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Abstract

Traffic Signal Control (TSC) is a fundamental task in modern intelligent transport systems.
TSC is often formulated as a bi-level optimization problem, comprised by the signal timing
at the upper level and the Dynamic User Equilibrium (DUE) traffic assignment at the lower
level. Since DUE is non-convex, existing methods either formulate approximation models
or adopt traffic simulators. However, approximation models may oversimplify the practi-
cal situations, while traffic simulators are usually time-consuming. This paper formulates a
vehicle-based DUE (vDUE) model and proposes an agile method that can simultaneously
maintain the computational simplicity and the traffic dynamics for the traffic assignment.
Further, an agile TSC system is built by combining the vDUE at the lower level for the traf-
fic assignment with an adaptive differential evolution algorithm at the upper level for the
signal timing optimization. To enhance the effectiveness of optimization, the TSC prob-
lem formulation is also improved to make it better characterize the practical requirements.
In the experiments undertaken, comparisons of different TSC methods are carried out on
both real-world and synthetic transportation networks. The experimental results validate
the effectiveness of the proposed agile TSC system in various traffic situations.

1 INTRODUCTION

Traffic Signal Control (TSC) plays a crucial role in the mod-
ern intelligent transportation systems, especially considering the
issues such as traffic congestion, inefficient resource utilization,
and vehicle emission pollution [1]. In urban traffic systems, the
area TSC is attracting more and more attention, which gener-
ally contains two major components: signal timing and traffic
assignment. The signal timing aims to optimize parameters of
traffic signals, such as cycle time, offset time, and green time.
Meanwhile, the traffic assignment tries to appropriately allocate
the given traffic demands to roads of a transportation network.
It is noted that the signal timing optimization of the TSC is ordi-
narily conducted under constraints of the traffic assignment.
Commonly, the traffic assignment adopts a Dynamic User Equi-
librium (DUE) model, where vehicle drivers selfishly pursue the

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

properly cited.
© 2021 The Authors. IET Intelligent Transport Systems published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology

maximization of their own benefits until the dynamic flow equi-
librium is reached [2].

In the literature, the area TSC problem is usually formulated
as a bi-level optimization problem, where the upper level is the
signal timing problem and the lower level is the DUE traffic
assignment problem [2], [3]. For such a bi-level problem, the
reliability of the dynamic flow equilibrium should greatly influ-
ence the quality of the TSC result, especially if the DUE has
multiple optima [4]. That is because, within a bi-level TSC sys-
tem, a solution to the DUE problem at the lower level pro-
vides equilibrium constraints to evaluate the solution to the
signal timing problem at the upper level. At the same time,
it is still challenging to obtain reliable dynamic flow equilib-
rium for existing bi-level TSC systems, which mostly adopt
either approximation-based or simulation-based DUE solvers.
On one hand, approximation-based DUE solvers aggregate the
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620 LIU ET AL.

intersection throughput in a static way while neglecting detailed
vehicle movements [2]. Though simple enough to describe the
macroscopic traffic status, the approximation models may over-
simplify the practical situation, which reduces the reliability of
the results. On the other, simulation-based DUE solvers pro-
vide microscopical description of vehicle behaviors and restore
the realistic scenes by simulation. As the DUE problem is usu-
ally non-convex and difficult to be mathematically modeled,
simulation-based models, compared with approximation ones,
can help guarantee more accurate and reliable traffic dynam-
ics [5]. However, the side effect is that they are rather time-
consuming, which is difficult to be deployed in a real-time TSC
system [6].

To address above issues, this paper formulates the vehicle-
based DUE (vDUE) model and proposes an agile method
for the traffic assignment of the bi-level TSC problem. Unlike
traditional DUE solvers, the vDUE model combines the
macroscopical description of the traffic status and the micro-
scopical description of the vehicle behaviors for the sake of
both simplicity and dynamism. Subsequently, an agile method
is designed for the vDUE model to reroute traveling vehicles
probabilistically according to the approximated saturation of
their journeys ahead. Thus, the agile method can comply with
the Wardrop’s user equilibrium principle, which states that no
vehicle can reduce its travel cost by alternating its route. Based
on the vDUE model and the agile method for the lower-leveled
traffic assignment, an agile TSC system is further proposed
by adopting an adaptive differential evolution algorithm to
effectively solve the signal timing optimization algorithm at the
upper level. With the vDUE traffic assignment nested in the
evaluation process, the adaptive differential evolution simul-
taneously optimizes cycle length, offset time, and green time
ratios at all intersections, in order to minimize the average travel
time of all vehicles. Besides, several improvements are made to
facilitate the TSC optimization, including normalizing the value
range of the cycle length to simplify the optimization algorithm,
introducing the penalty coefficient into the fitness function to
accelerate the solution optimization, and defining more pat-
terns of signalized intersections to adapt to various complicated
transportation networks. Experiments are conducted on vari-
ous transportation networks to compare the agile TSC system
with both classic and state-of-the-art TSC methods, and results
validate the effectiveness of our proposed agile TSC system.

To summarize, this paper mainly has three contributions.

∙ First, a vDUE model is formulated. The vDUE model com-
bines the macroscopical description of the traffic status and
the microscopical description of the vehicle behaviors. The
benefit is that the model can quickly respond to the practical
dynamics while maintaining the computational simplicity.

∙ Second, an agile method is proposed for the traffic assign-
ment based on the vDUE model. The proposed method
can flexibly deal with different traffic situations (especially
the crowded ones and those with emergencies), by proba-
bilistically rerouting traveling vehicles based on the saturation
approximation of their unfinished routes.

∙ Further, an agile TSC system is built by adopting a bi-level
optimization model. The system fully considers the coordi-
nation relationship between traffic assignment and signal tim-
ing. The above agile traffic assignment scheme is executed at
the lower level, while an adaptive differential evolution algo-
rithm is developed to accomplish the signal timing optimiza-
tion task at the upper level.

The rest of this paper is organized as follows. Section 2
reviews the related work, whilst Section 3 formulates the bi-
level TSC optimization problem. Then, Section 4 introduces the
framework and algorithms of the agile TSC system. Section 5
carries out experiments and comparisons to validate the effec-
tiveness of our proposed TSC system, followed by conclusions
drawn in Section 6.

2 RELATED WORK

So far, various efforts have been made to solve the TSC prob-
lem. This section is going to review the related work from three
aspects, namely, the problem models of TSC, the control meth-
ods of TSC, and the bi-level TSC with DUE.

2.1 Problem models of TSC

To model the TSC problem, we mainly consider the control
range, the signal parameters, and the traffic flow model.

In terms of the control range, works on TSC can be classified
into the isolated control, the arterial control and the area con-
trol. Among them, the isolated control is the most fundamental
type, which focuses on a single intersection and neglects its rela-
tionships with other intersections in a transportation network
[7]. The arterial control focuses on several continuous intersec-
tions along an arterial road but neglects minor traffic flow on
other roads [8]. Differently, the area control considers the coor-
dination control of all intersections in a transportation network
[9]. Since ignoring the coordination among different traffic sig-
nals can affect the overall performance of the network and even
incur congestions, researchers have paid increasing attentions to
the area control [3].

