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Abstract 

Introduction 

There is a substantial interindividual variability in responses to exercise training, which 

is influenced by both environmental and genetic factors. However, the influence these genes is 

relatively unknown. Therefore, we have investigated the association between robust genetic 

variants, using the Exercise Polygenic Score (EPS), on mitochondrial and physiological 

response to four weeks of High-Intensity Interval Training (HIIT) in the Gene SMART 

(Skeletal Muscle Response to Training) study. Thus, the overarching aim of this thesis is to 

evaluate the association of robust genetic variants using the Exercise Polygenic Score 

(EPS) in mitochondrial and physiological response to exercise phenotypes to four weeks 

of High Intensity Interval Training (HIIT). 

 

Methods  

116 adults from the Gene SMART cohort study completed four weeks of HIIT to 

measure physiological and mitochondrial responses. Maximal oxygen uptake (VO2max), lactate 

threshold (LT), and peak power output (Wpeak) were assessed before and after the exercise 

training. Muscle biopsies were collected before and after 4-weeks of HIIT to assess 

mitochondrial markers: citrate synthase (CS), cytochrome c oxidase (COX), succinate 

dehydrogenase (SDH), mitochondrial copy number (mtCN) and mitochondrial health index 

(MHI). DNA isolated from blood samples was genotyped using the Genome-Wide Genotyping 

Array, and genotype data was then used to derive exercise polygenic scores for each participant 

using exercise-related SNPs identified in Chapter 3. 

 

Results:  

We found significant increases in mitochondrial markers CS and COX after the HIIT 

intervention (p < 0.05), but no changes in mitochondrial health index (MHI). We also found 

that changes in LT were found to be positively correlated with changes in both CS (r = 0.2, p 
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= 0.014,) and COX (r = 0.19, p = 0.019). Also, significant correlations were found between 

changes in VO2max and changes in two mitochondrial markers, CS (r = 0.24, p = 0.0025) and 

SDH (r = 0.20, p = 0.011). Finally, a significant correlation was found between changes in 

Wpeak and changes in CS (r= 0.24, p = 0.0024). We did not observe significant associations 

between MHI changes and changes in physiological measurements. 

We found no associations between EPSs and physiological and mitochondrial markers 

either before or after four weeks of HIIT. However, we found a significant association between 

baseline mtCN and the (PPARGC1A) rs8192678 SNP (p= 0.012). We further showed several 

associations between SNPs and mitochondria factors i) baseline mtCN and rs8192678 (p= 

0.021), ii) 4-week change in mtCN and (BIRC)  rs6090327 (p <0.001), iii) 4-week change in CS 

and (AGT) rs699 (p=0.0381), iv) 4-week change in SDH and rs609037 (p= 0.030) and (DAAM1)  

rs12891759 (p= 0.035) and v) baseline MHI and (PPARA) rs4253778 (p= 0.027), (RGS18) 

rs10921078 (p= 0.029), and (ACTN3) rs1815739 (p= 0.027). We found no significant 

differences between SNP genotypes and least square means of VO2max, LT, and Wpeak. 

 

Summary 

The experimental design of this study enables a better understanding of the roles of 

genes contributing to the complexity of exercise responses in humans. Future research should 

also integrate physiological molecular and omics (epigenomics, transcriptomics, 

metabolomics) to elucidate the mechanisms of exercise training in humans. 
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Chapter 1: Introduction 

 

Exercise training produces multiple adaptations on whole-body human phenotypes; 

however, these adaptations differ between individuals at both the physiological and molecular 

level (also called trainability) [1-3]. The molecular mechanisms underpinning the variance in 

exercise adaptations are largely unknown. Thus, to better understand trainability it is crucial to 

decipher the influencing components involved. Uncovering the drivers of trainability at 

physiological and molecular level will advance our understanding of adaptations to exercise 

training. Current evidence shows that the magnitude of exercise adaptations depends on the 

speed, force, duration and intensity of exercise interventions and related muscle contractions 

[4]. High intensity interval training (HIIT) has two general categories [5], one category is 

referred to as “aerobic HIIT” (the selected method for this thesis), and the other is ”body weight 

HIIT” or “resistance HIIT”. HIIT can be diverse in duration, and studies has shown that as little 

as a few bouts of HIIT are sufficient to elicit physiological response [6]. Our chosen 4 weeks 

HIIT protocol was based on a balance between responses and feasibility. Our results show 

significant increase in physiological responses after 4 weeks. Previous research has suggested 

that HIIT induce greater responses than continuous moderate - intensity exercise and need less 

time spent [7]  in markers of cardiovascular health, metabolic capacity and aerobic performance 

[8-12] Moreover, a growing body of literature suggests that biological determinants (i.e., 

genetics or baseline fitness) play a crucial role in regulating exercise adaptations [13]. Previous 

studies suggested that trainability is mediated by our genes [14-16]. However, it is also reported 

that regardless of the genetic component involved in trainability, no single gene has been shown 

to be absolutely responsible for a physiological phenotype due to the substantial amount of 

genes involved in exercise response [17]. This variation in response to exercise training is 

primarily characterized by aerobic capacity (VO2max) and by strength and muscle mass [18]. 



 2 

The large discrepancy among different training protocols (i.e., frequency, duration, intensity) 

increases the variability among the exercise field and is a limitation to be able to compare 

exercise responses between studies. However, the complexity of physiological and molecular 

responses to aerobic and resistance training emphasizes the relevance of collaborative efforts 

among investigators in the known phenotypic adaptations [18]. Despite many genes having 

been associated with exercise responses, the vast majority have not been replicated [19]. 

Replication is crucial to minimise number of false positives an increases the likelihood that 

results are true [20, 21].  Thus, the aim of the first study (Chapter 3) was to identify robust 

genetic variants and create an exercise polygenic score (EPS) in exercise responses.  

Multiple sources of variability have been determined in exercise training studies [22]. 

This variability is minimized when a control period in included in the study design, suggesting 

that any physiological or molecular changes post-exercise are attributed to the intervention and 

not to day-to-day variability or technical error [22]. In addition to the physiological adaptations 

to exercise, mitochondrial changes are one of the most apparent adaptations responding to 

exercise [23], with even a single bout of exercise producing mitochondrial adaptations [24]. 

Also known as the “power house” of the cell, mitochondria are responsible for multiple 

regulations in skeletal muscle [23]. In addition, skeletal muscle mitochondria promote 

biogenesis and adaptation in function and, therefore, contribute to maintaining cellular and 

whole-body health [25]. There are two main aspects to evaluate mitochondrial adaptations in 

exercise responses: content and quality. Even though exercise training induces physiological 

and mitochondrial changes, these changes may not necessarily progress together [26].  

Evaluating a composite mitochondrial measure is crucial to assess mitochondrial health, as 

previous studies showed that high mitochondrial content may exhibit a reduction in 

mitochondrial function, suggesting that mitochondrial content can be increased to compensate 

poor mitochondrial quality [27]. Also, it is suggested that single mitochondrial markers are bad 
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at predicting changes in the whole organelle [28]. The mitochondrial health index (MHI) 

combines key markers for mitochondrial content and function; it also integrates nuclear and 

mitochondrial encoded measurements, and mathematically outperformed individual markers 

in leucocytes [29]. However, it is unknown how MHI performs in other tissues. Therefore, the 

aim in chapter 4 was to investigate physiological phenotypes adaptations and 

mitochondrial adaptations by exploring differences in mitochondrial content and 

function before and after exercise training preceded by a control period.  

Exercise response studies have reported a genetic contribution. However, a key 

limitation of these studies is that they assessed individual genes as a single variable, 

irrespectively of the gene’s allelic composition [30]. Also, most of these studies looked at elite 

athletes but not at the general population, and not at robust muscle-related molecular 

phenotypes. In addition, previous exercise studies reported that no single gene is responsible 

for a specific phenotype [16, 17], with physiological and molecular phenotypes influenced by 

several genetic variants with small individual effect sizes [31-33]. Also, multiple genes interact 

to produce the phenotype’s outcome [34]. Thus, the evaluation of combined multiple genes 

will play an important role to identify their association with physiological and molecular 

phenotypes. To evaluate the genetic influence on trainability, it was important to better 

understand such differences at baseline in physiological and molecular phenotypes. To our 

knowledge, no study to date has investigated the association between an exercise polygenic 

score with physiological and mitochondrial phenotypes before an exercise intervention. This 

is crucial as adaptations to exercise responses are also dependent on initial fitness levels, and 

baseline fitness levels reflect a long life of exercising. Therefore, the aim of the third study 

(Chapter 5) was to assess the associations of the Exercise Polygenic Score derived from 

robust genetic variants with physiological and mitochondrial phenotypes before and after 

exercise.  
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With a literature review (Chapter 2), this thesis further comprises three experimental 

chapters as described above:  

I. Chapter 3:  Deciphering robust genetic variants in exercise responses in aerobic 

and resistance trainability.  

II. Chapter 4: Mitochondrial markers that explain physiological responses preceded 

by a control period (the Gene Study).  

III. Chapter 5: Associations between exercise polygenic score (EPS) and physiological 

and mitochondrial markers before and after exercise training.  

The main findings of this thesis are summarised with a general discussion (Chapter 6), 

including the limitations of each study, the contribution to knowledge and recommendations 

for future studies 
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Chapter 2: Review of the Literature 

2.1 The concept of trainability  

Exercise alters a vast amount of whole-body human physiological and molecular 

phenotypes including oxygen capacity, muscle power, muscle strength, lactate threshold and 

mitochondrial biogenesis. These adaptations between individuals differ in both physiological 

and molecular responses to any given exercise training (also called “trainability”) [1-3]. One 

of the key aspects to quantifying trainability is understanding the components of the variations 

involved. Uncovering the molecular drivers of trainability has the potential to advance our 

understanding of exercise adaptations to regular exercise. This generated knowledge may in 

turn be used to develop biomarkers that predict the ability of an individual to improve 

physiological markers in response to exercise training [4]. 

Differences in human exercise phenotypes are influenced by the individual and 

combined effects of our genes and environment [5]. However, the molecular mechanisms by 

which genetic and environmental factors interact to impact individual responses to exercises 

phenotypes, such as cardio-respiratory fitness, are poorly understood [6]. Previous research has 

indicated that the variability between individuals on response to exercise is mediated by both 

genetic and environmental factors [7]. However, the influence of environmental conditions on 

individual trainability is gaining relevance as the variability in physiological adaptation enables 

tbe study of the association between molecular responses to exercise and the magnitude of 

physiological change in humans [8, 9].  

2.2 Biological factors influencing trainability 

A large variability has been observed in many physiological parameters [10], including 

maximal oxygen uptake (VO2max) [11, 12], resting heart rate [12], exercise heart rate [12], 

aerobic threshold [13], anaerobic threshold [12], muscle mass and strength [14, 15]. In addition 

to this, molecular phenotypes such as resting muscle glycogen content, muscle enzyme activity 
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[16], and in mitochondrial function have also shown large variability [17]. There are several 

potential biological contributors to this, including sex, genetics, and molecular markers such 

as mitochondrial markers [18].  

2.3 Trainability between sexes 

It is widely known that males and females respond significantly different to exercise. 

Not only anatomical, but physiological differences between males and females determine the 

variation in human performance between sexes [19], with a large variability shown in several 

physiological phenotypes between them [20]. For example, females have an increased lifespan 

compared to males [21], and have also shown higher increase in VO2max, as well as higher 

lipolysis rate to an intervention in endurance training [22]. There are several examples showing 

that males hold greater absolute muscle strength and produce greater power output than females 

in multiple exercise conditions [23]. In contrast, females also have a higher heart rate (HR) 

response than males for similar workloads, showing a significant variability in physiological 

phenotypes between sexes [24].  

In addition to physiological markers, sex differences also exist in molecular markers 

associated with skeletal muscle health and functioning. Skeletal muscle fibre-type distribution 

differs between sexes, with females having more type I fibres compared to males [25, 26]. In 

contrast, females have moderately lower mitochondrial ADP sensitivity than males [27]. Major 

enzymes involved in fat oxidation vary between sexes. For example, the tri-functional protein 

alpha (TFPa), the very long acyl-CoA dehydrogenase (VLCAD), and medium chain acyl-CoA 

dehydrogenase (MCAD) were found to be higher in content in females [28]. In addition to sex, 

biological factors that may significantly impact trainability are genetics and mitochondrial 

functioning.  
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2.4 Methodological factors influencing trainability 

In addition to the biological factors influencing trainability, there are several 

methodological factors affecting variability in response to exercise. These include type of 

exercise, volume and intensity of training, and method of prescription [18], which need to be 

considered when attempting to untangle and characterise the effects of biological factors on 

exercise responses. Further, differing statistical methods must be employed to properly isolate 

individual biological responses from random error [29]. Common approaches to evaluate the 

mean response of a sample have failed to recognize the inter-individual differences in response 

to any exercise program [30]. Also, tissue samples and laboratory variability techniques are to 

be considered when quantifying the relevance of genetic variations using human muscle tissue 

[31]; for example, is reported that technical error and sample variability in the same biopsy 

area account for about 15% of the variance on the reported results [32, 33]. Approaches to 

classify individuals as “responders” or “non-responders” dichotomy are not a sensible way to 

investigate personal response [34]. A more useful approach is to study dimensions rather than 

categories. Thus, trainability is not a qualitative variable; it should be considered as a 

quantitative one, as it is a matter of more or less [35].  

2.5 Genetics and Exercise 

Humans are considerably different across populations in exercise traits [36] and the 

human variability in exercise traits is a representation of the substrate of humans genetics [37]. 

There is compelling evidence that genetics is a significant component in the human variation 

in exercise responses [1, 38]. Genes explain around 50% of the heritable aspect of exercise 

responses [39]. In the HERITAGE study, it was shown that exercise traits at baseline as well 

as exercise responses were more similar within families than between them [40]. Thus, the 

recognition of genetic variants has become essential to identify human variation in complex 

traits such as exercise responses [38].  
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The ultimate goal of genomic research is to identify DNA differences causing diseases 

or predicting the potential adaptability on a particular trait [31]. This goal has been investigated 

by two different approaches: candidate genes and genome-wide association (GWAS) study. A 

candidate gene is a gene that theoretically has relationship with a physiological or molecular 

trait of interest [31, 41]. Although this approach was the origin of several exercise response 

studies, it is also known that candidate gene studies often have small sample sizes and lack 

statistical power [42, 43]. In contrast to candidate genes is the GWAS approach. This method 

scans up to 5 million genetic variants and reported that trainability is influenced by many genes 

(i.e., it is polygenic) [44]. From the first GWAS study performed in 2007 [45], the exercise 

field developed interest in the combined influence of genetic variants in exercise responses. To 

date, 2339 genetic variants are associated with exercise; the catalogue of these studies and their 

results can be examined at http://www.genome.gov/gwastudies. Thus, GWAS have become 

essential to identify SNPs contributing to the variation in exercise responses studies [31].  

2.5.1 Exercise Polygenic Score (EPS)  

The genetic architecture of trainability is a polygenic trait. This means that many 

parameters such as number, frequency, relationship between and magnitude of effect of genetic 

variants contribute to it [46]. Despite the initial potential of GWAS to interrogate for polygenic 

traits, enthusiasm quickly faded due to the small effect sizes on individual alleles. This has led 

to the idea of testing multiple genetic loci simultaneously (“genomic profiling”), which 

collectively may provide superior prediction [47]. These predictions are based on whether the 

genetic variants overcome an arbitrary P value threshold, or the estimation of their effects in a 

particular sample followed by validation in an independent sample for a given phenotype [48]. 

Prior to undertaking a polygenic analysis a power calculation is needed to establish the 

boundaries of what can be achieved [49]. It was initially hoped that once the genetic 

architecture of a trait was identified, the observed effects of the associated alleles could be used 



 11 

to construct a combined score and to predict individuals at the tail ends of the distribution [50]. 

In addition, new methodologies that aggregate data from a larger fraction of the genotyped 

variants that scored below the genome-wide significance threshold were formulated to account 

for undiscovered loci [47].  

The use of the Exercise Polygenic Score is becoming more frequent in the field of 

exercise genomics. EPS can be used to gain insight into the aetiology of physiological 

phenotypes in exercise responses studies [51] as well as in elite athletes [52]. Although several 

genetic variants have been associated with trainability [51] and athletic performance [41], the 

results of these studies have not been replicated to date. In association analysis, the aim is to 

identify specific associated variants. A stringent threshold for declaring significance of 

individual SNPs is important, providing confidence that the identified variants are true 

positives.  

2.5.2 Genetic and molecular contribution to exercise responses  

To date, there is very little literature ascribed to understanding the interplay between 

genes and other molecular factors and the development of physiological traits. Much work 

remains to identify causal variants and functional relevance of genes associated with molecular 

phenotypes related to exercise responses, and how these associations link to physiological 

phenotypes in aerobic and resistance trainability (Figure 2.1). Few studies have investigated 

links between the mitochondrial genome and training adaptations; therefore, conclusive 

findings from such studies are limited and only focus on particular sections of the mitochondria 

[53]. Key molecular phenotypes explored in this project are mitochondrial markers, which have 

important roles in responses to exercise. For example, it has been shown that with exercise 

there is an increase in the mitochondria electron transport chain [54] and in mitochondrial 

enzymes [55]. Exercise also upregulates mitochondrial content in humans [56, 57].  
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2.6 Mitochondria as a key organelle in exercise response to training 

 
Structurally, mitochondria consist of four compartments: the inner membrane, the outer 

membrane, the intermembrane space and the matrix (located inside the inner membrane). 

Mitochondria perform numerous tasks such as pyruvate oxidation, the Krebs cycle, and 

metabolism of amino acids, fatty acids, and steroids. However, the most crucial function is the 

generation of energy as adenosine triphosphate (ATP) by means of the electron-transport chain 

and the oxidative-phosphorylation system (the “respiratory chain”) [58]. 

The respiratory chain consist of five multimeric protein complexes that are vital for 

maintaining health through their regulation of substrate metabolism and energy production 

[59], and are also involved in influencing skeletal muscle size and function [60]. As a result of 

exercise, several mechanisms have been identified such as mitochondrial biogenesis [61], gene 

expression [62], mitochondrial remodelling [63], mitochondrial quality increase through 

mitophagy [64] and more recently mitochondrial cristae density [65]. Exercise training also 

influences the expression of nuclear encoded mitochondrial biogenesis markers such as 

PGC1α, PPARD, PDK4, NFR-2, GAPDH, NAMPT [66, 67] as well as fusion markers such as 

MFN1, MFN2, ERRα, MFF and PARK2 [68]. During exercise there is an increase in several 

molecular signals in skeletal muscle that are in part responsible for the initial activation of 

mitochondrial biogenesis [69]. Thus, exercise can diminish mitochondrial skeletal muscle 

diseases induced by defects of the respiratory chain due to enzyme deficiencies, structural 

alterations [69] or induced by defects in any of the mitochondrial pathways [58].  

 Mitochondrial proteins are encoded both by nuclear and mitochondrial genomes, and 

changes in either the nuclear DNA or mitochondrial DNA can potentially alter mitochondrial 

biogenesis and result in individual variation in mitochondrial content or function [70]. Human 

mitochondrial DNA (mtDNA) is a circular multicopy genome coding for 13 peptides involved 
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in the electron chain transport with an estimated mtDNA copy number in muscle cells of ∼ 

3700 [71] (Figure 2.1). 

 

 

 

 

 

 

 

 

 

 

 

The increase of mitochondrial protein content and subsequent expansion of the 

mitochondrial reticulum (mitochondrial biogenesis) [72] is a recognized marker for adaptive 

function response to training [73, 74]. Although the markers to evaluate the function or the 

content of the mitochondria are well known [75, 76], the measurement of their content or 

quality maybe insufficient to evaluate mitochondrial function as changes in their content, 

volume or enzyme activities may not necessarily progress together [77]. For instance, elevated 

mitochondrial content may cause a reduction in mitochondrial quality, and as a result, 

mitochondrial DNA copy number per cell can be increased as a compensatory mechanism [78].  

2.6.1 Mitochondrial markers 

 Multiple markers have been used to evaluate mitochondrial biogenesis and dynamics in 

skeletal muscle [79], as it is well known that exercise training induce an increase in enzyme 

Figure 2.1 Mitochondrial diagram of the key components involved in this study. 
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activities [73]. For this thesis, we will evaluate four functional parameters, which represent 

nuclear and mitochondrial genomes.  

There are two main known aspects in measuring mitochondrial adaptations to changes 

in oxidative demand induced by exercise: 

 1. mitochondrial content within cells: Mitochondrial DNA copy number (mtDNA-cn) 

is a measure of the number of mitochondrial genomes per cell [75].   

 2. Mitochondrial function: The main function of mitochondria is to generate ATP. 

Thus, the most direct way to measure mitochondrial function in the context of bioenergetics is 

to assess ATP synthesis rates [76]. Alternatively, mitochondrial function can be measured by 

the activity of 13 different enzymes normalized by mitochondrial protein content [76].  

