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Abstract—The key challenge of expensive optimization prob-
lems (EOP) is that evaluating the true fitness value of the solution
is computationally expensive. A common method to deal with this
issue is to seek for a less expensive surrogate model to replace
the original expensive objective function. However, this method
also brings in model approximation error. To efficiently solve the
EOP, a novel scale-adaptive fitness evaluation (SAFE) method
is proposed in this article to directly evaluate the true fitness
value of the solution on the original objective function. To reduce
the computational cost, the SAFE method uses a set of evalua-
tion methods (EM) with different accuracy scales to cooperatively
complete the fitness evaluation process. The basic idea is to adopt
the low-accuracy scale EM to fast locate promising regions and
utilize the high-accuracy scale EM to refine the solution accu-
racy. To this aim, two EM switch strategies are proposed in the
SAFE method to adaptively control the multiple EMs accord-
ing to different evolutionary stages and search requirements.
Moreover, a neighbor best-based evaluation (NBE) strategy is
also put forward to evaluate the solution according to its nearest
high-quality evaluated solution, which can further reduce com-
putational cost. Extensive experiments are carried out on the
case study of crowdshipping scheduling problem in the smart
city to verify the effectiveness and efficiency of the proposed
SAFE method, and to investigate the effects of the two EM switch
strategies and the NBE strategy. Experimental results show that
the proposed SAFE method achieves better solution quality than
some baseline and state-of-the-art algorithms, indicating an effi-
cient method for solving EOP with a better balance between
solution accuracy and computational cost.

Index Terms—Crowdshipping scheduling, expensive
optimization problem (EOP), fitness evaluation (FE) method.

Manuscript received April 28, 2020; revised September 15, 2020
and December 8, 2020; accepted January 4, 2021. Date of publication
January 14, 2021; date of current version May 28, 2021. This work
was supported in part by the National Key Research and Development
Program of China under Grant 2019YFB2102102; in part by the
Outstanding Youth Science Foundation under Grant 61822602; in part
by the National Natural Science Foundations of China (NSFC) under
Grant 61772207 and Grant 61873097; in part by the Key-Area Research
and Development of Guangdong Province under Grant 2020B010166002;
in part by the Guangdong Natural Science Foundation Research Team
under Grant 2018B030312003; in part by the Guangdong–Hong Kong Joint
Innovation Platform under Grant 2018B050502006; and in part by the
Hong Kong GRF-RGC General Research Fund under Grant 9042816 (CityU
11209819). (Corresponding authors: Zhi-Hui Zhan; Jun Zhang.)

Sheng-Hao Wu and Zhi-Hui Zhan are with the School of Computer Science
and Engineering, South China University of Technology, Guangzhou 510006,
China, and also with the Pazhou Laboratory, Guangzhou 510330, China (e-
mail: zhanapollo@163.com).

Jun Zhang is with the Hanyang University, Ansan 15588, South Korea, and
also with Victoria University, Melbourne, VIC 8001, Australia.

This article has supplementary material provided by the
authors and color versions of one or more figures available at
https://doi.org/10.1109/TEVC.2021.3051608.

Digital Object Identifier 10.1109/TEVC.2021.3051608

I. INTRODUCTION

EVOLUTIONARY computation (EC) algorithm, inspired
by evolution phenomenon and swarm intelligence in

nature, is a population-based tool for solving optimization
problems. Owing to the simplicity and gradient-free fea-
ture, multiple variants of EC algorithms have been
developed over the decades, such as genetic algorithm
(GA) [1]–[3], ant colony system (ACS) [4]–[6], particle
swarm optimization (PSO) [7]–[9], and differential evolu-
tion (DE) [10]–[12], which have been applied to tackle
with a wide range of optimization problems in operational
research [13]–[15], artificial intelligence [16]–[18], industrial
manufacturing [19]–[21], and many other fields [22]–[26].
Optimization is a process to optimize certain objective(s), with
the satisfaction of a set of constraints [27]. EC algorithms
begin with an initial population of feasible solutions (indi-
viduals) and iteratively generate new solutions (offspring) by
reproduction operations (e.g., crossover and mutation). Then,
by selection based on fitness evaluation (FE), individuals with
better fitness values have a greater opportunity to survive into
the next generation and consequently, high-quality solutions
are propagated. Therefore, the FE is a significant process to
drive the EC algorithm to approach the optimum. Noted that
the fitness is dependent on the objective but there is also
a difference. The objective function is related to the problem
itself, which is the optimization target, while the fitness func-
tion is related to the algorithm design, which is designed to
help the selection operation. Therefore, a suitable fitness func-
tion is needed to be built based on the objective function to
connect the problem and the algorithm. If the objective func-
tion of the optimization problem is very clear and the fitness
function is well designed, the EC algorithm will work well.
However, many real-world problems are typically character-
ized by NP-hard, stochastic nature, and high computational
cost [28], [29], which means the FE could be nondetermin-
istic and computationally expensive. This is the expensive
optimization problem (EOP) that challenges the traditional EC
algorithms. Therefore, how to build a suitable fitness function
for real-world EOP is very difficult.

To efficiently solve the EOPs by EC algorithms, a widely
used method in the literature is to build a cheap fitness func-
tion by using surrogates to replace the original expensive
objective function. The surrogate method can be classified
into two categories: 1) data-driven method and 2) knowledge-
driven method. The data-driven method [29]–[32] aims to
build a surrogate model based on the collected historical
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Fig. 1. Two ways to help EC algorithms efficiently solve EOPs.

data as a cheaper fitness function to replace the original
highly expensive objective function. Different function fitting
techniques, such as Kriging model [33] and artificial neural
networks [34] have been studied to make full use of the lim-
ited data. Moreover, Li et al. [35] proposed a boosting strategy
with a localized data generation method to produce synthetic
data when the available data were not sufficient to build
a satisfactory model. The knowledge-driven method [36]–[38],
which is proposed by domain-specific experts, tries to simplify
the original objective function to be a cheaper fitness func-
tion by numerical simulations based on knowledge-embedded
mathematical models. The basic idea of the above two methods
is to seek for a less expensive approximation model to replace
the original expensive objective function. However, no mat-
ter the data-driven methods or the knowledge-driven methods,
they more or less make the replaced/simplified cheaper fitness
function somehow different from the original objective func-
tion of the real-world problem. This will unavoidably bring
in model error which is harmful to practical applications. To
reduce the model error of a single low-fidelity surrogate, some
methods with multiple surrogates [35], [39] and multifidelity
surrogates [40]–[42] are also proposed to balance the com-
putational cost and the fidelity, which can reduce model error
to some extent. However, the fitness function approximated by
surrogates needs lots of data and training efforts. Moreover, the
built surrogates may only be meaningful for the optimization
process, but might not have actual meaning in the real-world
applications as the original objective function does. That is,
the solution that performs well in the surrogate fitness func-
tion does not necessarily work well in the real-world problem
because of the surrogated model error.

To fill the gap between the expensive objective function of
real-world problems and the FE for the EC algorithm, this
article proposes a scale-adaptive FE (SAFE) method to enable
the EC algorithm to efficiently solve the EOP directly on the
original objective function. The major difference in solving
EOPs between the proposed SAFE method and surrogate-
based method is shown in Fig. 1. In the method on the left
side of Fig. 1, the main contribution lies between the real-
world objective function and the cheap fitness function, where
a lot of surrogate methods are proposed. However, our work
focuses on the right side of Fig. 1 whose main contribution
lies between the fitness function and the algorithms, where the
SAFE method is proposed to drive EC algorithms to efficiently

deal with the original expensive fitness function. The SAFE
method is a general framework that a set of different evaluation
methods (EM) with different accuracy scales work together
and cooperate adaptively to complete the FE process. Herein,
the design of the SAFE method is inspired by the phenomenon
in human cognition that people usually use different scales of
resolutions to obtain different levels of cognitive information
on the object. Therefore, human beings must combine multiple
resolutions to make a comprehensive observation. Similarly,
the SAFE method combines different EMs with different accu-
racy scales to make a comprehensive evaluation on the fitness
function. When using SAFE, the fitness function can be the
same as or have no significant difference with the original
objective function, but the fitness value of the solution can be
evaluated in different accuracy scales by different EMs in dif-
ferent evolutionary stages to reduce the computational cost. It
is worth noticing that the multifidelity surrogate-based method
has similarities to the SAFE method in balancing the solu-
tion accuracy and the computational cost. However, the major
difference is that most multifidelity surrogate-based methods
mainly consider only one EM and controls the evaluation
fidelity by controlling the simulation parameters (e.g., max-
imum iterations) of this EM while the SAFE method adopts
heterogeneous EMs with different accuracy scales to complete
the FE. Hence, the SAFE method is a more general framework
that not only the EM itself can be controlled, but also different
EMs can cooperate.

