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PREFACE 
 
 

 
Books on computational fluid dynamics (CFD) are often quite theoretical and general, and as 

such they do not provide users with definitive advice on how to translate the theory into a 

practical working computer code.  On the other hand commercial CFD packages require users to 

have little or no theoretical knowledge, and they are menu-driven and applications orientated.  

There are therefore gaps between generalized theory, the writing of ‘own-code’ and commercial 

CFD packages.  Furthermore, for all of their flexibility commercial CFD packages are often 

unable to solve the precise problem posed by the user, and user-defined functions have to be 

written.  This requires at least some knowledge of how CFD codes are structured.  Students and 

researchers new to the field of CFD need an interface that relates the differential equations that 

govern heat, mass and momentum transfer in fluids to CFD codes.  If students had access to such 

an interface their rate of progress could be much higher.  This report aims to bridge the gap 

between theory and application. 

 

The report correlates the equations that govern fluid flow and heat transfer with a FORTRAN 90 

code.  The program uses the finite volume method, as this has become a widely used technique 

amongst CFD practitioners.  Procedures for discretising the partial differential equations that 

govern the physics along with how the resulting linear algebraic equations are solved have been 

described in detail.  The grid generation procedure has been discussed at some length, as this is 

important if the discretisation procedure is to be accurate.  The implementation of the hybrid 

discretisation scheme is illustrated, and it is felt that this will facilitate users to experiment with 

other schemes.  The effects of turbulence are captured using a k-ε model that has been modified 

to account for near wall effects. 

 

It is strongly recommended that readers use this report along with the book by Patankar (1980) in 

order to maximize the benefits of this document.  Before developing the code the authors had 

access to the TEACH code that has become ubiquitous, and it shares a similar structure and 

nomenclature of the TEAM code developed at the University of Manchester (Craft et al., 2002).  

Users are advised to retain this structure when making modifications to the program so that it 
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retains a certain universality.  The program has been validated against other programs and 

experimental data as described in Prakash’s PhD thesis (2001). 

 

The source code for the case of buoyancy-driven laminar and turbulent flows in differentially 

heated cavities may be obtained from the authors. 

 

The authors would like to acknowledge Dr Yuguo Li, Dr Li Chen, Dr Jun-de Li and Dr Longde 

Zhao for their valuable contributions and comments. 

 

 

           M. Prakash 

           Ö. F. Turan 

G. R. Thorpe 
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1. INTRODUCTION 
 

There are conceptual barriers between the mathematical formulation of fluid mechanics 

problems in terms of continuous equations, the discretisation of the equations and numerical 

methods to solve them, and their ultimate coding in a high-level computer language.  This work is 

essentially didactic in that it aims to reduce these barriers and help students to understand how cfd 

codes actually work.  They will then be in a good position to write their own codes, understand 

other people’s codes, and commercial cfd packages will no longer appear to be solely menu-driven 

‘black boxes’. 

This report contains a detailed description of the program NATCON that solves, using the 

finite volume method, the equations that govern two-dimensional buoyancy driven turbulent flows 

in a rectangular enclosure.  Natural convection flow occurs due to a temperature difference 

imposed on the opposite walls of the enclosure.  The problem description is presented in Section 2.   

The program has a provision to solve steady and unsteady problems with laminar or 

turbulent flows.  The standard k-ε model originally proposed by Harlow and Nakayama (1967) 

with some modification for natural convection flows (described in Section 3) is used as the 

turbulence model.  Low Reynolds number k-ε models can also be used with some minor 

modifications to the program.  This is also described in Section 3.  A description of the non-

dimensional equations is given in Section 4.  A proper choice of the non-dimensional scheme can 

have a significant saving on the computer time by way of a reduction in the rounding off errors. 

The concept of staggered grid to solve the discretized partial differential equations along 

with grid generation is described in Section 5.  Section 5 also describes subroutines READDATA 

and INIT.   

The Gauss Seidel line by line solver, used to solve all the partial differential equations is 

described in Section 7. 

Section 8 describes subroutines CALCU and CALCV in which the momentum equations 

are encoded.  The SIMPLE algorithm described in Patankar and Spalding (1972) is used to ensure 

that continuity of mass is conserved.  The pressure correction equation forms the backbone of the 

SIMPLE algorithm, which, along with subroutine CALCP is described in Section 9. 

Section 10 describes subroutine PROPS that can be used to make changes to the fluid 

properties.  Section 11 describes subroutine CALCT for the thermal energy equation.  Sections 12 
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and 13 describe subroutine CALCTE and CALCED for the turbulent kinetic energy and energy 

dissipation respectively. 

Subroutine PROMOD that is used to assign boundary conditions to all the variables is 

described in Section 14.  Section 15 describes subroutine UPDATE that is used for unsteady state 

calculations to update variables after each time iteration.  Section 16 describes subroutine DUMP 

used to restart calculations using a previously calculated field. 

The input required for the program and the output in numerical and graphical form are 

described in Section 17.  The main program is listed in Section 18. 

 
 
2. PROBLEM DESCRIPTION 
 

Consider a closed rectangular cavity, which, is subjected to different thermal boundary 

conditions.  The cavity can have a fluid heated from below with adiabatic vertical walls.  This 

gives rise to a Rayleigh-Benard type of flow.  One can also have the vertical walls at different 

temperatures with adiabatic horizontal walls.  All other instances such as conducting horizontal 

walls with vertical walls at different temperatures, and a cavity with tilted axes are special cases 

which can be easily achieved with some minor modifications to the present program.  

 
A particularly simple case that illustrates the key features of buoyancy driven flows is a 

cavity that has differentially heated vertical walls and floors that are adiabatic.  Figure 1 shows the 

heating from the side case as a representative system with the rectangular cavity filled with a fluid. 

 

In the figure, Q is the heat flux and is zero for the adiabatic horizontal walls, Th represents the 

temperature of the hot wall, Tc represents the temperature of the cold wall, H is the total height and 

L is the total length of the rectangular cavity. Vector g represents acceleration due to gravity. Since 

the heat flux Q is the first derivative of temperature with respect to space this condition can be 

mathematically represented as 0
y
T
=

∂
∂ at y=0 and y=H. 

The problem satisfies the following conditions: 

  

(a) The fluid is “almost” incompressible and satisfies the Boussinesq approximation 

[details can be found in Gray and Giorgini (1976)] which implies that the variation of 
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density with temperature is negligible except in the buoyancy term of the equation of 

motion. The buoyancy term occurs in the y-component equation of motion, Equation 3 

in Section 3. The density in the buoyancy term is linearized according to 

)TT(1
)T(
)T(

o
o

−−= β
ρ
ρ         (1) 

where, ρ is the fluid density, T is the local fluid temperature, To is a reference temperature 

and β is the thermal expansion coefficient of the fluid.  

 
L 

 
 

 
 

 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Square cavity that has, vertical walls maintained at different temperatures, and floors that are 

adiabatic.  

 X 
Q=0

Q=0 

H

 g 

 Th  Tc 

 Y 

 

(b) All other thermodynamic and transport properties of the fluid are constant. 

 

(c) The z dimension is much greater than the x and y dimensions and thus the problem can 

be considered as essentially two-dimensional. 

 
The requirements for these assumptions to be valid must be carefully examined before using the standard program.  If 

any of these assumptions were not valid for a nonstandard problem the program would have to be modified so that it 

satisfies the specific requirements of the problem. 
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3. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

 
The following set of partial differential equations is solved in the present program. 

 
1.  Equation of continuity: 

 

0
y

)v(
x

)u(
t

=
∂

∂
+

∂
∂

+
∂
∂ ρρρ         (2) 

 
in which t represents time, u and v are the components of the fluid velocity in the x and y 
directions respectively. 
 

2. Momentum equation in the x direction: 
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k is the turbulent kinetic energy, σk is the turbulent Prandtl number for k and ε is the rate of 

energy dissipation.  D represents a term which arises when low Reynolds number turbulence 

models are implemented. 

 
6. Equation for the rate of energy dissipation: 
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E is a term which occurs when low Reynolds number turbulence models are used. 

σε is the turbulent Prandtl number for ε. 

The following values are empirical constants used in the standard k-ε model. 

cµ=0.09, cε1=1.44, cε2=1.92, σT=0.9, σk=1.0, σε=1.3, fµ=f1=f2=1.0. 

 
 

3.1 Laminar Solutions 
 

For laminar solutions, Equations (6) and (7) are not used for calculations and the eddy 

viscosity, µt, is taken as zero. The variables u, v, p and T are instantaneous quantities for laminar 

calculations.  One can either use a steady approach or a transient approach for laminar calculations.  

In the former case the time derivatives in Equations (2), (3), (4) and (5) are set to zero.  Since no 
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modifications are carried out in arriving at the unsteady formulation, the solution obtained would 

approximate to a true transient solution.   

 
3.2 Turbulent Solutions 
 

For turbulent solutions, Equations (6) and (7) are solved simultaneously with Equations (2), 

(3), (4) and (5). Variables, u, v, p and T are, time averaged quantities for turbulent calculations. 

Here again one can either use a steady approach or approach the steady state solution by integrating 

through time.  

 

The time derivatives in the time-averaged, Navier-Stokes equation represent the large time 

behaviour according to Henkes (1990). However the nature of the transient solution will depend on 

the type of turbulence model used.  Thus the transient solution cannot be called a true transient.  

The eddy viscosity, µt, is introduced in the form of a modification to the fluid viscosity as 

described in Section 10.  Quantities D and E represent terms that need to be added for low 

Reynolds number k-ε models.  For the standard k-ε model, D and E are set equal to zero.  

 

More recent experimental data on natural convection in a differentially heated cavity have 

been provided by Ampofo and Karayiannis (2003) against which the various models may be 

compared. 

 

3.2a Modification for low Reynolds number models 

 

 Low Reynolds number models of Chien (1982) and Jones and Launder (1972) are given as 

examples. 

1. Low Reynolds number k-ε model of Chien (1982) 

cµ=0.09, cε1=1.35, cε2=1.8, σT=0.9, σk=1.0, σε=1.3 

 fµ=1-exp(-0.0115x+), f1=1.0, ))6/(Reexp(
9
21f 2

t2 −−= , 

2
nx

k2D µ−= , )x5.0exp(
x

2E 2
n

+−−=
µε . 

 

2. Low Reynolds number k-ε model of Jones and Launder (1972) 
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cµ=0.09, cε1=1.44, cε2=1.92, σT=0.9, σk=1.0, σε=1.3 

 ⎟⎟
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3.3 Boundary Conditions
 

For calculations involving laminar flow natural boundary conditions are applied for u, v and 

T.  The no-slip and impermeable boundary condition is applied to the u and v velocities.   

 

For the temperature, 

    T=Th       at x=0 
 

T=Tc     at x=L 
 

0
y
T
=

∂
∂  at y=0 

 

0
y
T
=

∂
∂  at y=H 

 
For calculations of turbulent flow wall functions can be introduced for velocities and 

temperature as well as for k and ε.  However in the present formulation, wall functions are used 

only for k and ε and the other variables are solved up to the wall. 

 

3.3a Boundary conditions for k and ε

1. Standard k-ε model. 

( )
µµ fc

uk
2*

= , ( )
y

u
3*

κ
ε =  at the first inner grid point. 

where   u*
 is friction velocity defined by 

ρ
τw*u =  
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where wτ  is the wall shear stress calculated from 
w

w y
u
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
ρ
µτ  

 κ is Von Karman’s constant=0.41  

and y is the normal distance from the wall. 

2.  Low Reynolds number models of Chien and Jones and Launder. 

  0k == ε  at the wall. 

 
4.      NON-DIMENSIONAL EQUATIONS 
 
 

A non-dimensional form of the equations reduces the number of independent parameters in 

the equations and makes the solutions more general for a given set of parameters.  It aids in saving 

computer time by increasing the speed of convergence of the solution. The non-dimensional 

equations are derived in such a way that only the fluid Prandtl number and Rayleigh number are 

the dimensionless parameters. 

 

The fluid Prandtl number is defined as 
f

p

k
C

Pr
µ

= , where Cp is the specific heat of the fluid 

and kf is the fluid thermal conductivity.  The Rayleigh number is defined as 2

32 PrTHgRa
µ
∆βρ

= , 

where g is acceleration due to gravity and ∆T is the temperature difference between the hot and 
cold wall. 
 
 

In case of natural convection flows, for low Prandtl number fluids like gases as well as low 

viscosity liquids, the convective acceleration term is balanced by the buoyancy term in the 

momentum equation.  Let the subscript ref, represent a reference value for all variables and 

superscript * represent the non-dimensional variable. 

 
 

 
Thus one can write, 

ref

*

u
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ref
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u
vv = , 
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t µ
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*

t
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 Using the above non-dimensional variables one can equate the convective acceleration term 

and buoyancy term in Equation (3) and arrive at: THguref ∆β= .  By equating the convective 

acceleration term with the pressure term one then obtains: .  The reference temperature 

is taken as (T

2
refref up ρ=

c+Th)/2. The reference density and viscosity are taken as the fluid density and 

viscosity respectively. 

 

 The reference time tref, is taken as the ratio of the reference length scale and the reference 

velocity scale, i.e. 
THg

Htref
∆β

= . 

 

 The reference values for turbulent kinetic energy and energy dissipation are derived with 

the aid of perturbation theory which is described in Wilcox (1993) and are respectively given as: 

2
refref uk = , 

H
u 3

ref
ref =ε . 

Using the non-dimensional parameters and dropping the superscript * from all the variables, 

Equations (2) through (7) can be written as, 
 

1.  Equation of continuity: 
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2. Momentum equation in the x direction: 
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3. Momentum equation in the y direction: 
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)TT( o−+       (10) 
    

 
3. Thermal energy equation: 
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4. Turbulent kinetic energy equation: 
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5. Equation for energy dissipation: 
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The non-dimensional forms of the equations are now used along with their boundary 

conditions. The temperatures Th  and Tc become equal to 1 and 0 on a non-dimensional scale. 

 

 
5. SUBROUTINES INIT AND READDATA (GRID GENERATION, INITIALIZATION AND 

READING THE INPUT DATA FILE) 
 

The calculation of all variables (i.e., vectors u and v and scalars p, T, k and ε) at one point 

leads to a non-uniform pressure filed being represented as a uniform pressure field. Also, a 

physically unrealistic velocity field seems to satisfy the discretized continuity equation. These 

problems associated with the primitive variable formulation have been described in Patankar 
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(1980). The problem is overcome by using a different set of points to calculate vectors and scalars.  

This is called the staggered grid concept where the calculation points for vectors are staggered with 

respect to the calculation points for scalars.  Such a staggered grid for velocity components was 

first used by Harlow and Welch (1965). 

 

In the staggered grid, the velocity components are calculated for the points that lie on the 

faces of a control volume.  Thus, the x-component of velocity u is calculated at the faces that are 

normal to the x-direction. The locations for u are shown in Figure 2 by short arrows, while the grid 

points (hereafter called the main grid points) are shown by the intersections of the solid lines; the 

dashed lines indicate the control-volume faces. 

