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Abstract
Treatment of BRAF mutant melanoma with kinase inhibitors has been associated with rapid tumor regression;
however, this clinical benefit is short-lived, and most patients relapse. A number of studies suggest that the
extracellular environment promotes BRAF inhibitor resistance and tumor progression. Extracellular vesicles, such
as exosomes, are functional mediators in the extracellular environment. They are small vesicles known to carry a
concentrated group of functional cargo and serve as intercellular communicators not only locally but also
systemically. Increasingly, it is reported that extracellular vesicles facilitate the development of drug resistance in
cancer; however, their role in BRAF inhibitor resistance in melanoma is unclear. Here we investigated if
extracellular vesicles from BRAF inhibitor–resistant melanoma could influence drug sensitivity in recipient
melanoma cells. We demonstrate that the resistance driver, PDGFRβ, can be transferred to recipient melanoma
cells via extracellular vesicles, resulting in a dose-dependent activation of PI3K/AKT signaling and escape from
MAPK pathway BRAF inhibition. These data suggest that the BRAF inhibitor–sensitive phenotype of metastatic
melanoma can be altered by delivery of PDGFRβ by extracellular vesicles derived from neighboring drug-resistant
melanoma cells.
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Introduction
BRAF inhibitors (BRAFis) have contributed to a significant
improvement in survival rate for melanoma patients harboring
tumors with V600 activating mutation in the BRAF oncogene [1–3].
BRAF is a component of the mitogen-activated protein kinase
(MAPK) pathway involved in cell differentiation and survival.
Around 40% to 60% of cutaneous melanomas express somatic
mutations in BRAF, resulting in constitutive activation of the MAPK
pathway and cell proliferation [4].

Treatment of BRAF mutant melanoma with BRAF kinase inhibitors,
such as vemurafenib and dabrafenib, has been associatedwith rapid tumor
regression in many patients; unfortunately, clinical benefit is short-lived,
and most patients relapse within 6 to 9 months [5,6]. Multiple
mechanisms of resistance have been described, including activation of
NRAS, KRAS, and MEK; amplification of the BRAF gene; alternative
splicing of BRAF; upregulation of CRAF and COT (MAP3K8), an
ERK upstream component; or upregulation of receptor tyrosine
kinases, such as EGFR and PDGFRβ and PDGFRα, which induce
activation of the phosphatidylinositol-3-OH kinase (PI3K)–AKT
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signaling pathway, bypassing BRAF inhibition of the MAPK pathway
(for a review, see [7]).
A number of recent studies on BRAFi resistance suggest a role for

the tumor microenvironment in mediating escape from BRAF
inhibition [8–10], with the stromal secretome and recombinant RTK
ligands capable of rescuing melanoma cells from BRAFi [8,9,11].
Extracellular membrane vesicles, namely, exosomes, have become
recognized as important in cellular communication [12] and tumor
microenvironment regulation [13]. Unlike soluble secreted factors,
extracellular vesicles (EVs) carry a concentrated group of functional
cargo, provide protection to the transported molecules, and serve as
intercellular communicators not only locally but also systemically.
Here we evaluated whether EVs released from patient-derived

melanoma cells could influence drug sensitivity in recipient cells. We
found that EVs can mediate resistance in melanoma cells that are
susceptible to BRAF inhibition by transfer of the RTK PDGFRβ.
Together, our results support the hypothesis that EVs released from
BRAFi-resistant cells could spread drug resistance by transferring
protein cargo to susceptible cells at distant sites.

Materials and Methods

Reagents and Antibodies
Antibodies for ERK, pERK, AKT, pAKT, EGFR, α/β tubulin,

PDGFRβ, ALIX, BAD, and calnexin were purchased from Cell Signaling
Technologies (Danvers, MA) and flotillin-1 from BD Biosciences. The
receptor tyrosine kinase antibody array andPDGFRβneutralizing antibody
were obtained fromR&Dsystems.TheBRAFi, PLX4720,was synthesized
by Selleck Chemicals and solubilized inDMSO to a stock concentration of
1M.Phospho-RTKarrayswere performed according to themanufacturer's
recommendations (Human Phospho-RTK Array Kit, R&D Systems).

