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Sex-specific transcriptional and proteomic
signatures in schizophrenia
Jari Tiihonen 1,2,13, Marja Koskuvi3,4,13, Markus Storvik5, Ida Hyötyläinen3, Yanyan Gao 3, Katja A. Puttonen3,

Raisa Giniatullina3, Ekaterina Poguzhelskaya3, Ilkka Ojansuu2, Olli Vaurio2, Tyrone D. Cannon6,

Jouko Lönnqvist7,8, Sebastian Therman 9, Jaana Suvisaari 7, Jaakko Kaprio 10,11, Lesley Cheng12,

Andrew F. Hill 12, Markku Lähteenvuo 2,11, Jussi Tohka 3, Rashid Giniatullin3, Šárka Lehtonen 3,4 &

Jari Koistinaho3,4

It has remained unclear why schizophrenia typically manifests after adolescence and which

neurobiological mechanisms are underlying the cascade leading to the actual onset of the

illness. Here we show that the use of induced pluripotent stem cell-derived neurons of

monozygotic twins from pairs discordant for schizophrenia enhances disease-specific signal

by minimizing genetic heterogeneity. In proteomic and pathway analyses, clinical illness is

associated especially with altered glycosaminoglycan, GABAergic synapse, sialylation, and

purine metabolism pathways. Although only 12% of all 19,462 genes are expressed differ-

entially between healthy males and females, up to 61% of the illness-related genes are sex

specific. These results on sex-specific genes are replicated in another dataset. This implies

that the pathophysiology differs between males and females, and may explain why symptoms

appear after adolescence when the expression of many sex-specific genes change, and

suggests the need for sex-specific treatments.
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It has been estimated that about 50% of the risk of schizo-
phrenia is attributable to DNA sequence variation and the rest
is explained by epigenetic mechanisms modified by the

environment1. Studies on monozygotic twin pairs have shown
that if one twin has schizophrenia, the risk of illness for the co-
twin is about 50% and the risk of disease decreases with
decreasing genetic similarity for relative pairs. Hundreds of genes
contribute to the risk of schizophrenia and it has been difficult to
find molecular mechanisms to explain the illness phenotypes2.
Large studies comparing various mental disorders have shown
disease specificity of gene expression profiles in post-mortem
cerebral cortex between schizophrenia and bipolar disorder3,4.
Whether these abnormalities are related purely to illness process
or are also due to effects of treatment exposures and other sec-
ondary factors found at the endpoint is difficult to resolve, but
data from animal models implied that most psychotropic medi-
cations had little effect on the transcriptome4.

Pathophysiology of psychiatric diseases can be modeled using
induced pluripotent stem cell (iPSC)-derived neurons. Studies on
iPSC-derived neurons carried out in small numbers of individuals
suggest that cAMP and WNT signaling pathways, neuronal dif-
ferentiation, and synaptic functions5 may be altered in familial
schizophrenia and in patients harboring penetrant genetic var-
iants. It has been suggested that, because of noise due to genetic
heterogeneity, the number of iPSC study individuals with schi-
zophrenia should be increased substantially to detect truly sig-
nificant findings6. Here we minimize the disease-irrelevant noise
between affected and healthy individuals in iPSC-derived neurons
by studying disease-discordant monozygotic twin pairs. We
identify factors that are associated with the shared risk of schi-
zophrenia among monozygotic twins, and molecular pathways
and neuronal electrophysiological abnormalities that are related
to the actual onset of the illness.

Results
Transcriptional signatures related to familial risk. We gener-
ated and fully characterized iPSC lines from six healthy controls
with the lowest possible Positive and Negative Syndrome Scale
(PANSS) score 30 and five discordant monozygotic twin pairs
(two pairs with family history of schizophrenia) with PANSS
scores ranging from 30 to 49 in healthy (unaffected, indicated as
HT) twins and from 53 to 113 in affected (indicated as ST) twins
(Supplementary Table 1 and Supplementary Figs. 1–4). Three of
the ST twins were females who had a response to clozapine, an
atypical antipsychotic drug used for treatment-resistant schizo-
phrenia, and the two male patients were treated with first-line
antipsychotics (Supplementary Table 1). We chose to differentiate
the cells into cortical neurons expressing markers of GABAergic
and glutamatergic neurons, because they are among the most
affected cells in schizophrenia (Fig. 1). Figure 1g shows the
number of differentially expressed genes (DEGs) in the com-
parison between unaffected twins and healthy controls (asso-
ciated with familial risk of schizophrenia without clinical illness),
between ST twins and healthy controls (associated with both
familial risk and clinical illness), between ST and unaffected twins
(associated purely with clinical illness), and between male and
female controls. The genes with the most robust differences are
shown in Fig. 2e and the whole set of DEGs are shown in Sup-
plementary Data 1–10. RPS4Y1 and DDX3Y showed the strongest
signal for shared familial risk among male twins and the effect
sizes for the upregulated expression of these Y chromosome genes
were extremely large. In addition, CHL1, CNTN4, Shisa6, GAD1,
and GAD2 showed a strong signal for familial risk among males.
In the comparison between healthy control males and females,
ETV1 was the first and CHL1 was the third among the total of

19,462 genes in the rank order list showing the most significant
differences between sexes (indicating sex specificity, Supplemen-
tary Data 10).

Transcriptional signatures related to clinical illness. To study
how gene expression is associated with actual clinical illness, we
compared ST twins with their healthy co-twins and found
decreased expression of LHX1, a transcription factor previously
linked to schizophrenia7,8 (Fig. 1d). Also over 800 pathways were
enriched in ST twins when compared with their co-twins. Espe-
cially, pathways related to glycosaminoglycan metabolism were
downregulated, whereas pathways involving neurotransmitter
catabolism and GABAergic synapse were upregulated (Fig. 1e,
f and Supplementary Data 11). In the comparison between ST vs.
unaffected twins, the differently expressed genes (DEGs) and
enriched pathways were different between males and females
(Fig. 2a, b, 1e, f, and Supplementary Data 8, 9, 12, 13). Between
ST and unaffected female twins, the genes with highly significant
expression changes included COL6A3, as well as SSTR2 and
LHX1. (Fig. 2a, b, f–h). In men, with only two twin pairs, none of
the gene expressions survived correction for multiple compar-
isons; however, several genes, including LHX1, showed nominally
significant difference in the comparison between ST vs. unaf-
fected twins (Fig. 2b). When ST twins were compared with
healthy twins, the enriched pathways in females included, among
others, pathways of neural cell development, neural differentia-
tion, and glycans (Supplementary Data 12), whereas in males it
included a large proportion of the enriched pathways related,
among others, to Wnt signaling, mitochondrion respiration, and
metabolic processes (Supplementary Data 13).

