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ABSTRACT

For a continuous and positive function w(4), A > 0 and y a positive measure on (0, o) we consider the following monotonic
integral transform

Ms () o= [ T ) du),
0
where the integral is assumed to exist for T a positive operator on a complex Hilbert space H. We show among others that,

iff=AB=a>0and0 < = (B- A)? < A for some constants a, f, 6, A, then

1
0< -;TSM”(W,,J)(/;) < M(w, 1) <¥> —/O M(w, (- DA+ tB)dt = -Z%AM”(W,,J)((X)

and
)t - MO * MO )(B)
2

1
0=< —T125M"(w,y)(/3) < /0 M(w,y)((l -1)A+tB < —%AM//(W,,U)(LX),

where M”/(w, i) is the second derivative of M(w, 1) as a real function.
Applications for power function and logarithm are also provided.
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1. INTRODUCTION

Consider a complex Hilbert space (H,<-, -»). An operator T is said to be positive (denoted by T > 0)
if {Tx,x) = 0 for all x € H and also an operator T is said to be strictly positive (denoted by T > 0) if
T is positive and invertible.
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We have the following integral representation for the power function when ¢t > 0, r € (0, 1], see

for instance [1, p. 145]
g1 _ sin(rr) /m Y (1.1)
T o A+t

Observe that for t > 0, t # 1, we have
/” dA Int 1 u+t
= + ln( )
o A+t(A+1) -1 1-t¢ u+1
for all u > 0.

By taking the limit over u — oo in this equality, we derive

LIy
t-1 Jo (A+pA+1)

which gives the representation for the logarithm

o0 dA
lnt:(t—l)-/o 7(/1+1)(/1+t) (1.2)
forall t > 0.

Motivated by these representations, we introduce, for a continuous and positive function w(A),
A > 0, the following integral transform
< w(d)

Dlw, 1)(0) /O oA

where 1 is a positive measure on (0, c0) and the integral (1.3) exists for all ¢ > 0.
For y the Lebesgue usual measure, we put

du(d), >0, (1.3)

D(w)(t) := /0 RO (1.4)

A+t
If we take y1 to be the usual Lebesgue measure and the kernel wy(1) = A1, r € (0, 1], then

£t = Sm,(:ﬂ)D(Wr)(t), t>0. (1.5)

For the same measure, if we take the kernel wy,(1) = (1 + 1)71, ¢ > 0, we have the representation
Int = (t-1)D(wy)(t), t>0. (1.6)

Assume that T > 0, then by the continuous functional calculus for selfadjoint operators, we can
define the positive operator

D(w, p)(T) := /0 W)+ T) " du(), (17)
where w and p are as above. Also, when p is the usual Lebesgue measure, then
D(w)(T) := / w)(A+ T)1dA, (1.8)
0

for T > 0.

A real valued continuous function f on (0, o) is said to be operator monotone if f(A) = f(B)
holds for any A = B > 0.

We have the following representation of operator monotone functions [7], see for instance [1, p.
144-145]:
THEOREM 1.1. A function f: [0,00) — R is operator monotone in [0, co) if and only if it has the
representation

© tA
f(t) = f(0) + bt +'/0‘ md,u(/l), (1.9
where b > 0 and a positive measure y on [0, o0) such that
© A
/0 -, /Id,u(/l) < o0, (1.10)
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A real valued continuous function f on an interval I is said to be operator convex (operator concave)
on [ if
F((1=2)A+2B) < (2)(1 - )f(A) + Af(B) (1.11)
in the operator order, for all A € [0, 1] and for every selfadjoint operator A and B on a Hilbert space
H whose spectra are contained in I. Notice that a function f is operator concave if —f is operator
convex.
We have the following representation of operator convex functions [1, p. 147]:
THEOREM 1.2. A function f : [0,00) — R is operator convex in [0, o0) with f/(0) € R if and only if it
has the representation
* 2
10 = O+ fO) et + [t (112)
0 +

where ¢ > 0 and a positive measure p on [0, ) such that (1.2) holds.

