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Abstract In this paper we show that, if that the function f : [0,∞) → R is
operator monotone in [0,∞) then there exist b ≥ 0 and a positive measure m on
[0,∞) such that

[f (B) − f (A)] (B −A) =

= b (B −A)2 +

∫ ∞
0

s2
[∫ 1

0

[
((1− t)A + tB + s)−1 (B −A)

]2
dt

]
dm (s)

for all A, B > 0. Some necessary and sufficient conditions for the operators A,
B > 0 such that the inequality

f (B)B + f (A)A ≥ f (A)B + f (B)A

holds for any operator monotone function f on [0,∞) are also given.

AMS Subject Classification (2020) 47A63; 26D15; 26D10.
Keywords Operator monotone functions; Integral inequalities; Operator inequal-
ity.

1 Introduction

Consider a complex Hilbert space (H, 〈·, ·〉). An operator T is said to be positive (denoted
by T ≥ 0) if 〈Tx, x〉 ≥ 0 for all x ∈ H and also an operator T is said to be strictly
positive (denoted by T > 0) if T is positive and invertible. We say that the operators
A, B : H → H satisfy the relation A ≥ B if A − B ≥ 0. A real valued continuous
function f(t) on (0,∞) is said to be operator monotone if f(A) ≥ f(B) holds for any
A ≥ B > 0. By f (T ) we denote the operator that can be defined by the use of the
continuous functional calculus of selfadjoint operators T in Hilbert spaces.

In 1934, K. Löwner [9] had given a definitive characterization of operator monotone
functions as follows, see for instance [2, p. 144-145]:

c© 2022 Silvestru Sever Dragomir. This is an open access article licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs License (http://creativecommons.org/licenses/by-nc-nd/3.0/).

http://creativecommons.org/licenses/by-nc-nd/3.0/


Vol. 58 (2022) Some inequalities for operator monotone functions 101

Theorem 1.1. A function f : [0,∞)→ R is operator monotone in [0,∞) if and only if
it has the representation

f (t) = a+ bt+

∫ ∞
0

ts

t+ s
dm (s) (1.1)

where a ∈ R and b ≥ 0 and a positive measure m on [0,∞) such that∫ ∞
0

s

1 + s
dm (s) <∞.

We recall the important fact proved by Löwner and Heinz that states that the power
function f : [0,∞) → R, f (t) = tα is an operator monotone function for any α ∈ [0, 1] ,
[8]. As a consequence, we have the Löwner-Heinz operator inequality Aα ≥ Bα ≥ 0
provided that A ≥ B ≥ 0 and α ∈ [0, 1] . It is also well known that the logarithmic
function ln is operator monotone on (0,∞) .

For several examples of operator monotone functions, see [5], [10], [4] and the refer-
ences therein. For recent operator inequalities related to operator monotone functions,
see [1], [11] and [12].

In this paper we show that, if that the function f : [0,∞)→ R is operator monotone
in [0,∞) then there exist b ≥ 0 and a positive measure m on (0,∞) such that

[f (B) − f (A)] (B − A) =

= b (B − A)2 +

∫ ∞
0

s2
[∫ 1

0

[
((1− t)A+ tB + s)−1 (B − A)

]2
dt

]
dm (s)

for all A, B > 0. Some necessary and sufficient conditions for the operators A, B > 0
such that the inequality

f (B)B + f (A)A ≥ f (A)B + f (B)A

holds for any operator monotone function f on [0,∞) are also given.

2 Main Results

We have the following identities of interest:

Theorem 2.1. Assume that the function f : [0,∞)→ R is operator monotone in [0,∞)
and has the representation (1.1). Then for all A, B > 0 we have

[f (B) − f (A)] (B − A) =

= b (B − A)2 +

∫ ∞
0

s2
[∫ 1

0

[
((1− t)A+ tB + s)−1 (B − A)

]2
dt

]
dm (s)

(2.1)

and

(B − A) [f (B)− f (A)] =

= b (B − A)2 +

∫ ∞
0

s2
[∫ 1

0

[
(B − A) ((1− t)A+ tB + s)−1

]2
dt

]
dm (s) .

