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Abstract: Water-related soil erosion is a major environmental concern for catchments with barren
topography in arid and semi-arid regions. With the growing interest in irrigation infrastructure
development in arid regions, the current study investigates the runoff and sediment yield for the
Gomal River catchment, Pakistan. Data from a precipitation gauge and gridded products (i.e., GPCC,
CFSR, and TRMM) were used as input for the SWAT model to simulate runoff and sediment yield.
TRMM shows a good agreement with the data of the precipitation gauge (≈1%) during the study
period, i.e., 2004–2009. However, model simulations show that the GPCC data predicts runoff better
than the other gridded precipitation datasets. Similarly, sediment yield predicted with the GPCC
precipitation data was in good agreement with the computed one at the gauging site (only 3%
overestimated) for the study period. Moreover, GPCC overestimated the sediment yield during some
years despite the underestimation of flows from the catchment. The relationship of sediment yields
predicted at the sub-basin level using the gauge and GPCC precipitation datasets revealed a good
correlation (R2 = 0.65) and helped identify locations for precipitation gauging sites in the catchment
area. The results at the sub-basin level showed that the sub-basin located downstream of the dam
site contributes three (3) times more sediment yield (i.e., 4.1%) at the barrage than its corresponding
area. The findings of the study show the potential usefulness of the GPCC precipitation data for
the computation of sediment yield and its spatial distribution over data-scarce catchments. The
computations of sediment yield at a spatial scale provide valuable information for deciding watershed
management strategies at the sub-basin level.
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1. Introduction

Appropriate measures for watershed management require precise prediction of sedi-
ment yield from the catchment. Precipitation is the key element for simulating runoff and
sediment load at the catchment scale. Spatial variability of rainfall events is a major limita-
tion for reliable estimations of runoff and sediment yield in large catchments. Moreover,
sediment load in rivers is affected by many factors, including soil type, land use, channel
slope, catchment area, seasonality of rains, land sliding, etc. Therefore, reliable estimates of
runoff and sediment yield from catchments require considerably accurate input datasets,
especially the precipitation, which plays an important role. Erratic rainfall events in arid
and semi-arid regions having barren land with dendritic drainage patterns cause major
off-site effects, including decreases in reservoir storage capacity and sedimentation in the
irrigation infrastructure [1]. The sedimentation in reservoirs increases with the high erosion
rates in catchments, thus reducing the storage capacity of dams and decreasing irrigation
supplies to the canal system. For example, the storage capacity of Warsak Dam’s reservoir
in Pakistan was reduced by 18% during the first year of its operation. Similarly, the storage
capacities of Tarbela, Mangla, and Chashma reservoirs were reduced by 35, 20.5, and 60%,
respectively [2]. For the Indus Basin Irrigation System (IBIS), Pakistan, irrigation supplies
can decrease by 20% during the Rabi cropping season (Nov. to March) due to sedimentation
in the reservoirs under climate change scenarios [3].

The Gomal River catchment and the Northern parts of Pakistan are particularly
vulnerable to high erosion rates, i.e., >50 tons ha–1 year–1 [4]. In a recent study [5], the
erosion rates in the sub-catchment of the Gomal River were categorized as being in a range
from very severe to catastrophic (i.e., >100 t h−1 y−1). The eroded sediment from the Gomal
River basin reaches the reservoir of the Gomal Zam (GZ) dam and periodically sluices in the
downstream river reach. These highly sediment-laden flows from the dam outlet ultimately
reach the Kot Murtaza Barrage (≈40 km downstream of GZD). Moreover, the runoff during
rainfall events from the sub-basin between GZD and the Kot Murtaza Barrage also results
in significant sediment load, which is ultimately diverted into the irrigation canal [5].
However, the relative contribution of sediment load at the Kot Murtaza Barrage from the
sub-basin is unknown due to the unavailability of a data monitoring station at the dam site.
The importance of Kot Murtaza Barrage is due to its newly developed irrigation network,
which irrigates about 77,000 ha of agricultural land. Therefore, sediment load assessment
from the catchment area can play a vital role in devising appropriate management strategies.

Hydrological models are widely used for the assessment of runoff and sediment
yield from the catchments. These models use different types of information including
topography, soil type, land management practices, and precipitation. The physically based
semi-distributed model ‘SWAT’ has been widely used worldwide for diverse river basins
for successfully simulating runoff and sediment yield [6–10]. The model uses terrain, soil,
land use, and climate data as input for simulation. The most important input to the model
is the precipitation due to its temporal and spatial variability. Obtaining precipitation
information presents a serious challenge for data-scarce catchments. Because there is
no best-performing global precipitation product, the relative performance of products is
instead specific to the study area [11,12].

Previously, studies have successfully identified suitable gridded datasets for different
climatic regions in various countries. For example, Asian Precipitation–High-Resolved Ob-
servational Data Integration Towards Evaluation (APHRODITE) was found to be the most
suitable gridded dataset at daily and annual time scales for the different climatic regions in
China [13]. Similarly, for the climatic regions in Pakistan, the GPCC dataset on monthly
basis was found to be more suitable [14]. Similarly, several studies have successfully used
the gridded datasets for runoff assessment at the basin and the sub-basin scale [15–17].
For example, [18] corrected the APHRODITE gridded precipitation datasets using the
observed precipitation data for the Upper Indus Basin (UIB) and obtained satisfactory
hydrological model simulations for the sub-basins of the River Indus. Ref. [19] successfully
simulated the runoff from the Mangla Dam sub-basins by including the precipitation data
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of six CFSR stations in the existing precipitation stations network. However, contrasting
behavior of different gridded precipitation products can be found in studies on data-scarce
regions. For example, [20] reported the poor abilities of CFSR and APHRODITE data in
simulating hydrologic processes due to the significant topographic influence. Similarly,
TRMM data lead to unsatisfactory results when used as input for the SWAT model. How-
ever, [15] reported that the performance of GPCC was suitable for simulating extreme
hydrological events in the Mekong River. Ref. [21] found that the gridded precipitation
dataset underestimated the runoff at the catchment scale. Therefore, the performance of a
product over a particular area should be assessed before any application [22–24]. Moreover,
gridded precipitation products result in lower performance for arid regions because their
performance is influenced by climate and intense rainfall events [25–27]. However, the
successes of these datasets for the assessment of runoff and sediment yield in data-scarce
regions is very limited at the catchment scale [28], because the uncertainties in the runoff
estimations using different precipitation products are basin specific [29]. Moreover, the
selection of gridded precipitation dataset is challenging in the data-scarce regions. Grid-
ded precipitation datasets usually underestimate the catchment precipitation compared
with the station’s data at lower elevations, while causing more runoff from the catchment.
However, by using reservoir water balance analysis and gridded precipitation datasets,
uncertainties associated with inputs can be improved for hydrological predictions in data-
scarce regions [21]. The literature claims that for a data-scarce catchment that has not been
investigated previously, it could be challenging to use the data of a few precipitation gauges
and the gridded precipitation dataset to simulate the runoff and sediment yield accurately.

