Kalman filtering with finite-step autocorrelated measurement noise

Full text for this resource is not available from the Research Repository.

Liu, Wei ORCID logoORCID: https://orcid.org/0000-0001-7116-510X, Shi, Peng ORCID logoORCID: https://orcid.org/0000-0001-8218-586X and Zhang, Huiyan ORCID logoORCID: https://orcid.org/0000-0003-3406-8954 (2022) Kalman filtering with finite-step autocorrelated measurement noise. Journal of Computational and Applied Mathematics, 408. ISSN 0377-0427

Dimensions Badge

Altmetric Badge

Item type Article
URI https://vu-9.eprints-hosting.org/id/eprint/46647
DOI 10.1016/j.cam.2022.114138
Official URL https://www.sciencedirect.com/science/article/abs/...
Subjects Current > FOR (2020) Classification > 4602 Artificial intelligence
Current > Division/Research > Institute for Sustainable Industries and Liveable Cities
Keywords Kalman filtering, discrete time linear systems, convergence behaviour
Download/View statistics View download statistics for this item

Search Google Scholar

Repository staff login