 

 

 
 
 
 

 
                                                                                                                     
 
 
 
  
 
 
 
 
  

 x 

 y  
 
 

Figure 2. Staggered locations for u 
 

Note that with respect to the main grid points, the u locations are staggered only in the x 

direction.  Similarly the v locations are staggered only in the y direction.  Scalar variables like T, p, 

k and ε are calculated at the main grid points. 
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Grids are developed, by using algebraic functions for grid spacing (non-uniform or uniform 

grid spacing).  The staggered grid points are first developed. They are represented as xu(i) and yv(j) 

for x and y directions respectively.  The main grid points are then calculated by using the staggered 

grid locations.  Figure 3 shows the staggered and main grid locations xu(i) and x(i) respectively for 

the x direction on a 7x7 grid.  Note that the boundary of the diagram is the physical boundary of the 

cavity. The staggered grid starts with xu(2) whereas the main grid starts with x(1). Note that xu(2) 

= x(1) and xu(ni) = x(ni) with ni = 7. This representation allows the imposition of natural boundary 

conditions for scalar and vector quantities.  In the x direction, calculations for u velocity starts at 

xu(3) and ends at xu(ni-1)=xu(6) whereas calculations for scalars and v velocity start at x(2) and 

end at x(ni-1) = x(6). Similarly in the y direction, calculations for v velocity starts at yv(3) and ends 

at yv(nj-1) = yv(6) whereas calculations for scalars and u velocity start at y(2) and end at y(nj-1) = 

y(6).  

 

 

           

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

XU(6) X(6) XU(7)
=X(7)

XU(3) X(2) XU(2) 
=X(1) 

  Figure 3.  Main and Staggered grid locations for a 7x7 grid 
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The staggered grid generation is given as GRID GENERATION FUNCTIONS in 

SUBROUTINE READDATA and the development of the main grids from the staggered grids is 

shown as CALCULATE GEOMETRICAL QUANTITIES in SUBROUTINE INIT.   

 

This part of the program is given below: 

NIM1=NI-1 
      NJM1=NJ-1 
       NIM2=NI-2 
       NJM2=NJ-2 
 
C        GRID GENERATION FUNCTIONS (development of the staggered grid. This is a part C of 

SUBROUTINE READDATA) 

      DO 101 I=2,NI 
      XU(I)=ELBYH*((I-2)/FLOAT(NIM2)-1/(2*3.14159)*SIN(2*3.14159*(I-2) 
     1/FLOAT(NIM2))) 
  101 CONTINUE 
 
       DO 105 J=2,NJ 
      YV(J)=((J-2)/FLOAT(NJM2)-1/(2*3.14159)*SIN(2*3.14159*(J-2) 
     1/FLOAT(NJM2))) 
  105 CONTINUE 
 
 In the example presented above a sine function is used for generating the staggered grid in 

the x and y directions.  This function can be expressed mathematically as: 

 
( ) 2 1 sin 2

max 2 max
xu i i i

H i i
π

π
− ⎛= − ⎜

⎝ ⎠
⎞
⎟      i=imin, imax 

( ) 2 1 sin 2
max 2 max

yv j j i
H j i

π
π

− ⎛= − ⎜
⎝ ⎠

⎞
⎟      j=jmin,jmax  

 
 
where imin=jmin=2, imax=NI-2  and jmax=NJ-2 . 
 
 
 The sine function gives rise to a non-uniform grid which is closely spaced near the 

wall and sparsely spaced away from the wall.  Similarly any other function can be used to define 

the staggered grid.  ELBYH represents the ratio of the length to the height of the cavity. Once the 

staggered grid is generated, the main grids are created by using the staggered grid co-ordinates in 

SUBROUTINE INIT. X(I) and Y(J) represent the main grid locations. 
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SUBROUTINE INIT 
 

      INCLUDE 'common.h' 
 

C CALCULATE GEOMETRICAL QUANTITIES   
      X(1)=XU(2) 
      X(NI)=XU(NI) 
      DO 101 I=2,NIM1 
  101 X(I)=0.5*(XU(I+1)+XU(I)) 
 
      Y(1)=YV(2) 
      Y(NJ)=YV(NJ) 
       
      DO 102 J=2,NJM1 
  102 Y(J)=0.5*(YV(J+1)+YV(J)) 
 
      DXPW(1)=0.0  

C (DXPW(I), distance between two consecutive main grid points in the x-direction 

C starting from X(2) to X(NI)) 

 

      DXEP(NI)=0.0      
C       (DXEP(I), distance between two consecutive main grid points in the x-direction  

C       starting from X(1) to X(NIM1)) 

 

      DO 103 I=1,NIM1 
      DXEP(I)=X(I+1)-X(I) 
  103 DXPW(I+1)=DXEP(I) 
 
      DYPS(1)=0.0 

C (DYPS(J), distance between two consecutive main grid points in the y-direction 

C starting from Y(2) to Y(NJ)) 

 

  
 DYNP(NJ)=0.0 

C       (DYNP(J), distance between two consecutive main grid points in the y-direction  
C       starting from Y(1) to Y(NJM1)) 
 
 

      DO 104 J=1,NJM1 
      DYNP(J)=Y(J+1)-Y(J) 
  104 DYPS(J+1)=DYNP(J) 
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      DXPWU(1)=0.0 
      DXPWU(2)=0.0 

C      (DXPWU(I), distance between two consecutive staggered grid locations in the x- 

C      direction starting from XU(3) to XU(NI)) 

 

      DXEPU(1)=0.0 
      DXEPU(NI)=0.0 

C      (DXEPU(I), distance between two consecutive staggered grid locations in the x- 

C      direction starting from XU(2) to XU(NIM1)) 

 
      DO 105 I=2,NIM1 
      DXEPU(I)=XU(I+1)-XU(I) 
  105 DXPWU(I+1)=DXEPU(I) 
 
      DYPSV(1)=0.0 
      DYPSV(2)=0.0 

C      (DYPSV(J), distance between two consecutive staggered grid locations in the y- 

C      direction starting from YV(3) to YV(NJ)) 

 
      DYNPV(1)=0.0 
      DYNPV(NJ)=0.0 

C      (DYNPV(J), distance between two consecutive staggered grid locations in the y- 

C       direction starting from YV(2) to YV(NJM1)) 

 

      DO 106 J=2,NJM1 
      DYNPV(J)=YV(J+1)-YV(J) 

  106 DYPSV(J+1)=DYNPV(J) 
 
      DO 107 I=1,NI 
  107 SEW(I)=DXEPU(I) 

C      (SEW(I), area associated with the non-staggered control volume in the x-direction)  
 

      DO 108 J=1,NJ 
  108 SNS(J)=DYNPV(J) 

C       (SNS(J), area associated with the non-staggered control volume in the y-direction) 
     
       DO 109 I=1,NI 
  109 SEWU(I)=DXPW(I) 

C      (SEWU(I), area associated with the staggered control volume in the x-direction) 
 
      DO 110 J=1,NJ 

        110        SNSV(J)=DYPS(J) 
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C     (SNSV(J), area associated with the staggered control volume in the y-direction) 
 
As already mentioned the walls of the cavity are located at the staggered locations in order to 

facilitate the application of the no-slip and impermeable boundary conditions.  Thus XU(2), 

XU(NI), YV(2) and YV(NJ) are located on the cavity walls.  The main grid locations, X(1), X(NI), 

Y(1) and Y(NJ) are set equal to XU(2), XU(NI), YV(2) and YV(NJ) respectively.  X(1), X(NI), 

Y(1) and Y(NJ) are dummy points and are not used for calculations.  Such an allocation also 

enables the use of natural boundary conditions for temperature at the wall.  All other non-staggered 

locations are positioned in between the staggered locations.   

   

Before carrying out calculations all the necessary data are read in by using SUBROUTINE 

READDATA.  This subroutine in turn reads in the data file “IN.DAT”. 

 
 
SUBROUTINE READDATA 
      INCLUDE 'common.h' 
 
C The include statement in FORTRAN does away with all common statements.  This   

C information is stored in the include file common.h. 

      LOGICAL INCALU,INCALV,INCALP,INPRO,INCALK,INCALD,INCALM 
1 ,INCALT,INHY,INCEN,STEADY 
 
C These are logicals and are defined at the end of this listing. 
 
      OPEN(2,FILE='in.dat') 
 
C The file in.dat contains input parameters and is given in Section 17. 
 
C GRID, ITERATION AND COMPARISON PARAMETERS 

      READ(2,'(/////)') 
      READ(2,*)GREAT,NITER,SMALL,NFTSTP,NLTSTP,STEADY,TFIRST 
      WRITE(*,*)"GREAT NITER SMALL NFTSTP NLTSTP STEADY TFIRST" 
      WRITE(*,*)GREAT,NITER,SMALL,NFTSTP,NLTSTP,STEADY,TFIRST 
      READ(2,*) 
      IF(STEADY)NFTSTP=1 
      IF(STEADY)NLTSTP=1 
      IF(STEADY) DT(1)=GREAT 
      READ(2,*)IT,JT 
      WRITE(*,*)"IT   JT" 
      WRITE(*,*)IT,JT 
      READ(2,'(/)') 
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      READ(2,*)NSWPU,NSWPV,NSWPP,NSWPK,NSWPD,NSWPT 
      WRITE(*,*)"NSWPU  NSWPV  NSWPP  NSWPK  NSWPD  NSWPT" 
      WRITE(*,*)NSWPU,NSWPV,NSWPP,NSWPK,NSWPD,NSWPT  
      READ(2,'(/)') 
      READ(2,*)NI,NJ,ELBYH 
      WRITE(*,*)"NI   NJ  ELBYH" 
      WRITE(*,*)NI,NJ,ELBYH 
 
C TIME STEP FOR UNSTEADY CALCULATIONS 
      READ(2,'(/)') 
      READ(2,*)TSTEP 
      WRITE(*,*)"TSTEP" 
      WRITE(*,*)TSTEP 
 
C DEPENDENT VARIABLE, DISCRETIZATION AND RESTART OPTIONS  
      READ(2,'(/)') 
      READ(2,*)INCALU,INCALV,INCALP,INCALK,INCALD,INPRO,INCALT 
      WRITE(*,*)"INCALU INCALV INCALP INCALK INCALD INPRO INCALT" 
      WRITE(*,*)INCALU,INCALV,INCALP,INCALK,INCALD,INPRO,INCALT 
      READ(2,*) 
      READ(2,*)INCALB,INHY,INCEN,VALUE 
      WRITE(*,*)"INCALB INHY INCEN VALUE" 
      WRITE(*,*)INCALB,INHY,INCEN,VALUE 
 
 
C FLUID PROPERTIES 
      READ(2,'(/)') 
      READ(2,*)DENSIT,PRANDL,VISCOS,CPP 
      WRITE(*,*)"DENSIT   PRANDL   VISCOS  CPP" 
      WRITE(*,*)DENSIT,PRANDL,VISCOS,CPP 

C ALPHAF represents the thermal diffusivity of the fluid and is defined as 
Prρ
µα =  

      ALPHAF=VISCOS/(DENSIT*PRANDL)  
 
C TURBULENCE CONSTANTS 
      READ(2,'(/)') 
      READ(2,*)CMU,CD,C1,C2,CAPPA,ELOG,PRTE,PRANDT 
      WRITE(*,*)"CMU  CD  C1  C2   CAPPA  ELOG  PRTE  PRANDT" 
      WRITE(*,*)CMU,CD,C1,C2,CAPPA,ELOG,PRTE,PRANDT 
      READ(2,*) 
      READ(2,*)F1,F2 
      WRITE(*,*)"F1,F2" 
      WRITE(*,*)F1,F2 
 
C  PRED represents σε, the turbulent Prandtl number for ε. 
 
      PRED=CAPPA*CAPPA/(C2-C1)/(CMU**.5) 
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      PFUN=PRANDL/PRANDT 
      PFUN=9.24*(PFUN**0.75-1.0)*(1.0+0.28*EXP(-0.007*PFUN))      
       
C BOUNDARY VALUES      
      READ(2,'(/)') 
      READ(2,*)TH,TC 
      WRITE(*,*)"TH TC" 
      WRITE(*,*)TH,TC 
 
C INTERNAL HEAT GENERATION AND RAYLEIGH NUMBER 
      READ(2,'(/)') 
      READ(2,*)QGENER,RALI 
      WRITE(*,*)"QGENER RALI" 
      WRITE(*,*)QGENER,RALI 
 
C TREF represents the reference temperature. 

C BEITA represents β, the thermal expansion coefficient of the fluid. 

C DELT represents ∆T. 

 
      TREF=(TC+TH)/2 
      BEITA=1/(273.15+TREF) 
      DELT=TH-TC 
 
C PRESSURE CALCULATION 
      READ(2,'(/)') 
      READ(2,*)IPREF,JPREF 
      WRITE(*,*)"IPREF JPREF" 
      WRITE(*,*)IPREF,JPREF 
 
C PROGRAM CONTROL AND MONITOR 
      READ(2,'(/)') 
                  READ(2,*)MAXIT,IMON,JMON,URFU,URFV 
      WRITE(*,*)"MAXIT  IMON  JMON  URFU  URFV"  
      WRITE(*,*)MAXIT,IMON,JMON,URFU,URFV 
      READ(2,*) 
      READ(2,*)URFP,URFE,URFK,URFT 
      WRITE(*,*)"URFP URFE URFK URFT" 
      WRITE(*,*)URFP,URFE,URFK,URFT 
      READ(2,*) 
      READ(2,*)URFG,URFVIS,INDPRI,SORMAX 
      WRITE(*,*)"URFG URFVIS INDPRI  SORMAX" 
      WRITE(*,*)URFG,URFVIS,INDPRI,SORMAX 
 
C CAVITY DIMENSIONS 
      H=((RALI*VISCOS*ALPHAF)/(DENSIT*9.81*BEITA*DELT))**0.3333 
C EL represents L the length of the cavity 
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      EL=H*ELBYH 
 
C GRID GENERATION FUNCTIONS 
 
      NIM1=NI-1 
      NJM1=NJ-1 
      NIM2=NI-2 
      NJM2=NJ-2 

 
      DO 101 I=2,NI 

      XU(I)=ELBYH*((I-2)/FLOAT(NIM2)-1/(2*3.14159)*SIN(2*3.14159*(I-2) 
     1/FLOAT(NIM2))) 
  101 CONTINUE 
 
      DO 105 J=2,NJ 
      YV(J)=((J-2)/FLOAT(NJM2)-1/(2*3.14159)*SIN(2*3.14159*(J-2) 
     1/FLOAT(NJM2))) 
  105 CONTINUE 
 
C NON-DIMENSIONALISATION 
 
C UREF represents uref, the reference value for velocity. 
 

      UREF=ALPHAF*(PRANDL*RALI)**0.5/H  

C R1 and R2 are the non-dimensional numbers given by 
Ra
Pr  and RaPr  

                  R1=(PRANDL/RALI)**0.5 
      R2=(PRANDL*RALI)**0.5 
                 CLOSE(2) 
      RETURN 
      END 
 
 
 
 
Following is a listing of the quantities read in from the input data file in.dat. 
 
C GREAT represents a large number that is sometimes used for comparison 

 or for some special purpose like assigning the boundary condition for ε=∞. 

C NITER represents the iteration counter for iterations in a single time step. 

C SMALL represents a small number that is used for some special purpose in the program 

such as preventing division by zero. 

C NFTSTP represents the first iteration step for time iterations. 
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C NLTSTP represents the last iteration step for time iterations. 

C STEADY is a LOGICAL .  IF  STEADY is  TRUE then the unsteady terms are omitted 

from the calculation procedure. 

C TFIRST represents the starting value assigned to time t. 

C IT and JT represent the maximum values that NI and NJ can have.  If NI and NJ exceed the 

value of IT and JT respectively, new values have to be assigned to IT and JT. The program 

should then be recompiled. 

C NSWPU, NSWPV, NSWPP, NSWPK, NSWPD, NSWPT  are the total number of internal 

iterations used to calculate u, v, p’, k, ε and T respectively. 

C NI and NJ are the total number of grids in the x and y directions respectively. 