Sex-specific gene expression. As sex appeared to be a major
determinant of gene expression changes related to schizophrenia,
we also compared the females with the males among the healthy
controls and identified 2327 genes (Benjamini–Hochberg cor-
rected p-value < 0.05) with up to 246-fold (7.94 log2-fold) dif-
ference in gene expression, and 964 significantly enriched
pathways (Supplementary Data 10 and 14). Thus, 2327 genes
from all 19,462 (12%) detectable genes showed sex-specific
expression. The Venn diagram (Fig. 2c) shows that within the 41
genes that significantly differ by expression in female ST twins
from female unaffected twins (blue), 25 genes (61.0%, p= 2.2 ×
10−16, Pearson’s χ2- test, for the difference between proportions,
Fig. 1g) belong to sex-specific genes. In the comparison of ST vs.
unaffected male twins, no genes with significantly different
expression were identified when correction for multiple com-
parisons was applied. However, 7 of the 19 (37%) genes with
nominal significance were sex-specific (p= 4.8 × 10−3, Fisher’s
exact test). These data indicate that a large proportion of illness-
related genes are sex-specific (Fig. 1g). Although males and
females share many of the final molecular pathways in schizo-
phrenia, the underlying primary pathophysiology of schizo-
phrenia obviously differs between males and females, and may
contribute to sex-dependent features of the disease. As all three
female patients had treatment-resistant schizophrenia (TRS) and
were treated with clozapine, it is apparent that also the type of
severity of the illness may contribute to the observed alterations
in gene expression. Figure 1g and the Venn diagram in Fig. 2d
summarize the illness-related DEGs and proteins among males
and females, showing p-values down to 2.3 × 10−295.

Reproducibility. We replicated our results by using the dataset by
Hoffman et al.6. Supplementary Table 8 shows the comparisons
of number of DEGs between datasets. Supplementary Data 15–18
show the DEGs in hiPSC-derived neurons and Supplementary
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Data 19–22 show the DEGs in hiPSC-derived neural progenitor
cells (NPCs) in the Hoffman et al.6 dataset. Both datasets show
that the number of DEGs is larger in the comparison between
male patients vs. male controls and between female patients vs.
female controls than when all patients are compared with all
controls, despite lower number of subjects including males only
or females only. This may be explained by the fact that DEGs in
male and female comparisons are not the same and the results are
diluted or counterbalanced when males and females are analyzed
together. Therefore, the number of DEGs gets smaller despite the
higher number of subjects.

Venn diagram in Supplementary Fig. 5 shows the overlap of
sex-specific genes (healthy males vs. females) in neurons in our
dataset and in neurons and NPCs in the Hoffman et al.6 dataset.
The number of sex-specific genes was smaller (244) in hiPSC-
derived neurons in the Hoffman et al.6 dataset (with NPC-derived
neurons differentiated for 6 weeks) than in our hiPSC-derived
neurons (NPC-derived neurons differentiated for 10 weeks),
with 18 genes overlapping with our sex-specific genes. The

corresponding numbers were 114 and 6 concerning hiPSC-
derived NPCs. This suggests that the number of sex-specific genes
increases as a function of time during maturation of cells.

Supplementary Table 9 shows the proportion of sex-specific
genes in neurons and NPCs in Hoffman et al.6 dataset. Also in
that dataset, proportion of sex-specific genes was much higher
than expected concerning DEGs in the comparison between all
patients with schizophrenia vs. all controls (5.0% vs. 0.6%, p=
4.6 × 10−4), between female patients vs. female controls (10.2%
vs. 0.6%, p= 1.5 × 10−38, and between male patients vs. male
controls (21.8% vs. 0.6%, p= 6.7 × 10−112). The results from
NPCs were well in line with the results from neurons (p-values
4.1 × 10−6, 9.8 × 10−74, and 2.7 × 10−100, respectively). The
results on schizophrenia:sex interaction for sex-specific DEGs
are shown in Supplementary Table 10. The statistically significant
DEGs are shown in Supplementary Data 23–26.

Proteomic analyses. Messenger RNA and corresponding protein
levels in cells correlate poorly due to variation in processes
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Fig. 1 RNA expression analysis of affected (ST) and unaffected (HT) twins using hiPSC-derived neurons. a Sex breakdown of monozygotic twin pairs and
control individuals of the study (females in red; males in blue). b A flow chart of the reprogramming and neural differentiation process. c Bright-field images
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controlling steady-state mRNA or protein abundances. To
investigate whether protein expression is changed in cortical
neurons of monozygotic twins discordant for schizophrenia,
proteomic analysis was performed at the peptide, phosphopep-
tide, and protein levels in pairwise comparisons (Fig. 3a–c).

In the comparison of all 5 ST and 5 unaffected twins, we found
60 proteins such as CAMK2G, PPP1R17, phosphomannomutase
1, ST3GAL2, and SLC36A4 (Fig. 3d and Supplementary Data 27)
with differential expression and 379 enriched pathways with
nominal significance (Fig. 3f and Supplementary Data 28).
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Similar to the transcriptomic study, running proteomic analyses
separately in females and males revealed more differentially
expressed schizophrenia-associated proteins and enriched path-
ways than when sexes were pooled together (Supplementary Data
29, 30). In females, ST twins differed from healthy co-twins by
111 proteins (Fig. 3e, f) and 450 pathways with nominal
significance. The most consistent finding among females was
upregulation of CAMK2G, differentiating ST twins from
unaffected co-twins (Supplementary Data 29). Correspondingly,
in males, ST twins differed from their unaffected co-twins by 228
differentially expressed proteins and 616 enriched pathways
(Fig. 3d–f). Of these proteins, adenosine deaminase (ADA) and
ST3GAL2 showed the most robust change, surviving correction
for multiple comparisons (Supplementary Data 30).

Differentially expressed proteins did not correspond to DEGs
in cortical neurons derived from monozygotic twins from pairs
discordant for schizophrenia, with the exception of down-
regulation of COL6A3 and COL6A3 (Fig. 2g), which was the
most robust finding in gene expression in comparison between ST
vs. unaffected female twins, and which showed a nominal p-value
of 6.9 × 10−3 in corresponding proteomic analyses. Only
COL6A3 gene–protein pair remained significant with
Bonferroni-corrected threshold p < 0.05 when studying only the
genes for which the corresponding protein differences were
significant at p < 0.01 (Supplementary Data 31). In conclusion,
drastic changes in schizophrenia in both protein and gene
expression were discovered and linked to central nervous system
development and various other pathways in a sex-specific
manner. Moreover, both mRNA and protein expression in
iPSC-derived cortical neurons were distinct in healthy males and
females (Supplementary Data files 10 and 32). Observed gene and
protein expression differences were not explained by copy
number variants (see Supplementary Tables 3–6 for details).

