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Abstract
Growing application of artificial intelligence in geotechnical engineering has been observed; however, its ability to predict

the properties and nonlinear behaviour of reactive soil is currently not well considered. Although previous studies provided

linear correlations between shrink–swell index and Atterberg limits, obtained model accuracy values were found unsat-

isfactory results. Artificial intelligence, specifically deep learning, has the potential to give improved accuracy. This

research employed deep learning to predict more accurate values of shrink–swell indices, which explored two scenarios;

Scenario 1 used the features liquid limit, plastic limit, plasticity index, and linear shrinkage, whilst Scenario 2 added the

input feature, fines percentage passing through a 0.075-mm sieve (%fines). Findings indicated that the implementation of

deep learning neural networks resulted in increased model measurement accuracy in Scenarios 1 and 2. The values of

accuracy measured in this study were suggestively higher and have wider variance than most previous studies. Global

sensitivity analyses were also conducted to investigate the influence of each input feature. These sensitivity analyses

resulted in a range of predicted values within the variance of data in Scenario 2, with the %fines having the highest

contribution to the variance of the shrink–swell index and a relevant interaction between linear shrinkage and %fines. The

proposed model Scenario 2 was around 10–65% more accurate than the preceding models considered in this study, which

can then be used to expeditiously estimate more accurate values of shrink–swell indices.
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1 Introduction

The reactivity of soils is a characteristic that affects the

mechanical properties of most clayey grounds [1]. Reactive

soils undergo substantial volume changes in response to the

variations in soil moisture content through swelling and

shrinking. The shrink–swell ground movement leads to

distresses concerning infrastructures built on and in the

vicinity of reactive soils [2, 3]. The damages to lightweight

structures such as pavements, underground pipes, and

residential structures due to these shrink–swell ground

movements are well known [4, 5]. The severe damage

brought by reactive soils has been recorded in Australia,

China, Egypt, India, Israel, South Africa, the UK, and the

USA, totalling a significant annual financial loss [6, 7]. In

the UK, the impact of reactive soils summed up to £3

billion from 1991 to 2001 due to the effect of droughts,

making it the most damaging geohazard in the region [8].

In the USA, the cumulative rehabilitation costs were more

than twice the financial loss incurred from natural disasters

due to floods, hurricanes, tornadoes, and earthquakes,

amounting to around US$ 15 billion per year [8]. Li et al.

[9] found that the damage caused by reactive soils in

Australia was mostly to lightweight structures even though

no combined estimates are reported in the literature.

Approximately 20% of the Australian land can be cate-

gorised as moderately to very highly reactive soils, with six

out of eight major cities being affected, causing geohazards

to structures and infrastructures [6].

The shrink–swell soil index (Iss) is a soil parameter

commonly used to determine the potential characteristic

surface movement (ys) of sites having reactive soils in
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Australia [10]. This index is determined through laboratory

testing using undisturbed soil samples collected from the

field. The Iss index has been used in Australia for more than

15 years and the Australian Standards, AS 1289 7.1.1.

provides standardised testing procedures. Estimates of ys
have generally been successful in determining the dimen-

sions of residential slabs and footings.

Determining the value of Iss requires the collection of

undisturbed soil samples for the swell test and the simpli-

fied core shrinkage test. Undisturbed soil sampling costs

relatively higher and is more difficult to implement than

disturbed sampling. Determining Iss takes a longer time to

obtain results, which can take more than four days

involving around two hours of hands-on experimental work

depending on the skill level of the individual performing

the tests [1]. This can be a significant waiting period for

most practitioners and researchers, and the results are

sensitive to instrumental conditions, skills and experience

of the tester, and changing ambient conditions.

Several studies had attempted to correlate Iss with other

soil properties such as the Atterberg limits (i.e. liquid limit

(LL), plasticity limit (PL), plasticity index (PI), and linear

shrinkage (LS)) to estimate Iss indirectly. However, most

studies have found sub-par correlation coefficients

(R2\ 0.80) between Iss and the Atterberg limits, which

ranged from 0.20 to 0.53 [9]. For instance, Young and

Parmar [11] performed more than 300 laboratory tests to

correlate Iss with more common soil indices such as

gravimetric soil moisture content (x), LL, PL, PI, and LS

that resulted in low correlation factors. Earl [12] suggested

that the Atterberg limits alone may not be reliable to

estimating values of Iss based on his investigations using

clay samples from the Shepparton geologic formation.

Reynolds [13] performed similar correlation analyses for a

dataset of clay samples collected from Central, Southeast,

and Northwest Queensland for a pavement design appli-

cation and also reported weak relationships. Similar weak

correlations were found in the investigations conducted by

Zou [14] and Li et al. [9], where soil samples were col-

lected from 47 study sites from 37 suburbs in Melbourne.

However, these investigations employed simple univariate

regressions that limit the capturing of nonlinear relation-

ships between extracted features or variables. Contrarily,

Jayasekera and Mohajerani [15] found a relatively stronger

correlation with R2 values that ranged from 0.85 to 0.91.

However, their investigation had a low variance dataset,

with Iss values that varied from 3.8 to 5.5, which limited the

predictive capacity of their model [15].

Recent advances in data engineering and data science

have expanded the application of artificial intelligence (AI)

techniques to many disciplines [16]. AI refers to the ability

of a machine or robot to display intelligence comparable to

humans by learning through experiences in performing a

specific task with improving measured performance [17].

Machine learning (ML) is a subset of AI referring to

algorithms capable of learning and improving performance

without explicit programming or hard coding (Fig. 1a). ML

tasks include recognising objects, understanding speech,

responding to a conversation, solving problems, optimising

solutions, greeting people, and driving a vehicle [18–20].

Rumelhart et al. [21] initially proposed shallow learning

that initiated ML applications (Fig. 1b). These shallow

neural networks restrict algorithmic support and are unable

to train multiple hidden layers due to limitations in the

computing power and available data [22].

Recent applications of AI in geotechnical engineering

include geotextile [23, 24], tunnelling [25], geothermal

energy [26], unsaturated flow [27], geo-structural health

monitoring [28, 29], liquefaction [30], nanotechnology

[31], carbon sequestration [32], and soil properties and

behaviour prediction [33–35]. The ML techniques applied

in these past investigations include artificial neural network

(ANN), support vector machine (SVM), genetic algorithms

(GA), fuzzy logic, image analysis, and adaptive neuro-

fuzzy inference systems (ANFIS). One of the emerging ML

techniques in geotechnical engineering is deep learning

(DL), an implementation of ANN with multiple hidden

layers as presented in Fig. 1c. It allows computation of

more complex features of the input layer [36, 37]. Each

hidden layer computes a nonlinear transformation of the

preceding layer [38]. This deep network can have a sub-

stantially greater representation of the extracted features

that can learn significantly more complex functions than a

shallow network [22]. However, understanding the imple-

mentation of DL can be a challenge due to its complex

network. It is beneficial for users to understand the

implementation of algorithms to enable the accurate and

confident application of complex models such as DL

[22, 36, 38].