The proposed SAFE method has three main advantages.
First, the SAFE method is flexible because it adopts different
EMs with different complexities that can evaluate the fitness
function in different accuracy scales. Therefore, the SAFE
is flexible to different FE accuracy requirements. Second,
among different EMs, high-accuracy scale EM (HSEM) can
obtain fitness value with higher accuracy but is computation-
ally expensive, while low-accuracy scale EM (LSEM) has
a less computational cost but results in fitness value with
lower accuracy. Therefore, our proposed SAFE method is
efficient because it combines different EMs and adaptively
controls these EMs to calculate the fitness value based on
different evolutionary stages and search requirements. Third,
unlike the surrogate-based method, the SAFE method evalu-
ates the solution directly on the fitness (i.e., objective) function
which does not bring much distortion to the original problem.
Consequently, the SAFE method is easy to apply to a class of
EOPs for which some effective EMs have been proposed under
the premise of remaining the objective function unchanged.

The EOPs widely exist in many fields like manufacturing
and logistics systems in the smart city. For the study, a sig-
nificant crowdshipping scheduling problem is put forward. In
the crowdshipping system, the delivery tasks are completed by
the professional fleet (PF) and idle occasional couriers (OC).
The goal is to minimize the total delivery cost incurred by
the PF and the compensation paid to the OC. Herein, the total
cost is acting as the objective function. A crowdshipping deliv-
ery plan includes not only the “task assignment” determining
which customer should be served by the PF or the OC, but
also the “routing plan” for the PF. As the SAFE method uses
a fitness function the same as the objective function, routes for
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PF are required to plan to obtain the total cost. Obtaining the
routing plan for PF is an optimization problem which is well
known as the capacitated vehicle routing problem (CVRP).
Since CVRP is NP-hard, it is time consuming and compu-
tationally expensive to get the optimal solution by existing
exact methods. Many nonexact methods like greedy algo-
rithm, variable neighborhood search (VNS), and ACS have
been proposed in the literature and these CVRP solvers can
be treated as different EMs in this article. Normally, they
can be partitioned into different accuracy scales based on
their search ability and computational cost. To be specific, the
solvers with a higher accuracy scale tend to obtain better solu-
tions but are more time consuming. Besides, parameters (e.g.,
maximum iterations) of the solver can be controlled to form
more solvers with different accuracy scales. Obviously, there is
a tradeoff between the solution quality and computational cost.
Therefore, this article proposes to use the SAFE method to
efficiently solve the crowdshipping scheduling problem, which
would be useful and meaningful to the development of intelli-
gent logistics systems in the smart city. Moreover, this problem
is mathematically modeled as the CVRP with OC (CVRP-
OC). Since the subproblem CVRP is well known and has been
extensively studied with many available problem solvers (i.e.,
EMs), the crowdshipping scheduling problem (i.e., CVRP-
OC) is very suitable to test and verify the SAFE method.
The advantages and contribution of our work are summarized
as follows.

1) Different from the previous research that usually
changes the objective function of EOP, our proposed
SAFE method manages a set of heterogeneous EMs on
various accuracy scales to directly evaluate the original
objective function as the fitness function. This is helpful
to reduce the model error and is flexible in balancing
the accuracy and computational cost.

2) To take advantage of various EMs, switching among
different EMs is well designed as an inter-EM (i.e.,
among different EMs) management, including one-way
and two-way EM switch strategies. This is helpful to
switch to suitable EM adaptively according to the search
requirements of different evolutionary stages.

3) To further help the SAFE method, a neighbor best-based
evaluation (NBE) strategy is put forward to make full use
of high-quality solutions to further reduce computational
cost. As the NBE strategy is performed on the solutions
within a particular EM, we refer to it as an intra-EM
(i.e., within an EM) improvement.

The remainder of this article is organized as follows.
Section II introduces the real-world EOP case study about
crowdshipping scheduling. Section III develops the algorithm
with the SAFE method to address the problem in detail.
Section IV presents experimental studies. Section V concludes
this article.

II. CROWDSHIPPING SCHEDULING PROBLEM

A. Background and Problem Formulation

Crowdshipping [43]–[47], also known as crowdsourcing
delivery, is a new trend in the current logistics systems. In
the crowdshipping mode, logistics companies not only employ

a PF but also appeal to ordinary idle people referring to
the OC, to work cooperatively to complete delivery tasks. In
return, a small fee of compensation is offered to the OC. The
purpose of the crowdshipping problem is to minimize the total
delivery cost incurred by the PF and the compensation paid
to the OC.

To be specific, the workflow is started with the arrival of
orders (customers) to be served associated with information,
such as customers’ locations and demand (e.g., weights of
the goods). The scheduler is required to decide which orders
should be accomplished by the PF or the OC. Once a decision
is made, which refers to a “task assignment,” the customers
for OC will be released and the cost can be calculated. The
rest of the customers will be served by the PF which departs
from the depot according to a “routing plan” in a given order,
of which the total cost should be as small as possible. When
all customers are satisfied, the PF will return to the depot. By
the way, the load of vehicles in the PF should not exceed their
capacity.

The problem concerning the crowdshipping system is math-
ematically modeled as CVRP-OC based on the well-known
CVRP [48]. The CVRP-OC is defined on a complete undi-
rected graph G = (CUS, EDG). N is the number of customers
and CUS = {c0, c1, . . . , cN} is the set of customer nodes which
contains N + 1 elements. c0 is the depot where all vehicles of
the PF depart and finally return to. Each customer is associated
with a demand which makes up Demand = {di |0 ≤ i ≤ N}.
Moreover, the demand d0 for the depot is zero. All vehi-
cles of PF have the same maximum load limitation, termed
as Capacity. Here, the capacity of the OC is assumed to be
infinite since many idle couriers constitute the OC as a whole.
Combinations of pairwise customers constitute an edge set
EDG = {(i, j)|0 ≤ i �= j ≤ N}. Each edge is associated with
a traveling cost termed as Cost = {wij|0 ≤ i �= j ≤ N}. Note
that i = 0 or j = 0 means the edge that connects the depot
and a customer. There are totally K + 1 vehicles available.
The vehicle k = 0 means the OC and the vehicle k > 0 means
the PF. The CVRP-OC can be formally put forward as follows.

Decision variables are defined as

xijk =
{

1, if edge(i, j) is traversed by vehicle k
0, otherwise

yik =
{

1, if customer i is served by vehicle k
0, otherwise.

The objective is to minimize the total cost

min
N∑

i=0

N∑
j=0

K∑
k=1

wijxijk +
N∑

i=0

ρ · w0iyi0 (1)

s.t.
N∑

i=0,i �=j

K∑
k=1

xijk = yjk ∀j = 1, . . . , N (2)

N∑
j=0,j �=i

K∑
k=1

xijk = yik ∀i = 1, . . . , N (3)

K∑
k=0

yik = 1 ∀i = 1, . . . , N (4)
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Fig. 2. Example of the crowdshipping delivery plan.

N∑
i=0

diyik ≤ Capacity ∀k = 1, . . . , K (5)

K∑
k=0

y0k = K + 1 (6)

N∑
i=0

N∑
j=0

xij0 = 0 (7)

uik − ujk + N · xijk ≤ N − 1 ∀i, j = 1, . . . , n, i �= j

∀k = 1, . . . , K. (8)

In (1), the left term in the objective function is the cost incurred
by the PF according to a routing plan and the right term is
the compensation cost incurred by the OC. The ρ is the com-
pensation coefficient that can be multiplied with the cost w
to obtain the compensation cost. Constraints (2) and (3) guar-
antee the flow conservation rule for each node in the graph.
Constraint (4) guarantees that each customer should be served
by exactly one vehicle. Constraint (5) prevents the load of
each vehicle from exceeding capacity. Constraint (6) requires
that each vehicle should depart from the depot to begin a trip.
Constraint (7) explicitly demonstrates that there is no need
to plan routes for the OC since every route is a single-
customer trip. Constraint (8) eliminates isolated subtours to
ensure validity.

