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A B S T R A C T

Aim of this article is to investigate soliton solutions of recently developed (3 + 1)-dimensional Boiti–Leon–
Manna–Pempinelli equation by utilizing newly derived approach namely, improved tanh( 𝜙

2
)-expansion method.

As a result, we succeed to secure various types of new solutions for this model including kink, periodic rational
solutions. Some of the derived solutions has been discussed in the form of 2-,3-dimensional graphs and their
contour plots to visualize the wave dynamics graphically. The results generated by this technique proves that
it is a straightforward, robust, and effective method to generate variety of solutions and can be applied on
different nonlinear models.
. Introduction

Nonlinear partial differential equations (NLPDEs) play indispens-
ble role in numerous fields of mathematics, physical sciences and
ngineering. Integrable differential equations gain much attention in
he modern era of research for the study of wave propagation es-
ecially in plasma physics, ocean and rogue waves, optical fibers,
ncompressible fluids and many more. Traveling wave solutions in
articular solitary wave solutions which are the exact solutions of
ome NLPEs is the prime objective and most active research area of
esearchers and scientist to study and understand nonlinear complex
hysical phenomena.1–8 It is interesting to point out that with the
volution of soliton theory, many efficient and robust method have
een developed and then modified to generate accurate and novel
xact solutions of NLPDEs such as Backlund transformation method,9
ainlevé expansion,10 Variational iteration method,11 tanh method,12

ine–Cosine method,13 improved generalized Riccati equation mapping
ethod,14 Auxiliary equation method,15 Ansatz method,16 Functional

ariable method,17 𝐺′∕𝐺 expansion method18 and many more methods.
In the last decade Boiti–Leon–Manna–Pempinelli (BLMP) equation

as gained a lot of attraction by researchers due to the uses of this
odel in plasma physics, fluid dynamics, ocean engineering, astro-
hysics, and aerodynamics to explain wave propagation of incom-
ressible fluids.7,10,19–23 The (3 + 1)-dimensional Boiti–Leon–Manna–
empinelli (BLMP) equation has imperative impact and significance in
he wave propagation in incompressible fluids, moreover when 𝑧 = 0,
t describes the interaction of Riemann wave propagation.10

∗ Corresponding author.
E-mail address: nidojan@gmail.com (N. Ahmed).

Boiti–Leon–Manna–Pempinelli (BLMP) model has been introduced
in Refs. 24, 25. Later Wazwaz derived new (3 + 1)-dimensional Boiti–
Leon–Manna–Pempinelli (BLMP) equation with constant coefficients in
Refs. 10, 26.
(

𝑢𝑥 + 𝑢𝑦 + 𝑢𝑧
)

𝑡 + 𝛼
(

𝑢𝑥 + 𝑢𝑦 + 𝑢𝑧
)

𝑥𝑥𝑥 + 𝛽
(

𝑢𝑥
(

𝑢𝑥 + 𝑢𝑦 + 𝑢𝑧
))

𝑥 = 0, (1.1)

Where, 𝑢 = 𝑢 (𝑥, 𝑦, 𝑧, 𝑡), is unknown analytical function with spatial
variables 𝑥, 𝑦, 𝑧 and temporal variable 𝑡, whereas 𝛼 and 𝛽 are no-zero
constants.

A lot of work has been done on this model. The stair and step
solitons of (2 + 1) and (3 + 1) dimensional BLMP has been studied
in Ref. 24. Bilinear form, lax pairs and Backlund transformation are
constructed by Ref. 27. The authors in Refs. 10, 23, secured multiple
solitons and complex multi soliton solution by using Painleve test
and Hirota’s direct method to generate lump solitons, solitary wave
solutions and periodic wave solutions and their interactions. New three
wave solutions and hyperbolic and trigonometric solutions have been
generated for and (3 + 1) dimensional BLMP in Refs. 28, 29. Moreover,
authors in Ref. 26 investigated the interaction solutions among lump
wave, N-solitons, periodic and breather wave solutions. Solitary wave,
periodic wave and trigonometric wave solutions has been obtained in
Ref. 30 with the aid Sine Gordan expansion method and extended tanh
function method. Periodic solitons and periodic type solutions of (3+1)
dimensional BLMP has been studied in Ref. 31.

The technique, improved tanh ( 𝜙2 )-expansion method,32 used here
is new and direct and very convenient to handle, and no study has
ttps://doi.org/10.1016/j.padiff.2022.100394
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not been done so far on this equation by this technique, as both
equation and method is new. With the aid of mathematical software,
we manage to generate various interesting types of new exact traveling
wave solutions.

The prime motive of this article is to thoroughly study newly de-
rived (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli (BLMP) equa-
ion and concurrently reveals the significance of improved tanh ( 𝜙2 )-

expansion method. It is worth mentioning here that higher dimensional
nonlinear models generate large number of exact solutions as com-
pared to lower dimensional equations.10 We are hopeful that our new
bundant exact solutions which are new and have not been reported
n literature of this higher dimensional model have great significance
or many higher dimensional nonlinear problems in various fields of
ciences.

This paper is organized as follows: Section 1, includes introduc-
ion, Section 2, provides analysis of Improved tanh ( 𝜙2 )-expansion

method, Section 3, includes implementation of this method, Section 4,
accommodates results and discussion Section 5, conclude the article.

2. Improved tanh (𝝓𝟐 )-expansion method

Let us consider the nonlinear partial differential equation with
ndependent variables 𝑥, 𝑡 and some dependent function 𝑢̇∶

Å
(

𝑢̇, 𝑢̇𝑥, 𝑢̇𝑡, 𝑢̇𝑥𝑥, 𝑢̇𝑡𝑡,… .
)

= 0, (2.1)

Where Å is a polynomial in 𝑢̇ with its various orders of nonlinear partial
derivatives.

