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ABSTRACT 
 

In team sports, player tracking systems are used to monitor training and competition. However, 

challenges exist for practitioners, as different tracking systems can be used for competition 

compared to training. Additionally, updates/changes being made to proprietary software or 

firmware within the tracking system can impact longitudinal analysis of the activity profile. Both 

scenarios can result in different athlete outputs for the same activity. Acceleration is an important 

metric in the team sport activity profile, which can help quantify the rate of change in athlete 

speed. However, acceleration as a variable can also be impacted by changes to software/firmware 

as well as differences between tracking systems. This thesis explored how acceleration has been 

quantified in the literature, examined if a common filter to Global Navigation Satellite System 

(GNSS) data could reduce or eliminate differences due to different systems or changes within a 

system, before examining two longitudinal-type studies using this common filtering method on 

acceleration data.  

Chapter 3 identified how acceleration had previously been quantified in elite team sport research. 

The quantification of acceleration via counts was chosen in 72% of all studies, however only 

~13% of studies included how acceleration was filtered. To determine how acceleration was 

filtered by providers, Chapter 4 was designed as an anonymous survey, attempting to outline 

current filtering practices of acceleration data. Only two responses were received from 20 

invitations, indicating that system providers were unwilling to provide filtering information. 

Consequently, this thesis examined the use of a common filter to process GNSS data to improve 

the consistency in the processing of acceleration both within research and applied environments. 

The common filter was intended to improve the longitudinal and potentially, the between-system 

comparison of acceleration data. Chapter 5 examined the impact of applying a 1 Hz, fourth order 

Butterworth filter to two different GNSS devices during elite rugby league training sessions. 

Following the application of the common filter, there was no substantial difference between 

GNSS models for average acceleration (Diff; CI: −0.04; −0.04 to −0.04), whilst the root mean 

square deviation (RMSD) between devices improved (1.77 ± 0.37 to 0.27 ± 0.23 m·s−2). The 
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results from Chapter 5 indicated that if the use of a common filter could improve a greater 

similarity of results between tracking systems, then, pending validation against a criterion 

measure, this filter could be used on longitudinal datasets or where different systems have been 

used. The filter was then evaluated against three-dimensional motion capture technology 

(VICON) in Chapter 6 during a series of small-sided football (association) games and circuits. 

The RMSD for speed (0.17 ± 0.04 m·s-1) was acceptable and acceleration error increased as speed 

increased (RMSD: 0.55 ± 0.17 m·s-2). Following validation, the effects of the six-again rule 

change upon acceleration in National Rugby League (NRL) competition was examined. The 

acceleration intercepts across all positions were substantially greater following the introduction 

of the six-again rule in the 2020 (mean ± SD; 1.02 ± 0.10 m·s−2) and 2021 seasons (1.05 ± 0.08 

m·s−2) compared to the previous competition format (2019; 0.91 ± 0.07 m·s−2), indicating an 

increase in acceleration outputs. A longitudinal analysis of NRL training weeks was completed, 

where the distribution of training volume and intensity was examined using the common filter. 

Speed intensity (the magnitude of speed) was manipulated to facilitate performance when fewer 

training sessions were completed in shorter microcycles (5-6 days; effect size range = 0.34 – 

1.26), whilst the intensity of impulse (acceleration force over time) remained stable.  

This thesis identified that there’s a lack of information relating to the filtering of acceleration via 

athlete tracking systems in research. However, this thesis identified that tracking system 

manufacturers do process acceleration differently which may impact upon comparisons between 

research and between technology. A common filter reduced the difference in acceleration metrics 

between GNSS devices during rugby league training sessions before being validated against 

VICON. With use of a common filter, this research identified that the acceleration intensity in 

NRL competition had increased and that speed intensity during NRL training weeks was altered 

with shorter turnarounds between matches, whilst impulse was maintained. 
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CHAPTER 1 - INTRODUCTION 
 

Following the initial introduction of the Global Positioning System (GPS) into team sport 

research in 2003, practitioners and researchers have continued to quantify the exercise 

volume and intensity (kinematics of athlete performance) of team sport athletes via the 

use of electronic performance and tracking systems (EPTS) (Aughey, 2011a; Edgecomb 

& Norton, 2006; Linke et al., 2018). Wearable technologies such as GPS and more 

recently, the Global Navigation Satellite System (GNSS) are typically worn by team sport 

athletes during training and in competition (Delaney et al., 2019; Jackson et al., 2018; 

Malone et al., 2017; Scott et al., 2016). With the application of wearable technology, 

practitioners and researchers can identify the distances, speeds, contacts and accelerations 

of athletes. The information on metrics such as acceleration allows for the formation of 

activity profiles which detail the volume and intensity across training and/or competition 

relative to position group (Aughey, 2011a; Jennings et al., 2010a; Scott et al., 2016). At 

the applied sport science level, exercise information gleaned from activity profiles, in 

conjunction with data from athlete wearable technology, allows practitioners to prescribe 

training programs and rehabilitation practices with greater evidence to make informed 

decisions surrounding athlete performance (Aughey, 2011a; Boyd et al., 2013; Bradley et 

al., 2009; Jennings et al., 2010a; Petersen et al., 2009; Sweeting, Cormack, et al., 2017).   

Since the inception of GPS tracking in team sports, there has been continued development 

and advances in EPTS (Jackson et al., 2018; R. J. Johnston et al., 2014; Malone et al., 

2017). With governing bodies gradually allowing EPTS in competition for many 

professional team sports, the use of wearable tracking technology is common in applied 

sport science (Malone et al., 2017). With continual demand within the elite team sport 

sector for wearable technologies, there is a multitude of different providers and tracking 
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systems available to team sport practitioners. The abundance of EPTS providers has 

become problematic in terms of the consistency in the calculation of derivative metrics 

such as acceleration, as processing settings can differ between manufacturers (Thornton, 

Nelson, et al., 2019; Varley et al., 2017).  

The calculation of acceleration via satellite-based tracking systems, is problematic as 

acceleration is not directly calculated by the tracking technology. Instead, acceleration is 

calculated as a derivative measure of athlete speed (Delaney et al., 2019; Duran & 

Earleywine, 2012; Malone et al., 2017; Varley et al., 2017). Typically, satellite-based 

tracking systems will calculate acceleration from the determination of speed via Doppler 

Shift (Malone et al., 2017; Varley et al., 2017). Acceleration may then be filtered via the 

use of mathematical algorithms. The algorithms used in the calculation of acceleration 

can be implemented as a form of data filtering, where the objective is to reduce the noise 

in the signal and to smooth points to maintain data quality (Sweeting, Cormack, et al., 

2017; Winter, 2009; Winter et al., 1974). Given the many mathematical algorithms 

(filters) that are available to practitioners and researchers, as well as the many EPTS 

providers globally, there have been instances in validity and reliability research where 

variation in acceleration metrics between GNSS providers have existed (Malone et al., 

2017; Sweeting, Cormack, et al., 2017; Thornton, Nelson, et al., 2019; Varley et al., 

2017). Technology-influenced variations in acceleration within research can have the 

potential to hinder training program prescription and any comparison between applied 

sport science and research. 
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Therefore, this thesis investigated the quantification of acceleration in team sport research 

with emphasis on the filtering and processing settings in the calculation of acceleration 

via athlete wearable technology. Firstly, this thesis evaluated the current filtering 

practices for acceleration in research through a systematic review and anonymous 

questionnaire to EPTS providers. This evaluation outlined what filters and processing 

settings are used in research in the handling of athlete tracking data. Secondly, the thesis 

developed a common acceleration filtering process for GNSS data to attempt to reduce 

between-system or within-system measurement variation. This aim was envisaged to 

have wider use for researchers and practitioners where they can improve the consistency 

in reporting with the processing of acceleration data within research. The common filter 

was devised after analysis of the current filter methods identified from the systematic 

review and from those identified in the questionnaire to EPTS providers. To practically 

apply the common filter in applied, longitudinal scenarios, this thesis evaluated the 

introduction of the six-again rule upon the acceleration activity profile in National Rugby 

League (NRL) competition using the common filter upon GNSS match data. 

Additionally, this thesis quantified the weekly acceleration volume and intensity for an 

NRL team during training sessions across the season using the devised common filter 

from earlier studies within the thesis.  

Chapter 3

• Determine 
how 
acceleration 
has been 
quantified in 
team sports.

• Identify 
what filters 
are used to 
process 
acceleration.

Chapter 4

• Identify from 
tracking 
manufacturers 
what filters 
are used.

• Identify filters 
used for 
different 
tracking 
systems.

Chapter 5

• Apply a 
common filter 
to GPS/GNSS 
devices from 
different 
manufacturers 
during team 
sport training.

• Assess 
variation 
between 
devices with 
filter use.

Chapter 6

• Validate use 
of common 
filter 
against 
VICON 
during 
small-sided 
games to 
assess 
suitability.

Chapter 7

• Apply common 
filter 
longitudinally 
across multiple 
rugby league 
seasons to 
assess activity 
profile 
following a 
rule change.

Chapter 8

• Apply common 
filter 
longitudinally 
across a rugby 
league season 
assessing the 
volume and 
intensity of 
rugby league 
training relative 
to competition 
turnaround 
time.

Figure 1-1 Schematic representation of Chapters within the research underpinning the 

relationship each study has on the direction of the thesis. 
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CHAPTER 2 - REVIEW OF LITERATURE 
 

2.1 Athlete Tracking Systems 
 

To monitor the volume and intensity of athletes during training and competition, EPTS 

have been introduced and adopted by researchers and practitioners (Aughey, 2011a; 

Malone et al., 2017). Initially, the tracking of player locomotion was facilitated through 

notational and video-based analysis, where analysts individually tracked each athlete 

during each event (Knowles & Brooke, 1974). However, modern athlete tracking systems 

include the Global Navigation Satellite System (GNSS), local positioning systems (LPS) 

and various types of camera-based, optical systems. The implementation of the GNSS or 

LPS systems (with the exception of optical systems) can require athletes to wear 

positioning receivers during training and competition. The resulting information provides 

researchers and practitioners with insights into distance, speed and acceleration-based 

metrics (Aughey, 2011a; Malone et al., 2017). The collection of athlete locomotion data 

from EPTS provides an understanding of the physical outputs during training and/or 

competition of a respective sport, which in research is labelled as an activity profile 

(Aughey, 2011a). Activity profiles hold great benefit for the practitioner as the outlining 

of physical outputs within research allows for more accurate information on the 

specificity of training and rehabilitation protocols relative to competition (Aughey, 

2011a). However, the application and suitability of each type of tracking system varies 

depending on the sport being analysed and the conditions in which the sport is played. 

Additionally, the validity and reliability of each tracking system can influence the 

locomotion metrics that form the basis of activity profiles for sports. Prior to the 

introduction of EPTS systems, human-directed analysis of activity profiles with and 

without the aid of video were completed.  
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2.2 Notational Analysis 
 

Notational analysis was one of the first established methods of quantifying elite team 

sport performance, both from a tactical and external workload perspective (Knowles & 

Brooke, 1974; Pollard, 2002; Reep et al., 1971). In notational analysis, athlete or team 

locomotion was manually tracked and movement was subjectively categorised into 

various thresholds and movement descriptors (Alexander & Boreskie, 1989). Movement 

descriptors typically involved categorising locomotion into groups such as “standing”, 

“walking”, “running” or “sprinting”, with estimations of athlete distances in absolute and 

relative metrics recorded (Knowles & Brooke, 1974). To observe athlete movement, 

instruments as basic as a pen and paper or custom-made analysis sheets were used for 

analysis (Pollard, 2002). However, despite the simplicity of the technology used in 

notational analysis, there was no established research on the validity of the technique in 

elite team sports. The lack of validity research is potentially due to the subjective 

interpretation of grouping athlete movement into different locomotion thresholds. 

Additionally, a criterion measure to evaluate the validity of the interpretations may not 

have existed.  Given there is no established validity associated with notational analysis in 

team sport tracking, it should not be implemented in the development of activity profiles 

at the applied or research level. Athlete locomotion should be tracked using technology 

that has been established as valid and reliable in research. 

 

 

 

 

 

 



6 

 

2.3 Video-based Analysis  
 

The introduction of video-based analysis was an improvement upon notational analysis 

as the filming of training and/or competition allowed for footage playback and removed 

the burden of live-recall on the analyst (Barris & Button, 2008; Reilly & Thomas, 1976). 

With replay feedback available, analysts could capture the majority of the playing squad 

during training or competition, depending on the number of cameras and capture points 

around the playing surface. Introductory techniques of video-based analysis saw capture 

with several cameras on opposite sides of an association football (soccer) pitch (Reilly & 

Thomas, 1976). With the main requirement of cameras, manual video-based analysis was 

a relatively inexpensive tracking solution for team sports. Initial research utilising video-

based analysis was conducted in association football, where the distance of elite players 

were manually captured via pencil and paper during different locomotion intensities (e.g., 

walking through to sprinting) (Reilly & Thomas, 1976). Within research, the locomotion 

patterns of rugby union, Australian rules football and association football athletes have 

been published via the use of manual video analysis (Dawson et al., 2004; Duthie et al., 

2003; Mohr et al., 2003). Typically, the different analysed locomotion metrics were 

measured relative to efforts, time or distance within each threshold or metric (Duthie et 

al., 2003). However, across the team sport literature there are no consistent definitions of 

the qualifying criteria for each locomotion metric and for any speed-based efforts such as 

the differences between jogging and sprinting. Any judgements on the differences 

between locomotion categories such as jogging or sprinting may have a biomechanical 

qualifying criterion differentiating the two, but final judgement is made by a human 

observer. With the largely subjective allocation of locomotion by a human observer, there 

is a distinct lack of validity research with respect to team sport activity profiles via manual 

video-based analysis. However, there is literature within team sport activity profiles 
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presenting the intra and inter-observer reliability from human researchers. Reliability 

results from the same observer have been published when tracking elite rugby union 

athletes twice, with one month separating each analysis (Duthie et al., 2003). The 

technical error of measurement (%TEM) indicated that across the frequency of individual 

movements as well as both the mean and total durations of movement, moderate to poor 

reliability existed (4.3 – 13.6% TEM) (Duthie et al., 2003). The authors also contended, 

that despite video-based analysis being moderately reliable for experienced observers, 

jogging movements possessed greater levels of reliability than stationary and sprinting 

categories (Duthie et al., 2003). Similarly, in basketball research, high levels of observer 

error (5.6 – 11.2%) were identified during athlete striding and sprinting efforts (McInnes 

et al., 1995). The higher levels of variation were attributed to the difficulty experienced 

by the observer in timing these movements during fast, court-based sports such as 

basketball (McInnes et al., 1995).  

However, despite the moderate observer reliability found in rugby union research, video-

based analysis is still limited in the practical application to modern team sports. For 

example, given the nature of broadcast video footage, it is likely that not all athletes would 

be captured at every moment during competition given the tendency of broadcasters to 

follow the play. Athletes who may not be captured during all instances of play are still 

highly likely to be completing forms of locomotion that would need to be counted (Faude 

et al., 2012). The immediate solution to the use of broadcast footage is to supplement the 

vision with cameras placed at various locations around the playing surface. Whilst the use 

of multiple cameras may alleviate athlete occlusion concerns, this would limit practicality 

for the analyst as each camera may need to be setup, installed, and manned for the duration 

of the competition. The use of additional cameras would then also increase data collection 

and manipulation time, delaying the reporting or analysis of athlete locomotion. The use 
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of manual video-analysis for tracking athlete locomotion should be avoided. Time-

efficient and practical solutions that capture all athletes simultaneously should instead be 

preferred to examine external athlete volume and intensity during training and 

competition. However, it is important to outline that the introduction of video-based 

analysis highlighted the need for optical and eventually, wearable tracking technology. 

Whilst the use of video-analysis for athlete tracking is superseded, it would be remiss of 

this thesis to not capture the significance of the introduction of this technology. Whilst it 

is simple to critically analyse video-based analysis decades later, it is important to note 

that the advancements seen in tracking technology today could have stemmed from the 

research of manual video-based analysis.  

 

2.4 Optical Tracking Systems 
 

Optical tracking systems are comprised of a network of cameras positioned around the 

playing surface (French & Ronda, 2021). Initially introduced in association football and 

rugby union, optical tracking systems have been in operation since the latter part of the 

1990s, where semi-automated camera systems were implemented to track athletes and the 

ball during various team sport competitions (Carling et al., 2008). Optical tracking 

systems are installed so that there are at least two cameras capturing the entire playing 

environment. However, the exact layout of cameras in both number and position generally 

varies between manufacturers and the stadia in which the technology is installed. To 

determine athlete positioning and the corresponding locomotion via optical systems, the 

determination of athlete “x” and ”y” coordinates are required, which are derived from the 

calibration of the height, width and length of the playing surface/tracking environment 

(Carling et al., 2008). Once athlete position is located through the coordinates, traditional 

metrics including distance, speed and acceleration can be determined. However, unlike 
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wearable tracking technologies, including GNSS and LPS, optical tracking can only 

measure movement in two dimensions, with no information on changes in vertical 

movement of the athlete (French & Ronda, 2021).  

The introduction of semi-automated tracking systems was an improvement on manual 

video analysis as each player and the ball were simultaneously tracked over the duration 

of the game. Subsequently, analysis workflows were improved and the labour-intensive 

task of individually coding athletes throughout competition was superseded. However, 

semi-automated systems still require human analysis in terms of quality control for athlete 

identification and the verification of correct locomotion paths throughout competition (Di 

Salvo et al., 2006). For example, shade on the playing surface caused by the stadium 

infrastructure, or instances in play where athletes are tightly compacted such as a free 

kick in association football may require manual tracking (Carling et al., 2008). Initial 

validity and reliability studies on optical systems have predominately involved 

association football, given the early adoption of the technology into the sport (Carling et 

al., 2008). The validity of a ProZone ™ optical system at two outdoor stadiums was 

assessed when measuring average speed and changes of direction in recreational athletes 

(Di Salvo et al., 2006). Following the completion of various straight and curved running 

circuits (range: 15-60 m), average speed was found to have high correlation coefficients 

compared to timing gates (criterion) (r = 0.999), whilst maximal efforts over the short 

courses (15 – 20 m) showed similar levels of validity (r = 0.960) (Di Salvo et al., 2006). 

