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Highlights
Measurement-driven Blind Topology Estimation for Sparse Data Injection Attack in Energy Sys-
tem
Adnan Anwar,Abdun Naser Mahmood,Zahir Tari,Akhtar Kalam

• The existingworks on sparse unobservable attacks where it is assumed that power grid topology [21, 18] or the complete
Jacobian matrix [26, 14, 30] is known to the attacker, this work assumes that the attacker has no access to the grid
topology matrix or the Jacobian matrix. With the aid of the estimated topology, sparse unobservable attack vectors are
then constructed using a completely data-driven approach, which does not require any prior grid information.

• This article solves the unique problem of identifying the topology from the measurement signals only which is later
used for adversarial attack analyses. To this end, based on the structural properties of the grid topology matrix, the
blind estimation of the topology matrix is modelled as a constraint optimization problem which is then solved using
ADMM considering the measurement signals only.

• This paper proposes a novel initialization approach that significantly enhances the estimation accuracy when compared
with existing and random initialization approaches.

• This work also utilizes measures from the complex network theory in order to compare the estimation performance.
This work demonstrates that the topology of the physical grid can be revealed using the measurement data obtained
from the cyber domain.
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ABSTRACT
Smart grid cyber-security has come to the forefront of national security priorities due to the emergence
of new cyber threats such as the False Data Injection (FDI) attack. This specific type of attackmodifies
smart grid measurements to produce wrong system states during the state estimation which is a critical
operational functionality. While most of the existing works assume that power grid topology or the
Jacobian matrix (that represents measurement and state relationship) is known to the attacker, this
work shows that an intelligent attacker can construct a data-driven sparse FDI attack which does not
require prior knowledge of system Jacobian or grid topology. In this paper, we show how the power
grid topology, which is an important information for sparse attack construction, can be revealed using
only measurement signals. The blind topology estimation is formulated as a constrained optimisation
problem. The alternating direction method of multipliers (ADMM) is then employed with a novel
initialization process for solving this complex problem. The comparative evaluation using graph-
theoretic measures indicates that the power grid topology can be revealed with very high accuracy
using such an approach. For example, average eigenvalue centrality measures and degree centrality
measures show that the estimated topology is around 95.82% and 94.99% accurate compared to the
actual topology for the IEEE-14 bus system and 86.47% and 96.34%, respectively for IEEE-30 bus
system. Finally, based on the estimated topology we determine the critical set of measurements,
which are then utilised for sparse attack construction. We show that only 7.40% and 3.57% sensors
are required to construct the sparsest stealthy attacks for the IEEE 14 bus and the 30 bus system,
respectively. The findings of this research conclude that an intelligent attacker can construct a very
sparse ‘stealthy’ attack, that can degrade the operational performance significantly, by manipulating
a few sensor devices only without any prior system knowledge or information.

1. Introduction
In recent years, the smart grid has been proven vulnera-

ble to sophisticated cyber-attacks [2, 5, 17]. False data injec-
tion (FDI) attack is a new type of data integrity attack similar
to the man-in-the-middle (MITM) or spoofing attack which
has been highlighted in recent smart grid cyber-security re-
searches due to its stealthiness and possible adverse impacts
on the power system operation [35, 1, 6]. This class of at-
tacks exploits the sensor (e.g., phasor measurement units)
measurements by injecting false information about the grid
conditions [1, 26]. As measurement data are widely used in
different key operational modules (e.g., state estimator), any
corruption in measurements will affect the operational deci-
sions [26, 11]. To ensure data integrity, bad data detectors
(BDD) are used in an energy operation centre which detects
the presence of any corrupted data by calculating the dif-
ference between the measured and estimated system states
obtained from the state estimation process. As a result of
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the strategic FDI injection, the state vectors (e.g., voltage
angles) calculated using the state estimation process will be
incorrect and misleading. However, due to the intelligent
way of choosing the attack vector, the norm of the resid-
ual obtained from the state estimation module will appear
to be very close to the normal behavior, e.g., the case when
there is no false injection [26, 3]. Hence, the attack remains
undetected in the existing BDD module. As the obtained
states are wrong (which does not correspond to actual phys-
ical states of the power grid), any operational decision based
on those may have an adverse effect on the power system
operation.

Most of the existing stealthy FDI attack strategies as-
sume that the attacker has prior knowledge of system param-
eters such as line reactance, bus and line connectivity [26,
19, 30]. In practice, it is very difficult to obtain these sensi-
tive information for the following reasons:

a) Obtaining the power system parameters involves get-
ting access to the grid topology maps through intruders or
former employees, which is very difficult and challenging
for a remote attacker;

b) Power system topological connectivity and electric
parameter information are typically stored in a highly se-
cured database server;

c) Historical data of the system topology matrix and pa-
rameter information obtained by an insider may be outdated
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and irrelevant (cannot be used to construct stealthy attack)
if the system operating condition changes (e.g., topology re-
configuration) [32, 31].