When signalized, an intersection provides different time
slices for allowing its surrounding traffic flow in different direc-
tions to go when the green light is on. The traffic flow sharing
the same time slice is termed as a signal phase. The sum of the
green time of all signal phases is the cycle length of the related
intersection. The ratio of the green time to the cycle length is
the green time ratio of a signal phase. Besides, there is an offset time

to activate the signal lights of each intersection. When perform-
ing the TSC on a network, the green time ratios are adjusted to
distributively control the traffic flow at each intersection, whilst
the cycle length and the offset time can be optimized to coordi-
nate different intersections [10]. As a result, the signal parame-
ters of an intersection involved in the TSC problem are typically
the cycle length, the offset time, and the green time ratios [3].
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LIU ET AL. 621

The traffic flow models are generally classified into macro-
scopic and microscopic. On the one hand, the macroscopic
models describe the relationship among amount, speed and
density of the traffic flow, and they are mostly used for the traffic
flow assignment on a transportation network. Examples of the
macroscopic models include the mathematical function model,
the Lighthill–Whitham–Richards model [11], the platoon dis-
persion model [12], and a newly proposed Physarum model
[13]. On the other hand, the microscopic models describe the
movements of individual vehicles, and they are mainly used for
the traffic simulation to calculate the delay at the intersection.
Examples of the microscopic models include the car-following
model [14], the cell transmission model [15]. Based on pioneer-
ing work, this paper hybrids the macroscopic and microscopic
models to describe the traffic flow. On the one hand, the traffic
situation of the whole network is macroscopically described for
the control efficiency, such as adopting a mathematical function
to calculate the link travel time. On the other hand, the behav-
ior of each vehicle is microscopically traced to better reflect the
flow dynamism, such as rerouting a traveling vehicle if needed.

2.2 Control methods of TSC

There are three major classes of control strategies for TSC,
namely, the fixed-time control, the actuated control and the
adaptive control [16]. The fixed-time control presets signal con-
trol parameters based on historical traffic conditions, whilst the
actuated control detects current traffic conditions and adjusts
signal parameters accordingly. The fixed-time control is easy and
cheap to implement, whereas the actuated control is responsive
to the traffic dynamics [1]. However, neither of them considers
both historical and current traffic conditions at the same time
[17]. The adaptive control is a more approved control method,
where signal timing settings are initially generated based on pre-
vailing traffic conditions and dynamically changed according to
the feedback traffic conditions like the traffic flow [18].

To implement the adaptive control, the TSC are usually
formulated into NP-hard optimization problems like the
mixed-integer linear programming [15] . Thus, computational
intelligence such as evolutionary computation, reinforcement
learning, and fuzzy theory are often used to obtain satisfying
solutions [19], [20]. For an example of the evolutionary com-
putation, Jovanović et al. [9] developed an area-wide urban
traffic control system based on the Bee Colony Optimization,
by optimizing traffic signal parameters to minimize the total
travel time of all network users. By exploiting reinforcement
learning for traffic congestion reduction, Tan et al. [21] pro-
posed a cooperative deep reinforcement learning framework
for large-scale traffic grid signal control, and more efforts of
this kind can also be found in other works like [22]. As for the
fuzzy theory, Jin et al. [23] introduced a fuzzy intelligent traffic
signal control system with simulation-based evaluation, which
exhibits superior performance than several other controllers
when a few detectors are out-of-order.

Evolutionary computation and reinforcement learning can
both be considered as optimization techniques, whereas fuzzy
theory is mainly used for decision-making and classification.

Owing to its natural superiority in global optimization and
empirical evaluation, we adopt the evolution computation as the
optimization approach for the TSC problem in this paper.

2.3 Bi-level TSC for dynamic user
equilibrium

As a common framework to solve the TSC problem, the bi-level
TSC has received lots of attention from researchers. Typically,
the upper level optimizes several signal parameters to achieve
some overall objective of the network. For example, Chiou et al.
[24] proposed a data-driven bi-level program to minimize over-
all travel delay and mitigate stochastic risk on links and proved
its reliability against a high-consequence of exposure risk. As
well, Zhang et al. [10] proposed a bi-level optimization strategy
based on genetic algorithm on the cloud computing platform
and proved its capability to avoid local optima and its fast solu-
tion efficiency.

Meanwhile, the lower level performs the DUE traffic assign-
ment and provides a fitness value to evaluate the solution
at the upper level. To settle the optimal traffic signal setting
problem, Li et al. [3] integrated a genetic algorithm with a
microscopic-traffic-simulation-based dynamic user equilibrium
traffic assignment, to decouple the bi-level TSC problem into
tractable single-level problems. To find equilibrium under the
interaction between signal setting and traffic assignment, Chen
et al. [5] adjusted the signal setting parameters through pretimed
and actuated signal controls, and generated the user equilibrium
dynamic traffic assignment flows through a simulation-based
dynamic traffic assignment model. Han et al. [2] formulated a
bi-level model for traffic signal control and solved it as a math-
ematical programming with equilibrium constraints, where the
lower level embeds a dynamic network loading subproblem.

Although above works on the bi-level TSC for DUE have
implemented the flow dynamism, they are either too time-
consuming to perform the traffic simulation or not consistent
enough to the reality by neglecting the vehicle movements. This
paper proposes an agile method to conduct a both quick and
realistic simulation for the DUE.

3 PROBLEM FORMULATION

In a transportation network, the basic task of the TSC is to
appropriately and dynamically set parameters of the traffic sig-
nals at several intersections, so as to achieve certain goals
under some pre-specified constraints. This section elaborates
the problem formulation of TSC based on virtual vehicles,
including the basic terms, the solution representation, the fit-
ness function, and the traffic assignment model.

3.1 Basic terms

This paper aims to minimize the overall travel time of the net-
work, by optimizing different kinds of signal parameters at each
signalized intersection, namely, the cycle length and the offset
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622 LIU ET AL.

FIGURE 1 Patterns of signalized intersections

time ratio of a signalized intersection, the green time ratio of a
signal phase at the intersection.

Definition 1 (Transportation Network). A transportation
network is a directed graph (N, L), where N is the set of
nodes representing intersections or terminals of roads, and L =

{i → j |i, j ∈ N} is the set of links representing all roads in
the network.

Definition 2 (Signalized Intersection). Intersections N∗ ⊆ N

are a set of nodes connecting more than three links. Since traf-
fic bottlenecks usually occur at intersections, traffic signals are
installed to alleviate the traffic congestion and to smooth the
traffic flow [17]. When signalized, an intersection is controlled
with some signal lights such as green and red colors to indicate
“go” and “stop” signs respectively.

Definition 3 (Signal Phase). A signal phase of a signalized inter-
section combines several nonconflicting turning movements at
the intersection. In other words, all turning movements of a sig-
nal phase are active/inactive at the same time. Specifically, the
turning movements of a signal phase are active during its green
time but inactive during its red time. Besides, the offset time
is also considered for each signal phase to capture the traffic
dynamism. Note that the yellow time is not considered in this
paper because it can be subtracted from the green time as stated
in [3].