Electrophysiological analyses. Clozapine is used to treat patients
with schizophrenia that do not respond to standard antipsychotic
treatment and are classified as having treatment-resistant schi-
zophrenia (TRS). The mechanism of action of clozapine is not
exactly known, but the drug regulates several neurotransmitter
systems and interacts with GABA and NMDA receptor-mediated
glutamatergic signaling. Both NMDA receptors and GABAergic
interneurons have been associated with the pathology of schizo-
phrenia and dysfunction of NMDA receptor is considered a
major mechanism explaining the symptoms of schizophrenia9. As
our transcriptomic and proteomic data revealed alterations in
genes and proteins regulating GABAergic neurons and glutama-
tergic pathways, we next compared calcium responses with
GABA and glutamate in neurons between the twins with TRS and
the twins responding to standard antipsychotics and their healthy
co-twins (Supplementary Table 2). As iPSC-derived neurons at
this phase correspond to the developmental stage of the early
second trimester of pregnancy, GABAA response has a depolar-
izing effect in our cultures. Glycine without magnesium was
added together with glutamate, to preferentially stimulate NMDA
receptors. In twin pairs of TRS, there was no significant difference
in calcium response to GABA between healthy and ST twins

either before or after clozapine treatment (Fig. 4e), whereas, in
twin pairs with non-TRS cases, the response was significantly
smaller in ST twins before but not after clozapine treatment
(Fig. 4f). However, NMDA receptor-mediated calcium response
to glutamate in twin pairs of TRS was significantly greater in ST
twins before but not after clozapine treatment, whereas in twin
pairs of non-TRS the response was similar both before and after
clozapine treatment (Fig. 4d–f). These data suggest that regula-
tion of neuronal calcium responses is differentially disturbed in
TRS and in schizophrenia responding to standard antipsychotics,
and that clozapine treatment may abolish the altered neuronal
calcium response to GABA and glutamate in embryonic state
neurons of individuals with schizophrenia. As all patients with
TRS were females, it is possible that the findings are at least
partially attributable to sex-specific differences and this issue
should be studied further among male patients with TRS.

Discussion
The method of using iPSC-derived neurons from pairs of
monozygotic illness-discordant twins minimized genetic back-
ground heterogeneity and the disease-irrelevant noise in tran-
scriptomic and proteomic analyses. Therefore, this kind of
analysis of individual-specific iPSC-derived neurons may be a
strategy for early prevention, testing, and development of novel
pharmacological treatments. Most of the genes showing the lar-
gest effect sizes were different among males and females and had
sex-specific expression among healthy controls. These results
were confirmed in another hiPSC dataset. This suggests that
although sexes share many of the final common pathways
involving the same proteins, the underlying primary pathophy-
siology of schizophrenia differs between males and females. This
may explain why the symptoms typically appear after puberty
when the expression levels of many sex-specific genes change.
The findings of our study are analogous to results by Labonté
et al.10 which showed marked sexual dimorphism at the tran-
scriptional level in major depressive disorder and suggested that
the treatments should be sex-specific due to different pathophy-
siology between males and females. Our results are also in line
with a recent study which observed that men and women have
different types of lifespan calendars of gene expression, explaining
the differences in the phenotypes and the ages of onset in
schizophrenia11.

In the analysis of familial risk, Y chromosome genes RPS4Y1
and DDX3Y revealed very large upregulation in the gene
expression. Both of these genes are candidate biomarkers for
Parkinson’s disease12. Also, CHL1, CNTN4, Shisa6, GAD1, and
GAD2 showed large effect sizes. A large number of studies have
linked CHL1 and CNTN4 with schizophrenia, while CHL1 has
also been associated with loss of parvalbumin-expressing hippo-
campal GABA interneurons13, and CNTN4 with antipsychotic
responses14. Shisa6 has been reported in several studies to prevent
desensitization of AMPA-type glutamatergic receptors during
synaptic activity15. A large number of studies have linked glu-
tamic acid decarboxylase genes GAD1 and GAD2 with
schizophrenia16.

Fig. 3 Proteomic analysis of unaffected (HT) and affected (ST) twins using hiPSC-derived neurons. PCA analysis of (a) peptides, (b) phosphopeptides, and
(c) proteins data after feature selection. PC1 (Dim 1) vs. PC2 (Dim 2) shows the separation of the data into affected twins (blue circle) and unaffected twins
(orange circle) mainly on PC1. The control group is also included (green circle). PCA plots were generated using subsets of differentially expressed features
(peptides and phosphopeptides: p < 0.01; proteins: p < 0.05). d Heat maps of differentially expressed proteins when ST compared with HT twins (five pairs)
and e between female twins. f Summary of differently expressed proteins (DEPs) and enriched pathway analyses with cutoffs: unadjusted p-value < 0.05.
PCA plots were generated after feature selection, using differentially expressed features from the comparison of affected (ST) twins and unaffected (HT)
twins with statistical significance levels of p < 0.01 for peptides and phosphopeptides and p < 0.05 for protein data
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When all ST twins were compared with all HT twins, down-
regulation of LHX1 was the only finding surviving correction for
multiple comparisons. LHX1 is highly expressed in the develop-
ing brain. It modulates survival and migration of GABAergic
interneurons17 and regulates sleep timing by light, making the
gene a candidate genetic factor contributing to schizophrenia. In
the comparison restricted to females, COL6A3, SSTR2, and LHX1
showed the most robust findings. COL6A3 has previously been

linked to brain white matter abnormalities18 and SSTR2 (soma-
tostatin receptor 2) has previously been reported to both be
associated with schizophrenia7,9 and also to be the most robust
biomarker in post-mortem studies19.

In the pathway analyses, the actual illness was associated with
altered N-glycan synthesis, CAMK2G, GABAergic synapse, and
purine metabolism. Blocking of NMDA receptors results into full-
blown schizophrenic symptoms in healthy individuals and
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Fig. 4 Spontaneous neuronal activity and neuronal calcium imaging of affected and unaffected twins. a hiPSC-derived neurons stained for VGLUT1 (red),
TUB3 (green), and GABA (red). b Regular spontaneous neuronal reactivity and (c) membrane current induced by 100 µM GABA or by 100 µM glutamate
with 10 µM co-agonist glycine in neuronal cultures of healthy control subjects. Scale bar 20 µm. d Representative calcium traces and quantification from
neurons of (e) treatment-resistant and (f) non-treatment-resistant (patients that respond to standard antipsychotics) schizophrenia before and after
clozapine treatment. Glu+Gly (no Mg) indicates NMDA-specific responses. ST, affected twin; HT, unaffected twin. In e and f, results are presented
representing both levels of the hierarchical two-level random effects analysis. The cyan line and black box represent, respectively, the mean and its SE of
the upper, population level to which p-values and Z-statistics refer to. Colored dots and their whiskers refer to the first-level analyses of individual subject
pairs. Dots represent the average differences between the response between healthy and affected twin. Whiskers represent the SEs of the averages.
Population level mean (cyan line) is the inverse variance weighted mean of the subject-pair-wise average differences. The subject pairs are in e Red= Pair
1, Black= Pair 4, Blue= Pair 5. f Red= Pair 3, Blue= Pair 6. ***p < 0.001
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NMDA dysfunction is considered as a major pathophysiological
factor of the illness9. Recently, it has been observed that activation
of NMDA-type glutamate receptors leads to input-specific long-
term potentiation of dendritic inhibition mediated by
somatostatin-expressing interneurons. This form of plasticity is
expressed postsynaptically and requires both CaMKIIα and the
β2-subunit of the GABA-A receptor20. Our results suggest that
somatostatin 2 receptor defect may be related to dysfunction of
NMDA receptors in somatostatin/calreticulin GABAergic inter-
neurons. It must be acknowledged that GABA is excitatory until
the third trimester of gestation and only then becomes an inhi-
bitory transmitter when the KCC2/NKCC1 balance of chloride
transporters changes21. Our results suggest that among indivi-
duals affected with TRS, the NMDA receptor pathway is over-
active in embryonic-state neurons during the second trimester,
although it may be downregulated and associated with dopami-
nergic defects later in life. N-glycans, calnexin, and calreticulin in
the endoplasmic reticulum together are important in protein
folding in eukaryotic cells22, and CaMK signaling in embryonic
stem cells is dependent on calreticulin. Our results showed con-
sistent downregulation of both N-glycan and calnexin/calreticulin
pathways in shared genetic risk and an actual illness, implying
their essential role in schizophrenia. Our findings on down-
regulated glycosaminoglycan metabolism are in line with a large
number of studies, indicating that deficits in perineural nets
(PNNs), glycosaminoglycan-rich extracellular matrix structures,
are important in the pathophysiology of schizophrenia23–25.
PNNs regulate structural and functional synaptic plasticity and
typically assemble around fast-spiking interneurons implicated in
learning and memory23–25. PNNs and extracellular matrix form
the tetrapartite synapse, which has been suggested to be a key
concept in the pathophysiology of schizophrenia23.

