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ABSTRACT 

A stochastic model for analysing the response of sleeping subjects to sound stimuli 
whose intensity varies with time is developed, generalizing a model developed in [1] for 
analysing the response of sleeping subjects to sound stimuli of constant intensity. The 
model is used to analyse the results of an experiment carried out by Ball and Bruck [2] to 
compare the response time of sleeping subjects to three different auditory stimuli. The 
sound intensity increased steadily with time and the young adult subjects (seven males 
and seven females) were tested when sober and with blood alcohol levels of 0.05 and 
0.08.  The analysis revealed that alcohol had a very significant effect in slowing down the 
response of all subjects. It also revealed that females responded faster than males at all 
alcohol levels. The great advantage of using the stochastic model is that it permits the 
estimation of the probability that the response time will exceed high values that may put 
the sleeping occupant at a severe risk of death or injury in a fire. 

 KEYWORDS: human behaviour, auditory fire cues, response time, influence of sound 
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INTRODUCTION 

In two previous papers, ([1], [3]), the authors have introduced a random walk model to 
analyse the length of time to response of  sleeping subjects exposed to fire cues. In the 
first paper, two experiments were analysed. In the first one, sleeping young adults were 
exposed to a smoke detector alarm received at 60 dBA. In the second one, children were 
exposed to an alarm that was received at 89 dBA. In the second paper, two further 
experiments were analysed. In the first, adults aged 25-55 years were  exposed to two 
auditory cues (a crackling noise and a “shuffling” noise),and a visual cue (a flickering 
light). The intensity of the auditory cues was about 45 dBA at the pillow, while the  
intensity of the light cue was about 5 lux. In the second experiment, young adults were 
exposed to an olfactory cue mimicking fire smoke. A dispenser emitted puffs of  a 
mixture of guaiacol in an ethanol base, resulting in a concentration at the pillow of about 
2 parts per million. 

The Random Walk Model 

It was pointed out in [3] that one of the most important aims of the study of the response 
time to fire cues was to estimate the high quantiles of the distribution of the response 
time, since it is those who respond the most slowly who are the most at risk. However, 
the raw experimental results based on a comparatively small number of observations 
cannot by themselves be extrapolated to the levels that are infrequently reached. The only 
alternative is to develop a theoretical model for the response to fire cues and fit it to the 
experimental data. The model that was developed to analyse the experiments just 
described is called a memory retrieval theory because it considers  an item recognition 
task as testing a single probe item against a group of items in memory which has been 



designated as the memory search set. The retrieval process consists of comparing a 
collection of features of each element of the memory search set with the probe item. In 
the application of the model to the response of subjects to a fire cue the probe item is 
identified with the stimulus induced in the sleeping subject by the cue. This stimulus is 
compared with the items of the memory search set. Comparison of a probe to a memory-
set item proceeds by the gradual accumulation of evidence, that is, information 
representing the goodness of match, over time. It is easiest to conceptualize the 
comparison process as a feature-matching process in which probe and memory-set item 
features are matched one by one. A count is kept of the combined sum of the number of 
feature matches and nonmatches, so that for a feature match, a counter is incremented, 
and for a feature nonmatch, the counter is decremented. The counter begins at some 
starting value Z, and if a total of A counts are reached, the probe is declared to match the 
memory-set item (i.e. A - Z has more feature matches than nonmatches). But if a total of 
zero counts are reached, an item nonmatch is declared. The response is thus modelled by 
a random walk bounded from above and below. The lower boundary is taken to be 0. The 
upper boundary is denoted by A and the starting value by Z. The process ends when either 
of the boundaries is reached. If the lower boundary is reached first the subject dismisses 
the stimulus and continues to sleep. If, on the other hand, the upper boundary is reached 
first the subject wakes up. Thus, the upper boundary A can be thought of as a threshold of 
sensitivity to the stimulus. In the experiments analysed in both papers the intensity of the 
stimulus was intended to remain stable. On that account, the upper threshold was 
assumed to be fixed. The random walk is then described by four parameters: 

1. Z, the starting value, 

2. A, the wake up threshold, 

3.  the probability p of a match between the stimulus and an item of the memory 
set, resulting in an upward jump of one unit at each step. A non-match, that 
occurs with probability 1-p, results in a downward jump of one unit. The 
parameter p will be referred to in the rest of the paper as the recognition 
probability. 