Cell Culture
Melanoma cell lines were established from resected melanoma

metastases bymechanical dissociation of tissue with subsequent overnight
digestion in media containing collagenase IV at 37°C. The human
melanoma cell line LM-MEL-64 expressing the V600E BRAF mutation
has been described previously [14]. Melanoma cell lines and A431
(ATCC) were maintained at 37°C in a humidified atmosphere at 5%
CO2 grown in RPMI 1640 supplemented with 10% fetal bovine serum,
100 IU/ml penicillin, 100 μg/ml streptomycin, and 2 nmol/l glutamine
(Life Technologies, USA). LM-MEL-64R3 was maintained in the
above-mentioned medium and 1 μmol/L of PLX4720, except where
otherwise indicated. Established cell lines were mycoplasma-tested using
the MycoAlert test (Lonza Rockland, Inc., Rockland, ME). All tissue
donors provided written informed consent for tissue collection and
research, which was covered by protocols approved by the Austin Health
Human Research Ethics Committee, Melbourne, Australia.

Generation of PLX4720-Resistant Cell Lines
LM-MEL-64 cells were plated, and after overnight incubation, the

medium was removed and fresh medium was added together with
PLX4720 at 1 μmol/l. Fresh medium containing drug was added to
the cells every 3 days for 10 weeks to generate LM-MEL-64R3.

Proliferation Assays
Melanoma cells were plated out and treated as described. Cellular

viability was assessed using the CellTiter 96 AQueous One Solution
Cell Proliferation Assay (Promega Corporation, Madison, WI)
according to the manufacturers' protocol.
Co-Culture Assays
To determine if EVs can rescue cells from BRAF inhibition 24

hours after plating, LM-MEL-64 (4 × 105 cells per well in a 6-well
plate or 2.5 × 105 cells in a 12-well plate) was incubated with 50,
100, or 200 μg/ml of EVs derived from LM-MEL-64 or
LM-MEL-64R3 for 1 hour followed by addition of 500 nm or 1
μM PLX4720 with and without PDGFR neutralizing antibody (50
μg/ml of EVs was used for the PDGFR neutralizing antibody
experiments). After 15 minutes or 24 hours, cell signaling was
examined by Western blot. To determine changes in proliferation,
cells were incubated with an additional dose of EVs (50 μg/ml) 8
hours after the initial treatment, and cell viability was determined by
MTS assay.

Isolation of Crude Exosomes (EVs) fromCell Culture Supernatants
Exosomes of bovine origin were removed from FCS prior to use in

cell culture by overnight (18 hours, 4°C) ultracentrifugation at
100,000 ×g (45Ti rotor; Beckman Coulter Inc., USA). Cells
(~2 × 107) were cultured for 3 to 4 days in this FCS-depleted
media prior to exosome isolation by differential centrifugation.
Cellular debris was removed by centrifugation at 2000 ×g for 10
minutes, and the supernatant was centrifuged at 10,000 ×g for 30
minutes at 4°C before crude exosomes were pelleted by ultracentri-
fugation at 120,000 ×g for 1 hour 30 minutes at 4°C. Exosomes were
pooled, washed in PBS, repelleted, and resuspended in PBS.

Western Immunoblotting
Confluent cell cultures or exosomes were lysed in RIPA buffer

(Pierce) on ice for 20 minutes, and protein concentration was
determined for cell lysates and exosomes (prepared as described
above) by BCA assay (Pierce). Equivalent amounts of cell or exosomes
were electrophoresed on 4% to 12% Bis-Tris gels (NuPage;
Invitrogen) and then transferred onto nitrocellulose membrane
(iBlot, Life Technologies). Membranes were blocked in LiCor
blocking buffer (LI-COR, Lincoln, NE), probed with primary
antibody diluted in PBS-T overnight at 4°C, and then incubated with
either IR labeled secondary antibodies (IRDye 800CW or IRDye
680LT, 1:20,000, LI-COR). Immunoblots were analyzed with the
Odyssey Infrared imaging system (LI-COR).

