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the finite element-based deep learning networks cap-
tured the effect of the embedment of the beams. The 
results of the deep learning models led to non-linear 
design curves, which are disparate from the suggested 
standard Australian design. These results suggest that 
increasing the value of beam depth can have a posi-
tive or negative impact on the global residential slab 
depending on the type of substructure and whether 
the founding reactive soil is shrinking or swelling. 
Global sensitivity analyses of the deep learning mod-
els showed that for stiffened rafts on shrinking soil, 
the slab length, slab width and active depth zone of 
reactive soil had the most significant influence on 
Δmax, whilst for stiffened rafts on swelling soil, the 
primary drivers are ground movement, beam depth, 
and slab width. The prediction of Δmax for waffle rafts 
on shrinking soil was driven by the surface charac-
teristic and mound movements, and the active depth 
zone, whilst waffle rafts on swelling soil was driven 
by the beam depth. Overall, the finite element-based 
deep learning showed the capacity to estimate Δmax in 
both shrinking and swelling design scenarios for dif-
ferent types of residential footing systems to further 
understand the characteristic behaviour of shallow 
residential slab foundations on reactive soils leading 
to improved designs.

Keywords  Reactive soils · Stiffened raft · Waffle 
raft · Deep learning · Sensitivity analysis

Abstract  Deep learning networks were employed 
to predict the maximum differential deflection of 
stiffened and waffle rafts due to reactive soil move-
ments, Δmax. Four deep learning networks were used 
to predict Δmax, these are (1) stiffened rafts on shrink-
ing soil, (2) stiffened rafts on swelling soil, (3) waf-
fle rafts on shrinking soil, and (4) waffle rafts on 
swelling soil. The deep learning models were used 
to create design lines, which showed that both soil 
and structural features strongly influence the stiff-
ened rafts. In contrast, waffle rafts showed a strong 
dependence on soil features in shrinking soils and 
beam depth in swelling soils. This demonstrates that 
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1  Introduction

Reactivity is a soil characteristic that affects their 
expansion and shrinkage (Cameron 2015; Yaghoubi 
et  al. 2022; Teodosio et  al. 2022b). Highly reactive 
soils undergo considerable variation in volume due 
to fluctuation in soil moisture. These reactive soils 
swell in the presence of moisture and shrink upon 
losing moisture (Teodosio et  al. 2020a; Tran et  al. 
2021). The resulting ground movements can induce 
instability and subsequent damage to physical infra-
structures such as pavements, underground pipes, and 
residential footing systems (Li and Cameron 2002; 
Teodosio et  al. 2020b; Gedara et  al. 2022). Issues 
related to reactive soils have been recorded world-
wide, causing numerous detrimental socio-economic 
and environmental impacts. In the United States of 
America and the United Kingdom, reactive soil dam-
age resulted to US$15 billion and £3 billion for a 
span of one year (Jones and Jefferson 2012; Li et al. 
2014). In Australia, the surface geology is approxi-
mately 20% Basaltic clays (Richards et al. 1983; Teo-
dosio et al. 2021a). The world’s largest Basaltic plain 
is located in the Western suburbs of Melbourne and 
has detrimental impacts on residential structures and 
lightweight infrastructures. Research by the Victorian 
Building Authority (VBA) into 82,738 new dwell-
ings constructed between 2003 and 2011, found an 
initial 5.3% of these structures experienced unrepair-
able failure of concrete waffle rafts, walls and ceilings 
(Johanson 2014). The number of reported cases has 
constantly increased since 2011 and is now account-
ing for at least 80% of all housing insurance claims 
(Victorian Civil and Administrative Tribunal 2014). 
The repair of severely damaged residential structures 
requires additional carbon-intensive resources such 
as concrete and steel, which are responsible for 95% 
of the carbon emission of residential footing sys-
tems (Pujadas-Gispert et al. 2018). This suggests the 
importance of using improved and adaptive design 
procedures for residential footing systems that con-
tribute to minimising the socio-economic and envi-
ronmental impacts related to reactive soils.

A comprehensive characterisation of reactive 
soils requires a multi-disciplinary approach combin-
ing geotechnical engineering, climatology, unsatu-
rated fluid flow, and structural design. For example, 
the open ground around a residential foundation 
is exposed to rainfall infiltration and evaporation, 

whereas the covered ground under the residential 
footing systems is not subjected to direct rainfall 
infiltration and evaporation. In the dry season, this 
leads to ‘centre-heaving’ where the soil in the vicin-
ity of the perimeter of the foundation shrinks and the 
ground level goes down relative to the ground level 
under the central part of the foundation (Fig.  1a). 
The centre heaving causes residential footing systems 
to act as double cantilevers due to the soil-structure 
separation around the edges, and the support is at the 
centre due to the soil-structure contact (Fityus et  al. 
1999; Teodosio et al. 2020b; Tran et al. 2020). On the 
other hand, swelling of the soil around the perimeter 
of the residential footing systems raises ground level 
relative to the ground level under the central part of 
the foundation during the wet season leading to ‘edge 
heaving’ as presented in Fig. 1b (Fityus et  al. 1999; 
Kim et  al. 2015). The edge heaving causes residen-
tial foundations to act as simply-supported footing 
systems where the soil-structure separation is within 
the central part of the footing system and the support 
is around the edges due to the soil-structure contact 
there (Fityus et al. 1999; Shams et al. 2018; Teodosio 
et al. 2022a).

The magnitude of area load, p, and the line load 
along the perimeter due to superstructures, q, can be 
critical in the design of a residential footing system 
(Teodosio et al. 2021b). In the centre heave scenario 
in Fig. 1a, the magnitudes of loads p and q are critical 
to the design of residential footing systems. Contra-
rily, in the edge heave scenario in Fig. 1b, the magni-
tudes of loads p and q negate the pressure caused by 
the swelling reactive soil around the perimeter. Thus, 
both centre heaving and edge heaving scenarios are 
important design considerations for the stability of 
residential footing systems (Teodosio et al. 2020a, b).