For these reasons, FDI attack that requires prior knowl-
edge of the energy system Jacobianmay not be feasible. Con-
sequently, the attackermay seek an alternative idea of stealthy
attack construction based on the measurement data only [33,
20].

Recently, Yu et al. [33] and Kim et al. [20] have demon-
strated a blind attack construction strategy that does not rely
on any prior power system topological and electric line pa-
rameter information as required by other FDI attacks [26,
19, 30]. In the blind approaches, the attack is constructed
based on the subspace information of the measurements. Yu
et al. [33] propose a principal component analysis (PCA)
and Kim et al. [20] propose a singular value decomposition
(SVD) based subspace estimation technique for stealthy at-
tack construction. In [33], the adversary requires to inject all
measurement devices for stealthy attack construction. How-
ever, a more practical assumption is that the attacker is most
likely able to compromise a limited number of measurement
devices [26, 14, 30]. A stealthy FDI attack that requires only
a few sensors is called sparse unobservable FDI attack or
simply sparse attack [26, 14, 30]. A sparse attack is more
difficult to construct because it involves finding a sparse at-
tack vector that remains hidden in the BDD.

There have been few works related to the sparse attacks.
Kosut et al. in [21] relate the sparse attacks with network ob-
servability and establish a close connection between them.
Authors show that the existence of the sparse attack vector
depends on the information of the energy grid topological
connectivity but not on the electric parameters (e.g., line ad-
mittance value). Several work have considered the graph-
theoretic analysis using the ‘known’ power grid topology to
demonstrate the successful construction of sparse unobserv-
able attack [21, 18]. However, in contrast to the previous
researches, we consider a more realistic situation where the
power grid topology is not known to the attacker. To this
end, we propose a methodology to reveal the power grid
topology based on a data-driven approach using measure-
ment signals only and then utilize it for sparse FDI attack
construction. Although some prior works aim to estimate
the topology of the power grid [24, 4, 16, 23, 25], none of
these researchers investigated the possibility of stealthy at-
tack generation based on the estimated topology. The con-
tribution of this work is listed as follows:

1. In contrast to existing work on sparse unobservable
attacks (where it is assumed that power grid topol-
ogy [21, 18] or the complete Jacobian matrix [26, 14,
30] is known to the attacker), this work assumes that
the attacker has no access to the grid topology ma-
trix or the Jacobian matrix. With the aid of the es-
timated topology, sparse unobservable attack vectors
are then constructed using a completely data-driven
approach, which does not require any prior grid in-
formation. The theory is presented in Section III and
experimental evaluation is given in Section IV.C.

2. This article solves the unique problem of identifying
the topology from themeasurement signals only, which
is later used for adversarial attack analyses. To this
end, based on the structural properties of the grid topol-
ogy matrix, the blind estimation of the topology ma-
trix is modelled as a constraint optimization problem
which is then solved using ADMM considering the
measurement signals only (in Section II.A-II.C).

3. This paper proposes a novel initialization approach that
enhances the estimation accuracy significantly when
compared with existing and random initialization ap-
proaches (demonstrated in Section II.D).

4. This work also utilizes measures from the complex
network theory in order to compare the estimation per-
formance (see Section IV.A for comparison). This work
demonstrates that the topology of the physical grid can
be revealed using themeasurement data obtained from
the cyber domain.

2. Topology Estimation
In a normal operating condition, the topology of the en-

ergy grid remains static. Some related works addressed the
challenges of topology estimation [23, 25]. In [24], Li et
al. show that the topology of the energy grid can be approx-
imately revealed solely using the correlations of a number
of measurement signals obtained from power injection sen-
sors. This process does not require any intervention of the
system states. A detailed explanation can be obtained from
Theorem 2 of [24] as proof. This emerging yet challenging
problem of topology estimation is possible because of the
rich structure of H matrix that has the following properties,
symmetric (H = HT ), positive semi-definiteness (H ⪰ 0) and
null space (H1 = 0, and HT 1 = 0). Let us consider, power
injectionmeasurement vector is denoted by z, which is a sub-
set of complete measurement vector zt. Considering t obser-vations of the injection measurement vectors, the dimension
of the measurement matrix Z becomes a (N +1) × tmatrix.
For these t observations, consider the state matrix (voltage
angles for DC power flow model) as � with a structure of
(N + 1) × t. By assuming E is the noise matrix, one can
write the original measurement model as below:

Z = H� + E (1)
According to power system load flow theory, the reference
bus voltage angle is always considered zero. Hence, �ref = 0.By assuming the reference (slack) bus is the first bus, the
equality constraint becomes