B. Solution Representation

The decision process for the CVRP-OC can be divided into
two stages: 1) assigning customers to OC/PF and 2) plan-
ning routes for the vehicles in PF. For the first stage, it is
a scheduling problem. Assignments for this problem can be
encoded into a 0-1 string of length N and each position in the
string represents a customer with 0 meaning the corresponding
customer served by the OC and 1 by the PF.

For the second stage, planning routes for the PF is the
CVRP. Many researchers have studied the problem and many
problem solvers have been proposed. CVRP solvers can be
briefly categorized as exact methods and heuristic methods.
Exact methods [49], [50], such as branch-and-bound [51]
and column generation [52] solve the problem based on
a mixed-integer programming model. However, the time for
solving the problem increases significantly as the problem size
becomes larger. Considering the real-time requirement in prac-
tical applications, adopting exact methods can hardly work.

Heuristic methods, such as greedy algorithm, VNS [53]–[55],
and ACS [4], [14] are methods for obtaining a suboptimal
solution in a reasonable time while the global optimum is not
guaranteed.

Overall, a solution S (i.e., crowdshipping delivery plan) for
the CVRP-OC includes the assignment A, the routing plan
R, and the total cost C as the fitness value, which also acts
as the objective function in the proposed model. The evalua-
tion process of the solution S takes an assignment A as input
and outputs the routing plan R for PF and corresponding total
cost C. Hence, evaluating a solution is equal to evaluating the
assignment of the solution. An example of a crowdshipping
delivery plan is shown in Fig. 2.

Obviously, evaluating fitness value for a solution S requires
the returning result of the routing optimization process which
accounts for the major computational cost and makes the
solution expensive to evaluate.

C. CVRP Solvers

For the CVRP, we briefly introduce three types of solvers
which are mainly proposed by domain-specific experts and
researchers.

Greed+2opt: The algorithm constructs the first route for
a vehicle beginning with a random customer and iteratively
adds the next customer into the route according to a greedy
criterion (i.e., minimum distance from the currently served
customer to the unvisited customers). Until the capacity
restriction is violated, the vehicle will return to the depot and
then a new route for the next vehicle available is constructed
in the same way repeatedly. After all the customers have been
served, 2opt operation [56] is performed on every route of
the plan to eliminate the intersections to further improve the
quality of routes. Notably, once the first customer is randomly
selected, the rest of the route is deterministic by the greedy
rule. Hence, multiple plans with a different first-selected cus-
tomer can be constructed to obtain a better routing plan. To
better exploit the different accuracy scales of the greedy algo-
rithm solver, we name Greed+2opt–1 as the solver in which
one plan is constructed and Greed+2opt–N as the solver in
which N plans with a different first-selected customer are
constructed, and then the best plan is output as the result.

VNS+2opt: VNS [53]–[55] is essentially a local search
algorithm, in which a feasible solution is constructed at first.
Then multiple neighborhood solutions are generated based on
the current solution by some operations which are artificially
designed. If some of the produced solutions outperform the
original one, the best one is used as the current solution in the
next generation. Moreover, jumping out techniques are incor-
porated to avoid being trapped by the local optima. Similar to
the previous solver, each solution is refined by a 2opt operation
after all the routes are constructed.

ACS+2opt: ACS [4], [14] is a population-based iterative
approach in which several routing plans are constructed inde-
pendently according to probability-based rules. The routing
plan with lower cost is rewarded by strengthening the probabil-
ity to select the edges that are involved in the routing plan. In
every routing plan construction iteration, the probability matrix
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Algorithm 1 BasicEvaluation(A, EM)
input: A, EM // A = assignment to be evaluated, EM = evaluation method
output: R, C // R = routing plan for A, C = total cost for A
param: N, PARAM(solvers) // N = number of total customers

//PARAM(solvers) = parameter setting for solvers
1: BEGIN
2: IF EM = Greed + 2opt − 1
3: Construct R by the greedy algorithm and obtain C
4: ELSEIF EM = Greed + 2opt − N
5: Construct R by the greedy algorithm N times, output

R with the smallest C
6: ELSEIF EM = VNS + 2opt
7: Construct R by VNS and obtain C
8: ELSEIF EM = ACS + 2opt
9: Construct R by ACS and obtain C
10: END
11: END

helps the algorithm to pick promising edges and high-quality
routing plans are propagated.

The reason for stating several CVRP solvers is that the
optimization process of the routes for PF has a significant
impact on the evaluation of the assignment. Each CVRP solver
can be viewed as an EM for the assignment. The solvers vary
from many aspects, such as computational cost and solution
quality. For demonstration, experiments on CVRP instances
are carried out and the results are presented in Table S.I
in the supplementary material. The results show that with
more plans being constructed, Greed + 2opt − N surpasses
Greed + 2opt − 1 in terms of solution quality and stability,
but consequently, the more computational time is required.
ACS + 2opt and VNS + 2opt achieve better performance than
the previous two greedy algorithms in terms of solution qual-
ity, but the execution time of the solvers grows significantly
with the problem size. Notably, it is hard to draw a conclusion
that either ACS+2opt or VNS+2opt can obtain better solution
quality. It seems that their ability to solve an instance is depen-
dent on the problem structure (e.g., number of customers and
customers’ distribution). We define the EM for a solution (i.e.,
assignment) that is high-accuracy but more time consuming,
such as ACS + 2opt and VNS + 2opt as the HSEM while the
lower accuracy and cheaper ones, such as Greed+2opt−1 and
Greed+2opt−N are denoted as the LSEM. Algorithm 1 shows
the procedure to evaluate the assignments by various EMs. To
reduce ambiguity with the NBE introduced in Section III-B,
the evaluation by the EM mentioned in the following context
refers to the basic evaluation shown in Algorithm 1.

III. SAFE METHOD

To address the crowdshipping scheduling problem, which is
computationally expensive, our proposed SAFE method can be
summarized as inter-EM management and intra-EM improve-
ment. For the inter-EM management, we adopt two EM switch
strategies to automatically control the various EMs to switch
in different evolutionary stages. The basic idea of the SAFE
method is to use LSEM to find a promising region and further
refine the search with HSEM. For the intra-EM improvement,
the NBE strategy is carried out to make use of the correlation
between the well-performed solution and its neighbor solution.
The NBE strategy can make significant benefits for the HSEM
in the later evolutionary stage when most of the individuals in

the population are similar. Hence, expensive re-evaluations of
the same solutions and similar solutions are avoided in which
way the computation cost is reduced. Moreover, the archives
for multiple EMs are carried out with operations, including
archive insertion, archive reduction, and archive migration to
efficiently manage high-quality evaluated solutions.

A. Inter-EM Management by SAFE

1) Motivation for SAFE: The design of the SAFE method is
inspired by the phenomenon in human visual cognition. When
people observe objects, they usually use different scales of
resolutions for different levels of cognition. That is, differ-
ent distances from the observing point to the object lead to
different resolutions (i.e., scales). More specifically, a remote
observing distance causes a coarse resolution that the general
structure of the object can be observed while the details of the
object could be difficult to be captured. On the contrary, a close
observing distance causes a fine resolution that the detail of
the object can be captured while lacking a general understand-
ing of the object. To provide a comprehensive understanding of
the object, it may be better to combine observative information
on different scales. A simple idea is to analyze the object at
a coarse resolution and then gradually increase resolution. This
way of handling multiple resolutions has been utilized in the
image processing area and brings in great success [57], [58].

Therefore, we adopt a similar idea that uses multiple EMs
of different accuracy scales to effectively solve the EOP. In the
SAFE method, the EC algorithm can switch between EMs with
different accuracy scales to evaluate individuals to achieve
a tradeoff between solution accuracy and computational cost.
Without significant modification to the original EC algorithm,
the SAFE method is embedded into the beginning of every
generation to determine a suitable EM for this generation. The
SAFE method is adaptively controlled by indicators CF1 and
CF2 that can reflect the potential of the next EM. Once a switch
condition is met, the current EM for the population is regarded
as not suitable for the evolution anymore and the EM should
be switched.