Several design methodologies for residential foot-
ing systems founded on reactive soils have been 
developed over the past decades (Teodosio 2020; Teo-
dosio et al. 2021b). The Building Research Advisory 
Board (1968) proposed the BRAB Method, which is a 
comparatively simplistic procedure compared to other 
approaches. This design method computes more con-
servative dimensions of residential footing systems, 
particularly when L has a larger value (Abdelmalak 
2007). Snowden (1981) improved the BRAB Method 
and developed the Wire Reinforcement Institute 
(WRI) method. The WRI method is an empirical-
based design method that also calculates the required 
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dimensions of residential footing systems more con-
servatively in comparison to the BRAB method. 
Another method developed by Lytton (1970), known 
as the Lytton method, uses beam-on-mound equations 
and coupled springs. This method has been adapted 
by Walsh and Walsh (1986) and Mitchell (1984) to 
develop improved methods, recognised as the Walsh 
Method and the Mitchell Method, respectively. These 
methods were used to propose a design method based 
on parametric simulations presented in Austral-
ian Standards (AS) 2870-2011 (Standards Australia 
2011; Payne and Cameron 2014). The methodologies 

of the Walsh Method, Mitchell Method, and AS 
2870–2011 Method tend to compute less conservative 
D of residential footing systems founded on reactive 
soils (Abdelmalak 2007; Teodosio et al. 2021b). The 
AS 2870-2011 Method assumes commonly applied 
loads, p and q, on footing systems, where the values 
of p and q cannot be varied in the design process. The 
Post Tensioning Institute (2008) created a method 
based on an empirical design approach that considers 
the non-linear relationship of the Thornthwaite mois-
ture index, soil diffusion, and particle size, known 
as the PTI Method. This method predicts median 

Fig. 1   Schematic representation of the interaction between 
reactive soils and a residential footing system when a shrink-
ing (known as centre heaving) and b swelling (known as edge 

heaving) due to the difference in soil moisture of the covered 
and uncovered grounds
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values of calculated D when compared to other 
design approaches (Teodosio et al. 2021b). However, 
the application of this method may be limited due to 
its empirical nature.

Both physical and numerical models are impor-
tant to comprehensively understand the mechanisms 
associated with residential footing systems built on 
reactive soils. Li (1996) developed a physical-based 
model to calculate the ground movement using ther-
mal strain and conductivity to emulate the variation 
of soil volume. Totoev and Kleeman (1998) devel-
oped an infiltration model to predict soil suction 
changes and soil movement. With the advancements 
in numerical simulation techniques such as the Finite 
Difference Method (FDM) and Finite Element Meth-
ods (FEM), many advanced numerical models of resi-
dential footing systems have been developed in the 
literature. Fraser and Wardle (1975) further improved 
the Lytton Method and Walsh Method using numeri-
cal simulations, which was the basis of the Swinburne 
Method developed by Holland et al. (1980). Sinha and 
Poulos (1996) performed parametric simulations var-
ying the stiffness of residential footing systems using 
the Lytton (1970) Method, and found that differential 
settlement can be reduced by having higher footing 
system stiffness and introducing beams at strategic 
locations that create a bridging action against heav-
ing. In early 2000, investigations started focusing on 
the interaction between reactive soil and footing sys-
tems using 3D FEM (Masia et  al. 2004; Wray et  al. 
2005; Fredlund et al. 2006). A few studies developed 
coupled hydro-mechanical models combining soil, 
climate, and structural parameters and inputs to pre-
dict ground movement and residential footing defor-
mation using FEM (Zhang 2004, 2014; Abdelmalak 
2007; Shams et al. 2018; Assadollahi and Nowamooz 
2020). Also, a few investigations proposed novel 
design methods based on parametric finite element 
simulations (e.g. Dafalla et  al. 2012; Briaud et  al. 
2016; Teodosio et al. 2020b). Recently, Shams et al. 
(2020) employed the artificial intelligence (AI) tech-
nique—evolutionary polynomial regression (EPR) 
technique—to develop a standalone design tool for 
stiffened rafts based on coupled hydro-mechanical 
parametric FEM simulations, which obtained more 
conservative designs compared to Mitchell (1984).

Advancements in technologies in computing 
software and hardware in the past decade have sig-
nificantly increased the application of AI. AI is a 

general concept utilising machines and robots to 
perform tasks with iterative and improving meas-
ured performance (Fig. 2a). Machine learning (ML) 
is a subclass of AI, which can passively learn and 
improve without explicit coding, as described in 
Fig.  2b. Common ML tasks include object recog-
nition, speech recognition, conversation responder, 
problem optimisers, and self-driving vehicles (The-
odoridis 2020). Rumelhart et  al. (1986) primar-
ily suggested shallow learning or simple artificial 
neural networks (ANN). These shallow networks 
can train a single hidden layer limited by comput-
ing power and unsophisticated algorithms, as dis-
cussed by Xu et al. (2021) and presented in Fig. 2c. 
In the past few years, the application of ANN with 
multiple hidden layers that allows much more com-
plex analyses has emerged, which is known as deep 
learning or DL (Cha et  al. 2017; Naji et  al. 2021). 
DL networks are capable of training themselves to 
process and learn from data and better recognise 
patterns in non-linear functions (Xu et  al. 2021). 
With more advanced technologies and algorithms, 
DL can offer improved accuracy in designing resi-
dential footing systems considering the highly non-
linear calculations and complex relationships that 
are considered when reactive soils and climate are 
involved (Fig. 2d).

There has been a recent increase in the appli-
cation of AI to geotechnical challenges involving 
expert systems, neural networks, fuzzy logic, and 
image analyses applied to the site classification, 
stability evaluation, and hazard assessment of abut-
ments, landslides, building foundations, and mines 
(Ebid 2021). The application of AI algorithms, spe-
cifically DL, shows the implementation of adap-
tive non-linear models and predicts more insight-
ful results to improve the design and performance 
of residential footing systems. This study aims to 
develop DL networks to predict Δmax more accu-
rately. In addition, this study implements a global 
sensitivity analysis of the DL networks to identify 
the relative influences of the input features (ys, ym, 
D, L, W, p, q, Hs, and εms) on the Δmax, depending 
on the type of foundation and the movement of 
reactive soil. A comparison between the predictions 
using the established design code AS 2870-2011 
(Standards Australia 2011) and the results of the DL 
networks of this study is also presented.
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2 � Methodology

A DL network is defined as an inter-connected net-
work of neurons in multiple hidden layers. ANN is 
a computational system that conceptualises the neu-
ral network of a human brain and how information 
and logical patterns are processed and established, 
respectively (LeCun et al. 2015). The inter-connected 
neurons are concomitant by edges that are essential 
for signal transfer represented by weights that serve 
as signals being adjusted as learning takes place. 
The objective of the network is to reduce the cost 
function, L(y,ŷ), to obtain optimum weights that are 
related to predicting accurate estimates of targeted 
outputs. Four main aspects primarily influence the 
DL process; the considered dataset, the DL architec-
ture, the DL algorithm, and the accuracy of the pre-
dicted values. These elements are discussed below in 
detail.