In proteomic analyses, large effect sizes were observed for
CAMK2G, a component of calcium/calmodulin-dependent pro-
tein kinase type II that has been reported to be involved in
schizophrenia26, PPP1R17 (DARPP32)27, the most important
integrator between cortical input and the basal ganglia, and
phosphomannomutase 128, an enzyme necessary for N-linked
glycosylation and secretion of glycoproteins. It has also been
observed that treatment of schizophrenia with olanzapine results
in altered glycosylation of serum glycoproteins29. Also ST3GAL2,
which regulates sphingolipid metabolism, and SLC36A4, a high-
affinity transporter for proline and tryptophan, were altered in ST
twins (Supplementary Data 14). The functions related to these
proteins have been previously reported to be abnormal in schi-
zophrenia30–33.

The only proteins surviving correction for multiple compar-
isons were ADA and ST3GAL2 in the male pairs. ADA is a
peripheral biomarker of schizophrenia correlating with the anti-
psychotic efficacy of clozapine and involved in the purine meta-
bolism pathway34. ST3GAL2 is a sialyltransferase gene
responsible for sialylation of gangliosides and glycoproteins, and
knockout of this gene results into profound cognitive disability35,
and a recent study suggests that altered sialylation and glucosy-
lation contribute to the increased risk of schizophrenia36. Among
the top proteins approaching statistical significance when cor-
rected for multiple comparisons was OTX2, a transcription factor
regulating development of parvalbumin-immunoreactive
GABAergic interneurons that are decreased in schizophrenia37.

To our knowledge, this is the first study to investigate calcium
responses to GABA and glutamate exposures in iPSC-derived
neurons in schizophrenia. We observed abnormal calcium
responses to NMDA-specific glutamate or GABA exposure in
embryonic neurons of ST twins compared with their healthy
twins and the differences disappeared with clozapine treatment.
This implies that early clozapine type of treatment might stop the

cascade leading to the development of full-blown illness. How-
ever, our results were based on a small number of subjects and
should be interpreted with caution.

In conclusion, the use of discordant monozygotic twins can
minimize noise due to genetic heterogeneity and enhance illness-
specific signal. Our results indicate that the neurobiological
pathophysiology of schizophrenia differs between males and
females, and suggest the need for sex-specific treatments.

Method
Study subjects. A total of 6 monozygotic twin pairs discordant for schizophrenia
(SZ) that were previously well-characterized by imaging and clinical history (more
than 20 publications, see, e.g. 38,39), as well as 6 non-related age-matched controls
were included in this study. The sociodemographic and clinical characteristics of
the patients are shown in Supplementary Table 1. Each subject was diagnosed and
assessed by a trained psychiatrist according to the Diagnostic and Statistical
Manual of Mental Disorders, fourth edition criteria based on a structured clinical
interview. Symptoms of schizophrenia were assessed using the PANSS scale around
the time of skin sampling (Supplementary Table 1). The project has been approved
by the Ethics Committee of the Helsinki University Hospital District, license
number 262/EO/06. Informed consent was obtained from all study subjects. One
pair of twins was excluded from the study based on PANSS score of the index twin
that did not differ either from unaffected twin or healthy controls.

Generation of hiPSCs and its characterizations. Skin biopsy-derived fibroblasts
were obtained from patients recruited in Finland, after obtaining informed consent.
The fibroblasts were expanded in fibroblast culture media containing Iscove’s
Dulbecco’s modified Eagle’s medium (DMEM) (Thermo Fisher Scientific) with
20% fetal bovine serum, 1% Penicillin–Streptomycin, and 1% non-essential amino
acids. Control and SZ human fibroblasts were reprogrammed with CytoTune-iPS
2.0 Sendai Reprogramming Kit (Thermo Fisher Scientific) according to the man-
ufacturer’s instructions. Specifically, fibroblasts at 90% confluency were transduced
with three separate vectors carrying genes hOCT-3/4, hKLF-4, hSOX-2, and hc-
MYC to induce the pluripotency. The medium was changed 24 h after transduction
and daily thereafter. At day 6, fibroblast culture medium was replaced with
Essential 6 Medium (E6, Thermo Fisher Scientific) supplemented with 100 ng/ml
basic fibroblast growth factor (bFGF). On the day after, the cells are re-plated onto
six-well Matrigel-coated plates with a density of 60,000 cells/well. Between days
17–28, the individual colonies were picked up to 24-well Matrigel-coated plates
containing Essential 8 Medium (E8, Thermo Fisher Scientific) and passaged with
0.5 mM EDTA weekly. Medium was changed every other day. The pluripotency of
iPSCs was confirmed by the expression of pluripotent markers using immunocy-
tochemistry (Oct-4, Sox2, TRA-1-81, SSEA4) and quantitative PCR (qPCR) (OCT-
4, SOX-2, NANOG, and LIN-28). United Medix Laboratories Ltd in Helsinki
(Finland) performed karyotyping analysis. The ability to form embryoid bodies
(EBs) was confirmed by growing the hiPSCs in low-adherent plates for 2 weeks
after which the EBs were plated down for the additional 2 weeks. The expression of
proteins originating from the three germ layers was confirmed by immunocy-
tochemistry (smooth muscle actin, BIIITubulin, and anti-alpha-fetoprotein).

hiPSC differentiation to NPCs and neurons. Neural differentiation was per-
formed according to Hicks et al.40 with minor modifications. Specifically, hiPSCs
grown in E8 medium were incubated with10 µM SB431542 and 200 nM LDN-
193189 (both from Selleckchem) for 10 days in neural differentiation medium (1:1
mix of DMEM/F12 and Neurobasal medium supplemented with 1% B27, 0.5% N2,
2 mM Glutamax, 50 IU/ml penicillin, and 50 μg/ml streptomycin (all from Thermo
Fisher Scientific). After the induction, the visible rosettes containing differentiated
neuroepithelial cells were detached from Matrigel-coated plates and transferred to
non-adherent plates (Corning) in neural sphere medium (NSM—1:1 mix of
DMEM/F12 and Neurobasal medium supplemented with 1% N2 supplement, 2
mM Glutamax, 50 IU/ml penicillin, and 50 μg/ml streptomycin (all from Thermo
Fisher Scientific) supplemented with 25 ng/ml bFGF (Peprotech). The spheres were
manually cut once a week, to maintain progenitor-state neural cell population, and
the medium was then renewed every other day. For experimental purposes,
8–12 weeks old NPCs were dissociated with Accutase and plated in NSM medium
supplemented with 20 ng/ml BDNF (Peprotech), 20 ng/ml GDNF (Peprotech), 1
mM dibutyryl-cyclicAMP (Merck), and 200 nM ascorbic acid (Merck) onto PORN/
Matrigel-coated plates (with density 2–3 × 106 cells/6 cm dish; 1 × 106 cells/6-well
plate or 100,000 cell/24-well plate. The neurons were maintained 1 week before any
experiments. Supplementary Table 7 summarizes the lines used in each
experiment.

