressive strength; Sr:
MH = 1 for MH soil.
sure (r3) and deviator stress (rd); or a combination of these
parameters. Constitutive models, on the other hand, are
obtained by relating the Mr value to various stress invari-
ants, i.e. bulk stress (h), octahedral shear stress (soct), and
octahedral normal stress (roct). Unknown parameters of
the constitutive models can be related to the physical prop-
erties of the soil to include both physical properties and
stress conditions.

According to the Kim (2004) equation in Table 1,
regression coefficients for cohesive subgrade soils (A-6
soils) can be obtained using the following equations
(Hanittinan, 2007):

k1 ¼ a1a3a2 þ a3 Sr
100

� �a4 þ a5qu þ a6PI þ a7ðLL� wÞ
þa8ðwopt � wÞ þ a9ðP 200 � a10Þ

ð1Þ

k2 ¼ b1r3
b2 þ b3

Sr

100

� �b4

þ b5qu
b6 þ b7PI þ b8LL ð2Þ

a1 ¼ a11 þ a12
wopt � w
wopt

� �
ð3Þ

b1 ¼ b11 þ b12ðw� woptÞ ð4Þ
where a1 to a12 and b1 to b12 are constants of Kim’s model.
A detailed description of Kim’s regression coefficients can
be found in Hanittinan (2007). As can be seen in Table 1,
constitutive models such as those provided by Seed et al.
(1967), Witczak and Uzan (1988), and Puppala et al.
(1996) have a pre-defined structure, and unknown coeffi-
cients of these equations are typically obtained by perform-
ing a regression analysis. According to the Kim (2004)
equation in Table 1, a second set of the regression analysis
is required to relate the obtained coefficients, i.e., k1 and k2,
Affecting variables Applicability

h, Pa, k2 All soil types

h, Pa, soct, k2, k3 All soil types

r3, rd, Pa, k2, k3 All soil types

roct, soct, Pa, k1, k2 A-4 and A-6 soils

P 200

MH
PI, w, P200, r3, rd, MH, CH Cohesive subgrade soils

CBR All soil types
DCPI, cd, w A-4 , A-6, A-7–5, and

A-7–6 soils
DCPI

r3, rd, qc, fs, cd, cw Cohesive subgrade soils

� ð5LL
ÞÞ=quÞ=W

wopt, P200, qu, r3, rd, LL, w, Sr A-6 soils

al normal stress ([r1 + 2r3]/3); soct: octahedral shear stress ([2
0.5(r1 � r3)/

atoric stress ([r1 � r3]); PI: plasticity index; w: moisture content; P200:
g ratio; DCPI: dynamic cone penetration index; cd: dry density; qc: cone tip
degree of saturation; k1, k2, k3: regression coefficients; CH = 1 for CH soil;
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Fig. 1. Flowchart of GA for obtaining the optimal solution (Rani et al.,
2013).
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to soil parameters as summarized in Eqs. (1)–(4). As can be
seen, the procedure for finding the final model is compli-
cated and time consuming. On the other hand, while
regression based equations may perform well on the uti-
lized datasets, they are not typically tested and validated
on new datasets (Gandomi et al., 2013, Ghorbani et al.,
2018). The complexity of the Mr factor as well as the
importance of considering the nonlinear interaction
between variables necessitates the use of more advanced
techniques for the prediction of Mr of subgrade soils.

To overcome the limitations of the traditional modeling
techniques, artificial intelligence (AI) methods have been
employed by various researchers to solve complicated engi-
neering problems (Ghorbani et al., 2018, Chen et al., 2019,
Jayawardana et al., 2019, Ghorbani and
Hasanzadehshooiili, 2018). Unlike traditional modeling
techniques, artificial intelligence approaches are capable of
determining the nonlinear relationship between variables
in amodel effectively, without considering any prior assump-
tions about the problem. Kim et al. (2014) and Hanittinan
(2007) used ANNs, and Khoury and Maalouf (2018)
employed a support vector machine method to predict the
resilient modulus of subgrade soils. Sadrossadat et al.
(2018b) used a variant of genetic programming, namely lin-
ear genetic programming (LGP), to directly estimate theMr

of cohesive subgrade soils. Amongst computation intelli-
gence methods, artificial neural networks (ANNs) are the
most widely used due to their inherent features, which
include managing complex problems with large datasets,
handling problems with multiple outputs, and predicting
the unseen data effectively. However, ANNs come with
disadvantages, such as a slow learning rate and getting stuck
in local minima. Furthermore, ANNs have been referred to
as black-box systems since they do not provide a distinct
relationship between inputs and the output (Ziaee et al.,
2015).