The application of AI to investigate the properties and

nonlinear behaviour of reactive soil is currently not well

explored, although there has been an increased application

of AI in geotechnical engineering in general [39]. As linear

correlations between Iss, and Atterberg limits had potential,

most model accuracy and data ranges of the previous

studies found sub-par results. DL has the potential to give

better accuracy in the prediction of Iss using the Atterberg

limits given the ability of neural networks to handle com-

plex nonlinear scenarios. The application of Atterberg

limits can be used by promoting adaptive nonlinear models

and providing insightful findings [16]. Therefore, the

objective of this study is to employ DL to predict more

accurate values of Iss using different combinations of soil

properties including LL, PL, PI, LS, and %fines. This can

contribute to an efficient process of calculating the maxi-

mum potential characteristic surface movement, ys. This
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study also carries out a sensitivity analysis to identify the

relative influence of each input variable, LL, PL, PI, LS,

and %fines, on the targeted output, Iss in %/pf. The sensi-

tivity analyses elaborate on how the specific DL prediction

mechanism functions with respect to the input features,

increasing the applications.

2 Methodology

The concept of ANN is analogous to the neural network of

a human brain in the way it processes information and

establishes logical relationships [40]. A collection of con-

nected nodes called artificial neurons comprise a network

comparative to those of a human brain. The artificial

neurons are connected by links called edges to transmit

signals from a single neuron to other neurons. These sig-

nals are represented by real numbers. Each node and edge

have weights that serve as a correlation factor that adjusts

signals as learning occurs. The main function of this net-

work is to obtain the lowest value of a loss or cost function,

L(y,ŷ), that will give the optimum weights. The DL process

is influenced by two main considerations: the architecture

of the neural network and the learning process of the

implemented algorithm.

2.1 Deep learning architecture

In this current study, a DL network was used to obtain the

acceptable weights for Iss prediction and comprised of an

input layer, ten hidden dense layers, and an output layer.

The input and the output values are the expected number of

input and output neurons, which indicate the size of the

matrices for the calculation. The input layer contained the

input vector extracted from a dataset and the number of

artificial neurons in the input layer was determined by the

input features extracted. In this study, two scenarios were

considered. The first scenario, or Scenario 1, used the input

features LL, PL, PI, and LS, whereas the second scenario,

or Scenario 2, also used %fines.

Earl [12] and Reynolds [13] suggested that LL, PL, PI,

and LS were not sufficient to be employed for estimating

the values of Iss. Thus, Earl [12] added clay and silt frac-

tion, and Reynolds [13] included California Bearing Ratio

(CBR), per-cent swell, and other polynomial features as

inputs. The resulting values of R2 were higher compared to

those with Atterberg limits alone and ranged from 0.51 to

0.78 [13] and from 0.54 to 0.82 [12]. However, the data

samples they used were limited (n\ 30). In addition, the

dataset had low variance (0.1\ Iss\ 4.0), and the models

were not tested or validated for their prediction capacity.

These improved outcomes led to the development of Sce-

nario 2 of this study, which included %fines as an addi-

tional input to predict Iss. The addition of the CBR by

Reynolds [13] as an input did not result in greater R2

compared to the addition of; thus, in the current study, the

CBR was not considered.

In this current study, the number and size of hidden

dense layers were determined by trial and error. The hidden

dense layers connect each neuron, receiving input from its

preceding layer. The dimension of the first five hidden

dense layers was restrained to eight since greater dimen-

sions resulted in the model calculation divergence (i.e.

erratic and high values of calculated loss). The dimension

Fig. 1 Defining a the difference between artificial intelligence (AI), machine learning (ML), and deep learning (DL), b a sample shallow artificial

neural network (ANN), and c a sample DL network
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of the last five hidden dense layers was increased to 128 to

generate more nonlinearity in the relationship between

neurons. The increase in the number of hidden layers and

the value of the dimension, depending on a specific sce-

nario, often leads to improved accuracy [41]. The conse-

quence is the time inefficiency in performing the DL

algorithm, specifically for the training period to obtain the

optimum weights. The output layer concludes the DL

learning process using one neuron.

2.2 Deep learning process

The learning process of a DL neural network comprises

five main stages, (1) pre-processing, (2) random initiali-

sation, (3) forward propagation, (4) backward propagation,

and (5) evaluation. The DL process implemented in this

study is summarised in Fig. 2.

Pre-processing a dataset is an essential step that can

increase the accuracy of a DL network training and

validation. The common pre-processing techniques applied

to previous DL networks include the removal of data

entries with outliers and missing values, creation of poly-

nomial features, implementing feature scaling, and

employing normalisation to a dataset [42].

The dataset used in this study was extracted from the

five studies conducted by [12–14, 43, 44], as presented in

Appendix 1. A total of 169 and 116 data entries were

collected for Scenarios 1 and 2, respectively, with a sum-

mary description presented in Fig. 3 and Table 1. Outliers

were determined using the interquartile range (IQR), cal-

culated as

Outlierlb ¼ Q1� 1:5IQR ð1Þ
Outlierub ¼ Q3þ 1:5IQR; ð2Þ

where IQR is described as

IQR ¼ Q3� Q1; ð3Þ

Fig. 2 Deep learning (DL)

neural network process for two

scenarios
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where Q1 is the first quartile, Q3 is the third quartile, and

subscripts lb and ub indicate the lower bound and the upper

bound outliers.

The circles in Fig. 3 represent the outliers less than or

more than the calculated values of Outlierlb and Outlierub.

A comparison between DL with and without the outliers

showed comparable results indicating a negligible effect of

the outliers. Therefore, in this study, the complete dataset

without removing the outliers was used. Data entries with

missing values of Iss, LL, PL, PI, LS, and %fines were

omitted for Scenario 2. Polynomial features are commonly

created to incorporate a nonlinear relationship between the

target and the input features. Polynomial features are added

to improve the accuracy of linear models with limited

features or when one feature is dependent on another. The

use of polynomial features was initially implemented in the

dataset but did not result in a noteworthy effect on the

accuracy of the algorithm. Therefore, these features were

not implemented in the DL of this study. The entire dataset

was randomly split into two; one for training and the other

for testing, with a ratio of 70–30%, as listed in Table 1. The

70–30% ratio was considered the most suitable division for

training and validating neural network models with small

dimensional datasets [45].