(2.2)
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Proof. Since the function f : [0,∞) → R is operator monotone in [0,∞), then f can be
written as in the equation (1.1) and for A, B > 0 we have the representation

f (B)− f (A) = b (B − A) +

∫ ∞
0

s
[
B (B + s)−1 − A (A+ s)−1

]
dm (s) . (2.3)

Observe that for s > 0

B (B + s)−1 − A (A+ s)−1 =

= (B + s− s) (B + s)−1 − (A+ s− s) (A+ s)−1

= (B + s) (B + s)−1 − s (B + s)−1 − (A+ s) (A+ s)−1 + s (A+ s)−1

= 1− s (B + s)−1 − 1 + s (A+ s1H)−1

= s
[
(A+ s)−1 − (B + s)−1

]
.

Therefore, (2.3) becomes, see also [6]

f (B)− f (A) = b (B − A) +

∫ ∞
0

s2
[
(A+ s)−1 − (B + s)−1

]
dm (s) . (2.4)

Let T, S > 0. The function f (t) = −t−1 is operator monotonic on (0,∞), operator
Gâteaux differentiable and the Gâteaux derivative is given by

∇fT (S) := lim
t→0

[
f (T + tS)− f (T )

t

]
= T−1ST−1 (2.5)

for T, S > 0.
Consider the continuous function f defined on an interval I for which the correspond-

ing operator function is Gâteaux differentiable and for C, D selfadjoint operators with
spectra in I we consider the auxiliary function defined on [0, 1] by

fC,D (t) = f ((1− t)C + tD) , t ∈ [0, 1] .

If fC,D is Gâteaux differentiable on the segment [C,D] := {(1− t)C + tD, t ∈ [0, 1]} ,
then we have, by the properties of the Bochner integral, that

f (D)− f (C) =

∫ 1

0

d

dt
(fC,D (t)) dt =

∫ 1

0

∇f(1−t)C+tD (D − C) dt. (2.6)

If we write this equality for the function f (t) = −t−1 and C, D > 0, then we get the
representation

C−1 −D−1 =

∫ 1

0

((1− t)C + tD)−1 (D − C) ((1− t)C + tD)−1 dt. (2.7)

Now, if we replace in (2.7) C = A+ s1H and D = B + s1H for s > 0, then

(A+ s)−1 − (B + s)−1 =

∫ 1

0

((1− t)A+ tB + s)−1 (B − A) ((1− t)A+ tB + s)−1 dt.

(2.8)
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By the representation (2.4), we derive the following identity of interest

f (B)− f (A) =b (B − A) +

∫ ∞
0

s2
[∫ 1

0

((1− t)A+ tB + s)−1

× (B − A) ((1− t)A+ tB + s)−1 dt
]
dm (s)

(2.9)

for A, B > 0.
If we multiply this identity at the right with B − A we get

(f (B)− f (A)) (B − A) =b (B − A)2 +

∫ ∞
0

s2
[∫ 1

0

((1− t)A+ tB + s)−1

× (B − A) ((1− t)A+ tB + s)−1 (B − A) dt
]
dm (s)

=

∫ ∞
0

s2
[∫ 1

0

[
((1− t)A+ tB + s)−1 (B − A)

]2
dt

]
dm (s)

(2.10)

for A, B > 0 and the equality (2.1) is proved.
The equality (2.2) follows by multiplying (2.9) at the left.

In the following, in order to simplify terminology, when we write T ≥ 0, then we
automatically assume that the operator T is selfadjoint.

In the note [3], Fujii and Nakamoto showed that the inequality

(f (B)− f (A)) (B − A) ≥ 0

does not hold in general for A, B > 0.
They also proved the following interesting inequality:

Proposition 2.2 ( [3, Proposition 2]). If C, D > 0 and CD−1 + DC−1 is selfadjoint,
then

CD−1 +DC−1 ≥ 2. (2.11)

Proof. Indeed, as shown in [3], if we put T = CD−1, then V = T + T−1 is selfadjoint
by the assumption. Note that the spectrum Sp (T ) of T is included in (0,∞) , because
C, D > 0 and Sp (T ) = Sp

(
C1/2D−1C1/2

)
. Since Sp (V ) =

{
t+ 1

t
, t ∈ Sp (T )

}
by the

spectral mapping theorem for rational functions, hence we have T + T−1 ≥ 2.

As a consequence, they obtained the following result:

Theorem 2.3 ( [3, Theorem 6]). If

(i’) Operator A (B + s)−1 +B (A+ s)−1 is selfadjoint for all s ≥ 0,

then (B − A) (f (B)− f (A)) ≥ 0.