2.6.1.1 Mitochondrial DNA copy number  

Mitochondrial DNA copy number (mtDNA-cn) is a measure of the number of 

mitochondrial genomes per cell [75] and therefore mtDNA content is often used as a marker 

of mitochondrial content in skeletal muscle [80]. It also reflects the net results of gene-

environmental interactions between unknown hereditary factors and the level of oxidative 

stress [81]. In contrast, mitochondrial content decreases in skeletal muscle in disuse [82].  

2.6.1.2 Cytochrome c Oxidase  

Cytochrome c Oxidase (COX) is the terminal component of the mitochondrial 

respiratory chain complex that catalyses the conversion of redox energy to ATP. The largest 

COX subunits I, II and III, represent the catalytic core of the enzyme. These subunits are 

encoded by the mitochondrial DNA and synthesized within the mitochondria, while the rest of 

the smaller subunits implicated in the mitochondrial function are encoded in the nuclear DNA 

[83]. The proton gradient complexes consist of three proteins known as complex I 

(NAHD/ubiquione oxidoreductase), III (cytochrome c reductase), and IV (cytochrome c 

oxidase). Complex IV transfers the electrons from cytochrome c to molecular oxygen and 
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contributes to the proton gradient by using up to four protons per consumed oxygen molecule 

of water [84]. COX is used as marker of complex IV as well as the mitochondria membrane 

marker [85]. 

2.6.1.3 Succinate dehydrogenase  

 Succinate dehydrogenase (SDH) is the enzyme which catalyses the oxidation of succinate to 

fumarate in the Krebs cycle and transfers electrons to the ubiquinone pool (complex II of the 

mitochondrial respiratory chain). SDH represents one of the reliable marker of the 

mitochondrial ATP synthesis [86]. It also plays an important role at high respiration rates, as 

its activity is considered a good indicator of mitochondrial metabolic capacity [87, 88]. SDH 

activity differs from other mitochondrial dehydrogenases [87], thanks to its unique redox 

properties, and represents a crucial antioxidant enzyme in the mitochondria which controls 

superoxides’ scavenging activity of the respiratory chain [89]. In addition, SDH plays an 

important role at high respiration rates and its activity has been considered a good indicator of 

the mitochondrial oxidative metabolic capacity [89]. 

2.6.1.4 Citrate synthase 

Citrate synthase is one of the most common markers of mitochondrial content [90]. It 

is the first enzyme involved in the citric acid cycle, where it performs the irreversible 

condensation of acetyl-COA with oxaloacetate to form citrate, which in turn determines the 

whole tricarboxylic acid cycle rate [91]. Citrate synthase is significantly elevated by acute 

exercise in human skeletal muscle in both exercise-trained and untrained muscle [92]. Multiple 

studies have reported that the training effect on citrate synthase ranges between 0 to 100% [55, 

93].  

2.6.1.5 Mitochondrial Health Index  

Mitochondrial health is emerging as the major determinant of healthy physiological 

regulation [94]. In relation to disease, mitochondria also play a determinant role in cellular life 
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and death [95]. The mitochondrial health index (MHI) integrates four functional markers in a 

simple equation with two numerators and two denominators, which equally represent the 

nuclear and the mitochondrial genomes. In the MHI, respiratory chain activity (SDH and COX) 

are mean-centred and added as numerator, and markers of mitochondrial content (CS and 

mtDNA copy number) are also mean-centred and added as the denominator. The quotient of 

both terms therefore yields a scalar index, the MHI, which reflects respiratory chain capacity 

per unit of mitochondrial content. This MHI measure has been previously shown to outperform 

individual mitochondrial functions measures in leucocytes [17]. In addition, it was 

demonstrated that activities of SDH and COX enzymes are likely regulated through 

independent mechanisms, which is consistent with the fact that SDH is entirely encoded by the 

nucleus whereas COX is partially encoded by the mtDNA. Thus, SDH and COX must 

contribute independently to mitochondrial health. However, this index has not been examined 

in skeletal muscle in the context of exercise responses. 

 2.7 Summary and study aims 

Exercise response is a polygenic trait. Thus, it should be evaluated using robust genetic 

variants and tight-controlled study designs to minimize variability from internal (biological) or 

methodological (statistics, or untrained controlled period) factors. Understanding the genetic 

component and the mitochondrial component in exercise responses in skeletal muscle will 

enable a more systemic picture.  

2.7.1 Aims  

The overarching aim of this thesis is to determine the influence of robust genetic 

variants using the Exercise Polygenic Score (EPS) in mitochondrial and physiological response 

to exercise phenotypes to four weeks of High Intensity Interval Training (HIIT) in the gene 

SMART study (Figure 2.2). The specific aims are as follow: 
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1. To identify mitochondrial skeletal muscle markers that explain exercise 

physiological fitness responses.  

2. To test whether exercise polygenic score (EPS) is associated with physiological and 

mitochondrial phenotypes at baseline (pre-exercise). 

3. To test EPS association with changes in physiological and molecular phenotypes 

after 4 weeks of HIIT. 
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Figure 2.2 Schematic representation of the study design. 
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Chapter 3: Exercise Polygenic Score 

 

The following section is based on the following publication: 
 
Alvarez Romero J, Voisin S, Eynon N, Hiam D. Mapping Robust Genetic Variants 
associated with Exercise Responses. Int J Sports Med 2020; 41: 1–15. 
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3.1 Genetics and Exercise 

The heritable component of trainability is large, with genetics explaining 47% of 

the variance in VO2 peak trainability, and around 52% in resistance variability (1). The 

contribution of familial factors (genetics and environment) to trainability was 

demonstrated in the seminal HERITAGE family study (2). This study indicated that 

VO2max was more variable between families than within families at baseline (3) and in 

response to exercise training (4), thus suggesting that DNA sequence variations could 

modulate exercise responses (5, 6). Pinpointing the responsible gene variants could 

illuminate the fundamental mechanisms driving this heterogeneity in response to exercise 

training (6).  

 

The genetic contribution to trainability has been investigated by two different 

approaches: candidate genes and genome-wide association (GWAS) study. The GWAS 

approach involves scanning several hundred thousand (currently up to 5 million) DNA 

markers across the human genome to find genetic variations associated with a particular 

trait. One of the advantages of the GWAS approach is that it is unbiased and hypothesis-

free. In contrast, candidate gene studies require knowledge of the trait of interest and are 

particularly useful to validate the functional impact of gene loci such as those identified 

by GWAS (7). GWAS have demonstrated that trainability is polygenic (i.e., influenced 

by many genetic variants), and that people harbouring the same genotypes in specific 

gene variants respond more similarly to exercise training than people harbouring different 

genotypes (8-11). These variants may modulate gene expression that is essential to the 

molecular adaptation to exercise training, since molecular processes mediate metabolism, 
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angiogenesis, cardiac and skeletal myofiber hypertrophy, and other processes that lead to 

better fitness (12).  

 

While many SNPs have been associated with exercise response and trainability, the 

vast majority of the genes previously identified have not been replicated (13). Replication 

in an independent cohort is important as it increases the likelihood that results are true 

and reduces the number of false positives (14, 15). In this chapter we summarised SNPs 

associated with both resistance and aerobic trainability which have been replicated in two 

independent cohorts. In addition, we have screened these SNPs with the goal of 

identifying SNPs at trainability-associated loci that may have functional relevance. 

Further, we discussed future directions of performing large-scale exercise studies to 

elucidate the functional relevance of the discovered genomic markers. This approach will 

allow more rigour and reproducible research in the field of exercise genomics. 

 

3.1.1 SNPs Selection criteria 

 
To provide a robust and comprehensive narrative review, a semi-structured search 

was performed (July 2019) to identify all studies relating to genetic variants and exercise 

trainability. Three electronic databases (PUBMED, MEDLINE and SCOPUS) were used 

to identify relevant articles using the following keywords “genes”, “genome”, “exercise”, 

“physical activity”, “aerobic capacity”, “resistance”, “strength”, “power”. We excluded 

studies where the sole focus was on populations with a diagnosed medical condition such 

type 2 diabetes mellitus, any inflammatory conditions, and cardiovascular disease. 

Articles were separated in two categories: genetic variants associated with either aerobic 

or resistance trainability (Table 2.1 and 2.2).  
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Finally, we selected SNPs that were classified as robust and separated them 

according to whether they were related to the aerobic trainability or resistance trainability. 

We chose this criterion as it reflects the reliability of the findings and increases the 

likelihood that there is true association of the SNP with trainability (15). It also allows us 

to identify and summarise SNPs with biological relevance, which is useful for researchers 

to ‘select’ candidate SNPs to identify causality and purpose of gene (16). 

SNPs were considered robust if: 

1) They showed consistent association with a given phenotype in at 

least two independent cohorts, and/or; 

2) SNPs were shown to have functional relevance in an animal model or cell 

culture, with gene expression/DNA methylation Quantitative Trait Loci (QTLs) analysis 

or network, and enrichment analysis.  
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Table 3.4. Gene Variants associated with aerobic trainability 

Author, Date Sample 
Size Sex (% Males) Age Ancestry/ Country 

/ ethnicity Chromosome Annotated gene Variant 

Genotype and 
training 
response 
(+/−/0) 

Intervention (if 
any)/ exercise Duration Type of 

study 

Alves (2009) 
(1) 

N= 83 
 100% 20-35yrs Brazil 

17 
1 
 

ACE 
ATG 

rs4340 
rs699 

ACE (2) VO2max 
TT (+) LVM 

Moderate 
intensity 

endurance 
training 

3 days/week 
16 weeks 

 

Candidate 
Gene 

Bouchard 
2011 (3) N= 742 Males and 

Females 17-65yrs 

HERITAGE study 
Caucasian and 

African-American 
USA 

4 
6 
9 
3 
9 
3 
1 
1 

20 
11 
14 
15 
11 
14 
2 
4 

11 
3 

22 
11 
6 

ACSL1 
PRDM1 
GRIN3A 
KCNH8 
C9orf27 

ZIC4 
CAMTA1 
RGS18 
BIRC7 
DBX1 

DAAM1 
NDN 

CXCR5 
TTC6 

LOC400950 
LOC100289626 
LOC100130460 

NLGN1 
MN1 
CD44 

ENPP3 

rs6552828 
rs10499043 
rs1535628 
rs4973706 

rs12115454 
rs11715829 

rs884736 
rs10921078 
rs6090314 

rs10500872 
rs1956197 
rs824205 

rs7933007 
rs12896790 
rs4952535 
rs2053896 
rs2198009 
rs2030398 
rs738353 
rs353625 

rs10452621 

(+) VO2max 

Endurance 
training 

Moderate: at 
55% HR first two 

weeks and 
intense: last 6 

weeks 75% HR 

20 weeks GWAS 

Dionne 
(1991)(4) 

Males 
N=46 

 
Males 100% 17-29yrs Canada, USA Mitochondria 

MTND2 
MTND5 

 
 

MTN2 (-) 
VO2max 

MTND5 (+) 
VO2max 

 

Endurance 
training at 85% 

of HRR 

3-5 
days/week 
20 weeks 

 

Candidate 
gene 

 

Hautala et 
al. 2007 (5) 

N= 478 
 

Males=48.3% 
Females 17-65yrs 

HERITAGE study 
Caucasian and 

African-American 
Canada, USA 

22 PPARD rs2016520 
rs2076167 

African 
American only 

rs2016520 
CC (-) VO2max, 

PPO 
 

rs2076167 (2) 

Endurance 
training moderate 
55% of VO2 and 
absolute 75% of 
VO2 intensity 

20 weeks Candidate 
gene 

He et al. 
2008 (6) 

N= 181 
 Males 100% 19± 1 Han Chinese 7 

 
NRF-1 

 
rs2402970 

 
rs2402970 

 CC (+) VT, RE  
Endurance 

training 18 weeks Candidate 
gene 
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 15 NRF-1 
 

NRF-2 

rs6949152 
 

rs6949152 

rs6949152 
AA (+) VT, RE 

rs6949152  
AA (+) 

VO2max 

95% to 105% 
ventilatory 
threshold 

He et al. 
2006 (7) 

 

N= 181 
 100% 19± 1 Han Chinese 11 HBB rs10768683 C (+) RE 

Endurance 
training 

95% to 105% 
ventilatory 
threshold 

18 weeks Candidate 
gene 

He et al. 
2007 (8) 

N= 181 
 Males= 100% 19± 1 Han Chinese 15 

NRF-2 
NRF-2 
NRF-2 

rs12594956 
rs8031031 
rs7181866 

ATG haplotype 
(+) RE  

Endurance 
training 

95% to 105% 
ventilatory 
threshold 

18 weeks Candidate 
gene 

He et al. 
2008 (9) 

N= 181 
 100% 19± 1 Han Chinese 

4 
4 
4 

PPARGC1A 
PPARGC1A 
PPARGC1A 

rs17847357 
rs8192678 
rs6821591 

rs17847357, 
rs8192678 

 (2) VO2max 
rs6821591 G 
(+) VO2max 

Endurance 
training 

High intensity 
95% to 105% HR 

18 weeks Candidate 
gene 

He et al. 
2010 (10) 

N= 181 
 100% 19± 1 Han Chinese 

4 
4 
4 
2 
9 

PPP3CA 
PPP3CA 
PPP3CA 
PPP3R1 
PPP3R2 

rs2850965 
rs3804423 
rs3804358 
rs4671887 
rs3739723 

G (+) VO2max 
G (+) VO2max 
G (+) VO2max 
A (+) VO2max 

A (+) RE 

Aerobic 
endurance 95% 

to 105% of 
ventilatory 
threshold 

18 weeks 
Candidate 

gene 
 

He et al. 
2010 (11) 

N= 181 
 100% 19± 1 Han Chinese 

8 
8 
8 
8 
8 

PPP3CC 
PPP3CC 
PPP3CC 
PPP3CC 
PPP3CC 

rs1879793 
rs1075534 

rs7430 
rs2461483 

rs10108011 

CC (+) SV 
AA (+) SV, CO 

GG (+) SV 
CC (+) SV 
GG (+) SV 

Aerobic 
endurance 95% 

to 105% of 
ventilatory 
threshold 

18 weeks 
Candidate 

gene 
 

Leon et al. 
2004 (12) N= 766 Males (43%) 

and Females 17-65yrs 

HERITAGE study 
Caucasian and 

African-American 
USA 

19 APOE E2, E3, E4 (2)VO2max 

Endurance 
training 

Moderate: at 
55% HR first two 

weeks and 
intense: last 6 

weeks 75% HR 

20 weeks Candidate 
Gene 

McKenzie 
2011 (13) 

N= 109 
 

46.7% Males 
 50-75yrs Caucasian 

USA 14 AKT1 rs1130214 

Men:  
GG (+) 

VO2max 
Females: 

(2) 

Aerobic training 
moderate 50-

70% 
24 weeks Candidate 

gene 

McPhee et al 
2011 (14) N=58 Females only Age 18-

37yrs Caucasian UK 14 HIF1A rs11549465 T (+) VO2max Aerobic 75-90% 
of HRmax 6 weeks Candidate 

gene 



 30 

Pickering et 
al 2018 (15) N=42 Males only 16-19 

yrs European (UK) 4 
 

PPARGC1A 
VEGF 

ADBR2 
ADBR2 

CRP 

rs8192678 
rs2010963 
rs1042713 
rs1042714 

rs1205 

Endurance 
genotype (+) 
Yo-Yo Test 

Aerobic training 
moderate to 

intense 
8 weeks Candidate 

gene 

Prior et al. 
2003 (16) 

N=233 
 

Males 39.3% 
and Females 

50-75 
yrs 

Caucasian and 
African-American 

USA 
14 HIF1A rs28708675 

rs11549465 

African 
American 

cohort: 
rs28708675 

AA (+) 
VO2max 

 
Caucasian 

cohort: 
rs11549465  

CC (+) 
VO2max 

Aerobic training 
moderate 50-

70% 
24 weeks Candidate 

gene 

Prior et al. 
2006 (17) N=146 

Males (42%) 
and Females 

(58%) 

50-75 
yrs 

Caucasian and 
African-American 

USA 
6 VEGF 

rs699947 
rs1570360 
rs2010963 

AAG & CGC 
haplotypes (+) 

VO2max 

Aerobic training 
moderate 50-

70% 
24 weeks Candidate 

gene 

Rankinen et 
al 2000 (18) 

N= 472 
 

Males and 
Females 

 

Age 17-
65yrs 

HERITAGE study 
Caucasian 

USA 
1 ATP1A2 

Polymorphisms 
at exon 1 and 

21-22 

2α haplotype 
(+) VO2max 

and PP 

Endurance 
training 

Moderate: at 
55% HR first two 

weeks and 
intense: last 6 

weeks 75% HR 

20 weeks Candidate 
Gene 

Rankinen et 
al 2000 (19) 

N= 472 
 

Males (48.7%) 
and females 

 

Age 17-
65yrs 

HERITAGE study 
Caucasian 

USA 

17 
1 

ACE 
ATG 

rs4340 
rs699 

Males: 
ACE I/D (2) 
ATG M (+) 

reduced 
diastolic blood 

pressure. 
 

Females: 
ACE I/D (2) 

ATG M/T (2) 
 

Endurance 
training 

Moderate: at 
55% HR first two 

weeks and 
intense: last 6 

weeks 75% HR 

20 weeks Candidate 
Gene 

Rico-Sanz et 
al 2003(20) 

N= 779 
 

Males and 
Females 

 

Age 17-
65yrs 

HERITAGE study 
Caucasian and 

African-American 
USA 

1 AMPD1 rs17602729 
 TT (-) VO2max 

Endurance 
training 

Moderate: at 
55% HR first two 

weeks and 
intense: last 6 

weeks 75% HR 

20 weeks Candidate 
Gene 
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Ring-
Dimiriou et 
al 2014 (21) 

N=24 Males 45-65yrs Austria 4 PPARGC1A rs8192678 GG (+) VO2peak 70-90% of 
Vo2peakk 

3 days/week 
10 weeks 

Candidate 
Gene 

Rivera et al 
1997 (22) N= 240 Males and 

Females 17-65yrs 

HERITAGE study 
Caucasian and 

African-American 
USA 

19 CKMM rs8111989 CC (-) VO2max 

Endurance 
training 

Moderate: at 
55% HR first two 

weeks and 
intense: last 6 

weeks 75% HR 

20 weeks Candidate 
Gene 

Sonna et al 
2001 (23) N=147 Males (42.2%)  

and Female 
Age 21.7 
± 3.6yrs 

USA: 57% 
Caucasians, 

25% African-
Americans, 14% 
Hispanics, 3% 
Asians, and 1% 

Native American 

17 ACE rs1799752 ACE I/D (2) 
VO2max 

2 aerobic days 
and 2 strength 
training days 

per week 

8 weeks Candidate 
Gene 

Stefan et al 
(2007) (24) N= 136 Males and 

Females 
Age 19-
67 yrs Germany 

22 
22 
22 
22 
4 

PPARD 
PPARD 
PPARD 
PPARD 

PPARGC1A 

rs2267668 
rs6902123 
rs2076167 
rs1053049 
rs8192678 

rs2267668 G (-) 
AT, VO2peak 

rs6902123 (2) 
rs2076167 (2) 
rs1053049 (2) 

rs8192678 A (-) 
AT 

Unsupervised: 
3h of moderate 
sports per week 

9 months Candidate 
Gene 

Steinbacher 
et al. 2015 

(25) 
N=28 Males Only 50-69yrs Austria 4 PPARGC1A rs8192678 

AA (-) 
decreased fibre 

type 1 
transformation 

70-90% of 
Vo2peakk 

3 days/week 
10 weeks 

Candidate 
Gene 

Woods el al. 
(26)2001 

N= 108 
 

No percentage 
mentioned 

 

Age 18.9 
±0.4yrs Caucasian 17 ACE rs1799752 ACE I/D (2) 

Aerobic 
Submaximal 

training at 75% 
11 weeks Candidate 

gene 

Yoo et al 
2016 (27) 

N= 123 
 

Males and 
Females 

 

Age 30-
60yrs Korea 

12 
18 
2 
3 
6 
2 
2 

AMN1 
CDH2 
ASB3 

SRGAP3 
UST 

PUM2 
KCNH7 

rs11051548 
rs2542729 
rs1451462 

rs13060995 
rs6570913 

rs11096663 
rs12613181 

 
(+) VO2 max 
(+) VO2 max 
(+) VO2 max 
(+) VO2 max 
(+) VO2 max 
(+) VO2 max 
(+) VO2 max 

HIIT 
60%-84% of 

VO2max 
9 weeks GWAS 

Yu et al. 
2014 (28) 

N= 360 
 

Males (50%) 
and Females 

 

Age 18-
40yrs China 19 APOE E2, E3, E4 

E2/E3 (+) 
VO2max 
E3/E4 (+) 
VO2max 

Aerobic 60%-
85% 6 months Candidate 

gene 

Zarebska et 
al 2014 (29) 

N=66 
 Females only Age 19-

24yrs 
Caucasian 

Poland 11 GSTP1 rs1695 G (+) VO2max 
and VEmax Aerobic training 12 weeks Candidate 

gene 
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50% to 70% of 
HRmax 

Zhou et al. 
2006 (30) N=102 Males Only 18.8 ± 

0.9yrs China 19 CKMM rs1803285 AG (-) RE 
Distance running 

program 95-
105% of VT 

18 weeks Candidate 
Gene 

 
 
Table 3-5. Gene variants associated with resistance trainability. 