Therefore, this study investigates gridded data products like those from the Global
Precipitation Climatology Centre (GPCC), Tropical Rainfall Measuring Mission (TRMM),
and Climate Forecast System Reanalysis (CFSR) for simulation of runoff and consequent
sediment yield from the Gomal River catchment using the SWAT model. These investi-
gations have significant importance, because the sediment concentration of the flushing
flows is not monitored. Moreover, the relative contribution from the dam and the sub-basin
between GZ Dam and the barrage is unclear. Therefore, this study aims to compute the
runoff and sediment load for the arid and semi-arid regions with a scarce dataset having
reasonable accuracy and provides the basis for sediment management at the sub-basin
scale. The specific objectives of the study are: (1) the assessment of the runoff and sediment
yield using observed and gridded precipitation datasets for the data-scarce region (i.e., the
Gomal River catchment); (2) the assessment of sediment yield contribution from different
sub-basins of the Gomal River; and (3) the identification of the relationship among the
simulated sediment yields at the sub-basin level using both datasets. This paper imparts
knowledge related to runoff and sediment load and its spatial variation in a highly erodible
catchment in an arid region by utilizing gridded precipitation datasets. These assessments
are important for water resources management at the catchment scale. This paper first
identifies the variation in gridded precipitation datasets with the precipitation gauge data
and their impact on runoff and sediment yield. The use of different precipitation datasets
leads to some useful inferences, one of the most important of which is the appropriate
gridded precipitation dataset for runoff and sediment yield estimations for data-scarce
regions. Moreover, estimations of sediment yield using the modeling approach provide the
actual share received at the diversion Barrage near Kot Murtaza from the sub-basin and the
sediment flushing operation of the GZ Dam.

2. Materials and Methods
2.1. Study Area

Gomal River catchment was selected for the study to simulate the runoff and sediment
yield (Figure 1). Gomal River is among the three transboundary rivers shared by Pakistan
and Afghanistan that receive heavy sediment load during rainfall events due to the high
soil erosion rates in the catchment. The Gomal River is the smallest among these three in
terms of average annual inflow, but it is an essential source of water supply and irrigation
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for the downstream users in the Khyber Pakhtunkhwa (KP) province of Pakistan. The dam
has a storage capacity of 1.41 BCM and started its operation in 2013.
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Figure 1. Map of Gomal Zam River catchment at Kot Murtaza Barrage: (a) Gomal River catchment
sharing Pakistan and Afghanistan, (b) Gomal River catchment, GZD site, stream and precipitation
gauging sites.

The Gomal River originates from the mountains of Paktika province of Afghanistan
and is about four hundred kilometers in length. The Gomal River catchment area at Kot
Murtaza Barrage is about 36,000 km2; about 70% of the area lies within Pakistan, and 30%
in Afghanistan. The elevation for the catchment ranges from 375–3320 m above the mean
sea level. The average flow of Gomal River is about 0.974 Gm3 year–1 (4.1%). According to
Tank weather station data for the period 2003 to 2009, the catchment area of Gomal River
receives an annual rainfall of 301 mm and minimum-maximum temperature ranges from
−6 ◦C to 49.4 ◦C, respectively. The physical infrastructures in the Gomal River catchment
on the Pakistan side are: (1) a storage dam with two powerhouses having a total power
generation of about 91 GWh, (2) a diversion barrage, and (3) a canal irrigation system
to irrigate more than 77 thousand ha of agricultural land to irrigate D.I Khan and Tank
districts. A multipurpose Gomal Zam Dam was constructed on Gomal River in South
Waziristan, KPK and a barrage at a 40 km downstream dam site near Kot Murtaza village.

2.2. Hydro-Meteorological Data

In this study, meteorological data of both observed and gridded precipitation products
were obtained from WAPDA and online resources, respectively. Observed daily rainfall
and maximum and minimum temperature data from 2003 to 2009 at the weather station
in the Tank district, Pakistan, having latitude 35.183 and longitude 70.383, were obtained
from the surface water hydrology project WAPDA. Daily gridded precipitation data from
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Global Precipitation Climatology Center (GPCC), Tropical Rainfall Measuring Mission
(TRMM–3B42RT-V7), and National Centers for Environmental Prediction’s Climate Forecast
System Reanalysis (NCEP-CFSR) were downloaded from the relevant websites for the
period from 2002 to 2009 (http://gpcc.dwd.de/, https://globalweather.tamu.edu/, and
https://giovanni.gsfc.nasa.gov/giovanni/) (Table 1).

Table 1. Description of gridded precipitation datasets.

