

Program NATCON: For the numerical solution of buoyancy-driven
laminar and turbulent flows in differentially heated cavities

by

Mahesh Prakash.
CSIRO Mathematical and Information Services

Private Bag 10, Clayton South, 3169

Özden F. Turan, and Graham R. Thorpe.
School of Architectural, Civil and Mechanical Engineering

Victoria University
PO Box 14428

Melbourne, Australia, 8001

Occasional Paper Number 1

July 2006

 PROGRAM NATCOM

PREFACE

Books on computational fluid dynamics (CFD) are often quite theoretical and general, and as

such they do not provide users with definitive advice on how to translate the theory into a

practical working computer code. On the other hand commercial CFD packages require users to

have little or no theoretical knowledge, and they are menu-driven and applications orientated.

There are therefore gaps between generalized theory, the writing of ‘own-code’ and commercial

CFD packages. Furthermore, for all of their flexibility commercial CFD packages are often

unable to solve the precise problem posed by the user, and user-defined functions have to be

written. This requires at least some knowledge of how CFD codes are structured. Students and

researchers new to the field of CFD need an interface that relates the differential equations that

govern heat, mass and momentum transfer in fluids to CFD codes. If students had access to such

an interface their rate of progress could be much higher. This report aims to bridge the gap

between theory and application.

The report correlates the equations that govern fluid flow and heat transfer with a FORTRAN 90

code. The program uses the finite volume method, as this has become a widely used technique

amongst CFD practitioners. Procedures for discretising the partial differential equations that

govern the physics along with how the resulting linear algebraic equations are solved have been

described in detail. The grid generation procedure has been discussed at some length, as this is

important if the discretisation procedure is to be accurate. The implementation of the hybrid

discretisation scheme is illustrated, and it is felt that this will facilitate users to experiment with

other schemes. The effects of turbulence are captured using a k-ε model that has been modified

to account for near wall effects.

It is strongly recommended that readers use this report along with the book by Patankar (1980) in

order to maximize the benefits of this document. Before developing the code the authors had

access to the TEACH code that has become ubiquitous, and it shares a similar structure and

nomenclature of the TEAM code developed at the University of Manchester (Craft et al., 2002).

Users are advised to retain this structure when making modifications to the program so that it

 i

 PROGRAM NATCOM

retains a certain universality. The program has been validated against other programs and

experimental data as described in Prakash’s PhD thesis (2001).

The source code for the case of buoyancy-driven laminar and turbulent flows in differentially

heated cavities may be obtained from the authors.

The authors would like to acknowledge Dr Yuguo Li, Dr Li Chen, Dr Jun-de Li and Dr Longde

Zhao for their valuable contributions and comments.

 M. Prakash

 Ö. F. Turan

G. R. Thorpe

 ii

 PROGRAM NATCOM

CONTENTS

 PREFACE i

 CONTENTS iii

1. INTRODUCTION 1

2. PROBLEM DESCRIPTION 2

3. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 4

3.1 Laminar solutions

3.2 Turbulent solutions

3.2a Modifications for low Reynolds number models

3.3 Boundary conditions
3.3a Boundary conditions for k and ε

4. NON-DIMENSIONAL EQUATIONS 8

5. SUBROUTINES INIT AND READDATA

(GRID GENERATION, INITIALIZATION AND
READING THE INPUT DATA FILE) 10

6. PROGRAM FLOW CHART 23

7. SUBROUTING LISOLV

(GAUSS-SIEDEL LINE BY LINE SOLVER) 24

8. SUBROUTINES CALCU AND CALCV
(MOMENTUM EQUATIONS) 28

9. SUBROUTING CALCP
(PRESSURE CORRECTION EQUATION) 37

10. SUBROUTINE PROPS

(MODIFICATION TO FLUID PROPERTIES) 42

11. SUBROUTINE CALCT
 (THERMAL ENERGY EQUATION) 43

12. SUBROUTINE CALCTE
 (EQUATION FOR TURBULENT KINETIC ENERGY) 45

 iii

 PROGRAM NATCOM

13. SUBROUTINE CALCED
 (ENERGY DISSIPATION EQUATION) 49

14. SUBROUTINE PROMOD
 (BOUNDARY CONDITIONS) 53

15. SUBROUTINE UPDATE
 (UNSTEADY CALCULATIONS) 57

16. SUBROUTINE DUMP
 (RESTARTING CALCULATIONS) 58

17. INPUT AND OUTPUT 58

 17.1 Input

 17.2 Output

18. MAIN PROGRAM 63

19. REFERENCES 70

 iv

 PROGRAM NATCOM

1. INTRODUCTION

There are conceptual barriers between the mathematical formulation of fluid mechanics

problems in terms of continuous equations, the discretisation of the equations and numerical

methods to solve them, and their ultimate coding in a high-level computer language. This work is

essentially didactic in that it aims to reduce these barriers and help students to understand how cfd

codes actually work. They will then be in a good position to write their own codes, understand

other people’s codes, and commercial cfd packages will no longer appear to be solely menu-driven

‘black boxes’.

This report contains a detailed description of the program NATCON that solves, using the

finite volume method, the equations that govern two-dimensional buoyancy driven turbulent flows

in a rectangular enclosure. Natural convection flow occurs due to a temperature difference

imposed on the opposite walls of the enclosure. The problem description is presented in Section 2.

The program has a provision to solve steady and unsteady problems with laminar or

turbulent flows. The standard k-ε model originally proposed by Harlow and Nakayama (1967)

with some modification for natural convection flows (described in Section 3) is used as the

turbulence model. Low Reynolds number k-ε models can also be used with some minor

modifications to the program. This is also described in Section 3. A description of the non-

dimensional equations is given in Section 4. A proper choice of the non-dimensional scheme can

have a significant saving on the computer time by way of a reduction in the rounding off errors.

The concept of staggered grid to solve the discretized partial differential equations along

with grid generation is described in Section 5. Section 5 also describes subroutines READDATA

and INIT.

The Gauss Seidel line by line solver, used to solve all the partial differential equations is

described in Section 7.

Section 8 describes subroutines CALCU and CALCV in which the momentum equations

are encoded. The SIMPLE algorithm described in Patankar and Spalding (1972) is used to ensure

that continuity of mass is conserved. The pressure correction equation forms the backbone of the

SIMPLE algorithm, which, along with subroutine CALCP is described in Section 9.

Section 10 describes subroutine PROPS that can be used to make changes to the fluid

properties. Section 11 describes subroutine CALCT for the thermal energy equation. Sections 12

 1

 PROGRAM NATCOM

and 13 describe subroutine CALCTE and CALCED for the turbulent kinetic energy and energy

dissipation respectively.

Subroutine PROMOD that is used to assign boundary conditions to all the variables is

described in Section 14. Section 15 describes subroutine UPDATE that is used for unsteady state

calculations to update variables after each time iteration. Section 16 describes subroutine DUMP

used to restart calculations using a previously calculated field.

The input required for the program and the output in numerical and graphical form are

described in Section 17. The main program is listed in Section 18.

2. PROBLEM DESCRIPTION

Consider a closed rectangular cavity, which, is subjected to different thermal boundary

conditions. The cavity can have a fluid heated from below with adiabatic vertical walls. This

gives rise to a Rayleigh-Benard type of flow. One can also have the vertical walls at different

temperatures with adiabatic horizontal walls. All other instances such as conducting horizontal

walls with vertical walls at different temperatures, and a cavity with tilted axes are special cases

which can be easily achieved with some minor modifications to the present program.

A particularly simple case that illustrates the key features of buoyancy driven flows is a

cavity that has differentially heated vertical walls and floors that are adiabatic. Figure 1 shows the

heating from the side case as a representative system with the rectangular cavity filled with a fluid.

In the figure, Q is the heat flux and is zero for the adiabatic horizontal walls, Th represents the

temperature of the hot wall, Tc represents the temperature of the cold wall, H is the total height and

L is the total length of the rectangular cavity. Vector g represents acceleration due to gravity. Since

the heat flux Q is the first derivative of temperature with respect to space this condition can be

mathematically represented as 0
y
T
=

∂
∂ at y=0 and y=H.

The problem satisfies the following conditions:

(a) The fluid is “almost” incompressible and satisfies the Boussinesq approximation

[details can be found in Gray and Giorgini (1976)] which implies that the variation of

 2

 PROGRAM NATCOM

density with temperature is negligible except in the buoyancy term of the equation of

motion. The buoyancy term occurs in the y-component equation of motion, Equation 3

in Section 3. The density in the buoyancy term is linearized according to

)TT(1
)T(
)T(

o
o

−−= β
ρ
ρ (1)

where, ρ is the fluid density, T is the local fluid temperature, To is a reference temperature

and β is the thermal expansion coefficient of the fluid.

L

Figure 1. Square cavity that has, vertical walls maintained at different temperatures, and floors that are

adiabatic.

 X
Q=0

Q=0

H

 g

 Th Tc

 Y

(b) All other thermodynamic and transport properties of the fluid are constant.

(c) The z dimension is much greater than the x and y dimensions and thus the problem can

be considered as essentially two-dimensional.

The requirements for these assumptions to be valid must be carefully examined before using the standard program. If

any of these assumptions were not valid for a nonstandard problem the program would have to be modified so that it

satisfies the specific requirements of the problem.

 3

 PROGRAM NATCOM

3. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The following set of partial differential equations is solved in the present program.

1. Equation of continuity:

0
y

)v(
x

)u(
t

=
∂

∂
+

∂
∂

+
∂
∂ ρρρ (2)

in which t represents time, u and v are the components of the fluid velocity in the x and y
directions respectively.

2. Momentum equation in the x direction:

() () ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂

+
∂
∂

x
v

y
u

yx
u2

xx
p

y
uv

x
uu

t
u

tt µµµµρρρ (3)

in which p

n
Unsteady

term Pressure n

3. Momentum

+
∂
∂ u

t
v ρρ

4. Thermal e

+
∂
∂ u

t
T ρρ

T is the l

Prandtl nu

5. Turbulent

Advectio
 is pressure, µ the fluid viscosity an

 equation in the y direction:

()⎢
⎣

⎡
⎜⎜
⎝

⎛
+

∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂ 2

yy
p

y
vv

x
v

tµµρ

)TT(g o−+ βρ

 Buoyancy

nergy equation:

⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

=
∂
∂

+
∂
∂

x
T

Prxy
Tv

x
T

T

t
σ
µµρ

ocal fluid temperature, Pr is the

mber for temperature.

 kinetic energy equation:

4

 Diffusio
d µt the eddy or turbulent viscosity.

() ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+⎥
⎦

⎤
⎟⎟
⎠

⎞
∂
∂

x
v

y
u

xy
v

tµµ

 (4)

⎥
⎦

⎤
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

+⎥
⎦

⎤

y
T

Pry T

t
σ
µµ (5)

fluid Prandtl number and σT is the turbulent

 PROGRAM NATCOM

DGP
y
k

yx
k

xy
kv

x
ku

t
k

kk
k

t

k

t +−++
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂ ρε

σ
µ

µ
σ
µ

µρρρ

 (6)

k is the turbulent kinetic energy, σk is the turbulent Prandtl number for k and ε is the rate of

energy dissipation. D represents a term which arises when low Reynolds number turbulence

models are implemented.

6. Equation for the rate of energy dissipation:

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

yyxxy
v

x
u

t
tt ε

σ
µµε

σ
µµερερερ

εε

E
k

)fc)GcP(fc(23k3k11 +−+
εερ εεε (7)

with

 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
222

tk x
v

y
u

y
v2

x
u2P µ

y
TgG

T

t
k ∂

∂
−= β
σ
µ

ε

ρµ µµ

2

t
kfc=

E is a term which occurs when low Reynolds number turbulence models are used.

σε is the turbulent Prandtl number for ε.

The following values are empirical constants used in the standard k-ε model.

cµ=0.09, cε1=1.44, cε2=1.92, σT=0.9, σk=1.0, σε=1.3, fµ=f1=f2=1.0.

3.1 Laminar Solutions

For laminar solutions, Equations (6) and (7) are not used for calculations and the eddy

viscosity, µt, is taken as zero. The variables u, v, p and T are instantaneous quantities for laminar

calculations. One can either use a steady approach or a transient approach for laminar calculations.

In the former case the time derivatives in Equations (2), (3), (4) and (5) are set to zero. Since no

 5

 PROGRAM NATCOM

modifications are carried out in arriving at the unsteady formulation, the solution obtained would

approximate to a true transient solution.

3.2 Turbulent Solutions

For turbulent solutions, Equations (6) and (7) are solved simultaneously with Equations (2),

(3), (4) and (5). Variables, u, v, p and T are, time averaged quantities for turbulent calculations.

Here again one can either use a steady approach or approach the steady state solution by integrating

through time.

The time derivatives in the time-averaged, Navier-Stokes equation represent the large time

behaviour according to Henkes (1990). However the nature of the transient solution will depend on

the type of turbulence model used. Thus the transient solution cannot be called a true transient.

The eddy viscosity, µt, is introduced in the form of a modification to the fluid viscosity as

described in Section 10. Quantities D and E represent terms that need to be added for low

Reynolds number k-ε models. For the standard k-ε model, D and E are set equal to zero.

More recent experimental data on natural convection in a differentially heated cavity have

been provided by Ampofo and Karayiannis (2003) against which the various models may be

compared.

3.2a Modification for low Reynolds number models

 Low Reynolds number models of Chien (1982) and Jones and Launder (1972) are given as

examples.

1. Low Reynolds number k-ε model of Chien (1982)

cµ=0.09, cε1=1.35, cε2=1.8, σT=0.9, σk=1.0, σε=1.3

 fµ=1-exp(-0.0115x+), f1=1.0,))6/(Reexp(
9
21f 2

t2 −−= ,

2
nx

k2D µ−= ,)x5.0exp(
x

2E 2
n

+−−=
µε .

2. Low Reynolds number k-ε model of Jones and Launder (1972)

 6

 PROGRAM NATCOM

cµ=0.09, cε1=1.44, cε2=1.92, σT=0.9, σk=1.0, σε=1.3

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
50/Re1

5.2expf
t

µ , f1=1.0, ,)Reexp(3.01f 2
t2 −−=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

−=
22

y
k

x
k2D µ ,

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

= 2

22

2

2
t

x
v

y
u2E

ρ
µ

µ .

3.3 Boundary Conditions

For calculations involving laminar flow natural boundary conditions are applied for u, v and

T. The no-slip and impermeable boundary condition is applied to the u and v velocities.

For the temperature,

 T=Th at x=0

T=Tc at x=L

0
y
T
=

∂
∂ at y=0

0
y
T
=

∂
∂ at y=H

For calculations of turbulent flow wall functions can be introduced for velocities and

temperature as well as for k and ε. However in the present formulation, wall functions are used

only for k and ε and the other variables are solved up to the wall.

3.3a Boundary conditions for k and ε

1. Standard k-ε model.

()
µµ fc

uk
2*

= , ()
y

u
3*

κ
ε = at the first inner grid point.

where u*
 is friction velocity defined by

ρ
τw*u =

 7

 PROGRAM NATCOM

where wτ is the wall shear stress calculated from
w

w y
u
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
ρ
µτ

 κ is Von Karman’s constant=0.41

and y is the normal distance from the wall.

2. Low Reynolds number models of Chien and Jones and Launder.

 0k == ε at the wall.

4. NON-DIMENSIONAL EQUATIONS

A non-dimensional form of the equations reduces the number of independent parameters in

the equations and makes the solutions more general for a given set of parameters. It aids in saving

computer time by increasing the speed of convergence of the solution. The non-dimensional

equations are derived in such a way that only the fluid Prandtl number and Rayleigh number are

the dimensionless parameters.

The fluid Prandtl number is defined as
f

p

k
C

Pr
µ

= , where Cp is the specific heat of the fluid

and kf is the fluid thermal conductivity. The Rayleigh number is defined as 2

32 PrTHgRa
µ
∆βρ

= ,

where g is acceleration due to gravity and ∆T is the temperature difference between the hot and
cold wall.

In case of natural convection flows, for low Prandtl number fluids like gases as well as low

viscosity liquids, the convective acceleration term is balanced by the buoyancy term in the

momentum equation. Let the subscript ref, represent a reference value for all variables and

superscript * represent the non-dimensional variable.

Thus one can write,

ref

*

u
uu = ,

ref

*

u
vv = ,

ch

ref*

TT
TT

T
−

−
= ,

H
xx* = ,

H
yy* = ,

ref

*

p
pp = ,

ref

*

ε
εε = ,

ref

*

k
kk = ,

ref

*

ρ
ρρ = ,

ref

*

µ
µµ = ,

ref

t*
t µ

µ
µ = ,

ref

*

t
tt = .