Two feature scalings, standard scaling and min–max

scaling, were tested to check if the DL process would

improve. The feature scaling using the standard scaling was

Fig. 3 Boxplot of the dataset for Scenario 1 showing a the target Iss
and b the features LL, PL, PI, and LS, and Scenario 2 showing: c the
target Iss and d the features LL, PL, PI, LS, and fines, where

Iss = shrink–swell index, LL—Liquidity limit, PL = Plasticity limit,

PI = Plasticity index, LS = Linear shrinkage, and n is the number of

data entries or samples
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observed to be more applicable to the study and was

employed using the following equation:

Standardscaling ¼ x� x

s
; ð4Þ

where x is the data entry, x̄ is the mean value of a feature,

and s is the standard deviation of a feature.

The values of x̄ and s for the input parameters LL, PL,

PI, and LS are presented in Table 1, for both training and

testing data. Applying normalisation was considered and

implemented in preliminary model runs. However, nor-

malising resulted in a lesser accuracy of the results, com-

pared to standard scaling.

The random initialisation method of He et al. [46] was

used to initialise the DL process. Following this method,

the weights were randomly initialised with values close to

zero and then multiplied by
ffiffiffiffiffiffiffiffiffiffi

2
sizeL�1

q

, where sizeL-1 was the

number of neuron in layer L - 1. Multiplying this term

helps consider the nonlinearity of the activation functions.

This initialisation proposed by He et al. [46] was specifi-

cally used together with the Rectified Linear Units (ReLU)

activation, solving learning inefficiency and vanishing

gradient issues. The loss function employed in the DL

process is the mean squared error (MSE), which is a

commonly used function for regression. The calculated loss

is the mean overseen data of the squared differences

between a true value in the dataset and a predicted value

calculated by the DL algorithm described as

L y; ŷð Þ ¼ 1

N

X

N

i¼0

yi � byið Þ2 ð5Þ

Table 2 Upper and lower

bounds to generate the input

features for Scenarios 1 and 2

using the scheme by Saltelli

[51]

Input features for Scenario 1 and Scenario 2

LL (%) PL (%) PI (%) LS (%) %fines (%)

Lower bound (min) 15 5 0 0 1

Upper bound (max) 130 60 100 40 100

Table 1 Descriptive statistics of the target (Iss) and features for Scenario 1 and Scenario 2

Scenario 1 with four features: LL, PL, PI, and LS

Training data (70%) Testing data (30%)

Iss (%/pf) LL (%) PL (%) PI (%) LS (%) Iss (%/pf) LL (%) PL (%) PI (%) LS (%)

Count 118 118 118 118 118 51 51 51 51 51

x̄ 3.0 58.1 22.4 35.9 15.4 3.6 62.2 23.8 38.4 16.0

s 1.9 19.1 6.8 14.8 4.3 2.4 21.9 8.5 16.6 5.2

Min 0.1 25.0 11.0 11.0 5.0 0.1 17.0 5.6 1.0 0.5

Q1 1.6 43.5 16.9 23.8 12.8 1.5 46.0 17.6 24.9 13.3

Median 2.6 55.7 21.9 32.9 15.5 3.6 64.6 22.6 37.6 16.5

Q3 4.2 71.1 26.9 45.6 18.3 5.1 76.5 29.8 49.3 19.6

Max 7.4 122.0 42.0 90.0 27.0 9.0 107.0 53.0 75.0 25.2

Scenario 2 with four features: LL, PL, PI, LS, and %fines

Training data (70%) Testing data (30%)

Iss(%/pf) LL (%) PL (%) PI (%) LS (%) %fines (%) Iss(%/pf) LL (%) PL (%) PI (%) LS (%) %fines (%)

Count 81 81 81 81 81 81 35 35 35 35 35 35

x̄ 3.0 57.2 21.4 35.7 14.8 80.3 2.9 61.5 23.2 38.3 15.9 80.6

s 2.1 19.8 6.5 15.4 4.9 16.2 2.2 19.8 6.5 16.2 4.5 14.1

Min 0.1 17.0 5.6 1.0 0.5 16.0 0.5 31.0 14.0 13.8 7.0 41.0

Q1 1.2 42.0 16.0 23.0 11.0 73.0 1.2 46.2 17.5 28.0 13.2 73.0

Median 2.5 59.0 21.9 34.6 16.2 85.0 2.0 58.8 24.0 32.4 15.0 85.0

Q3 4.8 72.2 25.0 49.2 18.2 92.0 4.7 75.9 28.7 48.6 18.1 90.0

Max 9.0 105.0 36.0 70.0 27.0 100.0 8.9 107.0 38.6 75.0 27.0 99.0
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where yi is the actual value, ŷi is the predicted value, and

N is the total number of data entries.

ReLU by Nair and Hinton [47] was implemented as the

activation function for the forward and backward propa-

gation, which reads

f xð Þ ¼ max 0; xð Þ ¼ xi; ifxi � 0

0; ifxi\0

�

; ð6Þ

where xi is the input value of feature i.
A simplified representation of the usage of the activation

function is presented in Fig. 4. Ridge Regression or L2

Regularisation was also used since the preliminary DL runs

experienced overfitting. L2 regularisation adds a squared

magnitude of coefficient as penalty term to the loss func-

tion defined as

L y; byð Þ ¼ 1

N

X

N

i¼0

yi � byið Þ2 þ k
X

N

i¼0

wi
2 ð7Þ

where k is a hyperparameter for regularisation, and wi is a

weight of a feature.

The value of k is taken to be greater than zero. Taking

the value of k too high may lead to larger weights and

underfitting. After fine-tuning the hyperparameter k, the
value was specified as 1.00 for Scenario 1 and 2.35 for

Scenario 2.

The Adaptive Moment (Adam) estimation by Kingma

and Ba [48] was used in the DL neural network. The Adam

stochastic optimisation is widely used due to its benefits of

straightforward implementation, computational efficiency,

and lower required memory. The Adam method combines

the momentum gradient descent method and the Root

Mean Squared Propagation (RMSprop), which is modelled

as

Vdw ¼ b1Vdwþ 1� b1ð Þdw; ð8Þ
Vdb ¼ b1Vdbþ 1� b1ð Þdb; ð9Þ

Sdw ¼ b2Sdwþ 1� b2ð Þdw2; and ð10Þ

Sdb ¼ b2Sdbþ 1� b2ð Þdb2; ð11Þ

where Vdw, Vdb, Sdw, and Sdb are the derivative of the

weights and bias, which is being computed in iteration or

epoch, t. The initial values of Vdwi, Vdbi, Sdwi, and Sdbi
are assigned to zero and then calculated for each weight.