C ELBYH represents the ratio of length to height of the cavity. 

C TSTEP represents the time step for unsteady calculations. 

C LOGICALS INCALU, INCALV, INCALP, INCALK, INCALD, INPRO, INCALT 

activate SUBROUTINES CALCU, CALCV, CALCP, CALCTE, CALCED, PROPS, 

CALCT respectively. 

C LOGICAL INCALB activates the buoyancy terms. 

C LOGICALS INHY and INCEN activate the hybrid and central schemes respectively. 

C If VALUE equals one, the program uses an initial field that has been fed in by the user.  If 

VALUE equals zero, the program uses the solution that has been dumped in the DUMP file 

as the initial field.  Thus for any fresh calculations, VALUE should always be one. 

C DENSIT-fluid density. 

C PRANDL-fluid Prandtl number. 

C VISCOS-fluid viscosity. 

C CMU-turbulence model constant, cµ.     

C   CD-damping factor, fµ.    

 

 

C C1-turbulence model constant, cε1. 
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C C2-turbulence model constant, cε2. 

C CAPPA-Von Karman’s constant, κ. 

C ELOG- represents cκ where c is given by lnc=5.5 and κ is Von Karman’s constant. 

C PRTE-represents σκ. 

C PRANDT-represents turbulent Prandtl number, σT. 

C F1-damping factor, f1. 

C F2-damping factor, f2. 

C TH-temperature of the hot wall, Th. 

C TC-temperature of  the cold wall, Tc. 

C QGENER-internal heat generation equals zero for the present problem. 

C CPP-specific heat of the fluid, CP. 

C RALI-Rayleigh number. 

C IPREF, JPREF-position of reference value for guessed pressure.      

C MAXIT-maximum number of space iterations (i.e., number of iterations inside one time 

step). 

C IMON, JMON- monitoring location for different variables. 

C URFU-under-relaxation factor for u. 

C URFV-under-relaxation factor for v. 

C URFP-under-relaxation factor for p. 

C URFE-under-relaxation factor for ε. 

C URFK-under-relaxation factor for k. 

C URFT-under-relaxation factor for T. 

C URFG-under-relaxation factor for µ/Pr or (µ+µt)/Pr. 

C URFVIS-under-relaxation factor for µ or (µ+µt). 

C INDPRI-number of iterations after which labels are printed on the screen. 

C SORMAX-convergence criterion. 

 

The variables are initialized in SUBROUTINE INIT immediately after the subsection 

CALCULATE GEOMETRICAL QUANTITIES. 

C Note that the following is a part of SUBROUTINE INIT 

C SET VARIABLES TO SMALL VALUE   
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C UO(I,J), VO(I,J), PO(I,J), TO(I,J), TEO(I,J), EDO(I,J), DENO(I,J) represent the old value 

(i.e.,values at the previous time iteration for the respective variables) 

      DO 200 I=1,NI 
      DO 200 J=1,NJ 
 
C SMALL is used as an initial field to prevent division by zero. 
 
      U(I,J)=SMALL 
      UO(I,J)=SMALL 
      V(I,J)=SMALL 
      VO(I,J)=SMALL 
      P(I,J)=SMALL 
      PO(I,J)=SMALL 
      PP(I,J)=SMALL 
      T(I,J)=0.5 
      TO(I,J)=0.5 
      TE(I,J)=SMALL 
      TEO(I,J)=SMALL 
      ED(I,J)=SMALL 
      EDO(I,J)=SMALL 
      DEN(I,J)=1.0+SMALL 
      DENO(I,J)=1.0+SMALL 
      VIS(I,J)=1.0+SMALL 
      GAMH(I,J)=1.0+SMALL 
      DU(I,J)=0.0 
      DV(I,J)=0.0 
 
C DU(I,J) and DV(I,J) are quantities associated with the velocity correction equation.   

C The velocity correction equation is discussed in Section 9. 

      SU(I,J)=0.0 

C SU(I,J) represents the overall source term and is equivalent to term b in Patankar  

C (1980). 

      SP(I,J)=0.0 
C SP(I,J) represents SP in S=SC+SP. 
200 CONTINUE 
      DO 201 J=1,NJ 
      T(1,J)=1.0 
  201 T(NI,J)=0.0 
      RETURN 
      END 
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6. PROGRAM FLOW CHART 
 

                                                                                                                                                                                   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Time Loop for Unsteady Calculations

Guess the Pressure field 

Solve the momentum equations (u and v 
velocity) to arrive at a guessed velocity 
 CALCU and CALCV 

Solve the pressure correction equation 
CALCP 

Compute new pressure field by adding the pressure
correction to the guessed pressure 

Calculate the new velocities from their old 
values using the velocity correction formulae

Solve equations for k, ε  and T 
CALCTE, CALCED, CALCTTreat the new pressure field as 

the guessed pressure field. 

No 

Yes

Output of Results 

Yes 

No 

time<tfinal? 

Converged?

Figure 4. Flow chart explaining details of the solution procedure.                
(Names in block letters are those of subroutines.) 

Initialization and Input of Data 
INIT and READDATA

 23



                                                                                                                                                         PROGRAM NATCOM 
 

 
The SIMPLE algorithm which stands for Semi-Implicit Method for Pressure-Linked Equations is 

used for calculation of the flow field.  The procedure has been described in Patankar and Spalding 

(1972).  The flow chart described in Figure 4 gives a detailed description of the steps used in 

calculating the flow field along with the temperature field for the general unsteady  turbulent 

solution. The pressure correction equation is used to incorporate the continuity equation in the 

solution procedure.  The pressure correction equation is described in Section 9. 

 
 
7. (SUBROUTINE LISOLV) THE GAUSS SEIDEL LINE BY LINE SOLVER 
 

Including the pressure correction equation, there are now six partial differential equations to 

be solved.  The following subroutines represent the six partial differential equations in their 

discretized form: 

 
CALCU  x-directional momentum equation 

CALCV  y-directional momentum equation 

CALCP  pressure correction equation 

CALCTE  equation for turbulence kinetic energy 

CALCED  equation for energy dissipation 

CALCT  thermal energy equation 

 
These equations are solved by means of a line by line Gauss-Seidel solver that employs a 

combination of the Tri-Diagonal-Matrix Algorithm (TDMA) for one-dimensional situations and 

the point by point Gauss-Seidel iterative method.  

 
 Following is a description of the TDMA for one dimensional situations: 

The one dimensional discretized equation for a variable φ can be written as, 

 

 jjjjjjj cbad ++= −+ 11 φφφ         (14) 
 
Where a, b, c and d represent coefficients of the discretized equation for variable φ. Subscript j 

represents a counter for space, j=jmin, jmax.  The TDMA algorithm consists of a recurrence 

formula for the variable in question so that one can obtain the new value for φ with the help of the 

boundary conditions. 
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For the forward substitution process one seeks a relation, 
 
 jjjj QP += +1φφ         (15) 
 
With j=j-1 in the above relationship one can arrive at an equation for φ j-1, 
  

111 −−− += jjjj QP φφ         (16) 
 
Substitution of Equation (16) into Equation (14) leads to, 
 
 ( ) jjjjjjjjj cQPbad +++= −−+ 111 φφφ        (17) 

 
If Equation (17) is rearranged to take the form of Equation (15) and the coefficients are compared, one arrives at a 

recurrence relationship of the form, 

 

 
1−−

=
jjj

j
j Pbd

a
P          (18) 

 

 
1

1

−

−

−

+
=

jjj

jjj
j Pbd

Qbc
Q         (19) 

 
For j=jmin, the recurrence relation (18) and (19) gives a definite value for Pmin and Qmin.  

Similarly for j=jmax, the recurrence relation gives a definite value for Pmax and Qmax.  An 

explanation for a specific boundary condition with temperature as the variable is given in Patankar 

(1980).   

 

Summary of the algorithm 
 
1. Calculate Pmin and Qmin using the left boundary conditions (i.e., for j=jmin) 

2. Use the recurrence relations (18) and (19) to obtain Pj and Qj for j=jmin+1, jmax. 

3. Equate the right boundary conditions (i.e., for j=jmax) with Pmax and Qmax. 

4. Use Equation 15 for j=jmax-1, jmin to obtain φ jmax-1, φ jmin. 

 

For the two dimensional situation one needs to use the Gauss-Seidel point by point method 

along with the TDMA.  The general discretized equation in two dimensions can be written as: 
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 baaaaa SSNNWWEEPP ++++= φφφφφ      (20) 
 
where aP, aE, aW, aN and aS represent coefficients associated with the variable φ and b represents the 

source term. In order to be able to use the TDMA one has to choose a particular direction for one 

sweep and assume the other direction to be a constant.  In the present program, the S-N direction is 

chosen for calculations, and the W-E direction is assumed to be constant for every     

 

 

sweep. Thus a new source term b0 is introduced as part of the terms in the W-E direction. Equation 

(20) is thus modified into, 

 
 0baaa SSNNPP ++= φφφ        (21) 
 
where  baab WWEE ++= φφ0 . 
 
Discussion on the line by line Gauss-Seidel method 
 

The line by line scheme can be visualized with reference to Figure 5.  The discretization 

equations for the grid points along a chosen line are considered first.  These contain the values of φ 

at the grid points (shown by squares) along two adjacent lines. If these φ’s are substituted from 

their latest values, the equations for the grid points (shown by circles) along the chosen line would 

look like one-dimensional equations and could be solved by the TDMA.  This procedure is carried 

out for all the lines in the S-N direction. 

 
 
 
     

 
     
 
 

 
 
 
 
 
 
 
         Figure 5. Representation of the line by line method. 
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In the program, subroutine LISOLV represents the line by line Gauss-Seidel solver. 
 
SUBROUTINE LISOLV(ISTART,JSTART,NI,NJ,IT,JT,PHI) 
 
      DIMENSION PHI(IT,JT),A(90),B(90),C(90),D(90)
      COMMON 
     1/COEF/AP(80,80),AN(80,80),AS(80,80),AE(80,80),AW(80,80),SU(80,80), 
     1      SP(80,80) 
       
   
      NIM1=NI-1 
      NJM1=NJ-1 
      JSTM1=JSTART-1 
      A(JSTM1)=0.0  
C COMMENCE W-E SWEEP 
      DO 100 I=ISTART,NIM1 
      C(JSTM1)=PHI(I,JSTM1) 
 
C COMMENCE S-N TRAVERSE 
      DO 101 J=JSTART,NJM1 
 
C ASSEMBLE TDMA COEFFICIENTS 
      A(J)=AN(I,J)  
C (A(J) represents aj in Equation (14)) 
 
      B(J)=AS(I,J) 
C (B(J) represents bj in Equation (14)) 
 
      C(J)=AE(I,J)*PHI(I+1,J)+AW(I,J)*PHI(I-1,J)+SU(I,J) 
C (C(J) represents cj in Equation (14)) 
 
      D(J)=AP(I,J) 
C (D(J) represents dj in Equation (14)) 
 
C CALCULATE COEFFICIENTS OF RECURRENCE FORMULA 
      TERM=1./(D(J)-B(J)*A(J-1)) 
      A(J)=A(J)*TERM 
  101 C(J)=(C(J)+B(J)*C(J-1))*TERM 
C The recurrence formulae (18) and (19) for Pj and Qj are stored in A(J) and C(J) here. 
 
C OBTAIN NEW PHI"S 
      DO 102 JJ=JSTART,NJM1 
      J=NJ+JSTM1-JJ 
  102 PHI(I,J)=A(J)*PHI(I,J+1)+C(J) 
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  100 CONTINUE 
      RETURN 
      END 
 
 
 
8. SUBROUTINE CALCU AND CALCV (MOMENTUM EQUATIONS)  
 
Subroutines CALCU and CALCV representing the discretized form of the momentum equations 

are described here. The momentum equation in the x direction can be written as: 
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Modifying the diffusion term on the right hand side one can rewrite the equation as follows: 
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For an incompressible fluid since the density does not change with time, the term: 
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equals zero due to continuity.  The retention of this term increases the numerical accuracy in some 

types of flows.  Therefore this term is included in our formulation as a source term.  For a 

description of the discretization procedure one can refer to Patankar (1980).  The initial and final  

discretized forms in two dimensions is presented here. 

 
Initial discretized form: 
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t
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where 
 

  ( ) ( )e e t e
uJ u u
x

ρ µ µ ∂⎧ ⎫= − +⎨ ⎬∂⎩ ⎭
y∆  
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  ( ) ( )w w t w
uJ u u
x
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y∆  

  ( ) ( )n n t n
uJ v u
y

ρ µ µ
⎧ ⎫∂

= − +⎨ ⎬∂⎩ ⎭
x∆  

  ( ) ( )s s t s
uJ v u
y

ρ µ µ
⎧ ⎫∂

= − +⎨ ⎬∂⎩ ⎭
x∆  

PpC uSSS +=  represents the source term. Terms arising due to the non-dimensional form 

have been omitted for ease of understanding. The old values (i.e., the values at the beginning of the 

time step) are denoted by the superscript o. 

Final discretized form: 
 buauauauaua SSNNWWEEPP ++++=      (24) 
 
  where 
   

( ) [[ 0,FPADa eeeE −+= ]]     

  ( ) [[ 0,FPADa wwwW += ]]      

( ) [[ 0,FPADa nnnN −+= ]]  

( ) [[ 0,FPADa sssS += ]] {The symbol [ ][ ]  represents the largest of the 
quantity contained within it} 
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F represents the strength of convection or the mass flow rates through the faces of the 

control volume, D represents the strength of diffusion and P represents the Peclet number which is 

a ratio of the strengths of convection and diffusion. As shown in Figure 6, the subscripts in lower 

case represent values at the faces of the control volume.  
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( )PA  represents a function which assumes different forms for different discretization 

schemes.  The central difference scheme and the hybrid scheme are used in the present program.   
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Figure 6. Control volume for a two-dimensional situation. 

 
 
Other schemes include the upwind scheme, the power law scheme, the exponential or exact 

scheme and are described in detail in Patankar (1980) and the QUICK scheme of Leonard (1979).  

The term M in the source term represents modifications to the momentum equation such as the 

inclusion of the term (22a).  The eddy viscosity µt is represented with the help of a modification to 

the fluid viscosity.  This modification is carried out through subroutine PROPS described in 

Section 10.  Subroutine PROPS can also be used to modify any other fluid property such as 

density, for example, variation of density with temperature can be accounted for by using 

subroutine PROPS. The listing of subroutine CALCU is given below with descriptions in the form 

of comment statements. 
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SUBROUTINE CALCU 
 
      INCLUDE 'common.h' 
      LOGICAL INHY,INCEN,STEADY 
C Note that I starts from 3.  Due to staggering, I=2 represents dummy points.  
      DO 100 I=3,NIM1 
      DO 101 J=2,NJM1 
C COMPUTE AREAS AND VOLUME 
      AREANS=SEWU(I) 
C represents staggered area in the x-direction and applies to fluid in the y-direction  
      AREAEW=SNS(J) 
C represents non-staggered area in the y-direction and applies to fluid in the x-direction  
      VOL=SEWU(I)*SNS(J) 
C represents the control volume. 

C CALCULATE CONVECTION COEFFICIENTS 
C represents F in Equations (24a).  Note that the variables are to be evaluated at the  

C faces of the control volume.  The U velocity is staggered in the x-direction.  Thus  

C the appropriate interpolated values for V velocity and density need to be taken.   