Step1. Let

̇ (𝑥, 𝑡) = 𝑢̇ (𝜉) , (2.2)

where,

𝜉 = 𝑘𝑥 + 𝜈𝑡, (2.3)

is a wave transformation which can convert nonlinear differential
Eq. (2.1) into nonlinear ordinary differential equation,

H
(

𝑢̇, 𝑘𝑢̇′, 𝜈𝑢̇′, 𝑘2𝑢̇′′, 𝜈2𝑢̇′′,…
)

= 0, (2.4)

where 𝑘, 𝜈 are nonzero.

tep2. We suppose that the following series expansion is the solution
f Eq. (2.4).

𝑢̇ (𝜉) = 𝛬 (𝜙) =
𝑁
∑

𝑘=−𝑁
A𝑘[𝑝 + tanh(𝜙∕2)]𝑘, (2.5)

where A𝑘(0 ≤ 𝑘 ≤ 𝑁) and A−𝑘(1 ≤ 𝑘 ≤ 𝑁) are constants, which are
o be determined provided A𝑁 ≠ 0,A−𝑁 ≠ 0. The function 𝜙 = 𝜙(𝜉)
atisfies the following ordinary differential equation.

′ (𝜉) = 𝑎 sinh (𝜙 (𝜉))+ 𝑏𝑐𝑜𝑠h (𝜙 (𝜉))+ 𝑐, where a, b, c are real constants.
(2.6)

Eq. (2.6) has following special type of solutions:

amily 1: When 𝑎2 + 𝑐2 − 𝑏2 < 0, 𝑏 − 𝑐 ≠ 0 then

𝜙 (𝜉) = 2 arctanh
[

− 𝑎
𝑏 − 𝑐

+

√

𝑏2 − 𝑎2 − 𝑐2
𝑏 − 𝑐

tan

(
√

𝑏2 − 𝑎2 − 𝑐2
2

(

𝜉′
)

)]

.

Family 2: When 𝑎2 + 𝑐2 − 𝑏2 > 0 and 𝑏 − 𝑐 ≠ 0, then

𝜙 (𝜉) = 2 arctanh
[

− 𝑎
𝑏 − 𝑐

−

√

𝑎2 + 𝑐2 − 𝑏2

𝑏 − 𝑐
tanh

(
√

𝑎2 + 𝑐2 − 𝑏2

2
(

𝜉′
)

)]

.

Family 3: When 𝑎2 + 𝑐2 − 𝑏2 < 0, b ≠ 0 and c = 0, then

𝜙 (𝜉) = 2 arctanh
[

−𝑎 +

√

𝑏2 − 𝑎2 tan

(
√

𝑏2 − 𝑎2 (

𝜉′
)

)]

.

𝑏 𝑏 2

2

Family 4: When 𝑎2 + 𝑐2 − 𝑏2 > 0, c≠0 and b = 0, then

𝜙 (𝜉) = 2 arctanh
[

𝑎
𝑐
+

√

𝑎2 + 𝑐2

𝑐
tan

(
√

𝑎2 + 𝑐2

2
(

𝜉′
)

)]

.

Family 5: When 𝑎2 + 𝑐2 − 𝑏2 < 0, b-c≠0 and a=0, then

𝜙 (𝜉) = 2 arctanh
[

√

𝑏 + 𝑐
𝑏 − 𝑐

tan

(
√

𝑏2 − 𝑐2
2

(

𝜉′
)

)]

.

Family 6: When a = 0 and c = 0, then

𝜙 (𝜉) = ln
[

tan
( b
2
(

𝜉′
)

)]

.

Family 7: When b = 0 and c = 0, then

𝜙 (𝜉) = ln
[

−tanh
( a
2
(

𝜉′
)

)]

.

Family 8: When 𝑎2 + 𝑏2 = 𝑐2, then

𝜙 (𝜉) = 2 arctanh
[

𝑎

−𝑏 +
√

𝑎2 + 𝑏2
+

√

2𝑎

−𝑏 +
√

𝑎2 + 𝑏2
tanh

(
√

2𝑎
2

(

𝜉′
)

)]

.

amily 9: When a = b = c = ka, then

(𝜉) = 2 arctanh
[

𝑒𝑘𝑎(𝜉
′) − 1

]

.

amily 10: When 𝑎 = 𝑐 = 𝑘𝑎 and 𝑏 = −𝑘𝑎, then

𝜙 (𝜉) = 2 arctanh
[

𝑒𝑘𝑎(𝜉′)

−1 + 𝑒𝑘𝑎(𝜉′)

]

.

amily 11: When 𝑏 = 𝑎, then

(𝜉) = −2 arctanh
[

(𝑎 + 𝑐)𝑒𝑏(𝜉′) − 1
(𝑎 − 𝑐)𝑒𝑏(𝜉′) − 1

]

.

Family 12: When 𝑏 = 𝑐, then

𝜙 (𝜉) = 2 arctanh
[

𝑒𝑏(𝜉′) − 𝑐
𝑎

]

.

Family 13: When 𝑎 = −𝑐, and 𝑏 = 𝑐 then

𝜙 (𝜉) = 2 arctanh
[

1 + 𝑒−𝑐(𝜉
′)
]

.

amily 14: When 𝑏 = −𝑏, and 𝑐 = −𝑏 then

(𝜉) = 2 arctanh
[

𝑏 + 𝑒𝑎(𝜉′)
𝑎

]

.

Family 15: When 𝑏 = −𝑏, 𝑎 = −𝑏 and 𝑐 = 𝑏 then

𝜙 (𝜉) = 2 arctanh
[

1
𝑒𝑏(𝜉′) − 1

]

.

Family 16: When 𝑏 = −𝑐, then

(𝜉) = 2 arctanh
[

𝑎𝑒𝑎(𝜉′)

𝑐𝑒𝑎(𝜉′) − 1

]

.

Family 17: When 𝑎 = 0 and 𝑏 = 𝑐, then

𝜙 (𝜉) = 2 arctanh[c
(

𝜉′
)

]

Family 18: When 𝑎 = 0, and 𝑏 = −𝑐, then

(𝜉) = 2 arctanh
[

1
𝑐 (𝜉′)

]

.