Moreover, absolute reliability across each condition saw acceptable levels of variation 

(CV: 0.2-1.3, r = 0.950 – 0.999). However, the applicability of the ProZone ™ findings 

to applied sport science is limited as the movements completed were controlled shuttles 

and did not represent the stochastic nature of invasion team sports. Moreover, the use of 

timing gates as a criterion is a limitation as timing gates provide average speeds and not 



10 

measurements of instantaneous changes in speed that hold greater application to team 

sport movement (French & Ronda, 2021; Frencken et al., 2010; van den Tillaar et al., 

2022; Waldron, Worsfold, et al., 2011). Additionally, the validity and reliability of 

VisionKit™ during association football-specific movement protocols has been assessed 

(Aughey et al., 2022; Mara et al., 2017). VisionKit™  was determined to be valid for 

measures of athlete distance, with the variation in distance approximately 0.25%  (0.79 ± 

0.56 m), but ranging as high as 4.89% during 90 degree turns (Mara et al., 2017). The 

agreement for VisionKit™ against a three-dimensional motion capture system was strong 

for position (root mean square difference: 0.18 m) and speed (0.04 m·s−1) (Aughey et al., 

2022). 

However, the practical application of optical tracking systems to outdoor team sport 

practitioners is questioned (Carling et al., 2008; Torres-Ronda, Beanland, et al., 2022; 

Torres-Ronda, Clubb, et al., 2022). Optical systems are predominantly used in 

competition as the setup of the technology requires events (e.g., halves or quarters) to 

adequately automate the capture process (French & Ronda, 2021). This may mean that 

clubs could have to swap between positioning systems and datasets for training and 

competition data (Thornton, Nelson, et al., 2019). Additionally, the installation of optical 

tracking technologies is fixed to the playing stadia and is generally expensive to 

implement (Torres-Ronda, Clubb, et al., 2022). For Australian football matches where 

ground sizes can vary, and for rugby codes, where the dimensions of the field are large, 

it may be impractical to install optical systems at suspended heights within stadia (Torres-

Ronda, Beanland, et al., 2022). Portability of optical systems is also of concern, 

particularly during away fixtures where the same optical system may not be installed. 

Moreover, if the optical system installed in the away stadia is not compatible with the 

home arena, then athlete competition data may not be directly compared (French & 
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Ronda, 2021; Torres-Ronda, Beanland, et al., 2022). Therefore, for athlete monitoring in 

team sports, optical tracking technology may be impractical for those with the alternative 

of athlete wearable technologies (i.e., GNSS/LPS). However, some team sport leagues 

have not approved the use of wearable tracking technologies within competition but have 

approved optical systems. Practitioners that face restrictions regarding the use of wearable 

tracking technology should then still utilise optical tracking systems. For team sports that 

are allowed to wear GNSS or LPS receivers in competition, this technology should be 

implemented, given their enhanced practicality (Malone et al., 2017; Scott et al., 2016).  

 

2.5 Satellite-based Tracking Technologies 
 

2.5.1 Global Positioning System & Global Navigation Satellite System  
 

The Global Positioning System (GPS) is a satellite network which relays time and 

position information to GPS receivers (Aughey, 2011a; Malone et al., 2017). Initially 

introduced by the United States Department of Defence for military use, the GPS 

comprises a network of satellites which continuously orbit the earth, emitting time and 

position information to earth-based GPS receivers (Aughey, 2011a; Larsson, 2003). 

Initial application of GPS technology was obstructed for non-military use via the 

deliberate degradation of the radio signal transmissions by U.S. authorities (Aughey, 

2011a). Since 2000, the degradation of the signal has been removed which has paved the 

way for continual developments in the use of satellite tracking for human locomotion 

(Aughey, 2011a). In recent developments into satellite navigation systems, the Global 

Navigation Satellite System (GNSS) has formed which provides ground-based receivers 

with additional access to satellite networks. The GNSS features the GPS, the GLONASS 
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(Russian), Galileo (European Union) and BeiDou (Chinese) satellite systems (Delaney et 

al., 2019).  

The GNSS network provides positional information by continually sending time 

information to Earth-based receivers through atomic clocks (Aughey, 2011a). The 

distance between the receiver and the satellite is then determined through the difference 

between the time encoded by the satellite’s atomic clock to the receiver’s internal clock 

(Aughey, 2011a; Larsson, 2003). If the receiver is connected to at least four satellites, the 

position of the receiver can then be triangulated (Aughey, 2011a; Malone et al., 2017). 

The identification of position can then lead to the determination of displacement over a 

designated epoch, which can subsequently be implemented to derive speed and 

acceleration measures via Doppler Shift, which is of use to team sport practitioners in the 

tracking of their athletes (Aughey, 2011a). Simply, Doppler Shift, for GNSS navigation, 

involves the motion of the satellite in connection with the earth-based receiver. As the 

satellite moves over a receiver (either static or dynamic), the range between the satellite 

and receiver continuously changes (De Agostino et al., 2010). When a satellite approaches 

the GNSS receiver, Doppler Shift is positive as the frequency is greater (De Agostino et 

al., 2010). When the satellite moves away from the receiver, doppler shift is negative as 

the frequency decreases (De Agostino et al., 2010).  

Since the initial introduction of GNSS technology into team sport research, there has been 

sustained advances in the development of GNSS (Malone et al., 2017; Scott et al., 2016). 

The first commercially available GNSS device introduced for the intention of tracking 

athlete volume and intensity became available in 2003 (Aughey, 2011a). Since then, the 

application of GNSS technology has been adapted by team sport researchers and 

practitioners to quantify the exercise volume and intensity of teams (Aughey, 2011a, 

2011b; Cummins et al., 2013; Jennings et al., 2010b; Jennings et al., 2012a; Scott et al., 
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2016). Global Navigation Satellite System units allow for the objective and time-efficient 

collection of athlete locomotion during training and match play with information 

collected on athlete distances, speeds, and accelerations (Aughey, 2011a; Jennings et al., 

2010b; Malone et al., 2017). Further to the developments in GNSS, units are typically 

unobtrusive to athletes, positioned between the scapulae in custom-made undergarments 

or in specifically designed jersey pouches during training and/or competition (Aughey, 

2011a; Coutts & Duffield, 2010; Jennings et al., 2010a; Jennings et al., 2010b; Malone et 

al., 2017).  

2.5.2 Validity and Reliability of GNSS Tracking 

 

Despite the benefits of practical and time-efficient data collection via GNSS technology, 

the validity and reliability of the locomotion metrics tracked by GNSS is crucial for 

researchers and practitioners (Aughey, 2011a; Scott et al., 2016). For practitioners, the 

validity and reliability of athlete locomotion data can influence the prescription of training 

programs and return to play protocols. In the research space, testing the validity and 

reliability in metrics such as acceleration or distance can help to identify the differences 

in quality between EPTS providers and models which can then have a subsequent impact 

on the applied sport science sector (Malone et al., 2017; Varley et al., 2017).  

2.5.2.1 Sample Rate 

 

A method in which to assess the quality of the GNSS hardware is to examine sample rate 

(Aughey, 2011a; Jackson et al., 2018; Malone et al., 2017). Sample rate is measured in 

hertz (Hz) and is an indication of the number of times a GNSS device is in contact with 

the satellite network per second (Aughey, 2011a; Scott et al., 2016). For example, a 5 Hz 

GNSS unit will receive positioning information five times per second. In terms of GNSS 

validity and reliability, it is accepted that a higher sampling rate correlates with enhanced 
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validity and reliability across different locomotion metrics compared to an inferior sample 

rate (Aughey, 2011a; Jackson et al., 2018; Jennings et al., 2010a; Scott et al., 2016). 

Initially, the introduction of GNSS technology into team sport research saw a 1 Hz sample 

rate, which was largely inferior to 5 Hz and 10 Hz sample rates in later advancements 

(Aughey, 2011a; Duffield et al., 2010; Jennings et al., 2010a; R. J. Johnston et al., 2014; 

Johnston et al., 2013; Malone et al., 2017). For example, in a tennis specific repeated 

movements drill, 1 Hz technology significantly (p<0.05) underestimated distance by 

approximately 30%, whilst a 5 Hz sample rate showed improved validity with 7% 

variation from the criterion (VICON) (Aughey, 2011a; Duffield et al., 2010). However, 

despite research indicating enhanced validity at 5 Hz compared to 1 Hz, the intensity and 

duration of movement impacted validity and reliability, particularly at sample rates below 

10 Hz (Jennings et al., 2010a). Moreover, the standard error of the estimate (SEE) in 

straight line running was seen to improve in 1 Hz and 5 Hz technology when both the 

distance of the shuttle increased and the intensity of the running effort decreased 

(Jennings et al., 2010a). For example, the SEE for both sample rates (1 Hz; 12.2 ± 2.4, 5 

Hz; 11.9 ± 2.5) during a 40 m sprint were substantially improved compared to SEE results 

during a 10 m sprint (1 Hz; 32.4 ± 6.9, 5 Hz; 30.9 ± 5.8) (Jennings et al., 2010a). With 

continued improvements in chipsets, 1 Hz and 5 Hz technology has been surpassed by 

way of the introduction of sample rates at 10 Hz (R. J. Johnston et al., 2014; Johnston et 

al., 2013; Varley, Fairweather, et al., 2012). Currently, 10 Hz is recognised as being 

optimal for tracking athlete locomotion via GNSS technology (R. J. Johnston et al., 2014; 

Scott et al., 2016). In comparison to 5 Hz, 10 Hz technologies have generally shown 

improved validity and reliability, particularly during instances of high-intensity efforts, 

including acceleration and deceleration events (Varley, Fairweather, et al., 2012). For 

example, the validity (as measured by coefficient of variation (CV)) of deceleration 
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efforts at a starting speed of 5–8 m·s-2 improved from 33.2 ± 1.64 in 5 Hz technology, to 

11.3 ± 0.44 at 10 Hz (Varley, Fairweather, et al., 2012). However, given the intermittent 

and explosive nature of high-intensity efforts, including both speed and 

accelerations/decelerations events, the validity and reliability of 10 Hz to track these 

events has still been questioned (Akenhead et al., 2014; Buchheit, Al Haddad, et al., 2014; 

Jackson et al., 2018; R. J. Johnston et al., 2014). 

With continued development in GNSS, sample rates in excess of 10 Hz and approaching 

20 Hz, are now entering into the applied and research sectors (Beato et al., 2018; Gimenez 

et al., 2020; Hoppe et al., 2018). Whilst on balance, a sample rate in excess of 10 Hz 

would seem to possess greater validity and reliability during athlete locomotion, the 

limited research currently available suggests that 10 Hz technology still provides 

acceptable validity and reliability (Beato et al., 2018; Hoppe et al., 2018; R. J. Johnston 

et al., 2014; Vickery et al., 2014). Previously, 15 Hz units that had been interpolated from 

10 Hz technology were introduced, but these devices were not found to be superior to 10 

Hz devices (Hoppe et al., 2018; R. J. Johnston et al., 2014; Vickery et al., 2014). Up-

sampling of device samples rates has been achieved through supplementing 5 and 10 Hz 

GNSS data with device accelerometer data (Aughey, 2011a; R. J. Johnston et al., 2014; 

Rawstorn et al., 2014). However, devices that sample at a “true” 18 Hz with no 

interpolation are commercially available (Hoppe et al., 2018). In GNSS research 

comparing 10 and 18 Hz sample rates, a study concluded that 18 Hz  performed better for 

sprint mechanical properties (technical error of estimate: 4.5–14.3%; CV: 3.1–7.5%) and 

distances covered (1.6–8.0%; CV: 1.1–5.1%) but 10 Hz technology showed less 

measurement error with a loss of 10% of datasets, compared to 20% found in 18 Hz 

technology (Hoppe et al., 2018). It is unclear from the research as to why the 18 Hz had 

greater measurement error compared to the 10 Hz technology. However, given the 
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recency of the introduction of higher sampling rates, it is anticipated that further research 

will continue to improve the knowledge base on the performance of GNSS technology 

sampling above 10 Hz. Researchers and practitioners should therefore look to incorporate 

GNSS technology from manufacturers with a sample rate of at least 10 Hz.   

2.5.2.2 Satellite Connection Properties  

 

The quality of athlete tracking data calculated from GNSS technology is also influenced 

by the strength of the connection with the satellite network (Aughey, 2011a; Malone et 

al., 2017; Scott et al., 2016). Firstly, the horizontal dilution of precision (HDOP) is a 

metric that provides an indication of the accuracy of the horizontal positional signal, 

which is calculated from the positioning of the satellites in relation to each other (Hsu, 

1994; Malone et al., 2017). For human locomotion, a HDOP score below one is 

considered optimal, with possible values range from 0-50 (Hsu, 1994; Malone et al., 

2017). A HDOP value closer to the value of one, indicates the geometrical positioning of 

satellites are spread out, whilst values greater than one indicates that satellites are 

positioned in a closer formation (Hsu, 1994; Malone et al., 2017). However, depending 

on the EPTS manufacturer, HDOP values may or may not be readily available to 

practitioners in the proprietary software or in exports into athlete monitoring databases. 

Additionally, the number of satellites in connection with GNSS devices also influences 

the validity and reliability of athlete tracking data (Aughey, 2011a). Research has stated 

that for human locomotion, a minimum of four satellites are required to be connected to 

the tracking technology during athlete tracking (Aughey, 2011a). Similar to the HDOP 

metric, the number of satellites in connection with the device during tracking may or may 

not be made available to practitioners/researchers depending on the manufacturer 

constraints on the information. However, for GNSS-based tracking it is expected that, 
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where possible, included athlete GNSS datasets have a HDOP value less than one and at 

least four connected satellites (Aughey, 2011a; Malone et al., 2017). 

2.5.2.3 Locomotion Metrics 

 

The validity and reliability of locomotion metrics as tracked by GNSS is crucial to 

assessing the exercise intensity and volume of athletes. Despite the advancements in 

GNSS, with a particular emphasis on sample rates, some GNSS metrics have historically 

shown greater levels of validity and reliability than others. Distance (m) is historically a 

valid and reliable metric, including distance calculated from the earlier sample rates of 1 

Hz and 5 Hz technology (Coutts & Duffield, 2010; Edgecomb & Norton, 2006; MacLeod 

et al., 2009; Scott et al., 2016; Vickery et al., 2014). Early validity and reliability studies 

analysing distance in 1 Hz units showed good to moderate results across a range of study 

designs which continued to improve with further development in unit sample rate towards 

10 Hz (Beato et al., 2018; Coutts & Duffield, 2010; Edgecomb & Norton, 2006; Gray et 

al., 2010; R. J. Johnston et al., 2014; Johnston et al., 2013; MacLeod et al., 2009; Scott et 

al., 2016; Vickery et al., 2014). However, distance obtained at higher velocities has 

increased variability in terms of validity and reliability, with particular emphasis on lower 

(< 10 Hz) sample rates (Rampinini et al., 2015; Scott et al., 2016). For example, the 

validity of both 5 Hz and 10 Hz technology in sub-elite footballers during multiple 70 m 

bouts has been researched (Rampinini et al., 2015). 5 Hz displayed moderate validity (CV 

= 7.5%) across high-speed running (m) (> 4.17 m·s−1), which worsened (CV = 23.2%) 

with an increase to very high-speed running (m) (> 5.56 m·s−1). The 10 Hz device across 

the same experimental protocol, resulted in greater levels of validity, showing improved 

results across the high-speed (CV = 4.7%) and very high-speed (CV = 10.5%) thresholds. 

Moreover, 10 Hz technology has been observed during 15 m and 30 m sprint trials in 
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trained male athletes (Castellano et al., 2011). The results indicated that as the length of 

the sprint interval increased from 15 m to 30 m, both the validity (standard error of 

measurement (%SEM); 5.1%) and reliability (CV: 0.7%) of 10 Hz technology improved, 

with only a slight underestimation of distance found.  

However, high-intensity movements, particularly movements featuring accelerations and 

decelerations have consistently shown increased levels of variation and conjecture within 

validity and reliability research (Scott et al., 2016). The increased variation may be 

attributed to the dynamic rate of change in speed as a result of acceleration or deceleration 

efforts, with particular respect to decelerating, as the magnitude of deceleration can be 

more rapid (Delaney, Cummins, et al., 2018). Sample rates below 10 Hz have presented 

the highest levels of variation within the existing literature. During straight line running 

trials, high levels of variability were found within 5 Hz technology compared to 10 Hz 

(Varley, Fairweather, et al., 2012). Accelerations commencing at 1-3 m·s−1 saw variation 

as great as 14.9% (CV) in 5 Hz technology, which improved to 5.9% in the 10 Hz unit 

(Varley, Fairweather, et al., 2012). However, during decelerations (5-8 m·s−1), variation 

substantially worsened to 33.2% in the 5 Hz technology, which again improved to 11.3% 

in the 10 Hz unit (Varley, Fairweather, et al., 2012). Moreover, the validity of 10 Hz 

GNSS against VICON during team sport movements has been assessed (Delaney et al., 

2019). The sole participant’s acceleration as tracked by 10 Hz technology showed small 

to moderate bias (0.25 – 0.35; ± ~0.24) compared to VICON when the GNSS raw data 

was extracted (Delaney et al., 2019). However, the manufacturer’s software export 

revealed very large bias (-3.81 to -3.77; ± ~0.24) compared to the criterion measure. It is 

apparent that despite improvements with the development in sample rates in excess of 10 

Hz, the validity and reliability of acceleration and deceleration events are questioned. 