      GN=0.5*(DEN(I,J+1)+DEN(I,J))*V(I,J+1) 
      GNW=0.5*(DEN(I-1,J)+DEN(I-1,J+1))*V(I-1,J+1) 
      GS=0.5*(DEN(I,J-1)+DEN(I,J))*V(I,J) 
      GSW=0.5*(DEN(I-1,J)+DEN(I-1,J-1))*V(I-1,J) 
      GE=0.5*(DEN(I+1,J)+DEN(I,J))*U(I+1,J) 
      GP=0.5*(DEN(I,J)+DEN(I-1,J))*U(I,J) 
      GW=0.5*(DEN(I-1,J)+DEN(I-2,J))*U(I-1,J) 
       
       
       
      CN=0.5*(GN+GNW)*AREANS 
      CS=0.5*(GS+GSW)*AREANS 
      CE=0.5*(GE+GP)*AREAEW 
      CW=0.5*(GP+GW)*AREAEW 
 
C CALCULATE DIFFUSION COEFFICIENTS 
 
C represents D in Equations (24a).  Appropriate interpolated values need to be taken  

C for viscosity, VIS(I,J).  VIS(I,J) represents either the fluid viscosity (laminar 

C flow) or the total of fluid viscosity and eddy viscosity (turbulent flow).  R1 

C represents the factor 
Ra
Pr  which arises due to non-dimensionalization. 

      VISN=0.25*(VIS(I,J)+VIS(I,J+1)+VIS(I-1,J)+VIS(I-1,J+1)) 
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      VISS=0.25*(VIS(I,J)+VIS(I,J-1)+VIS(I-1,J)+VIS(I-1,J-1)) 
      DN=R1*VISN*AREANS/DYNP(J) 
      DS=R1*VISS*AREANS/DYPS(J) 
      DE=R1*VIS(I,J)*AREAEW/DXEPU(I) 
      DW=R1*VIS(I-1,J)*AREAEW/DXPWU(I) 
 
C CALCULATE COEFFICIENTS OF SOURCE TERMS 
 
C the coefficients of the source term S=SC+SPuP are calculated here 

C CPO*U(I,J) represents yxSC ∆∆  and SP(I,J) represents yxSP ∆∆  

      SMP=CN-CS+CE-CW 
      CP=AMAX1(0.0,SMP) 
      CPO=CP 
 
C ASSEMBLE MAIN COEFFICIENTS 
C the main coefficients aE, aW, aN and aS are evaluated depending on the type of  

C discretization used.  The hybrid scheme (INHY) or the central scheme 

C (INCEN) is used here.   

C For the hybrid scheme the function ( ) [ ][ ]P5.01,0PA −=   
 
      IF (INHY) THEN  
      AN(I,J)=DN*AMAX1(0.,1-0.5*ABS(CN/DN))+AMAX1(-CN,0.) 
      AS(I,J)=DS*AMAX1(0.,1-0.5*ABS(CS/DS))+AMAX1(CS,0.) 
      AE(I,J)=DE*AMAX1(0.,1-0.5*ABS(CE/DE))+AMAX1(-CE,0.) 
      AW(I,J)=DW*AMAX1(0.,1-0.5*ABS(CW/DW))+AMAX1(CW,0.) 
      END IF 
 
C For the central scheme the function ( ) P5.01PA −=  
       
        
 
       IF (INCEN) THEN 
      AN(I,J)=AMAX1(-CN,0.)+DN-0.5*ABS(CN) 
      AS(I,J)=AMAX1(CS,0.)+DS-0.5*ABS(CS) 
      AE(I,J)=AMAX1(-CE,0.)+DE-0.5*ABS(CE) 
      AW(I,J)=AMAX1(CW,0.)+DW-0.5*ABS(CW) 
      END IF 
 
C Logical STEADY =TRUE implies that the steady state problem is solved and  

C the unsteady term 
t
u
∂
∂ρ  is omitted. 

     
 IF(STEADY) THEN 
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      APO(I,J)=0.0 
      ELSE 
      APO(I,J)=DEN(I,J)*VOL/DT(ITSTEP) 
      END IF 
 
C The pressure gradient is not included in the momentum source term S=SC+SPuP. 

C This is because the pressure field needs to be ultimately calculated . 

C Thus the pressure gradient is included as a separate source term in SU(I,J). 

C It is given here as DU(I,J)*(P(I-1,J)-P(I,J)). 

C (Refer to Section 9 for the pressure correction equation.) 

      DU(I,J)=AREAEW 
      SU(I,J)=CPO*U(I,J)+DU(I,J)*(P(I-1,J)-P(I,J))+APO(I,J)*UO(I,J) 
      SP(I,J)=-CP 
 

C Extra term to improve numerical stability: ( ) ⎥
⎦

⎤
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      DUDXP  =(U(I+1,J)-U(I,J))/DXEPU(I) 
      DUDXM  =(U(I,J)-U(I-1,J))/DXPWU(I) 
      SU(I,J)=R1*(VIS(I,J)*DUDXP-VIS(I-1,J)*DUDXM)/SEWU(I)*VOL+SU(I,J) 
      GAMP   =0.25*(VIS(I,J)+VIS(I-1,J)+VIS(I,J+1)+VIS(I-1,J+1)) 
      DVDXP  =(V(I,J+1)-V(I-1,J+1))/DXPW(I) 
      GAMM   =0.25*(VIS(I,J)+VIS(I-1,J)+VIS(I,J-1)+VIS(I-1,J-1)) 
      DVDXM  =(V(I,J)-V(I-1,J))/DXPW(I) 
      SU(I,J) =SU(I,J)+R1*(GAMP*DVDXP-GAMM*DVDXM)/SNS(J)*VOL 
 
  101 CONTINUE 
  100 CONTINUE 
 
C ENTRY MODU in SUBROUTINE PROMOD contains information about the  

C boundary conditions for u-velocity (Section 14). 

      CALL MODU 
 
 

C The residual source term RESORU gives an idea about the convergence of the  

C solution.  RESORU is the difference in the total source term between two  

C consecutive iteration steps. 

      RESORU=0.0 
      DO 300 I=3,NIM1 
      DO 301 J=2,NJM1 
      AP(I,J)=AN(I,J)+AS(I,J)+AE(I,J)+AW(I,J)+APO(I,J)-SP(I,J) 
      DU(I,J)=DU(I,J)/AP(I,J) 
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      RESOR=AN(I,J)*U(I,J+1)+AS(I,J)*U(I,J-1)+AE(I,J)*U(I+1,J) 
     1     +AW(I,J)*U(I-1,J)-AP(I,J)*U(I,J)+SU(I,J) 
      VOL=SEW(I)*SNS(J) 
      SORVOL=GREAT*VOL 
      IF(-SP(I,J).GT.0.5*SORVOL)  RESOR=RESOR/SORVOL 
      RESORU=RESORU+ABS(RESOR) 
 
C UNDER-RELAXATION 

C In an iterative procedure it is often desirable to speed up or slow down changes in  

C the dependent variable from iteration to iteration in order to avoid divergence.   

C The former is achieved by over-relaxation and the latter is achieved by under- 

C relaxation.  The under-relaxation method is used in the present program.  URFU  

C represents the under-relaxation factor used for the u-velocity. The value of under- 

C relaxation factor is always between 0 and 1. 

      AP(I,J)=AP(I,J)/URFU 
      SU(I,J)=SU(I,J)+(1.-URFU)*AP(I,J)*U(I,J) 
      DU(I,J)=DU(I,J)*URFU 
  301 CONTINUE 
  300 CONTINUE 
 

C    SUBROUTINE LISOLV (Section 7) is used to solve the x-directional momentum  

C equation.  NSWPU represents the number of internal iterations used for u. 

      DO 400 N=1,NSWPU 
  400 CALL LISOLV(3,2,NI,NJ,IT,JT,U) 
      RETURN 
      END 
 

The subroutine used to calculate the y-directional momentum equation, CALCV, is very 

similar to CALCU.  However one has to remember that the calculation points for v velocity are 

staggered in the y-direction.   An extra source term is added to b in the form of the buoyancy term.  

Following is a listing of SUBROUTINE CALCV. 

 
 
SUBROUTINE CALCV 
 
      INCLUDE 'common.h' 
      LOGICAL INCALB,INHY,INCEN,STEADY 
 
C Note that J starts from 3.   Due to staggering, J=2 represents dummy points. 
      DO 100 I=2,NIM1 
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      DO 101 J=3,NJM1 
C COMPUTE AREAS AND VOLUME 
      AREANS=SEW(I) 
C represents non-staggered area in the x-direction and applies to fluid in the y-direction. 
 
      AREAEW=SNSV(J) 
C represents staggered area in the y-direction and applies to fluid in the x-direction. 
 
      VOL=SEW(I)*SNSV(J) 
C CALCULATE CONVECTION COEFFICIENTS 
      GN=0.5*(DEN(I,J+1)+DEN(I,J))*V(I,J+1) 
      GP=0.5*(DEN(I,J)+DEN(I,J-1))*V(I,J) 
      GS=0.5*(DEN(I,J-1)+DEN(I,J-2))*V(I,J-1) 
      GE=0.5*(DEN(I+1,J)+DEN(I,J))*U(I+1,J) 
      GSE=0.5*(DEN(I,J-1)+DEN(I+1,J-1))*U(I+1,J-1) 
      GW=0.5*(DEN(I,J)+DEN(I-1,J))*U(I,J) 
      GSW=0.5*(DEN(I,J-1)+DEN(I-1,J-1))*U(I,J-1) 
      CN=0.5*(GN+GP)*AREANS 
      CS=0.5*(GP+GS)*AREANS 
      CE=0.5*(GE+GSE)*AREAEW 
      CW=0.5*(GW+GSW)*AREAEW 
C CALCULATE DIFFUSION COEFFICIENTS 
      VISE=0.25*(VIS(I,J)+VIS(I+1,J)+VIS(I,J-1)+VIS(I+1,J-1)) 
      VISW=0.25*(VIS(I,J)+VIS(I-1,J)+VIS(I,J-1)+VIS(I-1,J-1)) 
      DN=R1*VIS(I,J)*AREANS/DYNPV(J) 
      DS=R1*VIS(I,J-1)*AREANS/DYPSV(J) 
      DE=R1*VISE*AREAEW/DXEP(I) 
      DW=R1*VISW*AREAEW/DXPW(I) 
C CALCULATE COEFFICIENTS OF SOURCE TERMS 
      SMP=CN-CS+CE-CW 
      CP=AMAX1(0.0,SMP) 
      CPO=CP 
C ASSEMBLE MAIN COEFFICIENTS 
      IF (INHY) THEN 
      AN(I,J)=DN*AMAX1(0.,1-0.5*ABS(CN/DN))+AMAX1(-CN,0.) 
      AS(I,J)=DS*AMAX1(0.,1-0.5*ABS(CS/DS))+AMAX1(CS,0.) 
      AE(I,J)=DE*AMAX1(0.,1-0.5*ABS(CE/DE))+AMAX1(-CE,0.) 
      AW(I,J)=DW*AMAX1(0.,1-0.5*ABS(CW/DW))+AMAX1(CW,0.) 
      END IF 
 
       
 
       
      IF (INCEN) THEN 
      AN(I,J)=AMAX1(-CN,0.)+DN-0.5*ABS(CN) 
      AS(I,J)=AMAX1(CS,0.)+DS-0.5*ABS(CS) 
      AE(I,J)=AMAX1(-CE,0.)+DE-0.5*ABS(CE) 

 35



                                                                                                                                                         PROGRAM NATCOM 
 

      AW(I,J)=AMAX1(CW,0.)+DW-0.5*ABS(CW) 
      END IF 
      IF(STEADY) THEN 
      APO(I,J)=0.0 
      ELSE 
      APO(I,J)=DEN(I,J)*VOL/DT(ITSTEP) 
      END IF 
      DV(I,J)=AREANS 
      SU(I,J)=CPO*V(I,J)+DV(I,J)*(P(I,J-1)-P(I,J))+APO(I,J)*VO(I,J) 
 
C BUOYANCY TERM 

C Buoyancy term is included as a source term in SU(I,J).  The reference 

C temperature, TREF, is given the value 0.5 which represents (Th+Tc)/2.   

C Depending on the value assigned to TREF the approach to a steady solution would be 

C different.  However the final steady solution will always remain the same.  Note that the 

C temperature, T, has an interpolated value in the buoyancy term BOUYA to account for the  

C staggering. 
 
      TREF=0.0 
      IF (INCALB) THEN 
      BOUYA=(0.5*(T(I,J)+T(I,J-1))-TREF) 
      SU(I,J)=SU(I,J)+BOUYA*VOL 
      END IF 
      SP(I,J)=-CP 
 

C Extra term to improve numerical stability: ( ) ⎥
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      DUDYP  =(U(I+1,J)-U(I+1,J-1))/DYPS(J) 
      GAMP   =0.25*(VIS(I,J)+VIS(I+1,J)+VIS(I,J-1)+VIS(I+1,J-1)) 
      GAMM   =0.25*(VIS(I,J)+VIS(I-1,J)+VIS(I,J-1)+VIS(I-1,J-1)) 
      DUDYM  =(U(I,J)-U(I,J-1))/DYPS(J) 
      SU(I,J)=SU(I,J)+R1*(GAMP*DUDYP-GAMM*DUDYM)/SEW(I)*VOL 
      DVDYP  =(V(I,J+1)-V(I,J))/DYNPV(J) 
      RGAMP  =VIS(I,J) 
      DVDYM  =(V(I,J)-V(I,J-1))/DYPSV(J) 
      RGAMM  =VIS(I,J-1) 
      SU(I,J) =SU(I,J)+R1*(RGAMP*DVDYP-RGAMM*DVDYM)/SNSV(J)*VOL 
  101 CONTINUE 
  100 CONTINUE 
 
C ENTRY MODV has information regarding boundary conditions for v (Section 14). 
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      CALL MODV 

C RESORV represents the residual source term for the y-directional momentum  

C equation. 

      RESORV=0.0 
      DO 300 I=2,NIM1 
      DO 301 J=3,NJM1 
      AP(I,J)=AN(I,J)+AS(I,J)+AE(I,J)+AW(I,J)+APO(I,J)-SP(I,J) 
      DV(I,J)=DV(I,J)/AP(I,J) 
      RESOR=AN(I,J)*V(I,J+1)+AS(I,J)*V(I,J-1)+AE(I,J)*V(I+1,J) 
     1     +AW(I,J)*V(I-1,J)-AP(I,J)*V(I,J)+SU(I,J) 
      VOL=SEW(I)*SNS(J) 
      SORVOL=GREAT*VOL 
      IF(-SP(I,J).GT.0.5*SORVOL)  RESOR=RESOR/SORVOL 
      RESORV=RESORV+ABS(RESOR) 
 
C UNDER-RELAXATION 
C URFV represents under-relaxation factor for v velocity. 
      AP(I,J)=AP(I,J)/URFV 
      SU(I,J)=SU(I,J)+(1.-URFV)*AP(I,J)*V(I,J) 
      DV(I,J)=DV(I,J)*URFV 
  301 CONTINUE 
  300 CONTINUE 
 
 
C Subroutine LISOLV (Section7) is used to solve the y-directional momentum equation. 
 
C NSWPV represents the number of internal iterations used for v. 
 
      DO 400 N=1,NSWPV 
  400 CALL LISOLV(2,3,NI,NJ,IT,JT,V) 
      RETURN 
      END 
 
9. SUBROUTINE CALCP (THE PRESSURE CORRECTION EQUATION) 
 
The continuity equation is included in the solution procedure through the introduction of the 

pressure correction equation in case of the SIMPLE ALGORITHM that is used in the present 

program.  A relationship between pressure and velocity is derived. This is used in the continuity  

equation to derive the pressure correction equation. A detailed derivation of the pressure correction 

equation is given in Patankar (1980).  The main steps in the derivation are given here.   