The calculated values of Vdw, Vdb, Sdw, and Sdb are then

corrected using the power of the current epoch, t, described

below

Vdwcorrected ¼ Vdw

1� b1
t ; ð12Þ

Vdbcorrected ¼ Vdb

1� b1
t ; ð13Þ

Sdwcorrected ¼ Sdw

1� b2
t ; and ð14Þ

Sdbcorrected ¼ Sdb

1� b2
t : ð15Þ

Each weight and bias will be updated using the equa-

tions below

w ¼ w� a
Vdw

corrected

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sdw
corrected þ �

p and ð16Þ

b ¼ b� a
Vdb

corrected

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sdb
corrected þ �

p : ð17Þ

The learning rates (a) for Scenarios 1 and 2 were taken

as 7.5 9 10–5 and 5.0 9 10–5 after fine-tuning using trial

and error. The decay rates for both scenarios were b1 = 0.9,

b2 = 0.999, and e = 5.0 9 10–6. The forward and back-

ward propagation was implemented in a loop until the

specified epoch was achieved, as shown in the DL process

in Fig. 2. Note that every iteration of the optimisation loop

comprises forward propagation, cost calculation, backward

propagation, and weights updating. The epoch of the final

DL run was 500 since this value had resulted in an opti-

mum and stable loss curve with an acceptable learning

period, completing the deep learning processes in less than

three minutes for each scenario.

2.3 Sensitivity analysis

Sensitivity analyses help identify the independent influence

of input variables on a targeted output. There are two types

Fig. 4 Typical biologically inspired artificial neuron showing activa-

tion and transformation
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of sensitivity analyses; local and global approaches. A local

sensitivity analysis assesses the local impact of feature

variations concentrated on the sensitivity in the proximate

vicinity of a set of feature values [49]. On the other hand, a

global sensitivity analysis quantifies the overall importance

of the features and their interactions with the predicted

results by implementing a comprehensive coverage of

input values [50]. This study used a global sensitivity

analysis approach by implementing the method by Saltelli

[51] and Sobol [52, 53].

The bounds to generate the input features were specified

as LL = 15–130, PL = 5–60, PI = 0–100, LS = 0–40, and

%fines = 1–100 listed in Table 1, and then the scheme by

Saltelli [51] was implemented. This was based on the range

of values presented in Fig. 3b. Three indices were calcu-

lated. The first one was the first-order Sobol index (S1),

calculated as [52, 53]

S1 ¼
varðxiÞ
varðbyÞ ¼

varðE byjxið ÞÞ
varðbyÞ ; ð18Þ

where var(xi) is the variance of a feature, var(by) is the

variance of the target output, Iss, E denotes expectation, xi
is a feature, and by is the target output, Iss.

The term E(by|xi) in Eq. 18 indicates the expected value

of the output by when feature xi is fixed. The first-order

Sobol index, S1, reflects the expected reduction in the

variance of the model when feature xi is not changing.

Thus, S1 measures the direct effect of each feature on the

variance of the model. It is worth noting that the sum of all

the calculated values of S1 should be equal to or less than

one. It is common to perform the calculation of S1, and the

total Sobol sensitivity ST, which includes the sensitivity of

first-order effects and the sensitivity due to interactions

between a feature Xi and all other features [54] given by

ST ¼ 1� var E byjx�ið Þð Þ
var byð Þ ; ð19Þ

where x-i denoted the features except xi, and the sum of all

the calculated values of ST is equal or greater than one.

If the values of ST are substantially larger than the values

of S1, then there are likely higher-order interactions

occurring. Hence, it is worth calculating the second-order

or higher-order sensitivity indices (e.g. S2).

The second-order and higher-order sensitivity indices

can similarly be expressed as

S2 ¼
varðxi; xjÞ
varðbyÞ ; ð20Þ

where var(xi, xj) is the variance of features xi and xj. This

calculates the amount of variance of by explained by the

interaction of features xi and xj.

3 Results and discussion

The results of the DL training, testing, and sensitivity

analysis are discussed in the following sections.

3.1 Prediction of Iss using deep learning

The DL process outlined in Fig. 3 was implemented to the

randomly allocated dataset for training (118 and 81 data

entries for Scenarios 1 and 2, respectively) and testing (51

and 35 data entries for Scenarios 1 and 2, respectively)

listed in Table 1. The calculated loss values of the training

and testing set using Eq. (7) against epochs are presented in

Fig. 5. The loss values of both Scenarios 1 and 2 showed

acceptable learning curves. This curve is a diagnostic tool

for algorithms that learn from training datasets incremen-

tally. The learning curves for both Scenarios 1 and 2 dis-

play a good fit that is negligibly experiencing underfitting

or overfitting. This is characterised by training and testing

loss values that decrease to the point of stability with a

minimal gap between the two, as shown in Fig. 5. It is

common to have a difference between the final loss values

of the training and testing curves. Training curves having

loss values less than testing curves are referred to as a

‘‘generalisation gap’’. It can be observed that Scenario 1

(Fig. 5a) had a relatively wider gap between the training

and testing loss values than Scenario 2 (Fig. 5b). This

shows that Scenario 2, with features LL, PL, PI, LS, and

fines, can give relatively better Iss predictions with less

overfitting due to generalisation.

The final performance training and testing of the model

was assessed in terms of root mean squared error (RMSE)

calculated as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1ðyi � byiÞ2

N

s

: ð21Þ

The RMSE indicates the average deviation of predic-

tions from the measured values, with values closer to zero

indicating better performance. The calculated RMSE for

Scenario 1 was 1.26, whilst Scenario 2 had a lower RMSE

of 0.90. This strengthens the authors’ inference that adding

%fines as an input feature, even though this reduces the

size of the dataset, can more reliably predict Iss.

Further evaluation of the models of Scenarios 1 and 2

was carried out using an identity line or 1:1 line, as shown

in Fig. 6. The 1:1 line has a slope of 1, forming a 45� angle.
This line is used as a reference in a 2-dimensional scatter

plot comparing two datasets that are expected to be alike

under ideal conditions. When all the actual and predicted

data points have equal values from the two datasets, the

corresponding scatters fall along the 1:1 line [55]. Using

the 1:1 line, there are two measurements we want to obtain
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that reflect the reliability of the predictions of the models.