Immunocytochemistry. Cells were fixed in 4% paraformaldehyde in phosphate-
buffered saline (PBS) at room temperature (RT) for 20 min. hiPSCs and NPCs were
permeabilized at RT for 1 h in 0.25% Triton X-100 in PBS. The unspecific binding
sites were blocked in 5% normal goat serum in PBS at RT for 1 h. The following
primary antibodies and dilutions were used: OCT-4 (Chemicon MAB4401), 1:400;
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NANOG (R&D Systems AF1997), 1:100; TRA-1-81 (Chemicon MAB4381), 1:200;
SSEA4 (Chemicon MAB4304), 1:400; AFP (Sigma A8452), 1:500; SMA (Sigma
A5228), 1:500; TUJ1 (Covance MMS-435P), 1:2000; MAP2 (Chemicon MAB3418),
1:200; VGLUT1 (Sigma V0389), 1:300; and GABA (Sigma 2052), 1:600. Secondary
antibodies were Alexa goat 488 and 568 anti-rabbit (Invitrogen) and Alexa goat 488
and 568 anti-mouse (Invitrogen); all were used at 1:300. The nuclei were stained
with 0.5 μg/ml DAPI (4’,6-diamidino-2-phenylindole, Sigma) and the coverslips
were mounted with Vectashield or Fluoromount.

Gene expression analysis. Gene expression analysis was performed with
2–3 months old hiPSC-derived cortical neurons. RNA was isolated from the plated
neurons by mirVana kit (Thermo Fisher Scientific) according to the manufacturer’s
protocol. The RNA quality was analyzed on the Agilent 2100 Bioanalyzer™ using an
RNA6000 assay. Gene expression profile of five twin pairs discordant for schizo-
phrenia and six control subjects were compared using whole transcriptome
sequencing on the Illumina Hiseq 2500. The single-end sequencing reads were
trimmed to remove adapters using cutadapt41 and the trimmed reads were aligned
to human GRCh38 (hg38) genome assembly with Ensembl GRCh38.90 transcript
annotations using STAR aligner, v. 2.5.242 in quantification mode to get the gene-
level read counts. Data normalization and differential expression analysis were
performed using R package DESeq2, v. 1.16.143. Schizophrenia status (ST, HT, or
control) and sex (when applicable) were used as covariates in the DESeq2 model. In
cases where the inter-twin comparisons were made, a paired analysis was used by
including twin pair information in the model. For studying sex-specific differences
in the schizophrenia status effect, an interaction term sex:schizophrenia status was
tested. For the analysis of differential gene expression between males and females,
only healthy control group samples were analysed by contrasting female samples
with male samples. P-values were adjusted for multiple testing using the
Benjamini–Hochberg multiple testing adjustment method44. Genes with absolute
log2 fold change > 1 and adjusted p < 0.05 were considered as significantly differ-
entially expressed in all comparisons. The primers used in qPCR were CHL1=
Hs00544069_m1, COL6A3=Hs00915125_m1, DDX3Y=Hs00190539_m1,
ETV1=Hs00951951_m1, LHX1=Hs00232144_m1, RPS4Y1=Hs00606158_m1,
SSTR2=Hs00990356_m1, LIN28 = Hs00702808_s1, OCT4 = Hs00742896_s1,
NANOG = Hs02387400_g1, and SOX2 = Hs01053049_s1. Differences between
study groups were tested with one-way analysis of variance.

Hoffman et al.45 gene expression data were downloaded from Gene Expression
Omnibus (accession GSE106589). Data from the two cell types, hiPSC-NPCs and
hiPSC-neurons, were analysed separately using DESeq2, contrasting samples by
diagnosis, COS (childhood-onset schizophrenia) vs. controls. Data were adjusted
for covariates that were shown to have significant effects on data heterogeneity by
Hoffman et al.45, i.e., fibroblast1 and fibroblast2 cell type composition scores and
sex. Sex-specific differences in the COS gene expression signature was analysed as
above, by testing the interaction term sex:COS in addition to the covariates listed
above. DEGs between female and male within this dataset was analysed by
contrasting healthy female controls and healthy male controls. P-value adjustment
and significance filtering were carried out as described above.

The enrichment analyses were performed to DEGs. Biological Process Gene
Ontology (GO BP) term and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway term over-representation analyses were performed using R package
clusterProfiler. DEGs for the over-representation analysis were chosen using the
adjusted p-value threshold of <0.05 and requiring at least twofold up- or
downregulation in expression. The p-values of enrichment analysis were corrected
for multiple testing using Benjamini–Hochberg multiple testing adjustment
procedure. In addition, gene-set enrichment analysis (GSEA)46 of GO and KEGG
terms using clusterProfiler was performed. GSEA uses all the analysed genes that
are ordered based on the expression fold change, with genes having the largest
statistically significant upregulation listed at the top and genes having the largest
statistically significant downregulation at the bottom of the list. The ordering was
done based on the classic GSEA signed ranking score that was calculated for each
gene by multiplying the log2 fold change by −log10 (adjusted p-value). GSEA then
calculated a running-sum statistic, enrichment score (ES), while walking down the
ranked gene list, generating positive ES if a gene set was enriched at the top of the
list or negative ES if the gene set was enriched at the bottom of the list. ES was
further normalized to normalized ES accounting for differences in gene-set sizes
and in correlations between gene sets and the expression dataset.