Some necessary and sufficient conditions for the operators A, B > 0 such that the
inequality (f (B)− f (A)) (B − A) ≥ 0 holds for any operator monotone function f on
[0,∞) are included in the following theorem.
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Theorem 2.4. Let A, B > 0. The following statements are equivalent:

(i) For all s ≥ 0,
(A+ s)−1 (B + s) + (B + s)−1 (A+ s) ≥ 2. (2.12)

(ii) For all s ≥ 0, ∫ 1

0

[
((1− t)A+ tB + s)−1 (B − A)

]2
dt ≥ 0.

(iii) For all s ≥ 0,
(`s (B)− `s (A)) (B − A) ≥ 0,

where `s (t) = −(t+ s)−1, t > 0.

(iv) For all operator monotone function f on [0,∞),

(f (B)− f (A)) (B − A) ≥ 0. (2.13)

(v) For all operator monotone function f on [0,∞),

(B − A) (f (B)− f (A)) ≥ 0. (2.14)

Proof. From (2.8) we have, by multiplying at right with B − A that[
(A+ s)−1 − (B + s)−1

]
(B − A) =

=

∫ 1

0

((1− t)A+ tB + s)−1 (B − A) ((1− t)A+ tB + s)−1 (B − A) dt

=

∫ 1

0

[
((1− t)A+ tB + s)−1 (B − A)

]2
dt

for all s ≥ 0.
Also,[

(A+ s)−1 − (B + s)−1
]

(B − A) =
[
(A+ s)−1 − (B + s)−1

]
[B + s− (A+ s)]

= (A+ s)−1 (B + s) + (B + s)−1 (A+ s)− 2

for all s ≥ 0.
Therefore

(`s (B)− `s (A)) (B − A) = (A+ s)−1 (B + s) + (B + s)−1 (A+ s)− 2

=

∫ 1

0

[
((1− t)A+ tB + s)−1 (B − A)

]2
dt

(2.15)

for all s ≥ 0.
The identity (2.15) reveals that the statements (i), (ii) and (iii) are equivalent.
Since for fixed s ≥ 0, `s (t) is operator monotone function on (0,∞) , then statement

(iv) implies (iii).
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Assume that the function f : [0,∞) → R is operator monotone in [0,∞). Then for
all A, B > 0 we have

[f (B)− f (A)] (B − A) =

= b (B − A)2 +

∫ ∞
0

s2
[∫ 1

0

[
((1− t)A+ tB + s)−1 (B − A)

]2
dt

]
dm (s)

≥
∫ ∞
0

s2
[∫ 1

0

[
((1− t)A+ tB + s)−1 (B − A)

]2
dt

]
dm (s)

(2.16)

where b ≥ 0 and m is a positive measure on [0,∞).
If (ii) is valid, then∫ ∞

0

s2
[∫ 1

0

[
((1− t)A+ tB + s)−1 (B − A)

]2
dt

]
dm (s) ≥ 0

and by (2.16) we obtain (2.13).
Define the operator K := (f (B)− f (A)) (B − A). Since

K∗ = [(f (B)− f (A)) (B − A)]∗ = (B − A)∗ (f (B)− f (A))∗

= (B − A) (f (B)− f (A))

then the fact that K is selfadjoint is equivalent to

(f (B)− f (A)) (B − A) = (B − A) (f (B)− f (A)) ,

which is also equivalent to the fact that

f (A)B + f (B)A = Bf (A) + Af (B) .

These prove the equivalence between (iv) and (v).

Remark 2.1. The identity

(B − A) (`s (B)− `s (A)) = (B + s) (A+ s)−1 + (A+ s) (B + s)−1 − 2

for s ≥ 0 was the main tool in the proof of Theorem 6, [3].

We can state:

Corollary 2.5. Let A, B > 0. The statement (i) is equivalent to the inequality

f (B)B + f (A)A ≥ f (A)B + f (B)A, (2.17)

for all f an operator monotone function on (0,∞) .