4. the length d of one step. 

Once a value for A (or Z) is decided upon, the other three parameters of the random walk 
can be estimated from the data. 
 
Choosing a value for A involves a compromise between two conflicting considerations. 
On the one hand, choosing A (or Z) too small would make the random walk too coarse. 
On the other hand, making A (or Z) too large would vastly increase the amount of 
computation required without achieving a more significant fit.  In [1] A was taken to be 
100, and in [3] Z was taken to be 50. 
 

THE EFFECT OF SOUND INTENSITY AND ALCOHOL: METHODOLOGY 

 
In 2003 an experiment was carried out by Ball and Bruck [2] to compare the response 
time of sleeping subjects to three different auditory stimuli, as well as to determine the 
effect of sex and alcohol consumption on responsiveness. Fourteen young adults (7 
males, 7 females) were recruited. The ages of the participants ranged from 18 to 25 years. 
All subjects reported that they felt themselves to sleep more deeply than average. 



  
When the participant was confirmed to be in stage 4 sleep for at least 90 seconds a 
computer program was started. The computer was instructed to play the selected sound 
for a period of 30 seconds, beginning at 35 dBA. The intensity of the sound was then 
increased to 40 dBA for a further 30 seconds. The incremental pattern was continued 
until 95 dBA or until the participant awoke and pressed a button at their bedside, 
whichever occurred first. The time dependence of the sound intensity is illustrated in 
figure 2. If the participant did not respond before 30 seconds at 95 dBA, the sound 
continued for a period of 3 minutes. The entire process from start to finish took 9.5 
minutes. Participants who slept through the signal were coded as awakening after 10 
minutes. As far as the sound intensity level was concerned, responses in the first 30 
second period at 95 dBA was recorded as 95 dBA, responses in the second period of 30 
seconds at 95 dBA were recorded as 96 dBA, and so on, up to 101 dBA for awakening in 
the final (seventh) period at 95 dBA. Non-awakening was recorded as 105 dBA (10 dBA 
higher than the real maximum sound level). 
 
Participants were tested on 3 non-consecutive nights in three different conditions: no 
alcohol, 0.05 blood alcohol content and 0.08 blood alcohol content. The order of the latter 
two was counterbalanced. 

The response time analysed in this paper is the time until the subject presses a button 
“Behavioural response”). Awakening time was also assessed by means of an 
electroencephalogram (EEG), but these times are not reported in this paper as data 
analysis was not completed. 
Three sounds were used: 

1. Female Voice. This signal consisted of a female actor's voice that warned of 
danger due to fire in an emotional tone and said that the person must wake up 
and investigate. There was a core sound of 10 seconds duration, repeated 3 times 
in 30 seconds. 

2. Australian Standard Alarm (“ASA”). This alarm signal was the modulating 
high frequency beeping sound that is used in residential smoke alarms in 
Australia. 

3. Temporal-Three Evacuation Signal (“T3 Alarm”). A lower frequency alarm 
signal that sounds the Temporal-Three pattern as laid down in International 
Standard 8201 (see [4]). 

EXPERIMENTAL RESULTS 

 
Table 1 lists the mean and standard deviation of the behavioural response time (in 
seconds) to each of the three sounds and each of the three alcohol levels, for males and 
females. 



 

Table 1.Mean and standard deviation of behavioural response time (male and female). 
 