Author, 
Date 

Sample 
Size 

Sex (% 
Males) 

Age Ancestry/ 
Country of 

origin/ ethnicity 

Chromo
some 

Gene Variant Genotype and training response (+/−/0) Intervention Duration Type of 
study 

Ash (2) (31) N=602 
 
 

Males and 
Females 

 

Age 
18-

40yrs 

FAMuSS study: 
Predominantly 

European-
American 
Ancestry 

5 NR3C1 rs10482614 
rs10482616 
rs4634384 

Females: rs4634384 T (+) Hypertrophy 
 

Males: rs10482616 GG (+) MVC 
rs10482614 AA (+) MVC 

Upper arm, 
Unilateral 
resistance 
program 

 

12 weeks Candidate 
Gene 

Charbonnea
u (2008) (32) 

N=243 
 

Males 
=35.3% 

and 
Females 

 

Age 
50-

85yrs 

U.SA. Caucasian 17 ACE rs1799752 Females: ACE (2) 
Males: ACE (2) 

 

Knee Extension 
unilateral 
resistance 
program 

 

10 weeks 
3days/we

eks 

Candidate 
Gene 

Clarkson 
(2005) (33) 

N=602 
 
 

Males 
=41% 
And 

Females 
 

Age 
18-

40yrs 
 

FAMuSS study: 
Predominantly 

European-
American 
Ancestry 

11 ACTN3 rs1815739 Females: ACTN3 XX (+) Maximal dynamic 
strength (1RM). 

Males: ACTN3 (2) 

Upper arm, 
Unilateral 
resistance 
program 

 

12 weeks Candidate 
Gene 

Delmonico 
(2007) (34) 

N=157 
 

Males=45
.2% 
And 

Females 
 

Age=5
0-

85yrs 

Caucasian 
USA 

11 ACTN3 rs1815739 Females: ACTN3 RR (+) PP 
Males: ACTN3 (2) 

Knee Extension 
unilateral 
resistance 
program 

 

3days/we
ek 

10 weeks 

Candidate 
Gene 

Erskine 
(2012) (35) 

N=51 
 

Males: 
100% 

Age 
20.3± 
3.1yrs 

Caucasian 
UK 

8 PTK2 rs7843014 
rs7460 

rs7843014 AA (+) Strength (MVC) 
rs7460  TT (+) Strength (MVC) 

Knee Extension 
unilateral 
resistance 
program 

3days/we
ek 

9 weeks 

Candidate 
Gene 

Erskine 
(2013) (36) 

N=51 
 

Males: 
100% 

Age 
20.3± 
3.1yrs 

Caucasian 
UK 

17 
 

11 

ACE 
 

ACTN3 

rs1799752 
 

rs1815739 

ACE (2) 
ACTN3 (2) 

Knee Extension 
unilateral 
resistance 
program 

3days/we
ek 

9 weeks 

Candidate 
Gene 

Folland 
(2000) (37) 

N=33 
 

Males: 
100% 

Age 
18-

30yrs 

UK 17 ACE rs4646994 Isometric training: ACE DD/ID (+) 
Isometric strength (MVC) 

Dynamic training: ACE DD/ID (2) 

Isometric 
Training 

3days/we
ek 

9 weeks 

Candidate 
Gene 
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 Dynamic 
training 

Giaccaglia 
(2006) (38) 

 
N=213 

 

Males and 
Females 

Age>6
0yrs 

Predominantly 
Males and 
Females of 
European-
American 
Ancestry 

17 ACE rs4646994 ACE DD (+) strength (MVC) Light resistance 
training 

3days/we
ek 
18 

months 

Candidate 
Gene 

Harmon 
(2010) (39) 

N=874 
 

Male 
41.1% 

 

Age 
18-

40yrs 

FAMuSS study: 
Predominantly 

European-
American 
Ancestry 

17 
 

3 

CCL2 
 

CCR2 
 

CCL2 
(rs17652343), 
(rs1860189), 
(rs3917878), 
(rs2857654), 
(rs1024611), 
(rs1024610), 
(rs3760396), 
(rs2857656), 
(rs2857657), 

(rs4586), 
(rs13900) 

 
CCR2  

(rs17141010), 
(rs768539), 

(rs3918358), 
(rs1799864), 
(rs1799865). 

Females: 
CCL2 (2) and CCR2 (2) 

 
Males: 

CCL2 T (rs1024610) (+) Maximal Isometric 
strength (MVC) 

 
Males and Females 

CCR2 (AA) rs3918358 and (TT) rs1799865 
(+) Isometric strength (MVC) 

Upper arm, 
Unilateral 
resistance 
program 

 

2 
days/wee

k 
12 weeks 

 
 
 
 

Candidate 
Gene 

He (2019) 
(40) 

N=40 
 

(Females 
only) 

 

Age 
53-

66yrs 

Chinese, Beijing 17 ACE rs4646994 ACE DD (+) Maximal Isometric strength 
(MVC), muscle hypertrophy and grip 

strength 
 

Whole body 
resistance 
training 

3 
days/wee

k 
8 weeks 

Candidate 
Gene 

Hong (2014) 
(41) 

N=83 
 

100% Age 
22.6 ± 
1.4 yrs 

South Korean 11 CNTF rs1800169 CNTF G/A (2) Resistance 
training of 
the upper 

extremities 

3 
days/wee

k 
8 weeks 

Candidate 
Gene 

Jamshidi et 
al (2002) 

(42) N=144 Males 
only 

19.6 
(2.4) 
yrs 

UK 6 PPARA rs425778 C (+) LV mass 

Upper and 
lower body 

training 
program 

10 weeks Candidate 
Gene 

Jones (2006) 
(43) 

Study 1, 
N=28. 

Study 2 
N=39 

100% 18-20 
yrs 

Caucasian UK 17 
 
 
 

(Power-
related 

polygenic 

ACE D 
(rs1799752) 

ACTN3 
(rs1815739) 

Power genotype (+) Power (CMJ) after high 
intensity resistance training but not low 

intensity resistance training. 
 

Low intensity 
(~30% of 1 RM 

and high 

8 weeks 
of high or 

low 

Polygenic 
Score 
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11 risk 
score) 

 

ADRB2 C 
(rs1042714) 

AGT C 
(rs699) 

IL-6 G/C 
(rs1800795) 
PPARA C 

(rs4253778) 
TRHR G 

(rs8192676) 
VDR A 

(rs1544410) 
 
 

repetitions) and 
high-intensity 

(~70% of 1 RM 
and low 

repetitions) 
resistance 
training 

resistance 
training 
1 to 2 

days per 
week 

Keogh 
(2015) (44) 

N=58 
 

Not 
percentag

e 
mentioned 

 

Age 
69.8 ± 

5.3 

New Zealand 
(European 
ancestry) 

17 ACE 
 

UCP2 

rs4646994 
 

rs7109266 

ACE ID (2) 
UCP2 GG (+) Lower body strength (8ft Up 

and Go time) 

Resistance 
training light to 

moderate 
intensity 

 

2days/we
ek, 12 
weeks 

Candidate 
Gene 

Kostek 
(2005) 

(45) 

N=67 
 

Males= 
47.7% 

 

50-
85yrs 

U.S.A Caucasian 12 IGF1 IGF1 192 IGF1 192/192 + 192/- (+) dynamic (1RM) 
muscle strength 

Unilateral 
resistance 
program 

 

10 weeks 
3days/wk 

Candidate 
Gene 

Li (2014) 
(46) 

N=94 
 

100% Age 
18-

22year
s 

Han Chinese 2 MTSN rs1805086 
rs1805065 

MTSN KR (+) Hypertrophy in Biceps and 
Quadriceps 

MTSN AT + TT (+) Hypertrophy in Biceps 

Arm and Leg 
resistance 
training 

3-4 days/ 
wk 

8 weeks 

Candidate 
Gene 

Pereira 
(2013) (47) 

N=139 
 

(Females 
only) 

Age 
65.5 
(8.2) 

Portugal, 
Caucasian 

17 
 

11 

ACE 
 

ACTN3 

rs1799752 
 

rs1815739 

ACE D/D (+) maximal dynamic strength 
1RM, power (CMJ), functional capacity 

(STS) 
 

ACTN3 RR (+) maximal dynamic strength 
(1RM), power (CMJ), functional capacity 

(STS) 

High-speed 
power training 

 

12 weeks 
3days/we

ek 

Candidate 
Gene 

Pescatello 
(2006) (48) 

N=631 
 

Males=42
% 

Age 
18-

40yrs 

FAMuSS study: 
Predominantly 

European-
American 
Ancestry 

17 ACE rs4646994 Trained Arm 
Post Intervention: ACE II/ID (+) Maximal 

Isometric strength (MVC) 
 

Untrained Arm 
Post Intervention: ACE DD/ID (+) maximal 
dynamic strength (1RM), muscle size (CSA 

of Type II fibres). 

Upper arm, 
Unilateral 
resistance 
program 

 

12 
weeks, 

2days/we
ek 

Candidate 
Gene 

Pistilli 
(2008) (49) 

N= 748 Males 
(40.2%) 
Females 

18-
40yrs 

Caucasian 10 IL15RA rs2296135 rs2296135 CC (+) MVC RT program 12 weeks 
2 

day/week 

Candidate 
gene 
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Reichman 
(2004) (50) 

N= 153 
 

Males 
49.6% 

Females 

Aged 
18-31 
years 

Predominantly 
European-
American 
Ancestry 

10 IL15RA rs3136617 
rs3136618 
rs2296135 

rs3136617 C (+) muscle hypertrophy 
rs2296135 C (+) muscle hypertrophy 

 

Whole body 
resistance 

training @75% 
of 1RM 

10 
weeks, 

3days/we
ek 

Candidate 
Gene 

Sprouse 
(2014) (51) 

N= 874 
 

Males= 
50% 

Age: 
18-40 
years 

FAMuSS study: 
Predominantly 

European-
American 
Ancestry 

8 SLC30A8 rs13266634 Females:  SCL30A8 (2) 
Males:  SCL30A8(2) 

Upper arm, 
Unilateral 
resistance 
program 

 

Acute 
and 12-
week 

Interventi
on 

Candidate 
Gene 

Thomis 
(2004) (52) 

N=57 
 

100% 22.4 
(3.7) 
yrs 

Flemish Brabant, 
Belgium 

17 
 
 
 

2 

ACE 
 
 
 

MTSN 

rs4646994 
 
 
 

rs1805086 
rs1805065 

ACE (I/D) (2) strength, isometric and 
concentric torque 

or arm muscle cross-sectional area 
 

MTSN: Unable to be determined 

High resistance 
training 
program 

 

10 
weeks, 

3days/we
ek 

Candidate 
Gene 

Walsh 
(2009) (53) 

N=745 
 

Males 
40% 

 

Age 
18-

40yrs 

FAMuSS study: 
Predominantly 

European-
American 
Ancestry 

11 CNTF rs1800169 Females: CNTF GG (+) isometric (MVC) 
and dynamic (1RM) muscle strength 

 
Males: CNTF (2) 

Upper arm, 
Unilateral 
resistance 
program 

 

12 
weeks, 

2 
days/wk 

Candidate 
Gene 

Walsh 
(2012) (54) 

 
N=560 

 

Males and 
Females 

No 
percentag

e 
mentioned 

Age 
18-

40yrs 

FAMuSS study: 
Predominantly 

European-
American 
Ancestry 

1 LEP 
 

LEPR 

rs2167270 
 

rs1137100 
rs1137101 
rs1805096 
rs8179183 

LEP (GG/GA) rs2167270 (+) Muscle 
hypertrophy 

 
LEPR (2) 

 

Upper arm, 
Unilateral 
resistance 
program 

 

12 
weeks, 

2 
days/wk 

Candidate 
Gene 
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Table 3.6. Robust SNPs associated with aerobic or resistance trainability. 

Aerobic Trainability Resistance trainability 

SNP Nearest Gene 
Beneficial 

allele 
SNP 

Nearest 

Gene 

Beneficial 

allele 

rs6552828 ACSL1 G rs4646994* ACE D 
rs699 AGT T rs1799752* ACE D 

rs6090314 BIRC A rs1815739 ACTN3 R 
rs12580476 C12orf36 TBC rs2296135 IL15 RA C 
rs884736 CAMTA1 G rs4253778 PPARA C 
rs353625 CD44 TBC    

rs1956197 DAAM1 G    
rs17117533 NDN A    
rs8192678 PPARGC1A G    
rs10921078 RGS18 A    
rs7531957 RYR2 TBC    
rs11715829 ZIC4 G    

*Linkage Disequilibrium above 80 % according to ensemble LD calculator. 

3.1.2 Aerobic Trainability 

 
Twin and family studies indicate that ~22–57% of aerobic fitness variability between 

individuals can be explained by genetics and therefore plays an important role in the range of 

aerobic phenotypes observed in a population (1). Here, we briefly describe some of the robust 

SNPs that have been associated with aerobic trainability, which means they were replicated in 

at least 2 independent cohorts and were shown to have functional relevance.  

 

A bioinformatic analysis study conducted by Ghosh et al. found that the greatest 

number of SNPs were annotated to the PPAR signalling pathway suggesting its importance in 

VO2max trainability (2). As such, the most widely studied genes within this pathway are the 

peroxisome proliferator-activated receptors (PPARA, PPARG, and PPARD) and their 

transcriptional coactivators (PPARGC1A and PPARGC1B). These genes have been linked to 

multiple aerobic phenotypes, including muscle morphology, aerobic capacity and endurance 

performance (3, 4). PPARD is expressed predominantly in adipocytes and skeletal muscle 
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where it promotes fatty acid oxidation (5). In the HERITAGE family study, the rs2016520 SNP 

located in PPARD was associated with VO2max and maximal power output after a 20 week 

endurance training intervention in African-Americans, but not in Caucasians (6). In vitro and 

animal studies show that the minor allele (C allele) in this SNP (rs2016520) results in higher 

PPARD transcriptional activity, which in turn promotes lipid accumulation and alters normal 

regulation of lipid uptake and storage (5, 7, 8). In a European cohort it was shown that the 

PPARD rs2267668 SNP was associated with VO2peak and anaerobic threshold after a 9-month 

lifestyle intervention (9). They then confirmed that in human primary cell lines that those 

carrying the minor allele at rs2267668 (G allele) were associated with lower mitochondrial 

activity, demonstrating a potential functional effect (9). Taken together, the PPARD locus may 

play a role in aerobic trainability, but larger cohorts of different ancestries and more in depth 

functional studies to determine causal SNP are needed to confirm this.  

 

The transcriptional co-activator PPARGC1A interacts with PPARD and regulates 

mitochondrial biogenesis, angiogenesis, lipolysis and adipogenesis (10). Four candidate gene 

studies, predominantly in men, found consistent associations of rs8192678 within PPARGC1A 

and aerobic capacity in Europeans (9, 11-13). While in the Han Chinese cohort another nearby 

SNP (rs6821591) was associated with VO2max specifically, the G allele was associated with 

increased VO2max compared to those carrying the A allele (14). Work conducted in a Han 

Chinese cohort found that the PPARGC1A rs6821591 SNP had functional significance as gene 

expression was altered; this was dependent on genotype (A v G allele), with the G allele 

displaying increased PGC-1α gene expression (15). Overexpression of PGC-1α in an animal 

model showed increased Type 1 fibres in muscles that are normally Type II fibre-dense and 

this induced increases in resistance to fatigue, inferring increased aerobic capacity (16). These 

population-specific results indicate that it is the PPARGC1A locus itself, rather than individual 

SNPs located within that locus, may be important for trainability (14, 17).  
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Currently 26 SNPs associated with VO2max trainability were identified in a GWAS and 

were validated in 2 separate cohorts (detailed in Table 2) (18). They accounted for 49% of 

VO2max trainability and were able to classify responders and non-responders (18, 19). Whether 

these SNPs are directly involved in gene function or regulation of genes is the next step to 

validate these findings. The most robust is the SNP rs6552828 located near the ACSL1 gene, 

which was the strongest predictor (~6%) of aerobic trainability (VO2max) (18). It has 

subsequently been validated in a bioinformatics pathway analysis and found to be strongly 

correlated to the aerobic electron transport chain phenotype and the PPAR signalling pathway, 

providing a robust candidate gene in VO2max trainability (2). ACSL1 regulates lipid metabolism 

by facilitating the transport of long chain fatty acids into the mitochondria and is an essential 

step in fatty acid oxidation (20). Timmons et al. integrated RNA profiles with genetic variants 

and found the following genes CD44, and DAAM1, also discovered in the Bouchard et al. 

GWAS, were associated with gene expression changes (21). Gene expression of CD44 was up-

regulated in response to endurance training (21) and was strongly associated with phenotypic 

terms associated with aerobic exercise, such as cardiovascular physiological processes, muscle 

contraction, physical fitness and aerobic electron transport chain (2). This indicates that this 

gene and any alterations to its function (i.e. via SNPs) may play in important role in aerobic 

trainability. While these genes certainly provide robustness, there are still limitations in 

determining the causality of these particular SNPs in the molecular mechanisms affecting 

aerobic trainability. 

 

Many candidate gene and GWAS studies have been conducted and this chapter highlights 

the large collection of candidate genes that have been associated with aerobic trainability.  Only 

12 SNPs have been robustly associated with aerobic trainability (Table 3), meaning that they 

have been validated in at least 2 independent cohorts and were shown to have some functional 
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relevance. Subsequent studies should focus on understanding the functional role of the SNPs 

that have been replicated, as this chapter highlights the lack of understanding of the molecular 

mechanism and limits our understanding of aerobic trainability.  

 

3.1.3 Resistance Trainability  

 
Muscular strength and power show a heritability estimated around 52% (22). Skeletal 

muscle strength is defined as the force produced by muscle contraction. A variety of measures 

have been investigated, including muscle strength, maximal voluntary contraction (MVC), 1 

repetition maximum (1RM) and handgrip strength. While the production of skeletal muscle 

power is defined as how much force can be produced and the velocity at which it is produced, 

the production of power can be measured at the by undertaking tests such as Wingate’s, counter 

movement jumps (CMJ) and vertical jumps.  

 

The ACE I/D and ACTN3 R/X SNPs are two of the most extensively studied gene loci. 

We have chosen not to discuss ACTN3 here as it has recently been reviewed in detail by Del 

Coso et al. (24) and instead focus on the ACE I/D SNP. The ACE gene encodes the angiotensin-

converting enzyme that is a central component of the renin-angiotensin-system (25). The ACE 

I/D results in either  an insertion (26) or deletion (26) of a 287-basepair region in intron 16 of 

the gene (27) and can alter the levels of ACE in the blood (27). It has recently been shown that 

polymorphism can manipulate the activity of the C- and N-terminal domain in the enzyme (28). 

Further, exercise can decrease enzyme activity in the C-terminal domain and increase the 

activity in the N- terminal domain, which results in improved blood flow and proliferation of 

red blood cells (28). The I allele is assumed to confer enhanced endurance performance while 

the D allele is thought to confer increased muscle power and strength (29). The D allele was 

consistently shown across 6 separate candidate gene studies to be associated with greater gains 
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in strength after resistance training, and this was consistent across sex and age (30-35). While 

the literature is consistent regarding muscular strength, the association with muscular power is 

less convincing (30, 36-38). The D allele in ACE was associated with CMJ in older females 

after a 12-week power training program (33) and in young males after a high intensity training 

program (39). However, it was the I allele in ACE that was associated with a higher baseline 

VJ at baseline in males and females (37). Another two studies did not find any association 

between the ACE I/D and skeletal muscle power at baseline or in response to resistance training 

(36, 38). ACE provides a robust candidate gene for explaining variation in muscular strength 

but not muscular power, suggesting that this gene loci may only explain some of the inter-

individual resistance variability dependent on type of resistance exercise.  

 

Many of the candidate genes in resistance trainability came from a large multi-centre 

trial (FAMuSS) which aimed to identify nonsynonymous SNPs with functional effects on 

muscle power and strength (40). These include: Glucocorticoid receptor (NR3C1) (41), alpha-

actinin 3 (ACTN3) (42), Chemokine (C-C motif) ligand 2 (CCL2) (43), Chemokine (C-C motif) 

ligand 2 Receptor (CCR2) (43), ACE (35), Solute carrier family 30 (zinc transporter), member 

eight gene (SLC30A8) (44), Leptin (LEP) and Leptin receptor (LEPR) (45). The FAMuSS study 

was conducted in young (18-40 years old) males (N=247) and females (N=355) of 

predominantly European-American ancestry. Participants underwent a 12-week unilateral 

resistance program consisting of upper arm exercises in the non-dominant arm (35). Only IL-

15RA, ACTN3 and ACE from this series of studies were replicated in separate cohorts and have 

functional relevance. In the IL-15RA locus the rs2296135 SNP was associated gains in 

muscular strength and replicated in two different studies in European ancestry cohorts (46, 47). 

