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Abstract

Assume that f and g are continuous on «, v C C is a piecewise smooth path
parametrized by z (t), t € [a,b] from z (a) = u to z (b) = w with w # u and the
complex Cebysev functional is defined by

D, (f.g): ﬂ/f dz—lufyf(z)dzwlu/vg(z)dz.

In this paper we establish some Griiss type inequalities for D., (f, g) under some
complex boundedness conditions for the functions f and g.
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1 Introduction

For two Lebesgue integrable functions f, g : [a,b] — C, in order to compare the
integral mean of the product with the product of the integral means, we consider

the Cebysev functional defined by
b

t—/f 7 [ e

C(f.9) =
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68 S.S. Dragomir
In 1934, G. Griiss [17] showed that

(1) 1C(f,9) <

provided m, M,n, N are real numbers with the property that

(M —m) (N —mn),

(2) —co<m< f<M<oo, —co<n<g<N<oo ae on [a,b.

The constant % is best possible in (1) in the sense that it cannot be replaced by
a smaller one.
In [6], P. Cerone and S. S. Dragomir proved the following inequalities:

£ () =55 [ (s) ds|

. 1 b
;161]% 19 =Yoo 522 /o

(3)  IC(9)l< .,
PO = [0 () ds| dt)”

where p> 1, 1/p+1/q=1.

. 1 b
inf llg 1, 55 (J,

For v = 0, we get from the first inequality in (3)

b b
g o< lolyy [ O 57 [ FGs)ds)de

for which the constant 1 cannot be replaced by a smaller constant.

If m <g< M for a.e. € [a,b], then Hg— m;MHOO < 2 (M —m) and by the
first inequality in (3) we can deduce the following result obtained by Cheng and Sun
[9]

b
f(t)—bla/ F(s)ds| dt.

1 L
(5) 1C(f,9)] < Q(M_m)ba/a

The constant % is best in (5) as shown by Cerone and Dragomir in [7].

For other inequality of Griiss’ type see [1]-[5], [7]-[16], [18]-[23] and [25]-][28].

In order to extend Griiss’ inequality to complex integral we need the following
preparations.

Suppose 7 is a smooth path parametrized by z (t), t € [a,b] and f is a complex
function which is continuous on 7. Put z (a) = w and z (b) = w with u, w € C. We
define the integral of f on v, ,, =7 as

/Yf(z)dz:/

b
f(z)dz = / f(z(t) 7 (t)at.
'Yu,w a
We observe that that the actual choice of parametrization of v does not matter.
This definition immediately extends to paths that are piecewise smooth. Suppose
«y is parametrized by z (t), t € [a, b], which is differentiable on the intervals [a, ¢] and

[c, b], then assuming that f is continuous on v we define

/ f(z)dz:= (z)dz + f(z)dz
.

u,w Yu,v Yv,w
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where v := 2z (¢) . This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

b
£ (2)1d] = / £ ) |2 ()] dt

Yu,w

and the length of the curve ~ is then

é(fy):/%w]dz\:/ab‘z/(t)‘dt.

Let f and g be holomorphic in G, and open domain and suppose v C G is a
piecewise smooth path from z(a) = u to z (b) = w. Then we have the integration
by parts formula

(6) f2)g' (2)dz = f(w)g(w) = f(u)g(u) - / f'(2) g (2) dz.

Yu,w Yu,w

We recall also the triangle inequality for the complex integral, namely

(7) / f(2)de| < / £ @ [d2] < 1 f] 0 £ ()

where [|f[|, o := sup.e, | (2)]-
We also define the p-norm with p > 1 by

151 = / |f<z>|p|dz|)l/p.

I£1,05= [ 17 @l1dz].
gl
If p, ¢ > 1 with 113 + % = 1, then by Holder’s inequality we have

10 < YN,

Suppose v C C is a piecewise smooth path from z(a) = u to z(b) = w and
f v — C a continuous function on . Define the quantity:

® P T) = g I G = | [ 7

1 1
:WL f(v)—MLf(Z)IdZI

If f and g are continuous on v, we consider the complex Cebysev functional
defined by

,D’Y (fag) =

For p =1 we have

2

2
|dv| > 0.