Family 19: When 𝑏 = 0, and 𝑎 = 𝑐 then

𝜙 (𝜉) = 2 arctanh
[

1 +
√

2tanh

(
√

2𝑐 (

𝜉′
)

)]

.

2
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Family 20: When 𝑎 = 0, and 𝑏 = 0 then

𝜙 (𝜉) = 𝑐𝜉 + 𝐶,

where 𝜉′ = 𝜉 + 𝐶, A𝑘,A−𝑘 (𝑘 = 1, 2,… , 𝑁) , 𝑎, 𝑏, 𝑐 are constants to be
determined later. Positive integer 𝑁 in Eq. (2.5) can be found by using
homogeneous balance principle between the derivatives of highest
order and the highest power of nonlinear terms in Eq. (2.4).

Step4. Substituting Eq. (2.5) along with Eq. (2.6) into Eq. (2.4). We get
the polynomial equations. Step5. With the help of Maple, we solve the

system described in step 4, provides the values of A0,A𝑘,A−𝑘 where,
𝑖 = 1, 2,… .𝑁, 𝑎, 𝑏, 𝑐. We substitute these values in Eq. (2.5) coupled
with solutions of Eq. (2.6) and applying the transformation in Eq. (2.4),
we construct several exact solutions of Eq. (2.1), establishing twenty
families.14

3. Implementation of IThEM

To use improved tanh ( 𝜙(𝜉)2 )-expansion method on Eq. (1.1).
We use following wave transformation, 𝑢 (𝑥, 𝑡) = 𝑢 (𝜉) , with 𝜉 =

𝑘1𝑥 + 𝑘2𝑦 + 𝑘3𝑧 + 𝜔𝑡, in Eq. (1.1), substituting 𝛼 = 𝛽 = −3 and
after integrating by keeping constant of integration zero, we get the
following nonlinear ODE:

𝑘31
(

𝑘3 + 𝑘1 + 𝑘2
) d3

d𝜉3
𝑢 (𝜉) + 𝜔

(

𝑘3 + 𝑘1 + 𝑘2
) d
d𝜉

𝑢 (𝜉)

−
3𝑘21

(

𝑘3 + 𝑘1 + 𝑘2
)

2

(

d
d𝜉

𝑢(𝜉)
)2

= 0,
(3.1)

using homogeneous balance principle between
(

d3
d𝜉3 𝑢 (𝜉)

)

and
(

d
d𝜉 𝑢 (𝜉)

)2

we get 𝑁 = 1. Therefore, the exact series solution has the form,

𝑢 (𝜉) = 𝛬 (𝑌 ) =
A−1

𝑝 + tanh
(

𝜙(𝜉)
2

) + A0 + A1

(

𝑝 + tanh
(

𝜙 (𝜉)
2

))

, (3.2)

now, substituting Eq. (3.2) along with Eq. (2.6) into Eq. (3.1) after
collecting all terms with the same powers of tanh

(

𝜙(𝜉)
2

)

and equating
ach coefficient to zero, we obtain a system of nonlinear algebraic
quations. Solving these equations by using Maple 17, we get following
on-trivial solutions. All the abbreviations used in the below mentioned
olutions have been expressed in table:

𝐷 = 𝑎2 − 𝑏2 + 𝑐2 𝛺 = 𝑥𝑘1 + 𝑧𝑘3 + 𝑦𝑘2
𝐸 = (𝑏 − 𝑐)

(

(𝑏 − 𝑐) 𝑝2 − 𝑏 − 𝑐
)

𝐹 = −𝑎2 + 𝑏2

𝐹 ′ = 𝑎2 + 𝑐2 𝐺 = 𝑏2 − 𝑐2

Family 1:

Some trigonometric function solutions are formulated for BLMP
equation for 𝑎2 + 𝑐2 − 𝑏2 < 0, 𝑏 − 𝑐 ≠ 0:

𝑎 = 𝑎, 𝑏 = 𝑐, 𝑐 = 𝑐, 𝜔 = −𝑘31D, 𝑝 = 𝑝,

𝐴−1 = 2𝑘1(− (𝑏 − 𝑐) 𝑝2 + 2𝑝𝑎 − 𝑏 − 𝑐), 𝐴1 = 0,

𝑢1 =
⎛

⎜

⎜

⎝

√

−D𝐴0tan
(

(

𝑡𝐷𝑘31 −𝛺
)

√

−𝐷
)

+ 2𝑘1 (𝑏 − 𝑐)2 𝑝2

−4
(

𝑎𝑘1 + 𝐴0∕4
)

(𝑏 − 𝑐) 𝑝 + 2
(

𝑏2 − 𝑐2
)

𝑘1 + 𝑎𝐴0

⎞

⎟

⎟

⎠

×
(
√

−Dtan
(

(

𝑡𝐷𝑘31 −𝛺
)

√

−𝐷
)

+ (−𝑏 + 𝑐)𝑝 + 𝑎
)−1

,

(3.3)

𝑎 = 𝑎, 𝑏 = 𝑏, 𝑐 = 𝑐, 𝜔 = −𝐷𝑘31,

= 𝑝, 𝐴−1 = 0, 𝐴1 = 2𝑘1 (𝑏 − 𝑐) ,

2 =
(

−2
√

−𝐷tan
(

(

𝑡𝐷𝑘31 −𝛺
)

√

−𝐷∕2
)

+ 2(𝑝𝑏 − 𝑝𝑐 − 𝑎)
)

𝑘1 + 𝐴0,

(3.4)
𝑎 = 𝑝(𝑏 − c), 𝑏 = 𝑏, 𝑐 = 𝑐, 𝜔 = −4𝐸𝑘31,

( 2 )
𝑝 = 𝑝, 𝐴−1 = 2𝑘1 (𝑏 − 𝑐) 𝑝 − 𝑏 − 𝑐 , 𝐴1 = 2𝑘1 (𝑏 − 𝑐) , 𝐴

3

𝑢3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐴0∕2
√

−𝐸tan
(

2
√

−𝐸
(

𝑡𝑘31
(

2
(

𝑝2 − 1
)

𝑏2

−2𝑏𝑐𝑝2 +
(

𝑝2 + 1
)