The first measurement is the coefficient of determination,

R2, calculated as

R2 ¼ 1� RSS

TSS
ð22Þ

where RSS is the sum of squares of residuals and TSS is

the total sum of squares.

The second measure is the linear regression coefficient

or slope that describes the relationship between the pre-

dicted and actual values. The values of R2 and slope range

between zero and one, with unity indicating a perfect fit.

The training set of Scenario 1 estimated R2 to be 0.81

and the slope to be 0.75 (Fig. 6a), whilst the testing set of

Scenario 1 resulted in a value of R2 of 0.76 and a slope of

0.59 (Fig. 6b). These obtained correlations showed

Fig. 5 Results and comparison of the calculated loss functions (L(y, ŷ)) of training and testing sets for a Scenario 1 with features LL, PL, PI, and

LS and b Scenario 2 with features LL, PL, PI, LS, and fines

Fig. 6 Comparison between the predicted and actual values of Iss of
a the training set of Scenario 1, b the testing set of Scenario 1, c the

training set of Scenario 2, and d the testing set of Scenario 2. The grey

line represents the 1:1 line and the black line represents the regression

line (color figure online)
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improvements compared to most previous studies. For

instance, Li et al. [9] reported that the correlation between

Iss and the Atterberg limits ranged from R2 = 0.20 to

R2 = 0.53. Most of the performed studies up to date have

concluded that Iss and Atterberg limits are poorly corre-

lated [11–14], except in the case of Jayasekera and

Mohajerani [15] that found a relatively stronger correlation

with R2 values, which ranged from 0.85 to 0.91. However,

the study of Jayasekera and Mohajerani [15] focused on a

dataset with a low variance that limits the predictive ability

of their model, with Iss values that varied from 3.8 to 5.5.

The training set of Scenario 2 estimated R2 to be 0.84

and the slope to be 0.95 (Fig. 6c), whilst the testing set of

Scenario 2 resulted in a value of R2 of 0.82 and a slope of

0.85 (Fig. 6d). The values of R2 in the training and testing

sets using the DL architecture and process implemented in

Scenario 2 were comparable with Earl [12], noting that

Scenario 2 had a wider variance (0.1\ Iss\ 9.0). It can be

observed from Fig. 6c that the slope is 0.95, which can be

considered a strong correlation. However, due to the gen-

eralisation gap discussed earlier, the testing set commonly

has lower accuracy than the training set. This holds in

Fig. 7d, where the slope decreased to 0.85, which still

shows a stronger correlation.

3.2 Sensitivity analysis

The bounds to generate the input features are specified in

Table 1. The scheme by Saltelli [51] was implemented to

generate the input features for predicting the values of Iss.

Sensitivity analysis was then performed (1) to assess the

influence of the features on the targeted output, and (2) to

Fig. 7 Sobol indices for

Scenario 1 showing a the total

Sobol indices, b the first-order

indices, c the second-order

indices, and for Scenario 2

showing d the total Sobol

indices, e the first-order indices,
and f the second-order indices
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identify the relationship between input features and their

influence on the target output. Descriptive statistics of the

generated input variables using the scheme by Saltelli [51]

and the predicted results using DL for Scenarios 1 and 2 are

listed in Table 3. The generated input features of Scenario

1 were similar to the figures in Scenario 2. Interestingly,

the predicted values of Iss of Scenario 1 were observed to

have higher values than Scenario 2, leading to higher cal-

culated x̄, s, minimum value, Q1, median, Q3, and maxi-

mum value. It is important to note that in Table 3, the

maximum value of the predicted Iss in Scenario 1 was 16.8,

which is almost twice greater than the maximum value in

the training set (9%/pF) presented in Fig. 3 and Table 1.

On the other hand, the maximum value of the predicted Iss
in Scenario 2 was comparable to the training data (& 9%/

pF). Thus, the range of predicted values of Scenario 2 is

more practical and within the acceptable range.

The results of the global sensitivity analysis using Sobol

[52, 53] for Scenario 1 and Scenario 2 are presented in

Fig. 7. In Scenario 1, it can be observed in the first-order

Sobol indices, S1, presented in Fig. 7b, that LS exhibited

first-order sensitivities. This signifies that LS has the

highest contribution of a single parameter to the output

variance of Iss. On the other hand, LL appears to have no

first-order effects suggesting that it has a low contribution

to the variation of the predicted values of Iss. The values of

the total-order Sobol index, ST, were checked afterwards

and are shown in Fig. 7a. If the values of ST are markedly

higher than those of S1, then there are likely higher-order

interactions occurring. Higher-order interactions indicate

that the fractional contribution of parameter interactions to

the output variance exists. The values of ST revealed

(Fig. 7a) higher values than S1. Hence, the second-order

indices, S2, were calculated. PI and LS had the strongest

feature interaction followed by PL and LS in Scenario 1, as

shown in Fig. 7c. The remaining interactions can be con-

sidered insignificant.

In Scenario 2, it can be observed in S1 presented in

Fig. 7e that fines exhibited first-order sensitivities. This

signifies that %fines has the highest contribution of a single

parameter to the variance of Iss. The other features, LL, PL,

PI, and LS, appear to still have substantial first-order

effects on the variation of the predicted values of Iss. The

values of S1 in Scenario 2 (Fig. 7d) were more than four

times lower than Scenario 1 (Fig. 7b). This reveals that the

individual contribution of features in Scenario 2 is more

distributed to other variables than Scenario 1. The values of

ST were then computed (Fig. 7d) and were found to be

substantially larger than that of S1, hence, likely higher-

order interactions are occurring. The interaction between

LS and %fines had the largest values of S2, followed by PL-

%fines, PI-LS, and PI-%fines, as shown in Fig. 7f.

4 Model comparison

The predictive accuracy of Scenario 1 was comparable to

the models of Earl [12], Reynolds [13], and Li et al. [9].

The accuracy of the developed DL model was compared to

the proposed models in previous studies. The comparison

involved same seeded scenarios to predict the values of Iss
using the models listed in Table 4.