Exosome Purification by Sucrose Density Gradient Centrifugation
Crude exosomes (20 μg) were resuspended in 1 ml 0.25 M sucrose

and 20 mM HEPES pH 7.2, overlaid on top of 6-ml linear sucrose
gradient (2.0-0.25 M sucrose, 20 mM HEPES pH 7.2), and
ultracentrifuged (SW41 rotor) at 70,000 ×g for 16 hours at 4°C. The
refractive index of each fraction before and after ultracentrifugation
was measured using a Palm Abbe Digital Refractometer. Eight 1-ml
gradient fractions were collected, diluted in 10 ml PBS, and
ultracentrifuged for 1 hour at 200,000 ×g. Pellets were solubilized
in sample buffer, electrophoresed, and immunoblotted as described
above to determine enriched exosomal-containing fractions.

Electron Microscopy
An aliquot of 1 μg of exosomes in PBS was fixed with 1%

glutaraldehyde for 30 minutes or O/N at 4°C, 6 μl was absorbed onto
glow-discharged 300-mesh heavy-duty carbon-coated formvar Cu
grids (ProSciTech, Kirwan, QLD, Australia) for 5 minutes, and excess
was blotted on filter paper (Whatman, Maidstone, UK).Grids were
washed twice with MilliQ water and negative stained with 2.5%
uranyl acetate. Images were taken on a Tecnai G2F30 (FEI,



934 Exosomes Mediate BRAF Inhibitor Resistance in Melanoma Vella et al. Neoplasia Vol. 19, No. 11, 2017
Eindhoven, the Netherlands) transmission electron microscope
operating at 300 kV (Bio21 Molecular Science and Biotechnology
Institute, University of Melbourne).

qRT-PCR
RNA for qPCR was extracted using the RNeasy kit (Qiagen,

Germany). Reverse transcription was carried out using theHighCapacity
cDNA RT kit (Applied Biosystems, Life Technologies, USA). Following
reverse transcription, qRT-PCR was performed using SYBR Green
(Qiagen, Germany). beta-Actin (ActB) was used as internal control. The
following primers (Sigma-Aldrich) were used: ActB (forward) 5′-ctg gaa
cgg tga agg tga ca-3′ and (reverse) 5′-cgg cca cat tgt gaa ctt tg-3′, and
PDGFRβ (forward) 5′-TTCCATGCCGAGTAACAGAC-3′ and (re-
verse) 5′-CGTTGGTGATCATAGGGGAC-3′.

Statistical Analysis
The percentage difference was calculated relative to DMSO-treated

control. *P ≤ .05, **P ≤ .01, and *P ≤ .001; repeated-measures ANOVA
followed by Holm-Sidak's multiple-comparisons test was performed.

Results

Generation of a Melanoma Cell Line with Acquired Resistance
to PLX4720

To investigate whether exosomes could mediate acquired resistance
to BRAFis in melanoma, we first generated the BRAFi-resistant line
LM-MEL-64R3 by culturing the BRAF V600E melanoma cell line
LM-MEL-64 in 1 μmol/l of the BRAFi PLX4720 for 10 weeks. The
A
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Figure 1. Generation of a patient-derivedmelanoma cell linewith acquire
less sensitive to BRAF inhibition. Proliferation asmeasured byMTS assay
increasing concentrations of the BRAFi PLX4720 (0, 500 nM, 1 μM, 2 μM
performed in triplicate. (B) LM-MEL-64R3 displays differential MAPK rea
AKT in LM-MEL-64 and LM-MEL-64R3 in the absence or presence of 50
increasing PLX4720 concentrations (0, 500 nM, and 1 μM), and the effect
total ERK and p-ERK1/2, and total AKT and p-AKT levels. Data show repr
resistant line was less sensitive to the growth-inhibitory effects of
PLX4720 than the parental line as shown in a proliferation assay
(Figure 1A). Because acquired BRAFi resistance can be mediated by
reactivation of the MAPK pathway or by activation of the PI3K/
AKT/AKT pathway, we evaluated the phosphorylation of the RAF
downstream effector, ERK1/2, and P13K effector, AKT, in
LM-MEL-64 versus LM-MEL-64R3 with and without PLX4720.
Following 4-hour BRAF inhibition, p-ERK1/2 was reduced in
LM-MEL-64 and partially reduced in LM-MEL-64R3 (Figure 1B),
suggesting that reactivated MAPK signaling was not the sole survival
pathway in these cells. Indeed, p-AKT was highly elevated in
LM-MEL-64R3, suggesting that resistance was associated with
activation of the PI3K/AKT/AKT pathway.