Let p* be the guessed pressure, p the corrected pressure and p’ the pressure correction.  Then one 

can write: 
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          (25) '* ppp +=
A similar equation can be written for the corrected velocities, u and v: 

 
  ,       (26) '* uuu += '* vvv +=
 
where u* and v* are the guess velocities and u’ and v’ are the velocity corrections. 
 
The velocity correction formulae can be written as: 
 
  ,     (27) )pp(du '

P
'
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' −= )pp(dv '
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Aew and Ans represent areas associated with the East-West and North-South directions respectively.  

In Patankar (1980) a slightly different formulation is given for the velocity correction formulae but 

both the formulations have the same meaning.  Thus Equation (27) gives a relationship between the 

velocity correction and pressure correction.  One can now write Equation (26) as follows: 

  ,    (28) )pp(duu '
P

'
Ww

* −+= )pp(dvv '
P

'
Ss

* −+=
 
The continuity equation can be written as: 
 

0
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=
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∂
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∂
∂ ρρρ        (29) 

 
 

This equation is integrated over the shaded control volume in Figure 7.  
 

For the integration of the term t∂
∂ρ , the density, Pρ , is assumed to prevail over the 

control volume.  Since a fully implicit procedure is used for time, the new values of velocity and 

density (i.e., those at time tt ∆+ ) are assumed to prevail over the time step; the old density,  

(i.e., at time t), will appear only through the term 

o
Pρ

t∂
∂ρ . Thus the integrated form of Equation (29) 

becomes 
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Equation (30) is now converted to the pressure correction equation, using Equation (27).  

The final discretized form of the pressure correction equation can be written as: 
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Figure 7. Control volume for the continuity equation. 
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Equation (31) is now solved as the pressure correction equation.  The following is a listing 

of SUBROUTINE CALCP that solves Equation (31). PP(I,J) represents the pressure correction p’. 

 
SUBROUTINE CALCP 
 
INCLUDE 'common.h' 
      LOGICAL STEADY 
      RESORM=0.0 
 
      DO 100 I=2,NIM1 
      DO 101 J=2,NJM1 
C COMPUTE AREAS AND VOLUME 
 
C Areas and volume are non-staggered. 
      AREANS=SEW(I) 
      AREAEW=SNS(J) 
      VOL=SNS(J)*SEW(I) 
 
C CALCULATE COEFFICIENTS 
C Interface densities are required but densities are available only at the main grid  

C points.  Therefore they need to be interpolated 

      DENN=0.5*(DEN(I,J)+DEN(I,J+1)) 
      DENS=0.5*(DEN(I,J)+DEN(I,J-1)) 
      DENE=0.5*(DEN(I,J)+DEN(I+1,J)) 
      DENW=0.5*(DEN(I,J)+DEN(I-1,J)) 
      AN(I,J)=DENN*AREANS*DV(I,J+1) 
      AS(I,J)=DENS*AREANS*DV(I,J) 
      AE(I,J)=DENE*AREAEW*DU(I+1,J) 
      AW(I,J)=DENW*AREAEW*DU(I,J) 
 
C CALCULATE SOURCE TERMS 
      CN=DENN*V(I,J+1)*AREANS 
      CS=DENS*V(I,J)*AREANS 
      CE=DENE*U(I+1,J)*AREAEW 
      CW=DENW*U(I,J)*AREAEW 
      SMP=CN-CS+CE-CW 
 
C Note that there is no SP  term in Equation (31).  Thus SP(I,J)=0. 
      SP(I,J)=0.0 
      
      IF(STEADY) THEN 
      SU(I,J)=-SMP 
      ELSE 
 
C In the present problem the unsteady term can be dropped because the fluid is  
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C incompressible.  However this term is retained to maintain generality. 

      SU(I,J)=-SMP+(DENO(I,J)-DEN(I,J))*VOL/DT(ITSTEP) 
      END IF 
C COMPUTE SUM OF ABSOLUTE MASS SOURCES 
 
C RESORM represents the residual mass source. 
 
      RESORM=RESORM+ABS(SMP) 
  101 CONTINUE 
  100 CONTINUE 
 
C ENTRY MODP can have information about any modifications to conditions in  

C the pressure field.  However here ENTRY MODP does not introduce any changes  

C in the pressure field (Section 14). 

       
        CALL MODP 
 
      DO 300 I=2,NIM1 
      DO 301 J=2,NJM1 
  301 AP(I,J)=AN(I,J)+AS(I,J)+AE(I,J)+AW(I,J)-SP(I,J) 
  300 CONTINUE 
 
C SUBROUTINE LISOLV is used to solve the pressure correction equation.  

C NSWPP represents the number of internal iterations applied to the pressure  

C correction equation 

      DO 400 N=1,NSWPP 
  400 CALL LISOLV(2,2,NI,NJ,IT,JT,PP) 
 
C VELOCITIES 
      DO 500 I=2,NIM1 
      DO 501 J=2,NJM1 
      IF(I.NE.2) U(I,J)=U(I,J)+DU(I,J)*(PP(I-1,J)-PP(I,J)) 
      IF(J.NE.2) V(I,J)=V(I,J)+DV(I,J)*(PP(I,J-1)-PP(I,J)) 
 
C Represents Equation (28) 
  501 CONTINUE 
  500 CONTINUE 
 
C PRESSURES (WITH PROVISION FOR UNDER-RELAXATION) 

C IPREF and JPREF are reference values for pressure for the guess pressure field. 

 

C URFP represents under-relaxation factor for pressure. 
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      PPREF=PP(IPREF,JPREF) 
      DO 502 I=2,NIM1 
      DO 503 J=2,NJM1 
      P(I,J)=P(I,J)+URFP*(PP(I,J)-PPREF) 
      PP(I,J)=0.0 
  503 CONTINUE 
  502 CONTINUE 
         RETURN 
         END 
 
 
 
10. SUBROUTINE PROPS (MODIFICATION TO FLUID PROPERTIES)  
 
SUBROUTINE PROPS is used to make modifications to the fluid properties.  In the present 

problem all fluid properties are constant.  However it is very convenient to express the turbulent or 

eddy viscosity as a part of the fluid viscosity for turbulent flow calculations.  For laminar flow this 

term is set to zero.  The following is a listing of SUBROUTINE PROPS. 

 
 SUBROUTINE PROPS 
 
           INCLUDE 'common.h' 
 
      DO 100 I=2,NIM1 
      DO 100 J=2,NJM1 
C GAMH(I,J) represents the ratio of fluid viscosity and fluid Prandtl number. 

C If the fluid properties are variable then VISOLD and GAMHOLD store the values  

C of VIS(I,J) and GAMH(I,J) from the previous iteration.  For laminar flow there is  

C no such change since the fluid viscosity, is not a function of any other variable  

C like temperature.  However for turbulent flow the eddy viscosity, µt, is  

C incorporated in the definition of VIS(I,J).  Thus VIS(I,J) and GAMH(I,J) vary  

C with every iteration. 

      VISOLD=VIS(I,J) 
      GAMHOLD=GAMH(I,J) 
C If ED(I,J) equals zero, there is no turbulence.  Thus VIS(I,J) equals the fluid  

C viscosity. 

      IF(ED(I,J).EQ.0) GOTO 102 

C The eddy viscosity has the following form:
ε

ρµ µµ

2

t
kfc

Pr
Ra

=  

C  Note that VIS(I,J) represents the sum total of fluid viscosity and eddy viscosity. 

 42



                                                                                                                                                         PROGRAM NATCOM 
 

 
      VIS(I,J)=(1/R1)*DEN(I,J)*TE(I,J)**2*CMU*CD/ED(I,J)+1.0 
       
     GO  TO  101 
  102 VIS(I,J)=1.0 
 
C UNDER RELAX VISCOSITY 

C URFVIS represents the under-relaxation factor for viscosity 

C URFG represents the under-relaxation factor for GAMH(I,J) 

  101 VIS(I,J)=URFVIS*VIS(I,J)+(1.-URFVIS)*VISOLD 
      GAMH(I,J)=1.0+(VIS(I,J)-1.0)*PRANDL/PRANDT 
      GAMH(I,J)=URFG*GAMH(I,J)+(1.-URFG)*GAMHOLD 
  100 CONTINUE 
      RETURN 
      END 
 
11. SUBROUTINE CALCT (THERMAL ENERGY EQUATION) 
 
The temperature field is resolved by using the thermal energy equation. It is a scalar variable and is 

thus calculated at non-staggered locations.  If the temperature field does not affect the flow field 

this equation can be solved after a convergent flow field is obtained.  However in the present 

problem the temperature field does affect the flow field. The thermal energy equation in non-

dimensional form is: 
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Following is a listing of SUBROUTINE CALCT, which solves the thermal energy equation. 
 
SUBROUTINE CALCT 
 
      INCLUDE 'common.h' 
      LOGICAL INHY,INCEN,STEADY 
 
      DO 100 I=2,NIM1 
      DO 101 J=2,NJM1 
 
C COMPUTE AREAS AND VOLUME 
C non-staggered areas and volume have been used. 
      AREANS=SEW(I) 
      AREAEW=SNS(J) 
      VOL=SNS(J)*SEW(I) 
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C CALCULATE CONVECTION COEFFICIENTS 
      GN=0.5*(DEN(I,J)+DEN(I,J+1))*V(I,J+1) 
      GS=0.5*(DEN(I,J)+DEN(I,J-1))*V(I,J) 
       
      GE=0.5*(DEN(I,J)+DEN(I+1,J))*U(I+1,J) 
      GW=0.5*(DEN(I,J)+DEN(I-1,J))*U(I,J) 
      CN=GN*AREANS 
      CS=GS*AREANS 
      CE=GE*AREAEW 
      CW=GW*AREAEW 
 
C CALCULATE DIFFUSION COEFFICIENTS 
C R2 represents the non-dimensional factor RaPr . 
 
      GAMN=0.5*(GAMH(I,J)+GAMH(I,J+1)) 
      GAMS=0.5*(GAMH(I,J)+GAMH(I,J-1)) 
      GAME=0.5*(GAMH(I,J)+GAMH(I+1,J)) 
      GAMW=0.5*(GAMH(I,J)+GAMH(I-1,J)) 
      DN=(1/R2)*GAMN*AREANS/DYNP(J) 
      DS=(1/R2)*GAMS*AREANS/DYPS(J) 
      DE=(1/R2)*GAME*AREAEW/DXEP(I) 
      DW=(1/R2)*GAMW*AREAEW/DXPW(I) 
 
C SOURCE TERMS 
      SMP=CN-CS+CE-CW 
      CP=AMAX1(0.0,SMP) 
      CPO=CP 
 
C ASSEMBLE MAIN COEFFICIENTS 
      IF (INHY) THEN 
      AN(I,J)=DN*AMAX1(0.,1-0.5*ABS(CN/DN))+AMAX1(-CN,0.) 
      AS(I,J)=DS*AMAX1(0.,1-0.5*ABS(CS/DS))+AMAX1(CS,0.) 
      AE(I,J)=DE*AMAX1(0.,1-0.5*ABS(CE/DE))+AMAX1(-CE,0.) 
      AW(I,J)=DW*AMAX1(0.,1-0.5*ABS(CW/DW))+AMAX1(CW,0.) 
      END IF 
 
      IF (INCEN) THEN 
      AN(I,J)=AMAX1(-CN,0.)+DN-0.5*ABS(CN) 
      AS(I,J)=AMAX1(CS,0.)+DS-0.5*ABS(CS) 
      AE(I,J)=AMAX1(-CE,0.)+DE-0.5*ABS(CE) 
      AW(I,J)=AMAX1(CW,0.)+DW-0.5*ABS(CW) 
      END IF 
      IF(STEADY) THEN 
      APO(I,J)=0.0 
       
      ELSE 
      APO(I,J)=DEN(I,J)*VOL/DT(ITSTEP) 
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      END IF 
      SU(I,J)=CPO*T(I,J)+APO(I,J)*TO(I,J) 
      SP(I,J)=-CP 
  101 CONTINUE 
  100 CONTINUE 
 
 

C    ENTRY MODT  contains information about boundary conditions for T  (Section 14). 

      CALL MODT 

C RESORT represents the residual source for thermal energy. 

      RESORT=0.0 
      DO 300 I=2,NIM1 
      DO 301 J=2,NJM1 
      AP(I,J)=AN(I,J)+AS(I,J)+AE(I,J)+AW(I,J)+APO(I,J)-SP(I,J) 
      RESOR=AN(I,J)*T(I,J+1)+AS(I,J)*T(I,J-1)+AE(I,J)*T(I+1,J) 
     1      +AW(I,J)*T(I-1,J)-AP(I,J)*T(I,J)+SU(I,J) 
      VOL=SEW(I)*SNS(J) 
      SORVOL=GREAT*VOL 
      IF(-SP(I,J).GT.0.5*SORVOL)  RESOR=RESOR/SORVOL 
      RESORT=RESORT+ABS(RESOR) 
 
C UNDER-RELAXATION 
C URFT represents under-relaxation factor for temperature. 
      AP(I,J)=AP(I,J)/URFT 
      SU(I,J)=SU(I,J)+(1.0-URFT)*AP(I,J)*T(I,J) 
  301 CONTINUE 
  300 CONTINUE 
 
C NSWPT represents the number of internal iterations applied to the thermal energy  
C equation. 
      DO 400 N=1,NSWPT 
  400 CALL LISOLV(2,2,NI,NJ,IT,JT,T) 
      RETURN 
      END 
 
 
12. SUBROUTINE CALCTE (EQUATION FOR TURBULENT KINETIC ENERGY) 
 
The turbulent kinetic energy, k, is a scalar variable and is thus calculated on a non-staggered grid.  

The non-dimensional form of the equation can be written as: 
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Following is a listing of SUBROUTINE CALCTE, which solves the turbulent kinetic energy 

equation. 
 
SUBROUTINE CALCTE 
 
      INCLUDE 'common.h' 
      LOGICAL INCALB,INHY,INCEN,STEADY 
 
C PRTE represents σk. 
      PRTE=1.0 
      DO 100 I=2,NIM1 
      DO 101 J=2,NJM1 
C COMPUTE AREAS AND VOLUME 
      AREANS=SEW(I) 
      AREAEW=SNS(J) 
      VOL=SNS(J)*SEW(I) 
C CALCULATE CONVECTION COEFFICIENTS 
      GN=0.5*(DEN(I,J)+DEN(I,J+1))*V(I,J+1) 
      GS=0.5*(DEN(I,J)+DEN(I,J-1))*V(I,J) 
      GE=0.5*(DEN(I,J)+DEN(I+1,J))*U(I+1,J) 
      GW=0.5*(DEN(I,J)+DEN(I-1,J))*U(I,J) 
      CN=GN*AREANS 
      CS=GS*AREANS 
      CE=GE*AREAEW 
      CW=GW*AREAEW 
 
C CALCULATE DIFFUSION COEFFICIENTS 
 
C VIS(I,J) represents the total of the fluid and eddy viscosity, whereas the diffusion  

C term: 
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C and the eddy viscosity as separate entities. 