To improve the prediction capability of ANNs, evolu-
tionary algorithms such as genetic algorithm (GA) and par-
ticle swarm optimization (PSO) have been applied to find
the optimal values of the weights for the ANN. Evolution-
ary algorithms can aid ANNs in converging to the global
minima, and hence improve the prediction performance
of the network. In this regard, Mousavi et al. (2017) pro-
posed a hybrid neural network and simulated annealing
to predict the daily solar radiation. Alsarraf et al. (2019)
applied the PSO-ANN technique to predict the exergetic
performance of a building integrated photovoltaic/thermal
system. Mosallanezhad and Moayedi (2017) investigated
the potential of an integrated imperialist competitive algo-
rithm ANN to estimate the pull-out resistance of screw
piles. While evolutionary algorithms have been found effi-
cient for solving engineering problems, the application of
these methods in the field of pavement geotechnics has
been limited to date. Few studies on the application of evo-
lutionary algorithms and hybrid methods for providing
formulations of resilient modulus of subgrade soils have
been reported in the literature.
This paper proposes the application of GA as well as a
hybrid ANN-GA approach to predict the Mr of cohesive
subgrade soils. GA was employed to establish a precise
equation to predict the Mr of subgrade soils. The hybrid
ANN-GA model was developed using GA to determine
the optimal values of weights and bias of the ANN-GA
approach, which can result in a more robust model. To
achieve this, a comprehensive and reliable set of data,
including the results of RLT tests on cohesive subgrade
soils was utilized to develop models. Several validation
and verification study phases were involved in evaluating
the performance of the proposed models. Furthermore,
results were compared with available equations in the liter-
ature to verify the superiority of the proposed models. The
developed ANN-GA model was also converted to a tract-
able formula for hand calculation and pre-design purposes
to reduce the time and cost associated with performing
RLT tests.
2. Methodology

2.1. Genetic algorithm (GA)

GA is a heuristic search and optimization algorithm
introduced by Holland (1975). GA was inspired by Dar-
win’s theory of evolution and imitates the process of natu-
ral evolution and selection. In addition, unlike
conventional optimization methods, GA requires less
information about the problem and is well suited for more
complex problems. In GA, a population of individuals are
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randomly generated to solve a problem. Each solution is
encoded as a fixed-length binary string of 0 s and 1 s,
known as a chromosome. A chromosome has several genes
and total number of chromosomes indicate the population
size (Holland, 1975). The superiority of one solution over
other solutions is evaluated using a fitness function. Solu-
tions are evolved in successive iterations (or generations)
until a satisfactory criterion, i.e. the maximum number of
generations or a predefined fitness value, is met. In the pro-
cess of evolution, several operators, i.e., mutation and
crossover, are used to modify solutions transferred to next
generations (Muduli and Das, 2015). Fig. 1 summarizes
steps taken in the GA for reaching the optimal solution.

2.2. Hybrid ANN-GA approach

ANNs are a branch of artificial intelligence techniques
that aim to mimic the behavior of human brain and ner-
vous system for solving complex problems. Amongst differ-
ent variants of ANN, multi-layer perceptron (MLP) neural
networks is the most widely used (Cybenko, 1989). A MLP
neural networks consists of three distinct layers: the input
layer, a hidden layer and an output layer. Each layer is con-
nected to the subsequent layer through computing elements
known as nodes. Except for the input nodes, which are
fixed nodes, each node is a neuron or processing element
with a nonlinear activation function. In a neuron, an input
from previous layer is multiplied by a weight coefficient
which connects two layers. The output of each neuron is
then calculated by passing through a nonlinear activation
function (Ziaee et al., 2015). Training of the network is
done by adjusting the weights of the network so that the
network’s predicted values matches the target values in
the datasets. To do so, a back propagation algorithm is
typically used in which the calculated error is back propa-
gated and the network weights are altered accordingly to
minimize the prediction error (Ghorbani and
Hasanzadehshooiili, 2018).

One of the advantages of GA over classic search meth-
ods is its ability to perform a global search and hence avoid
the risk of trapping into a local minimum (Gandomi et al.,
2013). Thus, a hybrid ANN-GA model uses GA as a pow-
erful search algorithm to find the best parameters for the
ANN. In the ANN-GA method, GA is employed to adjust
the weights of the ANN in a way that the error of the GA-
ANN model (i.e., fitness value) is minimized. A fitness
function (i.e., RMSE) is considered to measure the fitness
of each solution vector. In case of reaching the defined ter-
mination criterion, the simulation procedure stops and the
results are represented. The termination condition is typi-
cally set to the maximum value until which the algorithm
is iterated to find better solutions.