Sr. No
Gridded

Precipitation
Product

Spatial Resolution
(Degree) Source

1 NCEP-CFSR 0.31 (https://globalweather.tamu.edu/,
accessed on 7 December 2020)

2 GPCC 1.00 (http://gpcc.dwd.de/, accessed on
12 November 2020)

3 TRMM 0.25 (https://giovanni.gsfc.nasa.gov,
accessed on 1–4 December 2020)

The validation of gridded precipitation products requires comparison with the ob-
served rain gauge data or use of a hydrological model and assessment of the product’s
ability to predict stream flows. Both methods were used to validate the gridded datasets;
however, the latter is presented in detail due to the scope of this study.

Generally, observed hydrological and sediment data are required for the calibration
and validation of simulated results. Therefore, monthly observed flows and annual sed-
iment data of the gauging station at Kot Murtaza (2004–2009) were collected from the
surface water hydrology project WAPDA.

For the assessment of sediment load from the catchment and the sub-basins level,
a physical-based Soil and Water Assessment Tool (SWAT) was used. The SWAT model
requires Digital Elevation Model (DEM), soil type, land use, and climate datasets as inputs.
The 30 m SRTM (Shuttle Radar Topography Mission) DEM was downloaded from the
United States Geological Survey (USGS) (https://earthexplorer.usgs.gov, accessed on 7
April 2020). Figure 2a shows the DEM of the Gomal River catchment. The catchment bound-
ary, stream network, and drainage pattern of the Gomal River catchment were delineated at
Kot Murtaza Barrage (latitude 32.15◦ and longitude 70.40◦). Flow direction, flow accumula-
tion, and slope classes were obtained using the DEM (Table 2). Moreover, other spatial data
such as land use land cover (LULC) of the 300 m resolution were obtained from the ESA
Centre for Earth Observation Rome Italy (http://due.esrin.esa.int/page_globcover.php,
15 June 2020), which distinguishes ten land use land cover classes (Figure 2b). Soil data
were downloaded from the soil database of the Food and Agriculture Organization (FAO)
(https://www.fao.org, accessed on 23 May 2019). According to FAO, five major soil types
were identified for the study area (Figure 2c, Table 3).

Table 2. Slope distribution in the Gomal River catchment.

No. Slope% Area (ha) % Area Coverage

1 0–20 2,252,565 65.67
2 21–40 738,221 21.52
3 41–60 303,365 8.84
4 61–80 98,472 2.87
5 >80 37,290 1.09
Total 100

http://gpcc.dwd.de/
https://globalweather.tamu.edu/
https://giovanni.gsfc.nasa.gov/giovanni/
https://globalweather.tamu.edu/
http://gpcc.dwd.de/
https://giovanni.gsfc.nasa.gov
https://earthexplorer.usgs.gov
http://due.esrin.esa.int/page_globcover.php
https://www.fao.org
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Table 3. Land use and soil type of study area.

Land Use Type LU/LC (%) Soil Texture (%
Sand, Silt, Clay)

Area for Each Soil
Type (%)

Agricultural land 2.08 Loam (40, 30, 26) 1.46
Barren 88.61 Loam (35, 39, 26) 88.83

Loam (45, 33, 22) 1.70
Clay-Loam (35,35,30) 8.00
Loam (44, 30, 26) 0.01

Mosaic Vegetation 1.74
Mosaic grassland 0.97
Herbaceous
vegetation 6.38

Sparce vegetation 0.21
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2.3. Methods
2.3.1. Precipitation Analysis

For the validation of gridded precipitation at the gauging location, the daily data
were used to compute the monthly and annual precipitation. The variation of the gridded
precipitation from the gauge’s precipitation data was then analyzed. Different indices were
used to compare the observed and gridded precipitation datasets, including Mean Bias
Error (MBE), Mean Absolute Error (MAE) and Index of Agreement (IA). The proposed
indices help in assessing the accuracy of the precipitation data at a point scale. The
proposed analysis was an integral part of the study; therefore, limited details are provided
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in this paper. However, details of the different statistical indices can be found in previous
literature [14,30,31].

2.3.2. SWAT Model Setup

The first step in the model setup is the delineation of the basin area, which requires
DEM as an input. The delineation process generates drainage network, flow accumula-
tion and flow direction files. Hydrologic response units (HRUs) were delineated in the
following steps.

• Reclassification of land use and soil type maps was carried out by importing these
datasets into Arc SWAT.

• Five slope classes were selected, and land use and soil maps were overlaid with these
slopes to finalize HRUs.

• A total of 220 HRUs and 32 sub-basins were defined for the selected catchment.

The SWAT model simulates the hydrological cycle by employing the water balance
equation (Equation (1)).

SWt = SWo +
t

∑
i=1

(
Rday −Qsurf − Ea −Wseep −Qgw

)
i (1)

where SWt depicts the final soil water content (mm); SWo is the initial soil water content
(mm); t denotes time (days); Rday is the amount of precipitation on day i (mm); Qsurf is the
amount of surface runoff on day i (mm); Ea is the amount of evapotranspiration on day i
(mm); Wseep is the amount of water entering the vadose level zone from the soil profile on
day i (mm); and Qgw shows the amount of return flow on day i (mm).

The estimation of surface runoff and peak runoff rates in SWAT was simulated using
daily rainfall data in all HRUs. The SWAT model uses the SCS curve number method
and the Green & Ampt infiltration method to estimate and simulate surface runoff. The
precision of the Green & Ampt method is better than the other option due to its accuracy.
However, it requires more detailed rainfall data (i.e., subset (sub-daily time step data), thus
making its application complicated. Since the study area is data scarce, we employed the
SCS curve number (CN) method to overcome this issue and to provide reliable results in
the data-scarce watershed.

The peak discharge or the peak surface runoff rate (Qpeak) was calculated with a
modified rational method. The sediment loss can be predicted on the basis of the peak
runoff rate, because the greater the runoff rate, the greater the erosive power of the flow.

The potential evaporation was calculated using the Hargreaves method due to its
simple input parameters, i.e., daily minimum and maximum air temperature.

