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1. Introduction and Preliminaries

In this paper the author considers the integral

I (m) =

1∫
0

logm (1− t) log t

t (1− t)
dt =

1∫
0

logm t log (1− t)
t (1− t)

dt (1.1)

for m ∈ N, and develops new parameterized series identities for zeta func-
tions. In particular, for m = 2, the author obtains a parameterized series
representation for ζ (4) in the form

ζ (4) = 4
∞∑
n=1

1

(1− a)n+1

n∑
j=1

(
n
j

)
(−a)n−j

(
Hj

j3
− ψ(′)(j + 1)

j2
+
ψ(′′)(j + 1)

2j

)
,

(1.2)
where the parameter a ≤ 1

2 . As usual we let

Hn =
n∑
r=1

1

r
=

∫ 1

0

1− tn

1− t
dt = γ + ψ (n+ 1) =

∞∑
j=1

n

j (j + n)
, H0 := 0

be the nth harmonic number, where γ denotes the Euler-Mascheroni con-
stant, and ψ(z) is the digamma (or psi) function defined, for z ∈ C\ {0,−1,−2,−3, ...} ,
by

ψ(z) :=
d

dz
{log Γ(z)} =

Γ′(z)

Γ(z)
and ψ(1 + z) = ψ(z) +

1

z
,

moreover

ψ(z) = −γ +
∞∑
n=0

(
1

n+ 1
− 1

n+ z

)
.

The polygamma function, for k ∈ N

ψ(k)(z) =
dk

dzk
{ψ(z)} = (−1)k+1 k!

∞∑
r=0

1

(r + z)k+1
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and satisfies the recurrence

ψ(k)(z + 1) = ψ(k)(z) +
(−1)k k!

zk+1
.

Also, H
(m)
n =

∑n
r=1

1
rm is the mth order harmonic number and is intrinsically

connected to the polygamma function via the relation

H(m+1)
ρ = ζ (m+ 1) +

(−1)m

m!
ψ(m) (ρ+ 1)

(ρ ∈ R \ {−1,−2,−3, · · · } ; m ∈ N) ,

where ζ (z) is the Riemann zeta function. In 1735 Euler announced his
celebrated result for the ζ (2) function, that is

ζ (2) =

∞∑
n=1

1

n2
=
π2

6
. (1.3)

He went further and reported the generalized result

ζ (2k) =
∞∑
n=1

1

n2k
=

(−1)k+1 22k−1B2k

(2k)!
π2k

where Bj is the jth Bernoulli number and k is a positive integer. In particular
for k = 2 we have

ζ (4) =
∞∑
n=1

1

n4
=
π4

90
.

There are many representations of ζ (4), both in integral form and in series
representation, some notable identities, that may be seen in [4], [9], [16], are:

ζ (4) =
4

5

∞∑
n=1

Hn

n3
=

4

17

∞∑
n=1

(
Hn

n

)2

=
4

7

∞∑
n=1

H
(2)
n

n2
=

∞∑
n=1

H
(3)
n

n (n+ 1)

=
8

7

∞∑
n=1

(−1)n+1 (2n+ 1)H
(3)
n

n (n+ 1)
=

1

3

∞∑
n=1

HnHn+1

(n+ 1)2
= 2

∞∑
i=1

∞∑
j=1

1

ij (i+ j)2

=
7

40

∞∑
n=1

(
H2n−1
n

)2

=
36

17

∞∑
n=1

1

n4
(

2n
n

) ,

= 2
∞∑
i=1

∞∑
j=1

∞∑
k=1

1

ijk (i+ j + k)
.
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Also, from [4], [9], [16],

ζ (4) = −1

6

1∫
0

log3 (1− x) dx

x
= −8

3

1∫
0

log (1− x) log2 (1 + x) dx

x

=
1

6

1∫
0

1∫
0

log2 (xy) dxdy

1− xy
=

∫ 1

0

Li3 (x)

x
dx,

where the Polylogarithm, or de Jonquière’s function,

Lit (z) :=

∞∑
m=1

zm

mt
, t ∈ C when |z| < 1; < (t) > 1 when |z| = 1.