3. Database and model variables

The database used for development of ANN-GA model
was collected from a study conducted by Hanittinan
(2007), which reported on data collected from earlier stud-
ies by Kim (2004), Huang (2001), and Rodgers (2006). The
database was composed of the physical soil properties,
unconfined compressive strengths, and the results of 283
RLT tests performed on cohesive subgrade soils. Soils were
mainly silt, clay, and silty clay, classified as A-6 based on
the AASHTO soil classification code. Samples were col-
lected from seven different locations and tests were per-
formed in several US universities (Hanittinan, 2007).
RLT tests were performed at a range of moisture contents
from 4% below optimum moisture content to 3% above
optimum moisture content, based on AASHTO designa-
tion T294-94 (Hanittinan, 2007).

Over the past decades, many studies have examined the
factors affecting the Mr of subgrade soil. Results of labora-
tory studies indicate that the Mr of pavement materials is
highly influenced by the stress state parameters, i.e., r3
and rd. For cohesive subgrade soils, increasing the rd at
a constant r3 decreases the Mr value (Seed et al., 1967,
Huang, 2001, Kim, 2004). It is known that increasing the
r3 increases the Mr of soils (Kim et al., 2014,
Sadrossadat et al., 2016). In addition to stress state param-
eters, several studies have been performed to study the
influence of the physical properties of soil, its compaction
characteristics, and environmental factors on theMr. These
factors should be considered in the model development for
providing more comprehensive and robust models. Mois-
ture content and degree of saturation (Sr) describe the
changes in the soil environment and seasonal variations.
Soil physical properties such as percentage of soil particles
passing through #200 sieve (P200), liquid limit (LL), and
plasticity index (PI) are commonly used in the classifica-
tion and identification of the soil type. Besides, UCS has
been identified as a static strength parameter which is pos-
itively correlated with the Mr (Kim, 2004, Hanittinan,
2007). There are several equations in the literature which
relate the Mr to strength parameters such as UCS and
CBR. On the other hand, the compaction characteristics
of soils is an important factor in the design of pavement
layers. Herein, the optimum moisture content of the soil
(wopt), which is defined as the soil moisture content at its
maximum dry density, is incorporated in the model devel-
opment procedure.

In addition to the aforementioned factors, the viscous
nature of cohesive soils can cause creep deformations
under tapplied loads. The developed time dependent shear
strains under sustained or repeated loads can reduce theMr

of cohesive soils (Viyanant et al., 2007). In saturated soil
conditions, the application of load cycles generates excess
pore water pressure in cohesive soils which can cause creep
deformation (Holzer et al., 1973).

With an aim to incorporate most of the influential
parameters and considering the available database, the
model for prediction of Mr of cohesive subgrade soils is
expressed as a function of the following parameters:

Mr ¼ f ðLL; PI ; P 200;wopt; Sr;w; qu; r3; rdÞ ð5Þ



Table 2
Descriptive statistics of the variables in the database.

Parameter LL PI P200 (%) wopt (%) Sr (%) w (%) qu (kPa) r3 (kPa) rd (kPa) Mr (MPa)

Mean 30.83 11.17 77.74 14.01 81.13 13.90 324.87 20.95 41.45 65.34
Median 32.00 11.00 84.00 14.00 85.07 14.00 316.50 20.69 41.37 64.83
Mode 31.00 11.00 56.00 13.40 66.44 14.00 696.13 0.00 41.37 104.00
Standard deviation 4.31 1.72 15.48 2.03 14.23 2.84 178.70 16.36 18.12 31.22
Kurtosis 0.65 1.43 �1.40 0.97 �0.24 �0.61 �0.29 �1.41 �1.05 �0.14
Skewness �1.10 �1.37 �0.15 �0.85 �0.77 �0.39 0.76 �0.03 �0.02 0.29
Range 16.20 6.10 44.00 8.40 57.08 11.47 607.18 41.40 60.21 167.54
Minimum 21.00 7.00 56.00 9.40 42.92 7.53 88.95 0.00 11.00 11.90
Maximum 37.20 13.10 100.00 17.80 100.00 19.00 696.13 41.40 71.21 179.44
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To have a better understanding of the model variables,
key descriptive statistics of the variables are summarized
in Table 2.
4. Data pre-processing

Artificial intelligence techniques utilize data to deter-
mine the optimum model, which is the one that best
describes the relationship between input and output
parameters. One key issue in finding this relationship is
known as overfitting, which needs to be avoided when seek-
ing a model with better generalization. Overfitting occurs
when the model has relatively small error on the trained
dataset, while when a new set of data is introduced to the
model, the error value becomes very high. To avoid overfit-
ting, the dataset needs to be divided into two subsets: train-
ing data and testing data. The training data is used to
construct the models, and the testing data is used to evalu-
ate its performance on unseen data. Accordingly, the test-
ing dataset is used to find a model with better
generalization. It has been suggested by many researchers
that between 15% and 30% of the data should be used to
test the model performance (Gandomi et al., 2013). It is
worth noting that while the results of the model on training
data represents the ability of the model to learn the behav-
ior of variables in the database, the test performance
indices show the performance on the model on unseen
data, which indicates its generalization capability. In this
study, 80% and 20% of the datasets were used for training
and testing the model, respectively.

