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Abstract. In this paper, by the use of the celebrated Green’s identity
for double and path integrals, we establish some integral inequalities for
functions of two variables defined on closed and bounded subsets of the
plane R%. Some examples for rectangles and disks are also provided.
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1. Introduction

In paper [I], the authors obtained among others the following results con-
cerning the difference between the double integral on the disk and the values
in the center or the path integral on the circle:

Theorem 1. If f : D (C, R) — R has continuous partial derivatives on D (C, R) ,
the disk centered in the point C' = (a,b) with the radius R > 0, and
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The constant %r is sharp.
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where o (C, R) is the circle centered in C' = (a,b) with the radius R > 0 and

H (C,R),oo] .
In the same paper [I] the authors also established the following Ostrowski

type inequality:

Theorem 2. If f has bounded partial derivatives on D(0, 1), then

(1.4 ‘f(um) S LR
[&

for any (u,v) € D(0,1).

For other integral inequalities for double integrals see [2] [3], (4 [5] [6} [7, [8], @]
10l [T, [12], T3], [14].

In this paper, by the use of the celebrated Green’s identity for double and
path integrals, we establish some integral inequalities for functions of two vari-
ables defined on closed and bounded subsets of the plane R2. Some examples
for rectangles and disks are also provided.
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2. Main Results

Let 0D be a simple, closed counterclockwise curve in the xy-plane, bounding
a region D. Let L and M be scalar functions defined at least on an open set
containing D. Assume L and M have continuous first partial derivatives. Then
the following equality is well known as the Green theorem (see for instance
https://en.wikipedia.org/wiki/Green%27s_theorem)

//D <8M (z,y) aLézv y)> dxdy :823( (L (z,y)dz + M (z,y)dy) .

ox

Moreover, if the curve 9D is described by the function r (t) = (x (¢),y (t)),
t € [a,b], with z, y differentiable on (a,b) then we can calculate the path
integral as

b
f (L (2, ) de + M (z, ) dy)= / LG (£) () ' (£) + M (2 (t) (1) o/ ()] .

(225
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By applying this equality for real and imaginary parts, we can also state it for
complex valued functions P and Q.

For a function f : D — C having partial derivatives on the domain D we
define Apr.p : D — C as

Norp (z,y) == (z—y) <3f (z,9) _ of (x,y)) .

Ox oy

We need the following identity, [5]:

Lemma 3. Let 0D be a simple, closed counterclockwise curve in the xy-plane,
bounding a region D. Assume that the function f : D — C has continuous
partial derivatives on the domain D. Then
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Proof. Consider the functions

M (z,y) == (x —y) f (z,y) and L (z,y) :== (z —y) f (z,y)

for (x,y) € D.
We have
2 fo— ) f )] = £ @) + o - ) L)
and
2l = s+ -0 LY
for (z,y) € D.

If we add these two equalities, then we get

OM (z,y) 0L (z,y)
Or oy

(2.2) =2f (x,y) + Aos,p (2,y)

for (x,y) € D.
If we integrate this equality on D, then we obtain

(2.3) / /D (8Ma(;:’y) - aLé“z’ y)> dady
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From Green’s identity we also have

OM (x,y) OL(z,y)
2.4 —
(24) / /D ( Ox dy ety
— § (L@g)do+ M (29) dy)
oD
— f =0 @) dot (o= 0) f o) dy).
aD
By employing and we deduce the desired equality . O

Corollary 4. With the assumptions of Lemma[3|and if the curve dD is described
by the function r (t) = (z (t),y (t)), t € [a,b], with z, y differentiable on (a, b),
then

b
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1
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We consider the following Lebesgue norms for a measurable function g :

D —C
1/p
oo = ([ [ lotel dody) " <o forp 21
D
and
9l poe = sup |g(z,y)| < oo for p=ococ.
(z,y)eD

We have the following result:

Theorem 5. Let 0D be a simple, closed counterclockwise curve in the zy-plane,
bounding a region D. Assume that the function f : D — C has continuous
partial derivatives on the domain D. Then

oD
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Proof. From the identity (2.1]) we have

(27) ‘//f sy dedy = 5 § (o= 4) f (0.9) do + (o~ ) (2.9) o]

oD
of (x,y)  Of (z,y)
< 5 - y) ( o oy ) dzdy.