Sound Alcohol 
level 

Male mean Male 
standard 
deviation 

Female 
mean 

Female 
standard 
deviation 

Female 
voice 

Sober 
0,05 
0.08 

168.43 
421.71 
369.71 

91.95 
216.71 
161.95 

119.43 
201.43 
227.14 

80.55 
116.92 
189.16 

ASA Sober 
0,05 
0.08 

219.71 
385.43 
427.57 

70.15 
124.81 
137.38 

246.00 
246.14 
270.14 

190.57 
108.77 
157.00 

T3 Alarm Sober 
0,05 
0.08 

174.57 
341.71 
425.71 

88.43 
173.71 
166.81 

125.43 
196.00 
195.00 

82.35 
106.05 
187.25 

 
 While the observed means are reasonably reliable, there are not enough data to ensure 
the reliability of the observed standard deviations. However, a plot of the standard 
deviations against the means (figure 1) shows that the standard deviations are roughly 
proportional to the means. Regression of the standard deviation on the mean (with zero 
intercept) shows that the ratio of the standard deviation to the mean (i.e. the “coefficient 
of variation”) can be taken to be approximately constant at 0.49. Analysis of variance 
confirms that the proportionality is highly significant. In the development of the model in 
the next section the coefficient of variation is taken to be constant with the value 0.49 just 
derived. 
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Fig. 1. Regression of observed standard deviation on observed mean.  

(Regression line equation: standard deviation = 0.4812 ×mean.)  
  



BASIC MODELLING ASSUMPTIONS 

  
 The experiment analysed in this paper differs from those analysed in [1] and [2] in a 
basic respect: while in the two papers just cited the intensity of the stimulus remained 
constant throughout the experiment, here the intensity of the sound is increased with time 
in the form of a step function (figure 2).  
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Fig.2. Time dependence of sound intensity. 

  
 
The way the sound intensity increases with time is intended to ensure that all subjects 
eventually wake up, at least theoretically. This takes away one of the observational values 
used to fit the model, namely the probability of not awakening. On this account it is 
appropriate to modify the random walk model described above by removing the lower 
boundary. A single upper boundary model has been used by Smith [5]. It was also 
recommended to us by R.Ratcliff, one of the originators of the random walk model (see 
[6]), in a private communication dated 29 January 2003. Removing the lower boundary 
leaves us with just three parameters: the wake up threshold A, the recognition probability 
p and the length d of a step. 

 

There are in principle two ways of accounting for the increase in the sound intensity: 

1. decreasing the step length. This is on the assumption that as the sound intensity 
increases the brain processes the incoming information faster; 

2. decreasing the height of the threshold. This is on the assumption that as the 
sound intensity increases the sleeping subject becomes more sensitive to the 
matches. 

 

There are good grounds to believe that the speed of information processing is not 
significantly affected by the intensity of the stimulus, so that in this paper the increase in 



sound intensity will be assumed to just lower the threshold and the step length will be 
kept constant. 
 
It must be pointed out that the intensity of sound is actually measured in  decibels. But 
the decibel is a logarithmic unit of sound intensity and according to the well-known 
Weber-Fechner law (see e.g. Encyclopaedia Britannica) human response to a stimulus is 
proportional to the logarithm of the stimulus. It follows that the response to a sound 
stimulus measured in decibels can be expected to vary linearly with the sound 
measurement. It was therefore decided to decrease the threshold linearly from some 
initial value A at the points of time where the sound intensity was increased. The decrease 
was fixed at one unit. A graph showing the shape of the proposed threshold shape is 
given in Figure 3. 
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Fig.3. Time dependence of threshold 

 
In addition, it must be pointed out that, as in the original random walk model described 
above, one of the parameters can be chosen arbitrarily. Changing that parameter simply 
changes the coarseness of the model. In the original random walk model described above 
it was A that was chosen arbitrarily. In this paper we shall choose d to be 0.5 seconds, and 
estimate A and p from the mean and standard deviation of the data. 