𝑐2
)

−𝛺∕4
))

−𝑘1𝐸
(

tan
(

2
√

−𝐸
(

𝑡𝑘31
(

2
(

𝑝2 − 1
)

𝑏2

−2𝑏𝑐𝑝2 +
(

𝑝2 + 1
)

𝑐2
)

−𝛺∕4
))2 − 1

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

×
(
√

−𝐸tan
(

2
√

−𝐸
(

𝑡𝑘31
(

2
(

𝑝2 − 1
)

𝑏2 − 2𝑏𝑐𝑝2 +
(

𝑝2 + 1
)

𝑐2
)

−𝛺∕4
)

))−1
,

(3.5)

Family 2:

The hyperbolic function solutions can be derive as using the follow-
ing conditions:

For 𝑎2 + 𝑐2 − 𝑏2 > 0 and 𝑏 − 𝑐 ≠ 0:

𝑎 = 𝑎, 𝑏 = 𝑏, 𝑐 = 𝑐, 𝜔 = −𝐷𝑘31, 𝑝 = 𝑝, 𝐴1 = 0,

𝐴−1 = 2𝑘1(− (𝑏 − 𝑐) 𝑝2 + 2𝑝𝑎 − 𝑏 − 𝑐),

𝑢4 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−tanh
⎛

⎜

⎜

⎝

(

𝑡 (𝐷) 𝑘31 −𝛺
)
√

𝐷
2

⎞

⎟

⎟

⎠

√

𝐷𝐴0 + 2𝑘1(𝑏 − 𝑐)2𝑝2

−(4𝑎𝑘1 + 𝐴0)(𝑏 − 𝑐)𝑝 + 2(𝑏2 − 𝑐2)𝑘1 + 𝑎𝐴0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

×
(

−tanh
(

(

𝑡 (𝐷) 𝑘31 −𝛺
)

√

𝐷∕2
)
√

𝐷 + (−𝑏 + 𝑐)𝑝 + 𝑎
)−1

,

(3.6)

= 𝑎, 𝑏 = 𝑏, 𝑐 = 𝑐, 𝜔 = −𝐷𝑘31, 𝑝 = 𝑝, 𝐴−1 = 0,

𝐴1 = 2𝑘1(𝑏 − 𝑐),

5 = (2tanh(1∕2(𝑡(𝐷)𝑘31 −𝛺)
√

𝐷)
√

𝐷 + 2𝑝𝑏 − 2𝑝𝑐 − 2𝑎)𝑘1 + 𝐴0 (3.7)

Family 3:

When 𝑎2 + 𝑐2 − 𝑏2 < 0, b ≠ 0 and c = 0, the trigonometric function
solutions generated as:

𝑎 = 𝑎, 𝑏 = 𝑏, 𝑐 = 0, 𝜔 = 4𝑘31𝐹 , 𝑝 = 𝑎
𝑏
,

𝐴−1 = −2𝑘1𝐹∕𝑏, 𝐴1 = 2𝑏𝑘1,

𝑢6 =
(

−2𝑘1
√

𝐹 tan
(

−
√

𝐹
(

4𝑡𝐹𝑘31 +𝛺
)

∕2
)

+ 𝐴0 + 2𝑘1
√

𝐹
)

×
(

tan
(
√

𝐹
(

4𝑡𝐹𝑘31 −𝛺
)

∕2
))−1

,
(3.8)

= 𝑎, 𝑏 = 𝑏, 𝑐 = 0, 𝜔 = 4𝑘31𝐹 , 𝑝 = 𝑎
𝑏
, 𝐴−1 = −2𝑘31𝐹∕𝑏, 𝐴1 = 2𝑏𝑘1,

𝑢7 =

⎛

⎜

⎜

⎜

⎝

−2𝐹
(

tan
(
√

𝐹
(

−4𝑡𝐹𝑘31 −𝛺
)

∕2
)2

− 1
)

𝑘1

+𝐴0tan
(
√

𝐹
(

−4𝑡𝐹𝑘31 −𝛺
)

∕2
)
√

𝐹

⎞

⎟

⎟

⎟

⎠

×
(

𝐴0tan
(
√

𝐹 (−4𝑡𝐹𝑘31 −𝛺)∕2
)
√

𝐹
)−1

,

(3.9)

= 𝑎, 𝑏 = 𝑏, 𝑐 = 0, 𝜔 = 𝑘31𝐹 , 𝑝 = 𝑝, 𝐴−1 = 0, 𝐴1 = 2𝑏𝑘1,

𝑢8 =
(

−2tan
(
√

𝐹 (−𝑡𝐹𝑘31 −𝛺)∕2
)
√

𝐹 + 2𝑝𝑏 − 2𝑎
)

𝑘1 + 𝐴0, (3.10)

Family 4:

Another choice of hyperbolic function solutions for 𝑎2 + 𝑐2 − 𝑏2 > 0,
≠ 0 and b = 0:

= 𝑎, 𝑏 = 0, 𝑐 = 𝑐, 𝜔 = −𝑘31𝐹
′, 𝑝 = 𝑝, 𝐴1 = 0,

( 2 )
−1 = 2𝑘1𝑝𝑎 − −𝑝 + 1 𝑐,
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𝐴

𝑢

𝑢

s

𝑎

𝐴

𝑢

𝑢

F

𝑏

𝑢

𝑎

𝑢

F

𝑎

t

𝑢9 =
⎛

⎜

⎜

⎝

(

tanh
(

(

𝑡𝑘31𝐹
′ −𝛺

)

√

𝐹 ′∕2
)
√

𝐹 ′ − 𝑎
)

𝐴0+

2
(

−𝑝2 + 1
)

𝑘1𝑐
2 − 𝑝

(

4𝑎𝑘1 + 𝐴0
)

𝑐

⎞

⎟

⎟

⎠

×
(

tanh
(

(

𝑡𝑘31𝐹
′ −𝛺

)

√

𝐹 ′∕2
)
√

𝐹 ′ − 𝑐𝑝 − 𝑎
)−1

,

(3.11)