The representation for general even zeta constants, see [1] and [10], is also
given as,

ζ (2n) =
(−1)n+1 22n−3π2n

(22n − 1) (2n− 2)!

1∫
0

E2(n−1) (x) dx

where En (x) is an Euler polynomial defined by

2ext

et + 1
=
∑
n≥0

En (x)
tn

n!
.

The work in this paper extends the results of Alzer and Sondow [2], in which
they gave a parameterized series representation of Apery’s constant, which
can be obtained from the integral I (m) for the case m = 1. The following
Lemma will be useful in the development of the main Theorem.

Lemma 1. For m ∈ N\ {1}

I (m) =

1∫
0

logm (1− t) log t

t (1− t)
dt =

1∫
0

logm t log (1− t)
t (1− t)

dt (1.4)

=
(−1)m+1m!

2

(
(m+ 3) ζ (m+ 2)−

m−1∑
r=1

ζ (r + 1) ζ (m+ 1− r)

)
. (1.5)

For m = 1,

I (1) =

1∫
0

log (1− t) log t

t (1− t)
dt =

1∫
0

log t log (1− t)
t (1− t)

dt = 2ζ (3) .
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Proof. We have that for −1 < t < 1

log (1− t)
1− t

= −
∞∑
r=1

Hrt
r (1.6)

so that, substituting (1.6) and integrating by parts yields,

1∫
0

logm t log (1− t)
t (1− t)

dt = −
∞∑
r=1

Hr

1∫
0

tr−1 logm t dt

= (−1)m+1m!

∞∑
r=1

Hr

rm+1
.

We know from Euler’s identity [5], [6] that for q ∈ N\ {1}

2

∞∑
n=1

Hn

nq
= (q + 2) ζ (q + 1)−

q−2∑
r=1

ζ (r + 1) ζ (q − r)

hence (1.5) follows. For the case m = 1, the details of the evaluation of
the integral I (1) = 2ζ (3) are clearly and sufficiently explained in Janous
[8]. �

2. Main Results

We now prove the following Theorem.

Theorem 1. Suppose that the parameter a ≤ 1
2 then

(m+ 1) ζ (m+ 2)−
m−1∑
r=1

ζ (r + 1) ζ (m+ 1− r) (2.1)

=
2 (−1)m+1

m!

∞∑
n=1

1

(1− a)n+1

n∑
j=1

(
n
j

)
(−a)n−j δ (j,m)

where

δ (j,m) = (−1)m+1m!

(
Hj

jm+1
−

m∑
s=1

(−1)s+1

s! jm+1−sψ
(s)(j + 1)

)
. (2.2)

Proof. Let the parameter a ≤ 1
2 and 0 < t < 1 then

−1 <
t− a
1− a

< 1.
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Expanding in a geometric series gives

1

1− t
=

1

1− a

(
1

1− t−a
1−a

)
=

1

1− a

∞∑
n=0

(
t− a
1− a

)n
since

(t− a)n =

n∑
j=0

(
n
j

)
tj (−a)n−j

then

1

1− t
=

∞∑
n=0

1

(1− a)n+1

n∑
j=0

(
n
j

)
tj (−a)n−j .

From the integral

I (m) =

1∫
0

logm t log (1− t)
t (1− t)

dt

=

1∫
0

logm t log (1− t)
∞∑
n=0

1

(1− a)n+1

n∑
j=0

(
n
j

)
tj−1 (−a)n−j dt

=
∞∑
n=0

1

(1− a)n+1

n∑
j=0

(
n
j

)
(−a)n−j δ (j,m) ,

where

δ (j,m) =

1∫
0

tj−1 logm t log (1− t) dt.