FITTING THE MODEL TO THE DATA 

In order to fit the model to the data it is necessary to be able to evaluate the mean and 
coefficient of variation of the time to reach the time dependent boundary (The first 
passage time) in terms of A, p and d. Unlike the original random walk model described 
above this is by no means an elementary problem. In fact, we were unable to find a 
method to carry out the calculations in the literature. Eventually we developed our own 
algorithm. It is described in the Appendix. The first passage time probabilities are 
calculated by recurrence. It turned out that calculating 4000 successive first passage time 
probabilities were amply sufficient to obtain reliable values for the mean and the 
coefficient of variation. 

 



The mean and coefficient of variation of the time to reach the boundary were calculated 
for an appropriate set of values of A and p. The values of A and p corresponding to the 
observed values of the mean and standard deviation were then derived by interpolation. 
The fit is not entirely precise because of the fact that the threshold values are restricted to 
be integers. 

A typical theoretical distribution function for the first passage time, as obtained from the 
formulae of the Appendix, is shown in Figure 4. 

It corresponds to the parameters A=38, p=0.55 and d=0.5 seconds, derived from the 
response to the T3 Alarm by sober males. The observed values are plotted together with 
the theoretical distribution. It can be seen that the fit is satisfactory.   

0 100 200 300 400 500
Time (secs)

0.0

0.2

0.4

0.6

0.8

1.0

D
is

t. 
fu

nc
tio

n

 
Fig.4.Typical distribution function of first passage time. 

(Corresponding to the response of sober males to the T3 Alarm with observed values of 
response time plotted for comparison). 

RESULTS 
The results of estimating A and p from the data are given in Table 2. While the threshold 
varies widely (between 33 and 62), the recognition probability is confined to a narrow 
interval just above 0.5 (between 0.52 and 0.55). This latter result is consistent with the 
analysis in [3], taking into account the fact that the increasing sound intensity can be 
expected to do away with the lower values of p.  

Linear Modelling Of  The Threshold 

The fitted threshold was regressed on alcohol level as a continuous variable and on two 
categorical factors: gender and type of sound. The regression on alcohol level was carried 
out as a polynomial regression of order two. The small amount of data did not justify a 
higher order of polynomial regression. Also, the fact that in addition approximations were 
made in the estimation process for the threshold and the recognition probability virtually 
vitiated the use of statistical tests of significance. For example, analysis of the raw data in 
[2 ] indicated that the female voice alarm and the T-3 sound were equally successful in all 
alcohol conditions, but that they were both significantly more successful than the 



Australian Standard Alarm Signal. This difference was lost in the estimation process for 
A and p. It will undoubtedly reappear when more data are available. In the meantime this 
paper will concentrate on the gender and alcohol dependence of the parameters. 

 

Table 2. Threshold and recognition probability of the random walk model. 

Sound Alcohol 
level 

Male A Female A Male p Female p 

Female 
voice 

Sober 
0,05 
0.08 

37 
61 
57 

33 
41 
43 

0.55 
0.52 
0.53 

0.55 
0.54 
0.54 

ASA Sober 
0,05 
0.08 

42 
58 
62 

45 
45 
47 

0.54 
0.53 
0.52 

0.54 
0.54 
0.54 

T3 Alarm Sober 
0,05 
0.08 

38 
54 
62 

33 
40 
40 

0.55 
0.53 
0.52 

0.55 
0.55 
0.55 

 

Graphical Illustration Of  The Gender And Alcohol Dependence Of The Threshold 

The dependence of the threshold on gender and alcohol is illustrated in Figure 5, where 
the fitted values of the threshold are plotted against gender and alcohol. From the figure it 
can be inferred that the threshold for females is consistently lower than for males, 
indicating greater sensitivity/responsiveness. On the other hand, the curves depicting the 
dependence on alcohol are practically parallel, so that we can infer that males and 
females are affected similarly by alcohol, as far as the variation of the threshold with 
alcohol is concerned. The starting point (i.e. when sober) illustrates an increased 
responsiveness (lower threshold) for females - consistent with [3]. In addition, there is a 
pronounced downwards departure of the curves from linearity. This is in accordance with 
the Weber-Fechner law previously mentioned. Unfortunately, the fact that only three 
levels of alcohol were used, namely 0, 0.05 and 0.08 BAC, ruled out testing the 
logarithmic aspect of the law. 