𝑎 = 𝑎, 𝑏 = 0, 𝑐 = 𝑐, 𝜔 = −F′𝑘31, 𝑝 = 𝑝, 𝐴−1 = 2𝑘1(2𝑝𝑎 −
(

−𝑝2 + 1
)

𝑐),

1 = 0,

10 =
⎛

⎜

⎜

⎝

(

tanh
(

(

𝑡𝑘31𝐹
′ −𝛺

)

√

𝐹 ′∕2
)
√

𝐹 ′ − 𝑎
)

𝐴0+

2
(

−𝑝2 + 1
)

𝑘1𝑐
2 − 𝑝

(

4𝑎𝑘1 + 𝐴0
)

𝑐

⎞

⎟

⎟

⎠

×
(

tanh
(

(

𝑡𝑘31𝐹
′ −𝛺

)

√

𝐹 ′∕2
)
√

𝐹 ′ − 𝑐𝑝 − 𝑎
)−1

,

(3.12)

𝑎 = 𝑎, 𝑏 = 0, 𝑐 = 𝑐, 𝜔 = −𝑘31F
′, 𝑝 = 𝑝, 𝐴−1 = 0, 𝐴1 = −2𝑐𝑘1,

11 =
(

tanh
(

(𝑡𝐹 ′𝑘31 −𝛺)
√

𝐹 ′
)
√

𝐹 ′ − 4𝑝𝑐 − 4𝑎
)

𝑘1 + 𝐴0, (3.13)

Family 5:

For 𝑎2 + 𝑐2 − 𝑏2 < 0, b-c ≠ 0 and a = 0, trigonometric function
olutions has been generated as:

= 0, 𝑏 = 𝑏, 𝑐 = 𝑐, 𝜔 = G𝑘31, 𝑝 = 𝑝,

−1 = 2𝑘1(−𝑏𝑝2 + 𝑐𝑝2 − 𝑏 − 𝑐), 𝐴1 = 0,

𝑢12 =
⎛

⎜

⎜

⎝

𝐴0

√

G tan
(

(

G𝑡𝑘31 +𝛺
)

√

G∕2
)

∕2

−2
(

𝑘1 (𝑏 − 𝑐)2 𝑝2 − 𝐴0𝑝∕2 + 𝑘1G
)

⎞

⎟

⎟

⎠

×
(
√

Gtan
(

(

G𝑡𝑘31 +𝛺
)

√

G∕2
)

+ 𝑝(𝑏 − 𝑐)
)−1

,

(3.14)

𝑎 = 0, 𝑏 = 𝑏, 𝑐 = 𝑐, 𝜔 = G𝑘31, 𝑝 = 𝑝, 𝐴−1 = 0, 𝐴1 = 2𝑏𝑘1 − 2𝑐𝑘1,

𝑢13 = 2tan
(

(

G𝑡𝑘31 +𝛺
)

√

G∕2
)

𝑘1
√

G + 2𝑝 (𝑏 − 𝑐) 𝑘1 + 𝐴0, (3.15)

Family 6:

Mix soliton solution, hyperbolic function solutions has been ac-
quired for a = 0 and c = 0:

𝑏 = 𝑏, 𝜔 = 𝑏2𝑘31, 𝑝 = 𝑝, 𝐴1 = 0, 𝐴−1 = −2𝑏𝑘1
(

𝑝2 + 1
)

,

14 = −
2𝑏𝑘1

(

𝑝2 + 1
)

𝑝 + tanh
(

1
2 𝑙𝑛

(

tan
(

𝑏2
(

𝑏2𝑘31𝑡 +𝛺
)))

) + 𝐴0, (3.16)

𝑎 = 0, 𝑏 = 𝑏, 𝑐 = 0, 𝜔 = 𝑏2𝑘31, 𝑝 = 𝑝, 𝐴1 = 2𝑏𝑘1, 𝐴−1 = 0,

15 = 𝐴0 + 2𝑏𝑘1
(

𝑝 + tanh
( 1
2
𝑙𝑛

(

tan
(

𝑏2
(

𝑏2𝑘31𝑡 +𝛺
)))

))

, (3.17)

𝑎 = 0, 𝑏 = 𝑏, 𝑐 = 0, 𝜔 = 4𝑏2𝑘31, 𝑝 = 0, 𝐴1 = 2𝑏𝑘1, 𝐴−1 = −2𝑏𝑘1,

𝑢16 = 𝐴0 + 2𝑏𝑘1
(

tanh
( 1
2
𝑙𝑛

(

tan
(

𝑏2
(

𝑏2𝑘31𝑡 +𝛺
)

∕2
))

))

−
2𝑏𝑘1

tanh
(

1
2 𝑙𝑛

(

tan
(

𝑏
(

4𝑏2𝑘31𝑡 +𝛺
)

𝑏∕2
))

) , (3.18)

Family 7:

The hyperbolic function solution for b = 0 and c = 0, along with
the following conditions:

𝑎 = 𝑎, 𝜔 = −𝑎2𝑘31, 𝑝 = 𝑝, 𝐴−1 = 4𝑝𝑎𝑘1, 𝐴1 = 0,

𝑢17 =
4𝑝𝑎𝑘1

𝑝 + tanh
(

1 𝑙𝑛
(

tanh
(

𝑎
(

𝑎2𝑘3𝑡 −𝛺
)

𝑏∕2
))

) + 𝐴0, (3.19)
2 1 𝑎

4

Family 8:

We get mix solutions, trigonometric and hyperbolic function solu-
tions respectively for 𝑎2 + 𝑏2 = 𝑐2,

𝑎 = 𝐼𝑏, 𝑏 = 𝑏, 𝑐 = 0, 𝜔 = 8𝑏2𝑘31, 𝑝 = 𝐼, 𝐴−1 = −4𝑏𝑘1, 𝐴1 = 2𝑏𝑘1,

𝑢18 =

√

2
⎛

⎜

⎜

⎝

4𝑏𝑘1tan
(

𝑏
√

2
(

8𝑏2𝑘31𝑡 +𝛺
)