Observe that, in fact we have:

Proposition 2.6. Let A, B > 0, then the statements (i) and (i’) are equivalent.
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Proof. Notice that for all s ≥ 0,

(A+ s)−1 (B + s) + (B + s)−1 (A+ s) =

= (A+ s)−1B + (B + s)−1A+ s (A+ s)−1 + s (B + s)−1
(2.18)

Also, the operator s (A+ s)−1 + s (B + s)−1 is selfadjoint for s ≥ 0.
If the statement (i) holds, then (A+ s)−1 (B + s) + (B + s)−1 (A+ s) is selfadjoint

and by (2.18) we must have that (A+ s)−1B + (B + s)−1A is selfadjoint, which shows
that (

(A+ s)−1B + (B + s)−1A
)∗

= B (A+ s)−1 + A (B + s)−1

is selfadjoint, namely (i’) is true.
If the statement (i’) holds, then by (2.18) we get

(A+ s)−1 (B + s) + (B + s)−1 (A+ s)

is selfadjoint and by (2.11) for C = (A+ s)−1 , D = (B + s)−1 we obtain the inequality
(2.12), namely (i) is true.

We define the class of operators

Cl(0,∞) (H) := {(A,B) | A, B > 0 and satisfy condition (i’)} .

We observe that if (A,B) ∈ Cl(0,∞) (H) then (B,A) ∈ Cl(0,∞) (H) .

Also ifAB = BA, A, B > 0, then Us := (A+ s)−1 (B + s) and U−1s = (B + s)−1 (A+ s)
are selfadjoint and since Us +U−1s ≥ 2, s ≥ 0 we derive that (A,B) ∈ Cl(0,∞) (H) . There-
fore, if Co(0,∞) (H) is the class of all pairs of commutative operators A, B > 0, then we
have

∅ 6= Co(0,∞) (H) ⊂ Cl(0,∞) (H) . (2.19)

Corollary 2.7. Assume that the function f : [0,∞)→ R is operator monotone in [0,∞).
If g : I → [0,∞) is continuous, then for all selfadjoint operators A, B with spectra in I
for which (g (A) , g (B)) ∈ Cl(0,∞) (H) we have

(f ◦ g) (B) g (B) + (f ◦ g) (A) g (A) ≥ (f ◦ g) (A) g (B) + (f ◦ g) (B) g (A) . (2.20)

Follows by Theorem 2.1 by replacing A with g (A) , B with g (B) and using the com-
position rule for continuous functions of selfadjoint operators which gives that f (g (A)) =
(f ◦ g) (A) and f (g (B)) = (f ◦ g) (B) , see for instance [7, p. 49].

Corollary 2.8. Assume that the function f : [0,∞) → [0,∞) is operator monotone in
[0,∞). Then

B2 (f (B))−1 + A2 (f (A))−1 ≥ (f (A))−1AB + (f (B))−1BA, (2.21)

for all (A,B) ∈ Cl(0,∞) (H) .

Follows by Corollary 2.5 and the fact that t/f (t) is also operator monotone on (0,∞).
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Remark 2.2. Since f : [0,∞)→ R, f (t) = tα is an operator monotone function for any
α ∈ [0, 1] , then by (2.17) we get

Bα+1 + Aα+1 ≥ AαB +BαA, (2.22)

for all (A,B) ∈ Cl(0,∞) (H) .
Suppose that p > 1. Then by taking f (t) = t1/p and g (t) = tp, for t ∈ (0,∞) , in

Corollary 2.7, we get
Bp+1 + Ap+1 ≥ ABp +BAp,

for all A, B > 0 such that (Ap, Bp) ∈ Cl(0,∞) (H) .

3 Applications for Integral and Discrete Inequalities

We have the following integral inequality:

Proposition 3.1. Assume that the function f : [0,∞) → R is operator monotone in
[0,∞) . Then for all A, B > 0 with

(
(1− t)A+ tB, A+B

2

)
∈ Cl(0,∞) (H) for all t ∈ [0, 1] ,∫ 1

0

((1− t)A+ tB) f ((1− t)A+ tB) dt ≥
(∫ 1

0

f ((1− t)A+ tB) dt

)
A+B

2
. (3.1)

Proof. From (2.17) we get

((1− t)A+ tB)f ((1− t)A+ tB) +
A+B

2
f

(
A+B

2

)
≥

≥ f

(
A+B

2

)
((1− t)A+ tB) + f ((1− t)A+ tB)