When the gene IL-15RA is knocked down in an animal model it alters the contractile properties 

and fatigability in skeletal muscle fibres (48). While the locus is important, it is not yet clear 

which SNPs is responsible for altering the function of IL-15RA protein. Although SNPs within 
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CCL2, CCR2 and CNTF have not been replicated, they interestingly showed sex-specific 

associations with muscle strength. CTNF polymorphisms were associated with strength gains 

only in females (49), which was subsequently confirmed in a South Korean cohort (50). SNPs 

in CCL2 and CCR2 were associated with strength gains in males only (43). This indicates 

potential sex-specific differences in the genetic architecture of complex traits and should be 

incorporated into study design (51, 52). In addition, PTK2, CNTF, IL-6, PPARA and VDR 

candidate genes have been replicated with functional relevance (39, 53).  

 

In total 5 SNPs (Table 3) were robustly associated with resistance variability. While 

there is a plethora of candidate gene studies, no GWAS have been conducted that specifically 

focuses on resistance trainability.  

 

3.1.4 Functional Validation   

 

We have identified 12 SNPs and 5 SNPs that are robustly associated with variance in 

aerobic and resistance trainability respectively. The next steps are to a) identify the causal SNP, 

b) annotate the causal SNP to the correct gene and then c) to establish the functional relevance 

of the gene (19). The overall evidence from literature connecting causal genes to trainability is 

relatively low (2). If we hope to identify the causal variants or genes it is vital that we begin to 

integrate ‘omic’ technologies, from genome and epigenome, to transcriptome, to proteome and 

metabolome, which can capture a complete picture of complex human traits such as aerobic 

and resistance trainability (54, 55).  

 

There have been attempts to associate molecular pathways or ‘molecular phenotypes’ 

with physiological phenotypes of aerobic and resistance trainability (56-58). Sarzynski et al. 

applied this systems biology approach by combining the 21 SNP identified in a GWAS from 
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the HERITAGE study cohort (Table 2) (18, 59) and examined the joint contributions of these 

SNPs to exercise response (19). This approach identified potential pathways in calcium 

signalling, energy sensing and partitioning, mitochondrial biogenesis, angiogenesis, immune 

functions, and regulation of autophagy and apoptosis, which can be investigated more closely 

(19). Another integrative approach is expression quantitative trait loci (eQTLs) analysis, which 

leverages gene loci identified from GWAS and integrates them with gene expression data to 

identify differential gene expression levels, and uncover the ‘molecular phenotype’ that leads 

to these variations in exercise response (60, 61). Willems et al. identified the rs6565586 SNP 

in ACTG1 as a strong candidate gene in inter-individual variability in the resistance-related 

phenotype (hand grip strength) and correlated this with a lower expression of mRNA in skeletal 

muscle. ACTG1 encodes Actin Gamma 1 and is involved in the structure and function of 

skeletal muscle fibres. Interestingly, in a knockout mouse model, animals displayed overt 

muscle weakness (62). This type of analysis presented an ideal candidate gene to begin 

understanding the molecular mechanisms in human skeletal muscle.  

 

The type of follow-up experiment will depend on the location of SNP within the gene. 

For SNPs within coding regions, ideally experiments are performed to study the effect of the 

SNP has on protein structure and function. For SNPs in non-coding regions it more difficult to 

determine, as they may not directly affect a gene but alter/regulate transcription factors and 

mediate alterations in genes this way (54). However, with the introduction of the large 

epigenetic database ENCODE (Encyclopaedia of DNA elements) we can now identify the 

transcription factor association, chromatin structure and histone modification of target genes 

(63), and more recently enhancers providing candidate gene targets for follow up analysis (64). 

With the discovery of CRISPR Cas-9 genome-editing tool in 2012 (65), this has paved the way 

for establishing causality of SNPs and the functional effects of them. This has been successfully 

used for establishing causal genes implicated in insulin resistance, whereby they were able to 
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determine the causal effect of 12 candidate genes that had previously been identified in a 

GWAS (66). To date no experiments have been conducted using this gene-editing tool to 

establish the function and causality of candidate genes of trainability beyond association 

analysis.  

 

There is still much work to do before personalised exercise prescription (both in a 

clinical and elite athlete setting) can be based on an individual’s genetics. However, there are 

concerted efforts taking place to make this possible, such as the Athlome Project Consortium 

and the Gene SMART (Skeletal Muscle Response to Training), recently launched with the aim 

of uncovering the genetic variation underlying athletic performance, adaptation to exercise 

training, and exercise-related musculoskeletal injuries (67, 68). These, and other initiatives will 

allow for population-based approach to understand the role of genes and environmental factors 

contributing to the complex exercise response phenotype (69). 
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Chapter 4: Variability in physiological fitness and skeletal muscle mitochondria-related 
phenotypes in response to HIIT 

This chapter is based on the following article currently under review in a peer-reviewed 

journal. Alvarez Romero, J., et al., Physiological and mitochondrial phenotypes in response to high 

intensity interval training in male and female skeletal muscle: The Gene SMART Study. Medicine 

& Science in Sports & Exercise 2022. 
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4.1 Introduction 

 

Significant inter-individual differences exist in both physiological and molecular 

responses to any given exercise training [1-3]. Considerable variability is observed in many 

physiological parameters [4], including maximal oxygen uptake (VO2max) [5, 6], resting heart 

rate [6], exercise heart rate [6], aerobic and anaerobic thresholds (LT) [6, 7], and muscle mass 

and strength [8, 9]. Molecular phenotypes such as resting muscle glycogen content, muscle 

enzyme activity [10], and mitochondrial function have also shown large variability [11].  

 

Variability identified in exercise training studies stems from multiple sources, including 

technical and biological factors as well as different baseline levels between individuals [12]. 

This variability is minimised when a control period is included in the study design and 

compared to the intervention period [13, 14]. A control period refers to exposing the same 

individual to a pre-intervention period, in which data is collected before and after [13, 14]. This 

data can then be correlated against the baseline data (immediately before starting the 

intervention), ensuring no significant changes in the tested phenotype. Thus, we can conclude 

that any phenotypic alteration post-exercise is attributed to the exercise intervention and not 

due to day-to-day variability or technical error [12]. Previous studies have addressed the 

changes in molecular and physiological phenotypes after the intervention, e.g. the mean 

individual-difference in pre-post exercise responses [15]. In addition, multiple studies have 

compared exercise responses for the training group vs a control group [16]. However, it is 

unknown if these changes would remain when a control period is applied.  

 

Skeletal muscle mitochondria are highly responsive to exercise [17], with improvements 

in quantity (content) and quality (structure and function) as typical outcomes of an exercise 
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intervention [18, 19]. Prior research has examined changes in individual mitochondrial markers 

in response to exercise [20-25]; however, examining a composite measure is crucial to assess 

mitochondrial health, as changes in mitochondrial content are a compensatory mechanism for 

changes in mitochondrial quality [26, 27]. Thus, mitochondrial health may reveal insights 

around mitochondrial adaptations in response to exercise. The mitochondrial health index 

(MHI) mathematically outperformed individual markers of mitochondrial function and content 

in relation to caregiver status [11]. This study confirmed that combining mitochondrial markers 

in leucocytes had higher effect size (0.63) than individual components of the mitochondrial 

energy production machinery (0.23 + 0.12).  Thus, we aim to validate these results in skeletal 

muscle. The MHI combines four measures of mitochondrial function and content into a 

composite measure that integrates nuclear and mitochondrial DNA encoded measurements. 

Mitochondrial function is represented by key respiratory chain enzymes activity, including 

succinate dehydrogenase (SDH) and cytochrome C oxidase (COX) [28]. Mitochondrial content 

is represented by ii) citrate synthase (CS) [29] activity and mitochondria (mtDNA) copy 

number [30].  

 

The aim of this study was to identify changes in physiological and mitochondrial markers 

in relative large Australian adult cohort (n=112) following four weeks of high-intensity interval 

training (HIIT), relative to a four weeks of a control period.  

4.2 Methods 

4.2.1 Participants 

 This study was performed on participants from the Gene SMART (Skeletal Muscle 

Adaptive Response to Training) cohort. A detailed methodology of the Gene SMART study 

has been previously published [31]. Briefly, 92 healthy males and 20 females aged 18 to 45 

years with a body mass index (BMI) of 25.46 + 3.29kg m2 were recruited to complete a four 

weeks of HIIT intervention. The study was approved by the Human Ethics Committee at 
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Victoria University (HRE13-223, and HRE 21-122), and written consent was obtained from 

each participant. A detailed medical history was obtained by questionnaire. Participants were 

excluded from the study if they had definite or possible heart disease, chronic respiratory 

condition, musculoskeletal problems that would restrict cycling, uncontrolled endocrine and 

metabolic disorders, or diabetes requiring insulin or other therapies.  

 

4.2.2 Study design 

 

The study design consisted of six steps (Figure 1): 1) screening and familiarisation, 2) 

baseline testing before control period, 3) control period, 4) end of control and baseline testing 

pre-exercise training intervention, 5) exercise intervention (HIIT), and 6) post-training testing. 

Throughout the study participants were asked to maintain their habitual dietary and physical 

activity patterns and refrain from strenuous exercise, caffeine, or alcohol consumption for at 

least 24 hours before the tests. 

 

  

Figure 4.1 Study design. Abbreviations; graded exercise test (GXT), high-intensity interval training 

(HIIT), citrate synthase activity (CS), cytochrome c oxidase activity (COX), succinate dehydrogenase 

activity (SDH).  
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4.2.3 Graded-Exercise Tests (GXT) tests 

 Prior to commencing a four-week HIIT intervention, a subset of Gene SMART 

participants (n=29, 10 females and 19 males) completed a four weeks of a control phase, in 

which participants were not prescribed any training and were asked to continue with any 

regular exercise, diet, and sleep routine. Before commencing this control phase, a pre-control 

baseline assessment was completed involving two GXTs. Tests were performed on an 

electronically braked cycle ergometer (Lode-Excalibur sport, Groningen, the Netherlands) and 

consisted of 4-min stages separated by 30-sec rest periods until exhaustion. Wpeak was 

determined from the GXTs as 105% of the maximum power reached in the last stage of the 

GXT [32]. The test started at 50 and 60 watts and increased by 25 or 30 watts in each 

subsequent stage for males and females respectively. When females were not able to get six 

stages in the first GXT, they started the tests at 25 watts. Capillary blood samples were taken 

at rest after each completed stage and immediately following exhaustion, and analysed by the 

YSI STAT plus system (Yellow Springs, Ohio, USA). LT was calculated by the modified 

DMAX method, which is determined by the point on the polynomial regression curve that 

yields the maximum perpendicular distance to the straight line connecting the first increase in 

lactate concentration above resting value and the final lactate point. When the difference 

between replicate GXT was less than 5%, the average of the two GXT tests were used to 

individualise exercise intensities; otherwise, the highest value was used. Following a 5-min 

rest, peak oxygen consumption (VO2max) was measured using a calibrated Quark CPTE 

metabolic system (COSMED, Rome, Italy). In this test, participants wore the COSMED face 

mask, and cycled for 3-min at a starting intensity of 50 or 60W (females and males, 

respectively) and then cycled at Wpeak until exhaustion. 
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4.2.4 Muscle biopsies  

 During pre-control baseline testing, muscle samples were taken from the vastus 

lateralis by an experienced medical doctor. Following injection of a local anaesthetic (5 mL, 

1% Xylocaine), incisions were made, and the biopsy needle was inserted. Muscle samples were 

collected with manual suction applied. Following collection, the samples (50–200 mg) were 

immediately blotted on filter paper to remove excess blood. The muscle was immediately snap 

frozen in liquid nitrogen and stored at −80 °C for subsequent analyses.  

 

4.2.5 Dietary control (48h prior to muscle biopsies) 

 Standardised meals were provided to participants for 48-hours before muscle and blood 

sampling. These diets were based on the Australian National Health and Medical Research 

Council NHMRC guidelines (15-20% protein, 50-55% carbohydrates, <30% fat and <10% of 

saturated fat) and adjusted for dietary restrictions and preferences. Participants were also asked 

to fast for a minimum of eight hours prior to the biopsy. 

 

4.2.6 Control period  

 Following pre-control baseline testing, the defined subset of Gene SMART participants 

(n=29) completed a four-week control period, where no exercise interventions were conducted 

and participants were told to continue with their habitual day-to-day lifestyle for two weeks. 

Following this period, duplicate GXTs and a muscle biopsy were conducted following 

procedures defined above.  

4.2.7 Pre-HIIT baseline testing and HIIT intervention  

 

 All participants (n=112) completed two GXTs and muscle sampling baseline 

assessments before beginning the HIIT intervention as described above. Participants then 
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commenced a four-week HIIT program, where they trained in the laboratory, under 

supervision, three times a week for four weeks. All training sessions were completed on an 

electronically braked cycle ergometer (Velotron, Racer Mate Inc, Seattle, USA) and were 

preceded by a 5-min warm-up at 50 W. Each session consisted of six to twelve 2-min intervals 

performed at different intensities ranging from 40 to 70% of (Wpeak - LT) above LT, and 

interspersed by 1-min recovery periods (work-to-rest ratio of 2:1). The number of intervals and 

the intensity were progressively increased to maintain progression. Testing and training 

sessions were interspersed over 48 hours to avoid overtraining. At the completion of the four 

weeks of HIIT, two post-intervention GXTs were performed and a further muscle sample was 

collected.  

 

4.2.8 Muscle derived mitochondrial health index (MHI)  

We present a comprehensive index of mitochondrial health that includes either changes 

in mitochondrial content as well as mitochondrial functional capacity (quality). Collected 

muscle samples were used to assess MHI, which was derived from separate analyses of 

succinate dehydrogenase (SDH), cytochrome c oxidase (COX), citrate synthase (CS) activity, 

and mitochondrial copy number (mtDNA) for each participant. SDH using a colorimetric SDH 

activity Assay kit (Abcam #228560) was measured according to the manufacturer’s 

instructions. Samples were analysed in duplicate, and the absorbance was measured in kinetic 

mode at 600nm for 10-30min at 25°C. COX was assessed using a COX assay kit (Abcam, 

#ab239711).  and manufacturer’s instructions were followed The muscle lysate from the SDH 

analysis was used in the COX activity analysis. Samples were measured in triplicates and the 

plate was immediately read at a 500nm wavelength and continuously measured over a period 

of 30-45min. CS activity (mol/h/kg of protein) was measured in triplicates at 30°C and pH 7.5. 

Muscle samples were lysed in an ice-cold buffer (KH2PO4 & KHPO4) using a TissueLyser II 
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(Qiagen). In all analyses described above if the coefficient of variance [33] was >10% for the 

duplicate or triplicate results, values were removed. 

Mitochondrial copy number (mtDNA) was determined in quadruplicates using multiplex 

qPCR. This method allows for simultaneous amplification of a mitochondrial (ND1) and a 

nuclear amplicon (RNAseP, Thermofisher Scientific #4403328) to verify their relative 

abundance (Krishnan et al. 2007; Picard et al. 2018). The assay was run on a QuantStudio™ 7 

Flex Real-Time PCR System. The average CV for mtDNA Cts was 1.02%. Data was manually 

curated, and cases where samples yielded a standard deviation > 0.3 were removed. 

The sequences for the ND1 amplicon (IDT) are as follows: 

Forward primer (300nM), 5’CCCTAAAACCCGCCACATCT3’; 

Reverse primer (300nM): 5'GAGCGATGGTGAGAGCTAAGGT3'; and  

Probe (100nM): 5'FAMCCATCACCCTCTACATCACCGCCC-TAMRA3'.  

 

To calculate MHI [11], the following formula was used: 

"
𝐸𝑛𝑒𝑟𝑔𝑦	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝑀𝑖𝑡𝑜𝑐ℎ𝑜𝑛𝑑𝑟𝑖𝑎𝑙	𝑐𝑜𝑛𝑡𝑒𝑛𝑡 5 = 7

𝐶𝑜𝑚𝑝𝑒𝑥	𝐼𝐼	(𝑆𝐷𝐻) + 𝐶𝑜𝑚𝑝𝑙𝑒𝑥	𝐼𝑉(𝐶𝑂𝑋)
𝐶𝑆 +𝑚𝑡𝐶𝑁 F ∗ 100 

 

4.2.9 Statistical analysis 

 Statistical analysis was performed using R version 4.1.0 [34] using a linear mixed 

model of the form:  

𝑂𝑢𝑡𝑐𝑜𝑚𝑒 = 𝐷𝑒𝑙𝑡𝑎	𝑐ℎ𝑎𝑛𝑔𝑒~𝑠𝑒𝑥 + 𝑎𝑔𝑒 + 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 + (1|𝐼𝐷) 

where the outcome variable was either the change in physiological measure of fitness (Wpeak or 

LT or VO2max) or the mitochondrial markers (CS activity, mtCN, SDH, COX) and the 
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composite measure (MHI), the timepoint was a numeric variable (0 (PRE intervention) or 1 

(post intervention)). The mixed model estimates whether there were changes in outcome at the 

group level after four weeks of control vs. intervention period. Pearson correlations between 

changes in physiological variables and mitochondrial makers were also formulated to 

investigate any associations between them. 

4.3Results  

4.3.1 Changes in physiological and mitochondrial markers following a control 
period  

 

 No significant changes were observed in any physiological measurements following 

the control period (Figure 2). Further, when examining changes between the end of the control 

phase and pre-HIIT baseline testing, there were also no differences in any of the physiological 

variables. For mitochondrial markers, when comparing changes across the end of control Vs 

HIIT baseline we did not observe changes in mtCN and MHI (Supplementary fig. 1); 

however, we observed changes in SDH, CS and COX (Supplementary fig. 1).  
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Figure 4.2 Changes in physiological variables over four weeks of control and HIIT exercise 

periods. Box plots show the mean changes over four weeks of the control period and four weeks of 

HIIT for a) power peak, b) lactate threshold and c) VO2max. Asterisks represent p-value < 0.05 and ‘ns’ 

represents non-significant results. Abbreviations: Lactate threshold (LT), power peak (Wpeak), start of 

control period (CON), end of control period (ENDCON), start of HIIT intervention (PRE), and 

following HIIT intervention (4WP). 

 

4.3.2 Changes in physiological variables following HIIT  

 Following four weeks of HIIT, Wpeak (p= 0.001, Figure 2a) and LT (p = 0.001, Figure 

2b) was significantly increased, with no significant change found in VO2max (p < 0.05, Figure 

2c).  

 

ns 
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Figure 4.3 Changes in mitochondrial markers over four weeks of control and four weeks of high 

intensity interval training (HIIT). Box plots show the mean changes over four weeks of the control 

period and four weeks of HIIT for a) CS, b) SDH, c) COX, d) mtCN, and e) MHI. Asterisks represent 

p-value < 0.05 and “ns” represents non-significant results. Abbreviations: Citrate synthase activity (CS), 

cytochrome c oxidase activity (COX), succinate dehydrogenase activity (SDH), mitochondria copy 

number (mtCN), mitochondrial health index (MHI), start of control period (CON), end of control period 

(ENDCON), start of HIIT intervention (PRE), and following HIIT intervention (4WP).  

 

4.3.3 Changes in mitochondrial markers following HIIT  

 We did not observe significant changes in the MHI following four weeks of HIIT 

(Figure 3e). When changes in mitochondrial markers were analysed separately, there was a 

significant increase in CS (p < 0.05, Figure 3a) and COX (p < 0.05, Figure 3c).  
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4.3.4 Associations between changes in physiological and mitochondrial markers 

 We investigated whether there were associations between changes in the physiological 

and mitochondrial markers following four weeks of HIIT. Changes in LT were found to be 

positively correlated with changes in both CS (r = 0.2, p = 0.014, Figure 4a) and COX (r = 

0.19, p = 0.019, Figure 4b) following four weeks of HIIT. Significant correlations were found 

between increased changes in VO2max and increased changes in two mitochondrial markers, CS 

(r = 0.24, p = 0.0025, Figure 5a) and SDH (r = 0.20, p = 0.011, Figure 5c), following four 

weeks of HIIT. Finally, a significant correlation was found between increased changes in Wpeak 

and changes in CS following four weeks of HIIT (r= 0.24, p = 0.0024, Figure 6a). No 

significant associations were found between Wpeak changes and changes in the other assessed 

mitochondrial markers Figure 6b-e.  

 

 

r r r 

r r 
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Figure 4.4 Correlations between changes in mitochondrial markers and changes in lactate 

threshold (LT) following four weeks of high intensity interval training (HIIT). Scatter plots of 

correlations between changes in lactate threshold and changes in A) CS, B) COX, C) SDH, D) mtCN 

and E) MHI following four weeks of HIIT. Abbreviations: lactate threshold (LT), citrate synthase 

activity (CS), cytochrome c oxidase activity (COX), succinate dehydrogenase (SDH), mitochondria 

copy number (mtCN), and mitochondrial health index (MHI). 