 8

 PROGRAM NATCOM

 Using the above non-dimensional variables one can equate the convective acceleration term

and buoyancy term in Equation (3) and arrive at: THguref ∆β= . By equating the convective

acceleration term with the pressure term one then obtains: . The reference temperature

is taken as (T

2
refref up ρ=

c+Th)/2. The reference density and viscosity are taken as the fluid density and

viscosity respectively.

 The reference time tref, is taken as the ratio of the reference length scale and the reference

velocity scale, i.e.
THg

Htref
∆β

= .

 The reference values for turbulent kinetic energy and energy dissipation are derived with

the aid of perturbation theory which is described in Wilcox (1993) and are respectively given as:

2
refref uk = ,

H
u 3

ref
ref =ε .

Using the non-dimensional parameters and dropping the superscript * from all the variables,

Equations (2) through (7) can be written as,

1. Equation of continuity:

0
y

)v(
x

)u(
t

=
∂

∂
+

∂
∂

+
∂
∂ ρρρ (8)

2. Momentum equation in the x direction:

() () ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂

+
∂
∂

x
v

y
u

yRa
Pr

x
u2

xRa
Pr

x
p

y
uv

x
uu

t
u

tt µµµµρρρ (9)

3. Momentum equation in the y direction:

() () ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂

+
∂
∂

x
v

y
u

xRa
Pr

y
v2

yRa
Pr

y
p

y
vv

x
vu

t
v

tt µµµµρρρ

 9

 PROGRAM NATCOM

)TT(o−+ (10)

3. Thermal energy equation:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

y
TPr

yRaPr
1

x
TPr

xRaPr
1

y
Tv

x
Tu

t
T

T

t

T

t
σ
µµ

σ
µµρρρ (11)

4. Turbulent kinetic energy equation:

kk
k

t

k

t GP
y
k

yRa
Pr

x
k

xRa
Pr

y
kv

x
ku

t
k

++
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

σ
µµ

σ
µµρρρ

ρε− (12)

5. Equation for energy dissipation:

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

yyRa
Pr

xxRa
Pr

y
v

x
u

t
tt ε

σ
µµε

σ
µµερερερ

εε

k
)fc)GcP(fc(22k3k11
εερ εεε −+ (13)

with

 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
222

tk x
v

y
u

y
v2

x
u2

Ra
PrP µ

y
T

RaPr
1G

T

t
k ∂

∂
−=

σ
µ

ε

ρµ µµ

2

t
kfc

Pr
Ra

=

The non-dimensional forms of the equations are now used along with their boundary

conditions. The temperatures Th and Tc become equal to 1 and 0 on a non-dimensional scale.

5. SUBROUTINES INIT AND READDATA (GRID GENERATION, INITIALIZATION AND

READING THE INPUT DATA FILE)

The calculation of all variables (i.e., vectors u and v and scalars p, T, k and ε) at one point

leads to a non-uniform pressure filed being represented as a uniform pressure field. Also, a

physically unrealistic velocity field seems to satisfy the discretized continuity equation. These

problems associated with the primitive variable formulation have been described in Patankar

 10

 PROGRAM NATCOM

(1980). The problem is overcome by using a different set of points to calculate vectors and scalars.

This is called the staggered grid concept where the calculation points for vectors are staggered with

respect to the calculation points for scalars. Such a staggered grid for velocity components was

first used by Harlow and Welch (1965).

In the staggered grid, the velocity components are calculated for the points that lie on the

faces of a control volume. Thus, the x-component of velocity u is calculated at the faces that are

normal to the x-direction. The locations for u are shown in Figure 2 by short arrows, while the grid

points (hereafter called the main grid points) are shown by the intersections of the solid lines; the

dashed lines indicate the control-volume faces.

 x

 y

Figure 2. Staggered locations for u

Note that with respect to the main grid points, the u locations are staggered only in the x

direction. Similarly the v locations are staggered only in the y direction. Scalar variables like T, p,

k and ε are calculated at the main grid points.

 11

 PROGRAM NATCOM

Grids are developed, by using algebraic functions for grid spacing (non-uniform or uniform

grid spacing). The staggered grid points are first developed. They are represented as xu(i) and yv(j)

for x and y directions respectively. The main grid points are then calculated by using the staggered

grid locations. Figure 3 shows the staggered and main grid locations xu(i) and x(i) respectively for

the x direction on a 7x7 grid. Note that the boundary of the diagram is the physical boundary of the

cavity. The staggered grid starts with xu(2) whereas the main grid starts with x(1). Note that xu(2)

= x(1) and xu(ni) = x(ni) with ni = 7. This representation allows the imposition of natural boundary

conditions for scalar and vector quantities. In the x direction, calculations for u velocity starts at

xu(3) and ends at xu(ni-1)=xu(6) whereas calculations for scalars and v velocity start at x(2) and

end at x(ni-1) = x(6). Similarly in the y direction, calculations for v velocity starts at yv(3) and ends

at yv(nj-1) = yv(6) whereas calculations for scalars and u velocity start at y(2) and end at y(nj-1) =

y(6).

XU(6) X(6) XU(7)
=X(7)

XU(3) X(2) XU(2)
=X(1)

 Figure 3. Main and Staggered grid locations for a 7x7 grid

 12

 PROGRAM NATCOM

The staggered grid generation is given as GRID GENERATION FUNCTIONS in

SUBROUTINE READDATA and the development of the main grids from the staggered grids is

shown as CALCULATE GEOMETRICAL QUANTITIES in SUBROUTINE INIT.

This part of the program is given below:

NIM1=NI-1
 NJM1=NJ-1
 NIM2=NI-2
 NJM2=NJ-2

C GRID GENERATION FUNCTIONS (development of the staggered grid. This is a part C of

SUBROUTINE READDATA)

 DO 101 I=2,NI
 XU(I)=ELBYH*((I-2)/FLOAT(NIM2)-1/(2*3.14159)*SIN(2*3.14159*(I-2)
 1/FLOAT(NIM2)))
 101 CONTINUE

 DO 105 J=2,NJ
 YV(J)=((J-2)/FLOAT(NJM2)-1/(2*3.14159)*SIN(2*3.14159*(J-2)
 1/FLOAT(NJM2)))
 105 CONTINUE

 In the example presented above a sine function is used for generating the staggered grid in

the x and y directions. This function can be expressed mathematically as:

() 2 1 sin 2

max 2 max
xu i i i

H i i
π

π
− ⎛= − ⎜

⎝ ⎠
⎞
⎟ i=imin, imax

() 2 1 sin 2
max 2 max

yv j j i
H j i

π
π

− ⎛= − ⎜
⎝ ⎠

⎞
⎟ j=jmin,jmax

where imin=jmin=2, imax=NI-2 and jmax=NJ-2 .

 The sine function gives rise to a non-uniform grid which is closely spaced near the

wall and sparsely spaced away from the wall. Similarly any other function can be used to define

the staggered grid. ELBYH represents the ratio of the length to the height of the cavity. Once the

staggered grid is generated, the main grids are created by using the staggered grid co-ordinates in

SUBROUTINE INIT. X(I) and Y(J) represent the main grid locations.

 13

 PROGRAM NATCOM

SUBROUTINE INIT

 INCLUDE 'common.h'

C CALCULATE GEOMETRICAL QUANTITIES
 X(1)=XU(2)
 X(NI)=XU(NI)
 DO 101 I=2,NIM1
 101 X(I)=0.5*(XU(I+1)+XU(I))

 Y(1)=YV(2)
 Y(NJ)=YV(NJ)

 DO 102 J=2,NJM1
 102 Y(J)=0.5*(YV(J+1)+YV(J))

 DXPW(1)=0.0

C (DXPW(I), distance between two consecutive main grid points in the x-direction

C starting from X(2) to X(NI))

 DXEP(NI)=0.0
C (DXEP(I), distance between two consecutive main grid points in the x-direction

C starting from X(1) to X(NIM1))

 DO 103 I=1,NIM1
 DXEP(I)=X(I+1)-X(I)
 103 DXPW(I+1)=DXEP(I)

 DYPS(1)=0.0

C (DYPS(J), distance between two consecutive main grid points in the y-direction

C starting from Y(2) to Y(NJ))

 DYNP(NJ)=0.0

C (DYNP(J), distance between two consecutive main grid points in the y-direction
C starting from Y(1) to Y(NJM1))

 DO 104 J=1,NJM1
 DYNP(J)=Y(J+1)-Y(J)
 104 DYPS(J+1)=DYNP(J)

 14

 PROGRAM NATCOM

 DXPWU(1)=0.0
 DXPWU(2)=0.0

C (DXPWU(I), distance between two consecutive staggered grid locations in the x-

C direction starting from XU(3) to XU(NI))

 DXEPU(1)=0.0
 DXEPU(NI)=0.0

C (DXEPU(I), distance between two consecutive staggered grid locations in the x-

C direction starting from XU(2) to XU(NIM1))

 DO 105 I=2,NIM1
 DXEPU(I)=XU(I+1)-XU(I)
 105 DXPWU(I+1)=DXEPU(I)

 DYPSV(1)=0.0
 DYPSV(2)=0.0

C (DYPSV(J), distance between two consecutive staggered grid locations in the y-

C direction starting from YV(3) to YV(NJ))

 DYNPV(1)=0.0
 DYNPV(NJ)=0.0

C (DYNPV(J), distance between two consecutive staggered grid locations in the y-

C direction starting from YV(2) to YV(NJM1))

 DO 106 J=2,NJM1
 DYNPV(J)=YV(J+1)-YV(J)

 106 DYPSV(J+1)=DYNPV(J)

 DO 107 I=1,NI
 107 SEW(I)=DXEPU(I)

C (SEW(I), area associated with the non-staggered control volume in the x-direction)

 DO 108 J=1,NJ
 108 SNS(J)=DYNPV(J)

C (SNS(J), area associated with the non-staggered control volume in the y-direction)

 DO 109 I=1,NI
 109 SEWU(I)=DXPW(I)

C (SEWU(I), area associated with the staggered control volume in the x-direction)

 DO 110 J=1,NJ

 110 SNSV(J)=DYPS(J)

 15

 PROGRAM NATCOM

C (SNSV(J), area associated with the staggered control volume in the y-direction)

As already mentioned the walls of the cavity are located at the staggered locations in order to

facilitate the application of the no-slip and impermeable boundary conditions. Thus XU(2),

XU(NI), YV(2) and YV(NJ) are located on the cavity walls. The main grid locations, X(1), X(NI),

Y(1) and Y(NJ) are set equal to XU(2), XU(NI), YV(2) and YV(NJ) respectively. X(1), X(NI),

Y(1) and Y(NJ) are dummy points and are not used for calculations. Such an allocation also

enables the use of natural boundary conditions for temperature at the wall. All other non-staggered

locations are positioned in between the staggered locations.

Before carrying out calculations all the necessary data are read in by using SUBROUTINE

READDATA. This subroutine in turn reads in the data file “IN.DAT”.

SUBROUTINE READDATA
 INCLUDE 'common.h'

C The include statement in FORTRAN does away with all common statements. This

C information is stored in the include file common.h.

 LOGICAL INCALU,INCALV,INCALP,INPRO,INCALK,INCALD,INCALM
1 ,INCALT,INHY,INCEN,STEADY

C These are logicals and are defined at the end of this listing.

 OPEN(2,FILE='in.dat')

C The file in.dat contains input parameters and is given in Section 17.

C GRID, ITERATION AND COMPARISON PARAMETERS

 READ(2,'(/////)')
 READ(2,*)GREAT,NITER,SMALL,NFTSTP,NLTSTP,STEADY,TFIRST
 WRITE(*,*)"GREAT NITER SMALL NFTSTP NLTSTP STEADY TFIRST"
 WRITE(*,*)GREAT,NITER,SMALL,NFTSTP,NLTSTP,STEADY,TFIRST
 READ(2,*)
 IF(STEADY)NFTSTP=1
 IF(STEADY)NLTSTP=1
 IF(STEADY) DT(1)=GREAT
 READ(2,*)IT,JT
 WRITE(*,*)"IT JT"
 WRITE(*,*)IT,JT
 READ(2,'(/)')

 16

 PROGRAM NATCOM

 READ(2,*)NSWPU,NSWPV,NSWPP,NSWPK,NSWPD,NSWPT
 WRITE(*,*)"NSWPU NSWPV NSWPP NSWPK NSWPD NSWPT"
 WRITE(*,*)NSWPU,NSWPV,NSWPP,NSWPK,NSWPD,NSWPT
 READ(2,'(/)')
 READ(2,*)NI,NJ,ELBYH
 WRITE(*,*)"NI NJ ELBYH"
 WRITE(*,*)NI,NJ,ELBYH

C TIME STEP FOR UNSTEADY CALCULATIONS
 READ(2,'(/)')
 READ(2,*)TSTEP
 WRITE(*,*)"TSTEP"
 WRITE(*,*)TSTEP

C DEPENDENT VARIABLE, DISCRETIZATION AND RESTART OPTIONS
 READ(2,'(/)')
 READ(2,*)INCALU,INCALV,INCALP,INCALK,INCALD,INPRO,INCALT
 WRITE(*,*)"INCALU INCALV INCALP INCALK INCALD INPRO INCALT"
 WRITE(*,*)INCALU,INCALV,INCALP,INCALK,INCALD,INPRO,INCALT
 READ(2,*)
 READ(2,*)INCALB,INHY,INCEN,VALUE
 WRITE(*,*)"INCALB INHY INCEN VALUE"
 WRITE(*,*)INCALB,INHY,INCEN,VALUE

C FLUID PROPERTIES
 READ(2,'(/)')
 READ(2,*)DENSIT,PRANDL,VISCOS,CPP
 WRITE(*,*)"DENSIT PRANDL VISCOS CPP"
 WRITE(*,*)DENSIT,PRANDL,VISCOS,CPP

C ALPHAF represents the thermal diffusivity of the fluid and is defined as
Prρ
µα =

 ALPHAF=VISCOS/(DENSIT*PRANDL)

C TURBULENCE CONSTANTS
 READ(2,'(/)')
 READ(2,*)CMU,CD,C1,C2,CAPPA,ELOG,PRTE,PRANDT
 WRITE(*,*)"CMU CD C1 C2 CAPPA ELOG PRTE PRANDT"
 WRITE(*,*)CMU,CD,C1,C2,CAPPA,ELOG,PRTE,PRANDT
 READ(2,*)
 READ(2,*)F1,F2
 WRITE(*,*)"F1,F2"
 WRITE(*,*)F1,F2

C PRED represents σε, the turbulent Prandtl number for ε.

 PRED=CAPPA*CAPPA/(C2-C1)/(CMU**.5)

 17

 PROGRAM NATCOM

 PFUN=PRANDL/PRANDT
 PFUN=9.24*(PFUN**0.75-1.0)*(1.0+0.28*EXP(-0.007*PFUN))

C BOUNDARY VALUES
 READ(2,'(/)')
 READ(2,*)TH,TC
 WRITE(*,*)"TH TC"
 WRITE(*,*)TH,TC

C INTERNAL HEAT GENERATION AND RAYLEIGH NUMBER
 READ(2,'(/)')
 READ(2,*)QGENER,RALI
 WRITE(*,*)"QGENER RALI"
 WRITE(*,*)QGENER,RALI

C TREF represents the reference temperature.

C BEITA represents β, the thermal expansion coefficient of the fluid.

C DELT represents ∆T.