Adaptive resistance, mediated by PI3K/AKT/AKT pathway
activation, can result from RTK signaling (for a review, see [7]), so
we sought to identify RTKs hyperactivated in LM-MEL-64R3 using
RTK phospho-antibody arrays. Consistent with previous studies [15],
phosphorylation of two RTKs, EGFR and PDGFRβ, was greater in
LM-MEL-64R3 relative to the parental cell line following short-term
treatment with BRAFi (Figure 2A).

Of these two candidate RTKs, only PDGFRβ RNA and protein
levels were consistently overexpressed in long-term–treated
LM-MEL-64R3 cells (Figure 2, B and C). Short-term exposure of
melanoma cells to BRAFi is known to initially drive hyperpho-
sphorylation of EGFR [16]. However, after prolonged drug exposure,
cells undergo adaptive changes which allow long-term stable resistant
cells to survive [16].
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are representative of three independent experiments.
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This suggested PDGFRβ-mediated resistance to BRAF inhibi-
tion, and not EGFR (Figure 2B), in LM-MEL-64R3, consistent
with previous studies [15,17,18]. No changes were detected in
NRAS, KRAS, and MEK sequences, and the BRAF (V600E)
mutation was present in both parental and resistant cell lines (data
not shown).

LM-MEL-64 and LM-MEL-64R3 Release EVs
Because soluble mediators in the microenvironment can promote

therapy resistance [8–11,19,20], we hypothesized that EVs might aid
in promoting escape from BRAF inhibition. To evaluate EV release
from LM-MEL-64 cell lines, conditioned cell culture media were
subjected to differential ultracentrifugation, and the resulting pellet
was examined by Western blotting, electron microscopy, and density
gradient as previously described [21] (Figure 3).
Exosomes from both drug-sensitive and -resistant cell lines were

found to contain the established exosomal marker proteins ALIX,
Syntenin, and flotillin-1 and were negative for calnexin and BAD.
Neither was enriched for the cytosolic signaling proteins ERK, pERK,
AKT, and pAKT, confirming that the preparations were not heavily
contaminated with cellular debris (Figure 3A). The purified vesicles
were examined by negative staining transmission electron microscopy
which revealed that both preparations contained vesicles which were
membrane bound, were “cup shaped,” and had a similar size
(~50-150 nm diameter) to previously described exosomes (Figure 3B)
[22]. Exosomes float in sucrose gradients with a density ranging from
1.13 g/ml to 1.19 g/ml depending on the cell type [23].
Immunoblotting of sucrose gradient fractions showed that
LM-MEL vesicles migrated to a density of 1.12 to 1.18 g/ml with
a concomitant enrichment in ALIX (Figure 3C). Thus, the EVs fulfill
the established criteria for exosomes [22].
Exosomes Derived from LM-MEL-64R Are Enriched for
PDGFRβ

Exosomes contain a common set of molecules that reflect their
endosomal origin, as well as cell type–specific components, such as
overexpressed proteins. Because LM-MEL64R demonstrated in-
creased PDGFRβ expression, exosomes derived from both the
sensitive and resistant lines were examined for PDGFRβ protein by
Western blotting (Figure 3A).