      GAMN=R1*0.5*(VIS(I,J)+VIS(I,J+1)-2.0)/PRTE+R1 
      GAMS=R1*0.5*(VIS(I,J)+VIS(I,J-1)-2.0)/PRTE+R1 
      GAME=R1*0.5*(VIS(I,J)+VIS(I+1,J)-2.0)/PRTE+R1 
      GAMW=R1*0.5*(VIS(I,J)+VIS(I-1,J)-2.0)/PRTE+R1 
      DN=GAMN*AREANS/DYNP(J) 
      DS=GAMS*AREANS/DYPS(J) 
      DE=GAME*AREAEW/DXEP(I) 
      DW=GAMW*AREAEW/DXPW(I) 
 
 
 
C SOURCE TERMS 
      SMP=CN-CS+CE-CW 
      CP=AMAX1(0.0,SMP) 
      CPO=CP 
      DUDX=(U(I+1,J)-U(I,J))/SEW(I) 
      DVDY=(V(I,J+1)-V(I,J))/SNS(J) 
      DUDY=((U(I,J)+U(I+1,J)+U(I,J+1)+U(I+1,J+1))/4.-(U(I,J)+U(I+1,J)+ 
     1U(I,J-1)+U(I+1,J-1))/4.)/SNS(J) 
      DVDX=((V(I,J)+V(I,J+1)+V(I+1,J)+V(I+1,J+1))/4.-(V(I,J)+V(I,J+1)+V( 
     1I-1,J)+V(I-1,J+1))/4.)/SEW(I) 
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C Note that only the eddy viscosity is used for multiplication.  The factor 1.E-8 is  

C added in order to avoid multiplication by zero. 

      GEN(I,J)=R1*(2.*(DUDX**2+DVDY**2)+(DUDY+DVDX)**2) 
     1 *(VIS(I,J)-1.0+1.E-8) 
 
C BUOYANCY TERM 
      DTDY=(T(I,J+1)-T(I,J))/DYPS(J) 

C GENB(I,J) represents the term: 
y
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      GENB(I,J)=-(1/R2)*(VIS(I,J)-1.0+1.E-8)*PRANDL*DTDY/PRANDT 
 
C ASSEMBLE MAIN COEFFICIENTS 
      IF (INHY) THEN 
      AN(I,J)=DN*AMAX1(0.,1-0.5*ABS(CN/DN))+AMAX1(-CN,0.) 
      AS(I,J)=DS*AMAX1(0.,1-0.5*ABS(CS/DS))+AMAX1(CS,0.) 
      AE(I,J)=DE*AMAX1(0.,1-0.5*ABS(CE/DE))+AMAX1(-CE,0.) 
      AW(I,J)=DW*AMAX1(0.,1-0.5*ABS(CW/DW))+AMAX1(CW,0.) 
      END IF 
 
      IF (INCEN) THEN 
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      AN(I,J)=AMAX1(-CN,0.)+DN-0.5*ABS(CN) 
      AS(I,J)=AMAX1(CS,0.)+DS-0.5*ABS(CS) 
      AE(I,J)=AMAX1(-CE,0.)+DE-0.5*ABS(CE) 
      AW(I,J)=AMAX1(CW,0.)+DW-0.5*ABS(CW) 
      END IF 
      IF(STEADY) THEN 
      APO(I,J)=0.0 
      ELSE 
 
      APO(I,J)=DEN(I,J)*VOL/DT(ITSTEP) 
      ENDIF 
      SU(I,J)=CPO*TE(I,J)+APO(I,J)*TEO(I,J) 
      SU(I,J)=SU(I,J)+GEN(I,J)*VOL 
      IF (INCALB) THEN 
    
      SU(I,J)=SU(I,J)+GENB(I,J)*VOL 
      END IF 
      SP(I,J)=-CP 
C The term ρε  is inlcuded as a variable part of the source term, i.e., as SP. Note that  

C the relationship: 
ε
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C 
t

2
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ρµµ .  This procedure is adopted to increase numerical stability. 

C The factor 1.E-8 is included in µt =(VIS(I,J)-1.0) in order to avoid division by 
 
C  zero. 
 
      SP(I,J)=SP(I,J)-(1/R1)*CD*CMU*DEN(I,J)**2*TE(I,J)*VOL 
     1/(VIS(I,J)-1.0+1.E-8) 
  101 CONTINUE 
  100 CONTINUE 
 

C ENTRY MODTE has information regarding boundary conditions for turbulence  

C kinetic energy (Section 14). 

      CALL MODTE 

C RESORK represents the residual source term for turbulent kinetic energy. 

      RESORK=0.0 
      DO 300 I=2,NIM1 
      DO 301 J=2,NJM1 
      AP(I,J)=AN(I,J)+AS(I,J)+AE(I,J)+AW(I,J)+APO(I,J)-SP(I,J) 
      RESOR=AN(I,J)*TE(I,J+1)+AS(I,J)*TE(I,J-1)+AE(I,J)*TE(I+1,J) 
     1      +AW(I,J)*TE(I-1,J)-AP(I,J)*TE(I,J)+SU(I,J) 
      VOL=SEW(I)*SNS(J) 
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      SORVOL=GREAT*VOL 
      IF(-SP(I,J).GT.0.5*SORVOL)  RESOR=RESOR/SORVOL 
      RESORK=RESORK+ABS(RESOR) 
 
C UNDER-RELAXATION 

C URFK represents under-relaxation factor for turbulent kinetic energy. 

      AP(I,J)=AP(I,J)/URFK 
      SU(I,J)=SU(I,J)+(1.-URFK)*AP(I,J)*TE(I,J) 
  301 CONTINUE 
  300 CONTINUE 
 
C NSWPK represents the number of internal iterations used to solve the turbulent  

C kinetic energy equation. 

 

     
      DO 400 N=1,NSWPK 
  400 CALL LISOLV(2,2,NI,NJ,IT,JT,TE) 
      DO 401 I=2,NIM1 
      DO 401 J=2,NJM1 
  401 TE(I,J)=AMAX1(TE(I,J),SMALL) 
      RETURN 
      END 
 
13. SUBROUTINE CALCED (ENERGY DISSIPATION EQUATION) 

 
Energy dissipation, ε, is yet another scalar quantity.  Thus the calculation points for this 

quantity are also on a non-staggered grid.  The non-dimensional form of this equation can be 

written as: 
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Following is a listing of SUBROUTINE CALCED which calculates energy dissipation. 
 
SUBROUTINE CALCED 
      INCLUDE 'common.h' 
      LOGICAL INCALB,INHY,INCEN,STEADY 
 
      DO 100 I=2,NIM1 
      DO 101 J=2,NJM1 
C COMPUTE AREAS AND VOLUME 
      AREANS=SEW(I) 
      AREAEW=SNS(J) 
      VOL=SNS(J)*SEW(I) 
 
 
 
C CALCULATE CONVECTION COEFFICIENTS 
      GN=0.5*(DEN(I,J)+DEN(I,J+1))*V(I,J+1) 
      GS=0.5*(DEN(I,J)+DEN(I,J-1))*V(I,J) 
      GE=0.5*(DEN(I,J)+DEN(I+1,J))*U(I+1,J) 
      GW=0.5*(DEN(I,J)+DEN(I-1,J))*U(I,J) 
      CN=GN*AREANS 
      CS=GS*AREANS 
      CE=GE*AREAEW 
      CW=GW*AREAEW 
 
C CALCULATE DIFFUSION COEFFICIENTS 

C The diffusion term: 
⎥
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 has the fluid  

C viscosity and eddy viscosity as separate identities. 
 
      GAMN=R1*0.5*(VIS(I,J)+VIS(I,J+1)-2.0)/PRED+R1 
      GAMS=R1*0.5*(VIS(I,J)+VIS(I,J-1)-2.0)/PRED+R1 
      GAME=R1*0.5*(VIS(I,J)+VIS(I+1,J)-2.0)/PRED+R1 
      GAMW=R1*0.5*(VIS(I,J)+VIS(I-1,J)-2.0)/PRED+R1 
      DN=GAMN*AREANS/DYNP(J) 
      DS=GAMS*AREANS/DYPS(J) 
      DE=GAME*AREAEW/DXEP(I) 
      DW=GAMW*AREAEW/DXPW(I) 
 
C SOURCE TERMS 
      SMP=CN-CS+CE-CW 
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      CP=AMAX1(0.0,SMP) 
      CPO=CP 
 
C ASSEMBLE MAIN COEFFICIENTS 
      IF (INHY) THEN 
      AN(I,J)=DN*AMAX1(0.,1-0.5*ABS(CN/DN))+AMAX1(-CN,0.) 
      AS(I,J)=DS*AMAX1(0.,1-0.5*ABS(CS/DS))+AMAX1(CS,0.) 
      AE(I,J)=DE*AMAX1(0.,1-0.5*ABS(CE/DE))+AMAX1(-CE,0.) 
      AW(I,J)=DW*AMAX1(0.,1-0.5*ABS(CW/DW))+AMAX1(CW,0.) 
      END IF 
 
      IF (INCEN) THEN 
      AN(I,J)=AMAX1(-CN,0.)+DN-0.5*ABS(CN) 
      AS(I,J)=AMAX1(CS,0.)+DS-0.5*ABS(CS) 
      AE(I,J)=AMAX1(-CE,0.)+DE-0.5*ABS(CE) 
      AW(I,J)=AMAX1(CW,0.)+DW-0.5*ABS(CW) 
      END IF 
 
      IF(STEADY) THEN 
      APO(I,J)=0.0 
      ELSE 
      SU(I,J)=CPO*ED(I,J)+APO(I,J)*EDO(I,J) 
      
      END IF 
C The coefficient cε3 does not have a universally acceptable form.  The form  

C suggested by Henkes (1990) i.e., u/vtanhc 3 =ε  is used here. 

      C3=ABS((V(I,J)+V(I,J+1))/(U(I,J)+U(I+1,J))) 
      C3=TANH(C3) 
 

C  Represents the addition of the term: 
k

Pfc k11
ε

ε  to SU(I,J). 

C Note that the term 
k
ε  is not directly used. Instead the relationship: 

C 
ε

ρµ µµ

2

t
kfc

Pr
Ra

=  is used to write  
t

kfc
Pr
Ra

k µ
ρε

µµ= . 

C This procedure is adopted to improve numerical stability. 
 
      SU(I,J)=SU(I,J)+(1/R1)*C1*F1*CMU*CD*DEN(I,J)*GEN(I,J)*VOL 
     1 *TE(I,J)/(VIS(I,J)-1.0+1.E-8) 

C Represents the addition of the term: 
k

Gcfc k311
ε

εε  to SU(I,J) 

C Here again the same representation is used for the term 
k
ε . 

      IF (INCALB) THEN 
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      SU(I,J)=SU(I,J)+(1/R1)*C1*F1*C3*CMU*CD*GENB(I,J)*DEN(I,J)*VOL 
     1 *TE(I,J)/(VIS(I,J)-1.0+1.E-8) 
      END IF 
      SP(I,J)=-CP 

C Represents the addition of the term: 
k

fc 22
εερ ε  

C No changes have been made in representing this term. 
 
   
       SP(I,J)=SP(I,J)-C2*F2*DEN(I,J)*ED(I,J)*VOL/TE(I,J) 
  101 CONTINUE 
  100 CONTINUE 
 
C ENTRY MODED has information regarding boundary conditions for energy  

C dissipation (Sectio 14). 

      CALL MODED 
 

C RESORE represents the residual source term for energy dissipation. 

      RESORE=0.0 

      DO 300 I=2,NIM1 
      DO 301 J=2,NJM1 
      AP(I,J)=AN(I,J)+AS(I,J)+AE(I,J)+AW(I,J)+APO(I,J)-SP(I,J) 
     
     RESOR=AN(I,J)*ED(I,J+1)+AS(I,J)*ED(I,J-1)+AE(I,J)*ED(I+1,J) 
     1      +AW(I,J)*ED(I-1,J)-AP(I,J)*ED(I,J)+SU(I,J) 
      VOL=SNS(J)*SEW(I) 
      SORVOL=GREAT*VOL 
      IF(-SP(I,J).GT.0.5*SORVOL)  RESOR=RESOR/SORVOL 
      RESORE=RESORE+ABS(RESOR) 
 
C UNDER-RELAXATION 

C URFE represents under-relaxation factor employed for energy dissipation ED(I,J) 

      AP(I,J)=AP(I,J)/URFE 
      SU(I,J)=SU(I,J)+(1.-URFE)*AP(I,J)*ED(I,J) 
  301 CONTINUE 
  300 CONTINUE 
 
C NSWPD represents the number of internal iterations used for calculating ED(I,J) 
      DO 400 N=1,NSWPD 
  400 CALL LISOLV(2,2,NI,NJ,IT,JT,ED) 
      DO 401 I=2,NIM1 
      DO 401 J=2,NJM1 
  401 ED(I,J)=AMAX1(ED(I,J),SMALL) 
      RETURN 
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      END 
 
 
14. SUBROUTINE PROMOD (BOUNDARY CONDITIONS) 
 
Boundary conditions are specified as PROBLEM MODIFICATIONS through SUBROUTINE 

PROMOD.  The SUBROUTINE has different subs-sections called ENTRY (which is a FORTRAN 

command) and are used to specify boundary conditions for specific variables.  The following is a 

listing of SUBROUTINE PROMOD. 

 
SUBROUTINE PROMOD 
 
      INCLUDE 'common.h'  
C  For the fluid properties.  No changes are required for this part. 
      ENTRY MODPRO 
     RETURN 
C represents boundary conditions for u-velocity. No slip and impermeable boundary  

C conditions are applied at the walls.  

      ENTRY MODU 
 
C TOP WALL 
      J=NJM1 
      DO  210 I=3,NIM1 
  210 U(I,J+1)=0.0 
 
C WEST WALL 
C I=2 represents the west wall because u-velocity is calculated on a staggered grid  

C in the x-direction 

      I=3 
      DO 213 J=2,NJM1 
  213 U(I-1,J)=0.0 
 
C BOTTOM WALL 
      J=2 
      DO 214 I=3,NIM1 
  214 U(I,J-1)=0.0 
 
C EAST WALL 
      I=NIM1 
      DO 217 J=2,NJM1 
  217 U(I+1,J)=0.0 
      RETURN 
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C represents boundary conditions for v-velocity. No slip and impermeable boundary  

C conditions are applied at the wall. 

      ENTRY MODV 
C WEST WALL 
      I=2 
      DO  310 J=3,NJM1 
  310 V(I-1,J)=0.0 
 
C TOP WALL 
      J=NJM1 
      DO  313  I=2,NIM1 
  313 V(I,J+1)=0.0 
 
C EAST WALL 
      I=NIM1 
      DO 314 J=3,NJM1 
  314 V(I+1,J)=0.0 
 
 

C BOTTOM WALL 

C J=2 represents the bottom wall because v-velocity is calculated on a staggered  

C grid in the y-direction 

       J=3 
      DO 317 I=2,NIM1 
  317 V(I,J-1)=0.0 
      RETURN 
 

C A pressure boundary condition is not applied here.  Therefore no modifications  

C are required for the pressure correction equation. 

      ENTRY MODP 
      RETURN 
 

C represents thermal boundary conditions.  The horizontal walls (top and bottom  

C walls) are adiabatic whereas the vertical walls (east and west walls) are at a  

C constant temperature.   

       

       ENTRY MODT 

C TOP WALL (ADIABTIC) 
 
C The adiabatic boundary condition: 0y/T =∂∂  at y=0 and y=H, are approximated  
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C by a first order Taylor series approximation.  A better approximation was not  

C required because of the fine grids close to the wall. 