The set of signal phases Pn = {Pn,k} defines the pattern of a
signalized intersection n. As shown in Figure 1, this paper sum-

marizes signalized intersections of different shapes into four
patterns to deal with an arbitrary complicated transportation
network. Note that an intersection connecting more than six
links can be set as a roundabout intersection. In Figure 1, every
signalized intersection pattern is comprised of all connected
links denoted with English letters and all possible turning move-
ments described with arrowed lines. The circle digits beside an
arrowed line represents the index of the signal phase where the
relative movement belongs. For example, the intersection of T
pattern in Figure 1(a) connects three links I, II, and III. The pos-
sible turning movements of the intersection can be expressed as
{I → III, I → II, III → I, III → II, II → I, II → III}. These
movements are classified into three signal phases, namely, {I →
III, I → II, III → I }, {III → II}, and {II → I, II → III},
respectively.

Definition 4 (Time Slot). A time slot is the unit of time to
perform the traffic assignment. Without further explanations,
one time slot is viewed as 0.01 hours in this paper, as stated by
Stabler [25]. Note that this definition provides a base to describe
the flow dynamism in the traffic assignment. For example, prop-
erties of each link l such as the flow capacity fl

max and the free-
flow travel time tl

min are initially known, but its flow amount f Tl

and travel time t Tl may both change with the varied time slot T .

3.2 Solution representation

A solution to TSC s is comprised of three vectors related with
the signal parameters of all signalized intersections by

s = (c, o, g), (1)

where the length of each vector should be equal to the num-
ber of signalized intersections |N∗| and the three vectors are
respectively detailed into

c = (c1,… , cn,… , c|N ∗| ), (2)

o = (o1,… , on,… , o|N ∗| ), (3)

g = (g1,… , gn,… , g|N ∗| ). (4)

For a signalized intersection n, Equations (2)–(4) defines c, o,
and g with the cycle length rate cn, the offset time ratio on, and
the green time vector gn, respectively.

Then, gn is further defined by

gn = (gn,1,… , gn,k,…), (5)

where gn,k denotes the green time ratio for the kth signal
phase of n. Since the phase number is mainly dependent
on the pattern of the related intersection n, the size of its
green time vector |gn| may be different from that of another
intersection.
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LIU ET AL. 623

Definition 5 (Cycle Length Rate). The cycle length rate cn
of a signalized intersection n is a decision variable of TSC
within [0, 1]. It is mainly used to calculate the cycle length
Cn, which refers to the total time that all its signal phases
{Pn,k} sequentially complete their signal controls by switching
lights.

Instead of the pre-defined bounds in pioneering work, this
paper proposes to use the free-flow travel time values of the
connected links to adaptively determine the value range of the
cycle length for each signalized intersection. Specifically, Cn is
limited within the range between the minimum and maximum
travel time of all the connected links of n (denoted as Ln).
Hence, cn is formulated as

cn =
Cn − minl∈Ln

t min
l

maxl∈Ln
t min
l

− minl∈Ln
t min
l

. (6)

Accordingly, Cn can be calculated by

Cn = min
l∈Ln

t min
l

+ cn ×

(
max
l∈Ln

t min
l

− min
l∈Ln

t min
l

)
. (7)

Definition 6 (Offset Time Ratio). The offset time ratio on is
also a decision variable of TSC, and its value is limited within
a pre-defined range of [omin, omax]. It refers to the ratio of the
relative offset time On to the related cycle length Cn. As a result,
on is formulated as

on =
On

Cn
. (8)

Accordingly, On can be calculated by

On = on ×Cn. (9)

Definition 7 (Green Time Ratio). The green time ratio gn,k for
the kth signal phase of n is another decision variable of TSC, and
its value is limited within a pre-defined range of [gmin, gmax]. It
refers to the ratio of the relative green time to the related cycle
length. As a result, gn,k is formulated as

gn,k =
Gn,k

Cn
. (10)

Accordingly, Gn,k can be calculated by

Gn,k = gn,k ×Cn. (11)

Furthermore, the cycle length of an intersection is actually the
sum of the green time of all its signal phases, when consider-
ing only the green time and the red time for each signal phase.
In other words, the green time ratios of all signal phases of an
intersection n should satisfy∑

k

gn,k = 1. (12)

3.3 Fitness function

In this paper, the fitness function of TSC is defined as the aver-
age travel time of all vehicles that are generated according to the
flow demands of the transportation network.

Definition 8 (Flow Demand). The flow demands of a network
F consist of the trips of all Origin-Destination (OD) pairs [26],
as expressed by

F = {Fo,d |o, d ∈ N}. (13)

Without further explanations, this paper follows Stabler [25] to
describe the flow demands with the hourly flow.

Definition 9 (Virtual Vehicle). For each OD pair (o, d ), virtual
vehicles Vo,d are generated according to the flow demand Fo,d

to simulate the traffic assignment of the network. As a result,
the number of vehicles denoted by |Vo,d | is proportional to the
related flow demand, as expressed by

|Vo,d | = Fo,d

K
, (14)

where K is a positive integer pre-defined for the network.
Key properties of a vehicle v include the OD pair (Ov, Dv ),

the starting time slot at the origin T oriv , the time slot arriving at
the destination T desv , and the route Rv = (Ov,… , Dv ). Although
(Ov, Dv ) and T oriv are known in advance, T desv can only be
obtained after constructing and finishing Rv . If Rv can not be
constructed or finished before the end of the simulation period
T, a maximum value of time with penalty will be provided to
mark its unacceptability. In other words, the travel time of v can
be calculated at the end of the simulation by

tv =

{
𝛿 × |T|, if T desv is invalid
T desv − T oriv , otherwise

, (15)

where 𝛿 ≥ 1 is a penalty coefficient.

In summary, the fitness function of TSC based on vehicles
can be expressed by

f (s) =

∑
v

tv|V| . (16)

3.4 Model of traffic assignment: vDUE

The traffic assignment is usually used to provide the fitness
value of a TSC solution, by considering the interactions among
the link flow amounts, the link travel time, and the vehicle
routes. On the one hand, the link flow amount is an essential
element to calculate the link travel time. On the other hand, the
link travel time has an important impact on vehicles to con-
struct and finish their routes, and it hence possibly causes the
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624 LIU ET AL.

inverse change of the link flow amounts. This subsection aims
to describe the model of the vehicle-based Dynamic Use Equi-
librium (vDUE), where virtual vehicles generated according to
the flow demands of the transportation network.

Definition 10 (Link Flow Amount). The flow amount of a link
l at a time slot T is denoted as f T

l
and directly related with the

number of vehicles on the link, as expressed by

f T
l
= K ×

∑
o,d∈N

∑
v∈Vo,d

yT
v,l

, (17)

where K is the same as in Equation (14). Besides, yT
v,l
= 1 if the

vehicle v is traveling on the link l at the time slot T , and yT
v,l
=

0 otherwise.