2.1 � The Datasets for DL Networks

The dataset used in this study was extracted from 
the parametric simulations by Teodosio (2020) and 
Teodosio et  al. (2020b). A total of 648 numerical 

simulations were conducted, varying the types of 
residential footing systems (stiffened rafts and waffle 
rafts), soil, environmental, and structural parameters. 
The 648 rows of data were divided into four groups 
based on types of footing system and ground move-
ments; (1) stiffened rafts on the shrinking ground, (2) 
stiffened rafts on the swelling ground, (3) waffle rafts 
on the shrinking ground, and (4) waffle rafts on the 
swelling ground. Each group consisted of around 160 
data points. Tables 1 and 2 list the descriptive statis-
tics of the four groups of datasets used for the training 
and testing in this study. Each dataset for each sce-
nario is comprised of the target Δmax, and the input 
features ys, ym, D, L, W, p, q, Hs, and εms (Fig. 1).

The features used were based on the general prin-
ciple outlined in AS 2870.4.6 by Standards Australia 
(2011) and the coupled hydro-mechanical parametric 
simulations by Teodosio (2020). These features are as 
follows:

•	 Characteristic surface movement or the maximum 
ground movement, ys,

•	 Differential ground movement, ym,
•	 Beam depths, D,
•	 Length of a stiffened raft or a waffle raft, L,

Fig. 2   Relationship among artificial intelligence (AI), machine learning (ML), artificial neural network (ANN), and deep learning 
(DL). The ‘xi’ is an input feature, ‘W’ is a weight or edge, and ‘a’ is an activation of the artificial neurons
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•	 Width of a stiffened raft or a waffle raft, W,
•	 Area load applied to a stiffened raft or a waffle 

raft, p,
•	 Line load applied to a stiffened raft or a waffle 

raft, q,
•	 Active depth zone, Hs, and
•	 Shrink-swell parameter, εms.

It is important to note that εms is an idealised soil 
shrink-swell index (Iss) based on Shams et al. (2018). 
Similarly, the soil water characteristic curve (SWCC) 
was taken from an idealised curve by Shams et  al. 
(2018). This assumption is acceptable since the 
objective of the simulations was to form the most 
critical shrinking and swelling mound profiles based 
on the wettest and driest scenario, without considera-
tion of time dependence, as elaborated by Teodosio 

et  al. (2020a). However, further investigation of the 
effect of anisotropic soil properties should be inves-
tigated in future studies since this will affect the for-
mation of critical shrinking and swelling mound pro-
files. The values of residential slab thickness and steel 
reinforcements for the deemed-to-comply designs in 
AS 2870 were adopted in this study for simplification. 
The values for the slab thickness were 100  mm for 
stiffened rafts and 85 mm for waffle rafts. The values 
of steel reinforcements were either 12-mm or 16-mm 
diameter for the beam reinforcements, whilst either 
7-mm or 8-mm diameter for the steel mesh. These are 
acceptable assumptions since these values are being 
used in practice to design and construct stiffened rafts 
and waffle rafts. The hydromechanical finite element 
model by Teodosio et  al. (2020b) assumed that the 
reactive soil movement is driven by a change in soil 

Table 1   Descriptive statistics of the target, maximum stiffened raft deformation (Δmax) and features (ys, ym, D, L, Q, p, q, Hs, and 
εms)

x̄ = mean; s = standard deviation; min = minimum value; Q1 = 1st quartile/25th percentile; Q3 = 3rd quartile/75th percentile; 
max = maximum value

Training data (70%), n = 119 Testing data (30%), n = 40

x̄ s Min Q1 Median Q3 Max x̄ s Min Q1 Median Q3 Max

Δmax 9.0 8.4 0.9 2.9 5.2 12.2 36.7 7.2 7.5 0.7 2.1 3.6 8.0 31.9
ys -54.3 22.8 − 115.4 − 65.5 − 56.6 − 37.3 − 13.0 − 52.5 23.3 − 102.2 − 67.4 − 46.2 − 35.9 − 14.5
ym − 41.4 17.1 − 89.3 − 51.0 − 40.9 − 27.3 − 11.2 − 40.9 16.8 − 79.9 − 51.1 − 36.0 − 28.9 − 14.5
D 0.9 0.5 0.3 0.3 0.9 1.5 1.5 0.8 0.5 0.3 0.3 0.9 1.5 1.5
L 11.6 4.1 6.9 6.9 10.2 16.8 16.8 10.4 4.0 6.9 6.9 10.2 11.9 16.8
W 11.6 4.1 6.9 6.9 10.2 16.8 16.8 10.4 3.9 6.9 6.9 10.2 11.9 16.8
p 4769 2500 2500 2500 2500 7500 7500 5625 2452 2500 2500 7500 7500 7500
q 12,399 6500 6500 6500 6500 19,500 19,500 14,625 6374 6500 6500 19,500 19,500 19,500
Hs 2.6 1.0 1.5 1.5 2.5 4.0 4.0 2.9 1.1 1.5 1.5 2.5 4.0 4.0
εms 4.4 2.1 2.0 2.0 4.0 7.0 7.0 4.3 2.0 2.0 2.0 4.0 7.0 7.0

Training data (70%), n = 120 Testing data (30%), n = 40

x̄ s Min Q1 Median Q3 Max x̄ s Min Q1 Median Q3 Max

Δmax 10.1 11.2 11.1 3.6 5.3 13.0 66.8 9.7 11.0 1.5 3.5 5.2 11.3 49.1
ys 57.9 20.1 20.0 42.1 52.6 73.1 103.3 60.1 17.1 17.8 49.4 60.0 68.9 96.2
ym 51.7 18.2 18.7 35.4 47.9 66.5 92.0 54.3 16.1 16.8 42.3 55.0 62.5 91.3
D 0.9 0.5 0.3 0.3 0.9 1.5 1.5 0.8 0.5 0.3 0.3 0.9 0.9 1.5
L 11.7 4.1 6.9 6.9 10.2 16.8 16.8 10.4 4.0 6.9 6.9 10.2 11.9 16.8
W 11.7 4.1 6.9 6.9 10.2 16.8 16.8 10.4 4.0 6.9 6.9 10.2 11.9 16.8
p 5083 2609 2500 2500 7500 7500 7500 4750 2519 2500 2500 2500 7500 7500
q 13,217 6524 6500 6500 19,500 19,500 19,500 12,350 6550 6500 6500 6500 19,500 19,500
Hs 2.7 1.1 1.5 1.5 2.5 4.0 4.0 2.7 1.0 1.5 2.3 2.5 4.0 4.0
εms 4.3 2.1 2.0 2.0 4.0 7.0 7.0 4.6 2.1 2.0 2.0 4.0 7.0 7.0
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suction equal to 1.2 pF based on AS2870-2011. This 
enables the simplification of the model to specify the 
initial and final values of the soil suction due to pre-
cipitation and evapotranspiration.