Proteomics. The pelleted hiPSC-derived neurons were lysed in buffer containing 8
M urea, 75 mM NaCl, and 50 mM Tris with pH adjusted to 8.2. The lysates were
sonicated with microtip at 80% amplitude and 1 cycle twice for 10 s (UP50H
Hielscher), and centrifuged at 12,500 × g for 10 min to eliminate non-lysed tissue.
The protein content was determined by Bradford assay. The samples were pro-
cessed through the SysQuant® workflow using Tandem Mass Tag (TMT®) reagents
within two TMT® 10plexes. A reference pool containing all samples was also
included in both TMT® 10plexes. Batch effects in peptide, phosphopeptide, and
protein data were removed using the removeBatchEffect function of the limma
R package and the successfulness of the batch removal was inspected by generating
principal component analysis (PCA) plots. Differential protein expression was
analyzed using limma. Pairedness of the twin samples was taken into account by
using the limma function duplicateCorrelation. P-values were adjusted for multiple

testing using the Benjamini–Hochberg multiple testing adjustment method. Pro-
teins with p < 0.05 and at least 30% increase or decrease in expression (log2-fold
change > 0.379) were considered differentially expressed. The adjusted p-values are
included in results tables. PCA plots were generated after feature selection, using
differentially expressed features from the comparison of ST twins and unaffected
(HT) twins with statistical significance levels of p < 0.01 for peptides and phos-
phopeptides, and p < 0.05 for protein data. GSEA analysis46 of GO BP terms and
KEGG pathways was performed similarly as for RNA-Sequencing data. GSEA
analysis does not rely on any defined threshold for differential expression and can
thus detect situations where proteins associated with a given pathway term have
changed in a small but coordinated way.

Thresholding protein differences at p < 0.01 yielded 42 proteins, of which 37
had a corresponding gene. Testing gene-level differences of the genes whose
corresponding protein was different between ST and unaffected siblings yielded
only one significant gene (COL6A3) when the threshold was p= 0.05, Bonferroni
corrected (see Supplementary Data 31).

CNV analysis. Genomic DNA was extracted using Qiagen’s DNeasy Blood and
Tissue kit according to the manufacturer’s instructions. Briefly, fibroblasts were
lysed in buffer containing proteinase K and RNase A for 10 min at 56 °C. DNA was
precipitated with 100% ethanol and then washed three times with buffer containing
ethanol prior to elution. Genome scans were performed using Agilent Microarray
Kit in Functional Genomics Unit (Biomedicum, Helsinki). Genomic DNA (500 ng)
was digested with AluI and RsaI enzymes. Digested gDNA samples were labeled
using random primers, fluorescent-labeled dUTP nucleotides (Cy3 and Cy5), and
the exo-Klenow fragment. Experimental samples were labeled with Cy5 and
reference samples with Cy3. Commercial genomic DNA from Agilent was used as a
reference according to gender-informed by the customer. Combined experimental
and reference samples were mixed with Human Cot-1 DNA, blocking agent, and
hybridization buffer, and hybridized to Agilent Human Genome CGH 4 × 180 K
SurePrint G3 Microarrays for 40 h at 67 °C. Microarrays were scanned with Agilent
Scanner G2505C, using manufacturer-provided protocol. Feature Extraction soft-
ware was used for image analysis. The data on each chip was compared against
reference genome hg19 and analyzed with 2 kb window size. A minimum of three
sequential amplified, deleted, or gained probes was used to filter possible copy
number variants (CNVs). The lists of concordant, overlapping, and de novo
mutations between the twins in each pair were then listed (see Supplementary
Table 6).

Electrophysiology. To preliminary test functional expression of glutamate and
GABA receptors in neuronal cultures, we first used the whole cell patch-clamp
recordings using EPC10 amplifier and PatchMaster software (HEKA electronics,
Germany). Experiments were performed at RT (21-23oC). Cells were held in
voltage-clamp mode at −70 mV continuously perfused with the extracellular basic
solution (BS) contained (in mM): 152 NaCl, 2.5 KCl, 2 CaCl2, 10 HEPES, 10 D-
Glucose pH 7.4 adjusted with NaOH. Intracellular solution contained: 130 CsCl,
5 MgCl2, 10 HEPES, 5 EGTA, 0.5 CaCl2, 2 Mg-ATP, 0.5 Na-GTP, 5 KCl with
pH 7.2 adjusted by CsOH. Patch pipets had a resistance 4–5MOhm. The agonists
GABA (100 μM) or glutamate (100 μM together with 10 μM Glycine) were applied
for 2 s via the fast local perfusion system (RSC-200, BioLogic, France).

Calcium imaging. Calcium imaging was performed with 2–3 months old hiPSC-
derived cortical-like neurons. The neurons were plated onto PORN/Matrigel-
coated circular coverslips (9 mm diameter) in 48-well plate at a density of 50,000
cells/well for 1 week in NSM medium supplemented with maturation factors.
Clozapine (15 µM, Sigma) or dimethyl sulfoxide was added for three additional
days before measurement (see Supplementary Table 2).

To quantify and compare the functional expression of glutamate and GABA
receptors in neuronal cultures, we used calcium-imaging technique as previously
described47. Briefly, neuronal cultures were loaded with the cell-permeable
indicator Fluo-4am (F10471, Life Technologies, USA) for 30 min at 37 °C, followed
by short washout, and placed in the perfusion chamber mounted on the stage of
Olympus IX7010 microscope. Neurons were continuously perfused by BS.
Glutamate (100 µM with the co-agonist glycine 10 µM in magnesium-free solution
promoting activation of NMDA receptors subtype) or GABA (100 µM) were
applied for 2 s by a fast perfusion system (RSC-200). KCl (30 mM) application for
2 s was used to distinguish excitable neurons from possible non-neuronal cells.
Calcium ionophore ionomycin (10 µM) was applied for 2 s at the end of each
recording and this calcium transient was used for normalization of receptor
responses. Fluorescence was detected with the Till Photonics imaging system (FEI
GmbH, Munich, Germany) equipped with a 12 bit CCD Camera (SensiCam,
Germany) with a light excitation wavelength of 494 nm and adequate filters.

Statistical analysis of calcium imaging. Calcium responses to neurotransmitters
were evaluated from changes in fluorescence intensity of individual neurons. To
this end, regions of interest (ROI) of round shape around the cell body were
applied to whole image containing up to 77 neurons with TILLvision Imaging
Software (TILL Photonics GmbH, Gräfelfing, Germany). To distinguish from non-
neuronal cells, ROI was taken at the time point corresponding to KCl-induced
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activation of excitable cells (neurons). The intensity values in each ROI were
averaged at each time point to form a fluorescence signal for each neuron. Baseline
levels of fluorescence were obtained by averaging signals from three cell-free
regions. For the analysis, first, we subtracted the background signal (average of the
three background ROIs) from the fluorescence time series. Second, we de-noised
the background-subtracted ROI-wise fluorescence time series. To this end, we used
wavelet de-noising, and, in particular, the maximal overlap discrete wavelet
transform (also known as stationary wavelet transform) based on level 3 Haar
wavelets48. The wavelet coefficients were soft-thresholded with Donoho and
Johnstone’s49 universal threshold with level-dependent re-scaling as implemented
in the Matlab function wden (Mathworks, Inc. Natick, MA, US). This de-noising
effectively removed noise, while retaining the important characteristics of the
fluorescence signal. The calcium response to neurotransmitters was quantified as
dF*= (f− f0)/f0, where f is the maximum of the de-noised fluorescence time series
during 20 s window following the application of KCl, GABA, or Glutamate+
Glycine (either with or without Mg) and f0 is the baseline extracted as the mini-
mum of the de-noised fluorescence time series in a window 50 s before the
application of the neurotransmitters. The calcium responses were calibrated by
dividing them by dF* corresponding to ionomycin. The application of signal de-
noising made it possible to use minimum and maximum in the estimates without
making the process excessively sensitive to noise. Finally, GABA and Glutamate+
Glycine responses were still calibrated by dividing them by the KCl response.