1

w—u

[r@aea- 2 [ r@at s

In this paper we establish some Griiss type inequalities for D, (f,g) under some
complex boundedness conditions for the functions f and g.
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2 Some Preliminary Results
We have the following equalities:

Lemma 1 Assume that the path v is piecewise smooth and f : v — C is continuous
on . Then for ¢, ® € C with ¢ # ® we have

) Pw(f,f)=Re[<<1>—£(1,y)/7f(2)ld21> = 7f<z>|dz\—¢)}

and, equivalently,

10) Py (57) = 10 o = |55 [ £l - 25
_alv)/vRe (@1 () (F) - )] a2

Proof. We have

= e |y [ T+ o5 [ s~ a9 —| s [ 11 ]
:Re(gz)/vf(z)\dzl)+Re(£f)Af(z)\dz])
~Re (®7) - \le/vf@ az|
and
b= s / Re [(@ — (=) (F() ~ 6)] laz]

14
= ity ] [Be (+73) +reGr (- ))_Re@a)—u(z)ﬂ 2

e ([ (2 /f )
~Re (@ /!f )P Jd].
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Therefore )

fl—fzzg(lv)/v|f<z>|2|dz|—M{”Lf(z) d2]

proving the identity (9).
We have the equality for complex numbers

Re[(@—w)(w—gb)]:i]¢—¢|2—’w—¢—;q>
for w € C, then by taking
w—g(lv)/ﬂz)\dzr
:
in this equality, we get
1 1 _
Re [(@— WLf(Z)IdZ\) (M/Vf(Z) dz] _M
T I S P R 1
Loy RICI R

and by (9) we obtain the desired result (10).
Suppose v C C is a piecewise smooth path parametrized by z (t), t € v from
z(a) = uto z (b) = w. Now, for ¢, & € C, define the sets of complex-valued functions

Uy (¢, @) := {f:7—>C|Re [(@—f(z)) (W—@)} > 0 for each zEv}
and

A, (¢, ®) := {f:’)/—>(C| 'f(z)—qb;q)’S;(I)—qﬁ] for each 267}.

The following representation result may be stated.

Proposition 2 For any ¢, ® € C, ¢ # ®, we have that U, (¢, ®) and A, (¢, ®) are
nonempty, convexr and closed sets and

(11) Uy (¢,®) = Ay (6, D).

Proof. We observe that for any w € C we have the equivalence

p+®| 1
L) D T

if and only if
Re [(® —w) (W — ¢)] > 0.
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This follows by the equality

2

22 Re[(@ - w) (@ 3)]

1 2
0P — % — lw—
f1o - of ~|w- 23

that holds for any w € C.
The equality (11) is thus a simple consequence of this fact.
On making use of the complex numbers field properties we can also state that:

Corollary 3 For any ¢, ® € C, ¢ # &, we have that

(12)  Uy(#,®)={f:7—=C| (Re®—Ref(2))(Ref(2) —Reo)
+(Im® —Im f(2)) (Im f (2) —Im¢) > 0 for each z € v} .

Now, if we assume that Re (®) > Re (¢) and Im (®) > Im (¢) , then we can define
the following set of functions as well:

(13) Sy (9,@):={f:7 = C|[ Re(®) > Ref(2) > Re(¢)
and Im (®) > Im f (z) > Im (¢) for each z € }.

One can easily observe that 5’7 (¢, ®) is closed, convex and
(14) 0 # S, (¢,®) CU, (9, 0).
Theorem 4 Assume that the path v is piecewise smooth and f : v — C is continu-

ous on 7y and there exist ¢, ® € C with ¢ # ® such that f € A, (¢, ®). Then
(15)

P (1 7) <he| (2 i [ 100 (777 [T A =3)| < 1o - o

or, equivalently,

1 , |1
T e L e e G LR

Proof. Since f € A, (¢, ®), hence

Re [(q) — f(2) (m—gﬂ >0 for each z € 7.

Therefore

@/ym (@7 () (F&) = )] 1d=] > 0

and by Lemma 1 we deduce the desired result.
We have:
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Lemma 5 Suppose v C C is a piecewise smooth path parametrized by z (t), t € ~
from z (a) = wu to z(b) = w. If f is continuous on =y, then for all A € C we have

a7 P(fT) = (17 /< /f ydz\> )\) ).

Proof. We observe that

6(17)/ (10055 [ 1l ) (7T =) b
/\f )2 do| - 1)/7f(2)|dz€(1,y)/7f(v)!dv
—)\m / (70 75 / P ) oo

for any A\ € C, which proves (17).
We have:

Lemma 6 Suppose v C C is a piecewise smooth path parametrized by z (t), t € v

from z (a) = u to z (b) = w. If f is continuous on vy and there exists c € C and p > 0
such that

(18) feD(ep)={€C| |z = <p},

then

(19) 0< Py (f.f) gpe(lv) el/f ) |dz|| |dv]
and

@) 0PN < (5| [ 1055 [ 1@ )

< p*Py (£, 7)-
Proof. For the equality (17) for A\ = ¢ we have

19 = [y [ (10 =757 [ @1} (7T =)
< 1y |10 gy 7 1l [FG ]
S ol RAGRTey RICLEIIOREIY
<rai |50 = oy [ £ G b
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which proves (19).
Using Cauchy-Bunyakovsky-Schwarz integral inequality, we have

9 1/2
\dv|>
2) 1/2

ﬂm—/f@wa

where for the last equality we used (8).
From (19) and (21) we have
ol
— z)|dz
- [ 1@

1/2

(1) <0 vl < p [P (£,F)]

which implies (20).