�T 1ref = 0 (2)
Here 1ref= [1, 0, 0, ..., 0]T . for the blind estimation of the H
matrix based on the measurement matrix Z, the system state
matrix� needs to be a full rankmatrix, which implies t ≥ N
with the rank(�)= N [24].
2.1. Proposed Solution for Topology Estimation

The power grid topology matrix has some properties in-
cluding its positive semi-definiteness nature with the null
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space property, and the matrix is also symmetric. Now, con-
sidering the above properties and additional constraints like
the slack bus equality constraint of Eqn. 2, we can model the
the topology estimation problem as a constraint optimization
problem with the sparsity regularization as follows:

min
H,�

‖Z −H�‖2F + �‖H‖1

s.t. H = HT , H ⪰ 0, H1 = 0, HT 1 = 0
(3)

In the above formulation, the regularization parameter for
sparsity is defined using �. In the above formulation, the
matrix H is basically sparse which is bounded by a number
of structural equality and inequality constraints presented in
Eqn. 3.
2.2. Topology Estimation

To solve the optimization problem defined in Eqn. 3, we
use ADMM. According to the definition of ADMM, if f (x)
and g(z) are two convex functions which are separable, then
ADMM formulation is as belows:

and their convex set and respectively, ADMM forms
the problem as below [9]:

min
x∈ ,z∈

f (x) + g(z)

Ax + Bz − c = 0
(4)

Now, considering the formulation using augmented Lagrangian,
the equation is rewritten as:

L�(x,z,y) = f (x) + g(z) + yT (Ax + Bz - c)
+ (�∕2)‖Ax + Bz - c‖22

(5)

In the above formulation, y represents the dual variablewhereas
� represents the augmented Lagrangian parameter. In the
above formulation, x and z are the two primal variables. The
update steps for x and z are as follows [9]:

xk+1 ∶= argminx L�(x, zk, yk) (6a)

zk+1 ∶= argminz L�(xk+1, z, yk) (6b)
Then the update for dual variable will follow [9]:

yk+1 ∶= yk + �(Axk+1 + Bzk+1 − c) (7)
where � > 0. Considering � = (1∕�)y, ADMM iteration
steps described above can be written in a scaled form as be-
low:

xk+1 ∶= argmin
x∈

f (x) + �
2
‖Ax+Bzk − c− �k‖22 (8a)

zk+1 ∶= argmin
z∈

g(z) + �
2
‖Axk+1 +Bz− c−�k‖22 (8b)

�k+1 ∶= �k + Axk+1 + Bzk+1 − c (8c)
Now, the above ADMM formulation is used to reveal the
topology of the energy grid blindly based on measurement
signals only.

2.3. Formulation for Topology Estimation
The problemwhich we have defined previously in Eqn. 3

can be represented using ADMM in the below form:
min

H,�,�,	,�⪰0
‖Z −H�‖2F + �‖�‖1 + g(	) (9a)

s.t. � −	 = 0 (9b)

H −� = 0 (9c)

H1 + 1H = 0 (9d)
In the above formulation g represents the indicator func-
tion of {	|	T 1ref = 0}, which ensures that the first row
of 	 becomes zero. At first we form the augmented La-
grangian L�(H,�,�,	;�, �,!) following Eqn. 5. As de-
scribed in Eqn. 8, the update iterations can be formulated as:

�i+1 ∶= argmin� ‖Z−Hi�‖2F +
�
2
‖�−	i+�i‖22 (10)

The solution of the above equation will be as below:
�i+1 ∶= (2HiHTi + �I)

−1(2HTi Z + �	i − ��i) (11)
Then, 	 will follow the below updated step,

	i+1 ∶=
∏

(�i+1 + �i) (12)
∏ is operator that indicates the projection onto {	|	T 1ref =
0}. It means that each element of the first row of 	 is equal
to zero and the remaining elements are the same. Next, the
topology matrix H is updated as:

min
H

‖Z −H�i+1‖2F +
�
2
‖H −�i + �i‖2F+

�
2
‖H1 + 1H + !i‖2F

(13)

The solution of the above equation becomes:
Hi+1 ∶= [2�i+1�Ti+1 + �I +

�
N
1T 1]−1

[2�i+1ZT + �(�i − �i − !i)]
(14)

Next, we do the optimization with respect to� that converts
the problem as below:

min
�,�⪰0

�‖�‖1 +
�
2
‖Hi+1 −� + �i‖2F (15)

The solution of the above formulation is provide in [9]:
�i+1 = �∕�(Hi+1 + �i) (16)

where is defined as a soft-thresholding operator as follows:

"(x) ∶=
{

x − " ∗ sign(x), if |x| > "
0 if |x| ≤ " (17)

Finally, the below update steps are used for dual variables:
�i+1 = �i + (�i+1 −	i+1)
�i+1 = �i + (Hi+1 −�i+1)
!i+1 = !i + (Hi+11 + 1Hi+1)