Switching between various EMs is the decision-making pro-
cess. The main issue is to decide when to switch EM according
to a criterion and which EM should be selected as the next
EM. To start with, the EM pool contains four kinds of EMs
which are Greed + 2opt − 1, Greed + 2opt − N, VNS + 2opt,
and ACS + 2opt. For the sake of simplicity, they are denoted
as EM1, EM2, EM3, and EM4, respectively. They are arranged
in an order that the EM with higher rank has higher accuracy
for evaluating an assignment (i.e., solution). It is not easy
to define whose accuracy is higher between EM3 and EM4
because their performance is dependent on the problem struc-
ture. Hence, they are arranged in ascending order according to
the computational cost. Besides, reachable EMs of each EM
can be defined by a directed graph. For example, if the current
EM is EM2 and its reachable EMs are EM3 and EM4, then
the manager should decide in what condition the algorithm
should switch to EM3 or EM4.

Two EM switch strategies are proposed to achieve adap-
tive control. In the one-way EM switch strategy, the algorithm
starts from an LSEM and switch to HSEM according to the
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Fig. 3. Topology structure of one-way EM switch strategy.

contribution factor CF1. The key feature is that once the LSEM
is switched to HSEM, there is no chance to turn back to
LSEM. In the two-way EM switch strategy, the algorithm can
switch between LSEM and HSEM and adopts two contribution
factors CF1 and CF2 to decide which EM to switch to. Both
the one-way and two-way EM switch strategies are carried
out when the evolutionary process has stagnated for a number
of consecutive generations, which is indicated by a parameter
named η to represent the maximal stagnated generations for
triggering the switch.

2) One-Way EM Switch Strategy: In the one-way EM
switch strategy, the reachable EMs of every EM are shown
in Fig. 3. The EC algorithm initializes with the EM1 and
undergoes the evolutionary process. The switch condition is
defined as the stagnation of the population exceeding the
threshold η without improvement on the global best of the
current EM. After the switch, the stagnation of the popula-
tion is reset to zero indicating the population entering a new
EM. The contribution factor CF1 is put forward to decide
which EM the algorithm should switch to. The calculation of
CF1 is obtained by a “pre-evaluation” process on the current
population described as follows.

First, all the individuals in the current population are eval-
uated by the NBE strategy using the current EM and all the
next reachable EMs. Note that the evaluation based on the
NBE strategy is to reduce the computational cost, which will
be described in Section III-B. The global best individuals of
the current EM (i.e., EMcur) and each next EM (i.e., EMnext)
are denoted as Fbest(EMcur) and Fbest(EMnext), respectively.
Then, the CF1 value of this EMnext is calculated as

CF1(EMnext) = Fbest(EMnext) − Fbest(EMcur). (9)

As our objective is to find the solution with the minimal
total cost, a negative CF1 value indicates that the next EM
may be more suitable than the current EM. Therefore, the
next EM that has the smallest negative CF1 value is selected
as the final next EM. However, it should be noted that due to
the stochastic nature of different heuristic algorithms, it is not
guaranteed that a higher accuracy scale EM can improve the
current population. Therefore, if none of the Fbest(EMnext) is
better than Fbest(EMcur), i.e., none of the CF1 value is smaller
than zero, the algorithm continues with the current EM until
the next switch condition is met.

The key feature of the one-way EM switch strategy is that
once the LSEM is switched to the HSEM, there is no chance
to turn back. The task for LSEM is to find promising regions
and the HSEM is adopted to further exploit.

Fig. 4. Topology structure of two-way EM switch strategy.

3) Two-Way EM Switch Strategy: The LSEM (e.g., EM1)
typically has features of lower accuracy, a higher degree of
uncertainty, and more importantly, less computationally expen-
sive. Hence, it is possible to take advantage of the uncertainty
and cheapness of LSEM and adopt it to search for another
promising region. Based on such motivations, the two-way
EM switch strategy is proposed. The reachable EMs for every
EM are defined as the topology shown in Fig. 4.

The EC algorithm starts with an LSEM. When the switch
condition is met, the next EM will be selected to switch to. As
its name indicates, the two-way EM switch strategy has two
EM switch mechanisms. The first is the switch from LSEM
to HSEM. That is, if the current EM is LSEM (i.e., EM1 or
EM2), it is better to choose an EM with a higher accuracy that
shows potential in improving the population quality. Hence,
the contribution factor CF1 is adopted to try to switch to an
HSEM. The process is the same as the one-way EM switch
strategy does.

The second is the switch from HSEM to LSEM. That is,
if the current EM is HSEM (i.e., EM3 or EM4) and the evo-
lution meets the switch condition, then it is the intention to
locate another promising region by switching from HSEM to
LSEM. We denote the population size as ps, the fitness value
of the ith individual in the current population evaluated by the
next EM as Fi(EMnext), then the contribution factor CF2 is
calculated as

CF2 =
∑

i

∑
i �=j

I
((

Fi(EMnext) − Fj(EMnext)
) · (

Fi(EMcur) − Fj(EMcur)
) ≥ 0

)
ps · (ps − 1)/2

(10)

where I(·) is an identity function and equals to 1 if the con-
dition in the parentheses is satisfied and 0 otherwise. The
indicator CF2 is designed to measure the alignment degree
between the current EM and the next EMs. First, every pair
of individuals in the population is compared. If individual i
is better than individual j under current EM while the next
EM agrees on the comparison of this pair, the I(·) is 1 and is
added up to the result of CF2. The more agreements on the
comparison emerge, the larger CF2 it should be and results
in a larger degree of alignment between the current EM and
the next EM. Since the purpose is to increase the possibility
to find another different promising region, the selection crite-
rion is choosing the next EM with the smallest CF2 to switch
to. In such a way, the next EM tends to disagree with the
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Fig. 5. OpExclude operation.

Fig. 6. OpJoin operation.

current judgement on the comparison between individuals and
improves the jumping out ability.

B. Intra-EM Improvement by NBE

In this section, we introduce the NBE strategy in detail.
First, in order to save computational cost, the NBE strategy
uses high-quality evaluated solutions to evaluate the fitness of
the new solution and reduces re-evaluations of the duplicate
and similar solutions. To achieve this goal, two operations (i.e.,
OpJoin and OpExclude) are adopted. Furthermore, to manage
the evaluated solutions, the archive is put forward to store them
with operations, including archive insertion, archive reduction,
and archive migration.

1) NBE Strategy: Adopting the HSEM to evaluate solutions
might be computationally cheaper than the exact methods but
still leads to a higher computational cost than LSEM. The
issue becomes prominent when the problem size grows larger.
Considering a CVRP instance with 135 customers, the time
for solver ACS + 2opt which is EM4 to solve the case is
about 1 s. At the population level, it takes about 1 min to
evaluate the population of size 50. It is supposed that the
optimization running time is restricted to 10 min. As a result,
at most 10 generations can be executed for the optimization
which might be far from enough to take advantage of the
high accuracy of HSEM. To address the issue, it is possible to
consider the correlation between similar solutions and make
full use of high-quality solutions. The reason is that high-
quality routing plans are more likely to share some common
good structures. Therefore, when evaluating a new solution,
its similar and high-quality evaluated solution, which is named
neighbor best solution (NBS) in this article, can be used. That
is, only a slight change is needed to reconstruct the NBS to
obtain the new solution and its corresponding fitness value.
Therefore, the NBE strategy leads to an intra-EM (i.e., within
one EM) improvement.

To proceed on, two operations named OpExclude and
OpJoin are defined and shown in Figs. 5 and 6 with blue
points representing customers served by the PF and red points
served by the OC. It is supposed that the two assignments are
very similar with a slight difference in the assignment of the
customer G in Fig. 5. The total cost of the left assignment

is already known which is evaluated by the current EM. The
OpExclude is to eliminate the customer G in routes and makes
it served by an OC. Then, the vacant customers C and A in the
PF routing plan are linked. The change of cost by edge deletion
and insertion and compensation is added to the total cost of
the left assignment to obtain the total cost of the right assign-
ment. Likewise, when turning the customer F to be served
by PF in Fig. 6, OpJoin selects the edge CA that causes the
least increase on the total cost and adds the customer F into
the routes for the PF. Afterward, the total cost of the new
assignment can also be derived.