For a continuous and positive function w(4), A > 0 and a positive measure y on (0, ), we can
define the following mapping, which we call monotonic integral transform, by

M(w, p)(t) 1= tD(w, p)(t), t>0. (1.13)

For t > 0 we have

Mwop(t) = tD(w, )(8) = /O "W+ ) du()

/m W) (£ + 4= ) (£ + )" dpu(A) (1.14)
0

_ /Ooo w1 - At + 2] du(h).
If /7 w(A)du(A) < oo, then

Mw. i)(1) = /0 wA)du(2) - D(ew, (1), (1.15)

where £(t) = t, t > 0.
Consider the kernel e_,4(1) := exp(-al), A = 0 and a > 0. Then after some calculations, we get

+A

/ w(A)dA :/ exp(—al)dA = l
0 0 a

[eS) e—u
Eq(t) := / —du.
t u

Me_g)(t) = tD(w, p)(t) = tE1(at) exp(at), t=0.

By integration we also have

Dle_a)(t) = /0 " M(M - Ey(at)exp(at), =0

and
where

This gives that

D(Ce_q, p)(t) = /0 ” Wda - % ~ tEy(at) exp(at)

for t > 0.
One observes that

Mlea)(t) = /0 " W) - Dite (D), =0

and the equality (1.15) is verified in this case.
If we take wy(1) = 771, r € (0, 1], then /0Do w,(A1)dA = oo and the equality (1.15) does not hold in
this case.
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For all T > 0 we have, by the continuous functional calculus for selfadjoint operators, that

M(w, p)(T) = TD(w, p)(T) = /0 w)[1- AT + )] du(d). (1.16)
This gives the representation
77 = S0 p G, i)

for T > 0.
In this paper, we show among others that, if > A, B> a > 0and 0 < § < (B - A)? < A for some
constants a, f, §, A, then

0= - SM" (w, i) (B)

A+B
2

1
< M(w,p)( )—/0 M(w, 1) (1 - t)A + tB) dt

;L, 7
=< 24AM (w, p)(@)
and
1
0 = M (w.)(f)

M(w, p)(A) + M(w, 1)(B)
2

1
< / M(w,p)((1 - t) + tB)dt -
0

1 ”
<3 AM (w, p)(a).

Applications for power function and logarithm are also provided.

2. SOME REPRESENTATIONS

We have the following representation of the Fréchet derivative D(M(w, p)):
LEMMA 2.1. Forall A > 0,

D(M(w, p))(A)(V) = / AwA)(A + ATV + A) T du(h) (2.1)
0
for all V € S(H), the class of all selfadjoint operators on H.

Proof. The proof follows directly from the fact that the Fréchet derivative of the map Inv(A) = A™! is
D(Inv)(A)(V) = —A1VA™!
forall A > 0and V € S(H). O

For the case of second Fréchet derivative D? (M(w, ,u)), we have the representation:
LEMMA 2.2. Forall A > 0,

D*(M(w, ) (A)(V, V) = -2 / Aw(D)A+ ATV + ATV + A Hdu(h) (2.2)
0
for all V € S(H).
Proof. The proof follows directly from the fact that the Fréchet second derivative of the map Inv(A) =
Alis
D*(Inv)(A)(V, V) = 247 tvAa Tty !
forall A > 0 and V € S(H). The details are omitted. |

We have the following representation for the transform M(w, p):
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THEOREM 2.3. For all A, B > 0 we have

M(w, p)(B) = M(w, p)(A) + /0 Aw(D)(A + AN (B - A)(A + A) M dp(d)
1 )
-1
_ 2/0 1-1) UO Aw(A)(A+ (1 - 1)A+tB) " (B- A) (2.3)
x (A+(1-1DA+tB)(B-A)(A+(1- A+ tB) dud)| dt.