The datasets for stiffened rafts and waffle rafts con-
sidering the shrinking and swelling scenarios were 
split into training and testing sets with a ratio of 75% 
(119–120 data entries for training per set) to 25% 
(40–41 data entries for testing per set), respectively, 
listed in Tables 1 and 2.

2.2 � Deep Learning Network Architecture

A DL neural network was used to obtain the accept-
able weights for the prediction of Δmax. The neural 
network comprises an input layer with nine units, 
five hidden layers with 256 units, and an output layer 

with one unit described in Fig. 3. The number of hid-
den layers was determined by trial and error and was 
observed to produce acceptable results. The input 
layer contains the input vector extracted from Teodo-
sio (2020) and Teodosio et al. (2020b). The five hid-
den layers were found to give accurate results with 
acceptable computational efficiency that was deter-
mined through trial and error.

2.3 � Deep Learning Algorithm

The DL process comprised of four stages: (1) pre-
processing, (2) random initialisation, (3) forward 
propagation, and (4) backward propagation, as sum-
marised in Fig. 4. Data pre-processing is a necessary 
phase, which can increase the accuracy and efficiency 
of the training and validation. The pre-processing 

Table 2   Descriptive statistics of the target, maximum waffle raft deformation (Δmax) and features (ys, ym, D, L, Q, p, q, Hs, and 
εms)

x̄ = mean; s = standard deviation; min = minimum value; Q1 = 1st quartile/25th percentile; Q3 = 3rd quartile/75th percentile; 
max = maximum value

Training data (75%), n = 120 Testing data (25%), n = 41

x̄ s Min Q1 Median Q3 Max x̄ s Min Q1 Median Q3 Max

Δmax − 14.1 8.4 − 40.9 − 19.1 − 13.6 − 7.2 − 1.6 − 12.9 9.3 − 42.5 − 17.5 − 10.0 − 6.6 − 3.5
ys − 54.5 17.7 − 100.4 − 64.5 − 49.8 − 40.4 − 29.4 − 50.9 14.8 − 97.2 − 55.5 − 45.6 − 41.7 − 32.0
ym − 50.0 16.2 − 91.9 − 60.4 − 45.9 − 37.2 − 27.3 − 46.8 13.7 − 88.5 − 52.8 − 41.7 − 38.4 − 29.7
D 0.5 0.1 0.3 0.3 0.5 0.6 0.6 0.5 0.1 0.3 0.3 0.5 0.6 0.6
L 10.8 3.8 6.9 6.9 10.2 16.1 16.1 11.9 3.6 6.9 10.2 10.2 16.1 16.1
W 10.8 3.8 6.9 6.9 10.2 16.1 16.1 11.9 3.6 6.9 10.2 10.2 16.1 16.1
p 5042 2510 2500 2500 7500 7500 7500 4817 2524 2500 2500 2500 7500 7500
q 13,108 6526 6500 6500 19,500 19,500 19,500 12,524 6563 6500 6500 6500 19,500 19,500
Hs 2.7 1.0 1.5 1.5 2.5 4.0 4.0 2.6 1.0 1.5 1.5 2.5 4.0 4.0
εms 4.5 2.1 2.0 2.0 4.0 7.0 7.0 3.8 1.8 2.0 2.0 4.0 4.0 7.0

Training data (75%), n = 120 Testing data (25%), n = 41

x̄ s Min Q1 Median Q3 Max x̄ s Min Q1 Median Q3 Max

Δmax 11.1 11.5 0.0 2.7 7.6 15.8 48.5 10.0 9.6 0.0 3.7 8.2 13.0 40.9
ys 56.3 20.6 16.6 41.6 51.4 70.9 103.9 55.4 21.2 16.5 40.3 57.5 69.7 101.1
ym 42.5 14.1 14.2 32.5 41.8 52.3 74.1 41.5 14.6 12.6 34.5 40.9 49.3 72.9
D 0.5 0.1 0.3 0.3 0.5 0.6 0.6 0.4 0.1 0.3 0.3 0.5 0.6 0.6
L 10.9 3.8 6.9 6.9 10.2 16.1 16.1 11.6 3.9 6.9 6.9 10.2 16.1 16.1
W 10.9 3.8 6.9 6.9 10.2 16.1 16.1 11.6 3.9 6.9 6.9 10.2 16.1 16.1
p 4958 2510 2500 2500 2500 7500 7500 5061 2530 2500 2500 7500 7500 7500
q 12,892 6526 6500 6500 6500 19,500 19,500 13,159 6579 6500 6500 19,500 19,500 19,500
Hs 2.7 1.0 1.5 1.5 2.5 4.0 4.0 2.6 1.0 1.5 1.5 2.5 4.0 4.0
εms 4.3 2.0 2.0 2.0 4.30 7.0 7.0 4.5 2.2 2.0 2.0 4.0 7.0 7.0
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techniques commonly applied in DL are outliers/
missing value filtering, polynomial feature gen-
eration, normalisation and scaling implementations 
(Pedregosa et  al. 2011). Data entries with incorrect 
values due to manual input of Δmax, ys, ym, D, L, W, 
p, q, Hs, and εms were omitted using interquartile out-
lier check. The disregarded data were three entries for 
stiffened rafts on the shrinking ground, two for stiff-
ened rafts on the swelling ground, one for waffle rafts 
on the shrinking ground, and one for waffle rafts on 
the swelling ground. Polynomial features were first 
considered, however, these did not have a consider-
able effect on the accuracy of the algorithm.

The normalisation, standard scaling, and min–max 
scaling methods were individually assessed. These 
pre-processing techniques scale or normalise each 
input feature to a given dataset range, which increases 
the speed and accuracy of neural networks. Min–max 
scaling was found to be the most applicable, upon 

trial and error, and was implemented using the 
equation

where x is the feature index, xmin is the minimum fea-
ture value in the dataset, and xmax is the maximum 
feature value in the dataset.

The values of xmin and xmax for the input features ys, 
ym, D, L, W, p, q, Hs, and εms are listed in Tables 1 and 
2, considering both training and testing datasets.