(18)
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2.4. Initialization of the H matrix
For a static topology matrix, one can observe the varia-

tions in the measurement signals which is basically observed
because of the variations in the underlying system states.
Previously, [13, 33, 20] identified that the correlations among
multiple observations of power flow measurements can pro-
vide critical information related to the grid topology ma-
trix. Consider, the measurement model represented using
Eqn. (1). Now, we obtain the covariance matrix (ΣZ) of themeasurements Z as follows [20]:

ΣZ ≜ HΣ�HT + �2I (19)
where, Σ� is the covariance of �. Under noiseless assump-
tion, ΣZ can be approximated as HΣ�HT . So, Eqn. 19 be-
comes,

ΣZ ≈ HΣ�HT (20)
If the column space of any matrix is represented as (.), then
(HΣ�HT ) is the equivalent of column space (H) [20]. As
our aim is to estimateH using the procedure discussed in the
above sections, we initialize the topology matrix H with the
covariance matrix of the measurement signals (ΣZ). There-fore,

Hini = ΣZ (21)
where, ΣZ = E[(Zinj − E[Zinj])(Zinj − E[Zinj])T ] and E[.]
is the expected value.

3. Sparse Unobservable Attack Construction
The attack vector a constructs a sparse unobservable at-

tack if a is sparse in nature and satisfies the ‘attack feasibility
condition’, which is represented using equation a = Hc [26,
21]. Here, c is a random vector with the same column length
of H [26]. Being a sparse attack vector, a has very few non-
zero components. In other words, only a few sensors need to
be compromised. We say, a is a k-sparse unobservable at-
tack vector if a comprises of k specific measurements which
satisfy the condition that upon removing the measurements
corresponding to those k specific sensors from the vector
of all sensor measurements, the network becomes unobserv-
able during the state estimation [20, 21]. The set of sensors
that satisfies the above criteria is called a ‘critical set of sen-
sors’ and denoted as  [27]. More discussion is provided in
the next sections.
3.1. Critical set of measurements

Formally, ‘critical set of sensors’ is defined as below [12], [20]:
Consider a set of measurements and a set of state variables
which are represented as  and  . If it is possible to esti-
mate the states in  uniquely from the measurements of,
then  is said to be observable with respect to. Consider
a subset of measurements  in , which if removed from
, the reduced set of measurements ′ cannot be used to
uniquely estimate the states in  . Hence,  is unobservable
and the subset of measurements  is defined as a ‘critical set
of sensors’.

Figure 1: Sparse attack construction in 14 bus system. Sensors
within the yellow area (marked with red arrow) are the critical
sensors for making an unobservable attack that targets bus 3.

3.1.1. Identification of critical measurements
Suppose, system state �i (�i ∈ �) belongs to the bus

b. To make the system state �i unobservable, the attacker
needs to exploit those measurements which are related to the
estimation of that system state. To find the critical set of
measurements (b), we use the following heuristic:

Step 1: Consider the injection measurement at bus b, if
exists.

Step 2: Determine the branches incident to bus b.
Step 3: For each of the branches, include the power flow

(both inflow and outflow) sensors, if exists.
Step 4: For each of the branches, include the power in-

jection measurements of the remaining node (other than b),
if exists.

To explain, we consider the topology of the IEEE 14 bus
benchmark system, as shown in Fig. 1. The power flowmea-
surements are marked with ‘squares’ and ‘circles’ whereas
the injection measurements are marked with ‘triangles’. Let
us consider that the attacker wants to construct an unobserv-
able attack that targets bus 3. Hence, with the knowledge of
the system topology (H) and using the above heuristic, an
attacker can find a set of critical sensors (3) (within the yel-low shaded region). This set of sensors are sufficient to make
an unobservable attack a, which modifies the estimation of
the state x2 of bus 3 (as the reference bus voltage angle is notconsidered as a system state, x1 belongs to bus 2 and so on).Thus, we find 3 = {S(2,3), S(3,2), S(3,4), S(4,3), S2, S3, S4},whereS(i,j) indicates a power flow sensor thatmeasures power
flow from node i to node j, and S(i) is an injection sensor
that measures power injection at node i, which are marked
with red arrow in Fig. 1. This set of sensors also satisfy the
spanning-tree observability criteria [22, 28]. This same pro-
cedure is applicable to identify a critical set of measurements
for any bus (vertices) of the power grid.
3.2. Attack construction

In order to construct a sparse unobservable attack, it is
necessary to identify the critical set of measurements. Iden-
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tification of the critical sets ofmeasurements requires knowl-
edge of the grid topology. In Sec. 2, we have shown how to
obtain the estimated topology using the power injectionmea-
surement data only. Here, we provide a step-by-step proce-
dure of the sparse unobservable attack construction strategy
using the estimated topology.