Proof. We use the Taylor’s type formula with integral remainder, see for instance [2, p. 112],

1
f(E) = f(C) + D(f)(C)E - C) + /O (1-OD*(f)((1 - £)C + tE)(E - C,E - C)dt (2.4)

that holds for functions f which are of class C? on an open and convex subset ) in the Banach
algebra B(H) and C, E € O.
If we write (2.4) for M(w, i) and A, B > 0, we get

M(w, p)(B) = M(w, 1)(A) + D(M(w, 1)) (A)(B - A)
+ /1(1 - 1)D*(M(w, 1)) ((1 - t)A + tB)(B - A, B - A)dt
0
and by the representations (2.1) and (2.2) we obtain the desired result (2.3). a

We have the following representation of operator Jensen’s gap for the n-tuple of positive operators
A = (A1, ..., Ap) and probability density n-tuple p = (p1, ..., pn)s

J(ApM(w, ) := M(w, p) (Z PkAk> - D PeM(w, ) (Ap).
k=1

k=1
THEOREM 2.4. We have the representation

n 0 1 n -1
](A,p,M(w,p))=2kz::1pk/0 Aw(/l)[/o (1-1) </1+(1—t)ijAj+tAk>

J=1

n n -1
X (Ak - ijAj> (/1 +(1-1) ijAj + tAk> (2 5)
J=1 j=1 .
n n -1
* <Ak - ZPJAJ> </1 +(1-1)) piAj+ tAk) dt] du(2)

J=1 J=1
>0

for the n-tuple of positive operators A = (A, ..., A,) and probability density n-tuple p = (p1, ..., pn)-
This also shows that M(w, ) is operator concave on (0, o).

Proof. From the identity (2.3) we get

D(M(w, ) <Z PjAj> <Ak -, PjAj) + M(w, p) (Z PjAj> - M(w, p) (Ag)
= ;

Jj=1 Jj=1
0 1 n -1
:2/0 w(/l)/O(I—t)<)t+(1—t);ijj+tAk>

n -1
x <Ak - ijAj> </1 +(1-1) ijAj + tAk>
J

n
=1 j=1
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Jj=1

n n -1
x <Ak -y ijj) (/1 +(1-1)) piAj+ tAk> dt] du(d) = 0
Jj=1

forall k € {1,...,n}.
If we multiply this inequality with py = 0, take into account that }'}_; px = 1 and

AL

= D(M(w, p)) <Zn', ij]> <Zn', PrAk —;pjf\j>

J=1

= D(M(w, 1)) <J=

j=1

p,-A]) (0)=0,

then we obtain the desired result (2.5). o

For a continuous function f on (0, c0) and A, B > 0 we consider the auxiliary function

fap:[0,1] = R
defined by
fap(®) :=f((1-t)A+1tB), te[o,1].
We have the following representations of the derivatives:

LEMMA 2.5. Assume that the operator function generated by f is twice Fréchet differentiable in each
A > 0, then for B > 0 we have that f4 p is twice differentiable on [0, 1],

dff(‘iB(t) D(f)((1 - t)A+tB)(B - A) (2.6)
and )
%t,g(t) =D*(f)((1 - )A+tB)(B- A, B~ A) (2.7)

for ¢ € [0, 1], where in 0 and 1 the derivatives are the right and left derivatives.

Proof. We prove only for the interior points ¢ € (0, 1). Let h be in a small interval around 0 such that
t + h €(0,1). Then for h # 0,

fap(t+h)-f(t) f(<1 ~(t+h)A+ (t+h)B) -f((1- A+ tB)
h ) h
f((l -HA+ tB+h(B—A)) —f((l A+ tB)

h

and by taking the limit over A — 0, we get
d t t+h) - f(t
fap®) _ o Jap(t+h) - f(1)

dt h—0 h
_ ;}imo [f((l - t)A+tB+ h(B —hA)) —f((l - A+ tB)

=D(f)((1 - A+ tB)(B - A),

which proves (2.6).
The identity (2.7) follows in a similar way. o

For the transform M(w, p)(t) defined in the introduction, we consider the auxiliary function

M(w, 1) ap(t) 1= M(w,p)((1 - t)A + tB)
where A, B> 0and t € [0,1].
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COROLLARY 2.6. Forall A, B> 0and t € [0,1],

dM(w, 1) a,B(1) = D(M(w, 1)) ((1 - A+ tB)(B - A)

di (2.8)
/ /lw(/l) /1 +(1-1A+ tB) (B-A) x ()L +(1-1HA+ tB)_ld,u(/l)
and
W = D*(M(w,p)) ((1 - )A + tB)(B - A, B - A)
=2 / " Aw)(A+(1-t)A+tB)(B- A) (2.9)
0

x (A+(1-DA+ tB)_l(B ~A(A+(1-DA+ tB)‘ldy(A).