To simplify the integral we note

log (1− t) = −
∞∑
r=1

tr

r

and simple substitution leads to,

δ (j,m) = −
1∫

0

∞∑
r=1

tr+j−1

r
logm t dt,

hence, reordering and integrating by part we have,

δ (j,m) = −
∞∑
r=1

(−1)mm!

r (r + j)m+1 .
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For j = 0,

δ (0,m) = (−1)m+1m!
∞∑
r=1

1

rm+2
= (−1)m+1m!ζ (m+ 2) .

For j ≥ 1

δ (j,m) = (−1)m+1m!

∞∑
r=1

1

r (r + j)m+1 ,

we apply partial fraction decomposition so that,

δ (j,m) = (−1)m+1m!
∞∑
r=1

(
1

jm+1

(
1

r
− 1

r + j

)
−

m∑
s=1

1

jm+1−s (j + r)1+s

)

= (−1)m+1m!

(
Hj

jm+1
−

m∑
s=1

(−1)s+1

s!jm+1−sψ
(s)(j + 1)

)
,

which confirms (2.2). Now we have

I (m) =
(−1)m+1m!

2

(
(m+ 3) ζ (m+ 2)−

m−1∑
r=1

ζ (r + 1) ζ (m+ 1− r)

)

=
∞∑
n=0

1

(1− a)n+1

n∑
j=0

(
n
j

)
(−a)n−j δ (j,m)

=
δ (0,m)

(1− a)

∞∑
n=0

(
−a

1− a

)n
+
∞∑
n=1

1

(1− a)n+1

n∑
j=1

(
n
j

)
(−a)n−j δ (j,m)

= (−1)m+1m!ζ (m+ 2) +

∞∑
n=1

1

(1− a)n+1

n∑
j=1

(
n
j

)
(−a)n−j δ (j,m) .

Since the integral

I (m) =

1∫
0

logm t log (1− t)
t (1− t)

dt

=
(−1)m+1m!

2

(
(m+ 3) ζ (m+ 2)−

m−1∑
r=1

ζ (r + 1) ζ (m+ 1− r)

)
then a little simplification leads to (2.1). �

Remark 1. The case m = 1, leads to the representation of Apery’s ζ (3)
constant, and the details of the representation have been clearly given by
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[2] and will not be detailed here. For completeness we list the following as
obtained in [2]

ζ (3) =
∞∑
n=1

1

(1− a)n+1

n∑
j=1

(
n
j

)
(−a)n−j

(
Hj

j2
− ψ(′)(j + 1)

j

)
,

and when a = −1, we have

ζ (3) =

∞∑
n=1

1

2n+1

n∑
j=1

(
n
j

)(
Hj

j2
− ψ(′)(j + 1)

j

)
.

The case m = 2, leads to the new representation of the ζ (4) constant. From
(2.1) we have

3ζ (4)− ζ2 (2) = −
∞∑
n=1

1

(1− a)n+1

n∑
j=1

(
n
j

)
(−a)n−j δ (j, 2)

and from (2.2)

δ (j, 2) = −2

(
Hj

j3
− ψ(′)(j + 1)

j2
+
ψ(′′)(j + 1)

2j

)
(2.3)

Since we know that ζ2 (2) = 5
2ζ (4) then,

ζ (4) = 4
∞∑
n=1

1

(1− a)n+1

n∑
j=1

(
n
j

)
(−a)n−j

(
Hj

j3
− ψ(′)(j + 1)

j2
+
ψ(′′)(j + 1)

2j

)
,

(2.4)

which confirms (1.2). For a = −1

ζ (4) =
∞∑
n=1

1

2n−1

n∑
j=1

(
n
j

)(
Hj

j3
− ψ(′)(j + 1)

j2
+
ψ(′′)(j + 1)

2j

)
,

which may be compared to the ”global” Hasse [7] identity, and rediscovered
by Sondow [15], see also [17]

ζ (4) =
4

7

∞∑
n=0

1

2n

n∑
j=0

(
n
j

)
(−1)j

(j + 1)4
,

or its ”cousin” identity

ζ (4) =
∞∑
n=1

1

2n+1

n∑
j=1

(
n
j

)
1

j4
.

