
Adaptive distributed differential evolution

This is the Published version of the following publication

Zhan, Zhi-Hui, Wang, Zi-Jia, Jin, Hu and Zhang, Jun (2019) Adaptive
distributed differential evolution. IEEE Transactions on Cybernetics, 50 (11).
pp. 4633-4647. ISSN 2168-2267

The publisher’s official version can be found at
https://ieeexplore.ieee.org/document/8878004
Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/46363/

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 11, NOVEMBER 2020 4633

Adaptive Distributed Differential Evolution
Zhi-Hui Zhan , Senior Member, IEEE, Zi-Jia Wang , Student Member, IEEE,

Hu Jin , Senior Member, IEEE, and Jun Zhang , Fellow, IEEE

Abstract—Due to the increasing complexity of optimization
problems, distributed differential evolution (DDE) has become
a promising approach for global optimization. However, simi-
lar to the centralized algorithms, DDE also faces the difficulty
of strategies’ selection and parameters’ setting. To deal with
such problems effectively, this article proposes an adaptive
DDE (ADDE) to relieve the sensitivity of strategies and parame-
ters. In ADDE, three populations called exploration population,
exploitation population, and balance population are co-evolved
concurrently by using the master–slave multipopulation dis-
tributed framework. Different populations will adaptively choose
their suitable mutation strategies based on the evolutionary
state estimation to make full use of the feedback information
from both individuals and the whole corresponding population.
Besides, the historical successful experience and best solution
improvement are collected and used to adaptively update the indi-
vidual parameters (amplification factor F and crossover rate CR)
and population parameter (population size N), respectively. The
performance of ADDE is evaluated on all 30 widely used bench-
mark functions from the CEC 2014 test suite and all 22 widely
used real-world application problems from the CEC 2011 test
suite. The experimental results show that ADDE has great superi-
ority compared with the other state-of-the-art DDE and adaptive
differential evolution variants.

Index Terms—Adaptive distributed differential evolu-
tion (ADDE), differential evolution (DE), evolutionary state
estimation (ESE), historical successful experience (HSE),
master–slave multipopulation distributed.

Manuscript received June 18, 2019; revised September 3, 2019; accepted
September 21, 2019. Date of publication October 21, 2019; date of cur-
rent version October 26, 2020. This work was supported in part by the
Outstanding Youth Science Foundation under Grant 61822602, in part by
the National Natural Science Foundations of China under Grant 61772207
and Grant 61873097, in part by the Guangdong Natural Science Foundation
Research Team under Grant 2018B030312003, in part by the Guangdong–
Hong Kong Joint Innovation Platform under Grant 2018B050502006, and in
part by the National Research Foundation of Korea (NRF) grant funded by
the Korean Government (MSIT) under Grant NRF-2019H1D3A2A01101977.
This article was recommended by Associate Editor H. Takagi. (Corresponding
authors: Zhi-Hui Zhan; Jun Zhang.)

Z.-H. Zhan is with the School of Computer Science and Engineering, South
China University of Technology, Guangzhou 510006, China, and also with the
State Key Laboratory of Subtropical Building Science, South China University
of Technology, Guangzhou 510006, China (e-mail: zhanapollo@163.com).

Z.-J. Wang is with the School of Data and Computer Science, Sun Yat-sen
University, Guangzhou 510006, China.

H. Jin and J. Zhang are with Hanyang University, Ansan 15588, South
Korea (e-mail: junzhang@ieee.org).

This article has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the author.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2019.2944873

I. INTRODUCTION

D IFFERENTIAL evolution (DE), proposed by
Storn and Price [1], is a kind of evolutionary

algorithm (EA) that solves the optimization problems
by the iterations of evolutionary operators, including
mutation, crossover, and selection [2]–[7]. These days,
DE has been successfully applied to a wide range of
optimization problems, such as railway timetable schedul-
ing [8]; biology research [9], [10]; and multivalued logic
networks [11].

However, with the rapid development of information science
and technology, the increasing complexity of the problems has
posed new challenges to DE since the search space involves
a huge number of local optima [12]–[17]. The populariza-
tion of distributed computing, which deploys the population
on distributed systems, provides a novel way to improve the
availability and realize more powerful performance [18]–[20].
Some efforts have been paid to use the distributed computing
to enhance the performance of DE. For example, in parallel
DE (PDE) [21], the best individual in each parallel subpopu-
lation migrates to the next subpopulation in the ring topology.
In Island-based distributed DE (IBDDE) [22], two subpopu-
lations are co-evolved using random immigrant mechanism.
Cloud-ready DE (Cloudde) [23], proposed by Zhan et al.,
keeps four parallel subpopulations with different fixed muta-
tion strategies and parameters, where the subpopulation with
better performance will attract other individuals from poorly
performed subpopulations. Ge et al. [24] proposed a dis-
tributed DE (DDE) with adaptive mergence and split strategy
(DDE-AMS) for large-scale optimization, where the number
and the size of subpopulations adaptively change for bet-
ter performance. In asynchronous adaptive multipopulation
DDE (AsAMP-dDE) [25], the multipopulation is combined
with the asynchronous migration mechanism for exchanging
information.

These DDE variants have shown their promising effec-
tiveness on some complex optimization problems. However,
similar to the centralized algorithms, DDEs also face the dif-
ficulty of strategies’ selection and parameters’ setting. That is,
the performance of DDEs still greatly depends on the strate-
gies’ selection [26]–[31] and parameters’ setting, including
the amplification factor F, crossover rate CR, and popu-
lation size N [32]–[34]. Different mutation strategies and
parameters are suitable for different individuals and differ-
ent populations. Therefore, the mutation strategies and the
parameters need to be adaptively controlled to meet the search-
ing requirement of each individual/population. Most of the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0862-0514
https://orcid.org/0000-0002-2594-0934
https://orcid.org/0000-0002-3505-6843
https://orcid.org/0000-0001-7835-9871

4634 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 11, NOVEMBER 2020

current studies mentioned above [21]–[25], only use the fixed
parameter and mutation strategy, and cannot achieve the
adaptive control.

Therefore, this article proposes an adaptive DDE (ADDE)
to address this issue. The ADDE algorithm uses a master–
slave multipopulation distributed framework, cooperatively
with both adaptive mutation strategy selection and adaptive
parameters’ settings based on the evolutionary state estima-
tion (ESE), historical successful experience (HSE), and best
solution improvement (BSI). Specifically, ADDE is promising
by using the following three major novel advantages.

1) Three populations called exploration population,
exploitation population, and balance population
co-evolve concurrently by using the master–slave mul-
tipopulation distributed framework. Significantly, the
composition of these three populations is dynamically
changed according to the iteration process which can
maximize their strengths by cooperation and enhance
the global optimality of DDE.

2) Different populations will adaptively choose their suit-
able mutation strategies based on the ESE, which can
make full use of the feedback information from both
individuals and the whole corresponding population.

3) The HSE and BSI are collected and used to adap-
tively update the individual parameters (F and CR) and
population parameter (N), respectively.

As we can see, ADDE does not solely adaptively con-
trol the mutation strategy selection or parameter setting, but
adaptively controls these two components. The experimen-
tal results on the CEC 2014 benchmark test suite and the
CEC 2011 real-world application problems, compared with
the other state-of-the-art DDE and adaptive DE (ADE) vari-
ants, even the winner of the CEC 2014, have fully illustrated
the effectiveness of ADDE.

The remainder of this article is organized as follows.
Section II describes the basic DE and its developments.
Section III describes the proposed ADDE algorithm in detail.
In Section IV, the experimental results are presented and
discussed. Finally, Section V draws the conclusions.

II. DE, DDE, AND ADE

A. DE

DE is a population-based searching method which evolves
according to the difference between individuals. The initial
population is randomly generated according to a uniform
distribution in the search space as

xi,j,0 = Lj + rand × (
Uj − Lj

)
(1)

where i is the individual index; Lj and Uj are the predefined
lower and upper bounds of the jth dimension; and rand is
a random number in range [0, 1]. After initialization, DE will
evolve by a loop of evolutionary operators, including mutation,
crossover, and selection until reaching the terminal condition.
The operators are described as below.

Mutation: At each generation g, each individual xi,g will
generate its corresponding mutant vector vi,g by the mutation

operator as

vi,g = xr1,g + F × (
xr2,g − xr3,g

)
(2)

where r1, r2, and r3 are the three distinct random inte-
gers selected from {1, 2, . . . , N}, which are all different from
index i. The parameter F is a positive control parameter called
the amplification factor, which controls the amplification of the
difference vector.

This is called DE/rand/1 mutation strategy because the
mutation used a random xr1,g as the base and is disturbed
by 1 difference provided by (xr2,g − xr3,g). Some other popu-
lar mutation strategies are also proposed in the literature such
as the DE/best/1 mutation strategy as

vi,g = xbest,g + F × (
xr1,g − xr2,g

)
(3)

where xbest,g is the individual with the best fitness in the gth
generation.