The procedure of the NBE strategy is shown in Algorithm 2.
Given the NBS which contains the assignment NBS.A with
known total cost NBS.C and the routing plan NBS.R, the cur-
rent EM, and the assignment A to be evaluated, the similarity
between two assignments is calculated with hamming distance
metric at first. If their distance exceeds a threshold named
neighborhood distance nd, the assignment will be evaluated
by the current EM, as line 16. Otherwise, the two assign-
ments A and NBS.A are similar and therefore the A can be
evaluated based on NBS to reduce computational time, as lines
3–13. The basic idea is to modify the route of NBS to make
it become the same as the route of A and then its resultant
cost can be regarded as the fitness value of A. First, the 0-1
strings of NBS.A and A are compared to find customers that
should be removed from the PF or inserted into the PF in
the NBS.A. That is, those customers served by PF in NBS.A
(i.e., NBS.A == 1) but not in A (i.e., A == 0) are denoted
as rmvCustomer (line 5) and are removed from the PF route
of the NBS by the OpExclude operation (line 6). Then, those
customers served by PF in A but not in NBS.A are denoted
as insCustomer (line 7) and are inserted into the PF route of
the NBS by the OpJoin operation (line 8). Note that, the cus-
tomers in the rmvCustomer and insCustomer lists are shuffled
by random permutation before they are used by the OpExclude
and OpJoin. By performing the OpExclude and OpJoin oper-
ations on the customers one by one, the final new assignment
is obtained together with its fitness value. After all the cus-
tomers in the rmvCustomer and insCustomer lists are settled,
2opt operation is performed on every route in the routing plan
for PF to refine the solution (line 13). However, if an inser-
tion operation is unsuccessful (i.e., no routes in the plan can
afford the inserting customer’s delivery service anymore due
to the restriction of capacity), the NBE strategy fails and the
assignment will be evaluated by the EM to get a legal routing
plan and corresponding total cost (line 10).

2) Archive Management: The NBSs of different EMs are
maintained by their corresponding archive which is denoted as
ArEM. The archive is managed by the archive insertion, archive
reduction, and archive migration operations as introduced as
follows.

Archive Insertion: Algorithm 3 shows the procedure of
inserting a solution S into the archive which stores NBSs. First,
all solutions’ assignments in ArEM similar to the given solu-
tion’s assignment S.A are found according to the threshold nd
which defines the similarity between assignments. If no simi-
lar assignment in ArEM exists, the given assignment is inserted
into the archive. Otherwise, the given solution’s total cost S.C
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Algorithm 2 NBE(A, NBS, EM)
input: A, NBS, EM

// A=assignment to be evaluated, NBS.A = neighbor best assignment
// NBS.R = PF route for NBS.A, NBS.C = total cost for NBS.A
// EM = evaluation method

output: C, R
param: nd // nd = neighborhood distance

1: BEGIN
2: IF HammingDistance(A, NBS.A) < nd
3: // A == 0 indicates the set of customer served by OC
4: // INTERSECT is the set operation
5: rmvCustomer = FindCustomers(A == 0, NBS.A == 1);
6: [C, R] = OpExclude(rmvCustomer, NBS.C, NBS.R);
7: insCustomer = FindCustomers(A == 1, NBS.A == 0);
8: [C, R] = OpJoin(insCustomer, C, R);
9: IF any customer of insCustomer is inserted unsuccessfully
10: [C, R] = BasicEvaluation(A, EM); // Algorithm 1
11: ELSE
12: // all selected customers are removed and inserted successfully
13: [C, R] = 2opt(R);
14: END
15: ELSE
16: [C, R] = BasicEvaluation(A, EM); // Algorithm 1
17: END
18: END

Algorithm 3 ArchiveInsertion(S, Ar, EM)
input: S, Ar, EM
output: Ar
param: nd // nd = neighborhood distance

1: BEGIN
2: SNBS = FindAllSolutions(HammingDistance (S.A, ArEM.A) < nd);
3: // SNBS = the set of NBS relative to S
4: IF SNBS is empty
5: // no similar assignment is found
6: Insert S into ArEM;
7: ELSE
8: IF S.C < min(SNBS.C)
9: Insert S into ArEM;

10: Delete SNBS from ArEM;
11: END
12: END
13: END

Algorithm 4 ArchiveReduction(Ar, EM)
input: Ar, EM
output: Ar
param: MaxArSize // MaxArSize = maximal archive size

1: BEGIN
2: IF Size(ArEM) > MaxArSize
3: eliminate (Size(ArEM) - MaxArSize) solutions with largest total

cost from ArEM
4: END
5: END

should be compared to all its neighbor solutions’ costs in the
archive. In the case that the incoming solution outperforms all
its neighbor solutions, the incoming solution replaces all its
neighbor solution in ArEM. The purpose is to avoid duplicate
or similar assignments in the archive.

Archive Reduction: Archive reduction operation is used
to prevent the archive from exceeding the storing limitation
MaxArSize which indicates the maximal number of NBSs that
can be stored. At the end of every generation of the EC algo-
rithm, if the current EM’s archive size Size(ArEM) exceeds
MaxArSize, it eliminates the worst (Size(ArEM)–MaxArSize)
solutions with the largest total cost from the archive. The
pseudocode is shown as Algorithm 4.

Algorithm 5 ArchiveMigration(Ar, EMcur, EMnext)
input: Ar, EMcur, EMnext
output: Ar
param: None

1: BEGIN
2: MS1 = FindBestSolution(Ar, EMcur);
3: // find the solution with the smallest total cost in the archive
4: MS2 = RouletteSelection(Ar, EMcur);
5: // randomly select a solution based on the fitness in a roulette scheme
6: [MS1.C, MS1.R] = BasicEvaluation(MS1.A, EMnext); // Algorithm 1
7: [MS2.C, MS2.R] = BasicEvaluation(MS2.A, EMnext); // Algorithm 1
8: Ar = ArchiveInsertion(MS1 and MS2, Ar, EMnext);
9: Ar = ArchiveReduction(Ar, EMnext);
10: END

Archive Migration: When the switch occurs, the population
will be pre-evaluated by the NBE strategy with a different set
of NBSs of the next EMs. It should be noted that since the
NBSs in the archives of EMnext are not updated during the
evolutionary process with EMcur, the NBSs of EMnext can be
outdated. Therefore, this operator is adopted to migrate the
high-quality solutions in the Ar of EMcur to the Ar of EMnext
to make the NBE of the next EM more efficient when the
EM switch is triggered. The migrated solutions are named
MS. Two MSs in ArEM (i.e., MS1 and MS2) are selected to
be evaluated again by the next candidate EM. The MS1 is the
solution with the best fitness value in the archive of the current
EM (line 2), and the MS2 is selected with the roulette scheme
probabilistically (line 4) based on the fitness of solutions in the
archive of the current EM. Then, the selected MSs are evalu-
ated by EM (lines 6 and 7) and then inserted into the archive
of the next EM by the archive insertion operation followed
by the archive reduction operation. Afterward, the population
can be pre-evaluated by the NBE using the next EMs. The
pseudocode is shown as Algorithm 5.

3) Whole Algorithm: In this section, we briefly discuss the
whole algorithm. An easy-used and commonly used EC algo-
rithm, GA, is adopted as the optimizer and is incorporated with
the SAFE method and the NBE strategy to solve the CVRP-
OC. The resultant algorithm is termed as GA-SAFE. The
assignment of a solution is encoded as the 0-1 bit string with
0 meaning the customer served by the OC and 1 by the PF. The
output of the evaluation for an assignment includes the fitness
value and the routing plan of PF.