Definition 11 (Link Travel Time). The link travel time t T
l

refers
to, on average, how soon vehicles can finish traveling on the
link l at a time slot T . This paper calculates t T

l
by following the

link performance function proposed by the Bureau of Public
Roads(BPR function)[27], as expressed by

t T
l
= t 0

l
×

⎡⎢⎢⎣1 + 0.15 ×

(
f T
l

f max
l

)4⎤⎥⎥⎦ ,∀l ∈ L. (18)

Definition 12 (Vehicle Route). The vehicle route Rv of the
vehicle v is comprised of all the nodes and links which v has
traveled from the origin Ov to the destination Dv during the sim-
ulation of the traffic assignment. As shown in Equation (16), the
travel time of each vehicle has an influence on the fitness func-
tion of the TSC solution. Hence, the vehicle route plays a key
role in solving the TSC problem, and especially in simulating
the traffic assignment.

Definition 13 (Vehicle-Based Dynamic User Equilibrium).
Since travelers non-cooperatively choose vehicle routes to min-
imize their own traveling costs (e.g. the travel time), the traffic
assignment on a network is expected to reach a user equilib-
rium state when no travelers can reduce their traveling costs by
shifting to other alternative routes [13]. Based on virtual vehi-
cles generated according to the flow demands, we build a vDUE
model for simulating the traffic assignment, as expressed by

min z ( f ) =
∑
l∈L

∫
f T
l

0
t T
l

( f )df, (19)

s.t.

f T
l
= K ×

∑
o,d∈N

∑
v∈Vo,d

yT
v,l

,∀l ∈ L, (20)

Fo,d = K × |Vo,d |,∀o, d ∈ N (21)

|Vo,d | ≥ 0. (22)

As shown in Equation (19), z ( f ) is the objective function of
the DUE traffic assignment, and t T

l
( f ) is a cost function like

Equation (18) to calculate the link travel time according to the
link flow amount f T

l
. Equation (20) makes the first constraint

that the link flow demand should be dynamically proportional to
the number of the vehicles traveling on the link, no matter what
OD pairs these vehicles have. Meanwhile, Equation (21) means
that the flow demand of an arbitrary OD pair (o, d ) should be
proportional to the number of the vehicles with the origin as o

and the destination as d . At last, Equation (22) means that the
number of the vehicles generated for each OD pair should not
be smaller than zero.

4 SYSTEM AND ALGORITHMS

To effectively solve the bi-level TSC problem formulated above,
we build an agile TSC system by specially proposing an agile
method for the vDUE model and adopting an adaptive differen-
tial evolution algorithm for the signal timing optimization. This
section is going to introduce the system framework and detailed
implementations of the related algorithms.

4.1 System framework

Within a bi-level TSC system, there is a strong interaction
between the upper level control model and the lower level
assignment model. On one hand, the upper level determines the
signal timings of all signalized intersections to perform the traf-
fic assignment. On the other, the lower level provides a feedback
to help optimize the signal control.

As shown in Figure 2, our proposed agile TSC system is com-
prised of two levels corresponding to the bi-level structure of
the TSC problem. The upper level adopts an adaptive differen-
tial evolution algorithm [13] that evolves a population of TSC
solutions, each of which is comprised of the signal timings (i.e.
the offset, the cycle length, and all phase green ratios) of all con-
sidered intersections according to Equation (1). Meanwhile, the
lower level executes our proposed agile method for the vDUE
traffic assignment, where virtual vehicles are generated based
on the flow demands according to Equation (14). The two lev-
els exchange data mainly through the evaluation of each TSC
solution, where the upper level provides the signal timings of all
signalized intersections within the solution and the lower level
returns the simulated travel time of all vehicles to calculate fit-
ness value of the solution. At last, the best-so-far TSC solution
is output from the upper level as the final result of the agile
TSC system.

At the upper level, the adaptive differential evolution is
expected to gain a high effectiveness to solve the signal tim-
ing optimization. As we know, differential evolution is a famous
stochastic method for global optimization over continuous
spaces, with advantages of easier implementation, fewer con-
trol parameters, faster convergence than many other acclaimed
global optimization methods [28]. Meanwhile, the signal tim-
ing optimization in our TSC model is non-convex and rather
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LIU ET AL. 625

Upper Level: an adaptive differential evolution 
algorithm to optimize TSC solutions

Lower Level: an agile method to perform 
the vDUE traffic assignment

Evaluate a TSC Solution

Input Output

Intersections

...

Flow demands

...

Best-so-far 
TSC solution

Simulated 
travel time 
of vehicles

Signal 
timings of 

intersections

FIGURE 2 Framework of our agile TSC system

suitable for an evolutionary algorithm to solve. As a result,
the differential evolution has a natural superiority to optimize
TSC solutions with a complicated continuous structure as in
Equations (1)–(5). Moreover, the differential evolution has a
lower space complexity than some of the most competitive real
parameter optimization methods, which facilitates its extension
to solve large scale TSC problems [29].

At the lower level, the proposed agile method for the vDUE
model is expected to efficiently simulate the practical traffic
dynamics. For the sake of the computational simplicity, the traf-
fic flow is used to describe the status of the transportation net-
work. Meanwhile, virtual vehicles are generated to reflect the
practical dynamics through their flexible routing/rerouting dur-
ing the traffic assignment process. Though starting vehicles are
always considered for routing, a traveling vehicle may also need
to be rerouted if it finds its previously planned route not suitable
to continue due to the high traffic dynamism in practice. As a
result, our agile method should greatly help the traffic network
to approach the dynamic user equilibrium state, by considering
both starting and traveling vehicles for routing.

Next we will introduce the two levels in details.

4.2 Adaptive differential evolution to
optimize TSC solutions

To accomplish an optimization task, the differential evolution
encodes a possible solution into a vector of variables and iter-
atively carries a series of evolvable operations on a population
of solutions S. Theses operations traditionally include mutation,
crossover and selection, and they are sequentially performed on
each solution. Particularly, the mutation generates a mutant s

′

for each solution s, by adding some form of differential varia-
tion to an existing solution. The amplification of the differential
variation is controlled by a real constant, denoted as M in this
paper. To increase the diversity of the population, the crossover
is performed on each pair of a solution s and its mutant s

′
. The

outcome of the crossover is a trial variant s
′′

, whose variables
come from either s or s

′
. The probability to set a variable of

s
′′

according to either s or s
′

is mainly controlled by another
real constant, denoted as X in this paper. Finally, the selection
aims to determine the members of a new population for a next

FIGURE 3 Adaptive differential evolution to optimize TSC solutions

generation (i.e. iteration). After evaluated, each trial variant s
′′

is
compared to the original solution s and the winner is selected
into the new population.

This paper adopts an adaptive differential evolution to opti-
mize the TSC solutions, by integrating with a greedy mutation
strategy to accelerate the convergence and a parameter adap-
tation scheme to improve the robustness [13]. As described in
Figure 3, the adaptive differential evolution mainly contains two
parts and their details are given as below.