It should be noted that for each dimension j, some com-
ponents of the mutant vector may exceed the predefined
boundary constraints, which means vi,j,g is infeasible, it is reset
by the boundaries as

vi,j,g =
{

Lj, if vi,j,g < Lj

Uj, ifvi,j,g > Uj.
(4)

Crossover: After mutation, DE generally performs a bino-
mial crossover operator between xi,g and vi,g to generate a trial
vector ui,g

ui,j,g =
{

vi,j,g if rand ≤ CR or j = jrand
xi,j,g otherwise

(5)

where jrand is a random integer selected from {1, 2, . . . , D},
used to ensure that ui,g has at least one dimension comes from
vi,g. The crossover rate CR is an another control parameter,
which determines the fraction of ui,g inherited from vi,g.

Selection: To determine whether the new generated individ-
ual ui,g will survive in the next generation, the ui,g is compared
with the xi,g. The vector with better fitness enters the next gen-
eration. For example, for a minimization problem, the vector
with lower fitness value enters the next generation, shown as

xi,g+1 =
{

ui,g, if f
(
ui,g

) ≤ f
(
xi,g

)

xi,g, otherwise
(6)

where f (x) is the fitness evaluation function.

B. Developments of DDE

With the huge development of computational resources, dis-
tributed computing has emerged as a form of high-performance
computation, where many calculations are carried out con-
currently. In [35], the master–slave model is incorporated
with DE, where each member of the population is evaluated
independently. In [21]–[25], the entire population is divided
into different subpopulations, and DE is executed within
each subpopulation concurrently toward the optimal solution.
Specifically, in PDE [21], it maintains several parallel subpop-
ulations and the best individual in each parallel subpopulation
migrates to the next subpopulation in the ring topology. Such
a ring topology has also been utilized in [36] and [37]. In
IBDDE [22], two subpopulations are co-evolved using random

ZHAN et al.: ADDE 4635

Fig. 1. Master–slave multipopulation distributed model.

immigrant mechanism. Cloudde [23], proposed by Zhan et al,
keeps four parallel subpopulations with different fixed muta-
tion strategies and parameters, where the subpopulation with
better performance will attract other individuals from poorly
performed subpopulations. Ge et al. [24] proposed the DDE-
AMS for large-scale optimization, where the number and
the size of subpopulations are adaptively changed for better
performance. Meanwhile, they also proposed the DDE with
space-driven topology (DDE-SD) [38], where the topology is
constructed and updated according to the distances and contri-
butions among different subpopulations. In AsAMP-dDE [25],
the multipopulation is combined with the asynchronous migra-
tion mechanism for exchanging information. In DDE with
multicultural migration (DDEM) [39], which makes use of
two migration selection approaches, maintains a high diversity
in the subpopulations. It shows DDEM with center individual-
based migrant selection (RIBMS/C) and affinity-based replace-
ment selection (ABRS) can obtain the best results, and such
a DDEM variant is called DDEM-RCA.

For applications, Xu et al. [40] and Glotić et al. [41] applied
DDE into the power systems, De Falco et al. [42] solved the
satellite image registration problem using DDE. In [43], asyn-
chronous DDE is implemented for the parameter estimation
in biological systems.

C. Developments of ADE

The ADE has also widely studied in the DE community.
However, most of the ADE variants are based on centralized
DE. Researches into ADDE progress in a slow rate. As we
focus on adaptive mutation strategy selection and parameters
control in DDE in this article, we herein make a brief review
on some ADE variants in the following two categories.

1) Parameters Control in DE: Some parameter control
methods change the parameters by the fixed changing rules,
while some other approaches using the feedback information
from the DE search process to make parameters more adapted
to the evolutionary process and more suitable for different
individuals. In [32], the parameter F is adaptively adjusted
according to the fitness values of individuals. Brest et al. [44]
developed the self-adapting control parameters in DE (jDE),
where the new Fi and CRi for each individual are randomly
generated in their respective ranges with probabilities τ1 and τ2
in each generation. Sarker et al. [45] proposed DE with

dynamic parameters selection (DE-DPS), which consists of
many combinations of parameters and the better parameters
combination will be preserved and reused in the following
generations. In ADE with optional external archive (JADE),
proposed by Zhang and Sanderson [46], the control param-
eters of the individuals are updated according to their HSE.
Based on JADE, Zhou et al. [47] introduced a modified JADE
version with sorting CR, called JADE-sort, where the smaller
CR value is assigned to an individual with better fitness
value. Tanabe and Fukunaga [48] extended JADE by using
a success-historical memory of parameter sets, called SHADE,
in order to guide the generation of new control parameter
values. Based on SHADE, they further improved SHADE
with linear population size reduction, named L-SHADE, which
later became the winner of the CEC 2014 competition on
single-objective real-parameter numerical optimization [49].
After the L-SHADE, Brest et al. [50] presented an improved
version of L-SHADE, called iL-SHADE, which improved
the memory update mechanism. Based on iL-SHADE,
they further developed a novel weighted version of the
mutation strategy and incorporated it into the iL-SHADE,
called jSO, which later became the winner of the CEC
2017 competition on single-objective real-parameter numerical
optimization [51].

2) Mutation Strategy Choosing in DE: Apart from the
two most frequently used mutation strategies mentioned in
Section II-A, some new mutation variants are also proposed
to balance the exploration and exploitation in DE. The
DE/current-to-pbest/1 mutation scheme in JADE [46], where
pbest denotes the top p% individuals, which are used to guide
individuals, shown in

vi,g = xi,g + F ×
(

xp
best,g − xi,g

)
+ F × (

xr1,g − x̃r2,g
)
. (7)

In order to make use of the promising progress direction
information and enhance the population diversity, the infe-
rior solutions xi,g which did not enter the next generation are
recorded in an archive A, and r2 in (7) is randomly selected
from the union, P ∪ A, of the population and archive A.

The “DE/current-to-rand/1” strategy in [52], which involves
the rotation-invariant arithmetic crossover to generate the trial
vector directly. This strategy is rotation-invariant and suitable
for rotated problems, shown in

ui,g = xi,g + rand × (
xr1,g − xi,g

) + F × (
xr2,g − xr3,g

)
. (8)

Furthermore, some adaptive mechanisms of mutation strat-
egy have been proposed to further improve the performance
of DE. For example, Qin et al. [31] proposed the DE with
strategy adaptation (SaDE), where the mutation strategy is
adaptively selected by learning from the previous experi-
ence. Wang et al. [29] proposed a composite DE (CoDE),
which generates three trial vectors by randomly selecting
three combinations from the mutation strategy pool and con-
trol parameter pool, then chooses the best one. Similarly,
in DE with an ensemble of parameters and mutation strate-
gies (EPSDE) [53], it also maintains a pool of mutation
strategies and parameters of F and CR, while the success-
ful combination will be reused in the subsequent generation.

4636 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 11, NOVEMBER 2020

DE with individual-dependent mechanism (IDE), proposed by
Tang et al. [54], four mutation strategies with different search-
ing characteristics are adaptively assigned to the superior and
inferior individuals.

III. ADDE

ADDE is novel and has advantages in the following three
aspects. First, ADDE uses a master–slave multipopulation
distributed model, where three populations called explo-
ration population, exploitation population, and balance popu-
lation are co-evolved concurrently, which can maximize their
strengths by cooperation and enhance the global optimality
of DDE. Second, multiple populations can adaptively choose
different mutation strategies based on the ESE information,
which can fully use the feedback information from both indi-
viduals and the whole corresponding population to enable the
algorithm adaptation. Third, HSE and BSI information are col-
lected and used to adaptively update the individual parameters
(F and CR) and population parameter (N), respectively. As
a result, ADDE does not solely adaptively control the mutation
strategy selection or parameter setting, but adaptively controls
both components.

A. Master–Slave Multipopulation Distributed Model

The master–slave multipopulation distributed model is illus-
trated in Fig. 1. Specifically, the master node dominates three
slave nodes in parallel hardware, and different populations are
co-evolved concurrently on these nodes.

During the process of evolution, the master sends the entire
population to these three slaves. Then, the three populations
are co-evolved concurrently. Specifically, the exploitation pop-
ulation utilizes and updates the superior individuals with better
fitness to exploit, speed up the convergence, and refine the
solutions. The exploration population utilizes and updates the
inferior individuals with worse fitness to explore further areas
in the search space, maintain the population diversity. While
the balance population utilizes and updates the normal indi-
viduals to balance diversity and convergence. Although only
a part of the population is evolved in different slaves, the
mutation strategies require the evolutionary information of the
entire population. Therefore, the entire population is sent to
each slave, as shown in Fig. 1. After the evolution, the three
slaves will only send the updated superior individuals, inferior
individuals, and normal individuals, respectively, to the master.
The master will merge these individuals to form a new popu-
lation and send the new population to these three slaves again.
The process will be repeated until the termination criterion is
satisfied. Noted that the master only collects the individuals
from all the three slaves and sends the entire merged popula-
tion to the three slaves, while the evolutionary operators, such
as mutation, crossover, and selections are carried out on the
slaves.

In order to define the superior, inferior, and normal individ-
uals, we make the following two considerations. First, during
the early stage of evolution, we should concentrate more on
keeping population diversity, while at the later stage, we need
to accelerate the convergence speed. Therefore, we propose

Fig. 2. Proportion model to divide the individuals.

a proportion model to gradually decrease the proportion of
inferior individuals, pay more attention to exploration early
while pay more attention to exploitation gradually as the
algorithm progresses. Second, for the proportion of superior
individuals, in order to avoid premature convergence, we keep
the proportion of superior individuals small (20%) and remain
unchanged. Based on these two considerations, the proportions
of the superior and inferior individuals are set related to the
fitness evaluations (FEs) and the maximal FEs (FEmax) as

proportion =
{

0.2, Superior individuals
0.5 − 0.005 × 10(2×FEs/FEmax), Inferior individuals.