We tested whether the calcium response to the neurotransmitters of the ST
subjects differed from their healthy twins on average. For this, we used random-
effects hierarchical model based on sufficient summary statistic approach50. The
first level of the analysis pooled all the cells of the single subject, before and after
the treatment, and estimated the subject and treatment-wise means and variances
using the standard unbiased estimates. Outliers were removed before the
computation of the summary statistics. A measurement was considered as an
outlier if its value was more than three times consistency-corrected median
absolute distance from the median, which is a standard procedure. The second level
was based on the inverse variance-weighted random-effects model, where the
between-subject variance was estimated with the method of DerSimonian and
Laird. For testing the difference of the treatment we estimated the variance of the
difference between ST and unaffected twin by summing the variances from the first
level. The researcher was blind to the genotype of the tested culture.

All the analysis codes were written in Matlab and are available at https://github.
com/jussitohka/CalciumImaging.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
RNA-seq and proteomic raw data are shown on individual level in the Supplementary
data 7, 8, 9, 10, 29, 30, and 32. All other relevant data are available on request from the
authors.

Received: 26 March 2019 Accepted: 1 August 2019

References
1. Cariaga-Martinez, A., Saiz-Ruiz, J. & Alelú-Paz, R. From linkage studies to

epigenetics: what we know and what we need to know in the neurobiology of
schizophrenia. Front Neurosci. 10, 202 (2016).

2. Schizophrenia Working Group of the Psychiatric Genomics Consortium.
Biological insights from 108 schizophrenia-associated genetic loci. Nature 511,
421–427 (2014).

3. Gandal, M. J. et al. Shared molecular neuropathology across major psychiatric
disorders parallels polygenic overlap. Science 359, 693–697 (2018).

4. Gandal M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD,
schizophrenia, and bipolar disorder. Science 362, pii: eaat8127 https://doi.org/
10.1126/science.aat8127 (2018).

5. Brennand, K. J. et al. Modelling schizophrenia using human induced
pluripotent stem cells. Nature 473, 221–225 (2011).

6. Hoffman, G. E. et al. Transcriptional signatures of schizophrenia in hiPSC-
derived NPCs and neurons are concordant with post-mortem adult brains.
Nat. Commun. 8, 2225 (2017).

7. Rasmussen, M. et al. 17q12 deletion and duplication syndrome in Denmark-A
clinical cohort of 38 patients and review of the literature. Am. J. Med. Genet. A
170, 2934–2942 (2016).

8. González-Peñas, J. et al. Targeted resequencing of regulatory regions at
schizophrenia risk loci: role of rare functional variants at chromatin repressive
states. Schizophr. Res. 174, 10–16 (2016).

9. Cadinu, D. et al. NMDA receptor antagonist rodent models for cognition in
schizophrenia and identification of novel drug treatments, an update.
Neuropharmacology 142, 41–62 (2018).

10. Labonté, B. et al. Sex-specific transcriptional signatures in human depression.
Nat. Med. 23, 1102–1111 (2017).

11. Skene N. G., Roy M., Grant S. G. A genomic lifespan program that reorganises
the young adult brain is targeted in schizophrenia. Elife 6, pii: e17915 https://
doi.org/10.7554/eLife.17915 (2017).

12. Sun, A. G. et al. Identifying distinct candidate genes for early Parkinson’s
disease by analysis of gene expression in whole blood. Neuro Endocrinol. Lett.
35, 398–404 (2014).

13. Schmalbach, B. et al. Age-dependent loss of parvalbumin-expressing
hippocampal interneurons in mice deficient in CHL1, a mental retardation
and schizophrenia susceptibility gene. J. Neurochem. 135, 830–844 (2015).

14. Yu, H. et al. Five novel loci associated with antipsychotic treatment response
in patients with schizophrenia: a genome-wide association study. Lancet
Psychiatry 5, 327–338 (2018).

15. Klaassen, R. V. et al. Shisa6 traps AMPA receptors at postsynaptic sites and
prevents their desensitization during synaptic activity. Nat. Commun. 7, 10682
(2016).

16. Tao, R. et al. GAD1 alternative transcripts and DNA methylation in human
prefrontal cortex and hippocampus in brain development, schizophrenia. Mol.
Psychiatry 23, 1496–1505 (2018).

17. Symmank, J., Gölling, V., Gerstmann, K. & Zimmer, G. The transcription
factor LHX1 regulates the survival and directed migration of POA-derived
cortical interneurons. Cereb. Cortex 29, 1644–1658 (2019).

18. Jochim, A. et al. Microstructural white matter abnormalities in patients with
COL6A3 mutations (DYT27 dystonia). Park. Relat. Disord. 46, 74–78 (2018).

19. Alherz, F., Alherz, M. & Almusawi, H. NMDAR hypofunction and
somatostatin-expressing GABAergic interneurons and receptors: A newly
identified correlation and its effects in schizophrenia. Schizophr. Res. Cogn. 8,
1–6 (2017).

20. Chiu, C. Q. et al. Input-specific NMDAR-dependent potentiation of dendritic
GABAergic inhibition. Neuron 97, 368–377.e3 (2018).

21. Schulte, J. T., Wierenga, C. J. & Bruining, H. Chloride transporters and GABA
polarity in developmental, neurological and psychiatric conditions. Neurosci.
Biobehav Rev. 90, 260–271 (2018).

22. Lamriben, L., Graham, J. B., Adams, B. M. & Hebert, D. N. N-Glycan-based
ER molecular chaperone and protein quality control system: the calnexin
binding cycle. Traffic 17, 308–326 (2016).

23. Chelini, G., Pantazopoulos, H., Durning, P. & Berretta, S. The tetrapartite
synapse: a key concept in the pathophysiology of schizophrenia. Eur.
Psychiatry 50, 60–69 (2018).

24. Woo, H. J., Yu, C., Kumar, K. & Reifman, J. Large-scale interaction effects
reveal missing heritability in schizophrenia, bipolar disorder and
posttraumatic stress disorder. Transl. Psychiatry 7, e1089 (2017).

25. Testa, D., Prochiantz, A. & Di Nardo, A. A. Perineuronal nets in brain
physiology and disease. Semin. Cell Dev. Biol. 89, 125–135 (2019).

26. Zhang, Y. et al. Polymorphisms in microRNA genes and genes involving in
NMDAR signaling and schizophrenia: a case-control study in Chinese Han
population. Sci. Rep. 5, 12984 (2015).

27. Wang, H., Farhan, M., Xu, J., Lazarovici, P. & Zheng, W. The involvement of
DARPP-32 in the pathophysiology of schizophrenia. Oncotarget 8,
53791–53803 (2017).

28. Bowden, N. A., Scott, R. J. & Tooney, P. A. Altered gene expression in the
superior temporal gyrus in schizophrenia. BMC Genomics 9, 199 (2008).

29. Telford, J. E. et al. Antipsychotic treatment of acute paranoid schizophrenia
patients with olanzapine results in altered glycosylation of serum
glycoproteins. J. Proteome Res. 11, 3743–3752 (2012).