We observe that if f(t) = M(w, p)(t), t > 0, in Lemma 2.5, then by the representations from
Lemma 2.1 and Lemma 2.2 we obtain the desired equalities (2.8) and (2.9).

3. MIDPOINT AND TRAPEZOID INEQUALITIES

We have the following identity for the midpoint rule:
THEOREM 3.1. For all A, B > 0 we have the identity

M(w, p)< > / M(w, ,u)((l— HA + tB)d
=2/01(t—;>2{/01(1—s)

/OMAW(A)<A+(1—5)A+B+

x ()L+(1—5)A+

x </1+(1—3)AJr

X

-1
s(1-0A+ tB)) (B-4) 3.1)

ds}dt.

-1
+s(1-nA+ tB)> (B- A)

-1
+s((1-nA+ tB)> du(})

Proof. From (2.3) we have for B=E > 0 and A = C > 0 that

M(w, p)(E) = M(w, p)(C) + /0 AW+ O)HE - O A+ C) du(A)

1 o
- - +(1- + T(E-
2/0 (1-3) [/0 Aw(A)(A+(1-3s)C+sE) (E-C)

x(A+(1-5)C+sE) (E-C)(A+(1-9)C+ sE)_ld,u()L)] ds,
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which implies for E = (1 - t)A+ tB, t € [0,1] and C = A;'B, that

M(w, ,u)((l -HA+ tB)

A+B 1\ [® A+B\! A+B\™!
:M(w,p)<2>+(t-2)/o Aw(/l)</1+ . ) (B—A)</1+ . ) dp(A)

—2<t—;)2/01(1—s)x[/OOOW(A)<A+(1—5)A+B

A+B
2

-1
+s((1-1A+ tB)> (B-A) 62)

-1
x<,1+(1-s) +s((1—t)A+tB)> (B-A)

-1
</1+(1—S)A+B+s((1—t)A+tB)> du(Y)| ds.

If we integrate (3.2) over t € [0, 1], then we get

/1 M(w,p)((l - DA+ tB)dt = M(w, y) <A+ B)
0

2
+/Ol(t—;>dt
x/oo/lw(/l)</1+A;B>1(B—A)</1+A;B>1dp()t)
0
—2/01(t—;)2{/01(1—s)

) -1
y [/ w(l) (/1+(1—3)A+B+s((1—t)A+tB)) (B- A)
0

2
ds} dt

and since /01 (t - %) dt = 0, hence the identity (3.1) is proved. O

-1
» </1+(1—s)A+B+s((1—t)A+tB)> (B- A)

A+B
2

-1
x <A +(1-5) + s((l -HA+ tB)) du(A)

COROLLARY 3.2. Assume thatff>A,B>=a>0and0<d =< (B- A)2 < A for some constants «, f, J,
A, then

0=~ 3M”(w. 1)(P)

1
< M(w, 1) (A;B> - /0 M(w,p)((1 - A + tB)dt (3.3)
< -iAM”(w, 1)(@).

Proof. Since = A, B = a > 0, hence

A+B
A+a<A+(1-5) ;r +s((1—t)A+tB)5/1+ﬁ,
for all A = 0 and t € [0, 1]. This implies that
A+B !
(A+p)t< (/1+(1 -5) ; +s((1-1A+ tB)) s(A+a)! (3.4)
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for all A = 0 and t € [0, 1]. If we multiply this both sides with B - A, then we obtain

-1
A+ BB - AP = (B~ A) <,1+(1-5)A+B +s((1-1)A+ tB)> (B- A)

< (A+a) 1 (B-A)?

forall A = 0 and t € [0,1]. Since 0 < & < (B - A)? < A, hence (A + B)"'(B - A)? = §(A + f)~! and
A+ a)"Y(B- A)? < (1 + a) A, then by (3.5)

(3.5)