(9)

The proportions of the three kinds of subpopulation are plotted
in Fig. 2, where the x-axis denotes the iteration process, and
the y-axis is the proportion of the individuals (y = 1 means
the best individual, while y = 0 means the worst individual).

B. Adaptive Mutation Strategy Selection Based on ESE

According to the different properties of different individ-
uals, two schemes for adaptively choosing suitable mutation
strategy for different individuals are defined and described as
follows.

Scheme 1—Using DE/current-to-pbest/1 for Superior
Individuals in Exploitation Population: The superior individu-
als with good fitness tend to exploit. As a result, the relatively
greedy mutation strategy DE/current-to-pbest/1 shown in (7)
can keep their good performance on exploitation, which
can accelerate the convergence speed and enhance the local
searchability.

Scheme 2—Using DE/current-to-rand/1 for Inferior
Individuals in Exploration Population: As for the inferior
individuals, there is no need to exploit their neighborhoods
because of their worse fitness. However, they can be used to
explore further space. DE/current-to-rand/1 in (8) shows good
diversity [52] and is suitable for these inferior individuals to
explore more regions and avoid premature convergence.

As for the normal individuals, we proposed a novel ESE
method to adaptively choose a suitable mutation strategy for

ZHAN et al.: ADDE 4637

(a)

(b)

Fig. 3. Illustration of population distribution in different evolutionary
states. (a) Exploration and (b) exploitation.

the normal individuals in the balance population, balance the
diversity and convergence.

The ESE method has been used in the previous
studies [33], [55]. However, these two methods both involve
the distance computations from all the individuals, even the
pairwise distance computations in [55], which are very com-
putation costly. Here, we proposed a simple ESE method by
using only two individuals.

As we all know, both the search behaviors and the pop-
ulation distribution vary during the evolutionary process. For
instance, in the early stage, the individuals are scattered in dif-
ferent areas and the population distribution is dispersive, seem
like the left of Fig. 3(a). However, as the evolutionary process
goes on, individuals may converge to a locally or globally
optimal area, seem like the left of Fig. 3(b). Such scattered
or converged feedback information of the population is useful
for us to understand the evolutionary process deeply. In order
to use this information efficiently to control the DE process
more objectively, we develop a method to estimate the evo-
lutionary state during the DE process. The method is carried
out at the beginning of every generation to estimate the current
evolutionary state, by performing the following four steps.

Step 1: Denote the individual with the best fitness value and
the median fitness value as xB and xM .

Step 2: Calculate the Euclidian distance d between
xB and xM

d =
√√√√

D∑

j=1

(
xB,j − xM,j

)2 (10)

where D is the dimension of the problem.

Step 3: Calculate the evolution factor (f), which is the
percentage of d to the search space

f = d
√∑D

j=1

(
Uj − Lj

)2
. (11)

Step 4: Classify f into one of the two states S1 and S2, which
represent the states of exploration and exploitation, respec-
tively. In order to make the estimation flexible but not arbitrary,
we define these two states by fuzzy sets and described as the
following two cases.

Case (a)—Exploration: In this case, f is a relatively large
value (e.g., larger than the threshold 0.4), somehow like
Fig. 3(a). In the left of Fig. 3(a), the current population is
more likely distributed in different regions, it is necessary to
explore and find better regions. While in the right of Fig. 3(a),
the best individual is far away from the current population,
which means the current population may get trapped in the
local area and should improve the diversity. We define this
state as exploration state.

Case (b)—Exploitation: In contrast, a small value of f (e.g.,
smaller than the threshold 0.3) can be seen from Fig. 3(b). In
the left of Fig. 3(b), the current population is in the same
region. While in the right of Fig. 3(b), most of the individ-
uals are around the best individual, only few individuals are
distributed in other areas. At these two moments, the current
population may find global optima, and it is the time to utilize
the better information and accelerate the convergence speed.
So, this case is likely to represent the exploitation state.

We have investigated these two thresholds in Table S.I in
the supplementary material. With the above two fuzzy sets
defined, we can estimate the evolutionary state of the cur-
rent generation by two rules. The first rule is “unique rule.”
That is, if f belongs to a unique set, the current generation
can be classified to the corresponding unique state. For exam-
ple, if f = 0.2, the current state is classified to s2 because it
only belongs to s2 which is the exploitation state. However, if
f belongs to two sets, then the state is classified according to
the state of the last generation and the following “stable rule.”
That is, the current state is still classified to state in the last
generation to make the evolutionary state stable. For example,
when f = 0.33, it can belong to both s1 (exploration) and s2
(exploitation). However, if the last state is s1, we still classify
the current state to s1. While if the last state is s2, we classify
the current state to s2.

With the evolutionary state been estimated, we can adap-
tively control the mutation strategy selection more pertinent
for normal individuals in the balance population to match
the requirements of different evolutionary states. Two more
schemes and their advantages are described as follows.

Scheme 3—Using DE/current-to-rand/1 for Normal
Individuals in Balance Population in Exploration State: In
this state, exploring as many regions as possible and increas-
ing the population diversity are beneficial to the population
evolution. DE/current-to-rand/1 shows good diversity and is
suitable in this state [52].

Scheme 4—Using DE/current-to-pbest/1 for Normal
Individuals in Balance Population in Exploitation State: In

4638 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 11, NOVEMBER 2020

this state, we wish to accelerate the population convergence
speed, so the relatively greedy mutation strategy “DE/current-
to-pbest/1” that guides the individuals toward the top p%
solutions is suitable.

Based on the ESE, the three parallel populations can adap-
tively choose their suitable mutation strategies and run con-
currently, which relieves the sensitivity of mutation strategies.

C. Adaptive Individual Parameter Settings (F and CR)
Based on HSE

Good individual parameters (F and CR) can generate indi-
viduals that are more likely to survive and thus these individual
parameters should be recorded and reused in the following
generations. So, we use the HSE to adaptively update the
individual parameters. The basic idea is to record the recent
successful F and CR and use them to produce new F and CR.

As different F and CR are suitable for different strategies,
successful F and CR values for each strategy are recorded
and updated separately. That is, there are two different indi-
vidual parameter controls for the corresponding two mutation
strategies. Our individual parameter control method is an
improvement of JADE [46], [56].

In JADE, the crossover rate CRi for each individual xi is
generated according to a normal distribution with mean μCR
and standard deviation 0.1, truncated to [0, 1]

CRi = randni(μCR, 0.1). (12)

The mean μCR is updated at the end of each generation as

μCR = (1 − c) × μCR + c × meanA(SCR) (13)

where c is a constant set as 0.1, and meanA is the arithmetic
mean. The SCR is set that stores all the successful CR values.

Similarly, the amplification factor Fi for each individual xi

is generated according to a Cauchy distribution with location
parameter μF and scale parameter 0.1 shown in (14), and then
truncated to be 1 if Fi > 1 or regenerated if Fi ≤ 0

Fi = randci(μF, 0.1). (14)

The location parameter μF is updated at the end of each
generation as

μF = (1 − c) × μF + c × meanL(SF) (15)

where meanL is the Lehmer mean calculated as (16). SF is the
set that stores all the successful F values

meanL(SF) =
∑

F∈SF
F2

∑
F∈SF

F
. (16)

In order to speed up the individual parameter update process
to obtain more successful F and CR, we use a new adap-
tive individual parameter control method, an improvement of
JADE by inserting a weighting strategy. In contrast to JADE,
which uses all successful F and CR values to guide individ-
ual parameter adaptation, we assign a large weight to those
successful F and CR which can improve the individuals to
a large degree, while a small weight to the successful F and CR
which can only improve individuals a little, using the following
(17) and (18). The weight for each F and CR is calculated as

the normalized fitness improvement of the individual as shown
in (19)

μCR = (1 − c) × μCR + c ×
|SCR|∑

k=1

(ωk × SCR(k)) (17)

μF = (1 − c) × μF + c

×
⎛

⎝
|SF |∑

k=1

(
ωk × S2

F(k)
)
⎞

⎠
/⎛

⎝
|SF |∑

k=1

(ωk × SF(k))

⎞

⎠ (18)

ωk = �f (k)
∑|SCR|or|SF |

k=1 �f (k)
(19)

where �f (k) = ([|f (uk) − f (xk)|]/[|f (xk)|]).
As we can see, if �f (k) is small, which means this pair of

successful F and CR can just update the individual a little bit,
then the weight ωk will also be small correspondingly. While
if �f (k) is large, this combination of successful F and CR
can update the individual a lot, and the weight ωk will also
be large as we expected. We apply this individual parameter
control method to both mutation strategies.

Note that in the “DE/current-to-rand/1” strategy, the bino-
mial crossover operator is not applied, and CR is not required.
As a result, two μF are needed, one is used for “DE/current-
to-rand/1” strategy, and the other is used for “DE/current-
to-pbest/1.” While only one μCR is needed in ADDE for
“DE/current-to-pbest/1.”