 TREF=(TC+TH)/2
 BEITA=1/(273.15+TREF)
 DELT=TH-TC

C PRESSURE CALCULATION
 READ(2,'(/)')
 READ(2,*)IPREF,JPREF
 WRITE(*,*)"IPREF JPREF"
 WRITE(*,*)IPREF,JPREF

C PROGRAM CONTROL AND MONITOR
 READ(2,'(/)')
 READ(2,*)MAXIT,IMON,JMON,URFU,URFV
 WRITE(*,*)"MAXIT IMON JMON URFU URFV"
 WRITE(*,*)MAXIT,IMON,JMON,URFU,URFV
 READ(2,*)
 READ(2,*)URFP,URFE,URFK,URFT
 WRITE(*,*)"URFP URFE URFK URFT"
 WRITE(*,*)URFP,URFE,URFK,URFT
 READ(2,*)
 READ(2,*)URFG,URFVIS,INDPRI,SORMAX
 WRITE(*,*)"URFG URFVIS INDPRI SORMAX"
 WRITE(*,*)URFG,URFVIS,INDPRI,SORMAX

C CAVITY DIMENSIONS
 H=((RALI*VISCOS*ALPHAF)/(DENSIT*9.81*BEITA*DELT))**0.3333
C EL represents L the length of the cavity

 18

 PROGRAM NATCOM

 EL=H*ELBYH

C GRID GENERATION FUNCTIONS

 NIM1=NI-1
 NJM1=NJ-1
 NIM2=NI-2
 NJM2=NJ-2

 DO 101 I=2,NI

 XU(I)=ELBYH*((I-2)/FLOAT(NIM2)-1/(2*3.14159)*SIN(2*3.14159*(I-2)
 1/FLOAT(NIM2)))
 101 CONTINUE

 DO 105 J=2,NJ
 YV(J)=((J-2)/FLOAT(NJM2)-1/(2*3.14159)*SIN(2*3.14159*(J-2)
 1/FLOAT(NJM2)))
 105 CONTINUE

C NON-DIMENSIONALISATION

C UREF represents uref, the reference value for velocity.

 UREF=ALPHAF*(PRANDL*RALI)**0.5/H

C R1 and R2 are the non-dimensional numbers given by
Ra
Pr and RaPr

 R1=(PRANDL/RALI)**0.5
 R2=(PRANDL*RALI)**0.5
 CLOSE(2)
 RETURN
 END

Following is a listing of the quantities read in from the input data file in.dat.

C GREAT represents a large number that is sometimes used for comparison

 or for some special purpose like assigning the boundary condition for ε=∞.

C NITER represents the iteration counter for iterations in a single time step.

C SMALL represents a small number that is used for some special purpose in the program

such as preventing division by zero.

C NFTSTP represents the first iteration step for time iterations.

 19

 PROGRAM NATCOM

C NLTSTP represents the last iteration step for time iterations.

C STEADY is a LOGICAL . IF STEADY is TRUE then the unsteady terms are omitted

from the calculation procedure.

C TFIRST represents the starting value assigned to time t.

C IT and JT represent the maximum values that NI and NJ can have. If NI and NJ exceed the

value of IT and JT respectively, new values have to be assigned to IT and JT. The program

should then be recompiled.

C NSWPU, NSWPV, NSWPP, NSWPK, NSWPD, NSWPT are the total number of internal

iterations used to calculate u, v, p’, k, ε and T respectively.

C NI and NJ are the total number of grids in the x and y directions respectively.

C ELBYH represents the ratio of length to height of the cavity.

C TSTEP represents the time step for unsteady calculations.

C LOGICALS INCALU, INCALV, INCALP, INCALK, INCALD, INPRO, INCALT

activate SUBROUTINES CALCU, CALCV, CALCP, CALCTE, CALCED, PROPS,

CALCT respectively.

C LOGICAL INCALB activates the buoyancy terms.

C LOGICALS INHY and INCEN activate the hybrid and central schemes respectively.

C If VALUE equals one, the program uses an initial field that has been fed in by the user. If

VALUE equals zero, the program uses the solution that has been dumped in the DUMP file

as the initial field. Thus for any fresh calculations, VALUE should always be one.

C DENSIT-fluid density.

C PRANDL-fluid Prandtl number.

C VISCOS-fluid viscosity.

C CMU-turbulence model constant, cµ.

C CD-damping factor, fµ.

C C1-turbulence model constant, cε1.

 20

 PROGRAM NATCOM

C C2-turbulence model constant, cε2.

C CAPPA-Von Karman’s constant, κ.

C ELOG- represents cκ where c is given by lnc=5.5 and κ is Von Karman’s constant.

C PRTE-represents σκ.

C PRANDT-represents turbulent Prandtl number, σT.

C F1-damping factor, f1.

C F2-damping factor, f2.

C TH-temperature of the hot wall, Th.

C TC-temperature of the cold wall, Tc.

C QGENER-internal heat generation equals zero for the present problem.

C CPP-specific heat of the fluid, CP.

C RALI-Rayleigh number.

C IPREF, JPREF-position of reference value for guessed pressure.

C MAXIT-maximum number of space iterations (i.e., number of iterations inside one time

step).

C IMON, JMON- monitoring location for different variables.

C URFU-under-relaxation factor for u.

C URFV-under-relaxation factor for v.

C URFP-under-relaxation factor for p.

C URFE-under-relaxation factor for ε.

C URFK-under-relaxation factor for k.

C URFT-under-relaxation factor for T.

C URFG-under-relaxation factor for µ/Pr or (µ+µt)/Pr.

C URFVIS-under-relaxation factor for µ or (µ+µt).

C INDPRI-number of iterations after which labels are printed on the screen.

C SORMAX-convergence criterion.

The variables are initialized in SUBROUTINE INIT immediately after the subsection

CALCULATE GEOMETRICAL QUANTITIES.

C Note that the following is a part of SUBROUTINE INIT

C SET VARIABLES TO SMALL VALUE

 21

 PROGRAM NATCOM

C UO(I,J), VO(I,J), PO(I,J), TO(I,J), TEO(I,J), EDO(I,J), DENO(I,J) represent the old value

(i.e.,values at the previous time iteration for the respective variables)

 DO 200 I=1,NI
 DO 200 J=1,NJ

C SMALL is used as an initial field to prevent division by zero.

 U(I,J)=SMALL
 UO(I,J)=SMALL
 V(I,J)=SMALL
 VO(I,J)=SMALL
 P(I,J)=SMALL
 PO(I,J)=SMALL
 PP(I,J)=SMALL
 T(I,J)=0.5
 TO(I,J)=0.5
 TE(I,J)=SMALL
 TEO(I,J)=SMALL
 ED(I,J)=SMALL
 EDO(I,J)=SMALL
 DEN(I,J)=1.0+SMALL
 DENO(I,J)=1.0+SMALL
 VIS(I,J)=1.0+SMALL
 GAMH(I,J)=1.0+SMALL
 DU(I,J)=0.0
 DV(I,J)=0.0

C DU(I,J) and DV(I,J) are quantities associated with the velocity correction equation.

C The velocity correction equation is discussed in Section 9.

 SU(I,J)=0.0

C SU(I,J) represents the overall source term and is equivalent to term b in Patankar

C (1980).

 SP(I,J)=0.0
C SP(I,J) represents SP in S=SC+SP.
200 CONTINUE
 DO 201 J=1,NJ
 T(1,J)=1.0
 201 T(NI,J)=0.0
 RETURN
 END

 22

 PROGRAM NATCOM

6. PROGRAM FLOW CHART

Time Loop for Unsteady Calculations

Guess the Pressure field

Solve the momentum equations (u and v
velocity) to arrive at a guessed velocity
 CALCU and CALCV

Solve the pressure correction equation
CALCP

Compute new pressure field by adding the pressure
correction to the guessed pressure

Calculate the new velocities from their old
values using the velocity correction formulae

Solve equations for k, ε and T
CALCTE, CALCED, CALCTTreat the new pressure field as

the guessed pressure field.

No

Yes

Output of Results

Yes

No

time<tfinal?

Converged?

Figure 4. Flow chart explaining details of the solution procedure.
(Names in block letters are those of subroutines.)

Initialization and Input of Data
INIT and READDATA

 23

 PROGRAM NATCOM

The SIMPLE algorithm which stands for Semi-Implicit Method for Pressure-Linked Equations is

used for calculation of the flow field. The procedure has been described in Patankar and Spalding

(1972). The flow chart described in Figure 4 gives a detailed description of the steps used in

calculating the flow field along with the temperature field for the general unsteady turbulent

solution. The pressure correction equation is used to incorporate the continuity equation in the

solution procedure. The pressure correction equation is described in Section 9.

7. (SUBROUTINE LISOLV) THE GAUSS SEIDEL LINE BY LINE SOLVER

Including the pressure correction equation, there are now six partial differential equations to

be solved. The following subroutines represent the six partial differential equations in their

discretized form:

CALCU x-directional momentum equation

CALCV y-directional momentum equation

CALCP pressure correction equation

CALCTE equation for turbulence kinetic energy

CALCED equation for energy dissipation

CALCT thermal energy equation

These equations are solved by means of a line by line Gauss-Seidel solver that employs a

combination of the Tri-Diagonal-Matrix Algorithm (TDMA) for one-dimensional situations and

the point by point Gauss-Seidel iterative method.

 Following is a description of the TDMA for one dimensional situations:

The one dimensional discretized equation for a variable φ can be written as,

 jjjjjjj cbad ++= −+ 11 φφφ (14)

Where a, b, c and d represent coefficients of the discretized equation for variable φ. Subscript j

represents a counter for space, j=jmin, jmax. The TDMA algorithm consists of a recurrence

formula for the variable in question so that one can obtain the new value for φ with the help of the

boundary conditions.

 24

 PROGRAM NATCOM

For the forward substitution process one seeks a relation,

 jjjj QP += +1φφ (15)

With j=j-1 in the above relationship one can arrive at an equation for φ j-1,

111 −−− += jjjj QP φφ (16)

Substitution of Equation (16) into Equation (14) leads to,

 () jjjjjjjjj cQPbad +++= −−+ 111 φφφ (17)

If Equation (17) is rearranged to take the form of Equation (15) and the coefficients are compared, one arrives at a

recurrence relationship of the form,

1−−

=
jjj

j
j Pbd

a
P (18)

1

1

−

−

−

+
=

jjj

jjj
j Pbd

Qbc
Q (19)

For j=jmin, the recurrence relation (18) and (19) gives a definite value for Pmin and Qmin.

Similarly for j=jmax, the recurrence relation gives a definite value for Pmax and Qmax. An

explanation for a specific boundary condition with temperature as the variable is given in Patankar

(1980).

Summary of the algorithm

1. Calculate Pmin and Qmin using the left boundary conditions (i.e., for j=jmin)

2. Use the recurrence relations (18) and (19) to obtain Pj and Qj for j=jmin+1, jmax.

3. Equate the right boundary conditions (i.e., for j=jmax) with Pmax and Qmax.

4. Use Equation 15 for j=jmax-1, jmin to obtain φ jmax-1, φ jmin.

For the two dimensional situation one needs to use the Gauss-Seidel point by point method

along with the TDMA. The general discretized equation in two dimensions can be written as:

 25

 PROGRAM NATCOM

 baaaaa SSNNWWEEPP ++++= φφφφφ (20)

where aP, aE, aW, aN and aS represent coefficients associated with the variable φ and b represents the

source term. In order to be able to use the TDMA one has to choose a particular direction for one

sweep and assume the other direction to be a constant. In the present program, the S-N direction is

chosen for calculations, and the W-E direction is assumed to be constant for every

sweep. Thus a new source term b0 is introduced as part of the terms in the W-E direction. Equation

(20) is thus modified into,

 0baaa SSNNPP ++= φφφ (21)

where baab WWEE ++= φφ0 .

Discussion on the line by line Gauss-Seidel method

The line by line scheme can be visualized with reference to Figure 5. The discretization

equations for the grid points along a chosen line are considered first. These contain the values of φ

at the grid points (shown by squares) along two adjacent lines. If these φ’s are substituted from

their latest values, the equations for the grid points (shown by circles) along the chosen line would

look like one-dimensional equations and could be solved by the TDMA. This procedure is carried

out for all the lines in the S-N direction.

 Figure 5. Representation of the line by line method.

 26

 PROGRAM NATCOM

In the program, subroutine LISOLV represents the line by line Gauss-Seidel solver.

SUBROUTINE LISOLV(ISTART,JSTART,NI,NJ,IT,JT,PHI)

 DIMENSION PHI(IT,JT),A(90),B(90),C(90),D(90)
 COMMON
 1/COEF/AP(80,80),AN(80,80),AS(80,80),AE(80,80),AW(80,80),SU(80,80),
 1 SP(80,80)

 NIM1=NI-1
 NJM1=NJ-1
 JSTM1=JSTART-1
 A(JSTM1)=0.0
C COMMENCE W-E SWEEP
 DO 100 I=ISTART,NIM1
 C(JSTM1)=PHI(I,JSTM1)

C COMMENCE S-N TRAVERSE
 DO 101 J=JSTART,NJM1

C ASSEMBLE TDMA COEFFICIENTS
 A(J)=AN(I,J)
C (A(J) represents aj in Equation (14))

 B(J)=AS(I,J)
C (B(J) represents bj in Equation (14))

 C(J)=AE(I,J)*PHI(I+1,J)+AW(I,J)*PHI(I-1,J)+SU(I,J)
C (C(J) represents cj in Equation (14))

 D(J)=AP(I,J)
C (D(J) represents dj in Equation (14))

C CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
 TERM=1./(D(J)-B(J)*A(J-1))
 A(J)=A(J)*TERM
 101 C(J)=(C(J)+B(J)*C(J-1))*TERM
C The recurrence formulae (18) and (19) for Pj and Qj are stored in A(J) and C(J) here.

C OBTAIN NEW PHI"S
 DO 102 JJ=JSTART,NJM1
 J=NJ+JSTM1-JJ
 102 PHI(I,J)=A(J)*PHI(I,J+1)+C(J)

 27

 PROGRAM NATCOM

 100 CONTINUE
 RETURN
 END

8. SUBROUTINE CALCU AND CALCV (MOMENTUM EQUATIONS)

Subroutines CALCU and CALCV representing the discretized form of the momentum equations

are described here. The momentum equation in the x direction can be written as:

() () ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂

+
∂
∂

x
v

y
u

yRa
Pr

x
u2

xRa
Pr

x
p

y
uv

x
uu

t
u

tt µµµµρρρ

Modifying the diffusion term on the right hand side one can rewrite the equation as follows:

() () +⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

+⎥⎦
⎤

⎢⎣
⎡

∂
∂

+
∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂

+
∂
∂

y
u

yRa
Pr

x
u

xRa
Pr

x
p

y
uv

x
uu

t
u

tt µµµµρρρ

 () ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

y
v

x
u

xRa
Pr

tµµ (22)

For an incompressible fluid since the density does not change with time, the term:

() ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

y
v

x
u

xRa
Pr

tµµ (22a)

equals zero due to continuity. The retention of this term increases the numerical accuracy in some

types of flows. Therefore this term is included in our formulation as a source term. For a

description of the discretization procedure one can refer to Patankar (1980). The initial and final

discretized forms in two dimensions is presented here.

Initial discretized form:

yx)uSS(JJJJ
t

yx)uu(
PPCsnwe

o
P

o
PPP ∆∆

∆
∆∆ρρ

+=−+−+
− (23)

where

 () ()e e t e
uJ u u
x

ρ µ µ ∂⎧ ⎫= − +⎨ ⎬∂⎩ ⎭
y∆

 28

 PROGRAM NATCOM

 () ()w w t w
uJ u u
x

ρ µ µ ∂⎧ ⎫= − +⎨ ⎬∂⎩ ⎭
y∆

 () ()n n t n
uJ v u
y

ρ µ µ
⎧ ⎫∂

= − +⎨ ⎬∂⎩ ⎭
x∆

 () ()s s t s
uJ v u
y

ρ µ µ
⎧ ⎫∂

= − +⎨ ⎬∂⎩ ⎭
x∆

PpC uSSS += represents the source term. Terms arising due to the non-dimensional form

have been omitted for ease of understanding. The old values (i.e., the values at the beginning of the

time step) are denoted by the superscript o.

Final discretized form:
 buauauauaua SSNNWWEEPP ++++= (24)

 where

() [[0,FPADa eeeE −+=]]

 () [[0,FPADa wwwW +=]]

() [[0,FPADa nnnN −+=]]

() [[0,FPADa sssS +=]] {The symbol [][] represents the largest of the
quantity contained within it}

t
yxa

o
Po

P ∆
∆∆ρ

=

 MuayxSb o
P

o
PC ++= ∆∆

 (24a) yxSaaaaaa P
o
PSNWEP ∆∆−++++=

 with y)u(F ee ∆ρ= ,
e

et
e)x(

y)(
D

δ
∆µµ +

= ,
e

e
e D

F
P =

 y)u(F ww ∆ρ= ,
w

wt
w)x(

y)(
D

δ
∆µµ +

= ,
w

w
w D

F
P =

 x)v(F nn ∆ρ= ,
n

nt
n)y(

x)(
D

δ
∆µµ +

= ,
n

n
n D

F
P =

 x)v(F ss ∆ρ= ,
s

st
s)y(

x)(
D

δ
∆µµ +

= ,
s

s
s D

F
P =

F represents the strength of convection or the mass flow rates through the faces of the

control volume, D represents the strength of diffusion and P represents the Peclet number which is

a ratio of the strengths of convection and diffusion. As shown in Figure 6, the subscripts in lower

case represent values at the faces of the control volume.