However, as alluded to in previous research, the variation in the validity of acceleration 
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may be due to several extenuating factors (Delaney et al., 2019; Varley et al., 2017). 

Acceleration isn’t directly calculated via the GNSS technology like distance and speed 

and is instead a derivative measure (Akenhead et al., 2014; Torres-Ronda, Beanland, et 

al., 2022; Varley, Fairweather, et al., 2012). Additionally, instances of manufacturer-

applied filtering have been reported to influence the magnitude of acceleration from 

GNSS technology which may also influence validity and reliability compared to a 

criterion measure (Delaney et al., 2019; Thornton, Nelson, et al., 2019).  

Maximum or peak athlete speed has consistent levels of validity and reliability when 

compared to acceleration events. In the initial 1 Hz technology, there has been limited 

research on the efficacy of GPS technology when tracking peak speed. However, In the 

existing research, 1 Hz technology has been found to be both valid and reliable when 

assessing 30 m sprint speed against timing gates (Barbero-Álvarez et al., 2010). 

Significant (p<0.001) Pearson’s correlations existed between GPS peak speed and timing 

gate-calculated fastest sprint time (r2 = -0.93), whilst acceptable reliability was found (CV 

= 1.2%) (Barbero-Álvarez et al., 2010). However, validity and reliability findings in 5 Hz 

technology showed greater variability in research. 5 Hz in one study showed moderate 

validity (CV = 6.6 – 9.8%) across 30 m sprint efforts, with improvements in speed validity 

seen as the length of the sprint increased (Waldron, Worsfold, et al., 2011). However, unit 

reliability was consistently greater across the sprinting trials (CV = 0.78 – 2.0%) 

(Waldron, Worsfold, et al., 2011). During field-based team sport movements, research 

found no significant difference in peak speed between the examined 5 Hz technology 

during any of the movement protocols when compared against VICON (Vickery et al., 

2014). However, the differences between the two studies, could be due to the different 

criterion measures, as well as the respective specifications of the technology investigated. 
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Given the applied standard for GPS/GNSS sample rate is believed to be at 10 Hz, the 

modern application of findings pertaining to 1 Hz and 5 Hz technology is limited.  

Like metrics of acceleration and high-speed distance, an increase in sample rate to 10 Hz 

and beyond shows an improvement in the validity of athlete peak speed. The validity of 

10 Hz and 18 Hz technology during 20 m sprint trials against a criterion measure (radar 

gun) was examined (Beato et al., 2018). The results showed that both 10 Hz (26.5 ± 2.3 

km·h−1) and 18 Hz (26.5 ± 2.6 km·h−1) were valid for the measurement of peak speed 

compared to the criterion (26.3 ± 2.4 km·h−1), with small, reported biases of 2.36 ± 1.67% 

(10 Hz) and 2.02 ± 1.24% (18 Hz) respectively. Similarly, research showed no significant 

differences between peak speed as calculated by 10 Hz technology against VICON in the 

field-based team sport movement protocols (Vickery et al., 2014). 

Given the lowest levels of validity and reliability have been found in the now superseded 

5 Hz and 1 Hz sample rates, practitioners and researchers have commonly accepted units 

sampling at least 10 Hz to be sufficient to measure volume and intensity metrics of 

athletes. However, for indoor team sport athletes, GNSS technology cannot be utilised 

due to an obvious lack of satellite connectivity. To quantify the exercise volume and 

intensity of indoor-based team sport athletes, local positioning systems are required to 

facilitate the athlete monitoring process.   

 

2.5.3 Local Positioning Systems  

 

Local positioning systems (LPS) or local position measurements (LPM) are tracking 

systems that provide information on athlete locomotion in either indoor or outdoor 

environments.  Local systems differ to GNSS as instead of communicating with orbiting 

satellites, an LPS system operates in communication with fixed installations at various 
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locations around stadia (Hodder et al., 2020; Serpiello et al., 2018). Currently, the 

majority of LPS research have been radio frequency-based (RFID), with further advances 

in the technology moving towards ultra-wideband (UWB) installations (Luteberget et al., 

2018; Serpiello et al., 2018). Typically, RFID-based systems have operated with fixed 

anchor nodes that are positioned around the indoor stadium/court with radio 

communication occurring between anchor nodes and the mobile node worn by the athlete 

(Luteberget et al., 2018; Sweeting, 2017). Athlete positioning occurs via the use of a 

survey which outlines the distance between each anchor node and a known location on 

the playing surface. With positional information obtained, metrics such as distance, speed 

and acceleration can then be calculated (Hedley et al., 2010).  

2.5.3.1 Validity and Reliability of LPS Systems 

 

The initial research into the validity and reliability of LPS or LPM systems occurred prior 

to the introduction of UWB systems (Serpiello et al., 2018). However, radio-frequency 

systems, have been analysed in several studies across previous literature (Sweeting, 

Aughey, et al., 2017). For validity measures of positioning, RFID-based systems have 

obtained acceptable results in research. For example, the absolute error, on average, for 

all LPM position equations has been found at 23.4 ± 20.7 cm in one study (Ogris et al., 

2012). Position results improved to errors of 12.1 cm (outdoors) and 11.9 cm (indoors) 

when using the Wireless Ad hoc System for Positioning (WASP) (Sathyan et al., 2012). 

For measures of distance, acceptable error rates were identified during a linear and non-

linear running protocol, where the WASP recorded error rates of 2.2% and 2.7% 

respectively (Sathyan et al., 2012). During an association football-specific movement 

circuit, a small underestimation of distance by the LPM during the experimental protocol 

was identified, with mean differences ranging between 0.6 and 1.6% across walking and 
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sprinting trials (Frencken et al., 2010). Moreover, research on athlete speed generated via 

RFID systems indicates acceptable levels of validity (Frencken et al., 2010). Variances 

as high as 3.5% for average speed and 13.2% for maximum velocities when compared to 

VICON (criterion) have been identified (Ogris et al., 2012). Similarly, constant speed 

during association football-specific movement was not significantly different (p = 0.782) 

between the LPS system and the criterion (Stevens et al., 2014). In the same research, the 

validity of acceleration and deceleration was also observed (Stevens et al., 2014). An 

average acceleration (0.01 ± 0.36 m·s-2) and deceleration (0.02 ± 0.38 m·s-2) metric 

(epoch: length of testing duration) reported stronger validity than peak acceleration and 

deceleration efforts, highlighting potential deficiencies in some RFID technology for 

peak changes of speed efforts (Stevens et al., 2014). However, the results of the validity 

studies mentioned in this section are somewhat limited in the application to elite team 

sport athletes. For example, the methodology in one study was based on a general team 

sport agility test using a mixed cohort of various team sport athletes and didn’t replicate 

specific match movements expected in team sports (Sathyan et al., 2012). Additionally, 

some participants in the previously cited studies were moderately trained athletes and not 

elite level (Ogris et al., 2012; Stevens et al., 2014). It would be expected that elite level 

athletes would be able to execute higher-intensity movements in terms of speed-based 

and acceleration efforts.  

On balance, RFID-based systems are valid and reliable for tracking human athlete 

locomotion within research. However, since the inception of this technology into research 

and the applied sector, there are reported concerns surrounding signal instability and 

susceptibility to transmission interference, particularly amongst stadia infrastructure 

(Alarifi et al., 2016; Serpiello et al., 2018). The more recent developments into UWB LPS 
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have been stated to improve signal quality whilst reducing interference (Alarifi et al., 

2016; Serpiello et al., 2018). 

Ultrawideband technology is the latest development in LPS to track athlete locomotion 

in research and applied environments (Hodder et al., 2020; Serpiello et al., 2018). 

Ultrawideband technology differs from traditional RFID systems as UWB systems 

typically facilitate a large frequency bandwidth (≥ 500 MHz). Being able to transmit at 

the larger frequency bandwidths allows for signal penetration through objects such as 

wood and plastic, but with the exception of metal (Hodder et al., 2020; Rovnakova et al., 

2008; Serpiello et al., 2018). The ability to penetrate structural objects is part of the 

explanation found in research surrounding the increased signal quality in UWB systems 

compared to RFID technologies (Hodder et al., 2020). Additionally, short pulse 

waveforms in UWB also contribute to reduced signal interference and greater signal 

quality for tracking athlete locomotion (Hodder et al., 2020). However, given the 

improvements in UWB systems, the cost to implement these systems remains high and 

may not be practically applicable for all team sport programs (Bastida-Castillo, De La 

Cruz Sánchez, et al., 2019). The ability of UWB systems to track athlete position and 

locomotion metrics has been evaluated within research. For athlete position, UWB-based 

systems have been reported to be valid. For example, the mean absolute error of the 

UWB-extracted “x” and “y” positional coordinates were 9.57 ± 2.66 cm and 7.15 ± 2.62 

cm respectively, whilst the inter-unit reliability was strong in one study with the technical 

error of measurement (%TEM) resting between 1.12 and 1.19% (Bastida-Castillo, De La 

Cruz Sánchez, et al., 2019). Similarly, in other research, position variation across all 

estimates was 0.21 ± 0.13 m in the optimal experimental protocol and 1.79 ± 7.61 m in 

the sub-optimal setup (Luteberget et al., 2018). Distance has also proven to be a valid 

metric in UWB systems with low levels of variation (~3%) seen in several studies across 
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varying experimental protocols (Leser et al., 2014; Luteberget et al., 2018; Rhodes et al., 

2014; Serpiello et al., 2018). However, similar to RFID validity results, peak acceleration 

and speed-based locomotion has exhibited higher levels of variation (Hodder et al., 2020; 

Luteberget et al., 2018; Serpiello et al., 2018). During court-based trials, moderate 

variation existed during sprinting for mean acceleration (6.8 – 8.5%) and small to 

moderate variation during mean deceleration (-28 - - 8.1%) (Serpiello et al., 2018). 

Moreover, the calculation of instantaneous speed from raw LPS data was not valid with 

average variation in the optimal group ranging from 33-39% and as high as 91% in the 

sub-optimal group (Luteberget et al., 2018). The differences between instantaneous speed 

were claimed to increase as the speed of locomotion increased. However, as this study 

was examining the raw LPS data it may not have been subject to manufacturer filtering 

processes which is common when utilising proprietary tracking technology. It is then 

unclear how the examined LPS technology would perform with the use of data filtering 

and how that would impact the evaluation of high-intensity locomotion. For practitioners 

and researchers, high-intensity locomotion efforts calculated from UWB should still be 

treated with caution. However, given the continued development into LPS technology 

and the reported improvements in signal quality and interference, UWB systems are 

currently the preferred form of LPS in applied team sport research, with reference to 

literature based on athlete locomotion and activity profiles.  

With the noted development into UWB systems for athlete tracking technology, there 

may be instances where UWB systems are preferred to GNSS technology during 

competition (Thornton, Nelson, et al., 2019). Some stadia may have structural occlusions 

which limits the effectiveness of GNSS technology, prompting the use of a local system 

to improve the tracking validity and reliability (Thornton, Nelson, et al., 2019). However, 
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the interchanging of tracking systems is also subject to the validity and reliability of each 

system and any potential variation in locomotion metrics.  

 

 

2.6 Interchanging between Athlete Tracking Technologies 

 

The validity and reliability of athlete tracking data between different technology sources 

has become increasingly important at the applied level in elite team sports (Buchheit & 

Simpson, 2017). The sustained adoption of LPS and optical technology in outdoor team 

sports stadia has facilitated consideration as to the interchangeability between tracking 

technologies between training and competition with respect to tracking data validity and 

reliability (Buchheit & Simpson, 2017; Linke et al., 2018; Taberner et al., 2020). Up until 

the change in FIFA competition regulations in 2015, football athletes were prohibited 

from wearing GNSS units in matches, despite regularly wearing the technology in 

training (Taberner et al., 2020). To monitor the locomotion of football athletes in 

competition, the use of optical tracking systems was commonly implemented (Buchheit 

& Simpson, 2017). Additionally, in what is now becoming a common occurrence, team 

sport athletes have begun wearing LPS technology in outdoor stadia instead of the more 

traditional GNSS trackers (Thornton, Nelson, et al., 2019). In practice, the perceived 

benefit of LPS technology in outdoor stadia removes some of the inherent issues with 

GNSS technology, particularly with stadia that have overhanging structures or stand 

amongst high-rise developments that have the potential to interfere with the satellite line 

of sight (Thornton, Nelson, et al., 2019). However, depending on the training facility 

location of the team, the use of LPS or optical technology for athlete tracking may not be 

possible away from the competition arena. Instead, practitioners may be required to 

continue athlete monitoring via GNSS technology during training sessions. 
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Consequently, practitioners have been required to interchange their EPTS between 

competition and training settings which could have the potential to influence activity 

profiles (Taberner et al., 2020). Significant variation between tracking technologies 

would have practical implications for athlete preparation where practitioners would face 

conjecture over the volume and intensity of their athletes. Similarly, in research, 

significant variation in exercise volume and intensity between systems would create 

doubt as to the validity of athlete monitoring practices via the use of multiple systems. 

Initial research following the introduction of GPS technology in elite team sports 

observed the validity and reliability of GPS technology (GPSports SPI 10) and a manual 

computer-based tracking system during Australian Football-related movement 

(TrakPerformance) (Edgecomb & Norton, 2006). When comparing distance findings, a 

strong correlation (r = 0.997) was identified between the technologies, however the 

distances obtained were significantly different (p = 0.02) and were overestimated (GPS: 

4.8%, CBT: 5.8%) compared to the criterion (trundle wheel) (Edgecomb & Norton, 

2006). However, the majority of the validity and reliability research between athlete 

tracking technologies has been based upon association football. The activity pattern of 

Spanish second and third division footballers during a test game was observed (Randers 

et al., 2010). The technology included in the study featured a semi-automated camera 

system (Amisco), a video-based time motion analysis system (VTM) and two different 

GPS devices (Catapult MinimaxX v2.0 & GPSports SPI Elite, sample rates: 5 Hz & 1 

Hz). However, the results showed discrepancies between the tracking systems across 

metrics pertaining to total distance (km) as well low-intensity (km), high-intensity (km) 

and sprint distances (km) (Randers et al., 2010). For example, total running distance (km) 

was found to be over a kilometre greater in the semi-automated camera system (6.25 ± 

1.04 km) compared to 5 Hz GPS (5.10 ± 1.08 km), whilst 5 Hz (10.73 ± 0.67 km) recorded 
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a significantly higher (p < 0.001) total distance compared to video (9.52 ± 0.78 km) 

(Randers et al., 2010). The study concluded that in finding these differences between 

systems, practitioners should be cautious in the comparisons made in regard to the volume 

and intensity of athletes between systems (Randers et al., 2010).  

Later research investigated the levels of agreement between a semi-automatic camera 

tracking system (Prozone), an LPS (Inmotio) and two GPS units (GPSports, SPI Pro XII 

& VX, VX340a) in association football (Buchheit, Allen, et al., 2014). However, unlike 

the previously discussed studies, calibration equations were presented that could be used 

to improve the level of agreement when interchanging between athlete tracking systems 

(Buchheit, Allen, et al., 2014). Calibration equations were presented for the benefit of the 

practitioners as practically, equations could be implemented in either training or 

competition to incorporate known differences between tracking systems to offset any 

discrepancies in athlete volume and intensity (Buchheit, Allen, et al., 2014). Whilst 

calibration equations for locomotion metrics between systems could be produced, small 

to moderate error was stated to remain in the predicted volume, which was due to the 

typical error of the estimate (TEE) found between technology (Buchheit, Allen, et al., 

2014). Moreover, the findings from the study revealed that variation in the agreement 

between tracking technologies for total distance was small, but there was substantial 

variation in high-speed and acceleration metrics. For acceleration counts (> 3 m·s-2), 

moderate-to-large variation was seen between technologies, with the LPS recording 

substantially larger acceleration counts compared to Prozone and moderately larger 

counts compared to GPS on the full-pitch. Both GPS models also recorded substantially 

greater acceleration counts compared to Prozone™ in the full-pitch and medium pitch 

trials which was designated as a large variation. Similarly, in association football, 

variation in acceleration existed in a study analysing the exercise volume and intensity 
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outputs via GPS (GPSports SPI Pro-X), LPS (Inmotio), and camera-based tracking 

(STATS SportVU) against VICON (criterion) (Linke et al., 2018). The root mean square 

error in acceleration during small-sided games showed significant differences (p < 0.001) 

and large effect sizes (ES) (> 0.26) in both GPS and LPS when compared to the camera-

based technology.  

The previously discussed research is limited by the tracking technology implemented. 

Research indicates that GNSS units that sample at 10 Hz or above are the most valid and 

reliable for tracking athlete locomotion (Malone et al., 2017). The previously referenced 

studies in this section sampled at a maximum of 5 Hz, regardless of any interpolation used 

during processing to up sample the technology. Currently there is limited research that 

has implemented 10 Hz GNSS technology when comparing the levels of agreement 

between technology. In 10 Hz research, the interchangeability between GNSS technology 

(STATSports Apex & Viper, 10 Hz) and a semi-automated optical system (TRACAB, 25 

Hz) during under 23 and first team football matches was observed (Taberner et al., 2020). 