Corollary 7 Assume that the path ~y is piecewise smooth and f v — C is contin-
uous on vy and there exist ¢, ® € C with ¢ # ® such that f € Ay (¢, ®). Then

0= gy | £

(22)  0<P(fT) <, ol

and

(%)ospﬂﬁﬁ<@—¢2(1/

3 Refinements of Griiss’ Inequality

We start with the following identity of interest:
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Lemma 8 Suppose v C C is a piecewise smooth path parametrized by z (), t €
from z(a) =u to z (b) = w with w # u. If f and g are continuous on vy, then

(24 D, (fg) = —— / ( / <f<z>—f<w>><g<z>—g(w))dw> a2

2(w—u)2 gl
:WA(A(f(z)—f(w))(g(z)—g(w))dz) dw

b s LL 7 (2) = g (w)) dzdw.

Proof. For any z € 7 the mtegral f (f(z) = f(w)) (g (2) — g (w)) dw exists and

I(z) = / (f (2) = () (g (=) — g (w)) dw
—/ F(2)g () + f(w)g(w) - g(2) f (w) — £ (2) g (w)) duw

v

/dw+/f w)dw — g (2 )/Vf(w)dw—f@)/vg(w)dw

— (w /f w)dw — g (z )Af(w)dw—f(Z)Lg(w)dw-

The function [ (z) is also continuous on +, then the integral f,y I () dz exists and

/71(2)d22A[(w—u)f(Z)g(Z)+Af(w)g(w)dw

—g<z>/f< ) duw - f<>/ <>dw]dz

— (w /(z)g )z + (uw —u/f
Ldew/g dz—/gwdw/vfzz

—w—u /f d:—2/f(2)dz/vg(z)dz=2(w—U)27’7(f,g),

which proves the first equality in (24).
The rest follows in a similar manner and we omit the details.
We have:

Lemma 9 Suppose v C C is a piecewise smooth path parametrized by z (t), t €
from z(a) = u to z (b) = w with w # u. If f and g are continuous on vy, then

1/2 _
(25) Dy (£l <€) [Py (£D)] 1Py (9,92,
where €(7y) = |£(vi‘ can be interpreted as the deviation of the path ~ from the

segment joining the points u and w in C.
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Proof. Taking the modulus in the first equality in (24), we get

/ ( / (f (2) = F (W) (9(2) — g (w)) dw> dz'
z)— f(w

) (9 (2) — g (w)) dw

1Dy (f9)] =

1
2w —uf®

|dz| =: A

Using the Cauchy-Bunyakovsky-Schwarz integral inequality, we have

/ (F (2) — f () (g (2) — g (w)) duw

<( [ - rdwr)m ( [lat=sr \dw\)m,

which implies that
A

Qyw uf? /(/ w)f* |dw|)1/2 (/7 !9(2)—g(w)l2ldwl>1/2|dz|

=: B.

By the Cauchy-Bunyakovsky-Schwarz integral inequality, we also have

/ </ 1) =1 P |dw\)1/2 ( / 9(z) =g (@)l dw)lﬂi
: </ (f1re-rr |dw|)1/2] dz)

. ( / < [a62 dw>1/2rdz)1/2
= ([ ([irer-riia) |dz)1/2 ([ ([1s1=g0ftaul) i |>1/2,

which implies that

- B<2!w uP </ </ Hdw!) @z |>1/2 12
</ (/ 9(2) = g (w)F Idwl) |dz\) .
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Now, observe that

/(/If |dw|> |dz|
/(/ (\f( ) = 2Re (7 () TT) + 17 () fau )

( (OF - 2Re (1 (2 / Flwhdul) + / ) du ) g
() [ 1f () 0] -2 (/f ) ldz) LW\dw>+€(v)/!f(w)\2ldwl

() / e |dz|—2Re(/ ) ldz| (/  w |dw|))
[ /|f )2 2] - /<>rdz|
and, similarly

(28) / ( / ()~ 9 ) ldul ) &2 = 22 ()P, (0.9).