𝑏∕2
)2

+

𝐴0tan
(

𝑏
√

2
(

8𝑏2𝑘31𝑡 +𝛺
)

𝑏∕2
)
√

2 − 4𝑘1𝑏

⎞

⎟

⎟

⎠

tan
(

𝑏
√

2
(

8𝑏2𝑘31𝑡 +𝛺
)

𝑏∕2
)
√

2
, (3.20)

amily 11:

Exponential function solutions for 𝑎 = 𝑏, we get as:

= 𝑏, 𝑐 = 𝑐, 𝜔 = −𝑐2𝑘31, 𝑝 = 𝑝, 𝐴−1 = 0, 𝐴1 = 2𝑏𝑘1 − 2𝑐𝑘1,

19 =

(

2 (𝑏 − 𝑐)
(

((𝑝 − 1) 𝑏 − 𝑐 (𝑝 + 1)) 𝑘1 + 𝐴0∕2
)

e−𝑐
(

𝑐2𝑘31𝑡−𝛺
)

−2 (𝑝 − 1) (𝑏 − 𝑐) 𝑘1 − 𝐴0

)

×
(

−1 + (𝑏 − 𝑐) e−𝑐
(

𝑐2𝑘31𝑡−𝜔
))−1

,

(3.21)

= 0, 𝑏 = 0, 𝑐 = 𝑐, 𝜔 = −4𝑐2𝑘31, 𝑝 = 0, 𝐴−1 = −2𝑐𝑘1, 𝐴1 = −2𝑐𝑘1,

20 =

(

−4e
(

−8𝑐3𝑘31𝑡+2𝑐𝛺
)

𝑐3𝑘1 − 𝐴0

+e
(

−8𝑐3𝑘31𝑡+2𝑐𝛺
)

𝑐2𝐴0 − 4𝑐𝑘1

)

(

e
(

−8𝑐3𝑘31𝑡+2𝑐𝛺
)

𝑐2 − 1
)−1

, (3.22)

amily 12:

For 𝑏 = 𝑐, we get exponential function solution as follows:

= 1∕𝑘1
√

−𝜔∕𝑘1, 𝑐 = 𝑐, 𝜔 = 𝜔, 𝑝 =
4𝑐𝑘1 + 𝐴−1

4
√

−𝜔∕𝑘1
, 𝐴1 = 0, 𝐴−1 = 𝐴−1,

𝑢21 =
4e1∕𝑘1

√

−𝜔∕𝑘1𝜉𝐴0𝑘1 + 4
(

√

−𝜔∕𝑘1 + 𝐴0∕4
)

𝐴−1

4e1∕𝑘1
√

−𝜔∕𝑘1𝜉𝑘1 + 𝐴−1

, (3.23)

Family 13:

For 𝑎 = −𝑐, and 𝑏 = 𝑐 we get another type of exponential function
solution:

𝑐 = 𝑐, 𝜔 = −𝑐2𝑘31, 𝑝 = 𝑝, 𝐴−1 = −4𝑝𝑘1𝑐 − 4𝑘1𝑐, 𝐴1 = 0,

𝑢22 =

(

𝐴0e
𝑐
(

𝑐2𝑘31𝑡−𝛺
)

− 4(𝑝 + 1)
(

𝑘1𝑐 − 𝐴0∕4
)

)

(

𝑝 + e𝑐
(

𝑐2𝑘31𝑡−𝛺
)

+ 1
)

, (3.24)

Family 14:

For 𝑏 = −𝑏, and 𝑐 = −𝑏 we get another type of exponential function
solution:

𝑎 = 𝑎, 𝑏 = 0, 𝑐 = 0, 𝜔 = −𝑎2𝑘31, 𝑝 = 𝑝, 𝐴−1 = 4𝑝𝑎𝑘1, 𝐴1 = 0,

𝑢23 =

(

𝐴0e
−𝑎2

(

𝑎2𝑘31𝑡−𝛺
)

+ 𝑎𝑝𝐴0 + 4𝑝𝑎2𝑘1

)

(

𝑎𝑝 + e−𝑎
2
(

𝑎2𝑘31𝑡−𝛺
))

, (3.25)

Family 16:

For 𝑏 = −𝑐, then we different types of exponential function solu-
ions:

= 𝑎, 𝑐 = 𝑐, 𝜔 = −𝑎2𝑘3, 𝑝 = 𝑝, 𝐴 = 0, 𝐴 = −4𝑐𝑘 ,
1 −1 1 1
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𝑢

𝑢

Fig. 1. Graphical evolution of singular kink wave soliton for 𝑢3 using parameters, 𝑏 = 0.9, 𝑐 = 1.5, 𝑝 = 0.02, 𝑘1 = 0.5, 𝑘2 = 0.5, 𝑘3 = 0.1, 𝐴0 = 0.55, 𝑦 = 2, 𝑧 = 1, 𝑡 = 2.
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24 =

(

4𝑐𝑝𝑘1 − 𝐴0 − 4𝑐
(

𝑐𝑝𝑘1 + 𝑎𝑘1 − 𝐴0∕4
)

e−𝑎
2
(

𝑎2𝑘31𝑡−𝛺
))

(

𝑐e−𝑎
2
(

𝑎2𝑘31𝑡−𝛺
)

− 1
)

, (3.26)

𝑎 = 𝑎, 𝑐 = 𝑐, 𝜔 = −𝑎2𝑘31, 𝑝 = 𝑝, 𝐴−1 = 4𝑝𝑎𝑘1 + 4𝑝2𝑐𝑘1, 𝐴1 = 0,

25 =

(

−4
(

𝑐𝑝𝑘1 + 𝑎𝑘1 + 𝐴0∕4
)

𝑝

+4
(

𝑐𝑝𝑘1 + 𝐴0∕4
)

(𝑐𝑝 + 𝑎)e−a
(

𝑎2𝑘31𝑡−𝛺
)

)

×
(

(𝑐𝑝 + 𝑎) e−a
(

𝑎2𝑘31𝑡−𝛺
)