Step 1-Estimate the measurement sub-space: To con-
struct a data-driven sparse unobservable attack, first, we find
the measurement subspace using principal component anal-
ysis (PCA). In summary: PCA is employed on the measure-
ment matrix to obtain an orthogonal transformation, which
produces a set of values of linearly uncorrelated variables
(principal components). Then, the firstN (which is equiva-
lent to the rank of themeasurementmatrix) principal compo-
nents are considered to obtainHPCA, which basically forms
a basis matrix of the subspace of possible noiseless measure-
ments [20].

Step 2-Estimate the topologymatrix: Next, topology es-
timation is performed using power injection measurements
only using the proposed algorithm based on the alternating
direction method of multipliers (ADMM) as discussed in
Section 2.

Step 3-Identification of critical measurements: Based
on the estimated topology, the critical sets of measurements
are identified using the process discussed in Section 3.1.1.

Step 4-Sparse unobservable attack construction: Using
any identified critical set of measurements (i), it is possibleto construct a sparse unobservable attack [20]. In order to do
that, first, we remove the rows ofHPCA corresponding to the
measurements in the critical set i and obtain HrPCA. Now,our interest is to construct a sparse unobservable attack that
will modify only the measurements in i. Hence, we calcu-late the null space of the HrPCA using the following simple
steps [20]:

1. perform singular value decomposition of HrPCA and
obtain HrPCA = USV T , where U and V are the uni-
tary matrices and S is the diagonal matrix of singular
values.

2. find a column cv in V which corresponds to the small-
est singular value in S.

3. this column cv forms an orthonormal basis for the null
space ofHrPCA. Now, sparse unobservable attack vec-tor a is constructed using [20].

a = ℘ ∗ HPCAcv (22)
where, ℘ (with ℘ ∈ ℝ) is a scalar which controls
the magnitude of attack. Impact of ℘ on the attack
stealthiness is discussed in Section 4.3.1.

Step 5-Attack Injection: Finally, the sparse attack vector
a is injected with the original measurement vector zt, whichin return produce the attacked measurements as below:

zatt = zt + a (23)
In the next sections, we demonstrate the performance of the
proposed sparse unobservable attack strategy considering a
wide range of scenarios.

4. Results and discussion
4.1. Performance of topology estimation

All experiments are validated using IEEE 14 bus and
IEEE 30 bus benchmark test systems [34]. The original topol-
ogy of IEEE 14 bus and 30 bus test systems are obtained us-
ing the energy grid simulation tool MATPOWER [34]. This
research assumes that an attacker can monitor the injection
measurements (z) for multiple observations and at that time
there is no topological change of the grid. According to [20],
we consider that the system states of multiple observations
are independent and identically distributed (i.i.d), which fol-
lows a Gaussian distribution, if measurements are taken for
a very short amount of time. Here, we consider 100 samples
or observations to create a measurement matrix (Z) based
on the Eqn. 1. Next, we reveal the topology blindly follow-
ing Eqn. 3 using the proposed solution. For the ADMM al-
gorithm, augmented Lagrangian parameter, denoted as �,
is the only tuning parameter. For � > 0, ADMM shows
good convergence characteristics as reported in [10]. We
chose the optimal value empirically. Considering a range
� = [10, 15], we found that � = 13 provides the optimal
value when the original topology and estimated topology are
very close.
4.1.1. Comparative Analysis of Topology Estimation

The 2D grid connectivity or the structure of the esti-
mated topology using the proposed approach (with improved
initialization) is shown in Fig. 2-(b) for IEEE 14 bus system.
The original grid structure and the estimated grid structure
using the proposed method with random initialization are
shown in Fig. 2-(a) and Fig. 2-(d), respectively. Fig. 2-(c)
shows the estimated grid connectivity obtained from [16].
From Fig. 2, the grid connectivity of the original topology
and the estimated topology using the proposed method (with
improved initialization) exhibit a very good match (Fig. 2-
(a) and (b)). The estimated grid connectivity obtained using
the proposed method also shows better similarity with the
original grid structure compared with the estimation of [16]
(in Fig. 2-(c)) and the method with random initialization (in
Fig. 2-(d)).