 29

 PROGRAM NATCOM

()PA represents a function which assumes different forms for different discretization

schemes. The central difference scheme and the hybrid scheme are used in the present program.

N

S

W

Control volume

∆x

∆y

Js

Jn

Jw Je

w e

n

s

y

x

P E

Figure 6. Control volume for a two-dimensional situation.

Other schemes include the upwind scheme, the power law scheme, the exponential or exact

scheme and are described in detail in Patankar (1980) and the QUICK scheme of Leonard (1979).

The term M in the source term represents modifications to the momentum equation such as the

inclusion of the term (22a). The eddy viscosity µt is represented with the help of a modification to

the fluid viscosity. This modification is carried out through subroutine PROPS described in

Section 10. Subroutine PROPS can also be used to modify any other fluid property such as

density, for example, variation of density with temperature can be accounted for by using

subroutine PROPS. The listing of subroutine CALCU is given below with descriptions in the form

of comment statements.

 30

 PROGRAM NATCOM

SUBROUTINE CALCU

 INCLUDE 'common.h'
 LOGICAL INHY,INCEN,STEADY
C Note that I starts from 3. Due to staggering, I=2 represents dummy points.
 DO 100 I=3,NIM1
 DO 101 J=2,NJM1
C COMPUTE AREAS AND VOLUME
 AREANS=SEWU(I)
C represents staggered area in the x-direction and applies to fluid in the y-direction
 AREAEW=SNS(J)
C represents non-staggered area in the y-direction and applies to fluid in the x-direction
 VOL=SEWU(I)*SNS(J)
C represents the control volume.

C CALCULATE CONVECTION COEFFICIENTS
C represents F in Equations (24a). Note that the variables are to be evaluated at the

C faces of the control volume. The U velocity is staggered in the x-direction. Thus

C the appropriate interpolated values for V velocity and density need to be taken.

 GN=0.5*(DEN(I,J+1)+DEN(I,J))*V(I,J+1)
 GNW=0.5*(DEN(I-1,J)+DEN(I-1,J+1))*V(I-1,J+1)
 GS=0.5*(DEN(I,J-1)+DEN(I,J))*V(I,J)
 GSW=0.5*(DEN(I-1,J)+DEN(I-1,J-1))*V(I-1,J)
 GE=0.5*(DEN(I+1,J)+DEN(I,J))*U(I+1,J)
 GP=0.5*(DEN(I,J)+DEN(I-1,J))*U(I,J)
 GW=0.5*(DEN(I-1,J)+DEN(I-2,J))*U(I-1,J)

 CN=0.5*(GN+GNW)*AREANS
 CS=0.5*(GS+GSW)*AREANS
 CE=0.5*(GE+GP)*AREAEW
 CW=0.5*(GP+GW)*AREAEW

C CALCULATE DIFFUSION COEFFICIENTS

C represents D in Equations (24a). Appropriate interpolated values need to be taken

C for viscosity, VIS(I,J). VIS(I,J) represents either the fluid viscosity (laminar

C flow) or the total of fluid viscosity and eddy viscosity (turbulent flow). R1

C represents the factor
Ra
Pr which arises due to non-dimensionalization.

 VISN=0.25*(VIS(I,J)+VIS(I,J+1)+VIS(I-1,J)+VIS(I-1,J+1))

 31

 PROGRAM NATCOM

 VISS=0.25*(VIS(I,J)+VIS(I,J-1)+VIS(I-1,J)+VIS(I-1,J-1))
 DN=R1*VISN*AREANS/DYNP(J)
 DS=R1*VISS*AREANS/DYPS(J)
 DE=R1*VIS(I,J)*AREAEW/DXEPU(I)
 DW=R1*VIS(I-1,J)*AREAEW/DXPWU(I)

C CALCULATE COEFFICIENTS OF SOURCE TERMS

C the coefficients of the source term S=SC+SPuP are calculated here

C CPO*U(I,J) represents yxSC ∆∆ and SP(I,J) represents yxSP ∆∆

 SMP=CN-CS+CE-CW
 CP=AMAX1(0.0,SMP)
 CPO=CP

C ASSEMBLE MAIN COEFFICIENTS
C the main coefficients aE, aW, aN and aS are evaluated depending on the type of

C discretization used. The hybrid scheme (INHY) or the central scheme

C (INCEN) is used here.

C For the hybrid scheme the function () [][]P5.01,0PA −=

 IF (INHY) THEN
 AN(I,J)=DN*AMAX1(0.,1-0.5*ABS(CN/DN))+AMAX1(-CN,0.)
 AS(I,J)=DS*AMAX1(0.,1-0.5*ABS(CS/DS))+AMAX1(CS,0.)
 AE(I,J)=DE*AMAX1(0.,1-0.5*ABS(CE/DE))+AMAX1(-CE,0.)
 AW(I,J)=DW*AMAX1(0.,1-0.5*ABS(CW/DW))+AMAX1(CW,0.)
 END IF

C For the central scheme the function () P5.01PA −=

 IF (INCEN) THEN
 AN(I,J)=AMAX1(-CN,0.)+DN-0.5*ABS(CN)
 AS(I,J)=AMAX1(CS,0.)+DS-0.5*ABS(CS)
 AE(I,J)=AMAX1(-CE,0.)+DE-0.5*ABS(CE)
 AW(I,J)=AMAX1(CW,0.)+DW-0.5*ABS(CW)
 END IF

C Logical STEADY =TRUE implies that the steady state problem is solved and

C the unsteady term
t
u
∂
∂ρ is omitted.

 IF(STEADY) THEN

 32

 PROGRAM NATCOM

 APO(I,J)=0.0
 ELSE
 APO(I,J)=DEN(I,J)*VOL/DT(ITSTEP)
 END IF

C The pressure gradient is not included in the momentum source term S=SC+SPuP.

C This is because the pressure field needs to be ultimately calculated .

C Thus the pressure gradient is included as a separate source term in SU(I,J).

C It is given here as DU(I,J)*(P(I-1,J)-P(I,J)).

C (Refer to Section 9 for the pressure correction equation.)

 DU(I,J)=AREAEW
 SU(I,J)=CPO*U(I,J)+DU(I,J)*(P(I-1,J)-P(I,J))+APO(I,J)*UO(I,J)
 SP(I,J)=-CP

C Extra term to improve numerical stability: () ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

y
v

x
u

xRa
Pr

tµµ

 DUDXP =(U(I+1,J)-U(I,J))/DXEPU(I)
 DUDXM =(U(I,J)-U(I-1,J))/DXPWU(I)
 SU(I,J)=R1*(VIS(I,J)*DUDXP-VIS(I-1,J)*DUDXM)/SEWU(I)*VOL+SU(I,J)
 GAMP =0.25*(VIS(I,J)+VIS(I-1,J)+VIS(I,J+1)+VIS(I-1,J+1))
 DVDXP =(V(I,J+1)-V(I-1,J+1))/DXPW(I)
 GAMM =0.25*(VIS(I,J)+VIS(I-1,J)+VIS(I,J-1)+VIS(I-1,J-1))
 DVDXM =(V(I,J)-V(I-1,J))/DXPW(I)
 SU(I,J) =SU(I,J)+R1*(GAMP*DVDXP-GAMM*DVDXM)/SNS(J)*VOL

 101 CONTINUE
 100 CONTINUE

C ENTRY MODU in SUBROUTINE PROMOD contains information about the

C boundary conditions for u-velocity (Section 14).

 CALL MODU

C The residual source term RESORU gives an idea about the convergence of the

C solution. RESORU is the difference in the total source term between two

C consecutive iteration steps.

 RESORU=0.0
 DO 300 I=3,NIM1
 DO 301 J=2,NJM1
 AP(I,J)=AN(I,J)+AS(I,J)+AE(I,J)+AW(I,J)+APO(I,J)-SP(I,J)
 DU(I,J)=DU(I,J)/AP(I,J)

 33

 PROGRAM NATCOM

 RESOR=AN(I,J)*U(I,J+1)+AS(I,J)*U(I,J-1)+AE(I,J)*U(I+1,J)
 1 +AW(I,J)*U(I-1,J)-AP(I,J)*U(I,J)+SU(I,J)
 VOL=SEW(I)*SNS(J)
 SORVOL=GREAT*VOL
 IF(-SP(I,J).GT.0.5*SORVOL) RESOR=RESOR/SORVOL
 RESORU=RESORU+ABS(RESOR)

C UNDER-RELAXATION

C In an iterative procedure it is often desirable to speed up or slow down changes in

C the dependent variable from iteration to iteration in order to avoid divergence.

C The former is achieved by over-relaxation and the latter is achieved by under-

C relaxation. The under-relaxation method is used in the present program. URFU

C represents the under-relaxation factor used for the u-velocity. The value of under-

C relaxation factor is always between 0 and 1.

 AP(I,J)=AP(I,J)/URFU
 SU(I,J)=SU(I,J)+(1.-URFU)*AP(I,J)*U(I,J)
 DU(I,J)=DU(I,J)*URFU
 301 CONTINUE
 300 CONTINUE

C SUBROUTINE LISOLV (Section 7) is used to solve the x-directional momentum

C equation. NSWPU represents the number of internal iterations used for u.

 DO 400 N=1,NSWPU
 400 CALL LISOLV(3,2,NI,NJ,IT,JT,U)
 RETURN
 END

The subroutine used to calculate the y-directional momentum equation, CALCV, is very

similar to CALCU. However one has to remember that the calculation points for v velocity are

staggered in the y-direction. An extra source term is added to b in the form of the buoyancy term.

Following is a listing of SUBROUTINE CALCV.

SUBROUTINE CALCV

 INCLUDE 'common.h'
 LOGICAL INCALB,INHY,INCEN,STEADY

C Note that J starts from 3. Due to staggering, J=2 represents dummy points.
 DO 100 I=2,NIM1

 34

 PROGRAM NATCOM

 DO 101 J=3,NJM1
C COMPUTE AREAS AND VOLUME
 AREANS=SEW(I)
C represents non-staggered area in the x-direction and applies to fluid in the y-direction.

 AREAEW=SNSV(J)
C represents staggered area in the y-direction and applies to fluid in the x-direction.

 VOL=SEW(I)*SNSV(J)
C CALCULATE CONVECTION COEFFICIENTS
 GN=0.5*(DEN(I,J+1)+DEN(I,J))*V(I,J+1)
 GP=0.5*(DEN(I,J)+DEN(I,J-1))*V(I,J)
 GS=0.5*(DEN(I,J-1)+DEN(I,J-2))*V(I,J-1)
 GE=0.5*(DEN(I+1,J)+DEN(I,J))*U(I+1,J)
 GSE=0.5*(DEN(I,J-1)+DEN(I+1,J-1))*U(I+1,J-1)
 GW=0.5*(DEN(I,J)+DEN(I-1,J))*U(I,J)
 GSW=0.5*(DEN(I,J-1)+DEN(I-1,J-1))*U(I,J-1)
 CN=0.5*(GN+GP)*AREANS
 CS=0.5*(GP+GS)*AREANS
 CE=0.5*(GE+GSE)*AREAEW
 CW=0.5*(GW+GSW)*AREAEW
C CALCULATE DIFFUSION COEFFICIENTS
 VISE=0.25*(VIS(I,J)+VIS(I+1,J)+VIS(I,J-1)+VIS(I+1,J-1))
 VISW=0.25*(VIS(I,J)+VIS(I-1,J)+VIS(I,J-1)+VIS(I-1,J-1))
 DN=R1*VIS(I,J)*AREANS/DYNPV(J)
 DS=R1*VIS(I,J-1)*AREANS/DYPSV(J)
 DE=R1*VISE*AREAEW/DXEP(I)
 DW=R1*VISW*AREAEW/DXPW(I)
C CALCULATE COEFFICIENTS OF SOURCE TERMS
 SMP=CN-CS+CE-CW
 CP=AMAX1(0.0,SMP)
 CPO=CP
C ASSEMBLE MAIN COEFFICIENTS
 IF (INHY) THEN
 AN(I,J)=DN*AMAX1(0.,1-0.5*ABS(CN/DN))+AMAX1(-CN,0.)
 AS(I,J)=DS*AMAX1(0.,1-0.5*ABS(CS/DS))+AMAX1(CS,0.)
 AE(I,J)=DE*AMAX1(0.,1-0.5*ABS(CE/DE))+AMAX1(-CE,0.)
 AW(I,J)=DW*AMAX1(0.,1-0.5*ABS(CW/DW))+AMAX1(CW,0.)
 END IF

 IF (INCEN) THEN
 AN(I,J)=AMAX1(-CN,0.)+DN-0.5*ABS(CN)
 AS(I,J)=AMAX1(CS,0.)+DS-0.5*ABS(CS)
 AE(I,J)=AMAX1(-CE,0.)+DE-0.5*ABS(CE)

 35

 PROGRAM NATCOM

 AW(I,J)=AMAX1(CW,0.)+DW-0.5*ABS(CW)
 END IF
 IF(STEADY) THEN
 APO(I,J)=0.0
 ELSE
 APO(I,J)=DEN(I,J)*VOL/DT(ITSTEP)
 END IF
 DV(I,J)=AREANS
 SU(I,J)=CPO*V(I,J)+DV(I,J)*(P(I,J-1)-P(I,J))+APO(I,J)*VO(I,J)

C BUOYANCY TERM

C Buoyancy term is included as a source term in SU(I,J). The reference

C temperature, TREF, is given the value 0.5 which represents (Th+Tc)/2.

C Depending on the value assigned to TREF the approach to a steady solution would be

C different. However the final steady solution will always remain the same. Note that the

C temperature, T, has an interpolated value in the buoyancy term BOUYA to account for the

C staggering.

 TREF=0.0
 IF (INCALB) THEN
 BOUYA=(0.5*(T(I,J)+T(I,J-1))-TREF)
 SU(I,J)=SU(I,J)+BOUYA*VOL
 END IF
 SP(I,J)=-CP

C Extra term to improve numerical stability: () ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

y
v

x
u

xRa
Pr

tµµ

 DUDYP =(U(I+1,J)-U(I+1,J-1))/DYPS(J)
 GAMP =0.25*(VIS(I,J)+VIS(I+1,J)+VIS(I,J-1)+VIS(I+1,J-1))
 GAMM =0.25*(VIS(I,J)+VIS(I-1,J)+VIS(I,J-1)+VIS(I-1,J-1))
 DUDYM =(U(I,J)-U(I,J-1))/DYPS(J)
 SU(I,J)=SU(I,J)+R1*(GAMP*DUDYP-GAMM*DUDYM)/SEW(I)*VOL
 DVDYP =(V(I,J+1)-V(I,J))/DYNPV(J)
 RGAMP =VIS(I,J)
 DVDYM =(V(I,J)-V(I,J-1))/DYPSV(J)
 RGAMM =VIS(I,J-1)
 SU(I,J) =SU(I,J)+R1*(RGAMP*DVDYP-RGAMM*DVDYM)/SNSV(J)*VOL
 101 CONTINUE
 100 CONTINUE

C ENTRY MODV has information regarding boundary conditions for v (Section 14).

 36

 PROGRAM NATCOM

 CALL MODV

C RESORV represents the residual source term for the y-directional momentum

C equation.

 RESORV=0.0
 DO 300 I=2,NIM1
 DO 301 J=3,NJM1
 AP(I,J)=AN(I,J)+AS(I,J)+AE(I,J)+AW(I,J)+APO(I,J)-SP(I,J)
 DV(I,J)=DV(I,J)/AP(I,J)
 RESOR=AN(I,J)*V(I,J+1)+AS(I,J)*V(I,J-1)+AE(I,J)*V(I+1,J)
 1 +AW(I,J)*V(I-1,J)-AP(I,J)*V(I,J)+SU(I,J)
 VOL=SEW(I)*SNS(J)
 SORVOL=GREAT*VOL
 IF(-SP(I,J).GT.0.5*SORVOL) RESOR=RESOR/SORVOL
 RESORV=RESORV+ABS(RESOR)

C UNDER-RELAXATION
C URFV represents under-relaxation factor for v velocity.
 AP(I,J)=AP(I,J)/URFV
 SU(I,J)=SU(I,J)+(1.-URFV)*AP(I,J)*V(I,J)
 DV(I,J)=DV(I,J)*URFV
 301 CONTINUE
 300 CONTINUE

C Subroutine LISOLV (Section7) is used to solve the y-directional momentum equation.