− 𝑝
)−1

,
(3.27)

𝑎 = −2𝑐𝑝, 𝑐 = 𝑐, 𝜔 = −16𝑐2𝑝2𝑘31, 𝑝 = 𝑝, 𝐴−1 = −4𝑝2𝑐𝑘1, 𝐴1 = −4𝑐𝑘1,

𝑢26 =

(

−𝐴0 + 8𝑐3𝑝𝑘1e
4𝑐𝑝

(

16𝑐2𝑝2𝑘31𝑡−𝛺
)

+𝑐2𝐴0e
4𝑐𝑝

(

16𝑐2𝑝2𝑘31𝑡−𝛺
)

+ 8𝑐𝑝𝑘1

)

(

𝑐2e4𝑐𝑝
(

16𝑐2𝑝2𝑘31𝑡−𝛺
)

− 1
)−1

,

(3.28)

Family 17:

For 𝑎 = 0 and 𝑏 = 𝑐, we get various wave solutions given as follows:

𝑐 = 𝑐, 𝜔 = 𝜔, 𝑝 = 𝑝, 𝐴−1 = 0, 𝐴1 = 𝐴1,

𝑢27 = 𝐴0 + 𝐴1 (𝑝 + 𝑐𝜉) , (3.29)

Family 18:

When 𝑎 = 0, and 𝑏 = −𝑐, we get various rational function solutions
as follows:

𝑐 = 𝑐, 𝜔 = 0, 𝑝 = 𝑝, 𝐴−1 = 0, 𝐴1 = −4𝑐𝑘1,

𝑢28 =
−4𝑐𝑝𝑘1𝛺 + (𝑥𝐴0 − 4)𝑘1 + 𝐴0(𝑦𝑘2 + 𝑧𝑘3)

𝛺
, (3.30)

𝑎 = 0, 𝑏 = −𝑐, 𝑐 = 𝑐, 𝜔 = 0, 𝑝 = 𝑝, 𝐴−1 = 4𝑐𝑝2𝑘1, 𝐴1 = 0,

𝑢29 =
4𝑐2𝑝2𝑘1𝛺 + 𝑝𝐴0𝛺𝑐 + 𝐴0

𝑝𝑐𝛺 + 1
, (3.31)

𝑎 = 0, 𝑏 = −𝑐, 𝑐 = 𝑐, 𝜔 = 𝜔, 𝑝 = 0, 𝐴1 = 0, 𝐴−1 =
2𝜔
3𝑐𝑘21

,

𝑢30 =
2𝜔2𝑡 + 2𝛺𝜔 + 3𝐴0𝑘21

3𝑘21
, (3.32)

Family 19:

When 𝑏 = 0, and 𝑎 = 𝑐 we get dark solitons:

𝑐 = 𝑐, 𝜔 = −2𝑐2𝑘3, 𝑝 = 𝑝, 𝐴 = 2𝑐𝑘 (𝑝2 + 2𝑝 − 1), 𝐴 = 0,
1 −1 1 1 3

5

𝑢31 =

⎛

⎜

⎜

⎝

tanh 𝑐 2
(

2𝑐2𝑡𝑘31 −𝛺
)

∕2 2𝐴0

−2𝑐𝑝2𝑘1 + (−4𝑐𝑘1 − 𝐴0)𝑝 + 2𝑐𝑘1 − 𝐴0

⎞

⎟

⎟

⎠

tanh
(

𝑐
√

2
(

2𝑐2𝑡𝑘31 −𝛺
)

∕2
)
√

2 − 𝑝 − 1
, (3.33)

𝑐 = 𝑐, 𝜔 = −2𝑐2𝑘31, 𝑝 = 𝑝, 𝐴−1 = 0, 𝐴1 = −2𝑐𝑘1,

𝑢32 = 2
√

2tanh
(

𝑐
√

2
(

2𝑐2𝑡𝑘31 −𝛺
)

∕2
)

𝑐𝑘1 − 2𝑐(𝑝 + 1)𝑘1 + 𝐴0, (3.34)

amily 20:

we get hyperbolic function solutions for 𝑎 = 0, and 𝑏 = 0

= 𝑐, 𝜔 = −𝑐2𝑘31, 𝑝 = 𝑝, 𝐴−1 = 2𝑐𝑘1(𝑝2 − 1), 𝐴1 = 0,

33 =
2𝑘1(𝑝2 − 1)𝑐

𝑝 − tanh
((

𝑐2𝑡𝑘31 −𝛺
)

𝑐∕2
)
+ 𝐴0, (3.35)

= 𝑐, 𝜔 = −𝑐2𝑘31, 𝑝 = 𝑝, 𝐴−1 = 0, 𝐴1 = −2𝑐𝑘1,

𝑢34 = −2𝑐𝑘1
(

𝑝 − tanh
((

𝑐2𝑡𝑘31 −𝛺
)

𝑐∕2
))

+ 𝐴0, (3.36)
𝑐 = 𝑐, 𝜔 = −4𝑐2𝑘31, 𝑝 = 0, 𝐴−1 = −2𝑐𝑘1, 𝐴1 = −2𝑐𝑘1,

𝑢35 = 2
𝑐𝑘1

tanh
((

4𝑐2𝑡𝑘31 −𝛺
)

𝑐∕2
)
+ 𝐴0 + 2𝑐𝑘1tanh

((

4𝑐2𝑡𝑘31 −𝛺
)

𝑐∕2
)

,

(3.37)