A+B

2

(3.2)

for all t ∈ [0, 1] .
By taking the integral in (3.2) we get∫ 1

0

((1− t)A+ tB) f ((1− t)A+ tB) dt+
A+B

2
f

(
A+B

2

)
≥

≥ f

(
A+B

2

)∫ 1

0

((1− t)A+ tB) dt+

(∫ 1

0

f ((1− t)A+ tB) dt

)
A+B

2

(3.3)

and since ∫ 1

0

((1− t)A+ tB) dt =
A+B

2
,

hence by (3.3) we derive∫ 1

0

((1− t)A+ tB) f ((1− t)A+ tB) dt+
A+B

2
f

(
A+B

2

)
≥

≥ f

(
A+B

2

)
A+B

2
+

(∫ 1

0

f ((1− t)A+ tB) dt

)
A+B

2
,

which is equivalent to the first inequality in (3.1).
The second inequality in (3.1) follows by the second part of (2.17).
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If we take f (t) = tr, r ∈ (0, 1) in (3.1), then we get∫ 1

0

((1− t)A+ tB)r+1 dt ≥
(∫ 1

0

((1− t)A+ tB)r dt

)
A+B

2
, (3.4)

for all A, B > 0 with
(
(1− t)A+ tB, A+B

2

)
∈ Cl(0,∞) (H) for all t ∈ [0, 1] .

We have the following Chebychev type operator inequality:

Proposition 3.2. Assume that the function f : [0,∞) → R is operator monotone in
[0,∞) . If g : I → [0,∞) is continuous, then for all selfadjoint operators Ak, k = 1, ..., n
with spectra in I and such that (g (Ak) , g (Aj)) ∈ Cl(0,∞) (H) for j, k = 1, ..., n and pk ≥ 0,
k = 1, ..., n with

∑n
k=1 pk = 1,

n∑
k=1

pk (f ◦ g) (Ak) g (Ak) ≥
n∑
k=1

pk (f ◦ g) (Ak)
n∑
k=1

pkg (Ak) . (3.5)

Proof. From (2.20) we get

(f ◦ g) (Ak) g (Ak) + (f ◦ g) (Aj) g (Aj) ≥ (f ◦ g) (Aj) g (Ak) + (f ◦ g) (Ak) g (Aj) (3.6)

for all k, j ∈ {1, ..., n} .
If we multiply (3.6) by pkpj ≥ 0 and sum over k and j from 1 to n, we get

n∑
k=1

n∑
j=1

pkpj (f ◦ g) (Ak) g (Ak) +
n∑
k=1

n∑
j=1

pkpj (f ◦ g) (Aj) g (Aj) ≥

≥
n∑
k=1

n∑
j=1

pkpj (f ◦ g) (Aj) g (Ak) +
n∑
k=1

n∑
j=1

pkpj (f ◦ g) (Ak) g (Aj) ,

which is equivalent to

n∑
k=1

pk (f ◦ g) (Ak) g (Ak) +
n∑
j=1

pj (f ◦ g) (Aj) g (Aj) ≥

≥
n∑
j=1

pj (f ◦ g) (Aj)
n∑
k=1

pkg (Ak) +
n∑
k=1

pk (f ◦ g) (Ak)
n∑
j=1

pjg (Aj)

that is equivalent to the first part of (3.5).

Remark 3.1. If the function f : [0,∞)→ R is operator monotone in [0,∞) and Ak > 0,
k = 1, ..., n, with (Ak, Aj) ∈ Cl(0,∞) (H) for j, k = 1, ..., n and pk ≥ 0, k = 1, ..., n with∑n

k=1 pk = 1, then by (3.5),

n∑
k=1

pkAkf (Ak) ≥
n∑
k=1

pkf (Ak)
n∑
k=1

pkAk. (3.7)

In particular, for f (t) = tr, r ∈ (0, 1) we get

n∑
k=1

pkA
r+1
k ≥

n∑
k=1

pkA
r
k

n∑
k=1

pkAk. (3.8)
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4 Conclusion

In this paper we obtained an integral representation for the operator

[f (B)− f (A)] (B − A) for A, B > 0

and f an operator monotone function on (0,∞) and provided some necessary and suffi-
cient conditions for this product to be positive in the operator order. As applications, we
obtained some Chebychev type integral and discrete operator inequalities with examples
for powers. The obtained result can be extended for an operator monotone function f
and (At)t∈T a bounded continuous field of positive operators in B (H) defined on a lo-
cally compact Hausdorff space T with a bounded Radon measure µ that satisfy certain
conditions while (pt)t∈T are nonnegative with

∫
T
ptdµ (t) = 1.
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