The number of datasets in a database has a significant
effect on the model performance in training stage of the
network. Models with a larger number of datasets are more
reliable and safer for further analysis. It is suggested that
the minimum ratio of datasets in a database to the vari-
ables of the model should be more than five (Gandomi
et al., 2013). In this study, this ratio is equivalent to 31,
which is much higher than the required value.
5. Model performance assessment

In general, several important criteria need to be checked
to evaluate the accuracy and generalization of the devel-
oped ANN-GA model. The correlation coefficient (R),
mean absolute error (MAE), and round mean squared
error (RMSE) are among essential statistical criteria that
indicate the overall performance of the developed model
(Ghorbani et al., 2018):

R2 ¼
Pn

i¼1ðMrm �M
�

rmÞðMrp �M
�

rpÞ
� �2
Pn

i¼1ðMrm �M
�

rmÞ
2Pn

i¼1ðMrp �M
�

rpÞ
2

ð6Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðMrp �MrmÞ2
n

s
ð7Þ

MAE ¼ 1

n

Xn

i¼1
Mrp �Mrm

		 		 ð8Þ

in which Mrm and Mrp are the measured and predicted val-

ues of the ith output, M
�

rm and M
�

rp are the average values of
the measured and predicted results, and n is the number of
samples.

Smith (1986) suggests that there is a strong correlation
between the predicted and measured values if the correla-
tion coefficient R2 P0.64. Additionally, error values, i.e.,
the MAE and RMSE, should be minimum for both train-
ing and testing data.

6. Development of the GA model

In this section, GA is employed to find a precise equa-
tion for prediction of the Mr of subgrade soils. In this
regard, a code is written in a MATLAB environment
(Mathworks, 2017). The input and output values are nor-
malized before model development to increase the capabil-
ity of algorithm in finding the relationship between input
variables and the output. The database is normalized to
lie between 0 and 1 using the following equation:

Xn ¼ X � Xmin

Xmax � Xmin

ð9Þ

where Xmin, Xmax, and Xn are the minimum, maximum, and
normalized values of the variable X, respectively. The de-
normalized value of the output can be calculated as:

X ¼ XnðXmax � XminÞ þ Xmin ð10Þ
The general form of the considered equation to predict

the Mr of subgrade soils is given in Eq. (11):
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Mr ¼ w1LLa1 þ w2PIa2 þ w3P#200
a3 þ w4W opt

a4 þ w5W c
a5þ

w6Sr
a6 þ w7qu

a7 þ w8r3
a8 þ w9rd

a9 þ b

ð11Þ
where w1 to w9 and a1 to a9 are the coefficients of the equa-
tion and b is the bias value. GA is employed as a tool to
find the optimal values of the unknown coefficients. The
RMSE function is considered as the fines function to eval-
uate solutions in each iteration.

Several parameters, including the population size (Npop),
crossover probability, mutation rate, and maximum num-
ber of iterations, affect the prediction capability of the
GA approach. These values are typically obtained by a trial
and error method or by using values recommended by
other researchers. The combination of parameters consid-
ered to find the optimal model is summarized in Table 3.
Several preliminary runs were performed to come up with
a parameter setting to provide a robust model with high
generalization capability. Crossover and mutation rates
were selected based on some previously suggested values
(Momeni et al., 2014, Khandelwal and Armaghani, 2016,
Rostami et al., 2018). The proper determination of popula-
tion size is dependent on the size and the complexity of the
investigated problem. To investigate the effect of popula-
tion size on the performance of the GA model, a paramet-
ric study was done as shown in Fig. 2. It was observed that
Table 3
Parameter settings for development of GA model.