D. Adaptive Population Parameter Setting (N) Based on BSI

So far, the works on adaptive population size N are relatively
fewer. However, the population size is an another important
control parameter in DE. The population with a small size will
convergence quickly while a large size has better diversity. In
order to preserve both diversity and convergence in the evolu-
tionary process, a suitable population size is required. Thus, in
our proposed ADDE, we adaptively control the population size
using the feedback information of the BSI in the evolutionary
process.

Denote the current population size as N. After CG gener-
ations, we calculate the absolute value of the improvement
percentage of the best solution compared with that in CG
generations before, shown in

∣
∣f

(
xbest,g

) − f
(
xbest,g−CG

)∣∣
∣∣f

(
xbest,g−CG

)∣∣ (20)

where f (xbest,g) is the fitness value of the current best individ-
ual and f (xbest,g−CG) is the fitness value of the best individual
CG generations before.

If the improvement of the best solution is larger than or
equal to a threshold θ , it indicates that the population evolves
well and a small population size will accelerate the con-
vergence. As a result, NG worst individuals are removed to
archive B while the remaining individuals are kept in the pop-
ulation. N is decreased to N–NG, and the archive B is used to
store the abandoned individuals and provide new individuals
for the population.

ZHAN et al.: ADDE 4639

Algorithm 1 Adaptive Population Size Control
Begin
1. If the improvement percentage of the best solution ≥ θ

2. If N > Nmin
3. Move the worst NG individuals from population to archive B;
4. N = N − NG;
5. End If
6. Else
7. If N < Nmax
8. Randomly move NG individuals from archive B to population;
9. N = N + NG;
10. End If
11. End If
End

While if the improvement is smaller than the threshold θ , or
the global best solution is even not updated, it can be said that
the algorithm is not performing well at the current generation.
The global optimum may lie in some other regions, and the
population may be trapped in local optima. As a result, new
different individuals are needed to improve the diversity. NG
individuals randomly selected from archive B are added into
the current population to make the population size N equal to
N + NG.

Note that the change percentage of the best solution will
become increasingly smaller during the process of evolution.
Therefore, the threshold θ should also keep reducing with the
algorithm process. Here, we propose an exponential model
shown in (21) to gradually reduce the threshold θ

θ = 10−1−4×FEs/FEmax. (21)

Two constants Nmin and Nmax are used to control the bound
of the population size. Besides, since the individuals stored
and taken are all from archive B, so the sum of the population
size N and the size of archive B remains constant in the entire
evolution process. The detailed pseudocode of the population
size control is illustrated in Algorithm 1.

Combining with all the adaptive control components, the
pseudocode of ADDE is presented in Algorithm 2.

E. Complexity Analysis

Herein, we denote the population size, the dimension of
problem, and the change quantity of population size as N, D,
and NG, respectively. First, in the initialization, the time com-
plexity of ADDE is O(N × D) + O(N), which is obtained by
steps 1–3 in MASTER process of Algorithm 2. Then, as for
individual evolution in ADDE, ESE is first executed, whose
time complexity is O(D) + O(N), obtained by (10) and (11).
Then, ADDE will send the entire population from MASTER
to three SLAVEs, where three populations called exploration
population, exploitation population, and balance population
are co-evolved concurrently by updating the superior, infe-
rior, and normal individuals, respectively. The time complexity
in defining the superior, inferior, and normal individuals is
O(N × log(N)), obtained by (9) and Fig. 2, while the sum of
time complexity in the process of evolution on three SLAVEs
is O(N × D), since the sum of updated individuals is N. After
that, the adaptive individual parameter settings (F and CR)
based on HSE is executed on MASTER, with the time com-
plexity of O(N), which is obtained by (17)–(19). Next, the

adaptive population parameter setting (N) based on BSI is exe-
cuted on MASTER, with the time complexity of O(NG × D),
which is obtained by Algorithm 1. As a result, the overall time
complexity of ADDE is O(N × D) + O(N × log(N)).

IV. EXPERIMENTAL RESULTS

A. Benchmark Functions and Experimental Setup

In this section, all the 30 functions proposed in the CEC
2014 test suite [57] are used to evaluate the performance of
ADDE. These functions can be classified into four groups. The
first group includes the first three functions f 1–f 3 which are
unimodal functions. The second group includes the next 13
functions f 4–f 16which are multimodal functions with a huge
number of local optima. The third group includes the next
six functions f 17–f 22 that are hybrid functions. The last group
includes the last eight functions f 23–f 30 that are composition
functions, which are much more complex and make our test
suite more comprehensive and convincing.

The maximum and minimum population size Nmax and
Nmin of ADDE are set to 10 × D and 2 × D. The initial
population of ADDE is set as Nmax. The change quantity
of population size NG is set as 0.4×D, while the time
span CG is set as 30 generations. The initial values of
μF and μCR of ADDE are both set as 0.5. The size of
archive A has a certain threshold Aup, which is 2.5 times

4640 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 11, NOVEMBER 2020

TABLE I
COMPARISON RESULTS BETWEEN ADDE AND STATE-OF-THE-ART DDES ON 30-D PROBLEMS

of N. The parameter p in (7), which determines the greediness
of the mutation strategy, is set as 10%. We compare ADDE
with five DDE variants, including IBDDE [22], Cloudde [23],
AsAMP-dDE [25], DDE-SD [38], and DDEM-RCA [39].
Moreover, we also compare ADDE with nine ADE variants,
including CoDE [29], SaDE [31], jDE [44], DE-DPS [45],
JADE [46], JADE-sort [47], SHADE [48], EPSDE [53], and
IDE [54]. To have a reliable and fair comparison, the parame-
ter configurations (including the values of N, F, CR, and other
additional parameters) in all the competitor algorithms are set
the same as suggested in their original papers. The FEmax is
set as 10 000×D in all algorithms.

Due to the stochastic character of the algorithms, all the
algorithms run 30 times independently and the mean error
value is calculated to evaluate the performance of the algo-
rithms. Here, the error value smaller than 10−8 will be taken
as 0, which is the numerical zero on computer arithmetic. For
clarity, the results of the best algorithms are marked in bold-
face. In addition, Wilcoxon’s rank-sum test [58] at α = 0.05 is
tested to evaluate the statistical significance of the results
between different algorithms. The symbols +, ≈, and − indi-
cate ADDE performs significantly better (+), similarly (≈), or
worse (−) when compared with the corresponding algorithm.

B. Comparison With DDEs on 30D Problems

We first compare ADDE with the 5 state-of-the-art DDE
variants on 30D benchmark functions to evaluate its overall

performance. The detailed experimental results are listed in
Table I. From Table I, we can see the following.

For the unimodal functions f1–f3, only ADDE can always
find the global optimal solution on all the three functions.
Moreover, ADDE performs significantly better than other DDE
variants, especially on f 1.

For the multimodal functions f4–f16, ADDE achieves the
best performance on almost all the functions, except on f 12.
Only DDE-SD performs slightly better than ADDE on f 12,
while other algorithms are all dominated by ADDE on all the
functions.

For the hybrid functions f17–f22, ADDE still keeps its supe-
riority and outperforms all the DDE variants on all these
functions.

For the composition functions f23–f30, DDEM-
RCA achieves the best performance on f 24, while almost
all the competitors achieve the similar performance on f 23.
However, ADDE still performs significantly better than other
DDE variants on all the other functions.

Overall, ADDE performs better than IBDDE, Cloudde,
AsAMP-dDE, DDE-SD, and DDEM-RCA on 30, 24, 27, 28,
and 27 functions, respectively. Conversely, Cloudde, DDE-
SD, and DDEM-RCA can only surpass ADDE on 1 function.
IBDDE and AsAMP-dDE cannot outperform ADDE on any
function in our test. As a result, ADDE achieves the best
performance on these functions.

To further study the evolutionary behavior of different
algorithms, we draw their convergence curves to observe
their evolutionary processes. Besides, in order to make our

ZHAN et al.: ADDE 4641

(a) (b) (c)

(d) (e) (f)

Fig. 4. Convergence curves of ADDE and other state-of-the-art DDE variants on six representative functions. (a) Unimodal function f 1, (b) multimodal
function f 4, (c) hybrid function f 17, (d) hybrid function f 20, (e) hybrid function f 21, and (f) composition function f 27.

comparison more convincing, we choose several benchmark
functions from all the three groups. Here, we select unimodal
function f 1, multimodal function f 4, hybrid functions f 17,
f 20, and f 21, and composition function f 27 as the represen-
tative instances. The convergence curves of these algorithms
on the 6 selected benchmark functions are plotted in Fig. 4.
From Fig. 4(a), we can see that ADDE finds the global optimal
solution quickly while other algorithms occur stagnation in the
early stage or evolve slower on unimodal function f 1. Similar
phenomenon can also be observed on the multimodal func-
tion f 4 in Fig. 4(b). On hybrid functions f 17, f 20, and f 21,
shown in Fig. 4(c)–(e), IBDDE converges slower while other
compared DDE variants can achieve a similar performance.
Moreover, ADDE obtains the highest accuracy when com-
pared with all the other algorithms. For composition function
f 27 in Fig. 4(f), ADDE converges a little slower in the early
stage of the evolutionary process, but obtains a better solution
compared with other algorithms in the later stage and finally
obtains the best result. Overall, ADDE generally outperforms
other DDE variants.