Using Holder’s integral inequality we have
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and by (2.7) we get the desired result (2.6)). -

Corollary 6. With the assumptions of Theorem [5|and if there exists a constant
L > 0 such that

‘af (z,y) Of (x,y)‘
dy

(2.8) < Lz —vy| for (z,y) € D,

ox

then we have
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Theorem 7. With the assumptions of Theorem [5] and if the curve 0D is de-

scribed by the function 7 (¢) = (x (t),y (t)), t € [a,b], with z, y differentiable
n (a,b), then

(2.10) ‘// f(x,y)dxdy — f// <8f82 ) af((;x,y)) dxdy’

< 2/ f (= () |z () —y @) 2" (1) + 3" ()| dt = M (f,0D).

We also have the bounds

(2.11) M (f,9D)
SUPefq) | f (@ )] 7 | (¢ @O 12" ) +y' ()] dt;

(S1f Pﬁ) (f| Sy e @)+ ) ar)

where p, q>1w1thp+a—17
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and the bound
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where the integral is taken as an arc-lenght integral, namely
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Proof. From the identity (2.1]) we have

‘//fxydacdy// z—y (afxy) af( ))d:rdy‘

_2L%[(x—y)f(z y)dx + (z —y) f (v, y) dy]

< 2/ |f (= ()] |z () —y )] 12" (1) + 3" () dt = M (f,0D).

By Holder’s integral inequality we have

/|f ) (1) = ()] |2 (1) + o/ (&) dt
subretan 1f (@ (6 vy O] [ |2 (8) =y ()] |2 (6) + of ()] di;
1/q

(Ji1f @ |pdt) (f 2 () =y O la’ () + ' (0" dt)

where p, q>1w1thp—|—a—1,
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which proves the inequality (2.11]).
By the elementary inequality

|z +w| < V222 +w? for z, w e R

we have

@ () +y O < V2l OF + [y OFF, te[ab].

Therefore
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By using Holder’s inequality for arc-lenght integral we have
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which proves the last part of (2.13]). O
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3. Examples for Rectangles

Let a < band ¢ < d. Put A = (a,¢), B = (b,¢), C = (b,d), D =
(a,d) € R? the vertices of the rectangle ABCD = [a,b] x [¢,d]. Consider
the counterclockwise segments

x=(1—-t)a+tb
AB L te0,1]

y=c
r=0

BC': , t€10,1]
y=(1—-t)c+td
x=(1—-t)b+ta

CD: , t€]0,1]
y=d

and

xr=a

DA : , tel0,1].
y=(1—t)d+tc

Therefore 0 (ABCD) = ABUBC UCDUDA.
We have

;4[(m—y)f(x,y>dx+<x—y>f<x,y>dy1

AB

1
:(b—a)/o (L—t)a+th—c) f((1—t)a+tbc)dt

:(b—a)/o (tb—a)+a—c) f((1—t)a+thc)dt,

]{[(x*y)f(x,y)dfwr(I*y)f(x,y)dy]

BC

:(d—c)/ol(b—(1—t)c—td)f(b,(l—t)c+td)dt

:(d—c)/o (b—c—t(d—c))f b (1—1t)c+td)dt,
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74[(x—y)f(w)dﬁ<m—y>f<x,y>dy]

CD

:(a—b)/l((l—t)b—i—ta—d)f((l—t)b+ta,d)dt
0
(ab)/l(t(ab)+bd)f((1t)b+ta,d)dt
0
:(a—b)/l((l—t)(a—b)+b—d)f((1—t)a+tb,d)dt
0

:(b—a)/o (d—a—tb—a)f((1—t)a+thd)dt

and
Fle =) f @y)das (@9 f @) d
DA
1
:(c—d)/o (a— (1 —t)d—te) f(a, (1 —1t)d+tc)dt
:(c—d)/o (a—td—(1—1)¢) f(a,(1—t)c+ td)dt
1
:(d—c)/0 (t(d—c)+c—a)f(a,(1—t)c+td)dt.
Therefore

(x—y) f(z,y)de + (z —y) f (z,y) dy]
d(ABCD)

:(b—a)/o (tEb—a)+a—c) f((1—t)a-+thc)dt

+(b—a)/1(d—a—t(b—a))f((l—t)a+tb,d)dt
0

+(d—c)/1(b—c—t(d—c))f(b,(l—t)c+td)dt
0

+(d—c)/0 (t(d—c)+c—a)f(a,(1—1t)c+td)dt.