For a = −1
2

ζ (4) = 8
∞∑
n=1

1

3n+1

n∑
j=1

2j
(
n
j

)(
Hj

j3
− ψ(′)(j + 1)

j2
+
ψ(′′)(j + 1)

2j

)
, (2.5)



8 Anthony Sofo

and for a = 1
4

ζ (4) = 16

∞∑
n=1

(−1)n

3n+1

n∑
j=1

(−1)j 22j
(
n
j

)(
Hj

j3
− ψ(′)(j + 1)

j2
+
ψ(′′)(j + 1)

2j

)
.

The case m = 3, leads to the new representation of the product of zeta
constants. From (2.1) we have

4ζ (5)− 2ζ (2) ζ (3) =
1

3

∞∑
n=1

1

(1− a)n+1

n∑
j=1

(
n
j

)
(−a)n−j δ (j, 3)

and from (2.2)

δ (j, 3) = 6

(
Hj

j4
− ψ(′)(j + 1)

j3
+
ψ(′′)(j + 1)

2j2
− ψ(′′′)(j + 1)

6j

)

then,

2ζ (5)−ζ (2) ζ (3) =

∞∑
n=1

1

(1− a)n+1

n∑
j=1

(
n
j

)
(−a)n−j


Hj

j4
− ψ(′)(j+1)

j3

+ψ(′′)(j+1)
2j2

− ψ(′′′)(j+1)
6j

 ,

and when a = −1,

ζ (5) =
1

2
ζ (2) ζ (3) +

∞∑
n=1

1

2n+2

n∑
j=1

(
n
j

)
Hj

j4
− ψ(′)(j+1)

j3

+ψ(′′)(j+1)
2j2

− ψ(′′′)(j+1)
6j

 .

Remark 2. If we take the representation (2.4) and multiply both sides by

(1− a)b+1 with b ∈ R, we have

(1− a)b+1 ζ (4) = 4

∞∑
n=1

(1− a)b−n
n∑
j=1

(
n
j

)
(−a)n−j δ (j, 2) ,

where δ (j, 2) is given by (2.3). Now, differentiating with respect to a results
in

(b+ 1) ζ (4) = 4
∞∑
n=1

1

(1− a)n+1

n∑
j=1

(
n
j

)
(−a)n−j−1 (n− ab+ (a− 1) j) δ (j, 2)
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and with b = 1, a = −1
2 , upon using (2.5) gives us a new representation

ζ (4) =
∞∑
n=1

1

3n+1

n∑
j=1

(
n
j

)
2j+3

(
n+

1

2
− 3

2
j

)
δ (j, 2)

=
∞∑
n=1

1

3n+1

n∑
j=1

(
n
j

)
2j+3

(
n+

1

2
− 3

2
j

)

×

(
Hj

j3
− ψ(′)(j + 1)

j2
+
ψ(′′)(j + 1)

2j

)
.

Summary 1. In this paper, we have provided a method of obtaining zeta
identities from the consideration of the integral (1.1). Another approach
in obtaining identities for values of the Riemann zeta function, Bernoulli
and Euler numbers is based on the theory of polynomials related to the
Kontorovich-Lebedev transform. Yakubovich [18], considers the sequence
of polynomials (pn (x))n≥0 defined in terms of a certain second-order dif-
ferential operator, belonging to the Sheffer’s sequences and related to the
Kontorovich-Lebedev transform. Some manipulation of the sequence (pn (x))n≥0 ,
then exhibit several interesting identities. Other representations of harmonic
number sums and zeta functions may be seen in the works [3], [11], [12], [13],
[14] and references therein.

Acknowledgement 1. The author is grateful to the referees for their sug-
gestions and careful reading of the paper.
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