Random initialisation described in He et al. (2015) 
was used to initiate the DL process by multiplying the 
randomly generated initial weights by

(1)Min − max scaling =
x − xmin

xmax − xmin
,

(2)
√

2

sizeDLL−1
,

Fig. 3   Deep Learning 
network architecture
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where sizeDLL−1 is the DL layer prior to the current 
being analysed.

The weights of the network were randomly ini-
tialised with values close to zero. This disturbs the 
symmetry to enable the neurons to calculate differ-
ent values that will not affect the accuracy and effi-
ciency of the DL. The mean squared error (MSE) 
was used as the loss function, L

(
y, ŷ

)
 , which is 

commonly used in regression models. The values 
of L

(
y, ŷ

)
 are the mean squared differences between 

a true value (y) and a predicted value (ŷ) obtained 
by the DL model. A representation of the activa-
tion function for the forward propagation of a single 
neuron is shown in Fig. 5. L2 Regularisation is used 
to prevent overfitting described by a penalty func-
tion in the second term of Eq. (3),

Fig. 4   Deep Learning 
network process
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where λ is the hyperparameter for regularisation, and 
wi is a feature weight. λ commonly has a value greater 
than zero, with caution on the usage of large values of 
λ that may lead to large weights and underfitting. The 
total number of data entries is denoted by N.

The Rectified Linear Units (ReLU) proposed by 
Nair and Hinton (2010) was used in the forward 
propagation represented by,

where xi is the input value.
The adaptive moment estimation or “Adam” 

optimisation by Kingma and Ba (2017) was used 
for the backward propagation. The Adam stochas-
tic optimisation is extensively implemented due 
to its straightforward process and computational 

(3)L(y, ŷ) =
1

N

N∑
i=0

(
yi − ŷi

)2
+ 𝜆

N∑
i=0

w2

i
,

(4)f (x) = max
(
0, xi

)
=

{
xi, if xi ≥ 0

0, if xi < 0

efficiency. This method combines the momentum 
gradient descent and the Root Mean Square Propa-
gation (RMSprop). The Adam optimisation algo-
rithm is described as,

where Vdw, Vdb, Sdw, and Sdb are the weights and 
biases that are calculated in iteration or epoch, t. 
The initial values of Vdwi, Vdbi, Sdwi, and Sdbi are 
assigned to zero and then will be backpropagated for 
each weight. The calculated values of Vdw, Vdb, Sdw, 
and Sdb are then corrected and updated using the 
power of the current epoch, t, described below

(5)Vdw = �1Vdw +
(
1 − �1

)
dw,

(6)Vdb = �1Vdb +
(
1 − �1

)
db,

(7)Sdw = �2Sdw +
(
1 − �2

)
dw2

, and

(8)Sdb = �2Sdb +
(
1 − �2

)
db2,

Fig. 5   Artificial neu-
rons showing activation, 
transformation, and forward 
propagation
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The forward and backward propagation were 
implemented in a loop until the specified epoch was 
achieved, as described in Fig. 4. The iteration of the 
optimisation loop comprised of forward propagation 
using ReLU, L

(
y, ŷ

)
 calculation, backward propaga-

tion using Adam, and weights updating. The epoch 
of the final DL run was specified to be 3800, which 
resulted in an optimum and stable L

(
y, ŷ

)
 curve with 

an acceptable learning period of less than ten min-
utes. After obtaining optimum weights of the model, 
the relative effects of input features on the predicted 
Δmax was evaluated using a global sensitivity analysis.

The hyperparameters were fine-tuned by vary-
ing their values and determining the accuracy of the 
results. Through this method, the value of the hyper-
parameters was specified as 5.0 × 10–5 for the learn-
ing rate, 0.9, 0.999, 5.0 × 10–6 for the decay rates β1 
and β2, and ϵ, and unity for the value of λ for all DL 
networks.

2.4 � Global Sensitivity Analysis

Sensitivity analysis identifies the relative impor-
tance of input features on the targeted output. 
A sensitivity analysis can be a local or a global 

(9)

w = w − �
Vdw

corrected

√
Sdw

corrected + �

= w − �

Vdw

1−�1
t

√
Sdw

1−�2
t + �

, and

(10)b = b − �
Vdb

corrected

√
Sdb

corrected + �

= b − �

Vdb

1−�1
t

√
Sdb

1−�2
t + �

.

approach. Local sensitivity analysis is an assess-
ment of the local impact of feature variations on the 
concentrated sensitivity in the proximate vicinity of 
a set of feature values (Zhou and Lin 2008). Contra-
rily, global sensitivity analysis quantifies the over-
all significance of the features and their interactions 
concerning the predicted results by implementing 
an overall coverage of the input values (Saltelli 
et al. 2019). This study applied a global sensitivity 
approach by following the Saltelli (2002) method 
and indices by Sobol (1990, 2001).

The bounds to generate the input features for 
the global sensitivity analysis are listed in Table 3. 
After specifying the upper and lower bounds 
for each feature that will serve as the parameter 
range for the scheme of Saltelli (2002). A total of 
2,621,440 were generated as data samples.

Three indices were calculated; these are the first-
order Sobol index (S1), the second-order Sobol 
index (S2), and the total-order Sobol index (ST). S1 
reflects the expected decrease in the variance of a 
model when feature xi is not changing. The values 
of S1 measures the direct influence of each feature 
on the variance of the model or targeted output. cal-
culated as

where var(xi) is the variance of a feature, var(ŷ ) is the 
variance of the target output, E denotes expectation, 
xi is a feature, and ŷ is the target (i.e., Δmax). The term 
E(ŷ|xi) specifies the expected value of the output ŷ 
when feature xi is fixed. The sum of all the calculated 
values of S1 should be equal to or less than one.

(11)S1 =
var(xi)

var(̂y)
=

var(E
(
ŷ|xi

)
)

var(̂y)
,

Table 3   Upper and lower bounds to generate the input features for the Saltelli (2002) method

The lower bound and the upper bound values for the shrinking and swelling scenarios were based on the parametric simulations per-
formed by Teodosio (2020) and Teodosio et al. (2020b)

Input features for Scenario 1 and Scenario 2

ys (mm) ym (mm) D (m) L (m) W (m) p (kN/m2) q (kN/m) Hs (m) εms (%)

Shrinking
Lower bound (min) − 120 − 110 0.3 6.9 6.9 2500 6500 1.5 2.0
Upper bound (max) 0 0 1.5 16.8 16.8 7500 19,500 4.0 8.0
Swelling
Lower bound (min) 0 0 0.3 6.9 6.9 2500 6500 1.5 2.0
Upper bound (max) 120 110 1.5 16.8 16.8 7500 19,500 4.0 8.0
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It is common to perform the calculation of S1 with 
the total Sobol sensitivity, ST, the sensitivity due to 
interactions between a feature Xi and all other features 
(Homma and Saltelli 1996) given by

where x-i denoting the features except xi, and the sum 
of all the calculated values of ST is equal or greater 
than one.