For the IEEE 30 bus system, the original grid connectiv-
ity and the estimated grid connectivity using the proposed
method is shown in Fig. 3 and Fig. 4, respectively. The esti-
mated grid connectivity has a very close similarity with the
original one except for a few mismatched edges. To quantify
the grid estimation performance of the proposed method, we
conduct a set of experiments in the following sections using
graph-theoretic and eigenvalue analyses.
4.1.2. Accuracy analysis of estimated topology using

graph-theoretic metrics
In this section, graph-theoretic metrics are used to com-

pare the original and the estimated graph structures. De-
gree centrality and eigenvector centrality have been previ-
ously reported as vital measures to study the topological vul-
nerability of the power grids [7, 29]. In [24], these measures
were also used to compare the original and the estimated
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Figure 2: (a) The original topology matrix, (b) Estimated
topology matrix using the proposed method with improved ini-
tialization, (c) Estimated topology matrix obtained from [15],
(d) Estimated topology matrix using the proposed method with
random initialization
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Figure 3: Original topology
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Figure 4: Estimated topology

topologies. Other measures including closeness centrality,
average degree of neighboring nodes, and graph energy are
also used here to compare the estimation performance [8].
Experiments are performed using the adjacency matrix of
the original and the estimated topology considering IEEE
14 bus and 30 bus benchmark systems. The accuracy of the
estimated measures are calculated as below:

� = 1 −
|Ma −Me|

|Ma|
× 100% (24)

where,Ma andMe are the values of the performance mea-
sures obtained using the adjacency matrices of the actual
topology and the estimated topology, respectively.

In Table 1 and Table 2, we summarize the values of these
graph-theoretic measures to compare the estimation with the
original grid for the IEEE 14 and 30 bus systems. From the
values of these performance measures, which are summa-
rized in Table 1 and Table 2, it can be concluded that the

Table 1
Accuracy of estimated topology using various metrics for IEEE
14 bus system

Performance Indicators Actual Estimation % Acc.
Avg. Eigenvalue Centrality 0.2344 0.2442 95.82%

Degree Centrality 2.8571 3 94.99%
Avg vknn 3.3321 3.4286 97.10%

Graph Energy 20.2847 20.7924 97.49%
Avg. Closeness Centrality 0.0332 0.0348 95.18%

Table 2
Accuracy of estimated topology using various metrics for IEEE
30 bus system

Performance Indicators Actual Estimation % Acc.
Avg. Eigenvalue Centrality 0.1426 0.1233 86.47%

Degree Centrality 2.73 2.83 96.34%
Avg vknn 3.5065 3.5438 98.86%

Graph Energy 41.27 41.16 99.73%
Avg. Closeness Centrality 0.0107 0.0094 87.85%

graph-theoretic indices using the estimated topology is very
close compared to the actual topology.
4.2. Identification of critical measurements

we identify the critical measurements for each bus (ex-
cept the reference bus) of the system which are obtained us-
ing: (i) the actual topology and (ii) the estimated topology of
the IEEE 14 bus and the IEEE 30 bus systems, respectively
following the procedure discussed in Section 3.1.1. To eval-
uate the accuracy of the identification of the critical mea-
surements, we propose an index Acci below,

Acci =
N i
m

N i
a
× 100% (25)

where,N i
m is the total number of matching sensors between

the critical sets obtained using the actual and the estimated
topologies at bus i, andN i

a is the total number of critical sen-
sors for bus i that is obtained using the actual topology only.
For example, if there are 6 sensors in any critical set of a
bus and among them 5 have exact match with the critical set
obtained using the estimated topology, then the accuracy is
(5/6=) 83.33%. Fig. 5 and Fig. 6 show the accuracy (Acci) ofidentifying critical sets for IEEE 14 bus and 30 bus, respec-
tively. In Fig. 5, critical sensor sets for most of the buses are
identified correctly except for the buses 2 and 5. For bus 2,
inflow and outflow power measurement sensors of line (2, 5)
are missing due to the topology estimation error. The same
set of sensors are missing for bus 5 due to the same reason.
For all other buses, the obtained critical sensor sets using
estimated topology have exact matching (100% accuracy)
with the cases that use actual topology. For the IEEE 30
bus system, there is a slight variation in accuracy observed
in some buses due to the estimation error of the topology
matrix. Other than those small number of buses, the iden-
tified critical sensors using actual and estimated topologies
have exact matching in most of the buses as shown in Fig. 6.
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Table 3
List of critical sensors for the sparsest attack

Test sys. Crit. Set Bus ID State Critical sensors Sensor location
14 bus - 8 x7 {S(8,7), S(7,8), S7, S8} {14 , 34 , 47 , 48}

30 bus 1 11 x10 {S(9,11), S(11,9), S9, S11} { 13 , 54 , 91 , 93}
30 bus 2 13 x12 {S(12,13), S(13,12), S12, S13} { 16 , 57 , 94 , 95}
30 bus 3 26 x25 {S(25,26), S(26,25), S25, S26} { 34 , 75 , 107 , 108}
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Figure 5: Acci for 14 bus
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Figure 6: Acci for 30 bus