Parameter Setting

Number of generation 500, 1000
Population size 50, 100, 200, 300, 400
Mutation rate (%) 10, 30
Crossover rate (%) 70, 95
Fitness function RMSE

0.06

0.1

0.14

0.18

0.22

0.26

0 100 200 300 400 5

R
M

SE

Gene

Fig. 2. Effect of the population size o
model with Npop = 400 had the lowest RMSE value. Con-
sidering different values for parameters resulted in
2 � 5 � 2 � 2 = 40 combinations of parameters. Also, 5
replications of each parameter combination were tested
and evaluated. In total, 200 runs with different combina-
tions of parameters were conducted. The best values of
population size, mutation rate, and crossover probability
for the developed GA model were 400, 30%, and 70%,
respectively. The optimal coefficients of the developed
equation based on GA optimization are summarized in
Table 4.

Considering one of the testing samples (i.e. LL = 31,
PI = 12, P200 = 56%, wopt = 13.4%, w = 11.4%,
Sr = 66.44%, qu = 696.13 kPa, r3 = 41.37 kPa, rd = 40.76-
kPa, Mr = 112.81 MPa), the normalized values of LL, PI,
P200, wopt, w, Sr, qu, r3, and rd are equal to 0.617, 0.82, 0,
0.476, 0.337, 0.412, 1, 0.999, and 0.494, respectively. By
substituting the obtained coefficient values in Eq. (11),
Mr is calculated equal to 0.6076. Using Eq. (10), the de-
normalized value of Mr is calculated to be equal to 113.7
(MPa).
7. Hybrid ANN-GA model development

In order to develop the ANN-GA model for prediction
of resilient modulus of subgrade soils, a code is written in a
MATLAB environment (Mathworks, 2017). The proce-
dure for the modeling of Mr using ANN-GA is illustrated
in Fig. 3. The model includes nine input variables and Mr is
the only output of the model.

In the first phase of constructing the model, the dataset
should be normalized between �1 and 1 to facilitate model
development using following equation (Mathworks, 2017):

Xn ¼ X � Xmin

Xmax � Xmin

� Xmax � X
Xmax � Xmin

ð12Þ
00 600 700 800 900 1000
ration
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Table 4
Optimal coefficients of the developed GA model.

Coefficients Coefficient number bias (b)

1 2 3 4 5 6 7 8 9

wi 0.103 �0.204 �0.131 0.310 �0.085 �0.273 0.351 0.168 �0.292 0.726
ai 5.999 0.023 0.961 3.096 0.045 0.862 0.640 0.723 0.148

Input-output determination 

Partitioning database into 
Training and testing datasets 

Running ANN-GA algorithm 

Set ANN architecture 

Select fitness function 

Termination criterion 

End 

101 0 1
010 1 1

Crossover 
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001 1 1
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Mr 

Set GA parameters 

σ σ

Fig. 3. Hybrid ANN-GA model development procedure.
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Considering Eq. (13), the de-normalized value of the
output can be calculated as:

X ¼ 0:5ðXn þ 1ÞðXmax � XminÞ þ Xmin ð13Þ
In the hybrid ANN-GA model development, there are

several parameters in both the ANN and GA that need
to be set. The precision of the ANN models increases as
the number of nodes in the hidden layer increases. How-
ever, increasing the nodes would result in a more compli-
cated model with many different parameters. Cybenko
(1989) indicated that a single hidden layer neural network
would provide satisfactory results for use in the approxi-
mation of nonlinear problems. Thus, in this study, only
one hidden layer consisting of three nodes was considered
to develop a simple model that can be represented as a
tractable formulation rather than a complicated black-
box. The activation function for the hidden layer nodes
was the following Tangent-sigmoid (Mathworks, 2017):

f ðxÞ ¼ 2

1þ e�2x
� 1 ð14Þ

The crossover and mutation rates were chosen to be
equal to the values adopted for developing the GA model.
In addition, a parametric study was performed by develop-
ing several ANN-GA models to find the optimal value of
Npop. While increasing population size usually increases
the chance of obtaining better results, it decreases the speed
of the model development. The population size was varied
from 50 to 400 and the maximum number of generations
was set to 500. Fig. 4 shows the effect of population size
on the model performance based on the RMSE criteria.
As evident, the model with Npop = 400 had the lowest
RMSE value. It is also evident that after about 300 gener-
ations, there is no significant change in the RMSE value.
The hybrid ANN-GA model was run several times with
3 � 5 � 2 � 2 = 60 different combinations of the parame-
ters and 5 replications for each combination, which
resulted in a total of 300 runs. The parameter settings dur-
ing the ANN-GA model development are summarized in
Table 5.