The Apex model typically performed better in comparison to the Viper model, as the SEE 

within calibrated functions improved from 5-22% (Viper) to 4-14%, whilst there were no 

significant differences found between the Apex and TRACAB in total, high-speed or 

sprint distance (m). The improvement in the agreement between the STATSports Apex 

and TRACAB was hypothesised to be due to the increased accessibility of the Apex unit 

to satellites given it is GNSS-enabled, whilst the Viper only has GPS accessibility 

(Taberner et al., 2020). The authors concluded that given the high levels of agreement 

between the Apex and TRACAB technologies, interchanging of tracking systems was 

possible and practical for the applied sector, providing practitioners are cognisant of the 

potential error that can exist between positions and of the availability of calibration 

equations (Taberner et al., 2020). Similarly, the interchangeability of athletes player 
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movement variables from an English Premier League squad between GNSS (Catapult 

Sports Vector, 10 Hz) and two optical systems (TRACAB and Second Spectrum) has also 

been researched (Ellens, Hodges, et al., 2022). Differences between all tracking 

technologies for all variables (e.g., total distance [m], maximal speed [km.h-1]) was 

evident, with total distance (m) being largely greater (magnitude of standardised mean 

difference; 1.2 – 2.0) in TRACAB and very largely greater (2.0 – 4.0) in Vector 

technologies compared to Second Spectrum (Ellens, Hodges, et al., 2022). However, 

standardised equations were provided by the researchers to allow for the 

interchangeability between tracking technologies for all examined variables with a 

comparable SEE compared to similar research (Taberner et al., 2020). Though, applying 

each individual equation (e.g., distance from GPS to TRACAB; 267 + 0.97) for each 

variable may not be practically efficient and given the number of variables monitored 

from athlete tracking systems, the provided equations and variables may not be sufficient 

for an applied practitioner’s monitoring system.  

It is difficult to make inference on the individual differences found between the tracking 

technologies in each respective study discussed in this chapter due to the wide range of 

criterions and methodologies implemented. For example, acceleration-based metrics were 

identified to have higher sources of error in two studies, however, this could be due to 

specific study factors, such as the filtering of acceleration during data processing 

(Buchheit, Allen, et al., 2014; Linke et al., 2018). Still, the existing literature has 

identified that the interchangeability between tracking technology is possible and even 

necessary given the previous competition constraints on wearable technologies. To 

interchange between systems, data translation is facilitated via the use of generic 

equations or algorithms that look to standardise the data based on known differences 

between the tracking technologies. In research and at the applied sport science level, it 
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appears that the adoption of generic equations to process athlete volume and intensity 

during training or competition between tracking technologies is now a current practice. It 

is still recommended, (where possible) that both at the research and applied level, one 

tracking system is exclusively used for both training and competition. 

Another consideration surrounding the interchanging of tracking technologies is the 

introduction of wearable devices that can have dual GPS/GNSS and LPS functionalities. 

There are wearable devices available that can be set for both outdoor (GNSS) and indoor 

(LPS) use (Catapult, 2023). The advantages of this for practitioners extends to being able 

to facilitate the technologies using the same software and computer system, whilst also 

using the same device for all training and competition events. Moreover, having a 

consistent device used may minimize the amount of external data handling required 

compared to implementing mathematical equations to help standardise data from different 

tracking systems and manufacturers. However, some challenges may still exist 

surrounding the consistency of the data handling. Despite wearing the same device, 

athletes would still be tracked by two different systems. The GNSS component of the 

device is impacted by environmental factors and strength of connection to the satellite 

networks, whilst the LPS component is subject to the calibration and alignment of the 

positioning system around the stadia or training facility (Aughey, 2011a; Hodder et al., 

2020; Malone et al., 2017; Serpiello et al., 2018). Subsequently there may be differences 

in processing of athlete tracking data which could still result in the same issue surrounding 

the consistency of how the tracking data is processed which may lead to differences in 

athlete outputs (Buchheit, Allen, et al., 2014). There is limited research on dual-system 

technology which inhibits any conclusions that can be made about the suitability of these 

devices for use across different environments or the consistency between the tracking data 

and the magnitude of difference in athlete outputs in metrics such as acceleration.  
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After the selection and subsequent evaluation of the validity and reliability of the tracking 

system used for athlete locomotion, the development of an activity profile for a sport 

becomes possible (Aughey, 2011a, 2011b). It is the information on athlete locomotion 

within an activity profile that allows for further development into training analysis and 

subsequent training program prescription.  

 

2.7 Activity Profiles in Team Sport Research 
 

2.7.1 Introduction 

 

An activity profile in team sport research generally consists of locomotion information 

pertaining to either the training and/or competition volume and/or intensity experienced 

by athletes and position groups within a respective sport (Aughey, 2011a). The notion of 

activity profiles within team sport research has existed before the introduction of satellite-

based wearable tracking technologies. Initially, notational analysis provided early activity 

profiles in association football, where analysts would subjectively allocate and categorise 

the movement patterns of individual athletes into standing, walking, jogging, or sprinting 

using pen and paper (Knowles & Brooke, 1974; Sweeting, Cormack, et al., 2017). Using 

GNSS/LPS technology, all athletes could be tracked with their volume and intensity 

determined quickly and efficiently after training and/or competition.  

Through the development of athlete wearable technologies, the locomotion metrics 

available to practitioners for analysis are greatly enhanced compared to the subjective 

notional and video-based analysis (Aughey, 2011a; Malone et al., 2017). Specifically, 

information relating to athlete velocities, accelerations, contacts, tackles, jumps or efforts 

are outlined in modern activity profiles which can greatly benefit practitioners at the 

applied sports science level (Aughey, 2011a; Scott et al., 2016). The information relating 



32 

 

to exercise volume and intensity in both the training and competition arenas can provide 

the basis for training program prescription and can also inform rehab processes for 

athletes in return to play protocols (Cummins et al., 2013). Longitudinally, the publishing 

of activity profiles in research also allows for the analysis of changes in competition or 

training styles over established time periods (i.e., between seasons or in-season) which 

can also aid in training program development and athlete profiling.  

  

2.8 Volume and Intensity Metrics in Team Sport Activity Profiles 

 

2.8.1 Distance 
 

The volume of athlete locomotion for a given period (e.g., a drill, match or training 

session) can be quantified through distance. Distance is a common volume metric in team 

sport activity profiles and is widely adopted as a metric of interest in the research and 

applied sport science environments. Team sports such as association football or 

Australian rules football have been identified as having high athlete distances in 

competition with athletes in association football averaging between (10000 m to 14000 

m) compared to Australian rules athletes (11000 m to 14000 m) (Andrzejewski et al., 

2019; Brewer et al., 2010; Chmura et al., 2017; Clemente et al., 2013; Coutts et al., 2015; 

Coutts et al., 2010; Delaney, Thornton, Burgess, et al., 2017; Janetzki et al., 2021). The 

open field nature of association football and Australian football, where athletes are free 

to roam around the full length of the pitch along with minimal substitutions in association 

football and a high interchange limit (~ 75 substitutions) in Australian rules promotes 

sustained distance. Whilst the length of an Australian rules football match is longer than 

a competitive association football match, the small number of interchanges in association 

football ensures that athletes spend maximum amounts of time on the pitch. Other 
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invasion team sports such as rugby union (4000 m to 7500 m) and rugby league (4000 m 

to 9500 m) have reported lower total distances in research (Cunniffe et al., 2009; Delaney 

et al., 2015; Delaney, Thornton, Pryor, et al., 2017; Gabbett, 2013a; Jones et al., 2015; 

McLellan et al., 2011). Whilst both rugby codes are shorter in total duration (80-minutes), 

the nature of rugby is to limit the opponent gaining field territory. In essence, athletes are 

actively engaging the defensive or attacking team lines to repel or sustain movement of 

the ball and are therefore limited in terms of obtaining higher distances. However, whilst 

a total distance metric provides an indication of the external volume of athletes during 

training or competition, there is limited contextual information on the way in which the 

game was played. For example, one game of association football might see athletes 

achieve 12,000 m in distance, but another game of similar duration may see athletes 

obtain 10,000 m in distance. The difference in volume might not seem significant, but the 

differences in the intensity of the game could be the source of discrepancy between the 

volume. To rectify the difference, research and practitioners have commonly adopted a 

speed intensity metric which sees total athlete distance divided by competition or playing 

time (metres per minute, m·min-1)(Aughey, 2010; Coutts et al., 2010; Jennings et al., 

2012b). Athlete volume referenced relative to time provides greater context on the speed 

intensity and style in which training, or competition was played. Established team sport 

activity profiles in research have determined the average speed intensity of competition 

for Australian rules football (~105 to 160 m·min-1), association football (~100 to 130 

m·min-1), rugby union (~55 to 85 m·min-1) and rugby league (~85 to 110 m·min-1) 

(Aughey, 2010, 2011b; Austin & Kelly, 2013; Cunniffe et al., 2009; Delaney et al., 2015; 

Delaney, Thornton, Burgess, et al., 2017; Jones et al., 2015; Varley et al., 2014). 

However, the differences between the sports would still be as a result of the previously 

mentioned differences in game styles, duration and objectives. Research has also detailed 
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the peak intensity in competition rather than the summary intensity over the entirety of 

the match (Austin & Kelly, 2013; Delaney et al., 2015; Varley, Elias, et al., 2012). 

Specifically, the peak intensity during instances of play has been extracted from 30 

second to 10-minute moving average epochs to provide an indication to practitioners on 

the “worst-case” or “competition peaks” to improve training prescription and the design 

of small-sided conditioning games (Delaney et al., 2015; Delaney, Thornton, Burgess, et 

al., 2017; Delaney, Thornton, Pryor, et al., 2017; Delaney, Thornton, et al., 2018; Delves 

et al., 2019; Howe et al., 2020). Peak speed intensity research has been published on 

several team sports, including, but not limited to, Australian rules football (~200 to 220 

m·min-1), association football (~180 to 205 m·min-1), rugby league (~160 to 185 m·min-

1) rugby union (~150 to 185 m·min-1) and field hockey (~200 to 210 m·min-1), all detailing 

the expected peak intensity across position groups (Delaney et al., 2015; Delaney, 

Thornton, Burgess, et al., 2017; Delaney, Thornton, Pryor, et al., 2017; Delaney, 

Thornton, et al., 2018; Delves et al., 2019). The use of distance as a volume metric 

however can also be linked with athlete speed to detail the activity profile at various 

thresholds.  

2.8.2 Speed-based Metrics 

 

Athlete speed during training and competition can be grouped into different locomotion 

categories via the use of speed thresholds (Cunniffe et al., 2009; Mohr et al., 2003; Scott 

et al., 2016; Sweeting, Cormack, et al., 2017). Speed “zones” are often implemented in 

applied team sport monitoring which outlines the accumulated volume of athletes over a 

spectrum of speed thresholds (Sweeting, Cormack, et al., 2017). For example, in rugby 

league, the locomotion category of high-speed running may be designated by a speed 

threshold of >5 m·s-1, whilst sprinting may be set at >7 m·s-1 (Austin & Kelly, 2013; 

Gabbett, 2015; Gabbett et al., 2012b). Each time this threshold is met or exceeded by the 
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athlete, the volume in the respective threshold will update on a continuous basis 

throughout training and/or competition. Typically, speed-based metrics will include 

variables that pertain to the accumulated distance (e.g., high-speed distance (m)), 

efforts/counts (e.g., sprints/high-intensity efforts) or time (time spent in threshold) in a 

particular threshold. However, the selection of speed thresholds has been typically 

determined from previous research, proprietary software or arbitrarily selected by the 

researcher or practitioner (Cunniffe et al., 2009; Jennings et al., 2012b; Mohr et al., 2003; 

Sweeting, Cormack, et al., 2017). There is no current consensus within applied team sport 

research on how speed thresholds are determined (Sweeting, Cormack, et al., 2017). 

Moreover, there is evidence between respective team sport research that shows 

considerable variability between the speed thresholds published and the locomotion 

categories representing those thresholds (Hausler et al., 2016). For example, rugby league 

research has shown discrepancies in the selection and labelling of speed thresholds across 

high-intensity running bands (Hausler et al., 2016). High-intensity running has been 

defined as speed efforts between 18 and 20 km·h-1 (Austin & Kelly, 2013; McLellan et 

al., 2011)  However several studies defined “high-speed running” as any and all efforts > 

18 km·h-1 (Gabbett, 2013a, 2013b, 2015; Murray et al., 2014; Twist et al., 2014). Similar 

differences exist in the labelling of the locomotion descriptors within rugby league 

research (Hausler et al., 2016). Sprinting has been categorised from as low as > 21 km·h-

1 to > 25 km·h-1 whilst moderate speed running has seen wide ranges from as low as 7 

km·h-1 up to 18 km·h-1 (Murray et al., 2014; Twist et al., 2014; Varley et al., 2014; 

Waldron, Twist, et al., 2011). For both the research and applied sport science settings, the 

differences between speed thresholds and descriptors makes comparisons between 

activity profiles difficult and inhibits conclusions on changes to volume or intensity 

outputs or game styles. The inability to draw inferences because of differences in speed-
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based thresholds also extends to the acceleration volume of athletes in training and 

competition.   

2.8.3 Acceleration  

 

Acceleration is defined as the rate of change in speed (Little & Williams, 2005; Varley & 

Aughey, 2013). In many team sports, acceleration events are synonymous with key 

instances in competition, such as contesting the ball, point scoring, defending and creating 

space (Carling et al., 2008; Delaney, Thornton, et al., 2018; Varley, Fairweather, et al., 

2012). Decelerations are also commonly analysed metrics in team sport activity profiles 

and represent negative accelerations (Dalen et al., 2016; Harper et al., 2019). In this thesis 

negative accelerations will be referred to as decelerations given the widespread use of the 

term within research and the applied setting.  However, acceleration and deceleration 

events in training and competition need to be accounted for in the monitoring process, 

particularly as acceleration events are believed to carry a metabolic cost that is considered 

greater than continuous running (Osgnach et al., 2010; Varley & Aughey, 2013). 

Currently, the use of wearable tracking technologies (i.e., GNSS, LPS or optical systems) 

are widely used within applied sport science to track athlete acceleration.  

Typically, invasion team sports played in congested space, such as rugby league or rugby 

union, have seen high peak acceleration intensity within competition (Delaney, Duthie, 

et al., 2016; Delaney, Thornton, Pryor, et al., 2017). Peak acceleration intensity in rugby 

league competition have been reported to be as high as 1.28 ± 0.13 m·s-2 (fullback) during 

the peak 1-minute match epoch (Delaney, Duthie, et al., 2016). The magnitude of 

acceleration intensity found in rugby league can be attributed to the attacking and 

defensive lines synonymous with rugby league match play. However, sports such as 

Australian rules and association football are generally played in distributed formations 
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throughout the playing arena, allowing greater opportunities for consistent open-field 

running.  

Acceleration in team sport activity profiles has been quantified through the use of 

threshold-based metrics (Akenhead et al., 2016; Dempsey et al., 2018; Furlan et al., 2015; 

Wellman et al., 2016). Count or effort-based variables, which detail the number of 

instances in which an acceleration threshold has been met or exceeded are common in 

team sport activity profiles (Chapter 3). However, the threshold to quantify the magnitude 

of accelerations efforts into different intensity categories has varied throughout the 

literature. Across team sport research, count-based acceleration metrics have been 

predominantly classified into intensity categories. Low-range thresholds in acceleration 

magnitude across various team sports have ranged from 0.55 m·s-2 to 2.77 m·s-2 , whilst 

moderate-range counts have been published from as low as >0.01 m·s-2  to as high as > 3 

m·s-2 (Akiyama et al., 2019; Bauer et al., 2015; Bowen et al., 2019; D. J. Cunningham et 

al., 2016; de Hoyo et al., 2016; Gabbett, 2012; Gabbett et al., 2012a). For high-intensity 

acceleration efforts, a >2.78 m·s-2 threshold has been widely applied in sports such as 

association football, rugby league and Australian rules (Aughey, 2010, 2011b; Coutts et 

al., 2015; Garvican et al., 2014; Johnston et al., 2015b; Varley & Aughey, 2013; Varley 

et al., 2014). The >2.78 m·s-2 threshold was initially implemented following research in 

untrained participants who completed standing start maximal accelerations between 2.5 

m·s-2 and 2.7 m·s-2 (Varley, Fairweather, et al., 2012). Despite the use of a >2.78 m·s-2 

threshold initially designating a high-intensity acceleration effort, there has been various 

descriptors of intensity associated with this threshold. For example, in rugby league 

research, acceleration events of a magnitude of >2.78 m·s-2 have been defined as 

“moderate”, “high”, “very high” and “maximal” across different rugby league activity 

profiles, which indicates inconsistency in the thresholding and reporting within the 
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literature (Cummins et al., 2015; Gabbett, 2012; Oxendale et al., 2016; Varley et al., 

2014).  

The varied selection of the acceleration-based thresholds also extends to distance and 

time metrics. Similar to acceleration count/effort variables, acceleration distance and time 

spent within respective thresholds have been implemented within team sport activity 

profiles (Akenhead et al., 2016; Bauer et al., 2015; Delaney, Cummins, et al., 2018; Mara 

et al., 2015; Newans et al., 2019). For example, in elite Australian rules research, variation 

exists in the use of the threshold and rating of intensity. Low acceleration distance has 

been classified with the threshold of 0 – 2.77 m·s-2, whilst moderate acceleration distance 

has been classified with the threshold of 1.47 – 2.77 m·s-2  (Bauer et al., 2015; Johnston 

et al., 2015a). For practitioners of respective team sports, the variation between studies 

with respect to the use of thresholds is difficult to incorporate practically. Practitioners 

typically refer to research to aide their decisions in relation to athlete monitoring settings. 

With examples of the variation in the selection of thresholds within team sport activity 

profiles, it is then challenging for practitioners to identify best practices for tracking 

athlete locomotion. Whilst for researchers, the use of threshold-based metrics may 

become problematic when comparing between manufacturers and models given previous 

instances of variation within the technology as well as in the selection of the threshold 

(Thornton, Nelson, et al., 2019).  