In terms of initialization, the initial population consisting
of candidate assignments (i.e., solutions) is randomly gener-
ated with the probability of 0.5. That is, for the bit string
(i.e., assignment), each bit (i.e., customer) is set to 1 with
a probability of 0.5 or 0 otherwise. It is noted that heuristic
initialization strategies can be incorporated based on a pri-
ori knowledge of the problem instance. For example, if the
compensation coefficient for the OC is rather low, assigning
more tasks to the OC than the PF might be more prof-
itable. Therefore, setting a lower probability might cause the
population easier to locate a promising area. However, the
initialization strategies in our paper are considered to be irrel-
evant to the compensation scheme. Our work aims to optimize
the total cost of the CVRP-OC under whatever compensation
scheme. Thus, a trivial initialization scheme is adopted. As
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Algorithm 6 GA-SAFE
input: Customers, Cost, Capacity, Demand, depot
output: bestAssignment, bestCost, bestRoutes
param: ps, EM, nd, η

1: BEGIN
2: Initialize the population with size ps and evaluate with EMcur;
3: WHILE stopping criterion is not met
4: IF switch condition is met
5: // SAFE method and archive migration
6: Determine the candidate EMnext for the EMcur according to the

topology structure;
7: Ar = ArchiveMigration(Ar, EMcur, EMnext);
8: Pre-evaluate current population by NBE with EMnext;
9: Calculate the contribution factor for all candidate EMnext;

10: Select next EM to switch to according the selection criterion
(i.e., CF1, CF2);

11: END
12: Selection operation;
13: Crossover operation;
14: Mutation operation;
15: FOR all individuals in the population
16: // NBE strategy
17: Find the nearest individual in the Ar of EMcur as the neighbor

best solution NBS;
18: [individual.C, individual.R] = NBE(individual. A, NBS, EMcur);
19: Ar = ArchiveInsertion(individual, Ar, EMcur);
20: END
21: Ar = ArchiveReduction(Ar, EMcur);
22: Global best update and elitist preservation process;
23: END
24: END

for the selection operation, the commonly used roulette selec-
tion is adopted based on the reciprocal of the fitness values.
The offspring reproduction process includes two operations:
1) crossover and 2) mutation. For the crossover operation, we
adopt the two-point crossover operation that randomly selects
two points (i.e., alleles) in the bit string (i.e., chromosome) to
act as the beginning point and the ending point of the segment.
Then, the segments of the bit strings are exchanged. For the
mutation operation, we adopt the simple mutation operation
that randomly selects a point in the bit string and then turns it
into the opposite value. To improve search efficiency, the eli-
tist preservation strategy is supplemented after the evaluation
of the population and global best update process. Finally, the
whole algorithm is given as Algorithm 6.

IV. EXPERIMENTAL STUDIES

A. Problem Instances and Parameter Settings

In the proposed model of CVRP-OC, the problem instances
from the CVRP which have been widely studied and tested
can be used to form the test instances for the CVRP-
OC. All the test instances can be downloaded on the website
http://akira.ruc.dk/∼keld/research/LKH-3/. The basic compo-
nents of the CVRP instances are the weight matrix for the
connected edges, the capacity of the vehicles, the demand for
each customer, and the maximal number of vehicles available.
Unlike the CVRP, the customers in the CVRP-OC instance
are served by the PF and the OC. The optimization task is
to search for a crowdshipping delivery plan (i.e., solution) of
which the total cost is as small as possible. Notably, whenever
the assignment is fixed, the routing problem for the customers
assigned to the PF which are a subset of the customers in the

TABLE I
CVRP-OC PROBLEM INSTANCES

instance is a CVRP with a smaller size than its correspond-
ing CVRP-OC. If all customers are assigned to the PF, the
routing problem makes no difference to the original instance.
Hence, CVRP-OC is a variant of the CVRP with a much
larger solution space. The tested instances are divided into
medium-size ones with 25 instances and large-size ones with
10 instances, which are shown in Table I. The key features are
manifested in the instance name with the first letter indicating
the abbreviation of the test suite, n (i.e., N in the CVRP-OC
model) indicating the total number of customers, and k (i.e.,
K in the CVRP-OC model) indicating the total number of
vehicles. To allow the algorithms to fully perform the search
ability, the stopping criterion is set to be the maximum running
time. The running time is 300 s for the medium-size instances
and 600 s for the large-size instances. The experiments are
carried out on the machine of Intel Xeon CPU E3-1225 v5
@3.30 GHz. Each algorithm runs 30 independent trials on
each instance to obtain the average result to reduce random
statistical error.

For simplicity, as assumed in Section II-B, the simple com-
pensation scheme that is linearly dependent on the distance
from the depot to the destination is adopted. Moreover, the
compensation coefficient ρ in (1) is set to be 0.8 which is rela-
tively high. In such a way, it is possible to increase the problem
difficulty for the optimization process since with a higher coef-
ficient more customers tend to be served by PF. As a result,
the evaluation for the assignment tends to be more compu-
tationally expensive due to the larger size CVRP for solvers
(i.e., EM) to solve. Generally speaking, setting a higher com-
pensation coefficient ρ poses a greater challenge of balancing
computational cost and solution quality to the EC algorithms.

The neighborhood distance nd for the NBE strategy is set as

nd =
⎧⎨
⎩

N/2, if EM = ACS + 2opt
N/5, if EM = VNS + 2opt
N/10, otherwise

(11)

where N is the total number of customers. Since a larger nd
tends to activate the NBE strategy to help the evaluation pro-
cess, a larger nd is required in HSEM to fully make use of the
evaluated NBS because using HSEM too frequently is econom-
ically unacceptable. On the contrary, setting a smaller value
of nd for LSEM might cause more individuals to be evalu-
ated by the EM. This way, individuals are less likely to fall
in the neighborhood of solutions in the archive and the diver-
sity can be maintained with the uncertainty of the LSEM. The
population size ps is 50 for GA-SAFE and all the other peer
algorithms. Two SAFE topology structures of different EM
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TABLE II
EXPERIMENTAL RESULTS OF GA-SAFES AND THE BASELINE ALGORITHMS ON MEDIUM-SIZE INSTANCES

switch strategies (i.e., one-way and two-way EM switch strate-
gies) are adopted to form two variants of GA-SAFE, which
are named GA-SAFE-I and GA-SAFE-II, respectively. The
parameter η of the switch condition, which indicates the con-
secutive generations of the population without improvement,
is set to 20. For the CVRP solvers VNS+2opt and ACS+2opt,
the initialization scheme indicates the method to construct
a solution that is used as the initial solution and to initialize
the pheromone matrix. The initialization scheme for solvers
VNS + 2opt and ACS + 2opt is set to Greed + 2opt − N
to obtain a good initial solution. The rest of the parame-
ters for the proposed algorithm GA-SAFE and CVRP solvers
representing various EMs are shown in Table S.II in the
supplementary material.

B. Comparisons With Some Baseline Algorithms

In this section, the proposed algorithms GA-SAFE-I and
GA-SAFE-II are compared to the GA variants which adopt the
unique EM throughout the whole optimization process. These
GA variants are named GA-Greed-1, GA-Greed-N, GA-VNS,
and GA-ACS. They, respectively, use the CVRP solvers Greed+
2opt−1, Greed+2opt−N, VNS+2opt, and ACS+2opt to plan
the routes for PF when evaluating assignments, respectively,
which actually can be regarded as four baseline algorithms.
To enable a fair comparison, the NBE strategy is preserved
in all the algorithms. Since the peer algorithms use the NBE
strategy with a single EM, the archive only stores the NBS for
one EM and the archive migration operation is not needed.

The results on the medium-size instances are shown and
comparedin Table II. The experimental results show that GAs
with SAFE (i.e., GA-SAFE-I and GA-SAFE-II) generally out-
perform the ones without SAFE, such as GA-Greed-1. The
experimental results show that the SAFE method for GA brings
much higher quality solutions to the problem. In terms of the
mean value of the total cost shown in Table II, GA-SAFE-II
reaches the best performance on 23 instances. As for the best
value of the total cost, either GA-SAFE-I or GA-SAFE-II ranks
the first place on 21 instances. Especially on instances with
larger sizes, such as A-n80-k10 and P-n101-k4, GA-SAFEs
perform significantly better than GA variants without SAFE.

Notably, GA-VNS appears to be rather competitive among
the GA variants without SAFE. The reason might attribute
to the similarity to the traditional neighborhood searching
techniques, such as VNS. Researches show that such neigh-
borhood search techniques perform well on medium-size
problems [54], [55]. Also, the experimental results of four
solvers on CVRP instances in Table S.I in the supplemen-
tary material support this conclusion. Hence, due to the low
computational cost of the transformation operations, GA-VNS
appears to be outstanding among GA variants without SAFE
on medium-size problems.

In addition, Wilcoxon’s rank sum test on the medium-
size instances is also conducted to show the significance
level of comparison between the GA-SAFEs and four
peer algorithms. The comparison results are shown in
Table S.III of the supplementary material. It is apparent
that GA-SAFE-II significantly outperforms GA-Greed-1,
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Fig. 7. Convergence curve of the algorithms on CVRP-OC instances. (a) A-
n80-k10. (b) B-n78-k10.