The best ANN-GA model for predicting the resilient
modulus of cohesive subgrade soils has the following
parameters: Population size = 400; Mutation rate = 10%;
Crossover rate = 70%. In order to transform the optimal
ANN-GA model into a tractable formulation for further
analysis, the following function is used (Ziaee et al., 2015):

h ¼ f HO biash þ
Xh
k¼1

V kf IH biashk þ
Xm
i¼1

wikxi

 ! !
ð15Þ

where biash is the hidden layer bias; Vk is the weight con-
nection between neuron k of the hidden layer and the single
output neuron; biashk would be the bias at neuron k of the
hidden layer (k = 1, h); wik denotes the weight connection
between the input variable (i = 1, m) and neuron k of the
hidden layer; xi would be the ith input parameter; fHO is
the transfer function between the hidden layer and the out-
put layer; and fIH is the transfer function between the input
and hidden layer.



Table 5
Parameter settings for development of ANN-GA
model.

Parameter Setting

Number of generation 100, 300, 500
Population size 50, 100, 200, 300, 400
Mutation rate (%) 10, 30
Crossover rate (%) 70, 95
Number of hidden layers 1
Number of hidden nodes 3
Activation function Tangent-sigmoid
Fitness function RMSE

Table 6
Values of weights and bias for input-hidden layer.

Weight (wik) Neuron (k) Between Input and Hidden Layer

1 2 3

W1k 0.519 0.171 �1.909
W2k 0.003 �0.196 �1.203
W3k �0.252 0.125 0.640
W4k 0.778 0.522 �0.867
W5k �0.541 �1.093 1.409
W6k �0.245 0.138 0.960
W7k 0.141 0.103 0.921
W8k 0.035 �0.363 �0.105
W9k �0.148 �0.067 0.703
biask 0.787 �1.563 �1.256
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Fig. 4. Effect of the population size on development of the ANN-GA model.

Table 7
Values of the weights and bias of the hidden-output layer.

Weight Neuron (k) Between Hidden and Output Layer biash

1 2 3

Wk 2.6376 �1.9416 1.6468 �2.4069
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After de-normalization of the output, the optimal ANN-
GA model for predicting the Mr of cohesive subgrade with
nine inputs (LL, PI, P200, wopt, w, Sr, qu, r3, rd) can be
expressed as:

Mrið ÞANN�GA ¼ 83:77 Mrið Þn þ 11:9 ð16Þ
where,

Mrið Þn ¼
X3
k¼1

V ktanhðAkÞ þ biash ð17Þ

Ak ¼ w1kLLn þ w2kPIn þ w3kP 200n þ w4kW optn þ w5kW cnþ
w6kSrn þ w7kqun þ w8kr3n þ w9krdn þ biask

ð18Þ
where LLn, PIn, P200n, woptn, wn, Srn, qun, r3n, and rdn are

the normalized input values obtained from Eq. (12), and k
is the number of hidden layer nodes (i.e., 3). The obtained
values of bias and weights of the optimal model for input-
hidden and hidden-output layers are summarized in Tables
6 and 7, respectively.

Considering the same testing sample used for calculating
the output of the GA model (LL = 31, PI = 12,
P200 = 56%, , wopt = 13.4%, w = 11.4%, Sr = 66.44%,
qu = 696.13 kPa, r3 = 41.37 kPa, rd = 40.76 kPa, Mr =
112.81 MPa), the procedure for calculating the Mr is
described as:
Step 1: Normalization of the input dataset. Using Eq.
(12), the normalized values of LL, PI, P200, wopt, w, Sr,
qu, r3, and rd are 0.235, 0.64, �1, �0.048, �0.325,
�0.176, 1, 0.99, �0.011, respectively.
Step 2: Calculation of the hidden nodes parameters.
Using the values summarized in Table 6, the values of
A1 to A3 are calculated: A1 = 1.522; A2 = �1.73;
A3 = �2.89.
Step 3: Prediction of the Mrn. The output of each hidden
layer neuron is calculated by passing through an activa-
tion function (i.e., tansig). Mrn can then be calculated as
the summation of output of each neuron which is multi-
plied to the hidden-output weights as given in Table 7.
Step 4: De-normalization of the Mr. Using Eq. (13), Mr

is calculated in the range of datasets. The output of the
ANN-GA model obtained is equal to 110.46 MPa.
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8. Performance analysis of ANN-GA and GA models

In order to represent the capability of the obtained
ANN-GA and GA models, the predicted versus measured
values of Mr for training and testing datasets are depicted
in Fig. 5(a) and (c), respectively. In addition, histograms of
the errors obtained by each method for training and testing
datasets is illustrated in Fig. 5(b) and (d) to have a general
view of the frequency of the errors in different intervals.