       J=NJM1 
      DO 500 I=2,NIM1 
      T(I,J+1)=T(I,J) 
  500 AN(I,J)=0.0 
 
C WEST WALL (CONSTANT TEMPERATURE TH) 
      I=2 
      DO 501 J=2,NJM1 
      T(I-1,J)=1.0 
  501 CONTINUE 
 
C BOTTOM WALL (ADIABATIC) 
      J=2 
      DO 504 I=2,NIM1 
      T(I,J-1)=T(I,J) 
  504 AS(I,J)=0.0 
 
 
 
C EAST WALL (CONSTANT TEMPERATURE TC) 
      I=NIM1 
      DO 505 J=2,NJM1 
      T(I+1,J)=0.0 
 505  CONTINUE 
      RETURN 
C represents boundary conditions for the turbulent kinetic energy.  One can use the 

C natural boundary condition for k which is zero at the wall. This is quite 

 

C straightforward.  The boundary condition arising out of perturbation which is 

C derived in Wilcox (1993) is used in the present program.  This boundary condition 

C is given by the equation:
( )

µµ fc
uk

2*
=  (where u* is the friction velocity) close to 

C the wall.  The boundary condition is applied at the first inner grid point. 

      ENTRY MODTE 
C TOP WALL 
      J=NJM1 
      YP=YV(NJ)-Y(NJM1) 
      DO 610 I=2,NIM1 
      TAU=1.0*ABS(U(I,J))/YP 
      USTAR=R1**0.5*SQRT(TAU/DEN(I,J)) 
 610 TE(I,J)=USTAR**2/SQRT(CMU*CD) 
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C WEST WALL 
      I=2 
      XP=X(2)-XU(2) 
      DO 620 J=2,NJM1 
      TAU=1.0*ABS(V(I,J))/XP 
      USTAR=R1**0.5*SQRT(TAU/DEN(I,J)) 
  620 TE(I,J)=USTAR**2/SQRT(CMU*CD) 
 
C BOTTOM WALL 
      J=2 
      YP=Y(2)-YV(2) 
      DO 630 I=2,NIM1 
      TAU=1.0*ABS(U(I,J))/YP 
      USTAR=R1**0.5*SQRT(TAU/DEN(I,J)) 
  630 TE(I,J)=USTAR**2/SQRT(CMU*CD) 
 
C EAST WALL 
      I=NIM1 
      XP=XU(NI)-X(NIM1) 
      DO 640 J=2,NJM1 
      TAU=1.0*ABS(V(I,J))/XP 
       
      USTAR=R1**0.5*SQRT(TAU/DEN(I,J)) 
  640 TE(I,J)=USTAR**2/SQRT(CMU*CD) 
      RETURN 
 

C represents boundary conditions for energy dissipation.  There are no natural   

C boundary conditions for ε.  Therefore the boundary condition from perturbation  

C theory is used here.  ( )
y

u
3*

κ
ε =  (where κ is Von Karman’s constant and y  

C is the normal distance from the wall at which the boundary condition is applied) is  

C the boundary condition for ε and occurs close to the wall.  This boundary  
C condition is again applied at the first inner grid point. 

 
      ENTRY MODED 
C TOP WALL 
      YP=YV(NJ)-Y(NJM1) 
      J=NJM1 
      DO  710  I=2,NIM1 
      TAU=1.0*ABS(U(I,J))/YP 
      USTAR=R1**0.5*SQRT(TAU/DEN(I,J)) 
  710 ED(I,J)=USTAR**3/(CAPPA*YP) 
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C WEST WALL 
      XP=X(2)-XU(2) 
      I=2 
      DO  720  J=2,NJM1 
      TAU=1.0*ABS(V(I,J))/XP 
      USTAR=R1**0.5*SQRT(TAU/DEN(I,J)) 
  720 ED(I,J)=USTAR**3/(CAPPA*XP) 
 
C BOTTOM WALL 
      YP=Y(2)-YV(2) 
      J=2 
      DO 730 I=2,NIM1 
      TAU=1.0*ABS(U(I,J))/YP 
      USTAR=R1**0.5*SQRT(TAU/DEN(I,J)) 
  730 ED(I,J)=USTAR**3/(CAPPA*YP) 
 
C EAST WALL 
      XP=XU(NI)-X(NIM1) 
      I=NIM1 
      DO 740 J=2,NJM1  
      TAU=1.0*ABS(V(I,J))/XP 
      USTAR=R1**0.5*SQRT(TAU/DEN(I,J)) 
  740 ED(I,J)=USTAR**3/(CAPPA*XP) 
      RETURN 
      END 
 
 
 
15. SUBROUTINE UPDATE (UNSTEADY CALCULATIONS) 
 

For unsteady calculations, the converged solution from the previous time iteration is also 

required for calculations.  The results of the converged solution from the previous iteration are 

stored as old values and are represented as UO(I,J) for u-velocity, VO(I,J) for v-velocity, PO(I,J)  

 

for pressure, DENO(I,J) for density, TO(I,J) for temperature, TEO(I,J) for turbulent kinetic energy 

and EDO(I,J) for energy dissipation.  Thus the variables are updated after each time iteration for 

use in the next time iteration.  Following is the listing of SUBROUTINE UPDATE 

 

SUBROUTINE UPDATE(PHI,PHIO,NI,NJ,IT,JT) 
C  PHI(I,J) stands for any variable u, v, T, p, k, ε or the fluid density. PHIO(I,J)  

C stands for the value of the same variable at the previous time step. 
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      DIMENSION PHI(80,80),PHIO(80,80) 
      NIM1=NI-1 
      NJM1=NJ-1 
      DO 100 I=2,NIM1 
      DO 100 J=2,NJM1 
  100 PHIO(I,J)=PHI(I,J) 
      RETURN 
      END 
 
 
 
16. SUBROUTINE DUMP (RESTARTING CALCULATIONS)  
 
Since the number of iterations required for a converged solution cannot be known beforehand, one 

needs a facility by which a previously calculated solution field can be used for further iterations.  

This facility is provided through the SUBROUTINE DUMP.  The solution after a particular 

number of iterations or after satisfying a particular convergence criterion, whichever occurs earlier, 

is stored in binary form in a file called the DUMP file.  Storage in binary form is essential to 

prevent any loss of information due to truncation.  This DUMP file can then be recalled for further 

calculations.  Following is the listing of SUBROUTINE DUMP 

 

SUBROUTINE DUMP(NI,NJ,U,V,P,T,TE,ED,DEN,GAMH,VIS) 
      DIMENSION U(80,80),V(80,80),P(80,80),T(80,80),TE(80,80) 
     1,ED(80,80),DEN(80,80),GAMH(80,80),VIS(80,80) 
      WRITE(10)((U(I,J),I=1,NI),J=1,NJ) 
      WRITE(10)((V(I,J),I=1,NI),J=1,NJ) 
      WRITE(10)((P(I,J),I=1,NI),J=1,NJ) 
      WRITE(10)((T(I,J),I=1,NI),J=1,NJ) 
      WRITE(10)((TE(I,J),I=1,NI),J=1,NJ) 
      WRITE(10)((ED(I,J),I=1,NI),J=1,NJ) 
      WRITE(10)((DEN(I,J),I=1,NI),J=1,NJ) 
      WRITE(10)((GAMH(I,J),I=1,NI),J=1,NJ) 
      WRITE(10)((VIS(I,J),I=1,NI),J=1,NJ) 
 
     RETURN 
      END 
 
17. INPUT AND OUTPUT 
 
17.1. Input 
 
Input to the program is carried out through an external input file ‘in.dat’.  This input file is in turn read in through 

SUBROUTINE READDATA discussed in Section 5. The meaning of every input parameter is listed in Section 5.  
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---------------------------------------------------------------------- 
This data file is for program NATCON 
---------------------------------------------------------------------- 
 
C    GRID, ITERATION AND COMPARISON PARAMETERS 

GREAT    NITER  SMALL  NFTSTP  NLTSTP  STEADY  TFIRST 
   1.E20          0          1.E-20         1           100           .TRUE.        0. 

IT   JT       
80 80  
NSWPU  NSWPV  NSWPP  NSWPK  NSWPD  NSWPT 

    1                  1               3                1            1              1  
NI   NJ   ELBYH   
60    60         1.0      

C     TIME STEP FOR UNSTEADY CALCULATIONS 
 TSTEP 
 0.25  
C     DEPENDENT VARIABLE, DISCRETIZATION  AND RESTART OPTIONS 

INCALU INCALV INCALP INCALK INCALD INPRO INCALT  
       .TRUE. .TRUE. .TRUE. .FALSE. .FALSE. .FALSE. .TRUE. 
       INCALB  INHY    INCEN   VALUE 
       .TRUE.  .FALSE. .TRUE.      1. 
C     FLUID PROPERTIES 

DENSIT   PRANDL  VISCOS   CPP 
       1.2              0.71           1.85E-5   1006.       
C     TURBULENCE CONSTANTS 

CMU    CD    C1    C2    CAPPA   ELOG   PRTE  PRANDT 
       0.09      1.00  1.44  1.92    .41          10.0         1.0       0.9 
             F1   F2 
       1.00 1.00 
C     BOUNDARY VALUES 

TH  TC  
40 30 

C     INTERNAL HEAT GENERATION AND RAYLEIGH NUMBER 
QGENER      RALI      
0. 1.E5     
 
 

C     PRESSURE CALCULATION  
IPREF JPREF 

       2            2 
C     PROGRAM CONTROL AND MONITOR 
 MAXIT     IMON  JMON  URFU URFV  
       200            30         30         0.4       0.4 
       URFP   URFE    URFK     URFT    
       0.5        0.3         0.3           0.8      
       URFG URFVIS INDPRI  SORMAX                     
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       0.5  0.5           100        0.0000000001 
 
17.2.  Output 

 Numerical and graphical outputs are dependent on the nature of outputs required. 

The principal outputs are given through the output data file ‘TEA.OUT’ which contains 

numerical output and ‘TEC.DAT’ which contains data for graphical output using the 

software TECPLOT.  The streamfunction is calculated using the formula: 

x
v,

y
u

∂
∂

−=
∂
∂

=
ΨΨ  with the boundary condition Ψ=0 at the walls where Ψ is the streamfunction. 

The lisiting for calculating the streamfunction is given below: 

 
C CALCULATION OF STREAM FUNCTION 
      NIH=NI/2 
      NIHP=NI/2+1 
      SF(1,J)=0.0 
C SF(I,J) represents the streamfunction. 
 
      SF(NI,J)=0.0 
      DO 102 I=2,NIH 
      DO 103 J=2,NJM1 
      VN(I,J)=0.5*(V(I,J)+V(I,J+1)) 
C VN(I,J) represents the non-staggered v-velocity. 
 
      SF(I,J)=VN(I,J)*SEW(I)+SF(I-1,J) 
  103 CONTINUE 
  102 CONTINUE 
      DO 104 I=NIM1,NIHP,-1 
      DO 105 J=2,NJM1 
      VN(I,J)=0.5*(V(I,J)+V(I,J+1)) 
      SF(I,J)=VN(I,J)*SEW(I)+SF(I+1,J) 
  105 CONTINUE 
  104 CONTINUE 
   
      DO 106 I=2,NIM1 
      DO 106 J=2,NJM1 
  106 SF(I,J)=ABS(SF(I,J)) 
 
C Prints the streamfunction using SUBROUTINE PRINT 
 
      CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,SF,HEDSF) 
 
The output data TEA.OUT is printed through SUBROUTINE PRINT.  The listing for  
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SUBROUTINE PRINT is given below. 

SUBROUTINE PRINT(ISTART,JSTART,NI,NJ,IT,JT,X,Y,PHI,HEAD) 
      DIMENSION PHI(80,80),X(80),Y(80),STORE(500) 
      CHARACTER*24 F,F4,HI,HY,HEAD 
      DATA F/'(3X,A3,I5,10I10,8X,A3)'/ 
      DATA F4/'1 2 3 4 5 6 7 8 9 10 11'/ 
C  Values for each variable are printed in groups of 11 columns.  A typical 

C output is shown after the subroutine.   

      DATA HI,HY/6H  I = , 6H Y =  / 
      ISKIP=1 
      JSKIP=1 
      ISTA=ISTART-11 
  100 ISTA=ISTA+11 
      IEND=ISTA+10 
      IEND=MIN0(NI,IEND) 
      IEL=IEND-ISTA 
      INUM=2*IEL-1 
      IF(ISTA.EQ.ISTART)THEN 
      WRITE(6,115) 
      WRITE(6,110)HEAD 
      ELSE 
      WRITE(6,115) 
      ENDIF 
      IF(IEL.GT.1) THEN 
      F(11:12)=F4(INUM:INUM+1) 
      WRITE(6,F)HI,(I,I=ISTA,IEND),HY 
      ELSE 
      WRITE(6,111)HI,ISTA,HY 
      END IF 
      WRITE(6,112)  
      DO 101 JJ=JSTART,NJ,JSKIP 
      J=JSTART+NJ-JJ 
      DO 120 I=ISTA,IEND 
      A=PHI(I,J) 
      IF(ABS(A).LT.1.E-20) A=0.0 
  120 STORE(I)=A 
  101 WRITE(6,113) J,(STORE(I),I=ISTA,IEND,ISKIP),Y(J) 
       
      WRITE(6,114) (X(I),I=ISTA,IEND,ISKIP) 
      IF(IEND.LT.NI)GO TO 100 
      RETURN 
  110 FORMAT(1H0,20(2H'-),7X,6A6,7X,20(2H'*)) 
  111 FORMAT(3X,A3,I5,8X,A3) 
  112 FORMAT(3H  J) 
  113 FORMAT(1H ,I3,1P13E13.4,0PF7.3) 
  114 FORMAT(4H0X= ,1P12E13.4) 
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  115 FORMAT(///) 
      END 
 
Typical Output for a 6x6 grid:  
 
The maximum number of columns in one row is 13.  The last column represents the y-value.  Thus 

for a 6x6 grid, the 1st column represents the counter for J, columns 2 to 7 represent the values of the 

calculated variable and the 8th column represents the corresponding y-value.  Similarly the 1st row 

represents the counter for I, rows 2 to 7 represent the values of the calculated variable and the 8th 

row represents the corresponding x-value.   

Output  for temperature T. The output is non-dimensional. The x and y directions are non-

staggered. 

 

 

 

0'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-              
   I =         1            2                    3                   4                    5                    6                    Y=  
  J 
   6   1.0000E+00   9.6501E-01   7.6606E-01   3.9682E-01   6.4164E-02   0.0000E+00   
1.0000E+00 
   5   1.0000E+00   9.6501E-01   7.6606E-01   3.9682E-01   6.4164E-02   0.0000E+00   9.5458E-01 
   4   1.0000E+00   9.6278E-01   7.5405E-01   3.9943E-01   6.2888E-02   0.0000E+00   7.0458E-01 
   3   1.0000E+00   9.3711E-01   6.0057E-01   2.4596E-01   3.7221E-02   0.0000E+00   2.9542E-01 
   2   1.0000E+00   9.3584E-01   6.0318E-01   2.3394E-01   3.4988E-02   0.0000E+00   4.5422E-02 
   1   1.0000E+00   9.3584E-01   6.0318E-01   2.3394E-01   3.4988E-02   0.0000E+00   
0.0000E+00 
X=   0.0000E+00  4.5422E-02    2.9542E-01   7.0458E-01   9.5458E-01   1.0000E+00 
 
This output is stored in the data file TEA.OUT.   
 
The graphical output is obtained through the software TECPLOT.  Data for this output are stored in 

TEC.DAT.  Before plotting the velocities one has to convert the staggered velocities into non-

staggered velocities. This is acheived by carrying out appropriate interpolations for u and v 

velocities.  Custom outputs like convergence of a variable at a particular monitoring location with 

respect to time can be printed on a data file easily. 
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18. MAIN PROGRAM 
 
 The main program is used to link all the subroutines listed above by using the SIMPLE 

algorithm (Refer to the flow chart in Figure 4).  The main program is also used to generate the 

desired output i.e., numerical or graphical.  Following is a listing of the main program. 