C NSWPV represents the number of internal iterations used for v.

 DO 400 N=1,NSWPV
 400 CALL LISOLV(2,3,NI,NJ,IT,JT,V)
 RETURN
 END

9. SUBROUTINE CALCP (THE PRESSURE CORRECTION EQUATION)

The continuity equation is included in the solution procedure through the introduction of the

pressure correction equation in case of the SIMPLE ALGORITHM that is used in the present

program. A relationship between pressure and velocity is derived. This is used in the continuity

equation to derive the pressure correction equation. A detailed derivation of the pressure correction

equation is given in Patankar (1980). The main steps in the derivation are given here.

Let p* be the guessed pressure, p the corrected pressure and p’ the pressure correction. Then one

can write:

 37

 PROGRAM NATCOM

 (25) '* ppp +=
A similar equation can be written for the corrected velocities, u and v:

 , (26) '* uuu += '* vvv +=

where u* and v* are the guess velocities and u’ and v’ are the velocity corrections.

The velocity correction formulae can be written as:

 , (27))pp(du '

P
'
Ww

' −=)pp(dv '
P

'
Ss

' −=

 where

P

ew
w a

A
d = and

P

ns
s a

A
d = .

Aew and Ans represent areas associated with the East-West and North-South directions respectively.

In Patankar (1980) a slightly different formulation is given for the velocity correction formulae but

both the formulations have the same meaning. Thus Equation (27) gives a relationship between the

velocity correction and pressure correction. One can now write Equation (26) as follows:

 , (28))pp(duu '
P

'
Ww

* −+=)pp(dvv '
P

'
Ss

* −+=

The continuity equation can be written as:

0
y

)v(
x

)u(
t

=
∂

∂
+

∂
∂

+
∂
∂ ρρρ (29)

This equation is integrated over the shaded control volume in Figure 7.

For the integration of the term t∂
∂ρ , the density, Pρ , is assumed to prevail over the

control volume. Since a fully implicit procedure is used for time, the new values of velocity and

density (i.e., those at time tt ∆+) are assumed to prevail over the time step; the old density,

(i.e., at time t), will appear only through the term

o
Pρ

t∂
∂ρ . Thus the integrated form of Equation (29)

becomes

 38

 PROGRAM NATCOM

() () ()[] () ()[] 0xvvyuu
t

yx
snwe

o
PP =−+−+

−
∆ρρ∆ρρ

∆
∆∆ρρ (30)

Equation (30) is now converted to the pressure correction equation, using Equation (27).

The final discretized form of the pressure correction equation can be written as:

 (31) bpapapapapa '

SS
'
NN

'
WW

'
EE

'
PP ++++=

where

 yda eeE ∆ρ= ,
 yda wwW ∆ρ= ,
 xda nnN ∆ρ= ,

W

vs

vn

uw ue

P E

S

N

y

x

Figure 7. Control volume for the continuity equation.

xda ssS ∆ρ= ,

 , SNWEP aaaaa +++=

() () ()[] () ()[xvvyuu

t
yxb n

*
s

*
e

*
w

*P
o
P ∆ρρ∆ρρ

∆
∆∆ρρ

−+−+
−

=] . (31a)

 39

 PROGRAM NATCOM

Equation (31) is now solved as the pressure correction equation. The following is a listing

of SUBROUTINE CALCP that solves Equation (31). PP(I,J) represents the pressure correction p’.

SUBROUTINE CALCP

INCLUDE 'common.h'
 LOGICAL STEADY
 RESORM=0.0

 DO 100 I=2,NIM1
 DO 101 J=2,NJM1
C COMPUTE AREAS AND VOLUME

C Areas and volume are non-staggered.
 AREANS=SEW(I)
 AREAEW=SNS(J)
 VOL=SNS(J)*SEW(I)

C CALCULATE COEFFICIENTS
C Interface densities are required but densities are available only at the main grid

C points. Therefore they need to be interpolated

 DENN=0.5*(DEN(I,J)+DEN(I,J+1))
 DENS=0.5*(DEN(I,J)+DEN(I,J-1))
 DENE=0.5*(DEN(I,J)+DEN(I+1,J))
 DENW=0.5*(DEN(I,J)+DEN(I-1,J))
 AN(I,J)=DENN*AREANS*DV(I,J+1)
 AS(I,J)=DENS*AREANS*DV(I,J)
 AE(I,J)=DENE*AREAEW*DU(I+1,J)
 AW(I,J)=DENW*AREAEW*DU(I,J)

C CALCULATE SOURCE TERMS
 CN=DENN*V(I,J+1)*AREANS
 CS=DENS*V(I,J)*AREANS
 CE=DENE*U(I+1,J)*AREAEW
 CW=DENW*U(I,J)*AREAEW
 SMP=CN-CS+CE-CW

C Note that there is no SP term in Equation (31). Thus SP(I,J)=0.
 SP(I,J)=0.0

 IF(STEADY) THEN
 SU(I,J)=-SMP
 ELSE

C In the present problem the unsteady term can be dropped because the fluid is

 40

 PROGRAM NATCOM

C incompressible. However this term is retained to maintain generality.

 SU(I,J)=-SMP+(DENO(I,J)-DEN(I,J))*VOL/DT(ITSTEP)
 END IF
C COMPUTE SUM OF ABSOLUTE MASS SOURCES

C RESORM represents the residual mass source.

 RESORM=RESORM+ABS(SMP)
 101 CONTINUE
 100 CONTINUE

C ENTRY MODP can have information about any modifications to conditions in

C the pressure field. However here ENTRY MODP does not introduce any changes

C in the pressure field (Section 14).

 CALL MODP

 DO 300 I=2,NIM1
 DO 301 J=2,NJM1
 301 AP(I,J)=AN(I,J)+AS(I,J)+AE(I,J)+AW(I,J)-SP(I,J)
 300 CONTINUE

C SUBROUTINE LISOLV is used to solve the pressure correction equation.

C NSWPP represents the number of internal iterations applied to the pressure

C correction equation

 DO 400 N=1,NSWPP
 400 CALL LISOLV(2,2,NI,NJ,IT,JT,PP)

C VELOCITIES
 DO 500 I=2,NIM1
 DO 501 J=2,NJM1
 IF(I.NE.2) U(I,J)=U(I,J)+DU(I,J)*(PP(I-1,J)-PP(I,J))
 IF(J.NE.2) V(I,J)=V(I,J)+DV(I,J)*(PP(I,J-1)-PP(I,J))

C Represents Equation (28)
 501 CONTINUE
 500 CONTINUE

C PRESSURES (WITH PROVISION FOR UNDER-RELAXATION)

C IPREF and JPREF are reference values for pressure for the guess pressure field.

C URFP represents under-relaxation factor for pressure.

 41

 PROGRAM NATCOM

 PPREF=PP(IPREF,JPREF)
 DO 502 I=2,NIM1
 DO 503 J=2,NJM1
 P(I,J)=P(I,J)+URFP*(PP(I,J)-PPREF)
 PP(I,J)=0.0
 503 CONTINUE
 502 CONTINUE
 RETURN
 END

10. SUBROUTINE PROPS (MODIFICATION TO FLUID PROPERTIES)

SUBROUTINE PROPS is used to make modifications to the fluid properties. In the present

problem all fluid properties are constant. However it is very convenient to express the turbulent or

eddy viscosity as a part of the fluid viscosity for turbulent flow calculations. For laminar flow this

term is set to zero. The following is a listing of SUBROUTINE PROPS.

 SUBROUTINE PROPS

 INCLUDE 'common.h'

 DO 100 I=2,NIM1
 DO 100 J=2,NJM1
C GAMH(I,J) represents the ratio of fluid viscosity and fluid Prandtl number.

C If the fluid properties are variable then VISOLD and GAMHOLD store the values

C of VIS(I,J) and GAMH(I,J) from the previous iteration. For laminar flow there is

C no such change since the fluid viscosity, is not a function of any other variable

C like temperature. However for turbulent flow the eddy viscosity, µt, is

C incorporated in the definition of VIS(I,J). Thus VIS(I,J) and GAMH(I,J) vary

C with every iteration.

 VISOLD=VIS(I,J)
 GAMHOLD=GAMH(I,J)
C If ED(I,J) equals zero, there is no turbulence. Thus VIS(I,J) equals the fluid

C viscosity.

 IF(ED(I,J).EQ.0) GOTO 102

C The eddy viscosity has the following form:
ε

ρµ µµ

2

t
kfc

Pr
Ra

=

C Note that VIS(I,J) represents the sum total of fluid viscosity and eddy viscosity.

 42

 PROGRAM NATCOM

 VIS(I,J)=(1/R1)*DEN(I,J)*TE(I,J)**2*CMU*CD/ED(I,J)+1.0

 GO TO 101
 102 VIS(I,J)=1.0

C UNDER RELAX VISCOSITY

C URFVIS represents the under-relaxation factor for viscosity

C URFG represents the under-relaxation factor for GAMH(I,J)

 101 VIS(I,J)=URFVIS*VIS(I,J)+(1.-URFVIS)*VISOLD
 GAMH(I,J)=1.0+(VIS(I,J)-1.0)*PRANDL/PRANDT
 GAMH(I,J)=URFG*GAMH(I,J)+(1.-URFG)*GAMHOLD
 100 CONTINUE
 RETURN
 END

11. SUBROUTINE CALCT (THERMAL ENERGY EQUATION)

The temperature field is resolved by using the thermal energy equation. It is a scalar variable and is

thus calculated at non-staggered locations. If the temperature field does not affect the flow field

this equation can be solved after a convergent flow field is obtained. However in the present

problem the temperature field does affect the flow field. The thermal energy equation in non-

dimensional form is:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

y
T

yRaPr
1

x
T

xRaPr
1

y
Tv

x
Tu

t
T

T

Prt

T

Prt
σ
µµ

σ
µµρρρ (32)

Following is a listing of SUBROUTINE CALCT, which solves the thermal energy equation.

SUBROUTINE CALCT

 INCLUDE 'common.h'
 LOGICAL INHY,INCEN,STEADY

 DO 100 I=2,NIM1
 DO 101 J=2,NJM1

C COMPUTE AREAS AND VOLUME
C non-staggered areas and volume have been used.
 AREANS=SEW(I)
 AREAEW=SNS(J)
 VOL=SNS(J)*SEW(I)

 43

 PROGRAM NATCOM

C CALCULATE CONVECTION COEFFICIENTS
 GN=0.5*(DEN(I,J)+DEN(I,J+1))*V(I,J+1)
 GS=0.5*(DEN(I,J)+DEN(I,J-1))*V(I,J)

 GE=0.5*(DEN(I,J)+DEN(I+1,J))*U(I+1,J)
 GW=0.5*(DEN(I,J)+DEN(I-1,J))*U(I,J)
 CN=GN*AREANS
 CS=GS*AREANS
 CE=GE*AREAEW
 CW=GW*AREAEW

C CALCULATE DIFFUSION COEFFICIENTS
C R2 represents the non-dimensional factor RaPr .

 GAMN=0.5*(GAMH(I,J)+GAMH(I,J+1))
 GAMS=0.5*(GAMH(I,J)+GAMH(I,J-1))
 GAME=0.5*(GAMH(I,J)+GAMH(I+1,J))
 GAMW=0.5*(GAMH(I,J)+GAMH(I-1,J))
 DN=(1/R2)*GAMN*AREANS/DYNP(J)
 DS=(1/R2)*GAMS*AREANS/DYPS(J)
 DE=(1/R2)*GAME*AREAEW/DXEP(I)
 DW=(1/R2)*GAMW*AREAEW/DXPW(I)

C SOURCE TERMS
 SMP=CN-CS+CE-CW
 CP=AMAX1(0.0,SMP)
 CPO=CP

C ASSEMBLE MAIN COEFFICIENTS
 IF (INHY) THEN
 AN(I,J)=DN*AMAX1(0.,1-0.5*ABS(CN/DN))+AMAX1(-CN,0.)
 AS(I,J)=DS*AMAX1(0.,1-0.5*ABS(CS/DS))+AMAX1(CS,0.)
 AE(I,J)=DE*AMAX1(0.,1-0.5*ABS(CE/DE))+AMAX1(-CE,0.)
 AW(I,J)=DW*AMAX1(0.,1-0.5*ABS(CW/DW))+AMAX1(CW,0.)
 END IF

 IF (INCEN) THEN
 AN(I,J)=AMAX1(-CN,0.)+DN-0.5*ABS(CN)
 AS(I,J)=AMAX1(CS,0.)+DS-0.5*ABS(CS)
 AE(I,J)=AMAX1(-CE,0.)+DE-0.5*ABS(CE)
 AW(I,J)=AMAX1(CW,0.)+DW-0.5*ABS(CW)
 END IF
 IF(STEADY) THEN
 APO(I,J)=0.0

 ELSE
 APO(I,J)=DEN(I,J)*VOL/DT(ITSTEP)

 44

 PROGRAM NATCOM

 END IF
 SU(I,J)=CPO*T(I,J)+APO(I,J)*TO(I,J)
 SP(I,J)=-CP
 101 CONTINUE
 100 CONTINUE

C ENTRY MODT contains information about boundary conditions for T (Section 14).

 CALL MODT

C RESORT represents the residual source for thermal energy.

 RESORT=0.0
 DO 300 I=2,NIM1
 DO 301 J=2,NJM1
 AP(I,J)=AN(I,J)+AS(I,J)+AE(I,J)+AW(I,J)+APO(I,J)-SP(I,J)
 RESOR=AN(I,J)*T(I,J+1)+AS(I,J)*T(I,J-1)+AE(I,J)*T(I+1,J)
 1 +AW(I,J)*T(I-1,J)-AP(I,J)*T(I,J)+SU(I,J)
 VOL=SEW(I)*SNS(J)
 SORVOL=GREAT*VOL
 IF(-SP(I,J).GT.0.5*SORVOL) RESOR=RESOR/SORVOL
 RESORT=RESORT+ABS(RESOR)

C UNDER-RELAXATION
C URFT represents under-relaxation factor for temperature.
 AP(I,J)=AP(I,J)/URFT
 SU(I,J)=SU(I,J)+(1.0-URFT)*AP(I,J)*T(I,J)
 301 CONTINUE
 300 CONTINUE

C NSWPT represents the number of internal iterations applied to the thermal energy
C equation.
 DO 400 N=1,NSWPT
 400 CALL LISOLV(2,2,NI,NJ,IT,JT,T)
 RETURN
 END

12. SUBROUTINE CALCTE (EQUATION FOR TURBULENT KINETIC ENERGY)

The turbulent kinetic energy, k, is a scalar variable and is thus calculated on a non-staggered grid.

The non-dimensional form of the equation can be written as:

kk
k

t

k

t GP
y
k

yRa
Pr

x
k

xRa
Pr

y
kv

x
ku

t
k

++
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

σ
µµ

σ
µµρρρ

 45

 PROGRAM NATCOM

 ρε− (33)

with,

 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
222

tk x
v

y
u

y
v2

x
u2

Ra
PrP µ

y
T

RaPr
1G

T

t
k ∂

∂
−=

σ
µ

 and

ε
ρµ µµ

2

t
kfc

Pr
Ra

= (33a)

Following is a listing of SUBROUTINE CALCTE, which solves the turbulent kinetic energy

equation.

SUBROUTINE CALCTE

 INCLUDE 'common.h'
 LOGICAL INCALB,INHY,INCEN,STEADY

C PRTE represents σk.
 PRTE=1.0
 DO 100 I=2,NIM1
 DO 101 J=2,NJM1
C COMPUTE AREAS AND VOLUME
 AREANS=SEW(I)
 AREAEW=SNS(J)
 VOL=SNS(J)*SEW(I)
C CALCULATE CONVECTION COEFFICIENTS
 GN=0.5*(DEN(I,J)+DEN(I,J+1))*V(I,J+1)
 GS=0.5*(DEN(I,J)+DEN(I,J-1))*V(I,J)
 GE=0.5*(DEN(I,J)+DEN(I+1,J))*U(I+1,J)
 GW=0.5*(DEN(I,J)+DEN(I-1,J))*U(I,J)
 CN=GN*AREANS
 CS=GS*AREANS
 CE=GE*AREAEW
 CW=GW*AREAEW

C CALCULATE DIFFUSION COEFFICIENTS

C VIS(I,J) represents the total of the fluid and eddy viscosity, whereas the diffusion

C term:
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

y
k

yRa
Pr

x
k

xRa
Pr

k

t

k

t
σ
µµ

σ
µµ has got the fluid viscosity

 46

 PROGRAM NATCOM

C and the eddy viscosity as separate entities.