 

 

 

Figure 4.5 Correlations between changes in mitochondrial markers and changes in VO2max 

following four weeks of high intensity interval training (HIIT). Scatter plots of correlations between 

changes in maximal VO2max and changes in a) CS, b) COX, c) SDH, d) mtCN and e) MHI following 

four weeks of HIIT are shown. Abbreviations: maximal consumption capacity (VO2max), citrate synthase 

activity (CS), cytochrome c oxidase activity (COX), succinate dehydrogenase (SDH), mitochondria 

copy number (mtCN), and mitochondrial health index (MHI). 

 

 

r r r 
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Figure. 4.6. Correlations between changes in mitochondrial markers and changes in peak power 

(Wpeak) following four weeks of high intensity interval training (HIIT). Scatter plots of correlations 

between changes in Wpeak and changes in a) CS, b) COX, c) SDH, d) mtCN and e) MHI following 4-

weeks of HIIT are shown. Abbreviations: peak power (Wpeak), citrate synthase activity (CS), 

cytochrome c oxidase activity (COX), succinate dehydrogenase (SDH), mitochondria copy number 

(mtCN), and mitochondrial health index (MHI). 

  

4.4 Discussion 

In a relatively large sample of males and females (n=112) we have provided an extensive 

analysis of changes in physiological variables and mitochondrial markers following four weeks 

of control vs HIIT intervention. We report a significant increase in two physiological 

phenotypes, LT and Wpeak, following four weeks of HIIT. This suggests that observed changes 

in physiological variables, LT and Wpeak, were induced by the HIIT intervention and not due 

r r r 

r 
r 
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to external factors. In addition, increases were observed in two mitochondrial markers, CS and 

COX, after four weeks of HIIT. We then integrated key mitochondrial measurements into MHI 

to detect broader mitochondrial responses after exercise. However, we did not observe changes 

in MHI after four weeks of the HIIT intervention. We found positive correlations between some 

physiological and molecular markers. Specifically, increases in LT were correlated with 

increases in CS and COX. This correlation suggests that training near the lactate threshold 

affects also mitochondrial markers, and affects them in an independent manner [35]. Increases 

in VO2max were correlated with increases in CS and SDH. Thus, these results suggests that 

increases in mitochondrial skeletal muscle COX activity are not necessary for increases in 

VO2max. Finally, increases in Wpeak were correlated with an increase in CS activity following 

four weeks of HIIT. This correlation is supported for a previous HIIT study where CS was also 

increased [36]. In general, these correlations suggests that HIIT affects physiological 

measurements and mitochondrial enzymes independently and not in parallel, as suggested 

previously [37].  

 

The most common method to investigate exercise response variability is to compare an 

intervention group with an independent/separate control group [16]. However, there are 

limitations to this approach as observed differences cannot be truly attributed to the exercise 

intervention alone, as they may be due to individual variability between the control and exercise 

group. [16]. We aimed to address this limitation by including a four week control period, 

followed by four weeks of HIIT in the same individuals to minimise inter-individual variability 

during the control phase and in response to a HIIT training intervention.  

 

In line with prior studies, we observed changes in measures of mitochondrial content 

following HIIT [38]. Here, we examined the usefulness of measuring mitochondrial health via 
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a composite measure MHI in skeletal muscle, as it was previously reported to be useful in blood 

[11]. Following four weeks of HIIT, we did not observe significant changes in skeletal muscle 

MHI. This finding was unexpected, given that measures used to derive MHI, mitochondrial 

function and content, are shown to upregulated in skeletal muscle by exercise [20, 39]. When 

examining each mitochondrial measurements individually, we found an increase in CS activity 

and COX [40, 41]; however, we did not observe increases in either SDH or mtCN. This may 

be due to the length of the training intervention, as previous studies with a training period of 8 

weeks found SDH activity increased more than 27% after an interval training intervention, and 

more than 20% increase after a continuous exercise intervention [42].  

 

We did not observe changes in mtCN after four weeks of HIIT. Our findings are 

supported because mtCN is weakly correlated with mitochondrial function or mitochondrial 

content [43]. We observed significant increases in mitochondrial markers (CS, SDH and COX) 

when comparing changes across the end of control period vs HIIT baseline testing 

(supplementary figure 4.1). This finding could be because the analysis was performed 

separately (possible batch effect). Nevertheless, we addressed the potential impact for these 

outcomes, putting the timepoint and batch as covariables in our statistical model. In addition, 

we did not see changes in the CON period, suggesting that changes after the HIIT intervention 

are accurate and not due to day-to-day variability. It is also known that enzymatic activity 

varies considerably within subjects according to the intracellular enzyme state [44]. We also 

minimized the possible technical variability, removing any variance >10% in duplicate results.  

 

In this study we noted that HIIT intervention consistently affects mitochondrial content 

and physiological markers. Increases in CS activity were consistently associated with increases 

in VO2max, LT and Wpeak. This finding is interesting given CS is recognised as a robust marker 
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for mitochondrial content [20, 38]. In addition, we found that increase in LT is associated with 

an increase in COX activity, with this finding plausible given COX is the primary site of 

cellular oxygen consumption and is essential for aerobic energy generation in the form of ATP 

[45]. In addition this finding is supported due to skeletal muscle mitochondrial adaptations 

being largely dependent on exercise intensity [46]. These findings are consistent with previous 

results when using CS or COX activity as biomarkers of the skeletal muscle oxidative 

adaptation to a training intervention and a relationship between changes in aerobic capacity 

[40, 41]. In addition, CS activity has been associated with mitochondrial content, and is shown 

to be influenced by the oxidation of substrates and complex IV [43]. These findings may 

explain the presented relationships between CS and COX and physiological measures of 

aerobic capacity (VO2max, LT, Wpeak) Finally, we found a correlation between SDH and VO2max. 

This is consistent with previous studies where increases in VO2max were clearly correlated with 

increases in SDH in heart failure patients, healthy participants, and professional cyclists [47, 

48].  

 

A limitation of this study is that we found significant differences in mitochondrial 

markers when comparing CONEND vs PRE (supplementary figure 4.1), and although we 

conducted the analysis in separated batches that may explain this, we also considered that batch 

and time point are covariables and we cannot explore this further. Also, not all participants 

undertook the control period; hence, the number of participants in each analysis was different 

(29 for CON group and 112 for PRE).  

 

4.5 Conclusion 

 We found significant changes in several physiological and mitochondrial variables 

following four weeks of HIIT. We also identified consistent positive correlations between 
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mitochondrial markers (CS, SDH, and COX) and physiological variables (VO2max, Wpeak, LT). 

Including a control period in the same individuals that completed the HIIT intervention allowed 

us to perform a direct comparison of the physiological and mitochondrial measurements and 

we can conclude that changes are likely due to the HIIT intervention. This study design 

highlights the value of including a control period in exercise studies. Compensatory 

mechanisms may affect the variability across the mitochondrial variables as reported here with 

COX and CS. However, further studies are needed to establish such mechanisms in exercise 

responses.  
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Chapter 5: Genetic Variants and its association with physiological and molecular 
phenotypes in skeletal muscle 

 

5.1 Introduction 

 

There is a wide variability across individuals in response to the same exercise 

intervention [1] Post-exercise intervention variability in fitness phenotypes is well known, for 

example, maximal oxygen consumption (VO2max) [2-11], lactate threshold [12] [9, 10] and 

power peak (Wpeak) [3, 13]. Variability is also seen with molecular traits such as mitochondrial 

functional markers [14]. The factors that drive this inter-individual variability in exercise 

responses remain largely unclear, however there is strong evidence that a genetic component 

contributes to this variability [15]. Genetic background plays an important role in sporting 

potential, with physiological and molecular traits such as VO2max and mitochondrial markers 

known to be polygenic traits which are influenced by several genetic variants [16-19]. Many 

studies focus on a limited number of genes, which individually may contribute only small 

effects, and explain only a small proportion of overall variability. However, the polygenic 

nature of these traits implies there may be benefit investigating the combined effect of multiple 

genetic variants to stablish the overall influence of genetics on exercise responses at both a 

physiological and molecular level.  

 

Genetic variants identified in GWAS studies may be combined into a polygenic risk 

score that captures an individuals’ total genetic tendency for a specific trait, with the use of  

polygenic risk scores used initially in clinical research for disease and risk prediction [20]. 

Polygenic scores may also be used in the context of fitness, by using genetic variants identified 

through several GWAS studies for fitness traits such as VO2max [21], heart rate and recovery 

of autonomic nervous system [22]. However, only one study has explored creating a polygenic 
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score in this context [23], albeit considering only one fitness trait, VO2max, and no other 

physiological or underpinning molecular fitness phenotypes. 

 

In examining the role of genetics in exercise responses it should be considered that 

someone’s baseline fitness level (before an exercise intervention is implemented) is a key factor 

that influences their degree of response to that intervention. For example, it has been reported 

that the degree of change in phenotypes, such as VO2max [24, 25] and strength [26], following 

exercise interventions is dependent on the initial fitness levels of the individual, prior to the 

intervention. For example, has been reported that individuals with lower VO2max at baseline 

have the highest increases in it after the intervention [27]. In addition, changes in VO2max 

following resistance training is dependent of the individual´s VO2max baseline levels [28]. 

Noting this, the vast majority of the literature in this area explores how genetic variants may 

predict response to exercise training [29] with little known around how they may predict 

baselines fitness levels, which reflects long-life and cumulative exposures to exercise.  

 

In this study we therefore assessed the association between exercise polygenic scores, 

derived from genetic variants identified in Chapter 3 of this thesis, and physiological and 

mitochondrial markers at baseline and following a four-week high intensity interval training 

(HIIT) intervention.  

 

5.2 Methods:  

5.2.1 Participants and study design  

This chapter utilises data collected for the Gene SMART study cohort, which has been 

described in detail previously in Chapter 3 and in a prior publication [30].  
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 Briefly, the Gene SMART cohort study is a controlled exercise study involving a 4-

week HIIT intervention, with familiarisation and baseline assessments completed before this 

intervention and a further study assessment conducted after it (Figure 5.1). This chapter reports 

on data gathered from 96 males and 20 females (18-45 years, BMI: 25.46+3.29kg m2) who 

completed this study. This study was approved by the Humans Ethics Research Committee at 

Victoria University (HRE13-223 and HRE 21-122), and we obtained a written consent form 

from each participant. 

  

 
Figure 5.1. Study design 
 

5.2.2 Familiarization study visit  

 Prior to completing the 4-week HIIT intervention, participants completed a 

familiarisation exercise session that consisted of one graded exercise test (GXT). Physiological 

measurements (lactate threshold, peak aerobic power and VO2max) were taken during this 

familiarisation GXT and then used to set the initial intensity for the following baseline GXTs.  

5.2.3 Baseline testing  

Following a familiarisation session, all participants then completed two baseline GXTs. 

On a separate examination day, a muscle biopsy and blood sample were also taken. This was 

preceded by a 48-hour standardised diet, following procedures described in Chapter 4.  

5.2.4 Exercise intervention (HIIT) and post-intervention testing 



 75 

 Following baseline visits, participants trained three times/week under supervision for 

four weeks. Each session consisted of six to twelve 2-min intervals performed at different 

intensities ranging from 40 to 70% of (Wpeak - LT) above LT and interspersed by 1-min 

recovery periods (work-to-rest ratio of 2:1). The number of intervals and the intensity were 

progressively increased to maintain progression. Testing and training sessions were at intervals 

of 48-hours to avoid overtraining. Following 4 weeks of HIIT, participants completed post-

intervention study assessments, comprised of two GXTs and collection of a muscle and blood 

sample, as at baseline.  

 

5.2.5 Mitochondrial measures  

 Analyses of mitochondrial measures succinate dehydrogenase (SDH), cytochrome C 

oxydase (COX), citrate synthase (CS), and mitochondria copy number (mtDNA) were 

performed using muscle samples collected at baseline and following the 4-week HIIT 

intervention, following methods described previously in Chapter 4. Values for these measures 

were used to derive the mitochondrial health index (MHI) using the following formula:  

 

!
𝐸𝑛𝑒𝑟𝑔𝑦	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝑀𝑖𝑡𝑜𝑐ℎ𝑜𝑛𝑑𝑟𝑖𝑎𝑙	𝑐𝑜𝑛𝑡𝑒𝑛𝑡

4 = 6
𝐶𝑜𝑚𝑝𝑙𝑒𝑥	𝐼𝐼	(𝑆𝐷𝐻) + 𝐶𝑜𝑚𝑝𝑙𝑒𝑥	𝐼𝑉(𝐶𝑂𝑋)

𝐶𝑆 +𝑚𝑡𝐶𝑁
E ∗ 100 

 

5.2.6 DNA extraction and genotyping 

 Genomic DNA was extracted from 350ul of blood samples using the MagSep Blood 

gDNA kit (Eppendorf, Germany), using the epMotion M5073 automated pipetting system 

(Eppendorf, Germany) and reversible absorption of nucleic acids to paramagnetic beads as per 

manufacturer instructions.  
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 Isolated DNA samples (~200ng) were then genotyped using the Illumina Genome-

Wide Genotyping array-24 Version 3.0 Beadchip following the illumine Infinitum HTS assay 

GGTNM00263). Quality assessment of the samples was performed by QuantiFluor at the 

Australian Genome Research Facility, Melbourne, Australia, with samples removed if they 

showed any deficiency in staining, extension, hybridization, stringency, non-specific binding 

or non-polymorphic controls. All samples from this project met the Illumina expectations of 

<0.3 for Log SD.  

 

5.2.7 Exercise Polygenic Score 

 Genotype data generated using the Illumina Genome-Wide Genotyping array-24 

Version 3.0 Beadchip was used to derive additive exercise polygenic scores, using the list of 

robust SNPs linked to exercise responses outlined in Chapter 3. Two exercise polygenic scores 

were created, with the first comprised of seven SNPs linked to changes aerobic fitness, and the 

second comprised of these seven SNPs plus two linked to resistant training (Table 5.1). Three 

SNPs not covered by the array were replaced by SNPs in high linkage disequilibrium (LD): 1) 

rs6090314 with rs6090327 (pairwise r2= 1), 2) rs884736 with rs11120796 (pairwise r2=0.98), 

and 3) rs1956197 with rs12891759 (pairwise r2= 1). Several SNPs identified in Chapter 3 were 

omitted from the polygenic scores due to their beneficial allele being unknown or the 

genotyping array not covering this SNP or their close proxies: ACE rs4646994, rs1799752, 

rs4340, and rs13447447; IL15RA rs2296135; C12orf36 rs12580476; CD44 rs353625; NDN 

rs17117533; RYR2; rs7531957; and ZIC4 rs11715829. The remaining included SNPs were 

summed to generate additive polygenic scores, with participants scoring a 1 for each beneficial 

allele they carried. For example, the G allele for the rs6552828 (A/G) SNP was identified to be 

beneficial to aerobic fitness in Chapter 3, with individuals who carry two copies of this G allele 



 77 

scoring 2 towards their exercise polygenic score, with a heterozygous genotype corresponding 

to a score of 1 and a 0-score representing no copies of the G allele.  

Table 5.1 Lists of SNPs used to generate exercise polygenic scores. 
 

 Exercise Polygenic Score 1 

(EPS1) 

Exercise Polygenic Score 2 

(EPS2) 

Gene Name Variant  Beneficial 
allele 

Variant  Beneficial 
allele 

ACSL1 rs6552828 G rs6552828 G 
AGT rs699 A rs699 A 
BIRC rs60903271 G rs60903271 G 
DAAM1 rs128917592 G rs128917592 G 
PPARGC1A rs8192678 G rs8192678 G 
CAMTA1 rs111207963 G rs111207963 G 
RGS18 rs10921078 A rs10921078 A 
PPARA   rs4253778 G 
ACTN3   rs1815739 G 

1: replaces rs6090314, 2: replaces rs1956197, 3: replaces rs884736  
 
 

5.2.8 Statistical analysis 

 
Data analyses were conducted using R software version 4.0.2 [31] (packages: dplyr 

[32] readxl [33], mice [34], and miceadd [34, 35]). Descriptive statistics were generated to 

describe cohort characteristics and allele frequencies; continuous data included means and 

standard error (SE), and categorical data included counts (n), frequencies (%). Data missing at 

random was imputed using multiple imputations using the mice package [34], and results were 

pooled from all imputed iterations for models with the miceadds package [35]. Findings 

derived from the unimputed dataset are also reported. Linear regression was used to assess 

relationships between exercise polygenic scores and physiological and mitochondrial variables, 

with relationships between individual SNPs and outcome variables also explored. All models 

were corrected for age and sex, with models assessing changes in outcome variables over 4 

weeks of HIIT also adjusting for baseline levels of that variable. Post-hoc comparisons were 

used to investigate pairwise significance between genotypes. The level of significance was set 
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at a=0.00028 based on the Bonferroni method adjustment for multiple (176 overall models) 

testing [36]. 

 

5.3 Results 

5.3.1 Cohort phenotypes before and after HIIT.  

The mean age of the cohort was 31.6 years and had mean exercise polygenic scores of 

4.8 (out of possible 14) for EPS1 and 8.4 for EPS2 (out of possible 18). Fitness phenotypes 

were on average higher following 4-weeks of HIIT, compared to baseline; VO2max (47.6 (SD 

8.6) vs. 46.6 (SD 8.8)), LT (2.6 (SD 0.7) vs. 2.4 (SD 0.7) ) and Wpeak (3.7 (SD (0.8)  vs 3.5 

(SD 0.8)), however this increase was only significant (p<0.05) for LT and Wpeak. In addition, 

there were significant increases in mitochondrial markers, CS (13.6  (SD 6.3)vs 14.6 (SD 6.7)) 

(p<0.05) and COX (1.9 (SD 1.3)  vs 2.1 (SD 1.6)) (p<0.05), after 4-weeks of HIIT. No 

significant changes were found in VO2max, SDH, mtCN and MHI after 4-weeks of HIIT (Table 

5.2).  

 
Table 5.2 Cohort phenotypes before and after HIIT.  
 

(*) represents significant differences between baseline and 4 weeks measures. Abbreviations: Exercise polygenic 
score 1 and 2 (EPS1 and EPS2 respectively), maximal oxygen uptake (VO2max), lactate threshold [12], power 
peak (Wpeak) citrate synthase (CS), succinate dehydrogenase (SDH), cytochrome oxidase (COX), mitochondria 
copy number (mtCN), and mitochondrial health index (MHI).  
 
 

 Baseline 
Mean (SD) 

After 4-weeks of HIIT 
Mean (SD) 

Change Δ 
Mean (SD) 

Age 31.6 (8.1) - - 
EPS1 4.8 (1.8) - - 
EPS2 8.4 (2.1) - - 

VO2max 46.6 (8.8) 47.6 (8.6) 1.4 (4.3) 
LT 2.4 (0.7) 2.6 (0.7) 0.2 (0.2)* 

WPeak 3.5 (0.8) 3.7 (0.8) 0.2 (0.2)* 
CS 13.6 (6.3) 14.6 (6.7) 1.0 (3.0)* 

SDH 85.0 (69.9) 78.9 (55) 13.0 (45.5) 
COX 1.9 (1.3) 2.1 (1.6) 0.2 (1.6)* 
mtCN 12664.9 (21085.5) 10456.8 (6534.4) -5022.8 (28870.0) 
MHI 166.3 (703.4) -189 (1236) -192.3 (1142.7) 
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5.3.2. Allele frequency distribution in the Gene SMART cohort 

The distribution of examined SNPs (rs6552828, rs699, rs6090327, rs12891759, 

rs8192678, rs11120796, rs10921078, rs4253778, and rs1815739) are outlined in Table 5.3. 

Genotype frequencies were consistent with Hardy-Weinberg Equilibrium ([38], P-value>0.05) 

for all SNPs except for rs8192678 (P=0.04).  

 

Table 5.3 Allele distribution in cohort.  
 

Variant N (%) Beneficial allele HWE (P-value) 
rs6552828  G  

0.56 (0.44) AA 17 (17.3)  
AG 52 (53.1)  
GG 29 (29.6)  

rs699  T  
0.12 (0.72) CC 18 (18.3)  

CT 50 (51.1)  
TT 30 (30.6)  

rs6090327  A  
0.44 (0.50) AA 66 (67.3)  

AG 30 (30.6)  
GG 2 (2.1)  

rs12891759  G  
0.31 (0.57) AA 67 (68.3)  

AG 29 (29.6)  
GG 2 (2.1)  

rs8192678  G  
3.92 (0.04) AA 17 (17.3)  

AG 36 (36.7)  
GG 45 (46)  

rs11120796  G  
0.42 (0.51) AA 16 (16.3)  

AG 51 (52)  
GG 31 (31.7)  

rs10921078  A  
1.43 (0.23) GG 61 (62.2)  

AG 30 (30.6)  
AA 7 (7.2)  

rs4253778  C  
1.42 (0.23) GG 6 (6.1)  

GC 28 (28.5)  
CC 64 (65.3)  

rs1815739  C  
1.42 (0.23) TT 6 (6.1)  

TC 28 (28.5)  
CC 64 (65.3)  

Abbreviations: HWE; Hardy-Weinberg Equilibrium 
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5.3.3 Associations between exercise polygenic scores and physiological and 
mitochondrial phenotypes.  