Whilst the selection of acceleration thresholds in team sport activity profiles has shown 

variation, acceleration metrics are also subject to data processing (Thornton, Nelson, et 

al., 2019; Varley et al., 2017). As acceleration is indirectly calculated by GNSS/LPS 

technology, the efficacy of acceleration metrics within activity profiles may vary between 

manufacturers (Buchheit, Al Haddad, et al., 2014; Thornton, Nelson, et al., 2019). It is 

understood within the literature that the validity and reliability of acceleration-based 
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metrics can vary between manufacturers and within models, particularly those of similar 

sample rate, which may be as a result of data filtering (Buchheit, Al Haddad, et al., 2014; 

Malone et al., 2017; Thornton, Nelson, et al., 2019; Varley et al., 2017). For example, 

three different GNSS devices from the same manufacturer, with identical sample rates, 

had substantial differences in acceleration with a 43% variation in acceleration efforts (>3 

m·s-2) across sled-based trials (Buchheit, Al Haddad, et al., 2014). Moreover, the 

influence of data filtering could be seen with updates in software. After the second 

software update, the number of accelerations (>1.5 m·s-2) substantially declined (251 ± 

65 vs 177 ± 53) compared to the baseline software package, indicating the influence of 

processing upon the tracking data (Buchheit, Al Haddad, et al., 2014). Similarly, three 

GNSS devices were examined from different manufacturers and determined that there 

were substantial differences between manufacturers for threshold-based metrics of 

acceleration during sled-based movement simulations (Thornton, Nelson, et al., 2019). 

Filtering between GNSS manufacturers was suggested to be a factor behind the variation 

between manufacturers during the simulation protocols. However, despite the previous 

research, there is limited information surrounding the processing of acceleration in 

published team sport activity profiles and within EPTS validity and reliability research 

(Buchheit, Al Haddad, et al., 2014; Thornton, Nelson, et al., 2019).  

Additionally, there is little research available that summarises how acceleration has been 

quantified in team sport activity profiles. Information pertaining to the choices of 

acceleration-based metrics in respective team sports may provide insight to practitioners 

and researchers of that sport. Similarly, given the influence of data filtering upon 

acceleration in wearable tracking technology, greater research upon acceleration 

processing is required. Particularly, given the limited information on acceleration 

processing, a review of previous team sport research may highlight the limitations in 



40 

 

protocols for acceleration in activity profiles. Greater clarity on how acceleration has been 

quantified previously in team sports will aide practitioners with indications on choices of 

variables whilst also providing a summary of the different speed thresholds implemented. 

Moreover, at both the practical and research level, an enhanced understanding of the 

filtering methods used to process acceleration can aid in tracking technology validity and 

reliability research.  
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2.9 Filtering of Athlete Tracking Data 
 

2.9.1 Common Athlete Tracking Data Filters  

 

Regardless of the tracking system implemented to record athlete locomotion, data 

filtering may influence the calculation of volume and intensity metrics. For example, the 

filtering of athlete tracking data can directly influence acceleration, regardless of the 

magnitude or metric used to quantify the event (Ellens, Middleton, et al., 2022; Harper et 

al., 2019; Malone et al., 2017; Stevens et al., 2014; Thornton, Nelson, et al., 2019; Varley 

et al., 2017). However, the purpose of filtering extends to maintaining data quality, 

removing poor signals and to decrease the noise content of the signal (Carling et al., 2008; 

Rader & Gold, 1967; Sweeting, Cormack, et al., 2017; Winter, 2009; Winter et al., 1974). 

In human movement, there are many different types of filters which have been introduced 

to process athlete data from wearable technologies (Campbell et al., 2020; Malone et al., 

2017; Sweeting, Cormack, et al., 2017). Many filters can be categorised into the 

following; low-pass, where signals above a cutoff frequency are minimised, high-pass, 

where signals below a frequency are reduced, band-pass, where signals outside a range 

of frequencies are attenuated or band-stop, where signals that occur within a range of 

frequencies are attenuated (Campbell et al., 2020; Sweeting, Cormack, et al., 2017). As 

human movement has been shown to occur between frequencies of approximately 0 and 

20 Hz, low-pass filters and associated cutoff frequencies are commonly selected between 

these frequency ranges (Antonsson & Mann, 1985; Mathie, 2003; Wei-zhong et al., 

2011). Butterworth filters are common low-pass filters selected to process human 

locomotion data from tracking technology, however, other low-pass filters can be selected 

(Campbell et al., 2020; Ellens, Middleton, et al., 2022; Malone et al., 2017; Sweeting, 

Cormack, et al., 2017; Winter, 2009). Median filters work by providing the result with 

the median value in a series, whilst moving average filters average more recent values for 
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the filtered dataset over a specified number of inputs (Sweeting, Cormack, et al., 2017; 

Villar et al., 2017). Exponential filters are based on taking the weighted sum of past 

outputs, but modelled with an exponentially decreasing weight for previous instances 

(Ostertagova & Ostertag, 2011). Kalman filters estimate variables of interest over time 

when the variables themselves can’t be directly measured (Sathyan et al., 2012; Sweeting, 

Cormack, et al., 2017). Band-pass filters help to convert raw data from the spatial to the 

time domain via the use of a Fourier Fast Transform (FFT) (Sweeting, Cormack, et al., 

2017; Winter, 2009; Wundersitz et al., 2015). In LPS, common filtering methods include, 

but are not limited to, Kalman and Butterworth filters, whilst GPS/GNSS technology can 

also utilise Butterworth as well as moving average, moving median, median or 

exponential filters (Couderc et al., 2019; Furlan et al., 2015; Malone et al., 2017; Sathyan 

et al., 2012; Stevens et al., 2014; Sweeting, Aughey, et al., 2017; Sweeting, Cormack, et 

al., 2017; Winter, 2009).   

 

2.9.1.1 Butterworth Filters 

Low-pass Butterworth filters minimise higher frequency signals whilst allowing lower 

frequency signals to pass through (Campbell et al., 2020; Winter, 2009). The use of a 

cutoff frequency is applied as part of the low-pass Butterworth filter process, which is the 

designated point at which signals are allowed to pass through or at which are attenuated 

(Campbell et al., 2020; Winter, 2009; Yu et al., 1999). Typically, cutoff frequencies used 

in association with low-pass Butterworth filters have ranged between 0.02 and 15 Hz in 

athlete tracking data research, which is consistent with the finding that human locomotion 

mostly occurs between frequencies of 0 and 20 Hz (Antonsson & Mann, 1985; Bredt et 

al., 2020; Fischer-Sonderegger et al., 2019; Wundersitz et al., 2015). Human locomotion 

in this instance refers to gait, with the signal in the biomechanical measurement 
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representing a magnitude of gait during that setting or environment. For example, artistic 

gymnastic movements completed upon force plates with analysis of frequency 

distributions along a spectrum (Campbell et al., 2020). Human gait is generally lower on 

the frequency spectrum, whilst noise in an analysis occurs at higher frequencies which 

promotes the need for a low-pass filter (Campbell et al., 2020). However, a cutoff 

frequency is commonly chosen through a residual analysis on the dataset which can 

influence the effectiveness of the filter (Campbell et al., 2020; Winter, 2009; Yu et al., 

1999). A residual analysis involves filtering the dataset at a range of cut off frequencies 

before calculating residuals between the raw and cleaned data (Campbell et al., 2020; 

Winter, 2009). The data is usually plotted on a graph, (Figure 2-1) with the point at which 

the residuals deviate from linearity being deemed as the optimal cutoff frequency for that 

dataset (Campbell et al., 2020; Winter, 2009). However, it should be noted, that despite 

the use of a residual analysis being standard within research, the use of a residual analysis 

has resulted in some criticism, where the calculated cutoff frequencies were found to be 

lower than the calculated optimum, particularly when the sample rate was high (Yu et al., 

1999). However, despite published criticism on the use of a residual analysis, low-pass 

Butterworth filters have been commonly used in the processing of athlete tracking data 

within research (Ellens, Middleton, et al., 2022). A review on the processing of 

acceleration and deceleration data found that 48% of studies that specified a cleaning 

technique selected a variation of a low-pass Butterworth filter, indicating that the 

selection of this filter is commonly used amongst researchers and practitioners within 

applied sport science (Ellens, Middleton, et al., 2022).  
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Figure 2-1 Example of a residual analysis performed on athlete GNSS data to determine 

appropriate cut off frequency. Duplicated from Chapter 6. 

 

 

2.9.2 Limitations of Filtering on Athlete Tracking Data  

 

The process by which manufacturers select their filtering process is unknown  and can 

vary from manufacturer to manufacturer (Malone et al., 2017). In research and for applied 

sport science practitioners, this is problematic as there are many different 

manufacturers/providers and models commercially available (Malone et al., 2017). As 

such there are many different types of filters that can be modified, potentially altering the 

magnitude of volume and/or intensity events, particularly high-speed and acceleration 

efforts (Thornton, Nelson, et al., 2019). For example, a 24% difference was found in 

sprint distance as tracked by GPS technology during real time and post-game upon 

download and processing of the data, which could have been as a result of subsequent 
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filtering upon the dataset (Aughey & Falloon, 2010). Manufacturer filtering could have 

been attributed to the discrepancy between the live and post-game values, however, there 

is no clarification on how the reported differences eventuate (Aughey & Falloon, 2010). 

In a practical example, manufacturers may elect to filter the speed trace using a 

determined filter and then calculate acceleration from the speed trace. Manufacturers may 

also filter the speed trace and then filter the calculation of acceleration using a predefined 

filter. However, this is speculation as there are numerous possibilities as to how 

manufacturers and even researchers or practitioners choose to filter athlete tracking data. 

But despite the array of filtering settings available, there is extremely limited research 

surrounding the application of filtering processes in player tracking data. With respect to 

team sport activity profiles, there are limited studies that express the filtering settings of 

the tracking technology used in the methodology (Chapter 3). To enable appropriate 

discussion between activity profiles, future research should attempt to review and outline 

the filtering settings used in previous research to promote the reporting of filtering settings 

and to identify what filtering has been implemented and how that can influence volume 

and intensity outputs.  
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2.10 Conclusions 
 

The use of athlete tracking systems in team sports are fundamental to the determination 

of activity profiles which detail the athlete volume and intensity of competition. The 

information obtained via the use of tracking technology allows researchers and 

practitioners to formulate athlete training programs and rehabilitation protocols that are 

designed to prepare athletes for the rigors of competition.  

Previous athlete tracking methods of notational analysis and video-based analysis have 

been superseded by optical tracking systems, as well as wearable technologies, including 

GNSS and LPS units. The use of wearable technologies has seen widespread adoption in 

both the applied team sport environment and research following the approval to wear the 

technologies in most major team sport competitions. The highest levels of EPTS validity 

and reliability have been seen in GNSS technology that sample at 10 Hz or above and in 

LPS units that are facilitated through UWB technology. However, despite the continued 

development into wearable technology, dynamic events such as high-intensity 

accelerations and decelerations are still questioned in the literature.  

It is now not uncommon for applied sport scientists to operate multiple athlete tracking 

systems in training and competition, with particular reference to association football. 

Global Navigation Satellite System devices are commonly worn in training, whilst optical 

systems may be implemented on matchday. Similarly, outdoor stadia are increasingly 

opting to utilise LPS technology within the stadium fittings to increase accuracy and 

reduce the impact of stadium infrastructure on GNSS signal quality. Limited research has 

explored the use of interchanging EPTS. Whilst the existing research suggests that 

exclusively operating one tracking technology is preferred, the publishing of corrective 

algorithms and mathematical equations suggests that interchanging systems is possible.  
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The volume and intensity metrics tracked by wearable technologies underpin the 

formation of team sport activity profiles. Speed-based metrics have seen substantial 

variation within team sport which is potentially due to a lack of standardised thresholds 

and descriptors of locomotion within research. Similarly, acceleration metrics have seen 

similar issues with variation in the thresholds determining the intensity of acceleration or 

deceleration events. However, the presence of data filtering upon EPTS via manufacturers 

may influence the validity and reliability of athlete acceleration as acceleration is a 

derivative measure. However, the current knowledgebase is limited as to the data filtering 

settings used by EPTS manufacturers and additionally any potential influence of data 

filtering upon athlete acceleration. Given the importance of acceleration as an 

underpinning metric in many team sport activity profiles, research should attempt to 

investigate the influence of data filtering upon athlete acceleration. 
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CHAPTER 3 - A SYSTEMATIC REVIEW OF THE 

QUANTIFICATION OF ACCELERATION EVENTS IN 

ELITE TEAM SPORT. 
 

3.1 Declaration of co-authorship and co-contribution 
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3.2 Introduction 

Through the continued development of athlete wearable technology, team sport 

practitioners have increasingly elected to monitor their athlete’s exercise volume and 

intensity during training and competition with EPTS (Linke et al., 2018; Malone et al., 

2017). Technologies, such as the Global Positioning System (GPS) and optical-based 

systems are established player tracking methods, whilst progressions have been made in 

the development of local positioning systems (LPS) and access to the Global Navigation 

Satellite System (GNSS). Regardless of the technology implemented, LPS and GNSS-

based tracking systems allow for the relatively unobtrusive and objective collection of a 

player’s locomotion during training and match-play, with information obtained on athlete 

distances and speeds (Aughey, 2011a; Malone et al., 2017). Tracking information allows 

for the creation of activity profiles for respective sports, which details the different 

volume and intensity placed upon athletes and positions played within that sport (Malone 

et al., 2017; Scott et al., 2016). For performance staff, an activity profile enables specific 

prescription of athlete training programs and rehabilitation processes that are centred 

towards preparing the athlete for the rigours of competition (Malone et al., 2017).  

The ability to change speed and direction through acceleration and deceleration are 

important attributes for successful performance in many team sports (Delaney, Cummins, 

et al., 2018; Delaney, Thornton, et al., 2018; Osgnach et al., 2010; Reilly et al., 2000). 

Subsequently, team sport research has produced a wide variety of metrics to assess 

acceleration in training and competition (Delaney, Cummins, et al., 2018; Harper et al., 

2019). Given the stochastic nature of team sport movement, the assessment of 

acceleration is imperative in depicting the activity profile of competition (Delaney, 

Cummins, et al., 2018). For example, team sport athletes across the football codes of 

rugby league, rugby union, association football and Australian football represent average 



51 

 

match speeds that would be considered low speed intensity at approximately 80 to 140 

m·min-1 (1.3 - 2.3 m·s-1) (Delaney, Cummins, et al., 2018). However, the football codes 

mentioned can see peak intensity up to 170 to 210 m·min-1 during a 1-minute moving 

average epoch and have been shown to further increase to an intensity up to 380 m·min-1 

with smaller moving average window lengths (e.g., 5 seconds) (Delaney, Duthie, et al., 

2016; Delaney, Thornton, Burgess, et al., 2017; Delaney, Thornton, Pryor, et al., 2017; 

Delaney, Thornton, et al., 2018; Howe et al., 2020). The wide range in intensity from 

match averages to competition peaks indicates that the ability to change speed 

(acceleration) is important to performance. In invasion/combat sports such as rugby 

league, where general play is contested in tight confines, acceleration volume is highest 

compared to other football codes, indicating the ability to rapidly change speed is 

important to successful performance in this code (Delaney, Duthie, et al., 2016; Delaney, 

Thornton, Burgess, et al., 2017; Delaney, Thornton, Pryor, et al., 2017; Delaney, 

Thornton, et al., 2018). Similarly, in American football, where players are also actively 

trying to gain or negate yardage, skill players such as wide receivers, defensive backs and 

line-backers accumulate substantial counts of high-accelerations (>3.5 m·s-2) per game 

(range: 26-38 counts per game) (Wellman et al., 2016).  

Whilst being able to perform accelerations is important to successful athletic 

performance, quantifying accelerations is also important to practitioners for athlete 

management (Harper et al., 2019). Accelerations incorporate a significant portion of the 

total overall exercise volume during team sport training and competition (de Hoyo et al., 

2016; Gastin et al., 2019; Harper et al., 2019; Russell, Sparkes, Northeast, Cook, Bracken, 

et al., 2016; Young et al., 2012). However, the magnitude of acceleration efforts can 

provide different sources of stimuli experienced by the athlete. For example, accelerations 

will place a greater metabolic cost on the body compared to deceleration events, as 
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accelerations require greater energy to fuel the change in speed (Gastin et al., 2019; 

Howatson & Milak, 2009; Osgnach et al., 2010; Young et al., 2012). Deceleration events 

however differ from accelerations with respect to the mechanically demanding, eccentric 

stimulus placed upon the body when braking (particularly at high intensity). Athlete 

breaking (decelerating) is dampened by soft-tissue structures which attempt to attenuate 

the force of each deceleration effort (de Hoyo et al., 2016; Gastin et al., 2019; Harper et 

al., 2019; Russell, Sparkes, Northeast, Cook, Bracken, et al., 2016; Thompson et al., 1999; 

Young et al., 2012). In team sport athletes, an increased count of high-intensity 

accelerations is associated with neuromuscular fatigue and muscle damage (marked by 

increased creatine kinase [CK]) post competition (Gastin et al., 2019; Nedelec et al., 

2014). Therefore, it is important that acceleration and deceleration can be appropriately 

quantified and monitored during training and competition to ensure athletes are 

adequately prepared for this volume (Delaney, Cummins, et al., 2018; Delaney, Duthie, 

et al., 2016). 

For team sport practitioners and researchers however, the existing research on 

acceleration and how acceleration volume in competition and training is quantified, has 

varied greatly between studies (Delaney, Cummins, et al., 2018; Harper et al., 2019). 

Currently there are a multitude of different methods in which to quantify accelerations in 

team sport research (Cummins et al., 2013). Specifically, acceleration in applied team 

sports has been quantified via threshold based counts, time or distance spent in certain 

thresholds (e.g., >3.5 m·s-2 Threshold for “high-intensity accelerations”) or more 

recently, by combining all absolute acceleration data (regardless of intensity) and 

averaging over a defined time period (Cummins et al., 2013; Delaney, Cummins, et al., 

2018; Malone et al., 2017; Nedelec et al., 2014; Sweeting, Cormack, et al., 2017; Varley, 

Fairweather, et al., 2012).  