GA-Greed-N, and GA-ACS on all instances. Also, the
performance of GA-SAFE-I is significantly better than or
similar to that of GA variants without SAFE, showing
the effectiveness of the SAFE method. Compared to the
competitive algorithm GA-VNS, the GA-SAFE-I is signifi-
cantly better than GA-VNS on 7 out of 25 instances and
gets a draw on the rest of the instances while the GA-
SAFE-II significantly outperforms GA-VNS on 24 out of
25 instances.

As for the large-size instances, the mean and the best values
of the total cost of 30 independent trials are shown in Table
S.IV and their Wilcoxon’s rank sum tests are shown in Table
S.V in the supplementary material. It can be observed from
Tables S.IV and S.V that both GA-SAFE-I and GA-SAFE-II
substantially surpass the peer algorithms and the advantage of
the SAFE method on large-size instances is even more obvious
than that on medium-size instances. Moreover, on the large-
size instances, the GA-SAFE-II performs slightly better than
GA-SAFE-I on 9 out of 10 instances. Hence, it seems that
GA with SAFE is superior to the ones without SAFE and
GA-SAFE-II is superior to GA-SAFE-I.

Furthermore, Fig. 7 shows the convergence curve of the
compared algorithms on two representative instances, and
some of the others are plotted in Fig S.1 in the supplemen-
tary material. The figures show that our proposed GA-SAFE
algorithms converge faster than the compared ones. More
importantly, our GA-SAFEs achieve better final results in
terms of solution quality.

C. Comparisons With the State-of-the-Art Algorithm

The multistart heuristic algorithm MATHOD proposed
in [43] can be used as a state-of-the-art compared algorithm.
Since the mathematical model in our paper is slightly different
from the one in [43], the original MATHOD can not be directly
applied to the CVRP-OC. Some modifications have been made
to the original MATHOD. Specifically, the integer program-
ming process in MATHOD for the “JUMP” process is replaced
by a simple random reassignment on the customers’ order.
Also, the initialization process in the MATHOD uses the same
way as the GA-SAFE does. To ensure fairness, other parameter
settings and the algorithm process is consistent with the litera-
ture. Finally, the modified version of the algorithm is denoted
as MATHOD-M. The results, including best and mean cost are
shown in Table S.VI of the supplementary material. Moreover,
the results of Wilcoxon rank sum test for the comparisons
are shown in Table III. It seems that our proposed algorithm

TABLE III
WILCOXON RANK SUM TEST BETWEEN GA-SAFE AND THE

STATE-OF-THE-ART ALGORITHM MATHOD-M
ON MEDIUM-SIZE INSTANCES

TABLE IV
COMPARISONS BETWEEN GA-SAFE AND THE GA VARIANTS WITH

DIFFERENT EM SWITCH STRATEGIES

GA-SAFE offers great advantages in terms of solution quality
compared to the MATHOD-M algorithm.

D. Effects of the Switch Strategies in SAFE

In this section, we are going to investigate the effects of the
one-way and two-way EM switch strategies. To achieve this
aim, two algorithms, which are GA-Seq-EM and GA-Rand-
EM, are designed to compare with GA-SAFEs. The compared
algorithms also use multiple EMs during the optimization pro-
cess but have differences with the SAFE method in the EM
switch mechanism. To enable a fair comparison, the other
components, such as EM switch condition (i.e., stagnation)
remain the same as GA-SAFE in the compared algorithms.
For the GA-Seq-EM, the EM is switched from EM1 to EM4
in a sequential scheme without the switchback mechanism.
Therefore, it is compared with the GA-SAFE-I to validate the
benefits of the one-way switch strategy. For the GA-Rand-EM,
the EM is randomly selected from four available EMs when
the switch condition is met. Since the GA-Rand-EM allows
switchback, it is compared with the GA-SAFE-II to validate
the benefits of the two-way switch strategy. The experimen-
tal results on 25 tested instances are summarized and shown
in Table IV. It can be seen that the one-way switch strategy
is quite useful in managing multiple EMs compared to the
GA-Seq-EM. The GA-SAFE-I surpasses the GA-Seq-EM on
15 out of the 25 instances in terms of the best result and on
21 instances in terms of the mean result. Moreover, the bene-
fit of the two-way switch strategy is verified on the mean and
best results when compared with GA-Rand-EM, showing that
GA-SAFE-II wins on most of the tested instances.

E. Effects of the NBE Strategy

In this section, the contribution of the NBE strategy is ver-
ified. For the GA-SAFE, the NBE strategy is removed from
GA-SAFE to see how well it performs. Also, for the GAs
without SAFE, such as GA-Greed-1, the NBE strategy is
removed. Subsequently, they form simple versions of GA in
which the original EM (i.e., Algorithm 1) is used to evaluate
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all the assignments (i.e., solution) no matter how much com-
putational time the CVRP solver costs. The results are shown
in Table S.VII of the supplementary material. The reported
result is the average total cost of the 30 independent trials.
Moreover, the results of Wilcoxon’s rank sum test are shown
in Table S.VIII of the supplementary material. It can be seen
that the NBE strategy has a great promotion on the GA vari-
ants with relatively HSEM (e.g., GA-Greed-N, GA-VNS, and
GA-ACS). They significantly surpass their corresponding com-
petitors without NBE strategy (i.e., GA-Greed-N-w/o-NBE,
GA-VNS-w/o-NBE, and GA-ACS-w/o-NBE) at the signifi-
cance level of 0.05, on all the medium-size instances. However,
the benefit of the NBE strategy on a relatively LSEM (e.g.,
EM1) is not so remarkable. The GA-Greed-1 performs sig-
nificantly better than the one without NBE on 12 out of the
25 medium-size instances, while gets a draw on 10 instances.
More importantly, both GA-SAFE-I and GA-SAFE-II obtain
significantly better results than their versions without the NBE
strategy. The results reveal that the NBE strategy benefits the
GA-SAFE greatly.

The reason for achieving more improvement on HSEM (e.g.,
GA-ACS) than LSEM (e.g., GA-Greed-1) by the NBE strat-
egy can be summarized as two parts. On the one hand, the
assignment evaluated by the HSEMs is more likely to share
some common good structures while the total cost obtained by
LSEM is a rough and low-accuracy estimation. As a result, the
NBE might not be profitable for GA-Greed-1 due to the accu-
racy bottleneck. On the other hand, the NBE strategy reuses
historical solutions stored in the archive to help the FE pro-
cess, and the heavy computational cost caused by the HSEM
is reduced. As a result, the benefit of the HSEM is exploited,
and it leads to a better improvement.

F. Parameter Investigation of GA-SAFE

The parameter stagnation η (i.e., number of consecutive gen-
erations without improvement) of the switch condition in the
SAFE method is investigated in this section. The results of the
average total cost of 30 independent trials are shown in Table
S.IX in the supplementary material. For each instance, the best
results among GA-SAFEs with different parameter settings are
in boldface. Generally, it can be seen that the average results
obtained by GA-SAFEs with different settings of η = 10, 20,
30, 40, and 50 are rather similar to each other. It means that the
performance of GA-SAFE is not affected by the parameter η

seriously. The times that GA-SAFEs with different parameters
get the first place among all tested instances are counted.
GA-SAFE-I with parameter settings of 10, 20, and 30 for η

gets first place on 13, 6, and 3 instances while GA-SAFE-II
with parameter settings of 20, 30, and 40 for η gets first place
on 6, 7, and 6 instances, respectively. Hence, η = 20 tends
to be a suitable parameter setting for the algorithm. Since
no significant differences happen among the parameter set-
tings, the parameter of 20 is chosen as the default value as
Section IV-B shows.

G. Discussions

Experimental comparisons verify that the SAFE and NBE
indeed help the GAs perform better than the GA variants with-
out them on almost all tested instances, in terms of solution

quality within a period in solving CVRP-OC. The GA-SAFEs
offer a better performance not only in medium-size instances
for CVRP-OC, but also show to be competitive on large-size
instances owing to the SAFE method that can automatically
adapt the EM in the optimization process and the NBE strategy
which makes full use of the high-quality evaluated solutions
to enhance search efficiency.