In the initialization part, a population of solutions S = {s}

are firstly generated, by randomly generating values of the cycle
length rate, the offset time ratio, and the green time ratio within
the ranges of [0, 1], [omin, omax], [gmin, gmax], respectively. Then,
each newly generated solution is evaluated by calling the agile
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626 LIU ET AL.

method to perform the vDUE traffic assignment. Moreover,
since archives are commonly used in adaptive evolutionary algo-
rithms like [30], an empty external archive S∪ is set for the
greedy mutation to gain a promising progress direction from
recently explored inferior solutions. As for the parameter adap-
tation, the initial values of M and X for each solution are ran-
domly generated within [0,1] and stored in two sets M and X,
respectively. Correspondingly, the initial mean values 𝜇M and
𝜇X are both set as 0.5 for M and X, respectively.

In the evolution part, each solution of the population is
updated in every generation through a series of operations,
including mutation, crossover, validation, evaluation, and selec-
tion. The crossover and the selection follow strategies of the
traditional differential evolution, whilst the evaluation is imple-
mented at the lower level. As for the validation, each solution
is guaranteed to have variable values of three kinds respectively
within their pre-defined ranges, by setting invalid variable val-
ues to be the nearest bound. Meanwhile, the mutation uses the
”current-to-pBest” strategy as expressed by

s
′
= s + M ×

(
spBest − s

)
+ M ×

(
sr1 − s∪

r2

)
, (23)

where s and s
′

denote the target solution in S and its mutant
variant, and M is the mutation factor. spBest is randomly one of
the top 100p% solutions in S with p ∈ (0, 1], whilst sr1 is another
solution different from s in S. Meanwhile, s∪

r2 is selected from

S ∪ S
′
, and it is different from s and sr1.

In the traditional differential evolution, the mutation factor
M and the crossover factor X usually have great impacts on the
algorithm performance and need some empirical knowledge to
set appropriate values for different application cases. For the
sake of the high efficiency and the extensive applicability, two
algorithm parameters M and X are adapted at the end of every
generation by following

M = randc (𝜇M , 0.1), (24)

X = randn(𝜇X , 0.1), (25)

where randc (𝜇M , 0.1) means to generate a random number
according to a Cauchy distribution with mean 𝜇M and standard
deviation 0.1; randn(𝜇X , 0.1) means to generate a random num-
ber according to a normal distribution with mean 𝜇X and stan-
dard deviation 0.1.

The values of 𝜇M and 𝜇X are initialized to 0.5 and updated
as

𝜇M = (1 − b) × 𝜇M + b × meanL (M), (26)

𝜇X = (1 − b) × 𝜇X + b × meanA(X), (27)

where b is a positive constant within [0,1], whilst meanL (M)
and meanA(X) represent the Lehmer mean function and the
usual arithmetic mean function, respectively. As for M and X,

FIGURE 4 Agile method to perform vDUE traffic assignment

they contain the values of M and X that successfully bring
improved solutions.

4.3 Agile method to perform vDUE traffic
assignment

When performing the traffic assignment, the traffic situation
is generally updated at each time slot. Thus, the vehicle route
constructed before may be measured differently later. It means
that a traveling vehicle may update its scheduled route to reduce
its travel cost, especially when the saturation of its remained
route increases.

As a result, this paper proposes an agile method for the
vDUE traffic assignment of the bi-level TSC problem, which
not only routes the starting vehicles but also reroutes the trav-
eling vehicles if needed. As shown in Figure 4, the lower level
consists of three stages. The first stage is to prepare the free-
flow traffic situation and the ready vehicles, and the last stage
is to provide the upper level with the simulated travel time of
all vehicles to calculate the fitness value of the TSC solution.
Between the two stages, the traffic assignment acts as the main
body, where the vehicle routes and the traffic situation are iter-
atively updated during a period of time slots, by following five
steps.

Step 1 (Determine the vehicles in need of routing): At each time slot,
our proposed method checks the status of all vehicles to deter-
mine the set of vehicles which need routing. More specifically,
the starting vehicles will all be considered in need of routing,
whilst a traveling vehicle v may be considered in need at the time
slot T only if the saturation of its remained route 𝜃T

v exceeds a
pre-defined threshold 𝜃max. We heuristically set the probability
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LIU ET AL. 627

FIGURE 5 Example of the agile method to perform the vDUE traffic assignment

of the traveling vehicle v at the time slot T as

𝜌T
v =

{
0, if 𝜃T

v ≤ 𝜃max

𝜃T
v × 𝜃max, otherwise

. (28)

Considering the high dynamics of the traffic flow, we approx-
imate 𝜃T

v as the average saturation of the first two links along
the remained route at the time slot T , as calculated by

𝜃T
v =

⎛⎜⎜⎝
f T
R∗

v,1

f max
R∗

v,1

+

f T
R∗

v,2

f max
R∗

v,2

⎞⎟⎟⎠ ∕2, (29)

where R∗
v,1 and R∗

v,2 denote the first two links along the remained
route of v, respectively.

Step 2 (Route / Reroute the vehicles in need): Since the lower level
is embedded in the upper level and frequently called to evalu-
ate each TSC solution, it is highly desirable to reduce the com-
putational cost of the vDUE traffic assignment and finally to
improve the efficiency of the whole TSC system. Hence for the
sake of an efficient routing, we simply build a Dijkastra shortest
path for each vehicle from its current node to its destination.
Note that the shortest path is measured with the link travel time
instead of the link length. Besides, the current node of a starting
vehicle refers to its origin, whilst that of a traveling vehicle refers
the end node of the link it is traveling on.

Step 3 (Set / Update the vehicle routes if possible): This step decides
whether to use the newly built shortest paths for different types
of the vehicles. For a starting vehicle whose planned route is
empty, this new path will be definitely adopted. For a traveling
vehicle whose planned route has been started, this new path will
take effect only if it is better than the unfinished part of the
original vehicle route.

Since each vehicle pursues its own cost minimization, a new
path will be considered better if it can reduce the remained travel
cost for the related vehicle. For the sake of simplicity, we con-
sidered the travel cost of a vehicle mainly with the vehicle travel
time, which can be approximated as the sum travel time of all
links along its route. Hence for a traveling vehicle, a new path
will replace the unfinished part of the original route only if the
former has smaller sum travel time of all its links than the latter.

Step 4 (Move all vehicles along their routes): This step moves all vir-
tual vehicles forward along their routes by simulating their pos-

sible states, including ’ready’, ’moving’, ’waiting’, and ’finished’,
whose details will be described in Section 4.4.

Step 5 (Update the traffic situation): The traffic situation at a time
slot is mainly dependent on the link flow amounts and the link
travel time, which are updated according to Equations (17) and
(18), respectively.