Linear Modelling Of The Recognition Probability 

As for the threshold, the estimated recognition probability was regressed on alcohol level 
as a continuous variable and on two categorical factors: gender and type of sound. The 
regression on alcohol level was carried out as a polynomial regression of order two. 

Graphical Illustration Of The Gender And Alcohol Dependence Of The Recognition 
Probability 

The dependence of the recognition probability on gender and alcohol is illustrated in 
Figure 6, where the fitted values of the recognition probability are plotted against gender 
and alcohol. From the figure it can be inferred that the recognition probability for females 
is consistently higher than for males, indicating greater ability to match the stimulus with 
the memory set. It is interesting to note that the difference of recognition probability 
between males and females reported here is almost exactly the same as the difference 
reported in [3]. and On the other hand, the curves depicting the dependence on alcohol 
are practically parallel, so that we can infer that males and females are affected similarly 



by alcohol, as far as the variation of the recognition probability is concerned. For both 
males and females alcohol lowers the recognition probability, resulting in an increase of 
recognition time. In addition, there is a pronounced upwards departure of the curves from 
linearity. This is again in accordance with the Weber-Fechner law previously mentioned .  
It is interesting to note that the recognition probability curves are almost exactly a mirror 
image of the threshold curves. 
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Fig.5. Dependence of the threshold on gender and alcohol. 

THE ADVANTAGE OF USING THE PROPOSED MODEL 

As was pointed out in the Random Walk section, one of the most important aims of the 
stochastic analysis of the response time to fire cues is to estimate the high quantiles of the 
distribution of the response time, since it is those who respond the most slowly who are 
the most at risk. For the present model, all that is required is to evaluate the distribution 
function of the first passage time for values of A and p corresponding to the observed 
mean and standard deviation. From the distribution function it is easy to evaluate, say, the 
99th percentile of the behavioural response time. For example, for the distribution 
function shown in Figure 4, corresponding to A=38 and p=0.55, the 99th percentile of the 
response time turns out to be 435 seconds. 

SUMMARY 

The main conclusions of the paper are: 

The response time by a sleeping subject to fire cues of increasing intensity may be 
modelled as a random walk with a decreasing upper boundary (threshold) and a fixed 
recognition probability. 

• Even with the very limited available data it was possible to establish that both 
threshold and recognition probability vary significantly with gender and alcohol 
consumption. Females have a lower threshold and a higher recognition 
probability than males. But both genders are significantly slowed down by 
alcohol, although the slowing down due to a 0.05 alcohol level is much higher 



than the subsequent slowing down with an increase from 0.05 to 0.08 alcohol 
level. 

• An effect detected by analysis of the raw data: that the ASA alarm was less 
effective than the female voice or the T3 alarm, was lost in the data 
manipulation. 

• Knowledge of the threshold and the recognition probability for a group of 
sleeping occupants allows the probability of long response times to be estimated. 
This is an essential parameter for safety management of fires. 
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Fig. 6. Dependence of the recognition probability on gender and alcohol. 

In this paper, the social impact of the results of the experiment, as far as the effect of 
alcohol and the type of alarm sound are concerned, are not discussed. For a 
comprehensive coverage of that topic, the reader is referred to the previously 
published paper of Ball and Bruck [2]. The purpose of the present paper is strictly to 
present a model that permits the estimation of the high quantiles of the response 
distribution, a core parameter in design for fire safety. It will of course be necessary 
to get far more data before the conclusions of the present experiment and its analysis 
can become fully established.  
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