The developed DL neural network of Scenario 2 per-

formed the best among the models, with the most desirable

values of slope, R2, and RMSE. This indicates that Sce-

Table 3 Descriptive statistics of the generated input variables using the scheme by Saltelli [51] and the predicted results using DL for Scenario 1

(with features LL, PL, PI, and LS) and Scenario 2 (with features LL, PL, PI, LS, and fines)

Scenario 1 (n = 1,310,720) Scenario 2 (n = 1,572,864)

Generated input variables Predicted results Generated input variables Predicted results

LL (%) PL (%) PI (%) LS (%) Iss (%/pf) LL (%) PL (%) PI (%) LS (%) %fines (%) Iss (%/pf)

x̄ 72.5 32.5 50.0 20.0 5.2 72.5 32.5 50.0 20.0 50.5 2.5

s 33.2 15.9 28.9 11.5 3.3 33.2 15.9 28.9 11.5 28.6 1.4

Min 15.0 5.0 0.0 0.0 0.4 15.0 5.0 0.0 0.0 1.0 0.0

Q1 (25%) 43.7 18.7 25.0 10.0 2.6 43.7 18.7 25.0 10.0 25.7 1.6

Median (50%) 72.5 32.5 50.0 20.0 4.5 72.5 32.5 50.0 20.0 50.5 2.5

Q3 (75%) 101.2 46.2 75.0 30.0 7.0 101.2 46.2 75.0 30.0 75.2 3.3

Max 130.0 60.0 100.0 40.0 16.8 130.0 60.0 100.0 40.0 100.0 8.9
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nario 2 predicted the most accurate values among the

considered models in Table 4.

The models of Earl [12] and Reynolds [13] with LL as

input had fairly acceptable values of slope, R2, and RMSE.

The performance of the models and the values of R2 con-

formed to the published work of Earl [12], Reynolds [13],

and Li et al. [9] when applied to the compiled dataset used

in this study (shown in Appendix). However, the models by

Jayasekera and Mohajerani [15] underperformed when

applied to the test dataset of this study. This may be due to

the limited data and low variance of Iss values used in their

dataset and when applied to the compiled dataset in this

study, the predictive range became inappropriate.

5 Conclusion

The soil parameter Iss is widely used in Australia to

determine the potential ground surface movement. How-

ever, determining Iss takes a longer time to obtain results

taking more than four days and involving hours of hands-

on experimental work. This study developed an efficient

method to estimate accurate values of Iss through DL

neural networks. This study proposed two scenarios; Sce-

nario 1 involved the features LL, PL, PI, and LS whilst

Scenario 2 added the input feature of %fines. The proposed

models were further investigated using sensitivity analysis

to identify the relative influence of the input features on the

targeted output, Iss. This predictive DL model may sig-

nificantly reduce the waiting period for the laboratory test

results that are highly sensitive to instrumental conditions,

skills and experience of the tester, and changing ambient

conditions.

Results of implementing DL neural networks showed

more reliable predictions in Scenario 2 (training: R2 = 0.84

and slope = 0.95; testing R2 = 0.82 and slope = 0.85) than

Scenario 1 (training: R2 = 0.81 and slope = 0.75; testing

R2 = 0.76 and slope = 0.59). These results suggested that

adding a more relevant feature can be more beneficial than

more data samples. Furthermore, the sensitivity analysis

resulted in a more practical range of predicted values in

Scenario 2, with %fines having the highest contribution to

the variance of Iss. The values of R2 in the training and

testing sets using the DL architecture and process imple-

mented in Scenario 2 were considerably higher and had a

wider variance than those of the previously conducted

studies. This makes Scenario 2, the proposed model,

around 10–65% more accurate than the models considered

in this study for predicting Iss. The developed DL neural

network of Scenario 2 can then be used to estimate more

accurate values of Iss if an expedited result is required for

design calculations.

Table 4 Model comparison to predict values of Iss

Model name Model to predict Iss Slope, m R2 RMSE

Jayasekera and Mohajerani [15]—model 1 (PI ? 40.3070)/17.5550 0.59 0.68 1.17

Jayasekera and Mohajerani [15]—model 2 (LL—8.5703)/15.7780 0.39 0.59 2.23

Earl [12]—model 1 0.0025LL1.6817 0.64 0.72 0.93

Earl [12]—model 2 0.0680PL2—1.9830PL ? 15.7190 3.42 0.34 11.00

Earl [12]—model 3 0.1048PI0.7998 0.28 0.58 1.25

Reynolds [13]—model 1 0.0745LL—1.6112 0.70 0.68 0.91

Reynolds [13]—model 2 0.0882PI—2.6370 0.60 0.59 2.25

Reynolds [13]—model 3 2.7910LS—1.4957 0.60 0.52 1.12

Li et al. [9]—model 1 0.0667LL—0.2860 0.62 0.68 1.48

Li et al. [9]—model 2 0.1269PL ? 0.7508 0.32 0.29 2.05

Li et al. [9]—model 3 0.0793PI ? 0.7954 0.54 0.59 1.51

Li et al. [9]—model 4 0.3115LS—1.4011 0.67 0.52 1.41

Scenario 1 DL using LL, PL, PI, and LS 0.59 0.76 1.26

Scenario 2 (proposed technique) DL using LL, PL, PI, LS, and %fines 0.82 0.85 0.90
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Appendix 1

The dataset used for training and validation is presented

below:

Iss LL PL PI LS %fines Description Resources

0.1 17 16 1 0.5 75 Pleistocene Quaternary Shepparton Formation Earl [12]

0.6 21 16 5 2.5 64 Pleistocene Quaternary Shepparton Formation Earl [12]

0.7 25 14 11 5 82 Pleistocene Quaternary Shepparton Formation Earl [12]

1.8 26 11 15 9 73 Pleistocene Quaternary Shepparton Formation Earl [12]

1.2 28 13 15 9 93 Pleistocene Quaternary Shepparton Formation Earl [12]

0.4 29 17 12 6 83 Pleistocene Quaternary Shepparton Formation Earl [12]

1.7 35 13 22 10.5 69 Pleistocene Quaternary Shepparton Formation Earl [12]

0.5 36 14 22 11.5 83 Pleistocene Quaternary Shepparton Formation Earl [12]

1.1 36 13 23 11 90 Pleistocene Quaternary Shepparton Formation Earl [12]

2.3 36 13 23 11 77 Pleistocene Quaternary Shepparton Formation Earl [12]

3 36 13 23 13 90 Pleistocene Quaternary Shepparton Formation Earl [12]

0.8 37 14 23 10.5 84 Pleistocene Quaternary Shepparton Formation Earl [12]

0.5 38 15 23 13 92 Pleistocene Quaternary Shepparton Formation Earl [12]

1.4 42 14 28 15 85 Pleistocene Quaternary Shepparton Formation Earl [12]

1.6 43 15 28 14.5 76 Pleistocene Quaternary Shepparton Formation Earl [12]