 
No associations were found between exercise polygenic scores (both EPS1 and EPS2) 

and physiological and mitochondrial phenotypes either before or after 4-weeks of HIIT in the 

Gene SMART cohort (Table 5.4). These results did not change when models were run on 

unimputed data (Appendix, Supplementary Table 5.1).  

 

Table 5.4 Associations between Exercise Polygenic Scores and physiological and 
mitochondrial phenotypes.  
 

Each line represents a separate model, with EPS1 and EPS2 also examined separately. All models were corrected 
for age and sex, with models exploring change over 4 weeks also adjusting for baseline levels of the appropriate 
outcome variable. Abbreviations: SE: standard error, BL: baseline, 4W-Δ: change over 4 weeks, EPS1 and EPS2: 
exercise polygenic score 1 and 2 respectively, VO2max: maximal oxygen uptake, LT: lactate threshold, Wpeak: 
power peak, CS: citrate synthase, SDH: succinate dehydrogenase, COX: cytochrome oxidase, MCN: mitochondria 
copy number, and MHI: mitochondrial health index. 
 

5.3.4 Associations between individual SNPs and physiological variables  

Given no associations were found between composite exercise polygenic scores and 

physiological phenotypes, potential associations between individual SNPs in these scores and 

these phenotypes were further explored. No significant differences were found between SNP 

genotypes and VO2max, LT and Wpeak measures at baseline and following 4-weeks of HIIT 

Outcome EPS1 EPS2 
Estimate SE P value Estimate SE P value 

VO2MAX BL -0.53 0.52 0.31 -0.55 0.44 0.22 
VO2MAX 4W-Δ -0.29 -1.08 0.28 -0.21 0.23 0.36 
Wpeak BL -0.04 0.04 0.33 -0.05 0.04 0.18 
Wpeak 4W-Δ -0.00 0.01 0.90 0.0004 0.01 0.96 
LT BL -0.03 0.03 0.34 -0.04 0.03 0.15 
LT 4W-Δ 0.003 0.01 0.81 0.002 0.01 0.83 
CS BL -0.18 0.33 0.58 -0.24 0.28 0.38 
CS 4W-Δ 0.05 0.20 0.78 0.11 0.19 0.56 
COX BL 0.08 0.08 0.29 0.02 0.07 0.70 
COX 4W-Δ 0.008 0.08 0.92 0.03 0.07 0.57 
mtCN BL -1080.94 1029.95 0.29 -760.67 884.37 0.39 
mtCN 4W-Δ -314.24 0.04 0.51 -1.01 0.04 0 
SDH BL 1.19 4,52 0.79 -1.31 3.90 0.73 
SDH 4W-Δ 1.73 3.51 0.62 0.25 3.06 0.93 
MHI BL 535.96 4534.74 0.90 -620.25 3879.86 0.87 
MHI 4W-Δ -55.70 0.78 0.48 -70.97 0.76 0.35 
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(Table 5.5). These results did not change when models were run on unimputed data 

(Appendix, Supplementary Table 5.2). 

 
 
Table 5.5 Least square means estimates by genotype for physiological phenotypes before and 
following HIIT.  
 

Variant (Gene) Least square means (SE)1 
rs6552828 (ACSL1) AA AG GG 
VO2MAX (mL/kg/min) BL 43.9 (2.31) 46.1 (1.36) 45.3 (1.85) 
VO2MAX(mL/kg/min)  4W-Δ 2.01 (1.29) 1.01 (0.69) 0.71 (0.94) 

Wpeak  (W/kg) BL 3.40 (0.22) 3.43 (0.12) 3.35 (0.17) 
Wpeak (W/kg) 4W-Δ 0.24 (0.05) 0.15 (0.03) 0.27 (0.04) 
LT (W/kg) BL 2.37 (0.17) 2.33 (0.10) 2.29 (0.14) 
LT (W/kg) 4W-Δ 0.28 (0.07) 0.23 (0.04) 0.29 (0.07) 

rs699 (AGT) CC CT TT 
VO2MAX(mL/kg/min)   BL 48.4 (2.22) 44.8 (1.38) 44.9 (1.76) 
VO2MAX (mL/kg/min)   4W-Δ 1.08 (1.16) 1.72 (0.67) 0.09 (0.97) 

Wpeak (W/kg)  BL 3.51 (0.21) 3.39 (0.13) 3.37 (0.16) 
Wpeak (W/kg)  4W-Δ 0.19 (0.05) 0.20 (0.03) 0.19 (0.04) 
LT (W/kg) BL 2.43 (0.17) 2.31 (0.10) 2.30 (0.13) 
LT (W/kg) 4W-Δ 0.24 (0.07) 0.25 (0.04) 0.25 (0.06) 

rs6090327 (BIRC) GG AG AA 
VO2MAX (mL/kg/min)  BL 45.9 (1.25) 44.7 (1.80) 41.1(6.39) 
VO2MAX (mL/kg/min)   4W-Δ 0.95 (0.63) 1.28 (0.87) 5.81 (2.98) 

Wpeak  (W/kg) BL 3.40 (0.11) 3.44 (0.16) 3.23 (0.59) 
Wpeak (W/kg) 4W-Δ 0.20 (0.03) 0.19 (0.04) 0.13 (0.14) 
LT (W/kg)  BL 2.32 (0.09) 2.37 (0.13) 2.06 (0.48) 
LT (W/kg) 4W-Δ 0.25 (0.04) 0.26 (0.05) 0.20 (0.19) 

rs12891759 (DAAM1) AA AG GG 
VO2MAX (mL/kg/min)   BL 45.4 (1.28) 45.8 (1.73) 37.0 (6.26) 
VO2MAX (mL/kg/min)  4W-Δ 1.27 (0.66) 0.85 (0.87) -1.44 (3.66) 

Wpeak (W/kg)  BL 3.39 (0.12) 3.45 (0.16) 2.73 (0.58) 
Wpeak (W/kg) 4W-Δ 0.18 (0.03) 0.22 (0.04) 0.17 (0.20) 
LT (W/kg)  BL 2.33 (0.09) 2.34 (0.13) 1.92 (0.47) 
LT (W/kg)  4W-Δ 0.25 (0.04) 0.26 (0.05) 0.21 (0.26) 

rs8192678 (PPARGC1A) AA AG GG 
VO2MAX (mL/kg/min)  BL 48.0 (2.39) 44.9 (1.59) 45.3 (1.44) 
VO2MAX(mL/kg/min)  4W-Δ 1.03 (1.24) 1.56 (0.79) 0.79 (0.73) 

Wpeak (W/kg)   BL 3.72 (0.22) 3.39 (0.14) 3.34 (0.13) 
Wpeak (W/kg)   4W-Δ 0.21 (0.06) 0.19 (0.03) 0.19 (0.03) 
LT (W/kg)  BL 2.58 (0.18) 2.30 (0.12) 2.29 (0.10) 
LT (W/kg)  4W-Δ 0.34 (0.07) 0.26 (0.05) 0.22 (0.05) 

rs11120796 (CAMTA1) AA AG GG 
VO2MAX (mL/kg/min)   BL  47.8 (2.43) 44.4 (1.39) 46.1 (1.68) 
VO2MAX (mL/kg/min)  4W-Δ 2.06 (1.28) 1.00 (0.72) 0.94 (0.86) 

Wpeak (W/kg)   BL 3.64 (0.22) 3.37 (0.13) 3.37 (0.15) 
Wpeak (W/kg)  4W-Δ 0.18 (0.06) 0.20 (0.03) 0.19 (0.04) 
LT (W/kg)  BL 2.48 (0.19) 2.32 (0.10) 2.28 (0.12) 
LT (W/kg)  4W-Δ  0.22 (0.08) 0.23 (0.04) 0.30 (0.05) 

rs10921078 (RGS18) GG AG AA 
VO2MAX(mL/kg/min)   BL 45.4 (1.34) 45.3 (1.74) 46.6 (3.39) 
VO2MAX(mL/kg/min)   4W-Δ 1.07 (0.68) 1.48 (0.86) 0.02 (1.88) 
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Wpeak (W/kg)   BL 3.38 (0.12) 3.39 (0.16) 3.63 (0.31) 
Wpeak (W/kg)  4W-Δ 0.20 (0.03) 0.21 (0.04) 0.07 (0.09) 
LT (W/kg)   BL 2.30 (0.10) 2.34 (0.13) 2.51 (0.25) 
LT (W/kg)  4W-Δ 0.25 (0.04) 0.28 (0.05) 0.17 (0.14) 

rs4253778 (PPARA) GG GC CC 
VO2MAX (mL/kg/min) BL 47.1 (4.03) 46.5 (1.74) 44.9 (1.31) 
VO2MAX (mL/kg/min)4W-Δ 1.78 (2.16) 0.57 (0.84) 1.36 (0.68) 

Wpeak (W/kg)   BL 3.47 (0.37) 3.57 (0.16) 3.32 (0.12) 
Wpeak (W/kg)   4W-Δ 0.22 (0.13) 0.18 (0.04) 0.20 (0.03) 
LT (W/kg)   BL 2.35 (0.29) 2.52 (0.13) 2.23 (0.09) 
LT (W/kg)  4W-Δ 0.26 (0.19) 0.19 (0.05) 0.28 (0.04) 

rs1815739 (ACTN3) TT TC CC 
VO2MAX (mL/kg/min)BL 47.1 (4.03) 46.5 (1.74) 44.9 (1.31) 
VO2MAX (mL/kg/min)4W-Δ 1.78 (2.16) 0.57 (0.84) 1.36 (0.68) 

Wpeak (W/kg)  BL 3.47 (0.37) 3.57 (0.16) 3.32 (0.12) 
Wpeak (W/kg)   4W-Δ 0.22 (0.13) 0.18 (0.04) 0.20 (0.03) 
LT (W/kg)  BL 2.35 (0.29) 2.52 (0.13) 2.23 (0.09) 
LT (W/kg)  4W-Δ 0.25 (0.19) 0.19 (0.05) 0.28 (0.04) 

All models were adjusted for sex, age, and baseline levels of appropriate phenotype (for models on 4W-Δ 
outcomes only) and performed on imputed data. Values within the same row that are bolded and denoted with 
different letters represent significant differences. (<0.05). Abbreviations: SE: standard error, BL: baseline, 4W-
Δ: change over 4 weeks, VO2max: maximal oxygen uptake, LT: lactate threshold, Wpeak: power peak 
 
 
 

5.3.5 Associations between individual SNPs and mitochondrial variables 

  

Potential associations between individual SNPs and mitochondrial variables were also 

explored. A significant association between baseline mtCN and the rs8192678 SNP was found 

(p=0.02), with individuals with the AA genotype having significantly higher mtCN levels on 

average (10579 (SE: 4912)) compared to individuals with AG (9631 (SE: 3137)) or GG (9762 

(SE: 2813)) genotypes (Supplementary Table 5.3). We did not observe any further significant 

associations and mitochondrial phenotypes when models were performed using imputed data 

(Supplementary Table 5.3). However, when potential associations between individual SNPs 

and mitochondrial variables were examined in non-imputed data, several additional significant 

associations were found (Table 5.6).  

 

Firstly, an association was found between baseline mtCN and the rs8192678 SNP 

(P=0.02), as shown in imputed data, with a further relationship between change mtCN 
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following 4 weeks of HIIT and the rs6090327 (P= < 0.01 add). For the rs6090327 variant, the 

AG genotype was associated with significantly greater decreases in mtCN following 4 weeks 

of HIIT (mean -10783 (SE: 1667)) when compared to the GG genotype (mean -3060 (SE: 

1120), Table 5.6). A further association was found between change in CS following 4 weeks 

of HIIT and the rs699 variant (p=0.03). The greatest mean change was seen with the CC 

genotype (1.85 (SE: 0.76)) compared to CT (0.06 (SE: 0.47)) and TT genotypes (0.37 (SE: 

0.61), Table 5.6).  

 

Significant associations were also observed between change in SDH after 4-weeks of 

HIIT and rs6090327 (p=0.03) and rs12891759 (p=0.03) variants (Table 5.6). The AG genotype 

for rs6090327 was associated with significant increases in SDH following HIIT (mean increase 

38.85 (SE: 14.98)), with decreases observed on average for GG (-0.03 (SE: 9.24)) and AA (-

31.91(SE: 44.7) genotypes. Relationships were further found between baseline MHI and three 

genetic variants: rs4253778, rs10921078 and rs1815739. For rs4253778, MHI was 

significantly higher in individuals with GG genotype (mean 1452 (SE: 686)), when compared 

to the CC and GC (mean -153 (SE: 172) genotype (Table 5.6). Similarly, the GG genotype for 

rs10921078 was related to the highest MHI at baseline (mean 245.1 (SE: 146)) when compared 

the AG genotype (mean -312.7 (SE: 219)) for this variant. Further, for variant rs1815739, MHI 

was significantly higher in individuals with the CC genotype (mean 1452 (SE: 686)), when 

compared to the TC genotype (mean -153 (SE: 172), Table 5.6). No further associations were 

found between SNPs and mitochondrial markers at baseline or after 4-weeks of HIIT.  

 
Table 5.6 Least square means estimates for mitochondria phenotypes before and after the HIIT 
intervention, by genotype (non-imputed data) 
 

Variant (gene) Least square means (SE)1 
rs6552828 (ACSL1) AA AG GG 
CS (mol/kg/protein)  BL 11.0 (1.57) 11.4 (0.86) 10.5 (1.15) 
CS (mol/kg/protein)   4W-Δ 1.25 (0.81) 0.13 (0.45) 0.88 (0.65) 
COX (mol/kg/protein)   BL 1.70 (0.37) 1.60 (0.20) 2.04 (0.27) 
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COX(mol/kg/protein)   4W-Δ 0.47 (0.49) -0.15 (0.30) 0.23 (0.40) 
mtCN BL 14342 (7286) 10018 (3998) 16817 (5607) 
mtCN 4W-Δ -5721 (2633) -4782 (1492) -6126 (2556) 

SDH (mol/kg/mg tissue) BL 59.9 (20.4) 75.7 (13.3) 71.3 (17.8) 
SDH(mol/kg/mg tissue)4WΔ 8.08 (16.6) 8.22 (11.7) 12.00 (17.1) 

MHI BL -309 (290) -16.6 (164) 181 (247) 
MHI 4W-Δ -228 (247) -169 (210) -205 (397) 

rs699 (AGT)  CC CT TT 
CS (mol/kg/protein) BL  11.4 (1.43) 11.4 (0.87) 10.3 (1.13) 
CS (mol/kg/protein)  4W-Δ 1.85 (0.76)a 0.06 (0.47)b 0.37 (0.61)b 

COX (mol/kg/protein) BL 1.49 (0.35) 1.90 (0.21) 1.58 (0.27) 
COX(mol/kg/protein)   4W-Δ 0.23 (0.50) 0.32 (0.29) -0.51 (0.40) 

mtCN BL 8515 (7313) 14820 (3784) 8196 (6122) 
mtCN 4W-Δ -6719 (2645) -5858 (1383) -1712 (2460) 

SDH(mol/kg/mg tissue)  BL 67.2 (20.0) 78.0 (13.4) 60.8 (17.8) 
SDH(mol/kg/mg tissue)4WΔ -8.42 (16.7) 5.61 (12.6) 28.31 (13.7) 

MHI BL 102 (289) 164 (161) -185 (273) 
MHI 4W-Δ 
 

-250.6 (307) -41.4 (185) -444.3 (337) 

rs6090327 (BIRC)  GG AG AA 
CS(mol/kg/protein)  BL 11.6 (0.76) 9.51 (1.71) 10.6 (3.85) 
CS (mol/kg/protein) 4W-Δ 0.49 (0.42) 0.39 (0.67) 0.22 (2.69) 
COX (mol/kg/protein)    BL 1.72 (0.18) 1.85 (0.27) -0.28 (1.26) 
COX(mol/kg/protein)   4W-Δ  0.09 (0.27) 0.05 (0.37) - 

mtCN BL 10539 (3556) 18680 (5635) 7844 (16101) 
mtCN 4W-Δ -3060 (1120)a -10783 (1667)b 3600 (5464)b 

SDH(mol/kg/mg tissue) BL 73.4 (11.7) 71.1 (18.5) 18.3 (50.9) 
SDH(mol/kg/mg tissue)4WΔ -0.03 (9.24)a 38.85 (14.98)b -31.91(44.7)b 

MHI BL -27.7 (135) 454.8 (244) 1100.5 (689) 
MHI 4W-Δ -204 (147) -172 (288) - 
    

rs12891759 (DAAM1) AA AG GG 
CS (mol/kg/protein)  BL 11.17 (0.82) 11.09 (1.088) 6.82 (3.83) 
CS (mol/kg/protein)    4W-Δ 0.41 (0.45) 0.57 (0.59) 0.51 (2.75) 
COX (mol/kg/protein)   BL 1.65 (0.19) 1.91 (0.26) - 
COX(mol/kg/protein)   4W-Δ -0.11 (0.27) 0.45 (0.37) - 

mtCN BL 14461 (3750) 8529 (5659) 2118 (15807) 
mtCN 4W-Δ -5896 (1319) -2654 (2211) -18002 (6383) 

SDH(mol/kg/mg tissue)  BL 71.4 (11.7) 70.9 (18.3) - 
SDH(mol/kg/mg tissue)4WΔ -0.23 (9.05)a 36.02 (14.66)b - 

MHI BL 85.3 (149) 108.3 (252) - 
MHI 4W-Δ -252.8 (140) 79.6 (370) - 
    

rs8192678 (PPARGC1A) AA AG GG 
CS (mol/kg/protein) BL 10.0 (1.48) 10.6 (0.99) 11.8 (0.92) 
CS (mol/kg/protein) 4W-Δ 0.66 (0.81) 0.33 (0.56) 0.52 (0.50) 
COX (mol/kg/protein) BL 1.52 (0.41) 1.79 (0.24) 1.74 (0.21) 
COX(mol/kg/protein)  4W-Δ -0.10 (0.58) -0.31 (0.35) 0.37 (0.30) 

mtCN BL 27286 (6618)a 9869 (4679)b 10033 (4106)b 

mtCN 4W-Δ -2828 (3149) -6747 (1825) -4645 (1657) 
SDH(mol/kg/mg tissue)  BL 59.1 (21.9) 88.2 (15.4) 62.2 (13.5) 
SDH(mol/kg/mg tissue)4WΔ 6.16 (19.4) 16.64 (13.5) 0.09 (10.1) 

MHI BL 459.0 (302) 40.1 (198) 30.4 (177) 
MHI 4W-Δ 1949 (1221) -338 (232) -385 (153) 
    

rs11120796 (CAMTA1) AA AG GG 
CS (mol/kg/protein)  BL  11.0 (1.60) 10.9 (0.87) 11.5 (1.08) 
CS(mol/kg/protein)  4W-Δ -0.82 (0.87) 0.88 (0.47) 0.24 (0.58) 
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COX (mol/kg/protein)  BL 1.97 (0.39) 1.75 (0.21) 1.64 (0.25) 
COX (mol/kg/protein) 4W-Δ -0.53 (0.63) 0.35 (0.29) -0.15 (0.36) 

mtCN BL 12556 (7442) 13531 (4030) 10414  (5372) 
mtCN 4W-Δ -3023 (3030) -5289 (1450) -6217 (2224) 

SDH(mol/kg/mg tissue) BL 86.9 (25.4) 63.3 (13.3) 78.9 (15.5) 
SDH(mol/kg/mg tissue)4WΔ 40.55 (24.7) 7.72 (11.7) 4.87 (12.8) 

MHI BL 92.7 (344) 175.3 (163) -72.5 (217) 
MHI 4W-Δ -211 (425) -352 (143) 120 (203) 
    

rs10921078 (RGS18) GG AG AA 
CS (mol/kg/protein)  BL 11.64 (0.82) 10.50 (1.10) 8.82 (2.21) 
CS (mol/kg/protein)  4W-Δ 0.33 (0.45) 0.43 (0.60) 1.86 (1.21) 
COX(mol/kg/protein)  BL 1.66 (0.20) 1.64 (0.25) 2.61 (0.47) 
COX(mol/kg/protein)  4W-Δ 0.15 (0.29) 0.07 (0.38) -0.50 (0.91) 

mtCN BL 15059 (4009) 8688 (4733) 12286 (11212) 
mtCN 4W-Δ -4831 (1441) -5717 (2045) -7638 (4946) 

SDH (mol/kg/mg tissue) BL 66.1 (12.3) 68.4 (18.0) 110.2 (28.5) 
SDH(mol/kg/mg tissue)4WΔ 8.88 (10.9) 13.19 (16.8) -6.68 (34.2) 

MHI BL 245.1 (146)a -312.7 (219)b 86.2 (396)b 

MHI 4W-Δ -279.4 (133) 90.5 (260) - 
    

rs4253778 (PPARA) GG GC CC 
CS (mol/kg/protein)   BL 14.9 (2.50) 11.8 (1.09) 10.6 (0.82) 
CS (mol/kg/protein)   4W-Δ -0.81 (1.39) 0.61 (0.59) 0.49 (0.47) 
COX (mol/kg/protein)   BL 2.62 (0.67) 1.90 (0.25) 1.62 (0.19) 
COX (mol/kg/protein)  4W-Δ -0.57 (1.11) -0.28 (0.34) 0.36 (0.28) 

mtCN BL 15667 (15708) 8169 (5069) 14905 (3934) 
mtCN 4W-Δ -2026 (6958) -4773 (2255) -5568 (1499) 

SDH(mol/kg/mg tissue) BL 52.3 (33.8) 82.8 (15.4) 64.3 (13.2) 
SDH(mol/kg/mg tissue)4WΔ 13.68 (27.5) 23.53 (13.1) -3.82 (11.9) 

MHI BL 1452 (686)a -153 (172)b 293 (167)b 

MHI 4W-Δ -93.4 (179) -368.6 (251) - 

rs1815739  (ACTN3) TT TC CC 
CS (mol/kg/protein) BL 14.9 (2.50) 11.8 (1.09) 10.6 (0.82) 
CS (mol/kg/protein) 4W-Δ -0.81 (1.39) 0.61 (0.59) 0.49 (0.47) 
COX (mol/kg/protein) BL 2.62 (0.67) 1.90 (0.25) 1.62 (0.19) 
COX (mol/kg/protein)  4W-Δ -0.57 (1.11) -0.34 (0.34) 0.36 (0.28) 

mtCN BL 15667 (15708) 8169 (5069) 14905 (3934) 
mtCN 4W-Δ -2026 (6958) -4773 (2255) -5568 (1499) 

SDH(mol/kg/mg tissue) BL 52.3 (33.8) 82.8 (15.4) 64.3 (13.2) 
SDH(mol/kg/mg tissue)4WΔ 13.68 (27.5) 23.53 (13.1) -3.82 (11.9) 

MHI BL 1452 (686)a -153 (172)b 293 (167)b 

MHI 4W-Δ -93.4 (179) -368.6 (251) - 
    

All models were adjusted for sex, age, and baseline levels of appropriate phenotype (for models on 4W-Δ 
outcomes only) and performed on the non-imputed dataset. Values within the same row that are bonded and 
denoted with different letters represent significant differences. (<0.05). Data is missing in cases where no 
outcome data was available for individuals with particular genotypes. Abbreviations: SE: standard error, BL: 
baseline, 4W-Δ: change over 4 weeks, VO2max: maximal oxygen uptake, LT: lactate threshold, Wpeak: power 
peak, (CS) citrate synthase, (COX) Cytochrome C oxidase, (mtCN) mitochondrial copy number, (SDH) 
succinate dehydrogenase, (MHI) mitochondrial health index.  
 