For a better understanding of the agile method, Figure 5
presents an example to perform the vDUE traffic assignment
on the OD pair of (A,K), where each node is denoted by a cap-
ital letter and each link uses an integer to represent the number
of vehicles traveling on it. For the sake of simplicity, we assume
all links of the example network have the same free-flow travel
time and the same flow capacity of 5, so the travel time of two
links should be equal if they have the same number of vehicles
traveling on it according to Equation (18). Besides, the threshold
of the route saturation is set as 𝜃max = 0.5. Note that the waiting
time of vehicles at signalized intersections are not considered in
this example, to better focus on illustrating the rerouting idea of
the agile method.

Initially in Figure 5(a), there are five vehicles {I,II,III,IV,V}
starting from A, whose routes are all set to the shortest path
marked in red Rr = A→B→C→F→H→K. Next in Figure 5(b),
the five vehicles consider rerouting before they arrive at B, since
the traffic flows have changed after a time period. At this time,
the first two links of the remained Rr are A→B and B→C, so
the approximated saturation of the remained Rr is calculated
as 0.6 according to Equation (29). Subsequently, the rerout-
ing probability of each vehicle in {I,II,III,IV,V} is calculated
as 0.3 according to Equation (28). Suppose that two vehicles
{IV,V} are rerouted to the current shortest path marked in
green Rg = A→B→E→F→H→K. Later in Figure 5(c), vehi-
cles {I,II,III} consider rerouting before C, and their rerout-
ing probability is calculated to be 0.3 with the approximated
saturation of the remained Rr as 0.6. Suppose that one vehi-
cle {III} is rerouted to the current shortest path marked in
blue Rb = A→B→C→D→G→K. Then in Figure 5(d), vehi-
cles {I,II} and {IV,V} consider rerouting before F and all get
a rerouting probability of 0.3. Suppose that one vehicle {I} is
rerouted to the current shortest path marked in yellow Ry =

A→B→C→F→G→K. Finally the five vehicles {I,II,III,IV,V}
with the same OD pair (A,K) are assigned to four different
routes, that is, Rr, Rg, Rb, and Ry, which helps the network traf-
fic gradually reach an equilibrium state.
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628 LIU ET AL.

FIGURE 6 Status transition of a vehicle

4.4 Movement simulation of virtual vehicles

From the perspective of a vehicle v, the goal of performing the
traffic assignment is to successfully construct a vehicle route Rv

and to obtain the simulated travel time tv . As shown in Equa-
tion (15), the key of calculating tv is T desv , which is obtained by
periodically tracing the movement of the vehicle v along Rv until
reaching the destination Dv .

To simulate the movement of each vehicle along its route, we
define four types of vehicle statuses and illustrate their possible
transitions in Figure 6.

(1) The first status is ’ready’, which refers to a vehicle at the
origin. Note that the planned starting time slots of most ready
vehicles are later than the current time slot.

(2) The second status is ’moving’, which refers to a vehicle
moving on a link along its route. To simplify the vehicle model
in the traffic dynamism, we assume that all traveling vehicles on
a link l are formed into the link flow fl and the related link travel
time t T

l
can be calculated by Equation (18) at the current time

slot T . As a result, the travel time needed by a traveling vehicle
v to finish the link l can be calculated by

t T
l,v
= t T

l
×

d T
l,v

dl
, (30)

where dl denotes the length of the link l . Meanwhile, d T
l,v

denotes the remained length for v at T to finish on l , and it
is updated and recorded from the origin to the destination.

The vehicle will finish moving on l and change its status
to either ’waiting’ or ’finished’, if t T

l,v
< 1. Otherwise, it should

remain to be ’moving’ on l and obtain d T +1
l,v

by

d T +1
l,v

= d T
l,v
−

dl

t T
l

. (31)

(3) The third status is ’waiting’, which means a vehicle is wait-
ing for its green time at an intersection. This status is most possi-
bly changed from the ’moving’ status. When a vehicle v finishes
a link and reaches an intersection n at the time slot T , the wait-
ing time 𝜏T

n,k
needed by the vehicle v for the kth signal phase of

the intersection n can be calculated by Equation (32) with T test

calculated by Equation (33).

𝜏T
n,k
=

⎧⎪⎪⎨⎪⎪⎩
0, if T test +

∑k−1
i=1 Gn,i ⩽ T ⩽ T test +

∑k

i=1 Gn,i∑k−1
i=1 Gn,i − T test, if T < T test +

∑k−1
i=1 Gn,i∑k−1

i=1 Gn,i +Cn − T test, otherwise

,

(32)

T test = On +Cn ×

⌊
T − On

Cn

⌋
, (33)

where On and Cn are the offset and cycle length of the inter-
section n, whilst Gn,i represents the green time of the ith phase
of n.

(4) The last status is ’finished’, which means a vehicle arriving
at the destination. This status should be all changed from the
’moving’ status, when a vehicle finishes the last link of its route.
In this case, the vehicle v will record the current time slot T as
its ending time slot T desv .

Based on the movement simulation of virtual vehicles, the
agile method brings at least two advantages to the vDUE traffic
assignment. One is providing the traveling vehicles with a pos-
sibility to reroute, which makes the simulation closer to both
the traffic dynamism in reality and Wardrop’s user equilibrium
principle. The other is calculating the rerouting probability of a
traveling vehicle by approximating the saturation of its remained
route according to Equations (28) and (29), which improves the
efficiency to deal with different traffic situations (especially the
crowded ones and those with emergencies).

5 EXPERIMENTS

In this section, we conduct experimental comparisons on dif-
ferent transportation networks to validate the effectiveness of
both our proposed agile vDUE mechanism and the related agile
TSC system. We are going to describe the test data, experimental
setup, comparisons on both DUE and TSC.

5.1 Test data

As depicted in Figure 7, three transportation networks are used
in the experiments. The real-world network SiouxFalls consists
of 24 nodes and 76 links, with all patterns of signalized inter-
sections as in Figure 1. The data of this network is downloaded
from a famous repository of transportation networks at [25].
Besides, two synthetic networks TN01 and TN02 are randomly
generated in this paper based on a grid network. Specifically,
TN01 is comprised by 14 nodes and 30 links, whilst TN02 con-
tains 30 nodes and 70 links.

To observe influence of the traffic pressure, we provide each
test network with three types of traffic situations as listed in
Table 1. The first type is called ’normal’ with a low flow demand,
whilst the second type is called ’crowded’ with a high flow
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LIU ET AL. 629

FIGURE 7 Transportation networks for test

TABLE 1 Three types of traffic situations of all test networks

Network Traffic situation Normal Crowded Severe

SiouxFalls Flow demand (in vehicle hour) 360,600 766,400 766,400

Number of virtual vehicles 3606 7664 7664

Number of emergencies 0 0 2

TN01 Flow demand (in vehicle hour) 2224 8640 8640

Number of virtual vehicles 2224 8640 8640

Number of emergencies 0 0 3

TN02 Flow demand (in vehicle hour) 5932 22,188 22,188

Number of virtual vehicles 5932 22,188 22,188

Number of emergencies 0 0 4

TABLE 2 Emergencies assumed in the severe traffic situations

Network Link Start time End time

SiouxFalls 13 → 24 15 35

16 → 17 30 50

TN01 3 → 4 20 45

6 → 7 30 55

8 → 2 40 60

TN02 3 → 4 20 45

6 → 7 30 55

13 → 12 30 60

19 → 20 40 60

demand. For the traffic simulation of each test network, vehi-
cles are generated for each type according to the related flow
demand. Considering the randomness in reality, we make the
starting time of the vehicles for the traffic simulation follow
a Poisson distribution. However, no emergency is assumed to
happen in the simulation for either normal or crowded types.
Finally, the third type is called ’severe’ with the same flow
demand as the Crowded. Moreover, emergencies are assumed
to happen in the simulation of each test network for this type,
as listed in Table 2. For the severe traffic situation of each net-
work, the emergencies are assumed to happen on different links

during different time slots, which make the flow capacity half on
the related links.