 GAMN=R1*0.5*(VIS(I,J)+VIS(I,J+1)-2.0)/PRTE+R1
 GAMS=R1*0.5*(VIS(I,J)+VIS(I,J-1)-2.0)/PRTE+R1
 GAME=R1*0.5*(VIS(I,J)+VIS(I+1,J)-2.0)/PRTE+R1
 GAMW=R1*0.5*(VIS(I,J)+VIS(I-1,J)-2.0)/PRTE+R1
 DN=GAMN*AREANS/DYNP(J)
 DS=GAMS*AREANS/DYPS(J)
 DE=GAME*AREAEW/DXEP(I)
 DW=GAMW*AREAEW/DXPW(I)

C SOURCE TERMS
 SMP=CN-CS+CE-CW
 CP=AMAX1(0.0,SMP)
 CPO=CP
 DUDX=(U(I+1,J)-U(I,J))/SEW(I)
 DVDY=(V(I,J+1)-V(I,J))/SNS(J)
 DUDY=((U(I,J)+U(I+1,J)+U(I,J+1)+U(I+1,J+1))/4.-(U(I,J)+U(I+1,J)+
 1U(I,J-1)+U(I+1,J-1))/4.)/SNS(J)
 DVDX=((V(I,J)+V(I,J+1)+V(I+1,J)+V(I+1,J+1))/4.-(V(I,J)+V(I,J+1)+V(
 1I-1,J)+V(I-1,J+1))/4.)/SEW(I)

C GEN(I,J) represents the term: ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
222

tk x
v

y
u

y
v2

x
u2

Ra
PrP µ

C Note that only the eddy viscosity is used for multiplication. The factor 1.E-8 is

C added in order to avoid multiplication by zero.

 GEN(I,J)=R1*(2.*(DUDX**2+DVDY**2)+(DUDY+DVDX)**2)
 1 *(VIS(I,J)-1.0+1.E-8)

C BUOYANCY TERM
 DTDY=(T(I,J+1)-T(I,J))/DYPS(J)

C GENB(I,J) represents the term:
y
T

RaPr
1G

T

t
k ∂

∂
−=

σ
µ

.

 GENB(I,J)=-(1/R2)*(VIS(I,J)-1.0+1.E-8)*PRANDL*DTDY/PRANDT

C ASSEMBLE MAIN COEFFICIENTS
 IF (INHY) THEN
 AN(I,J)=DN*AMAX1(0.,1-0.5*ABS(CN/DN))+AMAX1(-CN,0.)
 AS(I,J)=DS*AMAX1(0.,1-0.5*ABS(CS/DS))+AMAX1(CS,0.)
 AE(I,J)=DE*AMAX1(0.,1-0.5*ABS(CE/DE))+AMAX1(-CE,0.)
 AW(I,J)=DW*AMAX1(0.,1-0.5*ABS(CW/DW))+AMAX1(CW,0.)
 END IF

 IF (INCEN) THEN

 47

 PROGRAM NATCOM

 AN(I,J)=AMAX1(-CN,0.)+DN-0.5*ABS(CN)
 AS(I,J)=AMAX1(CS,0.)+DS-0.5*ABS(CS)
 AE(I,J)=AMAX1(-CE,0.)+DE-0.5*ABS(CE)
 AW(I,J)=AMAX1(CW,0.)+DW-0.5*ABS(CW)
 END IF
 IF(STEADY) THEN
 APO(I,J)=0.0
 ELSE

 APO(I,J)=DEN(I,J)*VOL/DT(ITSTEP)
 ENDIF
 SU(I,J)=CPO*TE(I,J)+APO(I,J)*TEO(I,J)
 SU(I,J)=SU(I,J)+GEN(I,J)*VOL
 IF (INCALB) THEN

 SU(I,J)=SU(I,J)+GENB(I,J)*VOL
 END IF
 SP(I,J)=-CP
C The term ρε is inlcuded as a variable part of the source term, i.e., as SP. Note that

C the relationship:
ε

ρµ µµ

2

t
kfc

Pr
Ra

= is used to express ρε as:

C
t

2
2 kfc

Pr
Ra

µ
ρµµ . This procedure is adopted to increase numerical stability.

C The factor 1.E-8 is included in µt =(VIS(I,J)-1.0) in order to avoid division by

C zero.

 SP(I,J)=SP(I,J)-(1/R1)*CD*CMU*DEN(I,J)**2*TE(I,J)*VOL
 1/(VIS(I,J)-1.0+1.E-8)
 101 CONTINUE
 100 CONTINUE

C ENTRY MODTE has information regarding boundary conditions for turbulence

C kinetic energy (Section 14).

 CALL MODTE

C RESORK represents the residual source term for turbulent kinetic energy.

 RESORK=0.0
 DO 300 I=2,NIM1
 DO 301 J=2,NJM1
 AP(I,J)=AN(I,J)+AS(I,J)+AE(I,J)+AW(I,J)+APO(I,J)-SP(I,J)
 RESOR=AN(I,J)*TE(I,J+1)+AS(I,J)*TE(I,J-1)+AE(I,J)*TE(I+1,J)
 1 +AW(I,J)*TE(I-1,J)-AP(I,J)*TE(I,J)+SU(I,J)
 VOL=SEW(I)*SNS(J)

 48

 PROGRAM NATCOM

 SORVOL=GREAT*VOL
 IF(-SP(I,J).GT.0.5*SORVOL) RESOR=RESOR/SORVOL
 RESORK=RESORK+ABS(RESOR)

C UNDER-RELAXATION

C URFK represents under-relaxation factor for turbulent kinetic energy.

 AP(I,J)=AP(I,J)/URFK
 SU(I,J)=SU(I,J)+(1.-URFK)*AP(I,J)*TE(I,J)
 301 CONTINUE
 300 CONTINUE

C NSWPK represents the number of internal iterations used to solve the turbulent

C kinetic energy equation.

 DO 400 N=1,NSWPK
 400 CALL LISOLV(2,2,NI,NJ,IT,JT,TE)
 DO 401 I=2,NIM1
 DO 401 J=2,NJM1
 401 TE(I,J)=AMAX1(TE(I,J),SMALL)
 RETURN
 END

13. SUBROUTINE CALCED (ENERGY DISSIPATION EQUATION)

Energy dissipation, ε, is yet another scalar quantity. Thus the calculation points for this

quantity are also on a non-staggered grid. The non-dimensional form of this equation can be

written as:

 +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

yyRa
Pr

xxRa
Pr

y
v

x
u

t
tt ε

σ
µµε

σ
µµερερερ

εε

k

)fc)GcP(fc(22k3k11
εερ εεε −+ (34)

 with,

 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
222

tk x
v

y
u

y
v2

x
u2

Ra
PrP µ

y
T

RaPr
1G

T

t
k ∂

∂
−=

σ
µ

 49

 PROGRAM NATCOM

ε
ρµ µµ

2

t
kfc

Pr
Ra

= (34a)

Following is a listing of SUBROUTINE CALCED which calculates energy dissipation.

SUBROUTINE CALCED
 INCLUDE 'common.h'
 LOGICAL INCALB,INHY,INCEN,STEADY

 DO 100 I=2,NIM1
 DO 101 J=2,NJM1
C COMPUTE AREAS AND VOLUME
 AREANS=SEW(I)
 AREAEW=SNS(J)
 VOL=SNS(J)*SEW(I)

C CALCULATE CONVECTION COEFFICIENTS
 GN=0.5*(DEN(I,J)+DEN(I,J+1))*V(I,J+1)
 GS=0.5*(DEN(I,J)+DEN(I,J-1))*V(I,J)
 GE=0.5*(DEN(I,J)+DEN(I+1,J))*U(I+1,J)
 GW=0.5*(DEN(I,J)+DEN(I-1,J))*U(I,J)
 CN=GN*AREANS
 CS=GS*AREANS
 CE=GE*AREAEW
 CW=GW*AREAEW

C CALCULATE DIFFUSION COEFFICIENTS

C The diffusion term:
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

yyRa
Pr

xxRa
Pr tt ε

σ
µµε

σ
µµ

εε
 has the fluid

C viscosity and eddy viscosity as separate identities.

 GAMN=R1*0.5*(VIS(I,J)+VIS(I,J+1)-2.0)/PRED+R1
 GAMS=R1*0.5*(VIS(I,J)+VIS(I,J-1)-2.0)/PRED+R1
 GAME=R1*0.5*(VIS(I,J)+VIS(I+1,J)-2.0)/PRED+R1
 GAMW=R1*0.5*(VIS(I,J)+VIS(I-1,J)-2.0)/PRED+R1
 DN=GAMN*AREANS/DYNP(J)
 DS=GAMS*AREANS/DYPS(J)
 DE=GAME*AREAEW/DXEP(I)
 DW=GAMW*AREAEW/DXPW(I)

C SOURCE TERMS
 SMP=CN-CS+CE-CW

 50

 PROGRAM NATCOM

 CP=AMAX1(0.0,SMP)
 CPO=CP

C ASSEMBLE MAIN COEFFICIENTS
 IF (INHY) THEN
 AN(I,J)=DN*AMAX1(0.,1-0.5*ABS(CN/DN))+AMAX1(-CN,0.)
 AS(I,J)=DS*AMAX1(0.,1-0.5*ABS(CS/DS))+AMAX1(CS,0.)
 AE(I,J)=DE*AMAX1(0.,1-0.5*ABS(CE/DE))+AMAX1(-CE,0.)
 AW(I,J)=DW*AMAX1(0.,1-0.5*ABS(CW/DW))+AMAX1(CW,0.)
 END IF

 IF (INCEN) THEN
 AN(I,J)=AMAX1(-CN,0.)+DN-0.5*ABS(CN)
 AS(I,J)=AMAX1(CS,0.)+DS-0.5*ABS(CS)
 AE(I,J)=AMAX1(-CE,0.)+DE-0.5*ABS(CE)
 AW(I,J)=AMAX1(CW,0.)+DW-0.5*ABS(CW)
 END IF

 IF(STEADY) THEN
 APO(I,J)=0.0
 ELSE
 SU(I,J)=CPO*ED(I,J)+APO(I,J)*EDO(I,J)

 END IF
C The coefficient cε3 does not have a universally acceptable form. The form

C suggested by Henkes (1990) i.e., u/vtanhc 3 =ε is used here.

 C3=ABS((V(I,J)+V(I,J+1))/(U(I,J)+U(I+1,J)))
 C3=TANH(C3)

C Represents the addition of the term:
k

Pfc k11
ε

ε to SU(I,J).

C Note that the term
k
ε is not directly used. Instead the relationship:

C
ε

ρµ µµ

2

t
kfc

Pr
Ra

= is used to write
t

kfc
Pr
Ra

k µ
ρε

µµ= .

C This procedure is adopted to improve numerical stability.

 SU(I,J)=SU(I,J)+(1/R1)*C1*F1*CMU*CD*DEN(I,J)*GEN(I,J)*VOL
 1 *TE(I,J)/(VIS(I,J)-1.0+1.E-8)

C Represents the addition of the term:
k

Gcfc k311
ε

εε to SU(I,J)

C Here again the same representation is used for the term
k
ε .

 IF (INCALB) THEN

 51

 PROGRAM NATCOM

 SU(I,J)=SU(I,J)+(1/R1)*C1*F1*C3*CMU*CD*GENB(I,J)*DEN(I,J)*VOL
 1 *TE(I,J)/(VIS(I,J)-1.0+1.E-8)
 END IF
 SP(I,J)=-CP

C Represents the addition of the term:
k

fc 22
εερ ε

C No changes have been made in representing this term.

 SP(I,J)=SP(I,J)-C2*F2*DEN(I,J)*ED(I,J)*VOL/TE(I,J)
 101 CONTINUE
 100 CONTINUE

C ENTRY MODED has information regarding boundary conditions for energy

C dissipation (Sectio 14).

 CALL MODED

C RESORE represents the residual source term for energy dissipation.

 RESORE=0.0

 DO 300 I=2,NIM1
 DO 301 J=2,NJM1
 AP(I,J)=AN(I,J)+AS(I,J)+AE(I,J)+AW(I,J)+APO(I,J)-SP(I,J)

 RESOR=AN(I,J)*ED(I,J+1)+AS(I,J)*ED(I,J-1)+AE(I,J)*ED(I+1,J)
 1 +AW(I,J)*ED(I-1,J)-AP(I,J)*ED(I,J)+SU(I,J)
 VOL=SNS(J)*SEW(I)
 SORVOL=GREAT*VOL
 IF(-SP(I,J).GT.0.5*SORVOL) RESOR=RESOR/SORVOL
 RESORE=RESORE+ABS(RESOR)

C UNDER-RELAXATION

C URFE represents under-relaxation factor employed for energy dissipation ED(I,J)

 AP(I,J)=AP(I,J)/URFE
 SU(I,J)=SU(I,J)+(1.-URFE)*AP(I,J)*ED(I,J)
 301 CONTINUE
 300 CONTINUE

C NSWPD represents the number of internal iterations used for calculating ED(I,J)
 DO 400 N=1,NSWPD
 400 CALL LISOLV(2,2,NI,NJ,IT,JT,ED)
 DO 401 I=2,NIM1
 DO 401 J=2,NJM1
 401 ED(I,J)=AMAX1(ED(I,J),SMALL)
 RETURN

 52

 PROGRAM NATCOM

 END

14. SUBROUTINE PROMOD (BOUNDARY CONDITIONS)

Boundary conditions are specified as PROBLEM MODIFICATIONS through SUBROUTINE

PROMOD. The SUBROUTINE has different subs-sections called ENTRY (which is a FORTRAN

command) and are used to specify boundary conditions for specific variables. The following is a

listing of SUBROUTINE PROMOD.

SUBROUTINE PROMOD

 INCLUDE 'common.h'
C For the fluid properties. No changes are required for this part.
 ENTRY MODPRO
 RETURN
C represents boundary conditions for u-velocity. No slip and impermeable boundary

C conditions are applied at the walls.

 ENTRY MODU

C TOP WALL
 J=NJM1
 DO 210 I=3,NIM1
 210 U(I,J+1)=0.0

C WEST WALL
C I=2 represents the west wall because u-velocity is calculated on a staggered grid

C in the x-direction

 I=3
 DO 213 J=2,NJM1
 213 U(I-1,J)=0.0

C BOTTOM WALL
 J=2
 DO 214 I=3,NIM1
 214 U(I,J-1)=0.0

C EAST WALL
 I=NIM1
 DO 217 J=2,NJM1
 217 U(I+1,J)=0.0
 RETURN

 53

 PROGRAM NATCOM

C represents boundary conditions for v-velocity. No slip and impermeable boundary

C conditions are applied at the wall.

 ENTRY MODV
C WEST WALL
 I=2
 DO 310 J=3,NJM1
 310 V(I-1,J)=0.0

C TOP WALL
 J=NJM1
 DO 313 I=2,NIM1
 313 V(I,J+1)=0.0

C EAST WALL
 I=NIM1
 DO 314 J=3,NJM1
 314 V(I+1,J)=0.0

C BOTTOM WALL

C J=2 represents the bottom wall because v-velocity is calculated on a staggered

C grid in the y-direction

 J=3
 DO 317 I=2,NIM1
 317 V(I,J-1)=0.0
 RETURN

C A pressure boundary condition is not applied here. Therefore no modifications

C are required for the pressure correction equation.

 ENTRY MODP
 RETURN

C represents thermal boundary conditions. The horizontal walls (top and bottom

C walls) are adiabatic whereas the vertical walls (east and west walls) are at a

C constant temperature.

 ENTRY MODT

C TOP WALL (ADIABTIC)

C The adiabatic boundary condition: 0y/T =∂∂ at y=0 and y=H, are approximated

 54

 PROGRAM NATCOM

C by a first order Taylor series approximation. A better approximation was not

C required because of the fine grids close to the wall.

 J=NJM1
 DO 500 I=2,NIM1
 T(I,J+1)=T(I,J)
 500 AN(I,J)=0.0

C WEST WALL (CONSTANT TEMPERATURE TH)
 I=2
 DO 501 J=2,NJM1
 T(I-1,J)=1.0
 501 CONTINUE

C BOTTOM WALL (ADIABATIC)
 J=2
 DO 504 I=2,NIM1
 T(I,J-1)=T(I,J)
 504 AS(I,J)=0.0

C EAST WALL (CONSTANT TEMPERATURE TC)
 I=NIM1
 DO 505 J=2,NJM1
 T(I+1,J)=0.0
 505 CONTINUE
 RETURN
C represents boundary conditions for the turbulent kinetic energy. One can use the

C natural boundary condition for k which is zero at the wall. This is quite

C straightforward. The boundary condition arising out of perturbation which is

C derived in Wilcox (1993) is used in the present program. This boundary condition

C is given by the equation:
()

µµ fc
uk

2*
= (where u* is the friction velocity) close to

C the wall. The boundary condition is applied at the first inner grid point.