A+B
2

-1
S(A+p) < (B-A) ()t +(1-5) +s((1- DA+ tB)) B-A)<sAA+a)!  (3.6)

for all A = 0 and t € [0, 1]. If we multiply both sides with (/1 +(1- s)# + s((l - 1A+ tB))_1 we

derive

A+B
2

-2
O(A+ ,3)71 (/1 +(1-53) + s((l - DA+ tB))

-1
< (A+(1—3)A;B+s((1—t)A+tB)> (B-A)

-1
x (A+(1—s)A;B+s((l—t)A+tB)> (B-A)

-1
B + s((l -HA+ tB))

-2
B + s((l -HA+ tB))

for all A = 0 and t € [0, 1]. By utilising (3.4) we further obtain the bounds

-1
5(A+/3)’35(A+(1—s)A;B+s((l—t)A+tB)> (B- A)
-1
x<A+(1—S)A;B+s((1—t)A+tB)> (B-A)
-1
x<A+(1—S)A;B+s((1—t)A+tB)>
<AA+a)

for all A = 0 and t € [0, 1]. If we multiply by 2Aw(A) (t - %)2 (1 - s) = 0 and integrate, then we get

ZS/OOOAW(A)(A+,B)3dy(A)/Ol (t-;)zdt[u-s)ds
szfol(t—;)z{[u—s)

00 -1
/ Aw(A) (A+(1—s)A+B+s((1—t)A+tB)> (B-A)
0

X

2
» 3.7)
x(A+(1—5)A;B+s((1—t)A+tB)> (B-A)
-1
« </1+(1 -s)A;B +s((1-DA+ tB)) du(l) ds}dt

< ZA/OwAw(A)(A+a)’3dp(/1)/Ol (t—;)zdt/ol(l—s)ds
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and by the identity (3.1) and the fact that

1 1 2 1 1
/ (t—7> dt:—and/(l—s)ds:f
b 2 12 b

we obtain
1 o A+B
55 / AwNA + B) 3 du(d) < M(w, p) ( * ) / M(w,p)((1 - A + tB)dt
0 ) o (3.8)
< —A / AwA)(A + @) 2 dp(d).
12° Jp
If we take the derivative in (1.6) over t, then we get
< Aw(d)
/ = >
M (w, p)(t) = /0 0+ 17 du(d), t>0,
and
17 _ * Aw(l)
M7 (w, p)(¢) = 2/0 L du(d), t>0.
This gives
< Aw(A) _ 1 ”
*® Aw(d) 1.
d ——M"(w,
| = M )
and by (3.2) we obtain (3.3). a
We have the following identity for the trapezoid rule:
THEOREM 3.3. For all A, B > 0 we have the identity
! A B
/ MO (1 1A+ 15) s - A+ MOs D
0
1 00
:/ H1-1) [/ Aw(A)(A+ (1 - DA+ tB)_l(B—A) (3.9)
0 0

x(A+(1- DA+ tB) " B-A)(A+(1-DA+ tB)_ldp()t)] dt.

Proof. Using integration by parts for the Bochner integral, we have

1/1t(1_t)Wdt
0
- % [t(l —_ t)dJVl(MJd%B(t / (1 2t Wdt]

/01 (t 2) dM(Wd/;)AB(t)

(t - %) - /0 1 M(w, )4 p(H)dt

1
(MO 4.5(1) + MO, )4 50)] - /0 Mo, ) 5(0)dt

N | =

that gives the identity

1 1 d2 ,
M(W’”)(A);M(W’“)(B)—/O M(w, p)((1-t)A+tB)dt = %/0 t(1—t)wczt. (3.10)
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By (2.9) we have

1 1 PM(w,papt) [P ® v (1-NA+tB) YB-
—/0 t(1 - ) ———— T2 gy = /Ot(l t)[/o Aw()(A+(1- A+ tB) (B- A)