C. Comparison With ADEs on 30D Problems

To further verify the effectiveness of ADDE, here, ADDE
is compared with nine state-of-the-art ADE variants on 30D
benchmark functions to evaluate its overall performance.
Table II summarizes the comparison results between ADDE
and other ADE algorithms, while the detailed comparison
results are shown in Table S.II in the supplementary material

for saving space. From Table II and Table S.II in the supple-
mentary material, we can see the following.

For the unimodal functions f1–f3, most of the ADE variants
can achieve the similar performance to ADDE on f 2 and f 3.
However, ADDE performs significantly better than other ADE
variants and obtains the global optimal solution on f 1.

For the multimodal functions f4–f16, we can see that ADDE,
JADE-sort, and SHADE generally outperform other ADE vari-
ants. Even both JADE-sort and SHADE dominates ADDE
on f 5, f 11, f 12, and f 16, ADDE still achieves higher accu-
racy than JADE-sort and SHADE on f 4, f 6, f 8, f 10, f 14,
and f 6, f 7, f 13, f 14, respectively. Such results indicate that
ADDE can keep population diversity and avoid premature
convergence.

For the hybrid functions f17–f22, ADDE gradually shows its
tremendous superiority. ADDE obtain the best performance on
almost all these test functions, except on f 18 and f 19.

For the composition functions f23–f30, there is no ADE
variant which can always obtain the best performance. For
instance, EPSDE performs best on f 25, f 28, and f 29, while
IDE achieve the best performance on f 30. However, ADDE
still keeps its dominant position on most functions, such as
f 24, f 26, and f 27. Such observation fully shows the superiority
of ADDE when solving more complex problems.

Overall, ADDE performs better than CoDE, SaDE, jDE,
DE-DPS, JADE, JADE-sort, SHADE, EPSDE, and IDE on
19, 27, 20, 25, 18, 16, 16, 20, and 13 functions, respectively.
Conversely, CoDE, SaDE, jDE, JADE, JADE-sort, SHADE,
EPSDE, and IDE can only surpass ADDE on 5, 1, 2, 4, 6, 5,
5, and 8 functions, respectively. DE-DPS cannot outperform

4642 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 11, NOVEMBER 2020

TABLE II
SUMMARIZED RESULTS BETWEEN ADDE AND STATE-OF-THE-ART ADES ON 30-D PROBLEMS

TABLE III
SUMMARIZED RESULTS BETWEEN ADDE AND STATE-OF-THE-ART DDES ON 100-D PROBLEMS

TABLE IV
SUMMARIZED RESULTS BETWEEN ADDE AND STATE-OF-THE-ART ADES ON 100-D PROBLEMS

ADDE on any function in our test. As a result, ADDE achieves
the best performance on these functions.

We further draw the convergence curves of these algorithms
to observe their evolutionary processes. Similarly, we also
select unimodal function f 1, multimodal function f 4, hybrid
functions f 17, f 20, f 21, and composition function f 27 as the
representative instances. The convergence curves of these algo-
rithms on the 6 selected benchmark functions are plotted in
Fig. S1 in the supplementary material due to the page lim-
itation. From Fig. S1(a) in the supplementary material, we
can see that ADDE converges to better solution quickly while
other algorithms occur stagnation in the early stage or evolve
slower on unimodal function f 1. In Fig. S1(b) in the sup-
plementary material, only ADDE, JADE, and SHADE can
converge to the optimal solution on multimodal function f 4.
While in Fig. S1(c) in the supplementary material, most of
the competitors can achieve similar performance on hybrid
function f 17, however, ADDE is still more accurate than other
algorithms. Similar phenomenon can also be observed on the
functions f 20 and f 21 in Fig. S1(d) and (e) in the supplemen-
tary material. For composition function f 27 in Fig. S1(f) in
the supplementary material, ADDE appears a short stagnation
in the middle of an evolutionary process, but obtains the best
solution among all the compared algorithms in the following
stage. Overall, ADDE outperforms other ADE variants.

D. Scalability of ADDE on 100D Problems

In order to investigate the scalability of ADDE, we fur-
ther compare the performance of ADDE with these DDE and
ADE variants on f 1–f 30 with 100D. The summarized results
on 100D are shown in Tables III and IV, while the detail exper-
imental results on 100D can be seen in Tables S.III and S.IV
in the supplementary material due to the space limitation. As
we can see, with the increasing dimensions, the performance
of many algorithms is greatly deteriorated. Besides, Cloudde,
SHADE, and IDE may be more suitable to solve multimodal

problems, while CoDE, jDE, and JADE-sort perform relatively
better on hybrid functions. Even so, ADDE still keeps fast
convergence on unimodal problems while maintains the pop-
ulation diversity on multimodal or other complex problems. It
performs better than IBDDE, Cloudde, AsAMP-dDE, DDE-
SD, and DDEM-RCA on 30, 21, 27, 24, and 24 functions,
respectively and performs better than CoDE, SaDE, jDE, DE-
DPS, JADE, JADE-sort, SHADE, EPSDE, and IDE on 21, 25,
17, 23, 19, 17, 18, 21, and 17 functions, respectively. While
Cloudde, DDE-SD, and DDEM-RCA can only surpass ADDE
on 5, 2, 3, and 4 functions, respectively, CoDE, SaDE, jDE,
DE-DPS, JADE, JADE-sort, SHADE, EPSDE, and IDE can
only surpass ADDE on 6, 3, 8, 4, 5, 7, 5, 7, and 10 func-
tions, respectively. IBDDE cannot outperform ADDE on any
function in our test. These results demonstrate that ADDE can
also remain good performance when the dimension increases
to 100.

E. Comparison With the Winner of the CEC
2014 Competition

To further demonstrate the superiority of ADDE,
in this section, we compare ADDE with the winner
of the CEC 2014 competition, L-SHADE [49], and
its variant jSO [51]. The codes are downloaded from
http://www.ntu.edu.sg/home/epnsugan/. The detailed compar-
ison results between ADDE, L-SHADE, and jSO are listed in
Table V. The best results are highlighted in boldface. From
Table V, we can see the following.

1) On 30D problems, ADDE can achieve similar
performance with L-SHADE and jSO when solving the
unimodal problems.

2) L-SHADE and jSO have the superiority on the
multimodal and hybrid problems. However, ADDE has
its advantage on the composition problems and domi-
nates L-SHADE on f 24, f 28, and f 30, dominates jSO
on f 24 and f 28.

ZHAN et al.: ADDE 4643

TABLE V
COMPARISON RESULTS BETWEEN ADDE AND WINNER OF THE CEC 2014 COMPETITION

TABLE VI
SUMMARIZED RESULTS BETWEEN ADDE AND OTHER ALGORITHMS ON REAL-WORLD APPLICATION PROBLEMS

3) When the dimension increases, ADDE still keeps its
superiority on composition problems and dominates
L-SHADE on f 24, f 26, and f 30, dominates jSO on f 24
and f 26.

Therefore, ADDE, L-SHADE, and jSO have their different
advantages on different problems.

F. Comparison With on Real-World Application Problems

We further test the performance of ADDE on a suite of real-
world application problems from the CEC 2011 test suite [59]
to verify its practicability. The summarized comparison results
between ADDE and other DDE and ADE algorithms are
shown in Table VI, while the detailed comparison results are

shown in Table S.V in the supplementary material for sav-
ing space. Moreover, the jSO algorithm is adopted for further
comparison. The FEmax is set as 150 000 in all algorithms,
as required in [59]. From Table VI and Table S.V in the
supplementary material, we can see that ADDE is signifi-
cantly superior to IBDDE, Cloudde, AsAMP-dDE, DDE-SD,
DDEM-RCA, CoDE, SaDE, jDE, DE-DPS, JADE, SHADE,
and EPSDE on at least 10 problems, while none of these algo-
rithms can significantly surpass ADDE on more than 3 prob-
lems. Moreover, ADDE significantly outperforms JADE-sort
and IDE on 9 and 8 problems, respectively, while it is signifi-
cantly beaten by them on only 1 and 2 problems, respectively.
When compared ADDE with jSO, both the two algorithms
have very similar performance. The results in Table VI show
that ADDE and jSO play even and significantly outperform

4644 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 11, NOVEMBER 2020

each other on 5 problems, while the results in Table S.V in the
supplementary material further show that they are both the two
most superior algorithms among all the competitors in solving
these problems. As a result, ADDE has a very good practica-
bility and can be applied to solve the real-world application
problems.

G. Effects of ADDE Components

The main components of ADDE are the strategy adaptation
selection and parameter adaptation control (F, CR, and N). In
this section, we will discuss the property and effect of each
component.