The sediment yield in the SWAT model was estimated using the Modified Universal
Soil Loss Equation (MUSLE) (Equation (2)).

Sed = 11.8
(

Qsurf∗Qpeak∗Areahru

)
0.56 Kusle Cusle Pusle LSusle CFRG (2)

where Sed is the sediment yield in metric tons/ha, Qsurf is the surface runoff volume in
millimeters, Qpeak is the peak runoff rate in cubic meters per second, Areahru is the area of
HRU in hectares, K is the soil erodibility factor, LS is the slope factor, C is the Crop cover
factor, P is the erosion control practice factor, and CFRG is the coarse fragment factor.

SWAT requires climate data as primary input data for the simulation of hydrological
processes. These available climate data were prepared in text (.txt) format and imported
into the SWAT model, and the SWAT input tables were populated using the model window.
The model was run for seven years from 2003 to 2009 using the precipitation gauge data,
including one year for warmup, and for gridded precipitation datasets (i.e., GPCC, NCEP-
CFSR, and TRMM), the model was run from 2002 to 2009, with two years of warmup
period/equilibrium period, as suggested by [32].
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The SWAT model performance was assessed by selecting the indicators as suggested
by [30,31,33,34]. For flows, three approaches or statistical indices were selected and used
to determine the performance of the model, i.e., coefficient of determination (R2), Nash–
Sutcliffe efficiency (NSE) and percentage bias (PBIAS). Meanwhile, the model performance
for the sediment yield estimations was assessed using R2 and NSE. The criteria proposed
by [35] were used to judge the model simulations that indicates the satisfactory performance
if NSE > 0.5 and PBIAS = ±25% for flow and NSE > 0.5 and PBIAS = ±55% for sediment.
The same criteria were used for this study; details of the performance indicators can be
found in [36].

2.3.3. Model Calibration

The automatic model calibration was performed on a monthly basis for three (3) years
from 2004 to 2006 based on the selected parameters with their initial values, as mentioned
in Table 4. The SUFI-2 algorithm of SWAT-CUP was used for this purpose. The value of
NSE > 0.5 was selected as an objective function to model the results. Similarly, validation
was carried out from 2007 to 2009, which involved the use of the calibrated model without
making any further adjustments in the values of parameters that were fitted during the
calibration process, as suggested by [37].

Table 4. List of selected parameters for runoff and sediment yield.

Variable Parameters Name Description

Flow CN2 Curve number
SOL_AWC Available water capacity of the soil layer

SOL_K Saturated hydraulic conductivity of soil
RCHRG_DP Deep aquifer percolation fraction
ALPHA_BF Base flow alpha-factor (days)

ESCO Soil evaporation compensation factor
SURLAG Surface runoff lag time
CH_N2 Manning’s “n” value for the main channel

SLSUBBSN Average slope length

Sediment SPEXP Exponent parameter for calculating sediment
re-entrained in channel sediment routing

SPCON
Linear parameter for calculating the maximum

amount of sediment that can be re-entrained during
channel sediment routing

USLE_K Universal soil loss equation soil erodibility factor
USLE_C Universal soil loss equation land cover factor,
USLE_P Universal soil loss equation practice factor

CH_COV1 Channel erodibility factor
CH_COV2 Channel cover factor

CN2 Curve number

Firstly, the simulations were performed to calibrate the runoff based on the selected
parameters as shown in Table 4. For the study area, parameters were selected based on
the previous literature and the physical features of the study area, such as steep slope and
barren land [1,31,38–43].

3. Results and Discussion
3.1. Precipitation Analysis

A graph of the differences between the selected precipitation datasets (i.e., TRMM,
GPCC and CFSR) and the gauge data is shown in Figure 3. The TRMM data show the
best agreement among all the gridded precipitation datasets used for the study on a
monthly basis, and the values of MBE, MAE, and IA were calculated as 0.35, 18.36 and
0.80, respectively. On an annual basis, TRMM and CFSR underestimated the precipitation
throughout the study period. However, estimates of TRMM precipitation improved after
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2006. Overall, TRMM precipitation was overestimated by about 1%, whereas the GPCC and
CFSR presented 13 and 15% underestimations of precipitation, respectively, when compared
with the observed data of the precipitation gauge for the study period. These results
corroborate the previous findings for catchments in other regions of the world [44,45].

Figure 3. Difference between gridded precipitation and gauge data: (a) on a monthly basis, (b) on an
annual basis.

3.2. Runoff Simulations

Firstly, the runoff calibration was performed based on the selected parameters as
discussed in the Methods section. The final selected parameters for runoff and sediment
calibration with their initial absolute ranges and fitted values are listed in Table 5. The
fitted parameter values for the observed and GPCC datasets showed the closest agreement.
However, the model-fitted parameter values (e.g., CN2, SOL_AWC, and SOL_K) for the
GPCC precipitation dataset were slightly greater than those in the observed precipitation
dataset, indicating a greater runoff contribution from the surface and sub-surface as com-
pared with the observed precipitation. Similarly, for the sediment estimations, the GPCC
precipitation dataset presented higher fitted values of soil erodibility (USLE_K), practice
management factor (USLE-P), and the cover management factor (USLE_C) compared to the
observed precipitation dataset, which corroborates the previous findings [5]. A single value
of USLE_C was assumed, because the study area is the source area for generating runoff
and sediment load, and no significant seasonal variation occurs in vegetation due to the
unavailability of irrigation facilities. Similarly, the value of USLE_K factor was bounded
between 0.25 and 0.40, because a very limited range of soil classes prevails in the study area.
Moreover, the CFRG factor was assumed to be 1 on the basis of observations during the
visit to the study area, as the course fragment in the catchment was found at very limited
locations. The parameter ranges selected for the flow and sediment simulations using the
observed and GPCC precipitation datasets are given in Table 5. Moreover, the ranges of
fitted parameters for flow simulations using TRMM and CFSR are also mentioned.
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Table 5. List of the selected parameters and their ranges.