 ENTRY MODTE
C TOP WALL
 J=NJM1
 YP=YV(NJ)-Y(NJM1)
 DO 610 I=2,NIM1
 TAU=1.0*ABS(U(I,J))/YP
 USTAR=R1**0.5*SQRT(TAU/DEN(I,J))
 610 TE(I,J)=USTAR**2/SQRT(CMU*CD)

 55

 PROGRAM NATCOM

C WEST WALL
 I=2
 XP=X(2)-XU(2)
 DO 620 J=2,NJM1
 TAU=1.0*ABS(V(I,J))/XP
 USTAR=R1**0.5*SQRT(TAU/DEN(I,J))
 620 TE(I,J)=USTAR**2/SQRT(CMU*CD)

C BOTTOM WALL
 J=2
 YP=Y(2)-YV(2)
 DO 630 I=2,NIM1
 TAU=1.0*ABS(U(I,J))/YP
 USTAR=R1**0.5*SQRT(TAU/DEN(I,J))
 630 TE(I,J)=USTAR**2/SQRT(CMU*CD)

C EAST WALL
 I=NIM1
 XP=XU(NI)-X(NIM1)
 DO 640 J=2,NJM1
 TAU=1.0*ABS(V(I,J))/XP

 USTAR=R1**0.5*SQRT(TAU/DEN(I,J))
 640 TE(I,J)=USTAR**2/SQRT(CMU*CD)
 RETURN

C represents boundary conditions for energy dissipation. There are no natural

C boundary conditions for ε. Therefore the boundary condition from perturbation

C theory is used here. ()
y

u
3*

κ
ε = (where κ is Von Karman’s constant and y

C is the normal distance from the wall at which the boundary condition is applied) is

C the boundary condition for ε and occurs close to the wall. This boundary
C condition is again applied at the first inner grid point.

 ENTRY MODED
C TOP WALL
 YP=YV(NJ)-Y(NJM1)
 J=NJM1
 DO 710 I=2,NIM1
 TAU=1.0*ABS(U(I,J))/YP
 USTAR=R1**0.5*SQRT(TAU/DEN(I,J))
 710 ED(I,J)=USTAR**3/(CAPPA*YP)

 56

 PROGRAM NATCOM

C WEST WALL
 XP=X(2)-XU(2)
 I=2
 DO 720 J=2,NJM1
 TAU=1.0*ABS(V(I,J))/XP
 USTAR=R1**0.5*SQRT(TAU/DEN(I,J))
 720 ED(I,J)=USTAR**3/(CAPPA*XP)

C BOTTOM WALL
 YP=Y(2)-YV(2)
 J=2
 DO 730 I=2,NIM1
 TAU=1.0*ABS(U(I,J))/YP
 USTAR=R1**0.5*SQRT(TAU/DEN(I,J))
 730 ED(I,J)=USTAR**3/(CAPPA*YP)

C EAST WALL
 XP=XU(NI)-X(NIM1)
 I=NIM1
 DO 740 J=2,NJM1
 TAU=1.0*ABS(V(I,J))/XP
 USTAR=R1**0.5*SQRT(TAU/DEN(I,J))
 740 ED(I,J)=USTAR**3/(CAPPA*XP)
 RETURN
 END

15. SUBROUTINE UPDATE (UNSTEADY CALCULATIONS)

For unsteady calculations, the converged solution from the previous time iteration is also

required for calculations. The results of the converged solution from the previous iteration are

stored as old values and are represented as UO(I,J) for u-velocity, VO(I,J) for v-velocity, PO(I,J)

for pressure, DENO(I,J) for density, TO(I,J) for temperature, TEO(I,J) for turbulent kinetic energy

and EDO(I,J) for energy dissipation. Thus the variables are updated after each time iteration for

use in the next time iteration. Following is the listing of SUBROUTINE UPDATE

SUBROUTINE UPDATE(PHI,PHIO,NI,NJ,IT,JT)
C PHI(I,J) stands for any variable u, v, T, p, k, ε or the fluid density. PHIO(I,J)

C stands for the value of the same variable at the previous time step.

 57

 PROGRAM NATCOM

 DIMENSION PHI(80,80),PHIO(80,80)
 NIM1=NI-1
 NJM1=NJ-1
 DO 100 I=2,NIM1
 DO 100 J=2,NJM1
 100 PHIO(I,J)=PHI(I,J)
 RETURN
 END

16. SUBROUTINE DUMP (RESTARTING CALCULATIONS)

Since the number of iterations required for a converged solution cannot be known beforehand, one

needs a facility by which a previously calculated solution field can be used for further iterations.

This facility is provided through the SUBROUTINE DUMP. The solution after a particular

number of iterations or after satisfying a particular convergence criterion, whichever occurs earlier,

is stored in binary form in a file called the DUMP file. Storage in binary form is essential to

prevent any loss of information due to truncation. This DUMP file can then be recalled for further

calculations. Following is the listing of SUBROUTINE DUMP

SUBROUTINE DUMP(NI,NJ,U,V,P,T,TE,ED,DEN,GAMH,VIS)
 DIMENSION U(80,80),V(80,80),P(80,80),T(80,80),TE(80,80)
 1,ED(80,80),DEN(80,80),GAMH(80,80),VIS(80,80)
 WRITE(10)((U(I,J),I=1,NI),J=1,NJ)
 WRITE(10)((V(I,J),I=1,NI),J=1,NJ)
 WRITE(10)((P(I,J),I=1,NI),J=1,NJ)
 WRITE(10)((T(I,J),I=1,NI),J=1,NJ)
 WRITE(10)((TE(I,J),I=1,NI),J=1,NJ)
 WRITE(10)((ED(I,J),I=1,NI),J=1,NJ)
 WRITE(10)((DEN(I,J),I=1,NI),J=1,NJ)
 WRITE(10)((GAMH(I,J),I=1,NI),J=1,NJ)
 WRITE(10)((VIS(I,J),I=1,NI),J=1,NJ)

 RETURN
 END

17. INPUT AND OUTPUT

17.1. Input

Input to the program is carried out through an external input file ‘in.dat’. This input file is in turn read in through

SUBROUTINE READDATA discussed in Section 5. The meaning of every input parameter is listed in Section 5.

 58

 PROGRAM NATCOM

--
This data file is for program NATCON
--

C GRID, ITERATION AND COMPARISON PARAMETERS

GREAT NITER SMALL NFTSTP NLTSTP STEADY TFIRST
 1.E20 0 1.E-20 1 100 .TRUE. 0.

IT JT
80 80
NSWPU NSWPV NSWPP NSWPK NSWPD NSWPT

 1 1 3 1 1 1
NI NJ ELBYH
60 60 1.0

C TIME STEP FOR UNSTEADY CALCULATIONS
 TSTEP
 0.25
C DEPENDENT VARIABLE, DISCRETIZATION AND RESTART OPTIONS

INCALU INCALV INCALP INCALK INCALD INPRO INCALT
 .TRUE. .TRUE. .TRUE. .FALSE. .FALSE. .FALSE. .TRUE.
 INCALB INHY INCEN VALUE
 .TRUE. .FALSE. .TRUE. 1.
C FLUID PROPERTIES

DENSIT PRANDL VISCOS CPP
 1.2 0.71 1.85E-5 1006.
C TURBULENCE CONSTANTS

CMU CD C1 C2 CAPPA ELOG PRTE PRANDT
 0.09 1.00 1.44 1.92 .41 10.0 1.0 0.9
 F1 F2
 1.00 1.00
C BOUNDARY VALUES

TH TC
40 30

C INTERNAL HEAT GENERATION AND RAYLEIGH NUMBER
QGENER RALI
0. 1.E5

C PRESSURE CALCULATION
IPREF JPREF

 2 2
C PROGRAM CONTROL AND MONITOR
 MAXIT IMON JMON URFU URFV
 200 30 30 0.4 0.4
 URFP URFE URFK URFT
 0.5 0.3 0.3 0.8
 URFG URFVIS INDPRI SORMAX

 59

 PROGRAM NATCOM

 0.5 0.5 100 0.0000000001

17.2. Output

 Numerical and graphical outputs are dependent on the nature of outputs required.

The principal outputs are given through the output data file ‘TEA.OUT’ which contains

numerical output and ‘TEC.DAT’ which contains data for graphical output using the

software TECPLOT. The streamfunction is calculated using the formula:

x
v,

y
u

∂
∂

−=
∂
∂

=
ΨΨ with the boundary condition Ψ=0 at the walls where Ψ is the streamfunction.

The lisiting for calculating the streamfunction is given below:

C CALCULATION OF STREAM FUNCTION
 NIH=NI/2
 NIHP=NI/2+1
 SF(1,J)=0.0
C SF(I,J) represents the streamfunction.

 SF(NI,J)=0.0
 DO 102 I=2,NIH
 DO 103 J=2,NJM1
 VN(I,J)=0.5*(V(I,J)+V(I,J+1))
C VN(I,J) represents the non-staggered v-velocity.

 SF(I,J)=VN(I,J)*SEW(I)+SF(I-1,J)
 103 CONTINUE
 102 CONTINUE
 DO 104 I=NIM1,NIHP,-1
 DO 105 J=2,NJM1
 VN(I,J)=0.5*(V(I,J)+V(I,J+1))
 SF(I,J)=VN(I,J)*SEW(I)+SF(I+1,J)
 105 CONTINUE
 104 CONTINUE

 DO 106 I=2,NIM1
 DO 106 J=2,NJM1
 106 SF(I,J)=ABS(SF(I,J))

C Prints the streamfunction using SUBROUTINE PRINT

 CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,SF,HEDSF)

The output data TEA.OUT is printed through SUBROUTINE PRINT. The listing for

 60

 PROGRAM NATCOM

SUBROUTINE PRINT is given below.

SUBROUTINE PRINT(ISTART,JSTART,NI,NJ,IT,JT,X,Y,PHI,HEAD)
 DIMENSION PHI(80,80),X(80),Y(80),STORE(500)
 CHARACTER*24 F,F4,HI,HY,HEAD
 DATA F/'(3X,A3,I5,10I10,8X,A3)'/
 DATA F4/'1 2 3 4 5 6 7 8 9 10 11'/
C Values for each variable are printed in groups of 11 columns. A typical

C output is shown after the subroutine.

 DATA HI,HY/6H I = , 6H Y = /
 ISKIP=1
 JSKIP=1
 ISTA=ISTART-11
 100 ISTA=ISTA+11
 IEND=ISTA+10
 IEND=MIN0(NI,IEND)
 IEL=IEND-ISTA
 INUM=2*IEL-1
 IF(ISTA.EQ.ISTART)THEN
 WRITE(6,115)
 WRITE(6,110)HEAD
 ELSE
 WRITE(6,115)
 ENDIF
 IF(IEL.GT.1) THEN
 F(11:12)=F4(INUM:INUM+1)
 WRITE(6,F)HI,(I,I=ISTA,IEND),HY
 ELSE
 WRITE(6,111)HI,ISTA,HY
 END IF
 WRITE(6,112)
 DO 101 JJ=JSTART,NJ,JSKIP
 J=JSTART+NJ-JJ
 DO 120 I=ISTA,IEND
 A=PHI(I,J)
 IF(ABS(A).LT.1.E-20) A=0.0
 120 STORE(I)=A
 101 WRITE(6,113) J,(STORE(I),I=ISTA,IEND,ISKIP),Y(J)

 WRITE(6,114) (X(I),I=ISTA,IEND,ISKIP)
 IF(IEND.LT.NI)GO TO 100
 RETURN
 110 FORMAT(1H0,20(2H'-),7X,6A6,7X,20(2H'*))
 111 FORMAT(3X,A3,I5,8X,A3)
 112 FORMAT(3H J)
 113 FORMAT(1H ,I3,1P13E13.4,0PF7.3)
 114 FORMAT(4H0X= ,1P12E13.4)

 61

 PROGRAM NATCOM

 115 FORMAT(///)
 END

Typical Output for a 6x6 grid:

The maximum number of columns in one row is 13. The last column represents the y-value. Thus

for a 6x6 grid, the 1st column represents the counter for J, columns 2 to 7 represent the values of the

calculated variable and the 8th column represents the corresponding y-value. Similarly the 1st row

represents the counter for I, rows 2 to 7 represent the values of the calculated variable and the 8th

row represents the corresponding x-value.

Output for temperature T. The output is non-dimensional. The x and y directions are non-

staggered.

0'-
 I = 1 2 3 4 5 6 Y=
 J
 6 1.0000E+00 9.6501E-01 7.6606E-01 3.9682E-01 6.4164E-02 0.0000E+00
1.0000E+00
 5 1.0000E+00 9.6501E-01 7.6606E-01 3.9682E-01 6.4164E-02 0.0000E+00 9.5458E-01
 4 1.0000E+00 9.6278E-01 7.5405E-01 3.9943E-01 6.2888E-02 0.0000E+00 7.0458E-01
 3 1.0000E+00 9.3711E-01 6.0057E-01 2.4596E-01 3.7221E-02 0.0000E+00 2.9542E-01
 2 1.0000E+00 9.3584E-01 6.0318E-01 2.3394E-01 3.4988E-02 0.0000E+00 4.5422E-02
 1 1.0000E+00 9.3584E-01 6.0318E-01 2.3394E-01 3.4988E-02 0.0000E+00
0.0000E+00
X= 0.0000E+00 4.5422E-02 2.9542E-01 7.0458E-01 9.5458E-01 1.0000E+00

This output is stored in the data file TEA.OUT.

The graphical output is obtained through the software TECPLOT. Data for this output are stored in

TEC.DAT. Before plotting the velocities one has to convert the staggered velocities into non-

staggered velocities. This is acheived by carrying out appropriate interpolations for u and v

velocities. Custom outputs like convergence of a variable at a particular monitoring location with

respect to time can be printed on a data file easily.

 62

 PROGRAM NATCOM

18. MAIN PROGRAM

 The main program is used to link all the subroutines listed above by using the SIMPLE

algorithm (Refer to the flow chart in Figure 4). The main program is also used to generate the

desired output i.e., numerical or graphical. Following is a listing of the main program.

PROGRAM MAIN
**
C Natural Convection flow in a square cavity (in two dimensions)
C Non-dimensional version, unsteady state calculations
C Common file= common.h, Input data file= in.dat
**
 CHARACTER*24 HEDU,HEDV,HEDP,HEDT,HEDK,HEDD,HEDM,HEDSF
 INCLUDE 'common.h'
 LOGICAL INCALU,INCALV,INCALP,INPRO,INCALK,INCALD,
 1 INCALB,INCALT,INHY,INCEN,STEADY
 OPEN(6,FILE='TEA.OUT',STATUS='OLD')
C File TEA.OUT stores the numerical output.

 OPEN(7,FILE='CONV.DAT',STATUS='OLD')
C File CONV.DAT stores the convergence with respect to time data for unsteady calculations.

 OPEN(10,FILE='DUMP',STATUS='OLD',FORM='UNFORMATTED')
C File DUMP stores the entire solution field in binary form for later use.

CALL READDATA
C Reads the subroutine READDATA

C CALCULATE GEOMETRICAL QUANTITIES AND SET VARIABLES TO ZERO
 CALL INIT
C Reads the subroutine INIT
 IF(VALUE.EQ.0) THEN
C If value equals zero, the initial field is read from the DUMP file.
 READ(10)((U(I,J),I=1,NI),J=1,NJ)
 READ(10)((V(I,J),I=1,NI),J=1,NJ)
 READ(10)((P(I,J),I=1,NI),J=1,NJ)
 READ(10)((T(I,J),I=1,NI),J=1,NJ)
 READ(10)((TE(I,J),I=1,NI),J=1,NJ)
 READ(10)((ED(I,J),I=1,NI),J=1,NJ)
 READ(10)((DEN(I,J),I=1,NI),J=1,NJ)
 READ(10)((GAMH(I,J),I=1,NI),J=1,NJ)
 READ(10)((VIS(I,J),I=1,NI),J=1,NJ)
 END IF
 REWIND 10

 63

 PROGRAM NATCOM

 RESORU=0.
 RESORV=0.
 RESORM=0.
 RESORT=0.
 RESORK=0.
 RESORE=0.
C The resdiual source values are initialised

C INITIAL OUTPUT
 WRITE(6,210)
 WRITE(6,230) RALI
 WRITE(6,223) PRANDL
 WRITE(6,260) DENSIT
 WRITE(6,250) VISCOS
 WRITE(6,222) TH,TC
 IF(INCALU) CALL PRINT(1,1,NI,NJ,IT,JT,XU,Y,U,HEDU)
 IF(INCALV) CALL PRINT(1,1,NI,NJ,IT,JT,X,YV,V,HEDV)
 IF(INCALP) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,P,HEDP)
 IF(INCALK) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,TE,HEDK)
 IF(INCALD) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,ED,HEDD)
 IF(INCALT) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,T,HEDT)
C Outputs are printed in the file TEA.OUT. This corresponds to the field before
C calculations are started.