To confirm that exosomes released from LM-MEL-64R3
contained PDGFRβ, exosomes derived from LM-MEL-64R3 were
floated into a sucrose gradient and probed for PDGFRβ and the
exosome marker flotillin (Figure 3D). PDGFRβ was detected at the
same density as exosomes, indicating that PDGFRβ was likely to be
exosome associated. These results are analogous to previous findings
in the commonly used BRAF V600E mutant M229 melanoma cell
line and its PLX4032-resistant counterpart, M229AR [15]. Similar to
LM-MEL-64R3, the M229AR cell line acquired BRAFi resistance by
upregulating PDGFRβ. Exosomes released from the resistant cell line,
M229AR, contained PDGFRβ, whereas expression was not detected
in exosomes released from the parental cell line [24]. Together, these
studies demonstrate that PDGFRβ-driven BRAFi-resistant cells
secrete exosomes carrying the receptor and represent a unique
oncogenic PDGFRβ protein delivery system.

Exosomes Derived from BRAFi Resistance Cells Rescue Growth
Inhibition

Melanomas are heterogeneous tumors composed of subpopula-
tions of melanoma cells with distinct phenotypes that can arise
because of, or independently from, genetic mutations [25]. This has
implications for the emergence of resistance during treatment because
subpopulations are differentially sensitive to drugs [7].
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We assessed whether exosomes could transfer PDGFRβ from
drug-resistant to -sensitive cell lines, thereby enabling escape from
growth inhibition. The LM-MEL-64 BRAFi-sensitive cell was treated
with PLX4720 in the presence of exosomes derived from both
sensitive and resistant lines. PLX4720 suppressed growth of
LM-MEL-64 cell line compared with DMSO-treated control. This
effect was completely abrogated by exosomes derived from
LM-MEL-64R3 (Figure 4).
Exosomes Derived from Drug-Resistant Cells Rescue Recipient
Cells from BRAF Inhibition

Cancer cell proliferation typically results from signaling via the
P13K/AKT or MAPK/ERK pathways, and exosomes have been
shown to promote proliferation by directly activating these pathways
in recipient cells [26].

To determine which signaling pathway was activated by
LM-MEL-64R3 exosomes in BRAF-inhibited LM-MEL-64 cells,
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ANOVA followed by Holm-Sidak's multiple-comparisons test.
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exosomes were incubated with LM-MEL-64 in the presence of
PLX4720, and pERK and pAKT levels were determined by Western
blotting. Drug-suppressed ERK phosphorylation in LM-MEL-64
and the addition of exosomes did not affect this, whether from
LM-MEL64 or from LM-MEL-64R3. In contrast, the addition of
LM-MEL-64R3 exosomes to drug-inhibited cells resulted in a
dose-dependent increase in pAKT, indicating that exosome activation
of PI3K/AKT signaling was the likely mechanism mediating escape
from MAPK pathway inhibition (Figure 5).

Resistance Drivers Are Transferred via Exosomes and Activate
PI3K/AKT Signaling in Recipient Cells
To assess whether exosomal PDGFRβ derived from

LM-MEL-64R3 cells could be transferred to recipient cells,
LM-MEL-64 was incubated with preparations of exosomes derived
from LM-MEL-64 or LM-MEL64R3 for 15 minutes and then
extensively washed and then lysed, and PDGFRβ was detected by
Western blotting. Figure 6A shows that PDGFRβ was detected in the
recipient cell LM-MEL-64 cell lysate. To determine whether
incorporation of PDGFRβ resulted in AKT phosphorylation,
LM-MEL-64 was treated with PLX4720 and LM-MEL-64R3
exosomes in the presence of a neutralizing PDGFRβ antibody. By
blocking PDGFRβ signaling, exosome-mediated activation of the
PI3K/AKT pathway in LM-MEL-64R3 was markedly reduced
(Figure 6B). These results indicate that exosomes released from
BRAFi-resistant cells transfer PDGFRβ and activate PI3K/AKT
pathway signaling in recipient cells. This likely accounts for the escape
from BRAF inhibition seen in these cells.