Making use of (27) and (28), we get

]—262( )Py (f.F)

< 2|wl_u|2 202 () Py (£, )] 22 (1) Py (9.9)] 2

= 20 1 (1P, (9.9

= u?
which proves the desired result (25).

Remark 1 For g = f we have

(29)

(z)dz — (wiu Lf(z)dz)2
and by (25) we get

(30) Dy (£, I <Py (F]) -
For g = J we have
(1) D (ff) - /f Idz—/f
and by (25) we get
(32) Dy (f. )] <Py (£, F)-

q\
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Theorem 10 Suppose v C C is a piecewise smooth path parametrized by z (t) , t € v
from z(a) = u to z(b) = w with w # u. If f and g are continuous on v and there
exists ¢, ©, Y, ¥ € C, ¢ # ®, ¢ # ¥ such that f € A, (¢, P) and g € A, (¢, V)

then
2) 1/2

o+ @
2

2) 1/2

(33) [Py (f.9) <€ () (fl oo - |5 [ 10
Y

Y+

~ 2
<e@)|je-dlv-v
e [ -5 [ [ e -5
i () — ][ — o]

Proof. The first inequality in (33) follows by Corollary 7 and Lemma 9.
Using the elementary inequality

1/2 1/2
(m2—n2)/ (pz_qQ)/ < mp —ng
that holds for m > n >0 and p > ¢ > 0, for the choices

o+ @
3100 n= | [ £l - 4%

and

L. M)/ () Jael - L2

we get the second inequality in (33).
The last part is obvious.

Remark 2 If there is information on the boundedness of only one function, namely
feA, (¢,P), where g: v — C is continuous, then we have the "premature” Griiss

mequality

X [Py (g 1/2

¢+<I>

(34) [P, (F.9) <€ () (i ook |5 [ 10
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4 Applications for Trapezoid Inequality

Suppose v is a smooth path parametrized by z (t), t € [a,b] and f holomorphic in
G, an open domain and suppose v C G. Put z (a) = v and z (b) = w with u, w € C.
Using the integration by parts formula (6) twice we have

(/ -0 f ()dz=@-u)fw)— [ f()ds

u,v Yu,v

and

t/ (c—v) f ()de=(w—v)f(w)— [ [(2)d
:

v,w 'Yv,w

for any v € 7.
If we add these two equalities, we get the generalized trapezoid equality

(39 -l @+ @)@~ [ )
:/ (z—v)f’(z)dz+/ (z—v)f’(z)dz:/(z—v)f’(z)dz

u,v Yv,w

with the above assumptions for u, v and w on ~.

If we take v = “ng, then we get the trapezoid equality

(36) (w—wf“O;f@O—Lf@Mz=L<z—“;w)f@Mz

which also can be written as

f(U);f(w)_ 1 /Wf(z)dz:Dy(f/,h)

w—u

where h (z) = 2 — “5%, 2 € C, since [ (2 — *5*) dz = 0.

If f' € A, (0,0) for some 0, © € C with  # O, then by (34) we get the following
trapezoid inequality of interest:

’f(u)";f(w)_wiu/f(z)dz :D”/(f/?h)
1 V 1 o+0\"’
<e(v) <4 ©—0° - ’M/f/(z) d |—T ) [Py (hvﬁ)]l/2
<5002 [P, (nB)]",
where
1 u—l—w2 1 U+ w 2
Pv(hvh)—WA T |dz_’f(v)/w<z_ >|dz‘
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If the path + is a segment [u, ] C G connecting two distinct points v and w in G
then we write [ f(z)dz as [0 f (2) dz. We then have

) L) e

Cw—u|  |w—

;w,z z—|w_“|1, o fw) -t
f([u,w])/u f()‘d|—|w_u|/0 F (= t)u+ tw)dt =

w—u

=1,

2

2

B 1
_ |l ((1—t)u—|—tw—u+w>dt
0 2
1 2
= — |w—ul".

, [ 1\ 2 o 1
= |w — ul t— = dt — |w—u| t——=)dt| =
o 2 o 2 12

Based on the calculations outlined above, we can state the following result as
well:

Proposition 11 Assume that f is holomorphic in G, an open domain and suppose
[u,w] C G. If f" € Ay, ) (0,0) for some 0, © € C with 6 # O, then

‘f u) + f(w /
o] fC
V3 1 fw-sw s\
§6|w—u|(4|®—0|2—’ w—u 2 )
<V —ulo-0
Since
Re(@_f@2:£00><f@2:£W)_%X

fw)—fw) ¢+

w—Uu 2

1 2
— 13— —
4| o] ‘

then the inequality (37) can also be written as

’f u) + f (w L /f
<V (Re <¢f<w$:£<u>)(w¢>]>l/2
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