5.2 Experimental setup

The experimental comparisons in this section are conducted
on both DUE and TSC. On DUE, we compare our agile
method with the classic All-Or-Nothing (AON) method [31]
and a revised Method of Successive Average (rMSA) [3].
AON has almost the lowest computational cost on the traffic
assignment due to its simplicity, so it can act as a benchmark
to evaluate other traffic assignment methods in terms of the
running time. As for rMSA, it is a representative strategy
for the traditional stochastic traffic assignment and has been
successfully used to solve the dynamic traffic assignment of a
bi-level TSC system. Therefore, rMSA can be used as a state-
of-the-art counterpart to better check the performance of our
proposed agile method that tries to implement the stochastics
and dynamics of the traffic assignment in a more flexible
way.

For the sake of fairness, we integrate each compared DUE
method with a simple fixed-time signal timing method to solve
the TSC problem. The fixed-time method forms a TSC solution
just by picking up the median values for all decision variables
within their valid ranges. Meanwhile, on TSC, our proposed
agile TSC system is compared with two other TSC methods.
The first is a classic TSC method, where the fixed-time signal
timing method and AON are used [31]. The second is a state-
of-the-art TSC method proposed by Li et al. [3], where a hybrid
genetic algorithm is used to optimize the signal timings and the
rMSA is used for the traffic assignment. Note that the micro-
scopic traffic simulation of Li’s TSC is replaced by calculating
Equation (18) in this paper.

The solution measurements used here include objective, fit-
ness, and running time. Among them, the objective value refers
to the average vehicle travel time in a TSC solution, and it is the
major indication of the solution quality. Meanwhile, the fitness
value is a variant of the objective value as calculated by Equa-
tions (15) and (16), and it is expected to improve the solution
quality. Finally, the running time indicates the time cost to run a
TSC method on computers.
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630 LIU ET AL.

TABLE 3 Parameters of the proposed agile TSC system

Component Notation Value Meaning

Model [cmin, cmax] [0, 1] Valid range of a cycle length rate

[omin, omax] [0, 1] Valid range of an offset time ratio

[gmin, gmax] [0.1, 1] Valid range of a green time ratio

ADE 𝛿 5 Penalty coefficient in Equation (15)

PADE 10 Size of the population

G ADE 50 Number of generations

p 0.3 Mutation parameter in Equation (23)

b 0.1 Adaptive parameter in Equations (26) and (27)

TA 𝜃max 0.5 Saturation threshold in Equation (28)

When solving the TSC problem modeled as in Section 3,
our proposed agile TSC adopts adaptive mutation and crossover
factors, with other parameters listed in Table 3. Meanwhile, Li’s
TSC adopts the same population size and the maximum gen-
eration number as ours, with other parameters set as in [3].
For the sake of comparison fairness, each TSC method runs
for 30 times independently in each test case. All compared
methods are coded in C++ and executed on a computer with
Intel(R) Core(TM) i7-8700 @ 3.20GHz CPU, 16 GB memory
and Microsoft Windows 10 64-bit system.

5.3 DUE comparison

As the traffic assignment plays a key role in the bi-level TSC sys-
tem, this subsection carries out comparison experiments among
AON, rMSA and our agile method, mainly on the overall per-
formance of the traffic assignment and the saturation change
during the traffic simulation.

5.3.1 Overall performance

The overall performances of the three DUE methods in all
test cases are compared in terms of objective value and run-
ning time.

Figure 8 compares the average objective values of three DUE
methods in different traffic situations. Overall, the bins of three

DUE methods become higher from the normal to the severe
traffic situation on each network, which indicates that the prob-
lem difficulty increases as the traffic situation intensifies. In the
normal situation, the bins of three DUE methods almost have
the same height on each network. However in the crowded and
severe situations, the bins of our agile method are obviously
lower than those of AON and rMSA on each network. This
hence validates the effectiveness of our agile method in various
traffic situations (especially in the crowded ones and those with
emergencies).

Table 4 compares the absolute running time of the three
DUE methods, along with the relative incremental percentages
of the rMSA method and our agile method over the AON
method in brackets. Note that the running times listed in this
table are mainly for the traffic assignment process, where the
three compared DUE methods all adopt a simple fixed-time sig-
nal timing method. In respects of the incremental percentage,
we notice that rMSA and our agile method always have larger
running time costs than the AON method with the positive
increments in all test cases, most probably due to their stochas-
tic. Besides, our agile method always has smaller running time
increments than rMSA in the normal and crowded situations. In
the severe situation, our larger running time increments seem
still worthy by outperforming the rMSA method so much as
shown in Figure 8. As for the absolute value, we notice that the
running time of each DUE method obviously increases as the
traffic situation intensifies, which is compliant with the increase
of the problem difficulty. Note that the experiments are cur-
rently performed on a single core of a personal computer, and
they can be further accelerated by code optimization and paral-
lelization techniques. As a result, the running time of our agile
method is generally acceptable for the dynamic traffic assign-
ment.

5.3.2 Saturation change

To look into the inherent difference of the three DUE methods,
we make a further analysis on the saturation change of the links
on a transportation network.

Figure 9 illustrates the average saturation of all links on the
SiouxFalls network during the simulation. As we can see, the
saturation curves of the three DUE methods are overlapped

FIGURE 8 Performance comparison of three DUE methods in terms of the objective value
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LIU ET AL. 631

TABLE 4 Performance comparison of three DUE methods in terms of the running time (in second)

Normal Crowded Severe

AON rMSA Ours AON rMSA Ours AON rMSA Ours

SiouxFalls 0.18 0.30 (65%) 0.22 (21%) 0.38 0.67 (75%) 0.50 (31%) 0.42 0.71 (67%) 0.86 (103%)

TN01 0.12 0.18 (52%) 0.13 (9%) 0.33 0.70 (108%) 0.44 (32%) 0.37 0.76 (107.%) 1.35 (267%)

TN02 0.45 0.71 (56%) 0.51 (12%) 1.42 2.74 (93%) 2.13 (50%) 1.54 2.43 (58%) 10.32 (572%)

FIGURE 9 Comparing average saturation of all links on SiouxFalls network for three DUE methods

before the peak around the 30th time slot in all three traffic situa-
tions. However, the peak in the normal situation is almost half of
those in the crowded and severe saturations, which indicates that
the problem difficulty increases as the traffic situation intensi-
fies. In the normal situation, the three curves continue to over-
lap after the peak, because our agile method considers nearly no
traveling vehicle in need of routing with the peak smaller than
𝜃max = 0.5. However in the crowded and severe situations, our
curve obviously declines faster than the other two curves after
the peak, because there are quite a few traveling vehicles consid-
ered in need of routing with the peaks far larger than 𝜃max. In
a word, our proposed agile method performs better than AON
and rMSA to decrease the average saturation of all links by mak-
ing full use of the saturation approximation.