 
 
 



 86 

 5. 4 Discussion 

  

This study investigated the relationships between exercise polygenic scores and 

physiological and mitochondrial markers before and after 4-weeks of HIIT. The examined 

polygenetic scores were derived from robust genetic variants linked to exercise responses 

(Chapter 3), with relationships between these individual genetic variants and physiological and 

mitochondrial markers also explored. The present study comprehensively looked at this in a 

tightly controlled exercise study cohort. This study found no associations between derived 

exercise polygenetic scores and physiological and mitochondrial markers before or after 4-

weeks of HIIT. However, several associations were found between individual genetic variants 

(rs699, rs8192678, rs6090327, rs12891759, rs10921078, rs4253778 and rs1815739) and 

baseline and post-4-week HIIT measures of mitochondrial function (SDH and MHI) and 

mitochondrial content.  

 

Previous efforts to detect the genetic influence in exercise responses have had limited 

success [39]. In our study, a lack of association between exercise polygenic scores and 

physiological and mitochondrial phenotypes may be due to four weeks not being enough time 

to detect the influence of genetics on changes in physiological and mitochondrial phenotypes. 

We further observed no associations between exercise polygenic scores and baseline fitness 

levels, which may be explained by a small and likely underpowered sample set, or a different 

set of genes underpinning lifelong fitness traits. In addition, exercise responses are modulated 

by many genes with small and different effect sizes, thus, the proposed exercise polygenic score 

has equal SNPs effect seizes for the studied phenotypes. While our interventional study was 

done in the general population with different fitness levels, cross-sectional studies have 

reported a genetic influence on physiological exercise responses in elite athletes [40, 41]. Other 
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studies including intervention have reported a genetic influence after 20 weeks of continuous 

exercise in sedentary individuals [21, 42] vs the 4 weeks of HIIT intervention proposed in this 

study. Although we condensed in the EPS a group of genetic variants robustly associated with 

exercise responses, the relationship between genes and fitness traits remain inconclusive, given 

that those findings are derived from varied cohorts (e.g. varied ethnicities, elite and sedentary 

populations) of small samples sizes, contributing to a large heterogeneity across studies [39]. 

In addition, the baseline heterogeneity in our study could be considered as limitation as the 

impact of the HIIT intervention on individuals who were already trained differ within our 

cohort. However, this heterogeneity is also an advantage as the findings of this study are 

applicable to the general population. As highlighted in Chapter 3, no single study has exceeded 

900 participants, which makes all the genetics studies gravely underpowered. We could not 

overcome this limitation with 116 individuals involved in our study. This is one of the major 

reasons for the large body of contradictory results reported in exercise science literature [43]. 

We tried to overcome this limitation by including several genetic variants from different 

sources (candidate genes and GWAS) studies, but according to our results this was not 

achieved. Although previously demonstrated that exercise training is as polygenic trait, 

undoubtedly many genetic variants remain to be identified.  

 

In the current study, seven genetic variants (rs8192678, rs699, rs6090327, rs12891759, 

rs4253778, rs1815739 and rs10921078) were associated with measures of either mitochondrial 

function (SDH and MHI) or mitochondrial content (CS and mtCN). Firstly, a significant 

association was found between rs8192678 with baseline mtCN levels and also with mtCN 

changes after 4 weeks of HIIT. The causality of this finding cannot be explored here. However, 

this finding is supported by previous studies relating this SNP to training-induced adaptations 

of clinical relevance, with increases in mitochondrial function and several cardiovascular 
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phenotypes [44]. It also has been consistently associated with an increased aerobic capacity in 

Europeans [45, 46]., However, these results were in contrast to a Chinese cohort [47] where no 

increases were detected  after 18-weeks of training for GG allele carriers. Significant 

associations were found between rs699 and change in CS following 4 weeks of HIIT, 

rs12891759 and change in SDH after HIIT, and between rs6090327 and changes in both mtCN 

and SDH after HIIT. The rs699 variant (also known as M235T) is located at amino acid 235 in 

the angiotensinogen (AGT) gene, which encodes pre-angiotensin. It is associated with elite 

power as it upregulates angiotensinogen II and increases serum AGT concentrations [48], which 

acts as a growth factor in skeletal muscle and thus promotes hypertrophy, power or speed [48, 

49]. In the present study, the rs699 genetic variant was associated with citrate synthase activity 

in skeletal muscle, which has not been previously reported. This finding may be explained by 

the mitochondrial function of the AGT, with previous studies demonstrating that the stimulation 

of angiotensin receptors enhances mitochondrial biogenesis and increases mitochondrial 

content markers [50].  

 

This study further reports an association between rs12891759 and increases in SDH 

after HIIT for the G allele carriers, which has not been previously reported. In this study, we 

replaced the rs12891759 genetic variant with one in high LD with the rs1956197 (pairwise r2= 

1), which has been linked to increases in VO2max in other studies [51], however this relationship 

was not reported here. The rs6090327 variant was further linked to decrease SDH after HIIT 

for the AA genotype carriers. It also was also linked to increase mtCN in this cohort fort the 

AA genotype carriers, with this variant located in the BIRC gene linked to apoptosis and 

mitochondrial signalling pathways [52, 53]. rs6090327 is in high LD with exercise-related 

rs6090314, and acted as a proxy for this SNP in the current study given it was covered by the 

genotyping array used. rs6090314 has been associated with increases in VO2max after 20-weeks 
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of continuous exercise [21]; however, it was not related to this phenotype in the current study, 

likely due to a shorter exercise intervention. Nevertheless, it was linked to changes in SDH and 

mtCN after 4-weeks of HIIT, suggesting this genetic variant is a prominent candidate gene for 

future molecular pathways studies in exercise responses.  

 

 Three genetic variants (rs4253778, rs1815739 and rs10921078) were associated with 

an increased MHI for the TT genotype. Interestingly, none of the three SNPs were linked to 

individual mitochondria (CS, SDH, mtCN and COX) in the current study, highlighting the 

potential value of examining a composite measure of mitochondrial function and content, and 

subsequently considering the combined effect of a single genetic variant gene on multiple 

mitochondrial markers.  

 

 rs4253778 is located in the intron of the PPARA gene and appears to influence gene 

expression by disrupting mRNAs site and consequently altering encoded PPARa proteins [54]. 

The observed relationship between this variant and MHI is supported by a prior study linking 

the C allele of rs4253778 to the downregulation of mitochondrial enzymes [55]. rs1815739 and 

rs10921078 variants were also associated with MHI in the current study. The rs1815739 variant 

is located in the gene that codes for alpha-actinin-3 (ACTN3), which has been related to many 

aspects of exercise responses (especially speed and power [56]) as well as mitochondrial 

content [57]. In a prior study, a variant in high LD with rs10921078, rs17581162 (pairwise r2 = 

0.84), was found to be associated with increases in VO2max [21]; however, it has not been 

previously linked to markers of mitochondrial function or content. No relationships were found 

between SNPs and physiological variables (VO2max, LT and Wpeak), with this likely due to 

the 4-week HIIT intervention having limited effect on these measures, with a significant but 

small change only reported for LT. 
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This study has several limitations that should be considered when interpreting findings. 

Firstly, we investigated a relatively small sample size, with limits power and the ability the 

capture small genetic effects, even when combined into polygenic scores. Further, the cohort 

examined was predominately Caucasian, with the generalisability of our findings therefore 

limited. However, the study design had strengths in using repeated GTXs and controlled diets 

to reduce variability in physiological and mitochondrial phenotypes. Also, the study derived a 

mitochondrial health index for all individuals, to assess the effects of genetics on a composite 

measure of mitochondrial function and content. Models also adjusted for sex, age and baseline 

measures of outcome where appropriate.  

 

 

5.5 Conclusion 

In conclusion, we found no association between exercise polygenic score and 

physiological and mitochondrial phenotypes. However, several associations between 

individual SNPs (rs8192678, rs699, rs6090327, rs12891759, rs4253778, rs1815739 and 

rs10921078) and mitochondrial markers (CS, SDH, mtCN and MHI) were found, which have 

not been reported previously. Further investigations combining cohorts to improve sample size, 

paired with validation and functional experiments, are needed to improve understanding of the 

links between genetics and fitness.  
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Chapter 6: General discussion, contribution to knowledge, limitations, and future 
research 

6.1 General discussion 

Regular exercise is crucial for good health and healthy ageing, with physical inactivity 

associated with many chronic diseases [1, 2]. The benefits provided by exercise stem from 

skeletal muscle adaptations in response to exercise, which subsequently influence other tissues 

at a whole-body level. However, our understanding of molecular and physiological phenotypes 

that may explain or underpin these exercise adaptations and the factors that influence these 

adaptations, such as genetics, is still in its infancy [3]. Advancing our understanding in these 

areas may provide new avenues to use exercise interventions to further support our health and 

combat chronic diseases.  

The overarching aim of this thesis was to investigate the influence of robust genetic 

variants using the Exercise Polygenic Score (EPS) in mitochondrial and physiological response 

to exercise phenotypes after four weeks of High Intensity Interval Training (HIIT) in the gene 

SMART study. Chapter 1 provided an overview of this thesis. Chapter 2 then outlined the 

relevant background literature for this project, including the concept of trainability and the key 

biological elements (e.g., genetics, mitochondria), as well as methodological and statistical 

factors that influence trainability. Following this, the aim of this thesis was addressed over 

three experimental chapters (Chapters 3-5). Firstly, in Chapter 3, prior studies exploring links 

between genetic variants and fitness variables were systematically reviewed to identify genetic 

variants robustly linked to exercise responses. In Chapter 4, we examined changes and 

correlations between physiological and mitochondrial markers in response to 4 weeks of HIIT 

in the Australian Gene SMART cohort (n=116). Finally, in Chapter 5, we brought together the 

genetic variants identified in Chapter 3 and data from the Gene SMART study to create exercise 

polygenic scores, which were then assessed against baseline and HIIT changes in physiological 
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and mitochondrial markers to explore how they may be used to predict trainability. In this 

Chapter (Chapter 6), the key findings of these experimental chapters will be discussed, as well 

as strengths, limitations, and potential future directions of this work.  

I. Which genetic variants are most robustly and consistently linked to exercise 

responses? (Chapter 3)  

Multiple studies have identified a plethora of genetic variants associated with exercise 

responses [4]. However, it remains unclear which genetics variants are key drivers in 

trainability, with the majority of genetic variants previously associated with exercise based on 

findings in a single cohort, or residing within genes with unclear functional relevance to 

exercise [5]. Evidence of findings between replicated in other independent cohorts and/or 

functional relevance of the identified genetic variants is important, as a large limitation of 

genetic studies, -- which sometimes examine 1000s of SNPs – is the risk of false positives, 

where genetic variants are falsely associated with traits. In Chapter 3, we screened and 

summarised the genetic variants associated with either resistance or aerobic trainability in at 

least two independent cohorts, and reviewed where these SNPs were located as well as the 

biological factors influenced by these loci. We identified 12 and 5 genetic variants robustly 

associated with aerobic or resistance trainability, respectively. The use of thorough selection 

criteria ensured that these SNPs held a true association with exercise responses. The identified 

genetic variants resided in genes within pathways related to multiple trainability phenotypes. 

For example, the genetic variant rs4253778 (annotated to peroxisome proliferator-activated 

receptor PPARA) and rs8192678 (annotated to peroxisome proliferator transcriptional 

coactivator PPARGC1A) are linked to muscle morphology, aerobic capacity, endurance 

performance and mitochondrial biogenesis [6]. In addition, the rs6552828 genetic variant 

located near the ACSL1 is reported to be strongly correlated toe the aerobic electron transport 
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chain as well as to the transport of fatty acids into the mitochondria [7]. Moreover, rs353625 

(annotated to the CD44 gene) and rs1956197 (annotated to DAAM1 gene) were associated with 

up-regulated gene expression in response to endurance training [8]. Genetic variants annotated 

to the ACE gene (rs4646994, rs1799752, rs4340 and the rs13447447) are reported to be 

associated with improved blood flow and proliferation of red blood cells [9]. Also,  rs1815739 

(annotated to the ACTN3 gene) is reported to be associated to muscle strength [10]. These 

findings highlighted key genetic variants and biological pathways influencing trainability and 

provided direction for genetic variants to be explored in the Gene SMART cohort (Chapter 5).  

II. Are physiological and skeletal muscle mitochondria adaptations seen after 4-weeks 

of HIIT, relative to a 4-week untrained control period? (Chapter 4).  

In Chapter 4, the response of multiple physiological and mitochondrial markers 

following four weeks of high-intensity interval training (HIIT), relative to four weeks of an 

untrained control period, was assessed. This study assessed the value of using a composite 

measure of mitochondrial content and quality, the mitochondrial health index (MHI). The MHI 

had previously been used with great success in leucocytes [11], but had not yet been explored 

in skeletal muscle in the context of exercise and neither had its potential relationships with 

changes in physiological variables.  

In Chapter 4 we showed significant increases in physiological variables (Wpeak and LT) 

as well as increases in mitochondrial markers (CS and COX) after 4 weeks of HIIT. However, 

changes in the MHI were not seen, and significant increases were also seen in CS and COX 

during the untrained control period. Our findings were unexpected given that mitochondrial 

function and content are upregulated in skeletal muscle by exercise [12, 13]. This, may in part, 

be explained by the length of the HIIT intervention potentially being too short, with prior 

studies showing effects of 6-8 weeks [13, 14]; or it may be due to an batch effect, given muscle 
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samples from different time points were analysed separately. Chapter 4 also reports positive 

correlations found between changes in CS activity following 4-weeks of HIIT and VO2max, , 

LT, and Wpeak. These findings are supported by similar studies that show HIIT interventions 

lead to changes in mitochondrial and physiological phenotypes [15, 16]. Correlation findings 

are also, in part, supported by a study by Guillen et al. [17], where increase of CS activity in 

skeletal muscle mitochondria as well as increase in VO2max were reported after 12 weeks of 

sprint interval training in sedentary males. Prior studies also suggests a relationship between 

lactate production and defects in mitochondrial function in individuals with Huntington’s 

Disease [18]. Finally, data from Chapter 4 revealed the importance of using a control untrained 

period to more robustly detect true changes in response to exercise.  

III. Which physiological phenotypes and mitochondrial markers are associated with 

Exercise Polygenic Score (EPS)? (Chapter 5)  

Previous studies have reported a genetic influence in exercise responses in general 

populations, elite athletes, and disease-specific groups [19-22]. The limitations of prior studies 

have been in investigating the association between single genetic variants, which have small 

effect sizes on fitness phenotypes. In this thesis, a combined genetic score (exercise polygenetic 

score) was devised from several genetic variants shown to be robustly linked to exercise 

responses (Chapter 3), with relationships between this score and physiological and 

mitochondrial variables prior to and following a 4-week HIIT intervention then examined. Prior 

to this thesis, no studies had examined the association between genetic variants and fitness 

markers before an exercise intervention (i.e., at baseline).   

We found no significant associations between the devised exercise polygenic scores and 

mitochondrial and physiological markers before and after 4-weeks of HIIT. When examining 

for potential relationships between mitochondrial and physiological markers and the individual 
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SNPs making up the exercise polygenic scores, no association were shown between the latter 

and the physiological variables, with limited associations found between the SNPs and the 

mitochondrial markers. Reasons for these findings may be that four weeks of HIIT might be a 

relative short training intervention to detect the genetic influence in exercise, specifically for 

our moderately-active cohort. Furthermore, although a handful of studies have reported that 

multiple genetic variants are associated with exercise responses [7, 23, 24], these studies have 

either bigger cohorts or the exercise intervention was longer than the 4 weeks proposed in the 

present study. Based on this, it appears this work may have been underpowered to be able to 

associate genotypes with phenotypes. 

However, several associations were found between individual genetic variants and 

responses in muscle function and mitochondrial content before and after 4-weeks of HIIT. For 

example, we detected associations between the rs4253778 and rs1815739 with the MHI at 

baseline, with this supported by prior literature that found an association between rs4253778 

and mitochondrial enzymes [25] and between rs1815739 and mitochondrial content [26]. We 

report several associations between SNPs (rs10921078, rs6090314, rs699, rs8192678) and 

mitochondrial markers, which have not been reported previously. However, many of these 

SNPs have been linked to physiological outcomes, such as changes in VO2max after 20 weeks 

of continuous exercise (SNP: rs6090314) [7], power in elite athletes (rs699) [27] and aerobic 

capacity in women (SNP: rs8192678) [28]. This data suggests these genetic variants influence 

these exercise phenotypes by altering mitochondrial functioning, with relationships between 

fitness physiological and mitochondrial measures supported by correlations reported between 

several physiological measures and CS in Chapter 3.  

 



 99  

6.2 Contribution to Knowledge  

This thesis contributes to the existing body of knowledge by compiling a list of robust 

genetic variants associated with exercise. We leveraged this list to create and assess the 

usefulness of using an exercise polygenic score to predict exercise responses. Although this 

investigation had limited findings, likely due to a limited sample size, this list of SNPs and our 

approach may provide important direction for future investigations exploring the role of 

genetics in trainability in larger cohorts. Further studies may use this list of SNPs to refine their 

genetic targets, and increase their ability to capture genetic effects through the use of polygenic 

scores.  

This thesis sought to provide new understanding of the exercise adaptations in skeletal 

muscle as well as skeletal muscle mitochondria, with robust genetic variants involved in these 

molecular and physiological adaptations. It presents new evidence of relationships and 

potential interplay between genetic and mitochondrial factors and changes in physiological 

traits during exercise. In addition, this work shows the value of using an untrained exercise 

period in exercise trials to minimise variability in human studies. This study design may 

provide direction for further investigations, and will increase the field’s ability to identify true 

responses to exercise interventions, which may be overlooked or currently under/over-

estimated.  

6.3 Strengths  

Strengths of this thesis include the use of a systematic approach to defining robust SNPs 

linked to exercise responses and further devise exercise polygenic scores to be explored in later 

parts of the thesis. Further, the Gene SMART (Chapter 4-5) is a well-controlled cohort study, 

which utilised uncontrolled training periods, repeated exercise tests, and controlled diets and 

muscle analyses to minimise variability in data. For example, we performed the muscle 

biopsies consistently at the same time of the day to mitigate changes in circadian cycles. In 
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addition, our experiments at the mitochondrial level were conducted using pieces of the same 

biopsy, as intra-biopsy variability is substantial [29] and may affect analysis. This tight-

controlled study was suitable to detect physiological and mitochondrial phenotypes changes 

after the intervention.  