53 

 

Regardless of the metric chosen to quantify acceleration, the measurement of acceleration 

is subject to the quality and filtering settings of the tracking system. In GNSS technology, 

there has been continual improvements in unit capabilities, with 10 Hz sample rates being 

deemed most valid and reliable for measuring acceleration (Akenhead et al., 2014; 

Delaney, Cummins, et al., 2018; Scott et al., 2016; Varley, Fairweather, et al., 2012). 10 

Hz devices have been stated to, at worst, detect an acceleration had occurred, but 

otherwise have possessed acceptable validity for accelerations at various starting 

velocities in straight running (CV: 3.6-5.9%) (Varley, Fairweather, et al., 2012). 

However, deceleration at a starting speed between 5 – 8 m·s-1 had greater variability (CV: 

11.3%) which was attributed to the rapid change in speed during deceleration compared 

to acceleration (Akenhead et al., 2014; Delaney, Cummins, et al., 2018; Varley, 

Fairweather, et al., 2012).  

To analyse the quality of positional data in GPS/GNSS technology, the horizontal dilution 

of precision (HDOP) and the average number of connected satellites is extracted (Malone 

et al., 2017; Witte & Wilson, 2004). For GPS/GNSS technology, HDOP and the number 

of satellites provide an indication of the quality of connection and signal strength 

(Aughey, 2011a; Witte & Wilson, 2004). However, despite the importance of HDOP and 

the number of satellite information, the reporting of these metrics has been inconsistent 

in team sport research (Malone et al., 2017). With the development of online GNSS 

planning tools providing evidence of the number of available satellites for a given period, 

researchers and practitioners should endeavour to compare the satellite tracking 

information from their devices compared to website-based tools outlining satellite 

availability. Extracting satellite quality information can then aid in assessing the overall 

data quality of metrics surrounding acceleration events. Given the importance of signal 

quality on athlete positioning data, the HDOP and the number of connected satellites are 
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significant variables that need to be reported upon in athlete tracking research. In practice, 

the publishing of HDOP and satellite data then aids practitioners to determine what data 

they should include and exclude in their athlete monitoring systems, including 

acceleration metrics. For example, HDOP values substantially greater than one or satellite 

numbers less than four to six, may be grounds for data exclusion in daily monitoring 

processes (Aughey, 2011a; Malone et al., 2017). Higher HDOP outputs indicate satellites 

closer together in proximity which is not optimal for athlete tracking. At least four 

satellites need to be connected to the receiver during human locomotion, but a greater 

number of satellites are believed to enhance athlete tracking data quality (Aughey, 2011a; 

Malone et al., 2017).  

The processing or calculation of an acceleration event may also influence the 

measurement of athlete acceleration (Malone et al., 2017). It is believed that despite the 

similarities in hardware between manufacturers, the filtering and minimum effort 

durations in the calculation of acceleration/deceleration largely differ between units, 

potentially creating technology-driven differences in acceleration/deceleration-based 

research (Malone et al., 2017; Thornton, Nelson, et al., 2019; Varley et al., 2017). Despite 

the previously stated need for greater consistency in the reporting of wearable technology 

specifications and processes, there are still large inconsistencies in reporting of 

acceleration in team sport research.  

With the ongoing development of athlete tracking systems as a measure of external athlete 

output and the approval to implement technology during competition, there is an 

increasing prevalence of the technology in team sport research (Harper et al., 2019; 

Malone et al., 2017). Additionally, with the extensive number of studies that have outlined 

activity profiles of respective sports during training and competition, numerous 

systematic reviews have been published (Harper et al., 2019; Hausler et al., 2016; Taylor 



55 

 

et al., 2017; Whitehead et al., 2018). However, there is currently no systematic review 

that has outlined the different metrics and the calculation of the metrics used to quantify 

accelerations in team sport research. A previous systematic review outlined and compared 

high and very high-intensity accelerations in competitive team sports but this study was 

dependent upon intensity thresholds, which limited the overall scope of the study (Harper 

et al., 2019). The introduction of metrics such as absolute acceleration prompted this 

review to include all acceleration events/metrics regardless of the magnitude, as 

ultimately all acceleration and deceleration events carry a physiological cost (Delaney, 

Cummins, et al., 2018). With the inevitable further developments in player tracking 

technologies (e.g., optical systems) and the importance of accelerations in team sport 

activity profiles, it is pertinent to review and appraise the metrics that have been used to 

quantify acceleration/deceleration. Therefore, the primary aim of this systematic review 

was to outline and compare the different methods that have been adopted to quantify 

acceleration and deceleration events in team sport research. A secondary aim was to 

identify the processing methods used by researchers in calculating 

acceleration/deceleration by way of data filtering methods and minimum effort durations. 
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3.3 Methods 

 

3.3.1 Study Design  

 

The systematic review was undertaken in accordance with the Preferred items for 

Systematic Reviews and Meta-Analyses (PRISMA) statement on the transparent 

reporting of systematic reviews (Moher et al., 2009).   

 

3.3.2 Search Strategy 

 

Three electronic databases (CINAHL, Medline and SPORTDiscus) were systematically 

reviewed in May 2020 by the researcher to identify articles that investigated the 

quantification of acceleration and/or deceleration as a metric in the monitoring of team 

sport athletes in either training or competitive environments. Peer-reviewed research 

articles published in the English language between January 1, 2010, and April 2020 were 

reviewed for selection into the study. The search terms devised for this review were 

constructed using the PICo framework, where population (team sport/team sport athletes), 

interest (Quantification of Acceleration/Deceleration metrics) and context (in competition 

or training) were accounted for. Search terms and exclusion criteria (Table 3-1) relating 

to team sport athletes and the quantification of acceleration and deceleration in 

competition or training were then identified (Table 3-2). Boolean operators “OR” and 

“AND” were used in the final search to combine all search terms together (Table 3-2).  

 

 

 

 

 



57 

 

3.3.3 Screening Strategy and Study Selection 

 

Upon execution of the search, all returned studies were collated and exported into a 

reference manager (EndNote X9, Thomson Reuters, Philadelphia, PA, USA) for further 

review. The initial review process incorporated three stages to identify qualifying articles. 

Firstly, all duplicate articles were identified and removed from the reference manager. 

Secondly, studies were scanned via their abstracts and keywords to establish relevance. 

If studies were deemed to be irrelevant at this juncture they were excluded. If doubt 

remained after inspection of the abstract as to the relevance of the study, it would advance 

to the next stage for further scrutiny. The final stage consisted of reviewing the full-text 

documents of each study and excluding articles that were subject to the exclusion criteria 

(Table 3-1). If doubt remained as to the eligibility of respective studies following this 

process, the researcher resolved the process through deliberation. If an article was 

identified through this process or identified in any other way other than the initial search 

it would be subject to the same review process to determine qualification.  
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Table 3-1. Search inclusion and exclusion criteria 

 

 

 

 

 

 

 

Study inclusion/exclusion criteria 

Inclusion Exclusion criteria 

Original research articles 

Systematic reviews, reviews, letters to 

the editors, non-peer reviewed articles, 

editorial, books, periodicals, surveys, 

opinion pieces, conference abstracts 

Team-based sports 

Outdoor court games (tennis, volleyball) 

Water-based, ice-based and sand-based 

sports. 

Participants with a mean age ≥ 18 years 
Research with the mean age of athletes 

below the age of ≤ 18 years. 

Elite-level, able bodied, participants 

playing at the elite domestic competition 

for their respective team sport or 

international representation above U18 

competition 

 

Sub-elite level, amateur and novice 

athletes or athletes not playing within the 

top tier of their respective domestic 

league/competitions. Athletes with a 

physical or mental disability. Referees & 

Officials 

Official team activities: Including 

competition/game/match observations 

and training sessions (e.g., small-sided 

games, match simulations, individual 

training drills) 

Validation or reliability studies on 

wearable technologies using athletes in 

an experimental setting 

GPS/GNSS-based trackers (Sampling ≥ 5 

Hz) 

Optical/LPS-based Camera Systems 

Accelerometers 

 

Acceleration or deceleration events 

measured during designated team 

activities of any magnitude and measured 

in any available metric (e.g., counts, 

metres, time spent, average acceleration, 

acceleration load) that is not combined 

with any separate metric (e.g., metabolic 

power) 

Combined metrics (metabolic power, 

repeat high-intensity efforts, PlayerLoad) 

Research available in English (full text) 
Research articles that are not published in 

English or cannot be accessed in English. 
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Table 3-2. Search terms and key words used in each database. Searches 1, 2, 3 and 

4 were combined with ‘AND’. 

 

 

 

Key Search Terms Related Search Terms 

1. 

Acceleration/Deceleration 

accelerat* OR decelerat* OR metabolic power OR 

metabolic load OR energetic cost 

  

2. Athlete Tracking 

System 

global positioning system* OR GPS OR global 

navigation satellite system* OR GNSS OR local 

positioning system* OR LPS OR microtechnology OR 

microsensor* OR tracking system* OR athlete tracking 

system OR notational analysis OR camera-based 

tracking OR optical tracking system 

3. Team sport team sport* OR team-sport* OR intermittent sport OR 

professional team sport OR elite sport OR elite team 

sport OR australian rules football OR australian rules OR 

australian football OR australian football league OR 

AFL OR australian football team OR australian rules 

football team OR australian football club OR australian 

rules football club OR soccer OR soccer player OR 

soccer team OR football OR footballer OR football 

player OR football team OR field hockey OR field 

hockey athlete OR field hockey player OR rugby league 

OR rugby OR rugby league player OR rugby league 

team  OR rugby football OR rugby league competition 

OR rugby union OR rugby union player OR rugby union 

competition OR rugby union club OR rugby sevens OR 

rugby sevens competition OR lacrosse OR lacrosse 

competition OR american football OR american football 

player OR national collegiate athletic association OR 

NCAA OR gaelic football OR gaelic football player OR 

hurling OR hurling player OR cricket OR netball OR 

basketball  

 

4.Training/Competition movement demands OR movement pattern OR external 

load OR external demands OR physical workload OR 

physical demand* OR activity demand* OR activity 

profile OR activit* profile* OR match profile OR match 

demand* OR match play OR match-play OR match 

intensit* OR game load* OR game intensit* OR 

competit* demand* OR training OR training demands 

OR practice OR small sided games OR match simulation 

OR game simulation  
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3.3.4 Data Extraction 

 

All relevant search data was extracted into a custom-made Microsoft Excel spreadsheet 

by the researcher. The extracted data from each eligible study included: athlete population 

(sport, competition, age, height, weight), athlete tracking system used (e.g., GNSS, LPS 

or camera-based) and the associated properties (e.g., unit sample rate, HDOP, number of 

satellites), acceleration metrics measured (e.g., counts, distance, or average acceleration), 

the filtering/processing method used to quantify the acceleration and any relevant 

acceleration findings. All acceleration events, regardless of the magnitude were included 

into the analysis. There were no exclusion criteria based on the speed threshold of the 

acceleration event. Similarly, all organised team activities, (training and competition) 

were eligible for inclusion into the study. Studies that only presented information on 

tracking reliability or validity in an experimental setting were excluded from analysis. 

Additionally, given the recent guidance on the reporting of GPS/GNSS device properties 

in research and similar systematic review publications, all available GPS/GNSS 

information was extracted from each relevant study (Harper et al., 2019; Malone et al., 

2017). Specifically, the characteristics observed included: HDOP, number of satellites 

connected during activity, device sample rate, model and manufacturer. 
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3.4 Results 

 

3.4.1 Search Results 

 

The combined search of three databases returned 706 studies (SPORTSDiscus = 263, 

Medline = 272, CINAHL = 171) for analysis. All 706 studies were exported into a 

reference manager where 357 articles were removed as being duplicates. This resulted in 

the screening of 349 titles and abstracts. Of these titles and abstracts, 167 articles were 

deemed well outside the scope of the review and were subsequently removed. 182 full-

text articles were reviewed and assessed relative to the parameters of the inclusive criteria. 

Upon review of all full text articles, 62 were excluded based on athlete skill level (n = 

27), athlete age (n = 14), GPS sample rate (n = 12), inappropriate study type (n = 3) and 

other exclusions (including accelerometer derived acceleration and the use of combined 

metrics such as metabolic power) (n = 6). 120 studies remained at the completion of this 

process. Additionally, four studies were identified and included outside of the database 

search via the review process for this research. Therefore, 124 studies were included. 

Figure 3-1 identifies the classification of studies and pathway of eligibility into the study. 
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Figure 3-1. Systematic review inclusion process for qualification into the review 
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3.4.2 Study Characteristics 

 

The accepted studies in this review outlined acceleration volume and/or intensity during 

an organised, elite team sport activity. This was measured through various player tracking 

technologies, including GPS/GNSS, local positioning systems or optical-based tracking 

systems. The results of this review are focused on how acceleration was quantified in 

these studies and the metrics used to present the acceleration activity profile. The 

characteristics of each of the included studies are summarised in Table 3-3. 
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Table 3-3. Tracking technology and acceleration/deceleration characteristics of each included study 

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 

Interval/ 
MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Akenhead 

et al., 2016) 
Association 

Football 
GPS 

Catapult 

Sports 

MinimaxX 

S4 
10 Hz 0.9 ± 0.1 12 ± 1 

Acc 

Dec 

Smoothing 

Filter of 

0.5s 

0.5s 

Low:   

1 – 2 

 

Moderate:  

2 – 3 

 

High: 

 >3 

 

Total: 

>1  

Distance  

(m) 

Distance attained in 

respective threshold 

band 

 

Acc/dec also pooled 

at 1 and 3 m·s-2 

(Akenhead et 

al., 2013) 
Association 

Football GPS 
Catapult 

Sports 
MinimaxX  10 Hz 0.8 ± 0.1 13 ± 1 

Acc 

Dec 
N/S N/S 

Low:   

1 – 2 

 

Moderate:  

2 – 3 

 

High: 

 >3 

 

Total: 

>1 

Acc & Dec 

Distance (m) 

Threshold-based sum 

of acc/dec distances 

(Akiyama et 

al., 2019) 
Lacrosse GPS Polar Electro 

Polar 

Team Pro 
10 Hz N/S N/S 

Acc 

Dec 
N/S N/S 

Low: 

0 – 1.99 

 

Moderate: 

2.0 – 3.99 

 

High: 

> 4 

Counts  

(n) 

Efforts in respective 

threshold band 

(Altavilla et 

al., 2017) 
Association 

Football GPS K-Sport N/S 10 Hz N/S N/S 
Acc 

Dec 
N/S N/S 

High: 

 >2 

 

Distance  

(m) 

Distance attained in 

respective threshold 

band 
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Table 3-3. Continued 

 

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 
Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Aughey, 

2010) 
Australian 

Football 
GPS 

Catapult 

Sports 

MinimaxX 

Team 

Sport 

2.0 

5 Hz N/S N/S Acc N/S 0.4 s 
Maximal: 

>2.78 

Counts  

(n) 

 

Counts per 

minute 

(n/min-2) 

At least two 

consecutive efforts 

at same rate of 

change in speed 

(0.4s) respective 

threshold band 

 

(Aughey, 

2011b) 

Australian 

Football 
GPS 

Catapult 

Sports 

MinimaxX 

Team 

Sport 

2.0 

5 Hz N/S N/S Acc N/S 0.4 s 
Maximal: 

>2.78 

Counts  

(n) 

 

Counts per 

minute 

(n/min-2) 

At least two 

consecutive efforts 

at same rate of 

change in speed 

(0.4s) respective 

threshold  

 

Efforts with respect 

to activity time  

 

(Aughey, 

2013) 

Australian 

Football 
GPS 

Catapult 

Sports 

MinimaxX 

Team 

Sport 

2.0 

5 Hz 1.5 ± 0.9 7.5 ± 1.2 Acc N/S N/S 
Maximal: 

>2.78 

Counts  

(n) 

 

Counts per 

minute 

(n/min-2) 

Efforts with respect 

to activity time 

(Aughey et 

al., 2014) 

Australian 

Football 
GPS 

Catapult 

Sports 

MinimaxX 

Team 

Sport 

2.0 

5 Hz N/S N/S Acc N/S 0.4 s 
Maximal: 

>2.78 

Counts  

(n) 

 

Counts per 

minute 

(n/min-2) 

At least two 

consecutive efforts 

at same rate of 

change in speed 

(0.4s) respective 

threshold band 

 

Efforts with respect 

to activity time  
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Table 3-3. Continued 

 

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 
Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

  

(Bauer et 

al., 2015) 

Australian 

Football 
GPS 

Catapult 

Sports 

MinimaxX  

v4.0 
10 Hz 1.8 ± 0.4 N/S Acc N/S N/S 

Low: 

0 – 2.77 

 

Hard: 

≥2.78 

Counts  

(n) 

 

Distance  

(m) 

 

Efforts in respective 

threshold band 

 

Distance attained in 

respective threshold 

band 

(Bayliff et 

al., 2019) 

American 

Football 
GPS 

Catapult 

Sports 

Optimeye  

S5 
10 Hz N/S N/S 

Acc 

Dec 
N/S N/S 

Band 1: 

0 – 1 

 

Band 2: 

1 – 2 

 

Band 3: 

2 – 3 
 

Band 4: 

3 – 10 

 

Distance 

(m) 

 

Metres attained in 

respective threshold 

band 

(Blair et al., 

2017) 
Rugby 

Sevens 
GPS GPSports SPI Pro 10 10 Hz N/S N/S 

Acc 

Dec 
N/S N/S 

Low: 

1.5-2.5 

 

High: 

>2.5-3.6 

Counts  

(n) 

 

Efforts in respective 

threshold band 

(Bowen et 

al., 2019) 
Association 

Football 
GPS  

Optical 

STATSports 

ChyronHego 

Viper 2 

TRACAB 
10 Hz N/S N/S 

Acc 

Dec 
N/S 0.5 s 

All: 