4.3. Performance of attack construction
In this section, we evaluate the attack construction per-

formance. From Fig. 1, we see that ‘bus 8’ is connected with
the grid through line {7, 8} and there are 4 sensors which in-
clude 1 inflow and 1 outflow sensor in the line {7, 8} and two
injection sensors at node 7 and 8, respectively; these 4 sen-
sors satisfy the spanning-tree observability criteria [28]. Af-
ter removing the 4 specific sensors, it is possible to construct
the sparsest unobservable attack. Following the attack con-
struction strategy of Section 3.2, we perform the data-driven
sparsest unobservable attack for IEEE 14 bus test system.
In Fig 7, we plot: (i) actual measurements that are not ob-
served by the operator (green circle), (ii) observed measure-
ments (red cross) after the attack, and (iii) estimated mea-
surements (blue diamond). We see in Fig 7 that the observed
measurements have distinct values than the actual measure-
ments in four sensors, which are {S(7,8), S(8,7), S7, S8}, lo-
cated respectively in 14, 34, 47, and 48tℎ row of the attacked
measurement vector zatt, as clearly evident from the figure.
We see from Fig. 7 that both of these sets of measurements
(observed and estimated) coincide with each other and the
estimation error is only 8.6739e−26 ≈ 0 (noiseless case).
When Gaussian noise of 21 dB is considered, the estimation
error is only 33.161, which is well below the threshold of
55.7585 considering a 95% confidence interval. Therefore,
the data-driven sparse unobservable attack remains hidden
in the BDD. The estimated and actual state variables are also
plotted in Fig. 8. The estimated state variable x̂7 significantlydiffers from the true state x7 of ‘bus 8’ as shown in Fig. 8.
Similar to the 14 bus system, the attacker needs to inject only
4 out of 112 sensors for the sparsest unobservable attack con-
struction in the 30 bus test system, which is only 3.57% of
the total sensors.

4.3.1. Stealthiness of the sparsest unobservable attack
The probability that a sparse unobservable attack is de-

tected by the BDD is investigated in this section. First, we
demonstrate the stealthiness of the sparsest unobservable at-
tack. Here we consider 1000 Monte Carlo simulations for
the sparsest unobservable attack construction strategy con-
sidering: (i) different Gaussian noise levels, and (ii) differ-
ent attack magnitudes. Experiments are performed for IEEE
benchmark 14 bus and 30 bus test systems.

(i) Stealthinesswith varyingGaussian noise level: Fol-
lowing the attack construction strategy discussed in Section
3.2, here we generate 1000 attack vectors using Monte Carlo
simulations by varying the Gaussian noise SNR between 15
dB to 35 dB for IEEE 14 bus system. The attack vectors are
then added with the original measurement signal and tested
using the state estimation and the BDD process. The chi-
square objective value (J (x̂)) for all 1000 attack scenarios
are plotted in Fig 9. For IEEE 14 bus system, considering
97.5% confidence interval and 40 as the degree of freedom,
the threshold using chi-square distribution becomes 59.3417
(marked using red line in Fig. 9). From Fig. 9, J (x̂) ob-
tained from most of the attack scenarios remain well below
the threshold 59.3417. We found that only 2.2% of attacks
are being detected by the BDD module and the remaining
97.8% of attacks remain stealthy in the BDD process. We
perform a similar type of experiment using the IEEE 30 bus
system. The sparsest unobservable attack in IEEE 30 bus
system can be constructed using three different sets of criti-
cal sensors listed in Table 3. Hence, during the Monte Carlo
simulation, we randomly chose one of these three sets and
noise SNR between 15 dB to 35 dB. The obtained chi-square
objective values (J (x̂)) of 1000 attack scenarios are plotted
in Fig. 10. Using a similar method like the 14 bus system,
the calculated threshold for this experiment is 108.9373. For
this test setup, we also observe that almost 97.2% of attacks
are below the threshold and capable to deceive the state es-
timator and BDD.

(i) Stealthiness with varying attack magnitudes: The
strength of the sparse unobservable attack depends on the
attack magnitudes, which is defined as a ratio between the
l2-norm of the attack vector to the l2-norm of the original
measurement vector. That means, if the attack magnitude
(‖a0‖∕‖zt‖) is 3, it indicates that the l2-norm of the attack
vector (a) is 3 times the l2-norm of the original measurement
vector (zt). The attack magnitude is controlled by chang-
ing the values of ℘ in Eqn. 22. In this experiment, for the
IEEE 14 bus system, we consider different levels of attack
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Figure 7: The smallest sparse unobservable attack for IEEE 14
bus system
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Figure 8: The estimated and the actual state variables for the
smallest sparse unobservable attack considering IEEE 14 bus
system