If the values of ST are substantially larger than the 
values of S1, then there is a probability that higher-order 
interactions are occurring. It is then worth calculating 
the second-order or higher-order sensitivity indices. 
The second-order can be expressed as

(12)ST = 1 −
var

(
E
(
ŷ|x−i

))

var
(
ŷ
) ,

(13)S2 =
var(xi, xj)

var(̂y)
,

where var(xi, xj) is the variance of features xi and xj. 
This calculates the amount of variance of ŷ , explained 
by the interaction of features xi and xj.

3 � Results

The results of the implemented DL training, testing, 
and sensitivity analyses are discussed in the succeeding 
sub-sections.

3.1 � Deep Learning

The DL methodology outlined in Figs.  3 and 4 was 
used in the allocated dataset for training (119–120 
samples) and testing (40–41 samples) listed in 
Tables 1 and 2. The calculated values of the loss func-
tion for the training and testing sets using Eq. 4 are 
presented in Fig. 6. The loss values of stiffened rafts 
on shrinking soil (Fig. 6a), stiffened rafts on swelling 
soil (Fig. 6b), waffle rafts on shrinking soil (Fig. 6c), 

Fig. 6   Calculated loss functions (L(y,ŷ)) of training and testing sets for a stiffened rafts on shrinking soil, b stiffened rafts on swell-
ing soil, c waffle rafts on shrinking soil, and d waffle rafts on swelling soil
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and waffle rafts on swelling soil (Fig. 6d) show acceptable 
learning curves. This curve is an indicative tool for algo-
rithms, which incrementally learn from training datasets. 
The learning curves for all datasets show a good fit, and 
this can be characterised by loss values of training and 
testing that decreased to the point of stability with a mini-
mal final gap, as shown in Fig. 6.

The performance of the model was measured using 
the normalised root mean squared error (RMSEn), 
described as

where RMSE, which indicates the relative average devia-
tion of predicted values from the actual values of the tar-
get output (Δmax), with a value closer to zero representing 
better prediction. The calculated RMSE for all four cases 
show values low enough to consider the model predic-
tions reliable. The values of xmin and xmax are the mini-
mum and maximum values of Δmax in the dataset shown 
in Tables 1 and 2, whilst N is the total number of data. 
The values of RMSEn were observed to be less than 10% 
for all cases; stiffened rafts on shrinking soil (5.5%), stiff-
ened rafts on swelling soil (7.7%), waffle rafts on shrink-
ing soil (0.7%), and waffle rafts on swelling soil (4.7%). 
The observed values of RMSEn values further indicate the 
reliability of the predictions of all four cases. The highest 
values of RMSEn were calculated in the model with stiff-
ened rafts on swelling soil (7.7%). This can be attributed 
to the constant swelling of soil around the edge beams that 
may have affected the relationship between the input fea-
tures and the simulated Δmax, as described by Fityus et al. 
(2004), Shams et al. (2018) and Teodosio et al. (2020b).

Figure  7 shows a near-perfect match between 
predicted and actual values of Δmax for the training 
datasets in terms of both R2 and the slope of the fit-
ting curve. The values of R2 for the testing datasets 
range from 0.93 to 1.00 and the slope varies from 
0.91 to 0.99, indicating a reasonably good consist-
ency between predicted and actual values of Δmax 
(Fig.  8). Overall, these results verify the capacity 
of the DL model to reliably predicts the Δmax for all 
cases of considered foundation type and soil move-
ment. It should be noted that it is common to obtain 
values of R2 and slopes close to one since the datasets 
used were from parametric numerical simulations and 
were not collected from the field.

(14)
RMSEn =

RMSE

xmax − xmin
=

�∑N

i=1
(yi−ŷi)

2

N

xmax − xmin
,

3.2 � Global Sensitivity Analysis

The scheme of Saltelli (2002) was used to generate 
the input features for predicting the values of Δmax 
for the global sensitivity analyses, with the upper and 
lower bounds listed in Table  3. Sensitivity analyses 
were performed to evaluate the relative influence of 
the input features on Δmax and to determine the asso-
ciation between the features and their influence on 
Δmax. Descriptive statistics of the generated inputs 
and predicted results are listed in Table 4.

The global sensitivity analysis results using Sobol 
(1990, 2001) are presented in Figs.  9 and 10. The 
values of S1 revealed that the first-order sensitivity 
of features varies depending on the type of residen-
tial footing systems (i.e., stiffened raft or waffle raft) 
and the movement of reactive soil (i.e., shrinking or 
swelling) (Fig.  9a). For stiffened rafts on shrinking 
soil, L, W, and Hs exhibited first-order sensitivities 
having high S1 values, suggesting that these features 
had the greatest influence of a single parameter to the 
output of Δmax. For stiffened rafts on swelling soil, ym, 
D, and W demonstrated first-order sensitivities. Pre-
diction of Δmax for waffle rafts on shrinking soil was 
driven by ys, ym, and Hs, whilst waffle rafts on swell-
ing soil exhibited first-order sensitivity in feature D.

The total-order Sobol index for each feature, ST, 
was then determined as shown in Fig. 9b. If a feature 
has a value of ST that is significantly larger than the 
value of S1, then there are likely higher-order inter-
actions taking place. Higher-order interactions indi-
cate that the contribution of parameter interactions to 
the output variance exists. The values of ST revealed 
features with higher values than S1 (Fig. 9b). Hence, 
second-order indices, S2, were calculated based on 
different pairing combinations.

The calculated values of S2 were considerably low 
and these are shown in Fig. 10 for all scenarios. The low 
values indicate that the features had minimal influence 
on each other and on the targeted output, Δmax. It can be 
observed that there is a feature interaction between ym 
and D in stiffened rafts on swelling reactive soil. A fea-
ture interaction between L-W and L-Hs in stiffened rafts 
on shrinking reactive soil can also be observed. Feature 
interactions were also revealed for ym-D, D-p and D-q 
in waffle rafts on swelling reactive soil. The remaining 
interactions can be considered negligible.
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4 � Discussion

The DL models accurately predicted Δmax compared to 
those of the numerical simulations by Teodosio (2020) 
and Teodosio et al. (2020b). The results of the DL com-
putation were compared with the corresponding values 

of the established design code AS 2870-2011 (Stand-
ards Australia 2011). To do this in-depth comparison of 
the differences between the DL neural network and the 
AS 2870-2011, a sensitivity analysis of the parameters 
in AS 2870-2011 was conducted by considering the 
models described below.