1) Strategy Adaptation Selection: First, in order to investi-
gate the effect of strategy adaptation selection, we compare
ADDE with two ADDE variants with only one mutation
strategy (i.e., DE/current-to-rand/1 and DE/current-to-pbest/1)
and one ADDE variant with random mutation strategy
(50% chance to use both mutation strategy). We denote the
ADDE variant with only one strategy of DE/current-to-rand/1
and DE/current-to-pbest/1 as ADDE-rand and ADDE-pbest,
respectively and denote the ADDE variant with random muta-
tion strategy as ADDE-50%. The detailed results of the com-
parisons are listed in Table S.VI in the supplementary material.
The effectiveness of DE/current-to-rand/1 has been verified
when it was applied to solve rotated problems [52], [60],
because it can maintain good diversity of the population. It
also performs well on the hybrid function f 17. However, it
also slows the convergence speed on some other functions,
as can be seen from the Table S.VI in the supplementary
material. Moreover, DE/current-to-pbest/1 can accelerate the
convergence speed by utilizing the top p% individuals to guide
the flying of individuals, which is very useful to solve uni-
modal problems f 2 and f 3, but it also gets trapped in local
optima on some other problems.

As we can see, not a single mutation strategy is attrac-
tive, and only an appropriate mutation strategy is beneficial.
However, without any prior knowledge about the test function,
ADDE still performs better than ADDE-pbest and ADDE-
rand on 18 and 26 functions. ADDE-50% can outperform
ADDE-pbest and ADDE-rand on many functions, which indi-
cates the combination of two mutation strategy is helpful for
algorithm. However, ADDE-50% is still much worse than
ADDE, which can only dominate ADDE on 1 function but
dominated by ADDE on 20 functions. Therefore, the adaptive
mutation strategy in ADDE is intelligent and useful to select
the suitable mutation strategy for different individuals, which
achieves higher accuracy than other ADDE variants without
adaptive strategy control. The better performance of ADDE is
due to make full use of feedback information from both evo-
lution states and individuals. It can achieve a better balance
between exploration and exploitation. As a result, the strategy
adaptation selection in our algorithm is useful.

2) Individual Parameter F and CR Adaptation Control:
Although strategy adaptation selection performs better than
other ADDE variants without strategy control, the performance
is still sensitive to the individual parameter settings. To

research the effect of the individual parameter adaptation con-
trol in ADDE, here, three ADDE variants with different F and
CR are compared with ADDE on f 1–f 30. The F in all ADDE
variants is set as 0.5 and CR is set as 0.1, 0.5, and 0.9, respec-
tively. We denote the ADDE variants with CR = 0.1, 0.5,
and 0.9 as ADDE(0.1), ADDE(0.5), and ADDE(0.9), respec-
tively. Moreover, we also compare ADDE with its variants
with the existing parameter adaptation mechanisms. Herein,
we choose two famous parameter adaptation mechanisms used
in jDE [44] and JADE [46]. We called the ADDE variants
with the parameter adaptation mechanisms used in jDE and
JADE are ADDE-jDE and ADDE-JADE, respectively. The
detail comparison results are listed in Table S.VII in the
supplementary material.

As we can see, CR = 0.1 is able to maintain population
diversity and performs better on multimodal functions f 10-f 12,
but it slows the convergence speed and performs worse on
the other functions, such as on unimodal function f 1. In con-
trast, CR = 0.9 achieves fast convergence and obtains more
accurate results on the unimodal function, such as f 1, but it
may suffer from premature convergence and poor population
diversity on multimodal functions on f 10–f 12. Besides, ADDE-
jDE performs even worse than the ADDE variant with a fixed
parameter. That may because the adaptive parameter mech-
anism used in the jDE algorithm is not suitable to the two
mutation strategies DE/current-to-rand/1 and DE/current-to-
pbest/1 used in ADDE. It may suitable to the mutation strategy
DE/rand/1 used in the jDE algorithm. However, ADDE-JADE
performs much better than the ADDE variant with a fixed
parameter. That is because in the JADE algorithm, it also
used the mutation strategy DE/current-to-pbest/1 and its adap-
tive parameter mechanism is suitable to the mutation strategy
DE/current-to-pbest/1. But ADDE-JADE performs still much
worse than ADDE since the adaptive parameter mechanism
used in ADDE is an improvement of JADE, which can fur-
ther speed up the individual parameter update process and
obtain more successful F and CR. Moreover, the performance
of ADDE is independent on the optimization problems. Not
only it can obtain more accurate solutions and faster conver-
gence speed on the unimodal functions but also able to keep
the population diversity and prevent premature convergence
on other complex functions. All in all, from Table S.VII in
the supplementary material, we can see that ADDE performs
better than ADDE(0.1), ADDE(0.5), ADDE(0.9), ADDE-jDE,
and ADDE-JADE on 21, 24, 20, 25, and 18 functions, respec-
tively. In other words, our parameter adaptation control makes
ADDE achieve fast convergence and good diversity at the
same time.

Next, we further analyze the evolution behavior of CR
value in ADDE. From the above experiments, we find that
ADDE(0.9) performs well on f 1, f 4, and f 17, while ADDE(0.1)
is able to obtain better results on f 10–f 12. Thus, we take these
six functions as the representative instances to further verify
the effectiveness of parameter adaptation. The variation of CR
values in the evolutionary process is observed to check the
parameter adaptation mechanism in ADDE.

Since the CR value is controlled by the adaptive parame-
ter μCR, which evolves as the algorithm process in ADDE,

ZHAN et al.: ADDE 4645

we plot the variation of μCR values on these six functions
as the algorithm process in Fig. S2 in the supplementary
material for saving space. As we can see, in f 1, f 4, and f 17
shown in Fig. S2(a)–(c), μCR keeps increasing during the
evolutionary process, as we expected. On the contrary, the
μCR keeps decreasing during evolution in f 10–f 12 shown in
Fig. S2(d)–(f) in the supplementary material, which is consis-
tent to the actual requirement due to the good performance of
ADDE(0.1). Therefore, we can say that our parameter adapta-
tion method in the ADDE algorithm is effective and adaptive
to the evolutionary states of different problems.

3) Population Parameter N Adaptation Control: Population
size N also has a significant influence on the performance of
the algorithm. As we mentioned in Section III-D, we wish
to use small population size to accelerate the speed of con-
vergence, while using a large population size to improve the
population diversity and avoid being trapped in the local
optima. Therefore, in order to analyze the role of popula-
tion size adaptation in ADDE, we compare the performance
of ADDE with four ADDE variants with fixed population
size setting N = 100, 200, 300, and 400, which are defined
as ADDE(100), ADDE(200), ADDE(300), and ADDE(400),
respectively. The averaged results over 30 runs in each problem
are presented in Table S.VIII in the supplementary material in
detail.

ADDE(400) maintains a large number of individuals to keep
diversity, and its effectiveness can be verified from hybrid
functions f 17 and f 18. However, it also slows the speed of con-
vergence on some test functions, such as f 10–f 12. In contrast,
ADDE(100) keeps a relatively small number of individuals,
which can accelerate convergence, seen from f 10–f 12, f 15,
and f 16. However, when dealing with other complex prob-
lems such as f 27–f 30, they may lead to premature convergence.
Nevertheless, the method of population size adaptation in
ADDE is independent on the optimization problems, it can
find a proper population size to achieve a balance between
maintaining the population diversity and speeding up the
convergence.

In a word, from the Table S.VIII in the supplementary mate-
rial, ADDE performs better than ADDE(100), ADDE(200),
ADDE(300), and ADDE(400) on 22, 20, 19, and 21 func-
tions, respectively. Therefore, we can say that our population
size adaptation method is helpful for both keeping diversity
and speeding up the convergence.

V. CONCLUSION

In this article, an ADDE is proposed, which devel-
ops a novel master–slave multipopulation DDE algorithm.
In ADDE, three populations called exploration population,
exploitation population, and balance population are co-evolved
concurrently to maximize their strengths by cooperation and
enhance the global optimality of DDE. Moreover, different
populations adaptively choose different mutation strategies
based on the ESE to make full use of the feedback information
from both individuals and the whole corresponding population.
Besides, we proposed the adaptive parameters (F, CR, and N)
method according to HSE and BSI. As a result, ADDE can

find a well balance between fast convergence and diversity
maintaining.

To evaluate the performance of the proposed algorithm
ADDE, we have tested ADDE on a suite of benchmark func-
tions from the CEC 2014 and a suite of real-world application
problems from the CEC 2011 test suite. The experimental
results show that ADDE can outperform the compared state-
of-the-art DDEs and ADEs, on most of the functions based
on Wilcoxon’s rank-sum test. ADDE exhibits the appropriate
exploration and exploitation behaviors which are independent
on problems. Therefore, ADDE can quickly adapt to complex
and unknown optimization environments and can maintain
capabilities of exploration for diversity and exploitation for
convergence during the entire evolutionary process.

For future work, we wish to extend the ADDE algorithm
to solve more complicated optimization problems such as
multiobjective and dynamic optimization problems and apply
ADDE to some more real-world problems, such as power
systems or cloud computing resources scheduling.

REFERENCES

[1] R. Storn and K. Price, “Differential evolution: A simple and efficient
adaptive scheme for global optimization over continuous spaces,” Int.
Comput. Sci. Inst., Berkeley, CA, USA, Rep. TR-95-012, 1995

[2] X. Qiu, J.-X. Xu, Y. Xu, and K. C. Tan, “A new differential evolu-
tion algorithm for minimax optimization in robust design,” IEEE Trans.
Cybern., vol. 48, no. 5, pp. 1355–1368, May 2018.