The transfer of resistance via exosomal PDGFRβ is anticipated to
occur in other melanomas and not be restricted to LM-MEL-64. The
well-established cell line M229AR, with acquired BRAFi resistance
via PDGFRβ upregulation, also releases exosomes enriched in
PDGFRβ, suggesting that a common mechanism exists for
PDGFRβ-driven resistant melanoma [24]. Thus, the transfer of
resistance via exosomal PDGFRβmay occur in other melanomas, and
further research is warranted to determine the relevance of this finding
in vivo.

Discussion
Clinical benefit from BRAFis in metastatic melanoma is often
short-lived due to the development of drug resistance. This resistance
can involve mechanisms that are intrinsic to the cancer cell or that
involve extracellular factors [11]. Here we report that EVs, namely
exosomes, can contribute to the development of BRAFi resistance.

Soluble mediators in the microenvironment, first shown by
Straussman et al. and Wilson et al. in 2012 [8,9], can support cancer
growth and resistance to BRAFi therapy. Secreted hepatocyte growth
factor (HGF) was shown to activate the HGF receptor MET,
reactivating the MAPK and PI3K/AKT-AKT signaling pathways and
bypassing BRAF inhibition [8,9]. These and other studies laid the
foundations for the current work by showing that paracrine
interactions promote resistance to BRAF blockade [10,11,19,27–29].

We now demonstrate that, in addition to soluble mediators in the
extracellular environment, exosomes can also modulate BRAFi
sensitivity. Parental LM-MEL-64 cells pretreated with exosomes
derived from the resistant cell line had significantly increased cell
viability which was associated with an increase in PI3K/AKT
signaling. Further investigation revealed that this phenomenon was
a result of exosomal PDGFRβ transfer between cells. Of note, this
effect could be prevented with PDGFRβ neutralizing antibodies This
suggests that exosomal transfer of PDGFRβ could be a potential
mechanism for the transfer of resistance between subpopulations of
cells in BRAF mutant melanoma. [25].

All cancer cells release exosomes [30]. Functions that have been
attributed to melanoma exosomes include stimulation of endothelial
signaling [31], “preparation” of lymph nodes and bone marrow cells
to create a niche for metastasis [32,33], and acceleration of lung
metastasis [34]. Exosomes facilitate resistance to therapeutics in many
cancers including breast, prostate, glioblastoma, multiple myeloma,
lung, and ovarian cancer (for review, see [35]). We now propose that
resistance to BRAFi can be added to this list.

Exosomes from different cellular origins contain both common
(shared) and cell type–specific components. The former includes
proteins that reflect the endosomal origin of exosomes; and the latter,
cancer cell–specific molecules such as RTKs, oncoproteins, phos-
phorylated proteins, and miRNA species [26]. Consistent with this
observation, we found high expression of PDGFRβ in
LM-MEL-64R3 which was reflected in the exosomes released by
this cell line.

Following release from a cell, exosomes can transfer receptors with
oncogenic activity to recipient cells, resulting in signal pathway
activation. Cancer cell–derived exosomes have been shown to carry
growth factor receptors such as EGFR, EGFRVIII [36], HGFR
(MET) [33], and cKIT (normal cellular homolog of the viral
oncoprotein v-Kit) [37]. EGFRvIII has been shown to be “shared”



62-

49-

38-

28-

pAKT

tubulin

AKT

ERK

38-

28-

pERK

1. Control
2. PLX4720 500nM
3. LM-MEL-64 EVs (50µg/ml)
4. LM-MEL-64R3 EVs (50µg/ml)
5. PLX4720 + LM-MEL-64 EVs (50µg/ml)
6. PLX4720 + LM-MEL-64R3 EVs (50µg/ml)
7. PLX4720 + LM-MEL-64 EVs (100µg/ml)
8. PLX4720 + LM-MEL-64R3 EVs (100µg/ml)
9. PLX4720 + LM-MEL-64 EVs (200µg/ml)
10. PLX4720 + LM-MEL-64R3 EVs (200µg/ml)