>0.5 

Counts  

(n) 

 

Efforts in respective 

threshold band 

lasting at least 0.5 s 

and  

> 0.5 m·s-2 
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Table 3-3. Continued 

 

 

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 
Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Bradley et 

al., 2010) 
Association 

Football Optical 
ProZone 

Sports 

ProZone 

Version 

3.0 

N/A N/A N/A Acc N/S N/S 

Medium: 

>2.5-4 

 

High:  

> 4 

Counts 

(n) 

Efforts in respective 

threshold band 

(Brooks et 

al., 2020) 
Netball LPS 

Catapult 

Sports 

Catapult 

T6 

ClearSky 

10 Hz N/A N/A 
Acc 

Dec 
N/S 0.2 s 

Z1: 

0–2 

 

Z2: 

 2–3.5 

 

Z3:  

3.5–6 

 

Z4:  

6–10 

Acceleration 

Density: 

(Average 

Acc/Dec) 

(m·s−2) 

 

Acceleration 

Density 

Index: 

(avg 

Acc/Dec per 

10 m; m·s−2) 

 

Total 

Acceleration 

Load: 

 

(total 

Acc/Dec; 

m·s−2) 

 

Distance 

(m) 

Average acc 

values across the 

specified period 

 

 

Average acc 

performed per 10 m 

of distance  

 (Acc 

Load/Distance) 

 

 

 

Sum of acc values 

across the analysed 

period (acc values 

were calculated at 

0.2 s intervals) 

 

Distance attained in 

respective threshold 
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Table 3-3. Continued 

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 
Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Campos-

Vázquez et 

al., 2019) 

Association 

Football GPS 
Catapult 

Sports 

MinimaxX 

S4 
10 Hz N/S N/S 

Acc 

Dec 
N/S N/S 

Moderate:  

2 – 3  

 

High: 

 > 3 

Distance per 

hour  

(m·hr−1) 

Distance attained in 

respective threshold 

 

(Chesher et 

al., 2019) 

Field 

Hockey 
GPS 

Catapult 

Sports 

MinimaxX  

S4 
10 Hz 

0.88 ± 

0.03 
11 ± 0.59 Dec N/S N/S 

Low: 

-3 – -5.99 

 

Medium: 

-6 – -8.99 

 

High: 

-9 – - 

11.99 
 

Very 

High: 
 

<-12 

Counts  

(n) 

 

Average 

Deceleration  

(m·s-2) 

Efforts in respective 

threshold band 

 

Mean Dec in each 

competitive match 

 

(Clemente 

et al., 2019) 
Association 

Football GPS 
JOHAN 

Sports 
N/S 10 Hz N/S N/S 

Acc 

Dec 
N/S N/S 

High: 

>3 

Counts  

(n) 

Efforts in respective 

threshold band 

(Couderc et 

al., 2019) 

Rugby 

Sevens 
GPS 

Digital 

Simulation 

Sensor 

Everywher

e 

8 Hz N/S N/S Acc 

Butterworth 
low-pass  

2nd order 

 

Cutoff 

frequency: 

1 Hz 

0.5 s   
High: 

>2.5 

Counts 

(n) 

Efforts in respective 

threshold band 
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Table 3-3. Continued 

 

a15 Hz device interpolated from 5 Hz  

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 

Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Coutts et 

al., 2015) 
Australian 

Football 
GPS 

Catapult 

Sports 

MinimaxX 

Team 

Sport 2.5 

10 Hz N/S N/S 
Acc 

Dec 
N/S 0.2 s > 2.78  

Counts  

(n) 

Two consecutive 

samples exceeding 

2.78 m· s-2 

(Cummins 

et al., 

2016) 

Rugby 

League 
GPS GPSports SPI Pro X 15 Hza N/S N/S 

Acc 

Dec 

Butterworth 
4th order 

 

Cutoff 

frequency: 

1 Hz 

N/S 

Moderate:  

<1.12 

 

High: 

1.13 – 2.78 

 

Very 

High:  

> 2.78  

 

Counts per 

minute 

(n/min-2) 

Efforts in respective 

threshold band with 

respect to activity 

time 

(Cummins 

et al., 2019) 
Rugby 

League 
GPS 

Catapult 

Sports 

Optimeye 

S5 
10 Hz N/S N/S 

Acc 

Dec 
N/S N/S 

All: 

>1.5 

Counts  

(n) 

Efforts in respective 

threshold band 

(Cummins 

et al., 2018) 

Rugby 

League 
GPS GPSports SPI Pro X 15 Hza N/S N/S 

Acc 

Dec 

Butterworth 
4th Order 

 

Cutoff 

frequency: 

1 Hz 

N/S 

Moderate: 

 < 1.12  

 

High:  

1.13– 2.78  

 

Very 

High:  > 

2.78 

Counts  

(n) 

 

 

Efforts in respective 

threshold band 
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Table 3-3. Continued 

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 

Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(D. 

Cunningha

m et al., 

2016) 

Rugby 

Union 
GPS STATSports Viper 10 Hz N/S N/S 

Acc 

Dec 
N/S N/S 

Moderate:  

2 – 3 

 

High:  

3 – 4  

 

Severe:  

>4 

Counts  

(n) 

Efforts in respective 

threshold band 

(D. J. 

Cunningha

m et al., 

2016) 

Rugby 

Union 
GPS STATSports Viper 10 Hz N/S 

4 Best 

Satellites 

Acc 

Dec 
N/S N/S 

Moderate:  

2 – 3 

 

High- 

Intensity: 

3 – 4  

 

Severe:  

> 4  

 

Counts  

(n) 

Efforts in respective 

threshold band 

 

(Dalen et 

al., 2021) 

Association 

Football 

Radio 

Freq. 
Tracking 

ZXY Sport 

Tracking 

RadioEye 

Sensors 
20 Hz N/A N/A Acc N/S 0.5 s 

All: 

>2 

 

Counts per 

minute 

(n/min-2) 

Efforts lasting for at 

0.5s in respective 

threshold band 

 

Efforts in respective 

threshold band with 

respect to activity 

time  

(Dalen et 

al., 2016) 
Association 

Football 

Radio 

Freq. 
Tracking 

ZXY Sport 

Tracking 

RadioEye 

Sensors 
20 Hz N/A N/A 

Acc 

Dec 
N/S 0.5 s 

All: 

>2 

Counts (n) 

Distance (m) 

Efforts lasting for at 

0.5s in respective 

threshold band 
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Table 3-3. Continued 

 

a15 Hz device interpolated from 5 Hz  

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 

Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(de Hoyo et 

al., 2016) 
Association 

Football GPS GPSports SPI Elite 10 Hz N/S N/S 
Acc 

Dec 
N/S N/S 

Moderate: 

2 – 3 

 

High: 

>3 

 

Counts  

(n) 

Efforts in respective 

threshold band 

(Delaney, 

Cummins, 

et al., 2018) 

Rugby 

League 
GPS GPSports SPI HPU 5 Hz N/S N/S 

Acc 

Dec 
N/S N/S 

Low: 

1 

 

Moderate: 

2 

 

High: 

>3 

Counts 

(n) 

 

Time 

(s) 

 

Distance 

(m) 

 

Average Acc 

(m·s−2) 

 

Average Dec 

(m·s−2) 

 

Average 

Acc/Dec 

(m·s−2) 

Efforts, time and/or 

distance in 

respective threshold 

band 

 

Absolute values of 

acc averaged over 

given analysis 

period. 

 

Absolute values of 

dec averaged over 

given analysis 

period. 

 

Absolute values of 

acc/dec averaged 

over given analysis 

period 

(Delaney, 

Duthie, et 

al., 2016) 

Rugby 

League 
GPS GPSports SPI HPU 15 Hza 

 

1.1 ± 0.1 

 

8.3 ± 1.4 
Acc 

Dec 

Butterworth 
4th Order 

 

Cutoff 

frequency: 

1 Hz 

N/S N/A Average Acc 

(m·s-2) / min 

Absolute values of 

acc/dec averaged 

over given analysis 

period 



72 

 

 

Table 3-3. Continued 

 

 

a15 Hz device interpolated from 5 Hz  

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 

Interval/ 
MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Delaney, 

Thornton, 

Burgess, et 

al., 2017) 

Australian 

Football 
GPS 

Catapult 

Sports 

Optimeye 

S5 
10 Hz N/S N/S 

Acc 

Dec 
N/S N/S N/A 

Average Acc 

(m·s-2) / min 

Absolute values of 

acc/dec averaged 

over given analysis 

period 

(Delaney, 

Thornton, 

Pryor, et 

al., 2017) 

Rugby 

Union 
GPS GPSports SPI HPU 15 Hza N/S N/S 

Acc 

Dec 
N/S N/S N/A 

Average Acc 

(m·s-2) / min 

Absolute values of 

acc/dec averaged 

over given analysis 

period 

(Delaney, 

Thornton, 

et al., 2018) 

Association 

Football GPS 
Catapult 

Sports 

Optimeye 

S5 
10 Hz 

0.86 ± 

0.28 

10.6 ± 

1.7 

Acc 

Dec 
N/S N/S N/A Average Acc 

(m·s-2) / min 

Absolute values of 

acc/dec averaged 

over given analysis 

period 

(Delves et 

al., 2019) 

Field 

Hockey 
GPS 

Catapult 

Sports 

Optimeye 

X4 

 

MinimaxX 

S4 

10 Hz N/S N/S 
Acc 

Dec 
N/S N/S N/A 

Average Acc 

(m·s-2) / min 

 

Average Acc 

(m·s-2) 

Absolute values of 

acc/dec averaged 

over given analysis 

period 
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Table 3-3. Continued 

 

 

a15 Hz device interpolated from 5 Hz  

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 

Interval/ 
MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Dempsey 

et al., 2018) 
Rugby 

League 
GPS GPSports SPI Pro X  10 Hz N/S N/S 

Acc 

Dec 
N/S N/S 

High: 

>3.0 

Counts  

(n) 

 

Counts per 

minute 

(n/min-2) 

Efforts in respective 

threshold band 

 

Efforts calculated in 

absolute terms with 

respect to activity 

time and threshold 

(Dubois et 

al., 2017) 

Rugby 

Union 
GPS GPSports SPI HPU 15 Hza N/S N/S 

Acc 

Dec 
N/S N/S 

All: 

>2.5 

Counts  

(n) 

Efforts in respective 

threshold band 

(Duthie et 

al., 2022) 
Field 

Hockey 
GPS 

Catapult 

Sports 

Optimeye 

X4 
10 Hz N/S N/S 

Acc 

Dec 
N/S N/S N/A Average Acc 

(m·s-2) / min 

Absolute values of 

acc/dec averaged 

over given analysis 

period 

(Figueiredo 

et al., 2019) 
Association 

Football GPS STATSports Viper Pod 10 Hz N/S N/S 
Acc 

Dec 
N/S N/S N/S 

Counts 

(n) 

Efforts in respective 

threshold band 
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Table 3-3. Continued 

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 

Interval/ 
MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Furlan et 

al., 2015) 
Rugby 

Sevens 
GPS GPSports SPI HPU 5 Hz N/S N/S 

Acc 

Dec 

Butterworth 
4th Order  

 

cut off 

frequency: 

1 Hz 

N/S 

Moderate:  

2 – 3 

 

High: 

3.1 – 4  

 

Very 

High:  

> 4  

 

Counts per 

minute 

(n/min-2) 

Acc/Dec counts 

calculated from 

filtered 15 Hz data 

 

Efforts in respective 

threshold band with 

respect to activity 

time 

(Gabbett, 

2012) 

Rugby 

League 
GPS 

Catapult 

Sports 
MinimaxX 5 Hz N/S N/S Acc N/S N/S 

Mild:  

0.55 - 1.11 

 

Moderate: 

1.12 - 2.78 

 

Maximal: 

>2.79 

Counts  

(n) 

Efforts in respective 

threshold band 

(Gabbett, 

2010) 
Field 

Hockey 
GPS 

Catapult 

Sports 
MinimaxX 5 Hz N/S N/S Acc N/S 2 s 

High: 

>0.5 

Counts  

(n) 

Efforts in respective 

threshold band 

lasting at least 2 

seconds 

(Gabbett, 

2013b) 

Rugby 

League 
GPS 

Catapult 

Sports 

MinimaxX 

Team 

Sport 

2.5 

5 Hz N/S N/S Acc N/S N/S 
Maximal: 

>2.79 

Counts  

(n) 

 

Counts per 

minute 

(n/min-2) 

Efforts in respective 

threshold band 

 

Efforts in respective 

threshold band with 

respect to activity 

time 
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Table 3-3. Continued 

 

a15 Hz device interpolated from 5 Hz  

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 
Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Gabbett et 

al., 2012a) 
Rugby 

League 
GPS 

Catapult 

Sports 
MinimaxX 5 Hz N/S N/S Acc N/S N/S 

Mild:  

0.55 - 1.11 

 

Moderate: 

1.12 - 2.78 

 

Maximal: 

>2.79 

Distance  

(m) 

Distance in 

respective threshold 

band 

 

(Gabbett & 

Ullah, 

2012) 

Rugby 

League 
GPS 

Catapult 

Sports 
MinimaxX 5 Hz N/S N/S Acc N/S N/S 

Mild:  

0.55 - 1.11 

 

Moderate: 

1.12 - 2.78 

 

Maximal: 

>2.79 

Distance  

(m) 

Distance in 

respective threshold 

band 

 

(Garvican 

et al., 2014) 
Association 

Football GPS 
Catapult 

Sports 

MinimaxX 

Team 

Sport 

4.0 

10 Hz N/S N/S Acc N/S N/S 
Maximal: 

>2.78 

Counts 

(n) 

 

Counts per 

minute 

(n/min-2) 

Efforts in respective 

threshold band  

 

Efforts in respective 

threshold band with 

respect to activity 

time  

(Gaudino et 

al., 2014) 
Association 

Football GPS GPSports SPI Pro X 15 Hza N/S 

Range: 

8-11 

Satellites 

Acc 

Dec 
N/S 1 s  

Moderate:  

2 – 3 

 

High: 

 >3 

Counts  

(n) 

 

Maximum 

Acc/Dec 

 

(m·s-2) 

 

Efforts in respective 

threshold band 

lasting for at least 1 

s 

 

Maximum acc & dec 

effort in analysed 

period. 
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 Table 3-3. Continued 

a15 Hz device interpolated from 5 Hz  

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 
Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Gaudino et 

al., 2015) 
Association 

Football GPS STATSports Viper 10 Hz N/S N/S 
Acc 

Dec 
N/S 0.5 s 

Total: 

>3  

Counts  

(n) 

 

Counts per 

minute 

(n/min-2) 

Efforts in respective 

threshold band 

lasting for at least 

0.5 s and of 

magnitude >0.5 

m·s−2 

 

 

 

(Hauer et 

al., 2021) 

Lacrosse GPS Polar Electro 
Polar 

Team Pro 
10 Hz N/S N/S 

Acc 

Dec 
N/S N/S 

Z1:  

0–1.0 

 

Z2:  

1.0–2.0 

 

Z3:  

2.0–3.0 

 

Z4:  

>3.0 

Counts  

(n) 

Efforts in respective 

threshold band 

(Higham et 

al., 2012) 
Rugby 

Sevens 
GPS 

Catapult 

Sports 

MinimaxX 

Team 

Sport 2.5 

5 Hz N/S N/S 
Acc 

Dec 
N/S 0.4 s 

 

Moderate: 

2 – 4 

 

High: 

>4 
 

Counts per 

minute 

(n/min-2) 

Efforts in respective 

threshold band with 

respect to activity 

time 

(Higham et 

al., 2016) 

Rugby 

Sevens 
GPS GPSports SPI Pro X 15 Hza N/S N/S 

Acc 

Dec 
N/S 1s  

Total: 

>1 

Counts per 

minute 

(n/min-2) 

Efforts in respective 

threshold band with 

respect to activity 

time lasting at least 

1 second. 
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Table 3-3. Continued 

 

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 

Interval/ 
MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Hoppe et 

al., 2017) 
Association 

Football GPS 
Catapult 

Sports 

Minimax

X 

S4 

10 Hz 1.1 ± 0.1 
11.8 ± 

0.5 

Acc 

Dec 

Butterworth  

2 Passes 

Cutoff: 

1 Hz 

 

N/S 
High: 

>3 

Time 

(s) 

Time spent in 

respective threshold 

band 

 

 

(Ihsan et 

al., 2021) 

Field 

Hockey 
GPS 

Catapult 

Sports 

Minimax

X 

Team 

Sport 

2.5 

5 Hz N/S N/S 
Acc 

Dec 
N/S N/S 

High: 

>2 

Counts  

(n) 

Efforts in respective 

threshold band 

(Ingebrigts

en et al., 

2015) 

Association 

Football 
Radio 

Tracking 
ZXY 

SportTracking 

ZXY 

Sport 

Chip 

40 Hz N/A N/A Acc N/S 0.5 s 
Total: 

>2 

Counts  

(n) 

 

1) The start of Acc 

is marked by the 

Acc reaching the 

minimum limit (1 

m·s)  

 

2) Acc has to reach 

2 m·s  

3) Acc must remain 

above the 2 m·s for 

at least 0.5 s.  