[3] R. Poláková, J. Tvrdík, and P. Bujok, “Differential evolution
with adaptive mechanism of population size according to cur-
rent population diversity,” Swarm Evol. Comput., Apr. 2019.
doi: 10.1016/j.swevo.2019.03.014.

[4] X.-G. Zhou and G.-J. Zhang, “Abstract convex underestimation assisted
multistage differential evolution,” IEEE Trans. Cybern., vol. 47, no. 9,
pp. 2730–2741, Sep. 2017.

[5] P. Bujok, J. Tvrdík, and R. Poláková, “Adaptive differential evolution
vs. nature-inspired algorithms: An experimental comparison,” in Proc.
IEEE Symp. Comput. Intell., 2017, pp. 1–8.

[6] Z.-J. Wang et al., “Automatic niching differential evolution with contour
prediction approach for multimodal optimization problems,” IEEE Trans.
Evol. Comput., to be published. doi: 10.1109/TEVC.2019.2910721.

[7] X. Qiu, J.-X. Xu, K. C. Tan, and H. A. Abbass, “Adaptive
cross-generation differential evolution operators for multiobjective
optimization,” IEEE Trans. Evol. Comput., vol. 20, no. 2, pp. 232–244,
Apr. 2016.

[8] J.-H. Zhong, M. Shen, J. Zhang, H. S.-H. Chung, Y.-H. Shi, and
Y. Li, “A differential evolution algorithm with dual populations for solv-
ing periodic railway timetable scheduling problem,” IEEE Trans. Evol.
Comput., vol. 17, no. 4, pp. 512–527, Aug. 2013.

[9] K.-C. Wong, S. K. Yan, Q. Z. Lin, X. T. Li, and C. B. Peng, “Deleterious
non-synonymous single nucleotide polymorphism predictions on human
transcription factors,” IEEE/ACM Trans. Comput. Biol. Bioinf., to be
published. doi: 10.1109/TCBB.2018.2882548.

[10] X. T. Li and K.-C. Wong, “Elucidating genome-wide protein-RNA inter-
actions using differential evolution,” IEEE/ACM Trans. Comput. Biol.
Bioinf., vol. 16, no. 1, pp. 272–282, Jan./Feb. 2019.

[11] J. Sun, S. C. Gao, H. W. Dai, J. J. Cheng, M. C. Zhou, and
J. H. Wang, “Bi-objective elite differential evolution algorithm for
multivalued logic networks,” IEEE Trans. Cybern., to be published.
doi: 10.1109/TCYB.2018.2868493.

[12] N. M. Hamza, D. L. Essam, and R. A. Sarker, “Constraint consen-
sus mutation-based differential evolution for constrained optimization,”
IEEE Trans. Evol. Comput., vol. 20, no. 3, pp. 447–459, Jun. 2016.

[13] P. Bujok, J. Tvrdík, and R. Poláková, “Comparison of nature-
inspired population-based algorithms on continuous optimisation
problems,” Swarm Evol. Comput., Jan. 2019, Art. no. 100490.
doi: 10.1016/j.swevo.2019.01.006.

[14] Z.-J. Wang, Z.-H. Zhan, and J. Zhang, “Distributed minimum spanning
tree differential evolution for multimodal optimization problems,” Soft
Comput., pp. 1–11, Mar. 2019. doi: 10.1007/s00500-019-03875-x.

http://dx.doi.org/10.1016/j.swevo.2019.03.014
http://dx.doi.org/10.1109/TEVC.2019.2910721
http://dx.doi.org/10.1109/TCBB.2018.2882548
http://dx.doi.org/10.1109/TCYB.2018.2868493
http://dx.doi.org/10.1016/j.swevo.2019.01.006
http://dx.doi.org/10.1007/s00500-019-03875-x

4646 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 11, NOVEMBER 2020

[15] H. Zhao et al., “Local binary pattern-based adaptive differential evolu-
tion for multimodal optimization problems,” IEEE Trans. Cybern., to be
published. doi: 10.1109/TCYB.2019.2927780.

[16] X.-W. Luo, Z.-J. Wang, R.-C. Guan, Z.-H. Zhan, and Y. Gao, “A dis-
tributed multiple populations framework for evolutionary algorithm
in solving dynamic optimization problems,” IEEE Access, vol. 7,
pp. 44372–44390, 2019.

[17] X.-F. Liu et al., “Neural network-based information transfer for dynamic
optimization,” IEEE Trans. Neural Netw. Learn. Syst., to be published.
doi: 10.1109/TNNLS.2019.2920887.

[18] Z.-J. Wang, Z.-H. Zhan, and J. Zhang, “Solving the energy efficient cov-
erage problem in wireless sensor networks: A distributed genetic algo-
rithm approach with hierarchical fitness evaluation,” Energies, vol. 11,
no. 12, pp. 1–14, 2018.

[19] Y.-J. Gong et al., “Distributed evolutionary algorithms and their mod-
els: A survey of the state-of-the-art,” Appl. Soft Comput., vol. 34,
pp. 286–300, Sep. 2015.

[20] Z.-J. Wang et al., “Dynamic group learning distributed particle
swarm optimization for large-scale optimization and its application in
cloud workflow scheduling,” IEEE Trans. Cybern., to be published.
doi: 10.1109/TCYB.2019.2933499.

[21] D. K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos, and M. N. Vrahatis,
“Parallel differential evolution,” in Proc. IEEE Congr. Evol. Comput.,
2004, pp. 2023–2029.

[22] J. Apolloni, J. García-Nieto, E. Alba, and G. Leguizamón, “Empirical
evaluation of distributed differential evolution on standard benchmarks,”
Appl. Math. Comput., vol. 236, pp. 351–366, Jun. 2014.

[23] Z.-H. Zhan et al., “Cloudde: A heterogeneous differential evolution algo-
rithm and its distributed cloud version,” IEEE Trans. Parallel Distrib.
Syst., vol. 28, no. 3, pp. 704–716, Mar. 2017.

[24] Y.-F. Ge et al., “Distributed differential evolution based on adaptive
mergence and split for large-scale optimization,” IEEE Trans. Cybern.,
vol. 48, no. 7, pp. 2166–2180, Jul. 2018.

[25] I. D. Falco, U. Scafuri, E. Tarantino, and A. D. Cioppa, “An asyn-
chronous adaptive multi-population model for distributed differential
evolution,” in Proc. IEEE Congr. Evol. Comput., 2016, pp. 5010–5017.

[26] X.-F. Liu et al., “Historical and heuristic-based adaptive differential
evolution,” IEEE Trans. Syst., Man, Cybern., Syst., to be published.
doi: 10.1109/TSMC.2018.2855155.

[27] Z.-J. Wang et al., “Dual-strategy differential evolution with affinity prop-
agation clustering for multimodal optimization problems,” IEEE Trans.
Evol. Comput., vol. 22, no. 6, pp. 894–908, Dec. 2018.

[28] X. Qiu, K. C. Tan, and J.-X. Xu, “Multiple exponential recombina-
tion for differential evolution,” IEEE Trans. Cybern., vol. 47, no. 4,
pp. 995–1006, Apr. 2017.

[29] Y. Wang, Z. X. Cai, and Q. F. Zhang, “Differential evolution with com-
posite trial vector generation strategies and control parameters,” IEEE
Trans. Evol. Comput., vol. 15, no. 1, pp. 55–66, Feb. 2011.

[30] Y.-L. Li, Z.-H. Zhan, Y.-J. Gong, W.-N. Chen, J. Zhang, and Y. Li,
“Differential evolution with an evolution path: A DEEP evolution-
ary algorithm,” IEEE Trans. Cybern., vol. 45, no. 9, pp. 1798–1810,
Sep. 2015.

[31] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimization,”
IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 398–417, Apr. 2009.

[32] M. M. Ali and A. Törn, “Population set based global optimization algo-
rithms: Some modifications and numerical studies,” Comput. Oper. Res.,
vol. 31, no. 10, pp. 1703–1725, 2004.

[33] W.-J. Yu et al., “Differential evolution with two-level parameter adap-
tation,” IEEE Trans. Cybern., vol. 44, no. 7, pp. 1080–1099, Jul. 2014.

[34] Y.-L. Li, Z.-H. Zhan, Y.-J. Gong, J. Zhang, Y. Li, and Q. Li, “Fast micro-
differential evolution for topological active net optimization,” IEEE
Trans. Cybern., vol. 46, no. 6, pp. 1411–1423, Jun. 2016.

[35] M. Depolli, R. Trobec, and B. Filipiè, “Asynchronous master–slave par-
allelization of differential evolution for multi-objective optimization,”
Evol. Comput., vol. 21, no. 2, pp. 261–291, May 2013.

[36] W. Kwedlo and K. Bandurski, “A parallel differential evolution algo-
rithm,” in Proc. IEEE Int. Symp. Parallel Comput. Elect. Eng., 2006,
pp. 319–324.

[37] K. N. Kozlov and A. M. Samsonov, “New migration scheme for parallel
differential evolution,” in Proc. Int. Conf. Bioinformat. Genome Regulat.
Structure, 2006, pp. 141–144.