6.4 Limitations 

A limitation of this study is the small number of participants and the length of the 

intervention in the Gene SMART study (n= 116). Whilst as a cohort size this is quite substantial 

for an exercise study, it is likely to be underpowered to detect small effect sizes, such as the 

effect of genetic variants on phenotypes, or changes in physiological and mitochondrial 

markers over a 4-week exercise period. Although we adjusted our model for multiple testing 

and many variables were included, we were not able find significant results when comparing 

genotypes with phenotypes. Further, while we identified significant changes in physiological 

and mitochondrial markers, a larger cohort is needed to identify the genetic influence in 

exercise responses. A further limitation of this work is that not all Gene SMART participants 

undertook the control untrained period. Further, although we included a control period before 

intervention and we provided a 48-hour diet before biopsies, we could not control participants’ 

lifestyle (diet, sleep, physical activity and many others) which may impact the effect of the 

intervention, especially on mitochondrial analysis. Further limitations are mitochondrial 

analyses being performed in different batches, and therefore a risk of batch effect in the data. 

In addition, this Gene SMART study cohort is predominately Caucasian, which means that our 

results are less applicable to other ethnic cohorts.  

6.5 Future research 

There remains several knowledge gaps and questions around what underpins variability 

in exercise responses. There are discordant or inconclusive findings across studies, with the 

vast majority of findings for associations between genetic variants and exercise responses 
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based on one study [30]. Further independent studies are needed to validate findings linking 

genetic variants to fitness traits, to provide a clearer picture around the contribution of genetics 

to exercise. It is likely that future work will need to explore combining and collating genetic 

data from multiple global cohorts to increase statistical power and the generalisability and 

robustness of findings. Many prior studies in this field focus on physiological changes seen 

with exercise, and neglect to explore potentially underpinning changes in mitochondria or 

broader effects on wider tissues. As mitochondrial health is an important regulator of cellular 

function across different tissues, further work is needed exploring the influence of exercise 

interventions not only in skeletal muscle mitochondria, but also in other tissues. This work may 

provide insights into how exercise supports healthy ageing and prevents chronic diseases [31], 

by identifying mechanisms that influence exercise adaptations across tissues and uncovering 

molecular targets to guide disease prevention interventions and treatment.  

To develop further insights in the mechanisms that may link genetic and molecular 

processes to exercise responses, future studies should include other “omics” layers such as 

methylome, transcriptome, and metabolome. Integrating omic data from skeletal muscle will 

provide a more comprehensive and improved understanding of exercise adaptations, as genetic 

composition alone does not determine fitness phenotype, and changes in many of these omic 

are more responsive to external factors such as exercise [32].  
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Appendix: Supplementary figure and tables  

Supplementary figures 

 
 
 
 

 
 
 
 
Supplementary figure 4.1 Changes in mitochondrial markers over four weeks of control period. 

Box plots showing the mean changes over 4-weeks of the untrained control period for a) CS, b) SDH, 

c) COX, d) mtCN, and e) MHI. Abbreviations; citrate synthase activity (CS), cytochrome c oxidase 

activity (COX), succinate dehydrogenase activity (SDH), mitochondria copy number (mtCN), 

mitochondrial health index (MHI), start of control period (CON), and and start of HIIT intervention 

(PRE). * Represents p-value <0.05 and ns represents non-significant results.                                               
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Supplementary figure 4.2 Changes in physiological variables over four weeks of control period. 

Box plots showing the mean changes over four weeks of the control period for a) power peak, b) lactate 

threshold and c) VO2max are shown. Abbreviations; lactate threshold (LT), power peak (Wpeak), start 

of control period (CON), and start of HIIT intervention (PRE), ns represents non-significant results. 
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Supplementary Table 5.1 Associations between Exercise Polygenic Scores and physiological 
and mitochondrial phenotypes (non-imputed data) 
 

Each line represents a separate model, with EPS1 and EPS2 also examined separately. All models were corrected 
for age and sex, with models exploring change over 4 weeks also adjusting for baseline levels of the appropriate 
outcome variable.  Abbreviations:  SE: standard error, BL: baseline, 4W-Δ: change over 4 weeks, EPS1 and EPS2: 
exercise polygenic score 1 and 2 respectively, VO2max: maximal oxygen uptake, LT: lactate threshold, Wpeak: 
power peak, CS: citrate synthase, SDH: succinate dehydrogenase, COX: cytochrome oxidase, MCN: mitochondria 
copy number, and MHI: mitochondrial health index. 
 
 
Supplementary Table 5.2 Least square means estimate for physiological variables before and 
after 4-weeks of HIIT intervention by each genotype (non-imputed data) 
 

Variant Least square means (SE)1 
rs6552828 AA AG GG 

VO2MAX BL 43.1 (2.42) 46.1 (1.38) 45.2 (1.87) 
VO2MAX 4W-Δ 1.09 (1.13) 1.10 (0.64) 1.03 (0.89) 
Wpeak  BL 3.33 (0.22) 3.43 (0.12) 3.34 (0.17) 
Wpeak 4W-Δ 0.24 (0.04) 0.14 (0.02) 0.28 (0.03) 
LT BL 2.32 (0.18) 2.33 (0.10) 2.28 (0.14) 
LT 4W-Δ 0.32 (0.05) 0.23 (0.03) 0.315 (0.04) 

rs699 CC CT TT 
VO2MAX BL 48.6 (2.30) 44.7 (1.41) 44.6 (1.79) 
VO2MAX 4W-Δ 0.57 (1.08) 1.72 (0.63) 0.04 (0.86) 
Wpeak  BL 3.48 (0.21) 3.38 (0.13) 3.34 (0.16) 
Wpeak 4W-Δ 0.19 (0.05) 0.20 (0.03) 0.18 (0.04) 
LT BL 2.41 (0.17) 2.30 (0.10) 2.28 (0.13) 
LT 4W-Δ 0.25 (0.05) 0.27 (0.03) 0.29 (0.04) 

rs6090327 GG AG AA 
VO2MAX BL 45.7 (1.27) 44.7 (1.85) 41.1(6.47) 
VO2MAX 4W-Δ 0.81 (0.58) 1.40 (0.83) 5.64 (2.80) 
Wpeak  BL 3.37 (0.11) 3.44 (0.17) 3.23 (0.60) 
Wpeak 4W-Δ 0.19 (0.02) 0.20 (0.03) 0.11 (0.13) 
LT BL 2.30 (0.09) 2.37 (0.13) 2.06 (0.48) 
LT 4W-Δ 0.26 (0.03) 0.30 (0.04) 0.19 (0.14) 

rs12891759 AA AG GG 
VO2MAX BL 45.3 (1.32) 45.7 (1.75) 36.8 (6.33) 

Outcome EPS1 EPS2 
Estimate SE P value Estimate SE P value 

VO2MAX BL -0.60 0.53 0.26 -0.65 0.46 0.16 
VO2MAX 4W-Δ -0.17 0.25 0.49 -0.15 0.22 0.50 
Wpeak  BL -0.05 0.50 0.30 -0.06 0.04 0.14 
Wpeak 4W-Δ 0.003 0.01 0.77 0.004 0.01 0.64 
LT BL -0.40 0.40 0.31 -0.05 0.03 0.11 
LT 4W-Δ 0.007 0.01 0.59 0.004 0.01 0.70 
CS BL -0.32 0.33 0.33 -0.34 0.29 0.23 
CS 4W-Δ -0.34 0.29 0.23 0.11 0.16 0.46 
COX  BL 0.07 0.08 0.35 -0.0008 0.07 0.99 
COX 4W-Δ -0.01 0.12 0.88 0.04 0.11 0.68 
mtCN BL -2485.3 1773.83 0.16 -1707.3 1455 0.24 
mtCN 4W-Δ -0.06 0.07 0.38 -0.03 0.05 0.59 
SDH  BL 0.57 5.09 0.91 -3.13 4.48 0.48 
SDH 4W-Δ 7.09 5.13 0.17 1.82 4.20 0.66 
MHI  BL -85.6 76.8 0.27 -39.05 73.1 0.59 
MHI 4W-Δ 142.5 0.01 0.38 4.4 0.01 0.79 
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VO2MAX 4W-Δ 1.26 (0.61) 0.78 (0.81) -3.59 (3.94) 
Wpeak  BL 3.38 (0.12) 3.44 (0.16) 2.71 (0.59) 
Wpeak 4W-Δ 0.18 (0.02) 0.23 (0.03) 0.20 (0.18) 
LT BL 2.31 (0.10) 2.33 (0.13) 1.90 (0.48) 
LT 4W-Δ 0.27 (0.03) 0.27 (0.04) 0.27 (0.21) 

rs8192678 AA AG GG 
VO2MAX BL 48.0 (2.46) 44.8 (1.62) 45.2 (1.47) 
VO2MAX 4W-Δ 0.75 (1.10) 1.62 (0.74) 0.69 (0.70) 
Wpeak  BL 3.71 (0.22) 3.37 (0.15) 3.32 (0.13) 
Wpeak 4W-Δ 0.24 (0.05) 0.20 (0.03) 0.19 (0.03) 
LT BL 2.57 (0.18) 2.29 (0.12) 2.28 (0.11) 
LT 4W-Δ 0.34 (0.05) 0.27 (0.03) 0.24 (0.03) 

rs11120796 AA AG GG 
VO2MAX BL 48.1 (2.55) 44.3 (1.41) 46.0 (1.71) 
VO2MAX 4W-Δ 2.69 (1.22) 1.05 (0.65) 0.56 (0.79) 
Wpeak  BL 3.65 (0.23) 3.35 (0.13) 3.35 (0.16) 
Wpeak 4W-Δ 0.19 (0.05) 0.20 (0.03) 0.19 (0.03) 
LT BL 2.50 (0.19) 2.31 (0.10) 2.25 (0.13) 
LT 4W-Δ 0.27 (0.06) 0.22 (0.03) 0.34 (0.04) 

rs10921078 GG AG AA 
VO2MAX BL 45.3 (1.37) 45.2 (1.76) 46.5 (3.43) 
VO2MAX 4W-Δ 0.83 (0.63) 1.63 (0.82) 0.70 (1.77) 
Wpeak  BL 3.36 (0.12) 3.38 (0.16) 3.62 (0.31) 
Wpeak 4W-Δ 0.20 (0.02) 0.21 (0.03) 0.06 (0.08) 
LT BL 2.28 (0.10) 2.34 (0.13) 2.50 (0.25) 
LT 4W-Δ 0.26 (0.03) 0.29 (0.04) 0.23 (0.09) 

rs4253778 TT CT CC 
VO2MAX BL 46.8 (4.20) 46.4 (1.76) 44.8 (1.35) 
VO2MAX 4W-Δ 0.32 (2.02) 0.82 (0.80) 1.26 (0.63) 
Wpeak  BL 3.40 (0.38) 3.57 (0.16) 3.29 (0.12) 
Wpeak 4W-Δ 0.18 (0.09) 0.19 (0.03) 0.19 (0.02) 
LT BL 2.29 (0.31) 2.51 (0.13) 2.21 (0.09) 
LT 4W-Δ 0.20 (0.10) 0.21 (0.04) 0.30 (0.03) 

rs1815739 TT TC CC 
VO2MAX BL 46.8 (4.20) 46.4 (1.76) 44.8 (1.35) 
VO2MAX 4W-Δ 0.32 (2.02) 0.82 (0.80) 1.26 (0.63) 
Wpeak  BL 3.40 (0.38) 3.57 (0.16) 3.29 (0.12) 
Wpeak 4W-Δ 0.18 (0.09) 0.19 (0.03) 0.19 (0.02) 
LT BL 2.29 (0.31) 2.51 (0.13) 2.21 (0.09) 
LT 4W-Δ 0.20 (0.10) 0.21 (0.04) 0.30 (0.03) 

All models were adjusted for sex, age, and baseline levels of appropriate phenotype (for models on 4W-Δ 
outcomes only) and performed on non-imputed data. Values within the same row that are bolded and denoted with 
different letters represent significant differences. (<0.05). Abbreviations:  SE: standard error, BL: baseline, 4W-
Δ: change over 4 weeks, VO2max: maximal oxygen uptake, LT: lactate threshold, Wpeak: power peak 
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Supplementary Table 5.3 Least square means estimates for mitochondria phenotypes before 
and after the HIIT intervention, by genotype (imputed data) 
 

Variant Least square means (SE)1 
rs6552828 AA AG GG 

CS BL 11.7 (1.54) 11.4 (0.86) 11.0 (1.15) 
CS 4W-Δ 0.64 (0.92) 0.17 (0.55) 0.74(0.71) 
COX  BL 1.67 (0.35) 1.62 (0.19) 2.04 (0.26) 
COX 4W-Δ 0.28 (0.34) -0.12 (0.20) 0.07 (0.28) 
mtCN BL 11877 (4586) 9841 (2776) 13968 (3753) 
mtCN 4W-Δ -174 (2363) -207 (1364) -1073 (1945) 
SDH BL 69.4 (22.2) 74.7 (11.3) 75.7 (15.4) 
SDH 4W-Δ -4.15 (14.58) -1.35 (9.09) 2.13 (12.09) 
MHI BL -6544 (24509) 12914 (14535) -4754 (18632) 
MHI 4W-Δ -8190 (352) -8299 (225) -8672 (386) 

rs699 CC CT TT 
CS BL 11.3 (1.47) 11.7 (0.88) 10.9 (1.14) 
CS 4W-Δ 0.86 (0.98) 0.25 (0.54) 0.38 (0.77) 
COX  BL 1.51 (0.32) 1.86 (0.20) 1.65 (0.26) 
COX 4W-Δ 0.08 (0.33) 0.18 (0.20) -0.36 (0.25) 
mtCN BL 8492 (4492) 13819 (2805) 8422 (3548) 
mtCN 4W-Δ -305 (2176) -432 (1391) -442 (1739) 
SDH BL 69.6 (19.2) 77.2 (11.4) 70.7 (15.0) 
SDH 4W-Δ -16.32 (15.68) 0.03 (9.83) 6.24 (11.48) 
MHI BL -5570 (24058) 11961 (13986) -1170 (20300) 
MHI 4W-Δ -8464 (470) -8419 (252) -8227 (283) 

rs6090327 GG AG AA 
CS BL 11.9 (0.79) 10.0 (1.13) 10.6 (3.93) 
CS 4W-Δ 0.36 (0.49) 0.65 (0.79) -1.24 (2.62) 
COX  BL 1.71 (0.17) 1.88 (0.26) 0.386 (1.01) 
COX 4W-Δ  -0.01 (0.18) 0.07 (0.26) -0.19 (1.10) 
mtCN BL 10248 (2499) 14100 (3691) 9215 (12918) 
mtCN 4W-Δ 695 (1397) -3983 (1709) 7566 (5018) 
SDH BL 77.0 (10.6) 69.0 (15.7) 21.6 (50.3) 
SDH 4W-Δ -1.90 (8.7) 2.13 (13.5) -10.71 (45.9) 
MHI BL 45.9 (12301) -3957 (21910) -2260 (64341) 
MHI 4W-Δ    

rs12891759 AA AG GG 
CS BL 11.49 (0.83) 11.31 (1.088) 7.37 (3.90) 
CS 4W-Δ 0.40 (0.54) 0.39 (0.67) 1.05 (2.92) 
COX  BL 1.66 (0.18) 1.90 (0.25) 1.40 (1.13) 
COX 4W-Δ -0.09 (0.19) 0.2157 (0.26) -0.57 (1.00) 
mtCN BL 12807 (2587) 8292 (3509) 1985 (12655) 
mtCN 4W-Δ -183 (1396) -669 (1781) -6769 (6229) 
SDH BL 74.9 (10.9) 72.3 (15.1) 60.1 (63.8) 
SDH 4W-Δ -4.96 (8.66) 8.03 (11.85) -21.44 (48.07) 
MHI BL 9265 (13487) -3886 (18189) -6533 (63318) 
MHI 4W-Δ -8390 (223) -8357 (268) -7461 (2180) 

rs8192678 AA AG GG 
CS BL 10.5 (1.51) 10.6 (1.007) 12.2 (0.91) 
CS 4W-Δ 0.71 (0.92) 0.17 (0.64) 0.48 (0.57) 
COX  BL 1.45 (0.40) 1.78 (0.23) 1.77 (0.20) 
COX 4W-Δ -0.02 (0.37) -0.22 (0.24) 0.18 (0.21) 
mtCN BL 22501 (4666)a 9631 (3137)b 9762 (2813)b 
mtCN 4W-Δ 707 (2669) -1132 (1597) -130 (1375) 
SDH BL 63.0 (19.7) 82.9 (13.7) 69.6 (12.3) 
SDH 4W-Δ -11.62 (16.0) 0.75 (10.3) 0.09 (10.1) 
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MHI BL -6632 (23861) -3684 (15917) 14281 (16057) 
MHI 4W-Δ -8195 (399) -8364 (281) -8415 (259) 

rs11120796 AA AG GG 
CS BL 11.3 (1.63) 11.1 (0.88) 11.8 (1.07) 
CS 4W-Δ 0.64 (0.92) 0.17 (0.55) 0.74(0.71) 
COX  BL 1.89 (0.38) 1.74 (0.20) 1.67 (0.24) 
COX 4W-Δ -0.23 (0.38) 0.11 (0.21) -0.07 (0.253) 
mtCN BL 10579 (4912) 12318 (2868) 9872 (3427) 
mtCN 4W-Δ -308 (2381) -495 (1471) -325 (1717) 
SDH BL 77.2 (20.7) 69.3 (11.9) 79.6 (14.6) 
SDH 4W-Δ 7.029 (18.27) -0.687 (9.27) -4.504 (10.91) 
MHI BL 528 (31697) 11807 (14027) -3893 (17389) 
MHI 4W-Δ -8216 (531) -8405 (236) -8373 (308) 

rs10921078 GG AG AA 
CS BL 11.81 (0.85) 10.89 (1.09) 9.88 (2.29) 
CS 4W-Δ 0.27 (0.55) 0.39 (0.68) 1.61 (1.40) 
COX  BL 1.66 (0.19) 1.67 (0.24) 2.62 (0.47) 
COX 4W-Δ 0.02 (0.19) 0.04 (0.25) -0.31 (0.55) 
mtCN BL 12402 (2666) 8622 (3511) 12142 (6935) 
mtCN 4W-Δ -586 (1313) -384 (1738) 883 (3479) 
SDH BL 70.7 (11.0) 72.5 (14.6) 105.3 (28.0) 
SDH 4W-Δ -1.12 (9.6) 2.52 (11.5) -12.98 (24.4) 
MHI BL -7499 (38339) -618 (21075) 8216 (13279) 
MHI 4W-Δ -8394 (237) -8137 (278) -9094 (525) 

rs4253778 TT CT CC 
CS BL 14.9 (2.51) 12.0 (1.095) 10.9 (0.83) 
CS 4W-Δ -0.73 (1.57) 0.65 (0.74) 0.35 (0.56) 
COX  BL 2.20 (0.62) 1.93 (0.25) 1.62 (0.19) 
COX 4W-Δ -0.30 (0.58) -0.20 (0.25) 0.12 (0.19) 
mtCN BL 10678 (7925) 8489 (3592) 12632 (2650) 
mtCN 4W-Δ -1059 (3516) 238 (1871) -703 (1329) 
SDH BL 66.0 (32.6) 83.0 (14.1) 69.8 (10.8) 
SDH 4W-Δ 16.87 (28.73) 8.23 (11.12) -6.59 (8.87) 
MHI BL -7499 (38339) -618 (21075) 8216 (13279) 
MHI 4W-Δ -7974 (624) -8164 (282) -8490 (230) 

rs1815739 TT TC CC 
CS BL 14.9 (2.51) 12.0 (1.09) 10.9 (0.83) 
CS 4W-Δ -0.73 (1.57) 0.65 (0.74) 0.35 (0.56) 
COX  BL 2.20 (0.62) 1.93 (0.251) 1.62 (0.19) 
COX 4W-Δ -0.30 (0.58) -0.20 (0.25) 0.12 (0.19) 
mtCN BL 10678 (7925) 8489 (3592) 12632 (2650) 
mtCN 4W-Δ -1059 (3516) 238 (1871) -703 (1329) 
SDH BL 66.0 (32.6) 83.0 (14.1) 69.8 (10.8) 
SDH 4W-Δ 16.87 (28.73) 8.23 (11.12) -6.59 (-6.59) 
MHI BL -7499 (38339) -618 (21075) 8216 (13279) 
MHI 4W-Δ -7974 (624) -8164 (282) -8490 (230) 

All models were adjusted for sex, age, and baseline levels of appropriate phenotype (for models on 4W-Δ 
outcomes only) and performed on imputed data. Values within the same row that are bonded and denoted with 
different letters represent significant differences. (<0.05). Abbreviations:  SE: standard error, BL: baseline, 4W-
Δ: change over 4 weeks, VO2max: maximal oxygen uptake, LT: lactate threshold, Wpeak: power peak, (CS) 
citrate synthase, (COX) Cytochrome C oxidase, (mtCN) mitochondrial copy number, (SDH) succinate 
dehydrogenase, (MHI) mitochondrial health index. 
 
 
 
 
 