di? (3.11)
x(A+(1-DA+tB) "B-A)(A+(1-DA+ tB)_ldy(/l)] dr.
By making use of (3.10) and (3.11) we obtain (3.9). O
We have:
COROLLARY 3.4. Assume that f > A, B>a >0,and0< d = (B- A)2 < A, then
0=~ M (. p)(P)
< / 1 M(w,p)((1 - DA + tB)dt - Mw. p(4) ; M, )(B) (3.12)
0
< —%AM//(W, 1)(a).
Proof. As in the proof of Corollary 3.2 we have
S(A+p)3
-1
s(A+(1-nA+ tB)_l (B-A) ) e
x (A+(1-t)A+tB)” (B-A)(A+(1-1)A+tB)
<AAd+a)
for all A = 0 and t € [0, 1]. If we multiply by #(1 - t)Aw(1) = 0 and integrate, then we get
1 00
1) - +B)3
</0 t(1 t)dt) /0 Aw(A)(A + ) du(A)
1 o0
< / t(1-t) [/ Aw)(A+(1-1A+ tB)_l(B - A)
0 0 (3.14)
x(A+(1- A+ tB) ' (B-A)(A+(1- A+ tB)_ldp()L)] dt
1 oo
< - + -3 .
<A (/0 t(1 t)dt) /0 AW(A)(A + a) 7 du(A)
Since
! 1
/0 (1 - t)dt = R
© Aw(d) 1y
[ G ety = -5 M i)
and
“ Aw(d) _ _1 ”
[ G5 = -5 i),
then by (3.14) we derive (3.12). o

We have an alternative identity for the midpoint rule:
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THEOREM 3.5. For all A, B > 0 we have the identity
1
M(w, 1) <A+B> - / M(w,p)((1 - H)A + tB)dt
2 0
/2 00

- /1 £ [/ Aw)(A+(1- DA+ tB)_l(B—A)

0 0
x(A+(1-1)A+tB) " (B-A)(A+(1-DA+ tB)’ldy(A)] dt (3.15)

1 )

+ f (t-1)? [/ Aw(A)(A+(1- A +tB) ' (B- A)

1/2 0

x(A+(1-DA+tB) "B-A)(A+(1-DA+ tB)_ldp()t)] dr.

Proof. Using integration by parts for Bochner’s integral, we have

a3 [ MO s [ M)
o 0

2 dt? dt 0 dt
_ 1dM(w,1)ap(1/2) /1/2 th(W:.U)A,B(t)dt
8 dt | dt
1/2 1/2
_ 1M p)as/2) [tM(w,mAB(t) _ M(w,u)AB<t)dt]
8 dt B :
1/2 1/2
_ LAMOnas D) Ly s s [ Mlwoias(de
8 dt 2 ’ o ’
and
1t o A2 M(w, 1) 4 B(1)
5/1/2(t— 1) — dt
L[ dMw ()] L dMOwas(t)
- )22 PABVY -2 )22 APV
[(t ) dt 1/2 1/2(t ) dt dt
1d 1/2 1 1
_ _LAMOe BB g\ pyan(e)] - / M, ap(t)dt
8 dt e S ’
1 dM(w, 1/2) 1 1
- O DAB L ) 5112) / M(w. a0t
1/2

If we add these two equalities, then we get

1/2 2 1 2
1/ tszH}/ (- 1y LMW DABD)
2 Jo dt? 2 Jiys dr?
1/2 1
= -M(w, )2 p(1/2) + M(W:IJ)A,B(t)dt+/ M(w, 1) 4 p(t)dt (3.16)
0 1/2
1
- [ MOamantdt - M pan1r2)
By (2.9) we obtain
1/1/2 tzwdt
2 Jo dr?
1/2 ) .
:—/ t? [/ Aw()(A+(1- 1A+ tB) (B-A) (3.17)
0 0

x(A+(1-DA+tB) "B-A)(A+(1-DA+ tB)‘ldy(A)] di

Unauthenticated | Downloaded 07/06/23 03:24 AM UTC



Mathematica Pannonica New Series 27 /NS 1/ (2021) 2, 105-119 17

and . )
1 2 d“M(w, 1) a,B(1)
— — 1 - T
/1/2(t ) 1 dt
1 oo
=- [ (t-1) [/ Aw()(A+(1-)A+tB) " (B~ A) (3.18)
1/2 0
x(A+(1-1)A+tB) (B-A)(A+(1-DA+ tB)’ldy(A)] dt.
By employing (3.16)-(3.18) we derive the desired result (3.15). O

REMARK 3.6. By making use of the identity (3.15) one can obtain the same upper and lower bounds
for the midpoint rule as those in Corollary 3.2.