FIGURE 10 Analyzing saturation of a link with emergence on SiouxFalls
network in the severe situation for three DUE methods

Figure 10 further illustrates the saturation change of a typical
link 16 → 17 with emergency on SiouxFalls network. As we can
see, the three DUE methods all have increased the saturation of
this link during the period of emergency [30], [50]. Nevertheless,
the saturation curve of our agile method is obviously lower than
those of its counterparts during the emergency period. That is
mainly because our agile method continuously traces the move-
ment of each vehicle and reroutes a traveling vehicle according
to the approximated saturation of its remained route. Since the
intersection 16 is a cross-shaped intersection in Figure 7(a), the
vehicles can be routed to other alternative links in time before
they enter the emergence link 16 → 17. Meanwhile, AON and
rMSA both determine the routes for vehicles mainly at their ori-
gins, so they possibly need more time to respond to the sudden
saturation change of a link with emergency. In a word, our agile
method is able to make a quicker response to the sudden satura-
tion change of a link with emergence than AON and rMSA, by
adopting a more flexible way to implement the dynamism and
stochastic during the traffic assignment.

In summary, the effectiveness of our proposed agile method
has been validated with an acceptable running time through the
overall performance comparison with AON and rMSA. Besides,
our agile method has also proven the significance of proba-
bilistically rerouting traveling vehicles according to the approx-
imated saturation of their remained routes through the analysis
on the saturation change.

5.4 TSC comparison

This subsection compares three TSC methods in two aspects.
First, we compare the quality of their average solutions on all
test networks.
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632 LIU ET AL.

FIGURE 11 Performance comparison of three TSC methods in terms of objective value

FIGURE 12 Performance comparison of three TSC methods in terms of fitness value

5.4.1 Overall performance

The average solutions of the three TSC methods on all three
networks are compared in terms of both objective and fit-
ness values. We notice three following points from the overall
result comparison.

Figure 11 compares average objective values of three TSC
methods in three traffic situations. In each situation of each
network, the bin heights of three TSC methods decrease in
the order of the classic, Li’s, and ours, which indicates that
ours outperforms Li’s and they both outperform the clas-
sic. Meanwhile, Figure 12 compares average fitness values of
three TSC methods in three traffic situations. The fitness val-
ues calculated according to Equation (16) are proven effec-
tive to solve the TSC problem, because the fitness curves of
the three TSC methods have similar trends but greater extents
in comparison with the relative objective bins on all three
networks.

Table 5 shows the objective decrements of ours over its two
counterparts, to quantify the improvement of our agile TSC. In

respects of compared algorithm, the objective decrement always
has a larger positive value over the classic than over Li’s, which
is consistent to the curve positions as shown in Figure 11. In
respects of test network, the objective decrement has the low-
est values on TN01 with the smallest flow demands and the
simplest network structure, and the highest value on SiouxFalls
network with the largest flow demands but the fewest virtual
vehicles. In respects of traffic situation, the objective decrement
generally has a higher value as the situation intensifies, which
indicates that our agile TSC has a more obvious advantage in
crowded and severe situations. Overall, our agile TSC outper-
forms its two counterparts by obtaining the average travel time
of all vehicles decreased up to 21.74% in various traffic situa-
tions on all test networks.

5.4.2 Algorithm convergence

Figures 13–15 compare the convergence curves of Li’s and our
TSC methods on all test cases, in terms of the fitness value. We

TABLE 5 Objective decrements of our agile TSC over the classic TSC and Li’s TSC

Normal Crowded Severe

Ours versus classic Ours versus Li’s Ours versus classic Ours versus Li’s Ours versus classic Ours versus Li’s

SiouxFalls 5.26% 0.92% 20.48% 7.73% 21.74% 8.63%

TN01 7.50% 0.67% 5.77% 3.61% 5.28% 3.00%

TN02 9.35% 1.40% 11.20% 3.42% 11.30% 4.85%
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LIU ET AL. 633

FIGURE 13 Convergence comparison of Li’s and our TSC methods in the normal traffic situation

FIGURE 14 Convergence comparison of Li’s and our TSC methods in the crowded traffic situation

can notice two following points on the convergence compari-
son.

∙ The vDUE helps our agile TSC method to better solve the
TSC problem, which has been demonstrated by the fitness
gaps between Li’s and our TSC methods at the initial gen-
eration in all test cases. Moreover, the importance of the
agile method seems to increase as the traffic situation inten-
sifies, because the initial fitness gap of the two TSC methods
enlarges from the normal traffic situation, to the crowded and
severe situation for all three networks.

∙ Our agile TSC method has a faster convergence speed than
Li’s TSC method, because the convergence curves of the for-
mer are all placed below those of the latter in all test cases.

In a word, our proposed agile TSC system has shown its bet-
ter performance over the classic and Li’s methods in various
traffic situations. Hence, its effectiveness to solve the bi-level
TSC problems has been validated.

6 CONCLUSION

This paper proposes the vDUE model for the traffic assignment
of the bi-level TSC problem, by combining the macroscopical
description of the traffic status and the microscopical depiction
of the vehicle behaviors. The vDUE considers the computa-
tional simplicity and traffic dynamics simultaneously, which
is helpful for a practical TSC system. Subsequently, an agile

FIGURE 15 Convergence comparison of Li’s and our TSC methods in the severe traffic situation
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634 LIU ET AL.

method is also proposed for the vDUE traffic assignment,
by probabilistically rerouting traveling vehicles based on the
saturation approximation. In this way, different traffic situations
can be flexibly handled, especially the crowded ones and those
with emergencies. Further, an agile TSC system is built to
solve the bi-level TSC problem, by integrating the agile method
for the lower-leveled vDUE traffic assignment and an adap-
tive differential evolution for the upper-leveled signal timing
optimization. In experiments, the DUE comparison is first
conducted among AON, rMSA and ours, whose results show
that our method can generally obtain better solutions than the
other two traffic assignment algorithms within an acceptable
running time. Then, TSC comparison is conducted on our pro-
posed agile TSC system with a classic TSC and a state-of-the-art
TSC. the results show that our agile TSC overall outperforms
its two counterparts and decreases the average travel time of
all vehicles up to 21.74% in various traffic situations on all test
networks.

However, this study is still based on regular flow demands.
Besides, it considers vehicles only in the traffic flow. Hence
for future research, we will consider more dynamic traffic envi-
ronments, where the flow demands may vary a lot over time.
Moreover, including pedestrians into the traffic flow should be
another promising direction of the TSC work.
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