(15)ys
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= 2.05

⎛⎜⎜⎜⎝
log

⎡⎢⎢⎢⎣

∑�
BwD

3

12

�

W

⎤⎥⎥⎥⎦

⎞⎟⎟⎟⎠
− 1.05 = 2.05

⎛⎜⎜⎜⎝
log

⎡⎢⎢⎢⎣

L

s

�
BwD

3

12

�

W

⎤⎥⎥⎥⎦

⎞⎟⎟⎟⎠
− 1.05, Hs < 3m

(16)ys

Δa

= 2.10

⎛⎜⎜⎜⎝
log

⎡⎢⎢⎢⎣

∑�
BwD

3

12

�

W

⎤⎥⎥⎥⎦

⎞⎟⎟⎟⎠
− 1.80 = 2.10

⎛⎜⎜⎜⎝
log

⎡⎢⎢⎢⎣

L

s

�
BwD

3

12

�

W

⎤⎥⎥⎥⎦

⎞⎟⎟⎟⎠
− 1.80, Hs ≥ 3m

Fig. 7   Predicted and actual values of Δmax after training the datasets for a stiffened rafts on shrinking soil, b stiffened rafts on swell-
ing soil, c waffle rafts on shrinking soil, and d waffle rafts on swelling soil
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where Δa is the allowable deflection of the residential 
footing system, comparable to the target output Δmax. 
Noting, the allowable footing system deformation, 
Δa, is the predicted Δmax from the DL calculations. 
The calculation of ys and ym using the AS 2870-2011 
method and the approximation of the value of Hs are 
described in the Appendix.

Findings show that the feature ys has strongly 
influenced the values of Δmax using the AS 2870-
2011 models—Eqs.  (15) and (16)—as illustrated 
in Fig.  11a. Higher-order feature interactions were 
also revealed to be negligible since the value of ST 
(Fig. 11b) for each feature is similar to S1 (Fig. 11a), 
and the values of S2 in Fig. 11c is negligible.

Calculations using the DL model were employed 
to compare the design guideline of AS 2870-2011 as 
presented in Fig. 12. The DL computation used con-
stant values for ys, ym, L, W, p, and εms, whilst the val-
ues of D, q, and Hs were varied. The upper limit of ys 
of a Class H2 site was considered in this specific 

comparison– with a total shrinking and swelling 
movement of 75 mm. To calculate the values of ym, 
the findings of Teodosio et  al. (2020b) were used, 
multiplying ysusing a factor of 0.82–0.70 depending 
on the value of D for shrinking and 0.88 for swelling. 
The values of L, W, p, and εms were taken to be 15 m, 
15 m, 2500 N m−2, and 7%, respectively. The values 
of D varied from 0.25 to 1.5  m, with an interval of 
0.5 m, for stiffened rafts and waffle rafts. Magnitudes 
of q were specified to be 20,000 N m−1 for shrinking 
and 6500 N m−1 for swelling. This will consider the 
critical scenarios in Fig.  1 where higher line loads 
around the perimeter of residential footing systems 
govern shrinking. Contrarily, the lower magnitude of 
line loads applied to residential footing systems on 
swelling reactive soils is desired since higher applied 
perimeter loads generally counteract the deformation 
due to expanding ground movement. The values of Hs 
were specified as 2.5, 3.0, 3.5, and 4.0 m, for a mean-
ingful comparison with the AS 2870-2011 method. 

Fig. 8   Predicted and actual values of Δmax after testing the datasets for a stiffened rafts on shrinking soil, b stiffened rafts on swell-
ing soil, c waffle rafts on shrinking soil, and d waffle rafts on swelling soil
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The values of Δmax were then calculated using the DL 
models. To show the disparity of values between the 
soil and the footing system movement, the constant 

value of ys was then divided by the Δa resulting in the 
ordinate 

(
ys

Δa

)
 . The abscissa or the unit stiffness 

�
log

�∑�
BwD3

12

�

W

��
 was then calculated and scatter 

plots between the ordinate and abscissa were created 
for comparison (see Fig. 12) (Table 5).

The computed values of the DL and AS 2870-2011 
models for stiffened rafts on shrinking reactive soil 
are plotted in Fig.  12a. It can be observed that the 
curves formed parabolic shapes reflecting the highly 
non-linear interaction between stiffened rafts and 
shrinking reactive soil. The formation of the para-
bolic shapes in Fig.  12a was perhaps mainly caused 
by a change in the values of D with respect to the 
value of Hs. This means that an increasing value in 
the abscissa indicates an increase in D since Bw and 
W were constant in this comparison. On the other 
hand, an increase in the ordinate means the disparity 
of the values between ys and Δa becomes larger. In 
contrast, the curves of AS 2870-2011 model in 
Fig.  12a are linear, denoting that an increase in ys, 
will require a deeper edge and inner beams of a resi-
dential footing system. The two values of unit stiff-
ness D suggest that a shallower D can have equal 
ordinate value to a deeper D. The reason behind this 
is the constant swelling of the soil around the edge 
beams of stiffened rafts, as observed by Fityus et al. 

Fig. 9   Sobol indices showing a the first-order Sobol indices 
(S1) and b the total-order indices (ST) for all input features

Fig. 10   Sobol indices showing the second-order Sobol indices (S2) indicating the influence of the interaction of two features to the 
target output
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(2004), Shams et  al. (2018), and Teodosio et  al., 
(2020b). Due to the lateral pressure from the con-
stantly expanding soil beneath the portion of the foot-
ing system near the edge beams, this portion is 
pushed upward. Thus, having deeper edge beams or a 
higher value of D may lead to a higher movement dis-
parity between ys and Δa. A useful result of this graph 
is the vertex of the parabolic shape where the value of 
the ordinate started rising again. This shows that the 
vertex was the optimum unit stiffness or D for the 
stiffened raft on shrinking soil depending on Hs (e.g., 

log

�∑�
BwD3

12

�

W

�
 ≈ 9.7 for Hs = 4.0 m).