4. SOME EXAMPLES

The case of operator monotone functions is as follows:

PROPOSITION 4.1. Assume that the function f : [0, 0) — R is operator monotone in [0, o) and has
the representation (1.9), then for A, B > 0,

f(B) = f(A) + b(B - A) + /0 ) 24+ A 7B - A)A + A Tdu(h)

o [ °°2+_+‘1_ 4.1
2/0(1 t)[/o/l(/l (1-1A+tB) (B-A) (4.1)
x(A+(1-)A+tB) ' (B-A)(A+(1- A+ tB)’ldy(A)] dt.
Proof. From (1.9) we get
M, p)(2) = f(1) - £(0) - b,

where a € R, £(A) = A, b = 0 and y is a positive measure on (0, ).
Then

ML, p)(B) = f(B) - f(0) - bB,  M(¢, p)(A) = f(A) - f(0) - bA
and by (2.3) we derive

f(B) - f(0) - bB = f(A) - f(0) - bA + /Oco A+ A7 B - A+ A dp(h)

- 1— °°2+_ + 1B-
2/0(1 t)[/o 22(A+(1-1A+1tB) (B-A)

x(A+(1-DA+tB) "B-A)(A+(1- DA+ tB)_ldy(/l)] d,
which is equivalent to (4.1). O

The case of operator monotone functions for the Jensen’s gap is as follows:

PROPOSITION 4.2. Assume that the function f : (0,0) — R is operator monotone in (0, o) and has
the representation (1.9). Then,

n n 00 n 1 n -1
f(zpkAk> Ynfag-z [ X Zpk[/ (-1 (A+<1 )Y pay+ tAk>
k=1 k=1 0 k=1 0

j=1

n -1
X (Ak - ZPJAJ> (/1 +(1-1) ijAj + tAk> (4.2)

n
J=1 J=1

n n -1
: (Ak - ZPJAJ> (A +(1-1)) piAj+ tAk> dt] du(2) = 0

Jj=1 Jj=1

for the n-tuple of positive operators A = (Aj, ..., Ap) and probability density n-tuple p = (p1, ..., pn)-
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The proof follows by Theorem 2.4 applied for
ML, (1) = (1) - £(0) - b,

where a € R, £(A) = A, b = 0 and y is a positive measure on (0, o).
We have the following midpoint and trapezoid inequalities for operator monotone functions:

PROPOSITION 4.3. Assume that the function f : (0,00) — R is operator monotone in (0,c0). If § = A,
Bza>0and0< 8 < (B- A)? < A, then

. 1
<——5f”(/3) f(A B)—/Of((l—t)A+tB)dt

(4.3)
< ‘ﬂAf (@)
and
1o ! f(A) + f(B) 1
0= —E5f p) = /0 f((l—t)A+tB)dt—f < _EAf (). (4.4)
Proof. From (1.9) we get
M(¢, p)(t) = f(2) - £(0) - bt,
where a € R, £(A) = A, b = 0 and y is a positive measure on (0, o).
Then
Mw. ) (A;B) _f <A;B> ~50) - bA+B
M(w, 1)(A) ; M(w, p)(B) _ f(4) ;rf(B _ f(0) - pA ; B
/1 M(w,u)((l -bHA+ tB)dt = /1f((1 -HA+ tB)dt - f(0) - bA+B
0 0
and by Corollary 3.2 and 3.4 we derive (4.3) and (4.4). o

REMARK4.4. If f = A, B> a >0and 0 < § =< (B - A)2 < A, then for r € (0,1] we have the power
inequalities

1 A+B\’ 1 1
0= (- r)Sp2 < ( . ) —/0 (1-1A+1tB) dt < 5" r)Aa"? (4.5)
and
0= %ru -8 < /01 (1-t)A+tB)"dt - Ar;Br < - (- NAd. (4.6)
We also have the logarithmic inequalities
052;5sln(A;B>—/Olln(u-t)AHB)dtsﬁa (4.7)
and
0= 6,6’ /lln((l—t)A+tB)dt—lnA;lnB % (4.8)

iff=A B=a>0and0< 6= (B-A)? <A,
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