C CALCULATE RESIDUAL SOURCES NORMALIZATION FACTORS

 RESORM=RESORM/((NI-2)*(NJ-2))
 RESORU=RESORU/((NI-3)*(NJ-2))
 RESORV=RESORV/((NI-2)*(NJ-3))
 RESORT=RESORT/((NI-2)*(NJ-2))
 RESORK=RESORK/((NI-2)*(NJ-2))
 RESORE=RESORE/((NI-2)*(NJ-2))

C BEGIN ITERATION LOOP
 TIME=TFIRST
 DO 3000 ITSTEP=NFTSTP,NLTSTP
 DT(ITSTEP)=TSTEP
 IF(.NOT.STEADY) TIME=TIME+DT(ITSTEP)
C Time step loop for unsteady calculations

C INNER ITERATION LOOP
 WRITE(*,310) IMON,JMON

C Prints the position of the monitoring location on the screen.

 300 NITER=NITER+1

 64

 PROGRAM NATCOM

C Internal iterations within one time step.

 IF(INCALU) CALL CALCU
 IF(INCALV) CALL CALCV
 IF(INCALP) CALL CALCP
 IF(INCALK) CALL CALCTE
 IF(INCALD) CALL CALCED
 IF(INCALT) CALL CALCT
C Subroutines are read in to solve the discretized partial differential equations. Note the

C sequence in which the subroutines are read in and compare them with the flow chart in

C Figure 4.

C UPDATE FLUID PROPERITIES
 IF(INPRO) CALL PROPS
C Fluid properties are updated. In case of turbulent flow this means the introduction of

C turbulent viscosity. Since the actual fluid properties are constant, INPRO can be taken

C as FALSE for laminar flow calculations.

C INTERMEDIATE OUTPUT
 WRITE(*,311) NITER,RESORU,RESORV,RESORM,RESORT,RESORK,RESORE
 1 ,U(IMON,JMON),V(IMON,JMON),P(IMON,JMON),T(IMON,JMON),

1 TE(IMON,NJM1),ED(IMON,NJM1)

C These outputs are printed on the screen after every iteration.

 IF(MOD(NITER,INDPRI).NE.0) GO TO 301

C TERMINATION TESTS
 301 SORCE=AMAX1(RESORM,RESORU,RESORV,RESORT)

C SORCE is the maximum of mass, momentum and thermal energy resdiuals.

 IF(NITER.EQ.MAXIT) GOTO 302

C MAXIT represents the maximum number of internal iterations within a time step.

C For steady calculations, MAXIT represents the maximum number of iterations.

 IF(SORCE.GT.SORMAX) GOTO 300
C SORCE is compared with the convergence criterion SORMAX. This procedure is

C carried out for every time step.

 IF(NITER.LE.20) GOTO 300

 65

 PROGRAM NATCOM

C The value of residual source sum can be lower than SORMAX at the beginning of the

C iteration process. Therefore NITER is allowed to go to a value of atleast 20

C irrespective of the value of SORCE. The least value assigned to NITER is arbitrary but

C generally 20 to 50 iterations are found to be sufficient.

 302 IF(.NOT.STEADY) THEN
C------INTERMEDIATE OUTPUT FOR TRANSIENT CALCULATIONS
 WRITE(*,*)”TIME STEP”
 WRITE(*,407)ITSTEP
C Printed on the screen after each time iteration.

C Printed in the output file TEA.OUT
 IF(INCALU) CALL PRINT(1,1,NI,NJ,IT,JT,XU,Y,U,HEDU)
 IF(INCALV) CALL PRINT(1,1,NI,NJ,IT,JT,X,YV,V,HEDV)
 IF(INCALP) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,P,HEDP)
 IF(INCALK) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,TE,HEDK)
 IF(INCALD) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,ED,HEDD)
 IF(INCALT) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,T,HEDT)
 IF(INPRO) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,VIS,HEDM)

C Outputs for checking convergence
 DO 3001 J=2,NJM1
 I=(NI+2)/2
 UC(I,J)=ABS(U(I,J))
 UM(J)=U(I,J)
 UMAX=MAXVAL(UM)
C UMAX represents the maximum of u velocity at the vertical midplane of the cavity.

 3001 CONTINUE
 WRITE(7,406) TIME,UMAX
C Printed as convergence with respect to time data in the output data file CONV.DAT

C UPDATE VARIABLES FOR THE NEXT TIME STEP
 IF(INCALU) CALL UPDATE(U,UO,NI,NJ,IT,JT)
 IF(INCALV) CALL UPDATE(V,VO,NI,NJ,IT,JT)
 IF(INCALP) CALL UPDATE(P,PO,NI,NJ,IT,JT)
 IF(INCALK) CALL UPDATE(TE,TEO,NI,NJ,IT,JT)
 IF(INCALD) CALL UPDATE(ED,EDO,NI,NJ,IT,JT)
 IF(INCALT) CALL UPDATE(T,TO,NI,NJ,IT,JT)
 IF(INCALT) CALL UPDATE(DEN,DENO,NI,NJ,IT,JT)
 END IF
 3000 CONTINUE
C This is the end of time iterations.

C Printed in the output data file TEA.OUT as final output.

 66

 PROGRAM NATCOM

 IF(INCALU) CALL PRINT(1,1,NI,NJ,IT,JT,XU,Y,U,HEDU)
 IF(INCALV) CALL PRINT(1,1,NI,NJ,IT,JT,X,YV,V,HEDV)
 IF(INCALP) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,P,HEDP)
 IF(INCALK) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,TE,HEDK)
 IF(INCALD) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,ED,HEDD)
 IF(INCALT) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,T,HEDT)
 IF(INPRO) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,VIS,HEDM)

CALL DUMP(NI,NJ,U,V,P,T,TE,ED,DEN,GAMH,VIS)

C The dump file is called and the final field is stored as a binary output for further use.

C CALCULATION OF STREAM FUNCTION
 NIH=NI/2
 NIHP=NI/2+1
 SF(1,J)=0.0
 SF(NI,J)=0.0
 DO 102 I=2,NIH
 DO 103 J=2,NJM1
 VN(I,J)=0.5*(V(I,J)+V(I,J+1))
 SF(I,J)=VN(I,J)*SEW(I)+SF(I-1,J)
 103 CONTINUE
 102 CONTINUE
 DO 104 I=NIM1,NIHP,-1
 DO 105 J=2,NJM1
 VN(I,J)=0.5*(V(I,J)+V(I,J+1))
 SF(I,J)=VN(I,J)*SEW(I)+SF(I+1,J)
 105 CONTINUE
 104 CONTINUE
 DO 106 I=2,NIM1
 DO 106 J=2,NJM1
 106 SF(I,J)=ABS(SF(I,J))

 CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,SF,HEDSF)

C CALCULATION OF NUSSELT NUMBER, UMAX AND VMAX
C UMAX is the maximum of u velocity at the vertical midplane of the cavity.

C VMAX is the maximum of v velocity at the horizontal midplane of the cavity.

C Nusselt number is the non-dimensional heat flux from the hot wall and is defined as:

C
T

H
x
TNu

0y ∆=
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−= . The negative sign is included to make the nusslet number

C positive. The average nusselt number is given by ∫
=

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=
T

Hdy
x
TNu

0y
avg ∆

.

 67

 PROGRAM NATCOM

 DO 451 I=1,NI
 DO 452 J=1,NJ
 T(I,J)=T(I,J)*DELT+TC
 452 CONTINUE
 451 CONTINUE

 DO 453 I=1,NI
 453 X(I)=X(I)*H
 DX1=X(2)-XU(2)
 DX2=X(3)-X(2)

 DX=DX1+DX2
 WRITE(6,402)

 DO 401 J=2,NJM1
 I=(NI+2)/2
 U(I,J)=ABS(U(I,J))
 UM(J)=U(I,J)
 UMAX=MAXVAL(UM)
 HFLUXN=(T(2,J)*DX**2-T(3,J)*DX1**2-TH*(DX**2-DX1**2))
 1/(DX1*DX**2-DX*DX1**2)
C The heat flux, HFLUXN, is calculated using a second order Taylor series
C approximation.
 ANUN=-HFLUXN*H/DELT
 ANUN=ABS(ANUN)
C ANUN represents the local nusselt number at the hot wall.
 ANUN1=ANUN*SNS(J)
C SNS(J) represents dy.
 SUMN=SUMN+ANUN1
C SUMN represents the average nusselt number
 ANUN=ANUN/RALI**0.25
 WRITE(6,403)Y(J),ANUN
 401 CONTINUE
 DO 415 I=2,NIM1
 J=(NJ+2)/2
 V(I,J)=ABS(V(I,J))
 VM(I)=V(I,J)
 VMAX=MAXVAL(VM)
 415 CONTINUE
 WRITE(6,404)
 WRITE(6,405)SUMN,UMAX,VMAX,H

C OUTPUTS FOR PLOTTING USING TECPLOT
 DO 421 I=1,NI
 421 X(I)=X(I)/H
 WRITE(8,*)'TITLE="TECPLOT PLOTS"'
 WRITE(8,*)'VARIABLES="X" "Y" "T" "U" "V" "P" "SF" "DEN"'

 68

 PROGRAM NATCOM

 WRITE(8,*)'ZONE F=POINT, I=', NI, ', J=', NJ

 DO 502 J=1,NJ
 DO 502 I=1,NI
 502 WRITE(8,503)X(I),Y(J),T(I,J),UN(I,J),VN(I,J),P(I,J),SF(I,J),
 1 DEN(I,J)
C These outputs are written in the data file TEC.DAT. TEC.DAT can then be loaded

C into TECPLOT using the Load data file command.

 STOP

C FORMAT STATEMENTS
 210 FORMAT(1H0,47X,'TURBULENT FLOW IN A CAVITY '/////)
 222 FORMAT(///1H0,15X,'THERMAL BOUNDARY CONDITIONS ARE - - -'//
 11H0,25X,'SIDE WALL TEMPERATURES = '2(1PE11.3)//
 11H0,25X,'ADIABATIC TOP AND BOTTOM WALLS '//)
 223 FORMAT(1H0,15X,'PRANDTL NUMBER',T60,1H=,3X,1PE11.3)
 230 FORMAT(1H0,15X,'RAYLEIGH NUMBER ',T60,1H=,3X,1PE11.3)
 250 FORMAT(1H0,15X,' LAMINAR VISCOSITY ',T60,1H=,3X,1PE11.3)
 260 FORMAT(1H0,15X,'FLUID DENSITY ',T60,1H=,3X,1PE11.3)
 310 FORMAT(1H0,'ITER ','I---------------ABSOLUTE RESIDUAL SOURCE SUM
 1S---------------I I-------FIELD VALUES AT MONITORING LOCATION','
 2(',I2,',',I2,')','--------I' / 2X,'NO.',3X,'UMOM',6X,'VMOM',6X,'MA
 3SS',6X,'ENER',6X,'TKIN',6X,'DISP',10X,'U',9X,'V',9X,'P',9X,'T',9X,
 4'K',9X,'D'/)
 311 FORMAT(1H ,I8,4X,1P6E10.3,3X,1P6E10.3)
 402 FORMAT(///5X,1HI,7X,5HYV(I),6X,10HS.S.COEFF.,'NUSSELT NO. ',
 25X,'Y(I)')
 403 FORMAT(/5X,1PE11.3,2X,1PE11.3)
 404 FORMAT('AVERAGE NUSSELT NUMBER',5X,'UMAX',5X,'VMAX',5X,'H')
 405 FORMAT(/5X,1PE11.3,4X,1PE11.3,4X,1PE11.3,4X,1PE11.3)
 406 FORMAT(1H ,1PE11.3,4X,1PE11.3)
 407 FORMAT(1H ,I6)
 503 FORMAT(1PE11.3,2X,1PE11.3,2X,1PE11.3,2X,1PE11.3,2X,1PE11.3,
 12X,1PE11.3,2X,1PE11.3)
 END

 69

 PROGRAM NATCOM

19. REFERENCES

Ampofo, F. and Karayiannis, T. G. (2003) Experimental benchmark data for turbulent

natural convection in an air filled square cavity. Int. J. Heat and Mass Transfer, 46, 3551-

3572.

Chien, K. Y., (1982) Predictions of channel and boundary layer flows with a low Reynolds

number turbulence model. AIAA Journal, 20, 33-38.

Craft T. J., Gerasimov A. V., Iacovides H. and Launder B. E. (2002) Progress in the

Generalization of Wall-Function Treatments, Int. J. Heat and Fluid Flow, 23, No. 2, pp.

148-160.

Gray, D. D. and Giorgini, A. (1976) The validity of the Boussinesq approximation for

liquids and gases. International Journal of Heat and Mass Transfer, 24, 125-131.

Harlow, F. H. and Nakayama, P. (1967) Turbulence transport equations. Physics of Fluids,

11, 2323-2332.

Harlow, F. H. and Welch, J. E. (1965) Numerical calculation for time dependent viscous

incompressible flow of fluid with free surface. Physics of Fluids, 8, 2182-2189.

Henkes, R. A. W. M. (1990) Natural-Convection Boundary Layers. Ph.D. thesis, Technical

University of Delft, The Netherlands.

 Jones, W. P. and Launder, B. E. (1972) The Prediction of laminarization with a two-

equation model of turbulence. International Journal of Heat and Mass Transfer, 15, 301-

314.

 Patankar, S. V. and Spalding, D. B., (1972) A Calculation Procedure for Heat, Mass and

Momentum Transfer in Three Dimensional Parabolic Flows, International Journal of Heat

and Mass Transfer, 15, p.1787.

Patankar, S. V. (1980) Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing

Corporation, Washington.

 70

 PROGRAM NATCOM

 Wilcox, D. C. (1993) Turbulence Modelling for CFD. DCW Industries, La Canada.

 71

	Private Bag 10, Clayton South, 3169
	School of Architectural, Civil and Mechanical Engineering
	Occasional Paper Number 1
	PREFACE
	Ö. F. Turan
	CONTENTS
	NIM1=NI-1

	NJM1=NJ-1
	NIM2=NI-2
	C CALCULATE GEOMETRICAL QUANTITIES
	DO 103 I=1,NIM1

	C C2-turbulence model constant, c(2.
	C CAPPA-Von Karman’s constant, \(.
	C ELOG- represents c\(where c is given �

	Including the pressure correction equation, there are now si
	CALCU x-directional momentum equation
	CALCV y-directional momentum equation
	CALCP pressure correction equation
	CALCTE equation for turbulence kinetic energy
	CALCED equation for energy dissipation
	CALCT thermal energy equation
	Following is a description of the TDMA for one dimensional s
	Substitution of Equation (16) into Equation (14) leads to,
	(17)
	CE=0.5*(GE+GP)*AREAEW
	SMP=CN-CS+CE-CW
	C ENTRY MODU in SUBROUTINE PROMOD contains information about
	AP(I,J)=AP(I,J)/URFU
	DO 400 N=1,NSWPU
	C Extra term to improve numerical stability:
	DO 300 I=2,NIM1
	AP(I,J)=AP(I,J)/URFV
	C CALCULATE COEFFICIENTS
	C COMPUTE SUM OF ABSOLUTE MASS SOURCES
	RETURN
	10. SUBROUTINE PROPS (MODIFICATION TO FLUID PROPERTIES)
	CALL MODT
	Following is a listing of SUBROUTINE CALCTE, which solves th
	C BUOYANCY TERM
	SP(I,J)=-CP
	CALL MODTE
	END

	ENTRY MODU
	C WEST WALL
	RETURN
	C represents boundary conditions for energy dissipation. Th
	END
	C INTERNAL HEAT GENERATION AND RAYLEIGH NUMBER