0.6 45 15 30 14 79 Pleistocene Quaternary Shepparton Formation Earl [12]

1.6 45 15 30 13.5 98 Pleistocene Quaternary Shepparton Formation Earl [12]

0.8 46 16 30 13 85 Pleistocene Quaternary Shepparton Formation Earl [12]

2.1 46 15 31 14 86 Pleistocene Quaternary Shepparton Formation Earl [12]

2.3 47 16 31 15.5 90 Pleistocene Quaternary Shepparton Formation Earl [12]

1.1 52 16 36 16 95 Pleistocene Quaternary Shepparton Formation Earl [12]

3.5 53 17 36 13.5 96 Pleistocene Quaternary Shepparton Formation Earl [12]

1 54 16 38 16.5 85 Pleistocene Quaternary Shepparton Formation Earl [12]

2.3 54 16 38 17.5 93 Pleistocene Quaternary Shepparton Formation Earl [12]

1.6 57 18 39 17 93 Pleistocene Quaternary Shepparton Formation Earl [12]

3 59 16 43 17.5 93 Pleistocene Quaternary Shepparton Formation Earl [12]

2.5 60 18 42 18 95 Pleistocene Quaternary Shepparton Formation Earl [12]

4 62 20 42 15 96 Pleistocene Quaternary Shepparton Formation Earl [12]

3.6 65 21 44 20 94 Pleistocene Quaternary Shepparton Formation Earl [12]

0.4 28.2 14 14.2 8.6 77 Queensland (Southeast, Central, and Northwest) Reynolds [13]

0.9 31.8 18 13.8 8.2 60 Queensland (Southeast, Central, and Northwest) Reynolds [13]

0.1 32.4 5.6 26.8 8.6 66 Queensland (Southeast, Central, and Northwest) Reynolds [13]

0.6 32.4 17 15.4 9 69 Queensland (Southeast, Central, and Northwest) Reynolds [13]

0.7 32.4 16.8 15.6 8.6 74 Queensland (Southeast, Central, and Northwest) Reynolds [13]

0.3 34.4 13.2 21.2 9.8 62 Queensland (Southeast, Central, and Northwest) Reynolds [13]

3.7 35.8 16.6 19.2 10.6 54 Queensland (Southeast, Central, and Northwest) Reynolds [13]

0.1 36.6 18.2 18.4 10.4 61 Queensland (Southeast, Central, and Northwest) Reynolds [13]

1.6 42 19 23 13.2 63 Queensland (Southeast, Central, and Northwest) Reynolds [13]

0.2 43 13.6 29.4 14.2 67 Queensland (Southeast, Central, and Northwest) Reynolds [13]

1 43.2 18 25.2 12.2 43 Queensland (Southeast, Central, and Northwest) Reynolds [13]

2.1 44 20 24 11.5 82 Queensland (Southeast, Central, and Northwest) Reynolds [13]

3 44 12.9 31.1 12.6 71 Queensland (Southeast, Central, and Northwest) Reynolds [13]

0.8 45 27 18 10 16 Queensland (Southeast, Central, and Northwest) Reynolds [13]

1.7 45.6 19 26.6 15.8 62 Queensland (Southeast, Central, and Northwest) Reynolds [13]

2.9 46.4 19.8 26.6 15 56 Queensland (Southeast, Central, and Northwest) Reynolds [13]
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(continued)

Iss LL PL PI LS %fines Description Resources

1.4 48 17 31 13.2 41 Queensland (Southeast, Central, and Northwest) Reynolds [13]

3.9 48 19.2 28.8 16.8 63 Queensland (Southeast, Central, and Northwest) Reynolds [13]

1.9 48.6 20 28.6 15.4 77 Queensland (Southeast, Central, and Northwest) Reynolds [13]

1.9 49 29.8 19.2 9.6 93 Queensland (Southeast, Central, and Northwest) Reynolds [13]

2.7 49.6 26 23.6 6.6 58 Queensland (Southeast, Central, and Northwest) Reynolds [13]

1.4 50.8 27 23.8 14.2 90 Queensland (Southeast, Central, and Northwest) Reynolds [13]

1.4 50.8 27 23.8 14.2 90 Queensland (Southeast, Central, and Northwest) Reynolds [13]

2.7 52 19.2 32.8 14.8 62 Queensland (Southeast, Central, and Northwest) Reynolds [13]

1 53.8 29.8 24 13.2 73 Queensland (Southeast, Central, and Northwest) Reynolds [13]

1 58.8 30.8 28 13.4 89 Queensland (Southeast, Central, and Northwest) Reynolds [13]

1.7 59 28.4 30.6 15 86 Queensland (Southeast, Central, and Northwest) Reynolds [13]

1.7 59 28.4 30.6 15 90 Queensland (Southeast, Central, and Northwest) Reynolds [13]

1 60.8 28.4 32.4 16.4 82 Queensland (Southeast, Central, and Northwest) Reynolds [13]

1.4 60.8 28.4 32.4 16.4 82 Queensland (Southeast, Central, and Northwest) Reynolds [13]

3.8 61.8 28.8 33 13.2 89 Queensland (Southeast, Central, and Northwest) Reynolds [13]

2.6 62 24.4 37.6 19.4 52 Queensland (Southeast, Central, and Northwest) Reynolds [13]

1.4 63.4 32 31.4 16.2 59 Queensland (Southeast, Central, and Northwest) Reynolds [13]

2 64.6 30 34.6 16.4 51 Queensland (Southeast, Central, and Northwest) Reynolds [13]

3.5 67 28 39 19 78 Queensland (Southeast, Central, and Northwest) Reynolds [13]

2.2 70.2 23.8 46.4 15.8 44 Queensland (Southeast, Central, and Northwest) Reynolds [13]

4.5 71.4 22.2 49.2 20.4 84 Queensland (Southeast, Central, and Northwest) Reynolds [13]

4.7 71.4 35.4 36 16.2 51 Queensland (Southeast, Central, and Northwest) Reynolds [13]

1.7 72.8 30 42.8 17.2 80 Queensland (Southeast, Central, and Northwest) Reynolds [13]

2.4 72.2 29.4 42.8 17.2 80 Queensland (Southeast, Central, and Northwest) Reynolds [13]

4.7 74.6 33.4 41.2 19 86 Queensland (Southeast, Central, and Northwest) Reynolds [13]

4.2 74.8 29 45.8 18 82 Queensland (Southeast, Central, and Northwest) Reynolds [13]

5.1 76 30 46 16 94 Queensland (Southeast, Central, and Northwest) Reynolds [13]