1 32 7 84 5 6 9 10

LM-MEL-64

BA

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

p
E

R
K

 le
ve

l r
el

at
iv

e 
to

 E
R

K * * *

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

500

550

600

p
A

K
T

 le
ve

l r
el

at
iv

e 
to

 A
K

T

*

*

* *

Figure 5. Exosomes derived from BRAFiR cells rescue recipient cells from BRAF inhibition by activation of PI3K signaling pathways. (A)
Western blot analysis of LM-MEL-64 cell lysate for total and phosphorylated ERK and AKT. LM-MEL-64 was incubated with or without 500
nM PLX4720 (lanes 1 and 2) and increasing doses of exosomes for 15 minutes. Exosomes derived from the BRAFi-resistant cell line,
LM-MEL-64R3, enhanced pAKT signaling in BRAF-inhibited LM-MEL-64 cells, indicating that exosomes derived from resistance cell lines
are capable of activating alternate cell signaling pathways in BRAFi cells. Images are representative of three independent experiments. (B)
Densitometric analysis. Expressed as mean ± S.E.M. values of three independent experiments. The relative level of pERK relative to total
ERK or pAKT relative AKT are shown. The percentage difference was calculated relative to DMSO-treated control. *P ≤ .05, **P ≤ .01;
repeated-measures ANOVA followed by Holm-Sidak's multiple-comparisons test.
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between glioma cells by intercellular transfer of exosomes and
merging with the plasma membranes of cancer cells lacking EGFRvIII
[38]. This event leads to the transfer of oncogenic activity, including
activation of MAPK signaling pathways [38]. In this study, we now
show that another RTK, PDGFRβ, can be trafficked via exosomes.

Exosomes were first implicated in drug resistance in cancer
following the discovery that they could mediate chemotherapeutic
drug expulsion from the cell (for a review, see [35]). Many anticancer
drugs, including cisplatin and doxorubin, can be encapsulated and
transported out of cells via exosomes, resulting in a chemoresistant
tumor. Other exosome-mediated mechanisms of resistance have
recently come to light; these include the exchange of cellular material
such as stroma-derived RNA driving chemotherapy and radiation
resistance in breast cancer [39] and bone marrow stromal cell–
induced drug resistance to bortezomib in multiple myeloma cells
[40]. However, the exosome isolation method used in this study and
many others (ultracentrifugation) isolates a heterogenous population
of exosomes and other small EVs [41,42], so further dissection of
exosome heterogeneity is necessary to determine the role of each
vesicle subpopulations. Although PDGFRβ appears to be the
predominant driver of exosome-mediated resistance in this model,
we cannot rule out a role for other exosomal cargo such as protein,
lipid, or small RNA, and further studies will need to be performed to
determine the relative contribution of these factors.

Detecting preexisting intrinsic BRAFi resistance and monitoring the
development of resistance following treatment are critical clinical
challenges. To guide clinical management and to minimize clinical
deterioration and distress, it would be extremely valuable to both detect
emerging drug resistance and identify underlying resistance mechanisms
early, before treatment failure becomes clinically apparent. Because
exosomes are actively secreted, extracellular sampling of exosomes could
provide insights into preexisting or developing resistance.

The presence of tumor-derived exosomes in the circulation and
stability in blood provides a unique opportunity to develop a blood
test to interrogate intratumoral biology. Thus, exosomes may be
biomarkers for cancer behavior, making it possible to monitor the
evolution of the tumor's biological characteristics ahead of clinical
failure, thereby facilitating prompt clinical decision making.
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Figure 6. Resistance drivers are transferred via exosomes and activate PI3K signaling in recipient cells. (A) Exosomal PDGFRβ is
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In conclusion, we have shown in a cell model that exosomes
facilitate the escape of melanoma cells from BRAF inhibition. In light
of the complexities of the microenvironment and the difficulties
associated with studying exosomal trafficking, it is difficult to unravel
the importance of exosome-mediated BRAF resistance in vivo.
Nonetheless, the recognition that exosomes can traffic widely
throughout the body as stable entities has substantive implications.
Indeed, the possibility that drug resistance might be transferred in an
infectious manner between sites of metastatic disease warrants
investigation. A greater understanding of such mechanisms may prove
critical to understanding, countering, and detecting exosome-associated
drug resistance.
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