Parameter
Name Variable

Parameter Initial Range Fitted Values with
Observed

Precipitation

Fitted Values
with GPCC

Fitted Values
with TRMM

Fitted Values
with CFSRMin Max

CN2

Flow

35 98 58.8 67.5 46 87
SOL_AWC 0 1 1.38 0.85 1.04 0.85

SOL_K 0 2000 167.1 262.7 194.8 190.0
RCHRG_DP 0 1 0.13 0.00 0.07 0.21
ALPHA_BF 0 1 0.24 0.33 0.29 0.25

ESCO 0 1 0.86 0.65 0.66 1.01
SURLAG 0.05 24 19.2 20.7 18.4 22.7
CH_N2 −0.01 0.3 0.13 0.29 0.18 0.22

SLSUBBSN 10 150 94.7 90.7 60.3 24.1

SPEXP
Sediment

1 1.5 1.3 1.5
SPCON 0.0001 0.01 0.01 0.01
USLE_K 0.25 0.40 0.32 0.38
USLE_C 0.40 1.0 0.72 0.95
USLE_P 0 1 0.96 0.97

CH_COV1 −0.05 0.6 0.22 0.03
CH_COV2 −0.001 1 0.50 0.64

CN2 35 98 58.3 97.4

The fitted parameters for simulated flows using the gauge and GPCC precipitation
datasets have slightly different values, which supports the findings of [29], who reported
that the SWAT model calibrated individually with different precipitation datasets presented
the lowest uncertainty in the simulated flows.

3.2.1. Runoff Estimations Using Observed Precipitation Dataset

The runoff estimations were calibrated against the monthly flows from 2004 to 2006
and validated from 2007 to 2009 at Kot Murtaza Bridge (Figure 4). The runoff computations
were based on a single rain gauge site, i.e., at Tank, near the catchment outlet, due to the
unavailability of precipitation data within the catchment. Despite the data limitations, the
model simulated the runoff satisfactorily during most months. The differences between the
simulated and observed flow can be attributed to the spatial distribution of precipitation in
the catchment. Overall, the observed flows were greater than the simulated ones. For the
calibration period, the observed flows were lower for several months, i.e., during August
2004 and February 2007. During Summer (June 2004 to September 2004), the simulated
flows were higher than the observed ones, and rainfall during these months varied from
35 mm to 120 mm. Similarly, from January 2005 to August 2005, the simulated runoff
was lower than the observed one; however, the rainfall during this period varied from
0 to 70 mm. Overall, the results indicate that the model responds to rainfall events fairly,
but did not show good agreement with observed flows. The higher runoff estimation
during the low flow months (November to April) could be attributed to the contribution
from the base flow, i.e., snowmelt in the upper catchment areas. However, the actual
snow-fed area and its contribution in Gomal River is unknown.

The value of coefficient of determination (R2) for monthly stream flow at Kot Murtaza
was 0.31. Similarly, the Nash–Sutcliffe efficiency (NSE) and percentage bias (PBIAS) were
found to be 0.24 and 28.9%, respectively. The values of R2, NSE, and PBIAS showed the
average performance of SWAT model. During the validation period, the model performance
was not good enough based on the value of coefficient of determination (R2), which was
calculated as 0.16, while Nash–Sutcliffe efficiency (NSE) and percentage bias (PBIAS) were
−0.22 and 20.7%, respectively. Similarly, the negative value of NSE shows that the mean
observed flows were more reliable than the simulated flows [35]. While the positive PBIAS
indicates the underestimation of the simulated stream flows as compared to the observed
one, it was nevertheless closer to the upper limit of the satisfactory criteria (i.e., ± 15%)
during the validation period. Moreover, during the validation period, the simulated peak
flow was much higher in February 2007 and April 2008 compared to the observed one,
but when considering the rainfall during that particular month, the model shows a good
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response. The other reason for the low performance of the model could be the errors in
the flow measurement because of the unrest conditions and the remoteness of the area
during the selected study period. Moreover, the very steep river slope and the boulders in
the river bed may have caused errors in stream cross-section calculation, and velocity and
depth of flow measurements. Most probably, the number of precipitation stations has a
significant impact on the simulation of flow in the SWAT model, and its efficiency decreases
with decreasing number of precipitation stations [46]. Therefore, the use of single station
rainfall data led to inaccurate simulation of high, medium and low flows. To overcome
this limitation, we investigated the impact of gridded precipitation datasets on runoff and
sediment load predictions, as discussed in the following sections.

Figure 4. Simulated and observed hydrograph on monthly basis using precipitation gauge data for
the calibration (2004–2006) and validation (2007–2009) periods.

3.2.2. Runoff Computations Using Gridded Data Precipitation Datasets

The precipitation gauge is located in a plain several kilometers from the Gomal
catchment stream gauging site, i.e., near Kot Murtaza, as opposed to the hilly terrain of the
catchment from which the runoff originates. Therefore, runoff was not accurately estimated,
as indicated by the low values of the performance indicators (see Section 3.2.1). Moreover,
the single value for precipitation gauge data is not representative for such a large catchment
due to the spatial distribution nature of the precipitation. Therefore, considering these
limitations, three gridded precipitation datasets (i.e., GPCC, CFSR and TRMM) were used
to assess the runoff from the Gomal River catchment. As discussed in the previous section,
runoff from the catchment was simulated on a monthly basis. The simulated runoff during
the calibration and validation period using the GPCC gridded dataset is shown in Figure 5.

During the calibration period (2004–2006), the values of statistical indices, i.e., coeffi-
cient of determination (R2), Nash–Sutcliffe Efficiency (NSE), and Percentage bias (PBIAS)
were 0.56, 0.43 and 49.7%, respectively. The values of statistical indices showed that model
runoff simulations were not in good agreement with the observed flow. The high PBIAS
value indicated that the model-simulated runoff values were greatly underestimated during
the calibration period. Moreover, during January 2005 to March 2005, the simulated and
observed flows were very close, while simulated runoff was much lower during April to
October in 2004 and 2005, and higher in December 2006 compared to the observed one
(Figure 5).
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Figure 5. Simulated and observed hydrograph on monthly basis using GPCC dataset.