5.5 77 24 53 18.5 88 Queensland (Southeast, Central, and Northwest) Reynolds [13]

4.5 77.4 29.4 48 19 86 Queensland (Southeast, Central, and Northwest) Reynolds [13]

5 78.8 35 43.8 19.2 92 Queensland (Southeast, Central, and Northwest) Reynolds [13]

6.1 79.6 34.8 44.8 20 90 Queensland (Southeast, Central, and Northwest) Reynolds [13]

4.8 80 24 56 22 83 Queensland (Southeast, Central, and Northwest) Reynolds [13]

4.8 80 24 56 22 83 Queensland (Southeast, Central, and Northwest) Reynolds [13]

5.8 80.2 35.2 45 20.2 85 Queensland (Southeast, Central, and Northwest) Reynolds [13]

5.8 81 31.6 49.4 18.8 88 Queensland (Southeast, Central, and Northwest) Reynolds [13]

3.7 81.6 38.6 43 16.2 87 Queensland (Southeast, Central, and Northwest) Reynolds [13]

4.5 83 25 58 23.5 73 Queensland (Southeast, Central, and Northwest) Reynolds [13]

5.1 88 36 52 21.5 91 Queensland (Southeast, Central, and Northwest) Reynolds [13]

2.7 90 33 57 23 99 Queensland (Southeast, Central, and Northwest) Reynolds [13]

4.9 95 25 70 23 98 Queensland (Southeast, Central, and Northwest) Reynolds [13]

4.9 95 25 70 23 98 Queensland (Southeast, Central, and Northwest) Reynolds [13]

7.4 100 30 70 27 91 Queensland (Southeast, Central, and Northwest) Reynolds [13]

6 105 36 69 20 100 Queensland (Southeast, Central, and Northwest) Reynolds [13]

9 105 36 69 20 100 Queensland (Southeast, Central, and Northwest) Reynolds [13]

1.47 39.94 19.43 20.51 11.2 Quaternary basalt Zou [14]

6.16 65.26 28.51 36.75 20.2 Quaternary basalt Zou [14]

2.7 48.2 24 24.2 14 Quaternary basalt Zou [14]

3.55 58.61 22.18 36.43 17.1 Quaternary basalt Zou [14]
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(continued)

Iss LL PL PI LS %fines Description Resources

2.83 72.7 25.1 47.6 19.9 Quaternary basalt Zou [14]

5.73 100 37.02 62.98 25.33 Quaternary basalt Zou [14]

7.15 122 42 80 19.6 Quaternary basalt Zou [14]

3.46 38.92 19.27 19.65 12 Quaternary basalt Zou [14]

2.87 40.65 20.7 19.92 18 Quaternary basalt Zou [14]

2.22 37.73 17.24 20.49 13.4 Quaternary basalt Zou [14]

2.88 36.09 15.46 20.63 11.2 Quaternary basalt Zou [14]

2.56 51.52 30.18 21.34 13.2 Quaternary basalt Zou [14]

2.57 42.43 20.02 22.41 15.2 Quaternary basalt Zou [14]

4.4 49 26.18 22.82 20 Quaternary basalt Zou [14]

1.69 41.75 17.21 24.54 15 Quaternary basalt Zou [14]

2.32 46.68 19.48 27.2 15.4 Quaternary basalt Zou [14]

3.04 50.77 22.6 28.17 20.4 Quaternary basalt Zou [14]

2.95 47.71 15.01 32.7 12.8 Quaternary basalt Zou [14]

7.02 74.69 34.87 39.82 24 Quaternary basalt Zou [14]

4.3 73.3 25.8 47.5 18.8 Quaternary basalt Zou [14]

4.53 80.75 18.02 62.73 22.1 Quaternary basalt Zou [14]

5.96 68.87 31.95 36.92 19.2 Quaternary basalt Zou [14]

6.32 84.39 26.62 57.77 24.2 Quaternary basalt Zou [14]

5.05 47.08 15.81 31.27 13.6 Quaternary basaltic residual Zou [14]

1.59 66.29 18.66 47.63 18.3 Quaternary basaltic residual Zou [14]

6.96 75.79 24.51 51.28 20.9 Quaternary basaltic residual Zou [14]

6.88 70.28 21.74 48.54 18.4 Quaternary basaltic residual Zou [14]

6.16 69.74 19.72 50.02 19.5 Quaternary basaltic residual Zou [14]

6.77 80.52 22.37 58.15 23.2 Quaternary basaltic residual Zou [14]

1.08 56.34 31.91 24.43 9.8 Tertiary basaltic Zou [14]

3.28 49.99 29.74 20.25 12.5 Tertiary basaltic Zou [14]

1.87 63.91 21.28 42.63 11.1 Tertiary basaltic residual Zou [14]

4.21 56.92 17.42 39.5 16 Quaternary swamp and lagoon deposits Zou [14]

2.42 64.17 20.57 43.6 16.1 Quaternary swamp and lagoon deposits Zou [14]

1.91 36.01 12.82 23.19 17.9 Quaternary aged alluvium deposits Zou [14]

1.57 37.6 24.91 32.69 10.4 Silurian sedimentary Zou [14]

4.02 61.1 25.7 35.4 15.2 Silurian sedimentary Zou [14]

1.75 54.79 19.27 35.52 12 Silurian sedimentary Zou [14]

2.51 65.93 25.74 40.19 14.59 Silurian sedimentary clays Zou [14]

2.55 54.96 27.16 27.8 12.7 Tertiary aged sedimentary deposits Zou [14]

2.11 43.34 14.89 28.45 8.3 Tertiary aged sedimentary deposits Zou [14]

3.06 69.8 23.5 46.3 15.5 Torquay group deposit Zou [14]

3.23 41.53 16.86 24.67 13.2 Quaternary alluvium Zou [14]

3.76 48.88 18.65 30.23 14.6 Quaternary alluvium Zou [14]

3.9 66 25 41 18.5 Quaternary alluvium (Torquay) Smith [44]

4.2 66 25 41 18.5 Quaternary alluvium (Torquay) Smith [44]

1.4 88 38 50 21.5 Mornington volcanics Smith [44]

1.6 53 22 31 12 Deutgam silt Smith [44]

1.2 50 22 28 11 Deutgam silt Smith [44]

1.9 53 23 30 13 Deutgam silt Smith [44]

5.2 107 17 90 14.5 Newer volcanics (Footscray) Smith [44]

6.1 107 32 75 22 Quaternary alluvium (Wyndham Vale) Smith [44]
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