The design lines of stiffened rafts on swelling reac-
tive soil are shown in Fig. 12b with the curves of both 
the DL neural network and AS 2870-2011 model. 
The DL curves formed an exponential trend contrary 
to the linear trend of the AS 2870-2011 curves. These 
exponential lines denote that an increase in ys, assum-
ing Δa is constant, will require higher unit stiffness or 
D. It can be observed in Fig. 12b that the lines with 
Hs ≥ 3.0 m coincided, signifying that the ordinate, ys

Δa

 , 
was not driven by the depth Hs but influenced more 
by the structural features D and W, is consistent with 
the sensitivity analysis.

The design lines of waffle rafts on a shrinking 
reactive soil are presented in Fig.  12c. The curves 
formed by the DL model are of an exponential trend 
similar to the case of stiffened rafts on swelling soil 
(Fig. 12b). These curves show that an increase in ys 
will entail higher unit stiffness or D. Portions of the 
exponential lines were parallel or coinciding with the 
AS 2870-2011 models (Standards Australia 2011). 
However, the curves created by the DL model formed 
a nearly horizontal portion with unit stiffness values 
less than 9.0 N/m.

The results of the DL and AS 2870-2011 models 
for waffle rafts on swelling reactive soil are shown 
in Fig. 12d. The formed trend lines of the DL mod-
els are complex and comprised of exponential lines 
extending up to a unit stiffness value of 9.7 N/m and 
then significantly reducing down to 10.4  N/m. The 
unit stiffness value of 9.7 N/m is similar to the inflec-
tion point in Fig. 12a, which is a critical value of D 
in reducing the difference between the ys to Δa ratio. 
The exponential portion implied that an increase in 
ys would necessitate an increase in unit stiffness or 
D. The decreasing portion of the trend line suggests 
that there should be additional support of beams with 
deeper D due to added dead load against the swelling 
soil.

In summary, the DL model can capture the non-
linear nature of the relationship between the ordinate 
and abscissa. Furthermore, the soil-structure inter-
action and driving features differ depending on the 
type of residential footing system (e.g., stiffened raft 
versus waffle raft). Contrary to the design graphs pre-
sented in AS2870-2011, the design lines of the DL 
models signify that an increased value of D can either 

Fig. 11   Sobol indices of the established design guideline in 
AS 2870-2011 (Standards Australia 2011) showing a the first-
order Sobol indices (S1), b the total-order indices (ST) for all 
scenarios, and c the second-order Sobol indices
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Fig. 12   Results of the comparison of the DL model and the 
AS 2870-2011 (Standards Standards Australia 2011) guide-
line for a stiffened rafts on shrinking soils, b stiffened rafts on 

swelling soils, c waffle rafts on shrinking soils, and d waffle 
rafts on swelling soils

Table 5   Upper and lower bounds to generate the input features for the AS 2870-2011 guidelines in Eqs. (15) and (16) for the Saltelli 
(2002) method

The lower bound and the upper bound values for the shrinking and swelling scenarios were based on AS 2870-2011

ys (mm) B (mm) D (m) L (m) W (kN/m2) s (spac-
ing) (m)

Shrinking
Lower bound (min) − 100 110 0.25 5 5 1
Upper bound (max) 0 400 1.20 30 30 5
Swelling
Lower bound (min) 0 110 0.25 5 5 1
Upper bound (max) 100 400 1.20 30 30 5
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have a positive or a negative impact on the residential 
footing system depending on whether the reactive soil 
underneath is shrinking or swelling (e.g., Fig. 12a, d).

5 � Conclusion

This study implemented DL neural networks to 
predict the maximum deformation of stiffened rafts 
and waffle rafts, Δmax, as the targeted output. The 
DL model captured highly non-linear relationships 
of various input features (ys, ym, D, L, W, p, q, Hs, 
and εms) and their effect on Δmax. The sensitiv-
ity analyses revealed that the influence of features 
varies depending on the type of residential footing 
system (i.e., stiffened raft or waffle raft) and the 
movement of reactive soil (i.e., shrinking or swell-
ing). For stiffened rafts on shrinking soils, the main 
parameters impacting Δmax are the spatial dimen-
sion of the foundation (i.e., L and W) and the depth 
of active soil layer Hs. For stiffened rafts on swell-
ing soils, ym, D, and W strongly influenced Δmax. 
Contrarily, the DL models of waffle rafts are either 
strongly influenced by the soil features (i.e., ys, ym, 
and Hs) when on shrinking soil or by the structural 
feature D when on swelling soil. This shows that 
the DL models for stiffened rafts have a stronger 
soil-structure interaction due to the embedment of 
the beams.

The DL calculations were then compared to the 
estimations of the established design guideline AS 
2870-2011. The DL formed non-linear curves on ys

Δa

 

versus the log

�∑�
BwD3

12

�

W

�
 space whereas the corre-

sponding estimations of AS 2870-2011 showed lin-
ear graphs. The behaviour of the soil-structure 
interaction and the influence of features vary con-
tingent on the structural type and whether the 
beams are embedded (e.g., stiffened rafts) or not 
(e.g., waffle raft). An increased magnitude of D can 
have desirable or undesirable effects on the global 
residential footing system, dependent on whether 
the reactive soil underneath is shrinking or 
swelling.
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Appendix

The estimation of the characteristic surface move-
ment (ys) of the reactive soil in the Australian Stand-
ard (AS) 2870-2011 is described by Eq. 17,

where Δu̅ is the averaged soil suction, h is the thick-
ness of the considered layer, N is the number of soil 
layers, and Ipt is the instability index described as

where Ips is the shrinkage index and α is the lateral 
restraint factor with the value taken for the layers in 
the cracked zone as 1.0 or the layers in the uncracked 
zone calculated as

(17)ys =
1

100

N∑
n=1

(IptΔuh)n

(18)Ipt = �Ips

http://creativecommons.org/licenses/by/4.0/


963Geotech Geol Eng (2023) 41:943–965	

1 3
Vol.: (0123456789)

where z is the depth to the middle of the soil layer 
from the finished ground level.

Values of the soil mound movement, ym, can be 
estimated using the Walsh Method and Mitchell 
Method. To determine the values of ym using Walsh 
Method in the centre heave and edge heave scenario, 
values of ys are multiplied by 0.7 and 0.5, respec-
tively. Using Mitchell Method, values of ys for both 
the centre heave and edge heave scenarios are multi-
plied by 0.7.

The active depth zone, Hs, is the depth of the 
design where the change in soil suction occurs. This 
parameter is highly dependent on both soil proper-
ties and climatic variation. AS 2870-2011 specified 
the values of Hs in specific locations in Australia, as 
listed in Table 6.
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