If we make the change of variable (1 —t)a + tb = «, then dz = (b — a) dt,

t = $=2. Also for the change of variable (1 —t)c + td = y, we have dy =
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(d —c)dt and t = ¥==. Therefore

(3.1) f [(z —y) f(z,y)dv + (z —y) f (2,y) dy]

d(ABCD)
b
5 [ =07 @+ @) wd)ds
1 d
3 [ =07 e+ G0 @ldy

If [a,b] = [¢,d], then by (3.1) we get

(3.2) f (@ —9) f (@ y) do+ (z — y) f (2, y) dy]
8(ABCD)

Observe that for ¢ > 1

b b b o9+l o \gq+1 _\q+2
/ / & — y|? dady / b—2)"" +(z—a) dp — 2(b—a)
a Ja a q+1 (¢g+1)(g+2)

and, in particular,

b b 33
//|x—y|dmdy=(b 3a)'

Also,

sup |z —y| =b—a.
(z,y)€la,b] x[c,d]

By making use of Theorem [5] we can state:

Proposition 8. Assume that the function f : [a, b]2 — C has continuous partial
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derivatives on the domain [a,b]” . Then

1P
63) |5 [ le-0f@a)+0-o)f@b)d
1 b b b
43 [ 10-0) )+ -0 @uldy— [ [ f ) dady
(b—a)® ||0f _ of
3 Ox Oy [a,b]2,oo7
1 21/q(b,a)1+2/q 8f _ of
< = (Q+1)1/q(q+2)1/‘1 ox dy [a,b]2,p
2 wherep,q>1with%+$:1;
of _ of
(b-a) ’ 97 0yl p2
We also have
b pd b [ pd
/ / (w—y)dedy=/ </ (y—x)Qdy> dx
1 b
= g/ {(x—c)g—(z—d)g] dx
1
== [(b—c)4—(a—c)4—(d—b)4+(d—a)4 .

We have:

Proposition 9. Assume that the function f : [a,b] X [¢,d] — C has continuous
partial derivatives on the domain [a,b] X [¢,d]. Then

b
64 |5 [ le=0f@a+-a)f @l
d b d
i3 [ =01 +w-af@ld= [ [ 1@y dey
V3 |of _of ; 4 . v
1tk N (=0~ (a0~ (@=0)' + (@~ a)']

The proof follows by the inequality (2.6) for p = ¢ = 2 and D = [a, b] x[c, d] .
By utilising Corollary [6] we also have:
Proposition 10. Assume that the function f : [a, b] X [¢,d] — C has continuous
partial derivatives on the domain [a, b] X [¢, d] and there exists a constant L > 0
such that
of (z,y) _ 0f (x.y)

. — < -
(35) - o | < Lle ] for (.y) € [a.b] x [e.d],
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then we have

b
(3.6) %/ (=) f (2,¢) + (d— ) f (x,d)] d
d b d
45 [ o=+ -af@ldy- [ [ 1@y

S%L [(b—c)4—(a—c)4—(d—b)4+(d—a)4}.

4. Examples for Disks

We consider the closed disk D (O, R) centered in O (0,0) and of radius
R > 0. This is parametrized by

xr =rcosf
, 7 €[0,R], 6 €0,2n]

y=rsinf

and the circle C (O, R) is parametrized by

z = Rcos0
, 6 €0,27].

y = Rsind
Observe that, if f: D (O, R) — R, then

74 (& —9) f (@ y)de+ (z—y) f (2,9) dy]

C(O\R)
2m
=— R(Rcosf — Rsinf)sinff (Rcosf, Rsin6) df
0

2w
—I—/ R(Rcosf — Rsinf) cosOf (Rcosf, Rsin®) do
0

27
= RQ/ f (Rcos, Rsinf) (cosf — sin 6)* df.
0

Also, we have

R 2
// f(z,y)dxdy = / / f (rcos@,rsin ) rdrdf
D(O,R) o Jo

nd
[ ] e dudy -
D(O,R)

a;

(Rcosf — Rsin6)® rdrdf

S
S~
3

[\
3

(cos® — sin6)* df

X
S—

N = N =
(]
)

=y
=

(1 —2sinfcos @) df = TR*.
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Proposition 11. Assume that the function f : D (O, R) — C has continuous
partial derivatives on the domain D (O, R) and there exists a constant L > 0
such that

of (x,y) _ 9f (x,y)
4.1 — < L|x—y| f D
[P ORI < ey o () € DOOLR),
then
1 27
(4.2) ’2R2 f (Rcos, Rsin®) (cosd — sin0)* df
0

R 2
1
—/ / f (rcosf,rsin @) rdrdf| < §LWR4.
0 0

The proof follows by Corollary |§| for D=D(O,R).
Similar results may be obtained by employing the other inequalities above.
The details are left to the interested reader.
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