During the validation period (2007–2009), the values of R2, NSE and PBIAS were 0.08,
−0.25 and 42.4, respectively, which indicated the poor performance of the model during the
validation period. Moreover, the negative value of NSE indicates that the mean observed
flows are more efficient than the simulated flows. Figure 5 shows that the model responds
to individual rainfall events reasonably, but in July 2008 and 2009, the simulated flow was
much lower than the observed one; however, rainfall during that particular month was 93
and 58 mm, respectively.

Similarly, the runoff simulations were carried out using the CFSR and TRMM precipi-
tation gridded datasets (Figures 6 and 7). However, the results were not encouraging. The
CFSR dataset presented values of R2, NSE and PBIAS of 0.17, 0.09 and 70.1%, respectively,
which shows very poor prediction ability for runoff and indicates that the CFSR dataset is
inefficient for simulating the stream flows in the Gomal River catchment. Moreover, the
greater value of PBIAS indicates a significant underestimation of simulated runoff during
the calibration period. Similarly, for the TRMM dataset, the values of R2, NSE and PBIAS
were calculated as 0, −0.32 and 69.9, respectively, during calibration (Figure 7). The cali-
bration results showed that TRMM and CFSR precipitation datasets were not efficient for
simulating the runoff in the Gomal River catchment; therefore, further validation processes
were not carried out.

The value of the coefficient of determination (R2) is over-sensitive to extreme flows [47].
Similarly, the low R2 or zero values indicate that the model was not able to successfully
compute the extreme or peak flows. Furthermore, negative NSE indicates the goodness
of the mean observed flows as compared to the simulated flows. Similarly, the greater
value of PBIAS indicates the underestimation of simulated runoff during the calibration
period. However, GPCC precipitation dataset performed well among the selected gridded
products. The underestimation of runoff during the warmer months should be further
investigated, and a suitable evapotranspiration method should be proposed for the arid
and barren catchment areas. Studies on the Upper Indus Basin (UIB) have revealed that the
use of observed precipitation records also presented low values of NSE (−0.43) and PBIAS
(72.87%) for the sub-basins of River Indus [18]. Similarly, using the CFSR precipitation
datasets with the 18 existing stations demonstrated improved performance in hydrological
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models [19]. However, both catchments are either snow-fed or in combination with glacier-
fed river flows.

Figure 6. Runoff simulations using CFSR dataset.

Figure 7. Runoff simulation using TRMM dataset.

The results of the study support the findings of [21], where greater runoff generation
was reported using station data at lower elevations than when using gridded precipitation
datasets, because gridded precipitation estimates were on the higher side compared to
the station data. However, this statement was true only for the TRMM data in our case,
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which predicted more precipitation during most of this time. Meanwhile, the other two
precipitation datasets (CFSR and GPCC) showed less precipitation compared to the station
at low elevation. This inconsistency can be attributed to the precipitation system (i.e., mon-
soon), which nourishes the area at which the low-elevation station is installed. Moreover,
despite there being more precipitation at low elevations, runoff generation was lower than
the observed value, which could be attributed to spatial variation in precipitation due to
different precipitation systems, which nourish the area and cause climatic variations in
such large catchments.

3.3. Sediment Yield Estimations

The precipitation gauge data at the Tank station and the GPCC gridded datasets
provided comparatively better runoff estimations. Therefore, the same datasets were
used for the calibration and validation of the SWAT model for sediment yield estimations.
Sediment yield was estimated on an annual basis at the Kot Murtaza barrage site. The
model was calibrated and validated for sediment yield for the periods 2004–2006 and
2007–2009, respectively (Figure 8).

Water 2022, 14, x FOR PEER REVIEW 14 of 21 
 

 

tation datasets with the 18 existing stations demonstrated improved performance in hy-
drological models [19]. However, both catchments are either snow-fed or in combination 
with glacier-fed river flows. 

The results of the study support the findings of [21], where greater runoff generation 
was reported using station data at lower elevations than when using gridded precipitation 
datasets, because gridded precipitation estimates were on the higher side compared to the 
station data. However, this statement was true only for the TRMM data in our case, which 
predicted more precipitation during most of this time. Meanwhile, the other two precipi-
tation datasets (CFSR and GPCC) showed less precipitation compared to the station at 
low elevation. This inconsistency can be attributed to the precipitation system (i.e., mon-
soon), which nourishes the area at which the low-elevation station is installed. Moreover, 
despite there being more precipitation at low elevations, runoff generation was lower than 
the observed value, which could be attributed to spatial variation in precipitation due to 
different precipitation systems, which nourish the area and cause climatic variations in 
such large catchments. 

3.3. Sediment Yield Estimations 
The precipitation gauge data at the Tank station and the GPCC gridded datasets pro-

vided comparatively better runoff estimations. Therefore, the same datasets were used for 
the calibration and validation of the SWAT model for sediment yield estimations. Sedi-
ment yield was estimated on an annual basis at the Kot Murtaza barrage site. The model 
was calibrated and validated for sediment yield for the periods 2004–2006 and 2007–2009, 
respectively (Figure 8). 

 
Figure 8. Simulated and observed sediment on an annual basis using the Tank and GPCC datasets. 