As evident in these figures, the ANN-GA model has R2

values of 0.97 for both training and testing datasets, and
RMSE values are 5.5 and 5.2 for training and testing data-
sets, respectively. On the other hand, the R2 of GA model
for both training and testing datasets is equal to 0.87. The
RMSE value for training and testing datasets are 11.1 and
11.3 for training and testing data, respectively. Considering
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Fig. 5. (a) and (c) Measured versus predictedMr values of the GA and ANN-G
data in GA and ANN-GA models.
the high R2 values and low RMSE values, it can be con-
cluded that the developed models are capable of predicting
the Mr of subgrade soils with a high degree of accuracy. In
addition, close values of R2 and RMSE values for training
and testing datasets indicate that overfitting is avoided
(Ghorbani et al., 2018, Sadrossadat et al., 2018a). This
means that the proposed models would have a satisfactory
performance on unseen data and thus have a suitable gen-
eralization performance. It should be noted that while the
functional structure of the GA model is simpler, the
ANN-GA model outperforms the GA model with a high
degree of accuracy.
9. Comparative study

To further examine the performance of the proposed
models, their performance was compared with the LGP
(b)

(d)

Amodels; (b) and (d) Histogram of errors obtained for training and testing
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model (Sadrossadat et al., 2018b) and the model proposed
by Kim (2004). The Kim model was chosen for the purpose
of comparison as it outperformed other existing regression
based models in the literature (Kim, 2004). In this regard,
testing datasets were used to evaluate the prediction capa-
bility of all methods. The results of comparative study are
represented in Fig. 6. Residual error (RE) is calculated as
the difference between the measured and predicted values
of each model. As evident in Fig. 6, the ANN-GA
approach outperforms the other three methods in terms
of all indicators. The R2 values for ANN-GA, GA, LGP,
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Fig.6. Measured values of Mr and those obtained by (a) ANN-GA (b) G
and Kim’s model are 0.97, 0.87, 0.83, and 0.56, respec-
tively. The max |RE| of the ANN-GA model is about 11,
while this value for GA, LGP, and Kim’s model are around
29, 33, and 62, respectively. Furthermore, it is evident that
AI-based methods perform notably better than the regres-
sion based model proposed by Kim (2004).

While R, MAE and RMSE together give an overall per-
spective of the performance of each model, other criteria
need to be satisfied on the testing datasets to ensure the
external validation of a prediction model. In this regard,
a ranking index (RI) is used in this study that incorporates
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some other statistical criteria to compare the performance
of the models (Abu-Farsakh and Titi, 2004, Ghorbani
et al., 2018). This statistical procedure is based on the fol-
lowing four criteria:

1. The equation of best fine line of predicted (Mrp) versus
measured (Mrm) resilient modulus (Mr-fit/Mrm), along
with corresponding coefficient of determination (R2). It
is worth noting that model with (Mr-fit/Mrm) and R2 clo-
ser to 1 has the best performance.

2. The arithmetic mean (l) and standard deviation (r) of
Mrp/ Mrm. It is suggested that a model with lcloser to
1 and rcloser to 0 has a better performance in prediction
of the Mr.

3. The 50% cumulative probability (P50%) of Mrp/ Mrm. To
calculate the P50%, the values of Mrp/Mrm are arranged
in an ascending order, and the cumulative probability
is calculated using following equation:
P ¼ i
nþ 1

ð19Þ

The value of the P50% for the optimal model should be
close to one.
Mr-fit = 1.01Mrm
R² = 0.97
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Fig. 7. Best fit line of Mrp/Mrm for (a) ANN-GA mod
4. The coefficient of efficiency (E). This parameter evalu-
ates how well each model describes the variance of the
datasets. E can be calculated using following equations:

E ¼ E1 � E2

E1

ð20Þ

E1 ¼
Xn
i¼1

ðMrm �M
�

rpÞ
2

ð21Þ

E2 ¼
Xn
i¼1

ðMrp �MrmÞ2 ð22Þ

The overall performance of each model can be measured
in terms of rank index (RI), which is the sum of the ranks
of each sub criteria:

RI ¼ R1 þ R2 þ R3 þ R4 ð23Þ
where R1, R2, R3, and R4 are the ranks from each of the
explained sub criteria. The model with the lowest RI has
the best performance when predicting the Mr of cohesive
subgrade soils. The best fit line of Mrp/Mrm for each inves-
Mr-fit = 1.01Mrm
R² = 0.87
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tigated model is illustrated in Fig. 7. As evident, the ANN-
GA model performs the best among all models, followed
by GA, LGP and the Kim model. Therefore, ANN-GA
model is ranked 1 (i.e. R1 = 1) based on the first criterion.
While AI-based models are highly capable of predicting
the Mr, Kim’s model tends to underestimate the Mr val-
ues. The results of the first criterion are summarized in
the column corresponding to R1 in Table 8.