Comparing GA-SAFE-I with GA-SAFE-II, it is seen that on
medium-size instances and large-size instances GA-SAFE-II is
better because the switchback mechanism to the LSEM in the
two-way EM switch strategy offers the population a chance to
locate another promising area. Consequently, HSEM can be
adopted again to promote the current population.

Moreover, the consumed FEs of different EMs and the exe-
cution counts of NBE in the algorithms are recorded and
summarized as the total FEs in Table S.X in the supplementary
material. It can be seen that the algorithms only using LSEM,
such as GA-Greed-1 take much more FEs than that using
HSEM, such as GA-ACS in a fixed running time due to the
cheaper computational cost of LSEM in each FE. Besides, our
proposed GA-SAFEs use the least FEs to evolve and achieve
better final results due to the adaptive EM management strate-
gies in the SAFE method. Furthermore, the execution counts
of NBE occupy a large proportion of the total FEs in all algo-
rithms, showing that the expensive evaluations by the original
EM are replaced and the computational cost is reduced by the
NBE strategy.

To further investigate the benefits of the SAFE method on
other EC algorithms, we test the SAFE method on the esti-
mation of distribution algorithm (EDA) [59], [60]. The results
are shown in Table S.XI and their Wilcoxon’s rank sum tests
are shown in Table S.XII in the supplementary material. It
can be seen that both the EDA-SAFE-I and EDA-SAFE-II
are significantly better than the compared algorithms on most
instances.

V. CONCLUSION

In this article, the crowdshipping scheduling problem is
carried out to validate the performance of the novel SAFE
method in flexibly and efficiently solving EOPs. Different from
the existing methods that usually use the surrogate model to
replace the original objective function, the proposed SAFE
method is based on multiple EMs and the fitness function
remains unchanged as the original objective function. The
CRVP-OC crowdshipping model is built for the case study,
followed by the development of the GA-based optimization
algorithm with inter-EM management and intra-EM improve-
ment. The SAFE method, which refers to inter-EM man-
agement, takes advantage of various EMs throughout the
optimization process. Two EM switch strategies (i.e., one-way
switch strategy and two-way switch strategy) are proposed.
The one-way EM switch strategy is designed to adopt LSEM
to find a promising region and to use HSEM to further distin-
guish the individuals in the population. The two-way switch
strategy makes an improvement on the one-way switch strat-
egy that the uncertainty and computationally cheap features
of LSEM are made use of to search for another promis-
ing area. With the switchback mechanism in the two-way
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EM switch strategy, the GA-SAFE-II can find better solutions
than GA-SAFE-I on most of the medium-size and large-size
instances.

Moreover, the NBE strategy, which refers to intra-EM
improvement, is designed to make full use of the high-quality
solutions evaluated by the EM. Therefore, two operations,
OpExclude and OpJoin, are used to evaluate incoming new
solutions by some known and good solutions. Consequently,
the NBE strategy reduces the computational cost and improves
the performance of the optimization algorithm. An archive is
proposed to store the NBS for each EM incorporating with
archive management operations, including archive insertion,
archive reduction, and archive migration.

Extensive experimental tests have been conducted on
25 medium-size and 10 large-size instances. The algorithms
GA-SAFE-I and GA-SAFE-II both significantly outperform
other GA variants on most of the instances tested, irrespective
of whether they are medium size or large size based on the
criteria of solution quality. The results show the high effec-
tiveness and high efficiency of the SAFE method and the NBE
strategy. From the case study of crowdshipping, the importance
of EM management is shown, and the benefit brought by auto-
matic management is testified with experiments. Furthermore,
the NBE strategy is an example to design an evaluation method
based on the correlation or similarity between the known high-
quality solutions and the solutions to be evaluated. The NBE
strategy also shows a possible direction for solving EOPs.

In the proposed SAFE method, we only use multiple avail-
able EMs, which can be considered as a kind of knowledge, to
improve the search ability of the EC algorithms. However, the
historical data available in the real-world applications and the
evolutionary process has not yet been fully utilized. Therefore,
combining the advantages of knowledge and data to further
improve the EC algorithms can be promising future work.
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[54] N. Mladenović and P. Hansen, “Variable neighborhood search,” Comput.
Oper. Res., vol. 24, no. 11, pp. 1097–1100, 1997.

[55] X. Meng, J. Li, X. Dai, and J. Dou, “Variable neighborhood search for
a colored traveling salesman problem,” IEEE Trans. Intell. Transp. Syst.,
vol. 19, no. 4, pp. 1018–1026, Apr. 2018.

[56] G. A. Croes, “A method for solving traveling-salesman problems,” Oper.
Res., vol. 6, no. 6, pp. 791–812, 1958.

[57] S. G. Mallat, “A theory for multiresolution signal decomposition: The
wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 11,
no. 7, pp. 674–693, Jul. 1989.

[58] M. Tan and A. Qiu, “Large deformation multiresolution diffeomorphic
metric mapping for multiresolution cortical surfaces: A coarse-to-fine
approach,” IEEE Trans. Image Process., vol. 25, no. 9, pp. 4061–4074,
Sep. 2016.

[59] Z.-G. Chen, Y. Lin, Y.-J. Gong, Z.-H. Zhan, and J. Zhang, “Maximizing
lifetime of range-adjustable wireless sensor networks: A neighborhood-
based estimation of distribution algorithm,” IEEE Trans. Cybern., early
access, Apr. 1, 2020, doi: 10.1109/TCYB.2020.2977858.

[60] E. Cuevas, A. Rodríguez, A. Valdivia, D. Zaldívar, and M. Pérez,
“A hybrid evolutionary approach based on the invasive weed
optimization and estimation distribution algorithms,” Soft Comput.,
vol. 23, no. 24, pp. 13627–13668, 2019.

Sheng-Hao Wu (Student Member, IEEE) received
the B.S. degree in computer science and technol-
ogy from the South China University of Technology,
Guangzhou, China, in 2019, where he is currently
pursuing the Ph.D. degree in computer science and
technology with the School of Computer Science
and Engineering.

His research interests mainly include computa-
tional intelligence, machine learning, and their appli-
cations in real-world problems, and in environments
of distributed computing and big data.

Zhi-Hui Zhan (Senior Member, IEEE) received the
bachelor’s and Ph.D. degrees in computer science
from Sun Yat-Sen University, Guangzhou, China, in
2007 and 2013, respectively.

He is currently the Changjiang Scholar Young
Professor and the Pearl River Scholar Young
Professor with the School of Computer Science and
Engineering, South China University of Technology,
Guangzhou. His current research interests include
evolutionary computation algorithms, swarm intel-
ligence algorithms, and their applications in real-

world problems, and in environments of cloud computing and big data.
Prof. Zhan’s Doctoral Dissertation was awarded the IEEE Computational

Intelligence Society Outstanding Ph.D. Dissertation and the China Computer
Federation Outstanding Ph.D. Dissertation. He was a recipient of the
Outstanding Youth Science Foundation from the National Natural Science
Foundations of China in 2018 and the Wu Wen-Jun Artificial Intelligence
Excellent Youth from the Chinese Association of Artificial Intelligence in
2017. He is listed as one of the Most Cited Chinese Researchers in Computer
Science. He is currently an Associate Editor of the IEEE TRANSACTIONS

ON EVOLUTIONARY COMPUTATION and the Neurocomputing.

Jun Zhang (Fellow, IEEE) received the Ph.D.
degree in electrical engineering from the City
University of Hong Kong, Hong Kong, in 2002.

He is currently a Korea Brain Pool Fellow
Professor with Hanyang University, Ansan,
South Korea, and a Visiting Scholar with
Victoria University, Melbourne, VIC, Australia. His
current research interests include computational
intelligence, cloud computing, high performance
computing, operations research, and power elec-
tronic circuits.

Prof. Zhang was a recipient of the Changjiang Chair Professor from
the Ministry of Education, China, in 2013, the China National Funds of
Distinguished Young Scientists from the National Natural Science Foundation
of China in 2011, and the First-Grade Award in Natural Science Research
from the Ministry of Education, China, in 2009. He is currently an Associate
Editor of the IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

and the IEEE TRANSACTIONS ON CYBERNETICS.

http://dx.doi.org/10.1109/TCYB.2020.2977858


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