The simulated sediment yield using the precipitation gauge data was close to the 
computed one for the years 2006, 2007 and 2009. For the observed precipitation, the coef-
ficient of determination (R2) and Nash–Sutcliffe efficiency (NSE) were calculated as 0.89 
and −0.97, respectively, during the calibration period. The higher value of R2 (i.e., 0.89) 
indicated the better performance of the SWAT model for sediment yield estimation. The 
negative value of NSE was due to over and underestimations of the annual sediment load 
during 2004 and 2005, respectively. This indicates that the observed sediment loads for 
2004 and 2005 are more efficient than the simulated ones. However, the computed sedi-
ment yield in 2006 was in very close agreement with the observed sediments, i.e., −6.7%. 
The computed sediment yield for the validation period (2007–2009) possessed a better 
value of NSE, i.e., 0.28. The differences between observed and simulated sediment loads 
for the years 2007, 2008 and 2009 were 11.83, −35.6 and 0.1%, respectively. 

0

10

20

30

40

50

60

2004 2005 2006 2007 2008 2009

Se
di

m
en

t l
oa

d 
(M

.T
)

Year

Observed Sim_Tank Sim_GPCC

calibration period
validation period

Figure 8. Simulated and observed sediment on an annual basis using the Tank and GPCC datasets.

The simulated sediment yield using the precipitation gauge data was close to the
computed one for the years 2006, 2007 and 2009. For the observed precipitation, the
coefficient of determination (R2) and Nash–Sutcliffe efficiency (NSE) were calculated as
0.89 and−0.97, respectively, during the calibration period. The higher value of R2 (i.e., 0.89)
indicated the better performance of the SWAT model for sediment yield estimation. The
negative value of NSE was due to over and underestimations of the annual sediment load
during 2004 and 2005, respectively. This indicates that the observed sediment loads for 2004
and 2005 are more efficient than the simulated ones. However, the computed sediment
yield in 2006 was in very close agreement with the observed sediments, i.e., −6.7%. The
computed sediment yield for the validation period (2007–2009) possessed a better value
of NSE, i.e., 0.28. The differences between observed and simulated sediment loads for the
years 2007, 2008 and 2009 were 11.83, −35.6 and 0.1%, respectively.

The values of R2 (0.77) and NSE (0.77) for the GPCC precipitation dataset also indicate
the good performance of the model for determining the annual sediment load during
the calibration period. The differences between the observed and simulated sediment
during the calibration period were −39.3, −19.9 and 40.3%, respectively. In 2005, the
computed sediment load was in close agreement with the observed sediment load, having
the minimum variation (i.e., ≈19%). The model results for the sediment load were not
satisfactory during the validation period. The percentage variations between the observed
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and simulated sediment load for the years 2007, 2008 and 2009 were 11.3, −40.1 and 88.2%,
respectively. However, GPCC provided a better estimation of sediment yield during the
study period, i.e., an overestimation of only 3%.

The sediment simulation with the precipitation gauge data revealed that the SWAT
model could be used for the accurate estimation of sediment load if the flows are predicted
to be close to the observed values. Ref. [14] reported that GPCC could be used as an alternate
climate data source in data-scare regions such as the arid and semi-arid regions of Pakistan.
Similarly, in the current study, the GPCC dataset performed better than TRMM and CFSR
for simulating the runoff and sediment load for the Gomal River catchment, where the
climate is arid to semi-arid. However, the GPCC dataset overestimated the sediment load
in some years, which supports the findings of [48], who reported the overestimation of
sediment load even following the calibration of model parameters for sediment load using
SWAT-CUP. Moreover, the percentage variation between observed and simulated annual
sediment load was from 258 to 76% and 88 to −40% when using the gauge and GPCC
precipitation datasets, respectively.

3.4. Spatial Distribution of Sediment

The spatial variability in annual sediment yield was identified for each sub-basin in
the catchment based on both the observed and GPCC precipitation datasets. Identification
of erosion-prone areas (sub-basins) in the catchment enables the modeler to identify the
critical areas for sediment yield. Therefore, for catchment management and planning,
the estimation of the spatial variations in soil erosion is beneficial. The SWAT model is
the most appropriate tool for identifying sediment-prone areas at the level of HRU and
subbasin in order to see which area produces the maximum and which area produces the
minimum sediment.

The spatial variation in annual sediment yields in the Gomal River catchment with
both precipitation inputs is shown in Figure 8. The sediment yields of different sub-basins
of the Gomal River range from 40 to 607 tons ha–1year–1. The high sediment yield could be
attributed to the prevailing catchment characteristics such as steep slope, i.e., ranges from
375 m to 3320 m with 88% barren land of the catchment, as suggested by [5,49].

The sub-basins in the northern (7, 8) and south-eastern regions (22, 25, and 26)
are most susceptible to soil erosion, having an annual sediment yield of more than
300 tons ha–1 year–1. Moreover, the sub-basins in the south-western regions (i.e., 12, 14, 18,
21, 23, and 31) experience less erosion, having an annual sediment generation of less than
100 tons ha–1 year–1. Figure 9a shows that sub-basin 8 is the most vulnerable to erosion and
produces maximum annual sediment yield (607 tons ha–1 year–1). The minimum sediment
yield (40 tons ha–1 year–1) is generated in sub-basin 14.

Figure 9b shows the spatial distribution of sediment using the GPCC dataset and
indicates that the most sensitive sub-basins possessing the maximum annual sediment
generation are sub-basins 1, 8, 13, and 16. All of these sub-basins contribute annual
sediment yields of more than 331 tons ha–1. Moreover, sub-basins 12, 14, 18, 21, 22, 23, 25,
and 31 contribute sediment yield of less than 100 tons ha–1 year–1. Sub-basin 13 is the most
vulnerable, possessing an annual sediment yield of 446 tons ha–1 year–1, while the lowest
amount of sediment is produced in sub-basin 25, which has an annual sediment yield of
54 tons ha–1 year–1. Overall, the GPCC precipitation dataset generated a higher sediment
load for the sub-basins in the central and the southern regions of the catchment, whereas a
lower sediment load was produced in the north-eastern regions.



Water 2022, 14, 1480 16 of 21
Water 2022, 14, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 9. Spatial distribution of sediment yield in the Gomal River catchment: (a) tank rainfall 
station dataset; (b) GPCC gridded dataset. 