magnitudes starting from 1 to 12. For each of these attack
magnitude level, we perform 1000 Monte Carlo simulations
for different SNRs (20 to 35 dB) values and calculate their
corresponding J (x̂). Using the chi-square threshold for this
test setup, the probability of successful attack construction
is calculated. This procedure is repeated for all attack mag-
nitude levels and plotted in Fig. 11. From the figure, we
see that the probability of successful attack construction is
over 0.95, even when the l2-norm of the attack vector (a)
is large, e.g., 12 times the original measurements. Similar
steps are followed to investigate the attack performance with
varying attack magnitudes for the IEEE 30 bus test system.
The probability of successful attack construction is also plot-
ted in Fig. 11. We see that the probability of successful at-
tack construction decreases gradually with the increase of
the attack magnitudes. In this case, the stealthy attack can
be constructed with a probability over 0.95 even when the
attack magnitude is 5. From this experiment and Fig. 11, we
can summarize that the stealthiness of the attack construc-
tion is sensitive to the attack magnitude under the Gaussian
noise assumption. However, an attacker can still construct a
stealthy attack with a high success rate (over the probability
of 0.95) with a high attack magnitude (the l2-norm of the at-
tack vector (a) is around 12 times and 5 times the original
measurements for the 14 bus and 30 bus IEEE benchmark
systems, respectively).
4.3.2. Stealthiness of the k-sparse unobservable attack

In the above sections, the stealthiness of the sparsest
unobservable attack is discussed. Here, we investigate the
stealthy characteristics of the k-sparse unobservable attack.
Based on the identified set of critical sensors, we construct a
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Figure 9: Stealthiness of the sparsest unobservable attack for
varying Gaussian noise level using 14 bus system
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Figure 10: Stealthiness of the sparsest unobservable attack for
varying Gaussian noise level using 30 bus system
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Figure 11: Attack success probability for varying attack mag-
nitudes

k-sparse unobservable attack that corrupts one or more sys-
tem states following the procedure discussed in Section 3.
First, we discuss the experimental setup and results obtained
using IEEE 14 bus system. To accomplish the task, we per-
form 100 trials of experiments where we randomly choose a
system state for each trial. Then, we simulate 1000 Monte
Carlo runs in each experimental trial considering different
SNR (15 dB to 35 dB) values and attack magnitudes (up to
5), which produces 1000 chi-square objective values (J (x̂)).
Using these values and the chi-square detection threshold
(with 97.5% confidence), the probability of successful at-
tack construction is calculated for each trial. This procedure
is repeated for all 100 trials and the results are reported in
Fig 12. From Fig 12, most of the trials have a high attack
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Figure 12: Investigation on the stealthiness of the k-sparse
unobservable attacks using 14 bus system
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Figure 13: Investigation on the stealthiness of the k-sparse
unobservable attacks using 30 bus system

success probability (over 97%) and only a few trials are un-
successful. These unsuccessful trials are related to those k-
sparse attack vectors where the list of critical sensors are not
accurately estimated due to the mismatch in previously es-
timated topology. Similar to the IEEE 14 bus system, the
stealthiness of the k-sparse unobservable attack is investi-
gated using IEEE 30 bus system. The results are plotted in
Fig 13. From this figure, we also observe that most of the
attacks are successful with high probability. On average, the
attack success rate is 92.25% for the IEEE 30 bus system
considering all the trials. In summary, this section investi-
gates the stealthiness of the k-sparse attack strategy using the
information obtained from the estimated topology. We find
the attacks are successful with high probability in any indi-
vidual trial (over 99% for the 30 bus system) and also over
92.25% (for the 14 bus system) on an average (from all tri-
als) considering different estimation errors, Gaussian noise
cases and different attack magnitudes.

5. Conclusion
In this paper, we investigated the sparse FDI attack con-

struction strategy without any prior knowledge of system Ja-
cobian or power grid topology. Here, we demonstrated that
it is possible to construct stealthy attacks even when an at-
tacker has access to only a limited number of measurement
devices to inject false data. In order to construct a stealthy
and sparse FDI attack, the attacker needs to know the grid
topological connectivity. We demonstrated how to reveal the
power grid topology from the measurement signals only. In
this work, the estimation problem is formulated as an op-
timisation problem where the ADMM method is used for
solving the problem. The comparative evaluation using vi-

sualization and graph-theoretic measures indicated that the
proposed solution reveals the topology with high accuracy
when compared to the actual one. Finally, based on the es-
timated topology we determined the critical set of measure-
ments, which were then utilised for sparse attack construc-
tion. We showed that only 7.40% and 3.57% sensors are re-
quired to construct the sparsest stealthy attacks for the IEEE
14 bus and the 30 bus system, respectively.

The finding from this research was very significant as it
clearly points out that the topological properties of the phys-
ical grid can be revealed using the measurement data ob-
tained from the cyber domain. Moreover, an intelligent at-
tacker can make use of the estimated physical grid informa-
tion to create an FDI attack that injects false information only
into a fraction of all available measurement devices, which
makes the attack more practical, hence likely.
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