Considering the cumulative probability criteria, the
plots of Mrp/Mrm versus cumulative probability (%) are
illustrated in Fig. 8. As is evident from this figure, the
Mrp/Mrm values in more than 95% of the predicted values
by the ANN-GA model are in the 0.8–1.2 range. The P50%

for the ANN-GA, ANN, LGP, and Kim’s model are 1, 1,
1, and 0.8. A similar trend can be found in all other crite-
ria, as is summarized in Table 8. It can be concluded that
the ANN-GA approach is highly capable of predicting the
Mr of subgrade soils by considering several validation cri-
teria, followed by GA model and the LGP model. Gener-
ally, AI-based methods perform notably better than the
regression based method by Kim (2004).
10. Sensitivity analysis

To measure the relative importance of each input vari-
able and its contribution to the final model, a sensitivity
analysis (SA) is performed. SA aims to measure the
strength of the relationship between model inputs and
the output variable. In this study, the Cosine amplitude
method (CAM) is used as an indicator of significance of
each input variable (Yang and Zhang, 1997, Majdi and
Rezaei, 2013). Considering a set of n data samples in the
common X-space, a data array X can be defined as:

X ¼ X 1;X 2; ::::;Xmf g ð24Þ

Each of the elements, xi, in the data array X is a vector
of lengths of m, that is:

X i ¼ X i1;X i2; ::::;X imf gi ð25Þ
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Each data sample can therefore be regarded as a point in
m-dimensional space, where each point requires m coordi-
nates for full description. Each element of relation, rij is the
result of a pairwise comparison of two data samples, xi and
xj. The strength of the relation between these two data
pairs is in a 0 to 1 scale and is expressed by the following
equation (Sadrossadat et al., 2016):

rij ¼
Xm
k¼1

xik:xjk=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

k¼1
xik2:

Xm

k¼1
xjk2

q
ð26Þ

Fig. 9 describes the relative importance of each input
variables in the developed models. The closer the rij to 1,
the more impact corresponding variable has on the Mr

value. As is evident, the rij values for all input variables
of both methods are between 0.75 and 0.92, which indicates
the significance of all input variables for model develop-
ment. In other words, all input variables are approximately
equally important in the prediction of the Mr of subgrade
soils, and their importance for model development cannot
be neglected. However, qu, P200, and wopt are the most influ-
ential parameters on the Mr. These results are in agreement
with those of similar studies in the literature (Sadrossadat
et al., 2016, Kim, 2004, Sadrossadat et al., 2018b).

11. Conclusions

In this study, the potential of two intelligent methods,
i.e. GA and ANN-GA, was evaluated for prediction of
Mr of cohesive subgrade soils. GA was used to develop
an equation for prediction of Mr of subgrade soils. In addi-
tion, GA was utilized to enhance the predictive capability
of the ANN by adjusting the weights and bias.

A comprehensive database was utilized for the develop-
ment of the models. The nine input parameters used for
model development were as follows: the liquid limit (LL),
plastic index (PI), percentage of soil particles passing
through #200 sieve (P200), optimum moisture content
(wopt), degree of saturation (Sr), moisture content (w),
unconfined compressive strength (qu), confining stress
(r3), and deviator stress (rd). The predicted performance
of the developed models was compared with existing pre-
diction equations in the literature. A ranking index was
used to evaluate the external capability of the proposed
model.

The results of this study indicate that both the GA and
ANN-GA methods can be employed as efficient tools in
predicting the Mr of cohesive soils. The R

2 of the predicted
and measured values for the ANN-GA model and GA
model was 0.97 and 0.87 for both training and testing data-
sets, which was superior to the available prediction equa-
tions. One of the main objectives of the present study
was to clearly show that the ANN-GA model can be
expressed as explicit formula which can be used for manual
calculation purposes. Also, the shown prediction capability
of the developed GA model clearly indicates that the evo-
lutionary algorithms can be regarded as efficient tools for
providing precise and simple equations. The results
obtained by the ANN-GA and GA models outperformed
other existing equations in the literature in terms of preci-
sion and accuracy for several validation criteria.

The obtained results of the sensitivity analysis indicated
the importance of all input variables for predicting the Mr

of cohesive subgrade soils. It should be noted that the
capability of the AI-based methods is mostly limited to
the range, number and statistical features of the database
used for model developments. To resolve this, developed
models can be enhanced by increasing the number of data-
sets. Nonetheless, the models provided in this study could
be used to estimate the Mr of subgrade soils without con-
ducting any tests. The proposed models are expected to
be useful in the preliminary design stages or when the test-
ing is not feasible.
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