. Results and discussion

With the help of IThEM, we secured different wave structures of
ewly derived equation, (3 + 1)-BLMP that includes hyperbolic, trigono-
etric, exponential, and rational function solutions. All the obtained

esults are new and generalized solitary waves that comprise kink
aves, periodic waves, solitons, singular solitons with suitable choice
f free parameters. Uniqueness of our work is evident as we successfully
cquired 42 different types of wave solutions however keeping in view
he length of the article, we only present some selective ones. These
olutions are more generalized and novel and had not been reported
n literature previously as we compared with published results,30 it is
orth mentioning our few solutions have similarity with them but most
f the solutions are new, and we were able to derive various periodic
ave solutions, singular periodic wave solutions, exponential function

olutions and rational solutions other than solitons, kink solitons and
ingular kink solitons, which have not been explained before. Diverse
ave structure of various solutions has been well characterized by 3-
, 2-D and their contour plots and we found out that the existence of
eriodic wave solutions, kink wave solutions and other solitons depends
n free parameters. As these answers have not been reported so far,
e are sure our work would be a valuable addition in literature to
nalyze this new model. The diversity and dynamic characteristics of
hese exact solutions can be well explained by 3-D, and 2-D and their
ontour plots with the appropriate choice of parameters. Fig. 1- 6 shows
-D, and 2-D graphs and their contour plots of some obtained results
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Fig. 2. Graphical evolution of singular kink wave soliton for 𝑢6.using parameters 𝑎 = 0.2, 𝑏 = 0.1, 𝑘1 = 0.1, 𝑘2 = 0.21, 𝑘3 = 0.2, 𝐴0 = 0.1, 𝑦 = 1, 𝑧 = 1, 𝑡 = 2.
Fig. 3. Graphical evolution of singular periodic wave soliton for 𝑢16 using parameters 𝑏 = 0.5, 𝑘1 = 0.2, 𝑘2 = −0.1, 𝑘3 = 0.3, 𝐴0 = 1.5, 𝑦 = −1, 𝑧 = −1, 𝑡 = 4.
Fig. 4. Graphical evolution of singular kink wave soliton for 𝑢19.using parameters 𝑏 = 0.1, 𝑐 = 0.9, 𝑝 = 0.2, 𝑘1 = 0.5, 𝑘2 = 0.1, 𝑘3 = 0.8, 𝐴0 = 0.7, 𝑦 = 1, 𝑧 = 1, 𝑡 = 1.
i
c
p
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k

5

f (3 + 1)- BLMP equation to have a good grasp of physical phenomena
f these solutions under appropriate choice of free parameters.

Graphical depiction of Eq. (3.5) expressed as 𝑢3 has been exhibit in
ig. 1, in the form of 3-dimensional, and 2-dimensional and contour
lot which demonstrates localized excitation wave pattern as singular
ink wave soliton by selecting appropriate parameters. The dynamic
ehavior of singular kink type solution of Eq. (3.5) is revealed well by
uitable parameters.

Graphical depiction of Eq. (3.8) expressed as 𝑢6 has been exhibit in
ig. 2, in the form of 3-dimensional, and 2-dimensional and contour
lot which demonstrates localized excitation wave pattern as singular
ink soliton by selecting suitable parameters.

Graphical depiction of Eq. (3.18) expressed as 𝑢16 has been exhibit
n Fig. 3, in the form of 3-dimensional, and 2-dimensional and their
ontour plot which demonstrates localized excitation wave pattern as
ingular periodic wave soliton by selecting appropriate parameters.

Graphical depiction of Eq. (3.21) expressed as 𝑢19 has been exhibit
n Fig. 4, in the form of 3-dimensional, 2-dimensional and their contour
lot which demonstrates localized excitation wave pattern as singular
ink soliton by selecting suitable parameters.
6

Graphical depiction of Eq. (3.23) expressed as 𝑢21 has been exhibit
n Fig. 5, in the form of 3 dimensional, and 2 dimensional and their
ontour plot which demonstrates localized excitation wave pattern as
eriodic wave solution by selecting suitable parameters

Graphical depiction of Eq. (3.34) expressed as 𝑢32 has been exhibit
n Fig. 6, in the form of 3 dimensional, and 2 dimensional and their
ontour plot which demonstrates localized excitation wave pattern as
ink shape soliton by selecting appropriate parameters.

. Conclusions

In this article, improved tanh ( 𝜙2 )-expansion method is applied to
perceive general solutions of newly derived (3 + 1)-dimensional Boiti–
Leon–Manna–Pempinelli equation. As a result, some totally new so-
lutions have been obtained which are several solitary wave solutions
including hyperbolic wave solutions, periodic wave solutions, exponen-
tial solutions. These new solutions maybe worthwhile in the field of
ocean engineering, astrophysics, and aerodynamics, plasma physics and
fluid mechanics to explain wave propagation of incompressible fluids.
Each type of solitary wave has its importance in nonlinear media such
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Fig. 5. 3D and 2D-graphs of periodic wave solution for 𝑢21.using parameters . 𝑐 = 2, 𝑘1 = 5, 𝑘2 = 1, 𝑘3 = 2, 𝐴0 = 0.5, 𝐴−1 = 0.9, 𝑝 = 2, 𝑦 = 1, 𝑧 = 1, 𝑡 = 2.
Fig. 6. Graphical evolution of kink wave soliton for 𝑢32 using parameters 𝑐 = 3, 𝑘1 = 0.1, 𝑘2 = 0.5, 𝑘3 = 1, 𝐴0 = 0.5, 𝑝 = 0.8, 𝑦 = 1, 𝑧 = −1, 𝑡 = 0.5.
s kink solitons which propagates in nonlinear physical phenomena
aving high order nonlinearity, high order nonlinear effects and self-
teepening. These solitons have been studied extensively due to its
erfect propagation through nonlinear media.33 Singular solitons are
lso very important type of solitons that appears with singularity. These
olitons likely provide information about formation of rouge waves,
lso another type of solitary waves are periodic wave solutions that
lays notable role in the study of chemistry, physics, biology and many
ore.34 This newly derived method, IThEM is more effective than many

ther techniques such as tanh method and extended tanh method,35,36

ine–cosine method,37 ansatz method,38 Improved tan ( 𝜙2 )-expansion
method39 to generate more general and abundant solutions. This tech-
nique has developed recently and has not been used much previously,
results show that this scheme is robust and effective to find plenty new
solutions of different types. It can be applied to many nonlinear PDEs
arising in different fields of sciences to generate new type of solutions.
The nature of these results has been analyzed physically by 2D and 3D
graph simulation and their corresponding contour plots with the aid of
computational software.
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