30. Narayan, S., Head, S. R., Gilmartin, T. J., Dean, B. & Thomas, E. A. Evidence
for disruption of sphingolipid metabolism in schizophrenia. J. Neurosci. Res.
87, 278–288 (2009).

31. Thwaites, D. T. & Anderson, C. M. The SLC36 family of proton-coupled
amino acid transporters and their potential role in drug transport. Br. J.
Pharmacol. 164, 1802–1816 (2011).

32. Chiappelli, J. et al. Tryptophan metabolism and white matter integrity in
schizophrenia. Neuropsychopharmacology 41, 2587–2595 (2016).

33. Clelland, C. L. et al. Evidence for association of hyperprolinemia with
schizophrenia and a measure of clinical outcome. Schizophr. Res. 131,
139–145 (2011).

34. Ghaleiha, A. et al. Correlation of adenosinergic activity with superior efficacy
of clozapine for treatment of chronic schizophrenia: a double blind
randomised trial. Hum. Psychopharmacol. 26, 120–124 (2011).

35. Yoo, S. W. et al. Sialylation regulates brain structure and function. FASEB J.
29, 3040–3053 (2015).

36. Mealer, R. et al. A missense mutation in SLC39A8, a manganese transporter
linked to schizophrenia, is associated with specific changes in plasma N-

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11797-3

10 NATURE COMMUNICATIONS |         (2019) 10:3933 | https://doi.org/10.1038/s41467-019-11797-3 | www.nature.com/naturecommunications

https://github.com/jussitohka/CalciumImaging
https://github.com/jussitohka/CalciumImaging
https://doi.org/10.1126/science.aat8127
https://doi.org/10.1126/science.aat8127
https://doi.org/10.7554/eLife.17915
https://doi.org/10.7554/eLife.17915
www.nature.com/naturecommunications


glycosylation. ACNP 57th Annual Meeting, 9–13 December 2018, Hollywood,
Florida.

37. Lee, H. H. C. et al. Genetic Otx2 mis-localization delays critical period
plasticity across brain regions. Mol. Psychiatry 22, 680–688 (2017).

38. Pietiläinen, O. P. et al. Association of AKT1 with verbal learning, verbal
memory, and regional cortical gray matter density in twins. Am. J. Med Genet.
B Neuropsychiatr. Genet. 150B, 683–692 (2009).

39. Bachman, P. et al. Efficiency of working memory encoding in twins discordant
for schizophrenia. Psychiatry Res. 174, 97–104 (2009).

40. Hicks, A. U. et al. Transplantation of human embryonic stem cell-derived
neural precursor cells and enriched environment after cortical stroke in rats:
cell survival and functional recovery. Eur. J. Neurosci. 29, 562–574 (2009).

41. Martin, M. Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet. J. 17, 10–12 (2011).

42. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29,
15–21 (2013).

43. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

44. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300
(1995).

45. Hoffman, G. E. et al. Transcriptional signatures of schizophrenia in hiPSC-
derived NPCs and neurons are concordantwith post-mortem adult brains.
Nat. Commun. 8, 2225 (2017).

46. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc. Natl Acad.
Sci. USA 102, 15545–15550 (2005).

47. Oksanen, M. et al. PSEN1 mutant iPSC-derived model reveals severe astrocyte
pathology in Alzheimer’s disease. Stem Cell Rep. 9, 1885–1897 (2017).

48. Percival D. B., Walden A. T. Wavelet Methods for Time Series Analysis. Vol. 4
(Cambridge Univ. Press, 2006).

49. Donoho, D. L. & Johnstone, J. M. Ideal spatial adaptation by wavelet
shrinkage. Biometrika 81, 425–455 (1994).

50. Dowding, I. & Haufe, S. Powerful statistical inference for nested data using
sufficient summary statistics. Front Hum. Neurosci. 12, 103 (2018).

Acknowledgements
The study was partially funded by the Ministry of Social Affairs and Health, Finland,
through the developmental fund for Niuvanniemi Hospital, Business Finland, Sigrid
Juselius Foundation, the University of Helsinki, and the University of Eastern Finland.
The funding sources had no role in the design and conduct of the study; collection,
management, analysis, and interpretation of the data; preparation, review, or approval of
the manuscript; and decision to submit the manuscript for publication. We thank Laila
Kaskela, Eila Korhonen, and Sara Wojciechowski for technical help in generation and
characterization of the stem cell lines, and Ms Aija Räsänen for secretarial assistance. No
compensation was received outside the usual salary. The statistical analyses of tran-
scriptional and proteomic analyses were conducted by Genevia Ltd, Tampere, Finland
(paid by Niuvanniemi Hospital). Open access funding provided by Karolinska Institute.

Author contributions
J. Tiihonen and J. Koistinaho conceived the study. Š.L. planned and supervised iPSC lines
characterizations, differentiation of the neurons, and sample preparation for RNA and
protein sequencing. T.C., J.L., S.T., J.S., and J. Kaprio gathered the data on twin pairs. I.O.
and O.V. performed skin biopsies and rating of symptoms, R. Giniatullin planned and
supervised the electrophysiological and calcium-imaging studies. R. Giniatullina per-
formed the calcium-imaging experiments and their pre-analysis. J. Tohka performed
statistical analyses of calcium-imaging studies; M.S. did the CNV analyses; M.K. differ-
entiated the neurons, prepared neurons for calcium imaging and electrophysiology, and
prepared RNA and protein samples for sequencing. I.H. grew and differentiated neurons
and characterized them. K.A.P. derived iPSC lines with Y.G. and characterized them. E.P.
performed the electrophysiology experiments (patch clamp) and part of the calcium-
imaging experiments. L.C. and A.F.H. performed RNA-sequencing. M.L. contributed to
the interpretation of the results. J. Tiihonen wrote the first draft of the manuscript with
the help of J. Koistinaho. Š.L. prepared the figures and tables. Transcriptional and
proteomic statistical analyses were done by Genevia Techologies, Hämeenkatu 14C,
33100 Tampere, Finland.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-11797-3.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Peer review information: Nature Communications thanks Aaron Bowman, Gabriel
Hoffman and the other, anonymous, reviewer(s) for their contribution to the peer review
of this work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11797-3 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3933 | https://doi.org/10.1038/s41467-019-11797-3 | www.nature.com/naturecommunications 11

https://doi.org/10.1038/s41467-019-11797-3
https://doi.org/10.1038/s41467-019-11797-3
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Sex-specific transcriptional and proteomic signatures in schizophrenia
	Results
	Transcriptional signatures related to familial risk
	Transcriptional signatures related to clinical illness
	Sex-specific gene expression
	Reproducibility
	Proteomic analyses
	Electrophysiological analyses

	Discussion
	Method
	Study subjects
	Generation of hiPSCs and its characterizations
	hiPSC differentiation to NPCs and neurons
	Immunocytochemistry
	Gene expression analysis
	Proteomics
	CNV analysis
	Electrophysiology
	Calcium imaging
	Statistical analysis of calcium imaging
	Reporting summary

	Data availability
	References
	Acknowledgements
	Author contributions
	Additional information