In a recent study by [5], the soil erosion rates from the sub-basin between GZD and 
the barrage, i.e., sub-basin 3, were estimated, and it was reported that 15% of the sediment 
load still reaches the Kot Murtaza Barrage after the Gomal Zam Dam construction. Mean-
while, the contribution of sediment load from sub-basin 3 is unknown. The results of this 
study reveal that a significant sediment contribution (≈11%) originates from the flushing 
operation of the dam, because sub-basin 3 contributes only 3.8–4.5% (Figure 10). However, 
this small proportion of total sediment yield (≈260 t ha−1 y−1) contributes significantly to 
the total sediment yield, and is about 3 times greater than its corresponding area. 

 
Figure 10. Sediment yield (as percentage of total) from each sub-basin using observed precipitation 
and the GPCC dataset. 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Se
di

m
en

t Y
ie

ld
 (%

)

Sub-basin Number

Precipitation gauge

GPCC

Figure 9. Spatial distribution of sediment yield in the Gomal River catchment: (a) tank rainfall station
dataset; (b) GPCC gridded dataset.

In a recent study by [5], the soil erosion rates from the sub-basin between GZD and
the barrage, i.e., sub-basin 3, were estimated, and it was reported that 15% of the sediment
load still reaches the Kot Murtaza Barrage after the Gomal Zam Dam construction. Mean-
while, the contribution of sediment load from sub-basin 3 is unknown. The results of this
study reveal that a significant sediment contribution (≈11%) originates from the flushing
operation of the dam, because sub-basin 3 contributes only 3.8–4.5% (Figure 10). However,
this small proportion of total sediment yield (≈260 t ha−1 y−1) contributes significantly to
the total sediment yield, and is about 3 times greater than its corresponding area.

The sub-basins contributing significant sediment load can be controlled using check
dams, which could be an effective control measure [10,50], because establishing vegetation
is not an effective measure for these types of catchments [5]. Moreover, check dams in the
sediment-producing area could reduce sediment load from 64 to 78 percent [51,52]. As the
study area is characterized as barren, having steep slopes where vegetation establishment is
almost impossible, check dams could be an effective solution for sediment management and
should be constructed in the sub-basins vulnerable to erosion in the Gomal River catchment.

Sediment yield simulations at the sub-basin level using the observed and GPCC
precipitation datasets show a good agreement when excluding a few sub-basins (i.e., 7, 8,
13, 22, and 25), which make up 23% of the total area (Figure 11). Therefore, there is great
potential for the use of GPCC precipitation data in ungauged or data-scarce regions.
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Figure 10. Sediment yield (as percentage of total) from each sub-basin using observed precipitation
and the GPCC dataset.
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datasets.

4. Conclusions and Recommendations

Runoff and sediment yield for the data-scarce Gomal River catchment (i.e., a trans-
boundary river) were predicted using the SWAT model. Precipitation gauge data and three
gridded precipitation products, i.e., GPCC, CFSR and TRMM-3B42RT, were used as input
for the SWAT model for runoff and sediment yield assessment at the Kot Murtaza Barrage
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on Gomal River. The spatial distribution of sediment yield was also assessed in order to
evaluate the sediment load contribution from each sub-basin. The specific conclusions of
the study are as follows:

Analysis of gridded precipitation datasets shows that the TRMM resulted in the
highest accuracy (i.e., ≈1%) compared with the total precipitation of the gauge during
the selected period. However, runoff computations by the SWAT model using the input
precipitation of the gauge and GPCC datasets were better than with TRMM and CFSR.
Moreover, the underestimation of runoff highlights the role of precipitation stations at
higher elevations in the catchment and the need for further improvements in the GPCC
dataset, respectively.

The sediment yield simulated using GPCC data was in good agreement with the
computed sediment yield at the stream gauging station. However, the GPCC precipitation
dataset overestimated sediment yield compared with the predicted one using precipitation
data of the gauge. This fact emphasizes the improvements in the method for measuring
sediment concentration data and the use of an appropriate sediment load computation
approach like a continuous record that requires data on a daily basis. The annual sediment
load predicted by the SWAT model using GPCC follows an almost similar trend to that of
the observed values. However, underestimation of the runoff during summer should be
investigated further. The relationship of the sediment yields simulated using the precipita-
tion gauge and the GPCC datasets resulted in a good correlation (R2 = 0.65) at a sub-basin
scale. However, the GPCC precipitation results showed a higher sediment yield for the
sub-basins in the central and the southern part of the catchment, while a lower sediment
yield was found in the north-eastern part compared with the gauge precipitation input.
Therefore, additional precipitation gauges on the central and northern sides are able to
enhance the accuracy of the simulated runoff and sediment yield. Moreover, the combined
use of observed and gridded data could be the focus of future studies with the aim of
improving the daily runoff and sediment load predictions using SWAT model.

The significant sediment yield (4.1% of the total) originating from the sub-basin be-
tween the GZD and the barrage (i.e., sub-basin 3) reveals that the sub-basin has an important
role in contributing sediment load at the barrage site. However, a major contribution still
derives from the flushing outlets of the Gomal Zam Dam when compared with the previous
findings by [5]. Moreover, check dams construction at the critical sub-basins producing the
highest amount of annual sediment yield could be effective control measures and help to
enhance the reservoir life.

The findings of the current study encourage the application of the GPCC precipitation
dataset for deciding the management of water resources and sediment load in arid to
semi-arid regions with scarce precipitation data. The observed flows and sediment yield
data used for this study were of a relatively shorter duration, because the measured rainfall
data were available for a limited period from a single precipitation gauge only. Therefore,
data of a relatively longer period could enhance the performance of the SWAT model
in similar climatic regions. The accuracy and resolution of land use land cover and soil
maps may influence sediment yield computations at a local scale (i.e., at the sub-basin or
HRU level).
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