[38] Y.-F. Ge, W.-J. Yu, J.-J. Li, Z.-W. Yu, and J. Zhang, “Enhancing dis-
tributed differential evolution with a space-driven topology,” in Proc.
IEEE Congr. Evol. Comput., 2016, pp. 4090–4095.

[39] J. Cheng, G. Zhang, and F. Neri, “Enhancing distributed differential evo-
lution with multicultural migration for global numerical optimization,”
Inf. Sci., vol. 247, pp. 72–93, Oct. 2013.

[40] Y. Xu, Z. Y. Dong, F. J. Luo, R. Zhang, and K. P. Wong, “Parallel-
differential evolution approach for optimal event-driven load shedding
against voltage collapse in power systems,” IET Gen. Transm. Distrib.,
vol. 8, no. 4, pp. 651–660, Apr. 2014.

[41] A. Glotić, A. Glotić, P. Kitak, J. Pihler, and I. Tičar, “Parallel
self-adaptive differential evolution algorithm for solving short-term
hydro scheduling problem,” IEEE Trans. Power Syst., vol. 29, no. 5,
pp. 2347–2358, Sep. 2014.

[42] I. De Falco, A. D. Cioppa, D. Maisto, U. Scafuri, and E. Tarantino,
“Satellite image registration by distributed differential evolution,” in
Applications of Evolutionary Computing. Berlin, Germany: Springer,
2007, pp. 251–260.

[43] D. R. Penas, J. R. Banga, P. González, and R. Doallo, “A parallel differ-
ential evolution algorithm for parameter estimation in dynamic models
of biological systems,” in Proc. Int. Conf. Practical Appl. Comput. Biol.
Bioinformat., 2014, pp. 173–181.

[44] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-
adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,” IEEE Trans. Evol. Comput.,
vol. 10, no. 6, pp. 646–657, Dec. 2006.

[45] R. A. Sarker, S. M. Elsayed, and T. Ray, “Differential evolution with
dynamic parameters selection for optimization problems,” IEEE Trans.
Evol. Comput., vol. 18, no. 5, pp. 689–707, Oct. 2014.

[46] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution
with optional external archive,” IEEE Trans. Evol. Comput., vol. 13,
no. 5, pp. 945–958, Oct. 2009.

[47] Y.-Z. Zhou, W.-C. Yi, L. Gao, and X.-Y. Li, “Adaptive differential evolu-
tion with sorting crossover rate for continuous optimization problems,”
IEEE Trans. Cybern., vol. 47, no. 9, pp. 2742–2753, Sep. 2017.

[48] R. Tanabe and A. Fukunaga, “Success-history based parameter adap-
tation for differential evolution,” in Proc. IEEE Congr. Evol Comput.,
2013, pp. 71–78.

[49] R. Tanabe and A. S. Fukunaga, “Improving the search performance of
SHADE using linear population size reduction,” in Proc. IEEE Congr.
Evol. Comput., 2014, pp. 1658–1665.

[50] J. Brest, M. S. Mauèec, and B. Bošković, “iL-SHADE: Improved L-
SHADE algorithm for single objective real-parameter optimization,” in
Proc. IEEE Congr. Evol. Comput., 2016, pp. 1188–1195.

[51] J. Brest, M. S. Mauèec, and B. Bošković, “Single objective real-
parameter optimization: Algorithm JSO,” in Proc. IEEE Congr. Evol.
Comput., 2017, pp. 1311–1318.

[52] K. V. Price, “An introduction to differential evolution,” in New Ideas in
Optimization. Maidenhead, U.K.: McGraw-Hill, 1999, pp. 79–108.

[53] R. Mallipeddi, P. N. Suganthan, Q. K. Pan, and M. F. Tasgetiren,
“Differential evolution algorithm with ensemble of parameters and muta-
tion strategies,” Appl. Soft Comput., vol. 11, no. 2, pp. 1679–1696,
2011.

[54] L. Tang, Y. Dong, and J. Liu, “Differential evolution with an individual-
dependent mechanism,” IEEE Trans. Evol. Comput., vol. 19, no. 4,
pp. 560–574, Aug. 2015.

[55] Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung, “Adaptive par-
ticle swarm optimization,” IEEE Trans. Cybern., vol. 39, no. 6,
pp. 1362–1381, Dec. 2009.

[56] F. Peng, K. Tang, G. Chen, and X. Yao, “Multi-start JADE with knowl-
edge transfer for numerical optimization,” in Proc. IEEE Congr. Evol.
Comput., 2009, pp. 1889–1895.

[57] J. J. Liang, B. Y. Qu, and P. N. Suganthan, “Problem definitions and
evaluation criteria for the CEC 2014 special session and competition on
single objective real-parameter numerical optimization,” Comput. Intell.
Lab., Zhengzhou Univ., Zhengzhou, China, and School EEE, Nanyang
Technol. Univ., Singapore, Rep. 201311, Dec. 2013.

[58] J. Derrac, S. García, D. Molina, and F. Herrera, “A practical tutorial on
the use of nonparametric statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms,” Swarm Evol. Comput.,
vol. 1, no. 1, pp. 3–18, Mar. 2011.

[59] S. Das and P. N. Suganthan, “Problem definitions and evaluation cri-
teria for CEC 2011 competition on testing evolutionary algorithms on
real world optimization problems,” Dept. Electron. Telecommun. Eng.,
Jadavpur Univ., Kolkata, India, and Nanyang Technol. Univ., Singapore,
Rep., 2010. [Online]. Available: https://al-roomi.org/multimedia/CEC_
Database/CEC2011/CEC2011_TechnicalReport.pdf

[60] A. Iorio and X. Li, “Solving rotated multi-objective optimization prob-
lems using differential evolution,” in Proc. Aust. Conf. Artif. Intell., 2004,
pp. 861–872.

http://dx.doi.org/10.1109/TCYB.2019.2927780
http://dx.doi.org/10.1109/TNNLS.2019.2920887
http://dx.doi.org/10.1109/TCYB.2019.2933499
http://dx.doi.org/10.1109/TSMC.2018.2855155

ZHAN et al.: ADDE 4647

Zhi-Hui Zhan (M’13–SM’18) received the bache-
lor’s and Ph.D. degrees in computer science from the
Sun Yat-sen University, Guangzhou, China, in 2007
and 2013, respectively.

From 2013 to 2015, he was a Lecturer and
an Associate Professor with the Department of
Computer Science, Sun Yat-sen University. Since
2016, he has been a Professor with the School
of Computer Science and Engineering, South
China University of Technology, Guangzhou, where
he is also the Changjiang Scholar Young Professor

and the Pearl River Scholar Young Professor. His current research interests
include evolutionary computation, swarm intelligence, and their applications
in real-world problems, and in environments of cloud computing and big data.

Prof. Zhan was a recipient of the China Computer Federation Outstanding
Ph.D. Dissertation Award for his Doctoral dissertation and the IEEE
Computational Intelligence Society Outstanding Ph.D. Dissertation, the
Outstanding Youth Science Foundation from National Natural Science
Foundations of China in 2018, and the Wu Wen Jun Artificial Intelligence
Excellent Youth from the Chinese Association for Artificial Intelligence in
2017. He is listed as one of the Most Cited Chinese Researchers in Computer
Science. He is currently an Associate Editor of Neurocomputing and the
International Journal of Swarm Intelligence Research.

Zi-Jia Wang (S’15) received the B.S. degree
in automation from Sun Yat-sen University,
Guangzhou, China, in 2015, where he is currently
pursuing the Ph.D. degree.

His current research interests include evolution-
ary computation algorithms, such as differential
evolution, particle swarm optimization, and their
applications in design and optimization, such as
cloud computing resources scheduling.

Hu Jin (S’07–M’12–SM’18) received the B.E.
degree in electronic engineering and information sci-
ence from the University of Science and Technology
of China, Hefei, China, in 2004, and the M.S.
and Ph.D. degrees in electrical engineering from
the Korea Advanced Institute of Science and
Technology, Daejeon, South Korea, in 2006 and
2011, respectively.

From 2011 to 2013, he was a Postdoctoral Fellow
with the University of British Columbia, Vancouver,
BC, Canada. From 2013 to 2014, he was a Research

Professor with Gyeongsang National University, Tongyeong, South Korea.
Since 2014, he has been with the Division of Electrical Engineering, Hanyang
University, Ansan, South Korea, where he is currently an Associate Professor.
His current research interests include wireless communications, Internet of
Things, and machine learning.

Jun Zhang (F’17) received the Ph.D. degree from
the City University of Hong Kong, Hong Kong,
in 2002.

He is currently a Visiting Professor with Hanyang
University, Ansan, South Korea. His current research
interests include computational intelligence, cloud
computing, high performance computing, operations
research, and power electronic circuits.

Dr. Zhang was a recipient of the Changjiang Chair
Professor from the Ministry of Education, China, in
2013, the China National Funds for Distinguished

Young Scientists from the National Natural Science Foundation of China in
2011, and the First-Grade Award in Natural Science Research from the
Ministry of Education, China, in 2009. He is currently an Associate Editor
of the IEEE TRANSACTIONS ON CYBERNETICS, the IEEE TRANSACTIONS

ON EVOLUTIONARY COMPUTATION, and the IEEE TRANSACTIONS ON

INDUSTRIAL ELECTRONICS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