 

PROGRAM  MAIN 
************************************************************************ 
C       Natural Convection flow in a square cavity  (in two dimensions) 
C       Non-dimensional version, unsteady state calculations 
C       Common file= common.h, Input data file= in.dat 
************************************************************************ 
      CHARACTER*24 HEDU,HEDV,HEDP,HEDT,HEDK,HEDD,HEDM,HEDSF 
      INCLUDE 'common.h' 
      LOGICAL INCALU,INCALV,INCALP,INPRO,INCALK,INCALD, 
     1         INCALB,INCALT,INHY,INCEN,STEADY 
      OPEN(6,FILE='TEA.OUT',STATUS='OLD') 
C File TEA.OUT stores the numerical output. 
 
      OPEN(7,FILE='CONV.DAT',STATUS='OLD') 
C File CONV.DAT stores the convergence with respect to time data for unsteady calculations. 
 
      OPEN(10,FILE='DUMP',STATUS='OLD',FORM='UNFORMATTED') 
C File DUMP stores the entire solution field in binary form for later use. 
 
CALL READDATA 
C Reads the subroutine READDATA 
 
C CALCULATE GEOMETRICAL QUANTITIES AND SET VARIABLES TO ZERO 
      CALL INIT 
C Reads the subroutine INIT 
      IF(VALUE.EQ.0) THEN  
C If value equals zero, the initial field is read from the DUMP file. 
      READ(10)((U(I,J),I=1,NI),J=1,NJ) 
      READ(10)((V(I,J),I=1,NI),J=1,NJ) 
      READ(10)((P(I,J),I=1,NI),J=1,NJ) 
      READ(10)((T(I,J),I=1,NI),J=1,NJ) 
      READ(10)((TE(I,J),I=1,NI),J=1,NJ) 
      READ(10)((ED(I,J),I=1,NI),J=1,NJ) 
      READ(10)((DEN(I,J),I=1,NI),J=1,NJ) 
      READ(10)((GAMH(I,J),I=1,NI),J=1,NJ) 
      READ(10)((VIS(I,J),I=1,NI),J=1,NJ) 
      END IF 
      REWIND 10 
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      RESORU=0. 
      RESORV=0. 
      RESORM=0. 
      RESORT=0. 
      RESORK=0. 
      RESORE=0. 
C The resdiual source values are initialised 
 
C INITIAL OUTPUT 
      WRITE(6,210) 
      WRITE(6,230) RALI 
      WRITE(6,223) PRANDL 
      WRITE(6,260) DENSIT 
      WRITE(6,250) VISCOS 
      WRITE(6,222) TH,TC 
      IF(INCALU) CALL PRINT(1,1,NI,NJ,IT,JT,XU,Y,U,HEDU) 
      IF(INCALV) CALL PRINT(1,1,NI,NJ,IT,JT,X,YV,V,HEDV) 
      IF(INCALP) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,P,HEDP) 
      IF(INCALK) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,TE,HEDK) 
      IF(INCALD) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,ED,HEDD) 
      IF(INCALT) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,T,HEDT) 
C Outputs are printed in the file TEA.OUT.  This corresponds to the field before 
C calculations are started. 
 
C CALCULATE RESIDUAL SOURCES NORMALIZATION FACTORS 
 
      RESORM=RESORM/((NI-2)*(NJ-2)) 
      RESORU=RESORU/((NI-3)*(NJ-2)) 
      RESORV=RESORV/((NI-2)*(NJ-3)) 
      RESORT=RESORT/((NI-2)*(NJ-2)) 
      RESORK=RESORK/((NI-2)*(NJ-2)) 
      RESORE=RESORE/((NI-2)*(NJ-2)) 
 
C BEGIN ITERATION LOOP 
      TIME=TFIRST 
      DO 3000 ITSTEP=NFTSTP,NLTSTP 
      DT(ITSTEP)=TSTEP 
      IF(.NOT.STEADY) TIME=TIME+DT(ITSTEP) 
C Time step loop for unsteady calculations 
 
C INNER ITERATION LOOP 
      WRITE(*,310) IMON,JMON 
 
C Prints the position of the monitoring location on the screen. 
 
      300 NITER=NITER+1 
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C Internal iterations within one time step. 
 
 
 
      IF(INCALU) CALL CALCU 
      IF(INCALV) CALL CALCV 
      IF(INCALP) CALL CALCP 
      IF(INCALK) CALL CALCTE 
      IF(INCALD) CALL CALCED 
      IF(INCALT) CALL CALCT 
C Subroutines are read in to solve the discretized partial differential equations.  Note the 

C sequence in which the subroutines are read in and compare them with the flow chart in 

C Figure 4. 

C UPDATE FLUID PROPERITIES 
      IF(INPRO) CALL PROPS 
C Fluid properties are updated.  In case of turbulent flow this means the introduction of 

C turbulent viscosity.  Since the actual fluid properties are constant, INPRO can be taken 

C as FALSE for laminar flow calculations. 

C INTERMEDIATE OUTPUT 
       WRITE(*,311) NITER,RESORU,RESORV,RESORM,RESORT,RESORK,RESORE 
     1           ,U(IMON,JMON),V(IMON,JMON),P(IMON,JMON),T(IMON,JMON), 

1 TE(IMON,NJM1),ED(IMON,NJM1) 
 

C These outputs are printed on the screen after every iteration. 
 
      IF(MOD(NITER,INDPRI).NE.0) GO TO 301 
 
C TERMINATION TESTS 
  301 SORCE=AMAX1(RESORM,RESORU,RESORV,RESORT)   
 
C SORCE is the maximum of mass, momentum and thermal energy resdiuals.   
 
      IF(NITER.EQ.MAXIT) GOTO 302 
 
C MAXIT represents the maximum number of internal iterations within a time step. 
 
C For steady calculations, MAXIT represents the maximum number of iterations. 
 
      IF(SORCE.GT.SORMAX) GOTO 300 
C SORCE is compared with the convergence criterion SORMAX.  This procedure is 

C carried out for every time step. 

 

      IF(NITER.LE.20) GOTO 300 
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C The value of residual source sum can be lower than SORMAX at the beginning of the 

C iteration process.  Therefore NITER is allowed to go to a value of atleast 20 

C irrespective of the value of SORCE.   The least value assigned to NITER is arbitrary but 

C generally 20 to 50 iterations are found to be sufficient. 

 

  302 IF(.NOT.STEADY) THEN 
C------INTERMEDIATE OUTPUT FOR TRANSIENT CALCULATIONS 
      WRITE(*,*)”TIME STEP”  
      WRITE(*,407)ITSTEP 
C Printed on the screen after each time iteration. 
 
C Printed in the output file TEA.OUT 
        IF(INCALU) CALL PRINT(1,1,NI,NJ,IT,JT,XU,Y,U,HEDU) 
        IF(INCALV) CALL PRINT(1,1,NI,NJ,IT,JT,X,YV,V,HEDV) 
        IF(INCALP) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,P,HEDP) 
        IF(INCALK) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,TE,HEDK) 
        IF(INCALD) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,ED,HEDD) 
        IF(INCALT) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,T,HEDT) 
        IF(INPRO ) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,VIS,HEDM) 
 
C Outputs for checking convergence 
      DO  3001 J=2,NJM1 
      I=(NI+2)/2 
      UC(I,J)=ABS(U(I,J)) 
      UM(J)=U(I,J) 
      UMAX=MAXVAL(UM) 
C UMAX represents the maximum of u velocity at the vertical midplane of the cavity. 
 
 3001 CONTINUE 
      WRITE(7,406) TIME,UMAX   
C Printed as convergence with respect to time data in the output data file CONV.DAT 
 
C UPDATE VARIABLES FOR THE NEXT TIME STEP 
      IF(INCALU) CALL UPDATE(U,UO,NI,NJ,IT,JT) 
      IF(INCALV) CALL UPDATE(V,VO,NI,NJ,IT,JT) 
      IF(INCALP) CALL UPDATE(P,PO,NI,NJ,IT,JT) 
      IF(INCALK) CALL UPDATE(TE,TEO,NI,NJ,IT,JT) 
      IF(INCALD) CALL UPDATE(ED,EDO,NI,NJ,IT,JT) 
      IF(INCALT) CALL UPDATE(T,TO,NI,NJ,IT,JT) 
      IF(INCALT) CALL UPDATE(DEN,DENO,NI,NJ,IT,JT) 
      END IF 
 3000 CONTINUE 
C This is the end of time iterations. 
 
C Printed in the output data file TEA.OUT as final output. 
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      IF(INCALU) CALL PRINT(1,1,NI,NJ,IT,JT,XU,Y,U,HEDU) 
      IF(INCALV) CALL PRINT(1,1,NI,NJ,IT,JT,X,YV,V,HEDV) 
      IF(INCALP) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,P,HEDP) 
      IF(INCALK) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,TE,HEDK) 
      IF(INCALD) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,ED,HEDD) 
      IF(INCALT) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,T,HEDT) 
      IF(INPRO ) CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,VIS,HEDM) 
 
 
CALL DUMP(NI,NJ,U,V,P,T,TE,ED,DEN,GAMH,VIS) 
 
C The dump file is called and the final field is stored as a binary output for further use. 
 
C CALCULATION OF STREAM FUNCTION 
      NIH=NI/2 
      NIHP=NI/2+1 
      SF(1,J)=0.0 
      SF(NI,J)=0.0 
      DO 102 I=2,NIH 
      DO 103 J=2,NJM1 
      VN(I,J)=0.5*(V(I,J)+V(I,J+1)) 
      SF(I,J)=VN(I,J)*SEW(I)+SF(I-1,J) 
  103 CONTINUE 
  102 CONTINUE 
      DO 104 I=NIM1,NIHP,-1 
      DO 105 J=2,NJM1 
      VN(I,J)=0.5*(V(I,J)+V(I,J+1)) 
      SF(I,J)=VN(I,J)*SEW(I)+SF(I+1,J) 
  105 CONTINUE 
  104 CONTINUE 
      DO 106 I=2,NIM1 
      DO 106 J=2,NJM1 
  106 SF(I,J)=ABS(SF(I,J)) 
 
      CALL PRINT(1,1,NI,NJ,IT,JT,X,Y,SF,HEDSF) 
 
C CALCULATION OF NUSSELT NUMBER, UMAX AND VMAX 
C UMAX is the maximum of u velocity at the vertical midplane of the cavity. 

C VMAX is the maximum of v velocity at the horizontal midplane of the cavity. 

C Nusselt number is the non-dimensional heat flux from the hot wall and is defined as: 

C 
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      DO 451 I=1,NI 
      DO 452 J=1,NJ 
      T(I,J)=T(I,J)*DELT+TC 
  452 CONTINUE 
  451 CONTINUE 
 
      DO 453 I=1,NI 
  453 X(I)=X(I)*H 
      DX1=X(2)-XU(2) 
      DX2=X(3)-X(2) 
 
      DX=DX1+DX2 
      WRITE(6,402) 
   
     DO  401  J=2,NJM1 
      I=(NI+2)/2 
      U(I,J)=ABS(U(I,J)) 
      UM(J)=U(I,J) 
      UMAX=MAXVAL(UM) 
      HFLUXN=(T(2,J)*DX**2-T(3,J)*DX1**2-TH*(DX**2-DX1**2)) 
     1/(DX1*DX**2-DX*DX1**2) 
C The heat flux, HFLUXN, is calculated using a second order Taylor series 
C approximation. 
      ANUN=-HFLUXN*H/DELT 
      ANUN=ABS(ANUN) 
C ANUN represents the local nusselt number at the hot wall. 
      ANUN1=ANUN*SNS(J) 
C SNS(J) represents dy. 
      SUMN=SUMN+ANUN1 
C SUMN represents the average nusselt number 
      ANUN=ANUN/RALI**0.25 
      WRITE(6,403)Y(J),ANUN 
  401 CONTINUE 
      DO 415 I=2,NIM1 
      J=(NJ+2)/2 
      V(I,J)=ABS(V(I,J)) 
      VM(I)=V(I,J) 
      VMAX=MAXVAL(VM) 
  415 CONTINUE 
      WRITE(6,404) 
      WRITE(6,405)SUMN,UMAX,VMAX,H 
 
C OUTPUTS FOR PLOTTING USING TECPLOT 
      DO 421 I=1,NI 
  421 X(I)=X(I)/H 
      WRITE(8,*)'TITLE="TECPLOT PLOTS"' 
      WRITE(8,*)'VARIABLES="X" "Y" "T" "U" "V" "P" "SF" "DEN"' 
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      WRITE(8,*)'ZONE F=POINT, I=', NI, ', J=', NJ 
 
      DO 502 J=1,NJ 
      DO 502 I=1,NI 
  502 WRITE(8,503)X(I),Y(J),T(I,J),UN(I,J),VN(I,J),P(I,J),SF(I,J), 
     1 DEN(I,J) 
C These outputs are written in the data file TEC.DAT.  TEC.DAT can then be loaded 

C into TECPLOT using the Load data file command. 

      STOP 
 
 
 
 
C FORMAT STATEMENTS 
  210 FORMAT(1H0,47X,'TURBULENT FLOW IN A CAVITY '/////) 
  222 FORMAT(///1H0,15X,'THERMAL BOUNDARY CONDITIONS ARE - - -'// 
     11H0,25X,'SIDE WALL TEMPERATURES = '2(1PE11.3)// 
     11H0,25X,'ADIABATIC TOP AND BOTTOM WALLS '//) 
  223 FORMAT(1H0,15X,'PRANDTL NUMBER',T60,1H=,3X,1PE11.3) 
  230 FORMAT(1H0,15X,'RAYLEIGH NUMBER ',T60,1H=,3X,1PE11.3) 
  250 FORMAT(1H0,15X,' LAMINAR VISCOSITY ',T60,1H=,3X,1PE11.3) 
  260 FORMAT(1H0,15X,'FLUID DENSITY ',T60,1H=,3X,1PE11.3) 
  310   FORMAT(1H0,'ITER   ','I---------------ABSOLUTE RESIDUAL SOURCE SUM 
     1S---------------I   I-------FIELD VALUES AT MONITORING LOCATION',' 
     2(',I2,',',I2,')','--------I' / 2X,'NO.',3X,'UMOM',6X,'VMOM',6X,'MA 
     3SS',6X,'ENER',6X,'TKIN',6X,'DISP',10X,'U',9X,'V',9X,'P',9X,'T',9X, 
     4'K',9X,'D'/) 
  311   FORMAT(1H ,I8,4X,1P6E10.3,3X,1P6E10.3) 
  402 FORMAT(///5X,1HI,7X,5HYV(I),6X,10HS.S.COEFF.,'NUSSELT NO. ', 
     25X,'Y(I)') 
  403 FORMAT(/5X,1PE11.3,2X,1PE11.3) 
  404 FORMAT('AVERAGE NUSSELT NUMBER',5X,'UMAX',5X,'VMAX',5X,'H') 
  405 FORMAT(/5X,1PE11.3,4X,1PE11.3,4X,1PE11.3,4X,1PE11.3) 
  406 FORMAT(1H ,1PE11.3,4X,1PE11.3) 
  407 FORMAT(1H ,I6)   
  503 FORMAT(1PE11.3,2X,1PE11.3,2X,1PE11.3,2X,1PE11.3,2X,1PE11.3, 
     12X,1PE11.3,2X,1PE11.3) 
      END 
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