 

4) The duration of 

the Acc lasts until it 

passes the minimum 

Acc limit (1 m·s) 
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Table 3-3. Continued 

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellite 

Acc 

/Dec 
Filter 

Calculation 

Interval/ 
MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Jackson et 

al., 2018) 
Field 

Hockey 

GPS 

 

Catapult 

Sports 

 
MinimaxX 

S4 

Optimeye 

S5 

10 Hz 

 
MinimaxX 

  

(0.89 

[0.04]) 

 

Optimeye 

S5:  

(0.67 

[0.05]) 

 

N/S 
Acc 

Dec 

Smoothing 

Filter 

0.2 s - 

Calc 

0.6 s – 

Minimum 

Effort 

Duration 

Total: 

>1.46 

 

Maximum 

Count per 

athlete 

Counts  

(n) 

 

Maximum 

Acc/Dec 

(m·s-2) 

Efforts in respective 

threshold band 

 

Max Acc/Dec 

recorded 

 

(Jaspers, 

De Beéck, 

et al., 2018) 

Association 

Football GPS 
Catapult 

Sports 

Optimeye 

S5 
10 Hz N/S N/S 

Acc 

Dec 
N/S N/S 

Z1:  

0 – 1  

 

Z2:  

1 – 2   

 

Z3:  

2 – 3.5  

 

Z4:  

>3.5 

Counts  

(n) 

 

Distance 

(m) 

Efforts in respective 

threshold band  

 

Distance attained in 

respective threshold 

band 

 

(Jaspers, 

Kuyvenhov

en, et al., 

2018) 

Association 

Football GPS 
Catapult 

Sports 

Optimeye 

S5 

 

MinimaxX 

S4 

10 Hz <1.5 
≥8 

satellites 

Acc 

Dec 

Smoothing 

Filter 

0.2 s 

0.4 s 
Total: 

>1 

Counts  

(n) 

Efforts in respective 

threshold band  
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Table 3-3. Continued 

 

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 

Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Johnston, 

Devlin, et 

al., 2019) 

Rugby 

League 
GPS STATSports Apex 10 Hz 

0.76 ± 

0.25 

17.7 ± 

1.9 

Acc 

Dec 
N/S N/S N/A 

Average Acc 

(m·s-2) / min 

Absolute values of 

acc/dec averaged 

over given analysis 

period 

(Johnston 

et al., 2022) 

Australian 

Football 

 

Rugby 

League 

GPS 

AF: 

Catapult 

Sports 

 

RL: 

STATSports 

AF:  

Optimeye 

S5 

 

RL: 

Apex 

10 Hz 

AFL:  

0.69 ± 

0.09 

 

NRL: 

 0.76 ± 

0.25 

AFL:  

10.5 ± 

0.65 

 

NRL:  

17.7 ± 

1.90 

Acc 

Dec 
N/S N/S N/A 

Average Acc 

(m·s-2) / min 

Absolute values of 

acc/dec averaged 

over given analysis 

period 

(Johnston, 

Weaving, et 

al., 2019) 

Rugby 

League 
GPS 

Catapult 

Sports 

Optimeye  

S5 
10 Hz N/S N/S 

Acc 

Dec 
N/S N/S N/A 

Average Acc 

(m·s-2) / min 

Absolute values of 

acc/dec averaged 

over given analysis 

period 
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Table 3-3. Continued 

Study Team Sport Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 

Interval/ 
MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 
Calculation of Metric 

(Johnston et 

al., 2015a) 
Australian 

Football 
GPS Catapult Sports 

MinimaxX 

S3 

 

MinimaxX 

S4 

S3:  

5 Hz 

 

S4: 

10 Hz 

1.0 ± 0.3 
12.2 ± 

0.7 

Acc 

Dec 
N/S N/S 

Low:  

0.65–1.46 

 

Moderate: 

1.47–2.77 

 

High:  

>2.78 

 

 

Counts per 

minute 

(n/min-2) 

 

Distance per 

minute  

(m/min) 

 

Time 

(%) 

 

 

Efforts calculated in 

absolute terms with 

respect to activity 

time and threshold 

 

Distance in respective 

threshold band with 

respect to activity 

time and threshold 

 

Time spent as a 

percentage in 

respective threshold 

band 

 

(Johnston et 

al., 2015b) 
Australian 

Football 
GPS Catapult Sports 

MinimaxX 

S3 
 

MinimaxX 
S4 

 

5 Hz 

 

10 Hz 
1.0 ± 0.2 

12.1 ± 
0.7 

Acc 

Dec 
N/S N/S 

Low:  

0.65 - 1.46 

 

Moderate: 

1.47 - 2.77 

 

High: 

 >2.78 

Counts per 

minute 

(n/min-2) 

 

Distance per 

minute  

(m/min-2) 

 

Time  

(%. min-2) 

 

 

Efforts in respective 

threshold band with 

respect to activity 

time and threshold 

 

Distance attained in 

respective threshold 

band with respect to 

activity time and 

threshold 

 

Percentage time spent 

in respective 

threshold band with 

respect to activity 

time  
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Table 3-3. Continued 

 

a15 Hz device interpolated from 5 Hz 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 

Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Johnston 

et al., 2016) 
Australian 

Football 
GPS 

Catapult 

Sports 

MinimaxX 

S3 
 

Minimax
X S4 

 

5 Hz 

 

10 Hz 

1.0 ± 

0.1 

12.2 ± 

0.6 

Acc 

Dec 
N/S N/S 

Low:  

0.65 - 1.46 

 

Moderate: 

1.47 - 2.77 

 

High: 

 >2.78 

Counts per 

minute 

(n/min-2) 

 

Distance per 

minute  

(m/min-2) 

 

Time  

(%. min-2) 

 

 

Efforts in respective 

threshold band with 

respect to activity 

time  

 

Distance attained in 

respective threshold 

band with respect to 

activity time  

 

Percentage time 

spent in respective 

threshold band with 

respect to activity 

time  

 

 

(Jones et 

al., 2015) 

Rugby 

Union 
GPS 

Catapult 

Sports 

MinimaxX 

V4 
10 Hz N/S N/S 

Acc 

Dec 
N/S N/S 

Low:  

1 – 2 

 

Moderate: 

2 – 3  

 

High:  

> 3  

 

Distance  

(m) 

Metres attained in 

respective threshold 

band 

(Kempton 

& Coutts, 

2015) 

Rugby 

League 

Nines 

GPS GPSports SPI Pro X 15 Hza N/S N/S 
Acc 

Dec 
N/S N/S 

Total: 

>2.78 

Counts  

(n) 

 

Counts per 

minute 

(n/min-2) 

Efforts in respective 

threshold band 

 

Efforts calculated in 

absolute terms with 

respect to activity 

time and threshold 
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Table 3-3. Continued 

 

a15 Hz device interpolated from 5 Hz  

 

Study Team Sport Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 

Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Kempton 

et al., 2017) 
Rugby 

League 
GPS GPSports SPI Pro X 15 Hza N/S N/S 

Acc 

Dec 
N/S N/S 

Total: 

> 2.78 

Counts  

(n) 

 

Counts per 

minute 

(n/min-2) 

Efforts in respective 

threshold band 

 

Efforts calculated in 

absolute terms with 

respect to activity 

time and threshold 

(Kempton, 

Sirotic, 

Rampinini, 

et al., 2015) 

Rugby 

League 
GPS GPSports SPI Pro 5 Hz  N/S 9.1 ± 1.4 

Acc 

Dec 
N/S 0.4 s 

Total: 

>2.78 

Counts  

(n) 

 

Two consecutive 

samples exceeding 

2.78 m· s-2 

(Lacome et 

al., 2014) 
Rugby 

Union 

PC-

based 
tracking 

Sport 

Universal 

Process 

Amisco 

Pro 

10 Hz 

 
 Speed 

 

N/A N/A Acc 

Butterworth 
low-pass  

2nd order 

 

Cutoff 

frequency: 

1 Hz 

 

Double 

phase-lag 

filter 

0.5 s 

Z1: 

1 – 2 

 

Z2: 

2 – 3 

 

Z3: 

>3  

Mean 

Acceleration 

(m·s-2) 

Values of acc 

averaged over given 

analysis period. 

 

Distribution of acc 

values over given 

analysis period with 

respect to thresholds 
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Table 3-3. Continued 

 

 

 

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 

Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Lacome et 

al., 2014) 
Rugby 

Union 

PC-
based 

tracking 

Sport 

Universal 

Process 

Amisco 

Pro 

10 Hz 

 
 Speed 

 

N/A N/A Acc 

Butterworth 
low-pass  

2nd order 

 

Cutoff 

frequency: 

1 Hz 

 

Double 

phase-lag 

filter 

0.5 s 

Z1: 

1 – 2 

 

Z2: 

2 – 3 

 

Z3: 

>3  

Mean 

Acceleration 

(m·s-2) 

Values of acc 

averaged over given 

analysis period. 

 

Distribution of acc 

values over given 

analysis period with 

respect to thresholds 

(Malone et 

al., 2018) 
Association 

Football GPS 
Catapult 

Sports 

Optimeye 

G5 
10 Hz N/S N/S 

Acc 

Dec 
N/S N/S 

High: 

>3 

Counts  

(n) 

Efforts in respective 

threshold band 
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Table 3-3. Continued 

 

a15 Hz device interpolated from 5 Hz  

 

Study Team Sport Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 
Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Mara et 

al., 2016) 
Association 

Football GPS GPSports N/S 15 Hza N/S 
5-8 

Satelites 
Acc N/S N/S 

Efforts: 

>2 

Time 

(s) 

 

Distance  

(m) 

 

Max 

Distance 

(m) 

 

Max  

Acceleration 

(m·s-2) 

 

Repeat 

Acceleration 

 

 

Average time spent 

in acc in analysed 

period 

 

Average distance 

accumulated in 

analysed period 

 

Average max 

distance accumulated 

in analysed period 

 

Max acc effort in 

analysed period 

 

Acc efforts 

performed with <21 

seconds separation 

(Mara et 

al., 2015) 
Association 

Football GPS GPSports SPI HPU 15 Hza N/S N/S 
Acc 

Dec 
N/S N/S 

High: 

>2 

Counts 

(n) 

Efforts in respective 

threshold band 

(Marrier et 

al., 2019) 
Rugby 

Sevens 
GPS 

Digital 

Simulation 

Sensor 

Everywhere  

V2 

16 Hz < 2 7 [1] Acc N/S 0.5 s 
All: 

>2.5 

Counts 

(n) 

Efforts in respective 

threshold band 

lasting for at least 

0.5 s 
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Table 3-3. Continued 

 

 

 

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 
Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Martin-

Garcia et 

al., 2019) 

Association 

Football GPS STATSports Viper 10 Hz N/S N/S 
Acc 

Dec 
N/S N/S 

High: 

>3 

Counts 

(n) 

Efforts in respective 

threshold band 

(Martín-

García et 

al., 2020) 

Association 

Football GPS STATSports Viper 10 Hz N/S N/S 
Acc 

Dec 
N/S 0.5 s  

High: 

>3 

Counts 

(n) 

Efforts in threshold 

band lasting for at 

least 0.5 s and of 

magnitude > 0.5 

m·s-2  

(Martin-

Garcia et 

al., 2018) 

Association 

Football GPS STATSports Viper 10 Hz N/S N/S 
Acc 

Dec 
N/S N/S 

High: 

>3 

Counts 

(n) 

Efforts in respective 

threshold band 

(Modric et 

al., 2019) 
Association 

Football GPS 
Catapult 

Sports 

Optimeye 

S5 

Optimeye 

X4 

10 Hz N/S N/S 
Acc 

Dec 
N/S N/S 

Total 

Events:  

> 0.5 

 

High:  

>3 

Counts 

(n) 

Efforts in respective 

threshold band 
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Table 3-3. Continued 

 

Study Team Sport Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 

Interval/ 
MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 
Calculation of Metric 

(Montgome

ry & 

Maloney, 

2018) 

3x3 

Basketball 
GPS 

Catapult 

Sports 

Optimeye 

S5 
10 Hz N/S N/S 

Acc 

Dec 
N/S N/S 

Low:  

<2.5  

 

Medium:  

2.5–3.5 

 

High: 

 >3.5 

Intensity 

(m·s-2) 

Average intensity in 

respective threshold 

band. 

(Morencos 

et al., 2019) 

Field 

Hockey 
GPS GPSports SPI Elite 10 Hz N/S 

10.6 ± 

1.2 

Acc 

Dec 
N/S N/S 

Low: 

1 – 1.99 

 

Moderate: 

2.0 – 2.99 

 

High: 

> 3 

 

Counts  

(n) 

 

Counts per 

minute 

(n/min-2) 

Efforts in respective 

threshold band 

 

Efforts calculated in 

absolute terms with 

respect to activity 

time and threshold 

(Morencos 

et al., 2018) 
Field 

Hockey 
GPS GPSports SPI Elite 10 Hz N/S N/S 

Acc 

Dec 
N/S N/S 

Low:  

1.0–1.9 

 

Moderate: 

2.0–2.9  

 

High:  

> 3.0  
 

Counts  

(n) 

 

Counts per 

minute 

(n/min-2) 

Efforts in respective 

threshold band 

 

Efforts in respective 

threshold band with 

respect to activity 

time 

(Murray & 

Varley, 

2015) 

Rugby 

Sevens 
GPS 

Catapult 

Sports 

MinimaxX 

S4 
10 Hz N/S 

11.3 ± 

1.4 
Acc N/S 0.4 s  

Maximal: 

> 2.78 

Counts  

(n) 

 

Counts per 

minute 

(n/min-2) 

Efforts in respective 

threshold band 

lasting at least 0.4 s 

 

Efforts calculated in 

absolute terms with 

respect to activity 

time and threshold 

lasting at least 0.4 s 
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Table 3-3. Continued 

 

a15 Hz device interpolated from 5 Hz  

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 
Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Newans et 

al., 2019) 
Association 

Football GPS 
Catapult 

Sports 

Optimeye 

S5 

 

Optimeye 

X4 

10 Hz N/S N/S 
Acc 

Dec 
N/S 0.5 s 

 

Moderate: 

1 – 2 

 

High: 

>2 

 

 

Time 

(s) 

 

 

Ratio of 

Dec: Acc 

 

Time spent in each 

respective threshold 

lasting at least 0.5 s 

 

 

Duration of Dec 

(High) and Dec 

(Mod)  

divided by total Acc 

time (High + Mod) 

in each period. 

Determined a 

moderate and high 

Dec:Acc ratio 

 

(Owen et 

al., 2020) 

Association 

Football GPS STATSports Viper Pod 10 Hz N/S N/S 
Acc 

Dec 
N/S N/S 

Total: 

>3.3 

Counts 

(n) 

Efforts in respective 

threshold band 

(Owen et 

al., 2015) 
Rugby 

Union 
GPS GPSports SPI HPU 15 Hza N/S N/S 

Acc 

Dec 
N/S N/S 

Light: 

1 – 1.99 

 

Moderate: 

2.0 – 2.99 

 

Heavy: 

3 – 5.99 

 

Counts 

(n) 

Efforts in respective 

threshold band 
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Table 3-3. Continued 

 

 

 

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 
Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Oxendale 

et al., 2016) 
Rugby 

League 
GPS 

Catapult 

Sports 

MinimaxX 

Team 

Sport 2.5 

10 Hz N/S N/S 
Acc 

Dec 
N/S N/S 

Maximal: 

>2.79 

Counts  

(n) 

Efforts in respective 

threshold band 

(Palmer et 

al., 2022) 

Ultimate 

Frisbee 
GPS 

Catapult 

Sports 

Optimeye 

X4 
10 Hz 

0.90 ± 

0.10 

13.7 ± 

0.5 
Acc 

Proprietary 

Filter 
0.6 s 

Total: 

>1.5 

Counts 

(n) 

 

Counts per 

minute 

(n/min-2) 

 

Efforts in respective 

threshold band 

lasting for at least 

0.6 s and with 

respect to time 

(Guilherme 

Passos 

Ramos et 

al., 2019) 

Association 

Football GPS 
Catapult 

Sports 

MinimaxX 

Team S5 
10 Hz N/S N/S 

Acc 

Dec 
N/S N/S 

1: 

-1 – 1 

 

2: 

1 – 2.5 

 

3: 

> 2.5 

Counts  

(n) 

 

Counts per 

minute 

(n/min-2) 

Efforts in respective 

threshold band and 

with respect to time 

 

(Guilherme

. Passos 

Ramos et 

al., 2019) 

Association 

Football GPS 
Catapult 

Sports 

MinimaxX 

Team S5 
10 Hz 

0.75 ± 

0.3 

12.4 ± 

0.5 

Acc 

Dec 

Exponential 
Filter  

(from GPS 
Software) 

0.5 s 
Total: 

>1 

Counts 

(n) 

Efforts in respective 

threshold band 
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Table 3-3. Continued 

 

Study Team Sport Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 
Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 
Calculation of Metric 

(Passos 

Ramos et 

al., 2017) 

Association 

Football GPS 
Catapult 

Sports 

MinimaxX 

Team S5 
10 Hz 

0.75 ± 

0.3 

15.5 ± 

0.5 

Acc 

Dec 
N/S N/S 

Total: 

>2 

Counts 

(n) 

Efforts in respective 

threshold band 

(Peeters et 

al., 2019) 

Rugby 

Sevens 
GPS 

Digital 

Simulation 
Sensor 

Everywhere 
16 Hz 

1.35 ± 

0.34 
8 ± 1 Acc N/S N/S 

Total: 

>2.5 

Counts 

(n) 

 

Counts per 

minute 

(n/min-2) 

 

 

Efforts in respective 

threshold band 

 

Efforts calculated in 

absolute terms with 

respect to activity 

time 

(Polglaze et 

al., 2018) 
Field 

Hockey 
GPS 

Catapult 

Sports 

MinimaxX  

S4 
10 Hz 

1.00 ± 

0.07 

11.6 ± 

0.5 
Acc 

Proprietary 

Filter 
0.6 s 

Low: 

<2.0 

 

High: 

>2.0 

 

 

 

 

 

Counts 

(n) 

 

Counts per 

minute 

(n/min-2) 

 

 

Time  

(s) 

 

Distance 

(m) 

Eligible Acc was 

determined once a 

participant changed 

speed by 2 m.s for a 

minimum within 0.6 

s.  

 

Efforts in respective 

threshold band  

 

Efforts calculated in 

absolute terms with 

respect to activity 

time and threshold 

 

Time spent in 

respective threshold 

band 

 

Distance attained in 

respective threshold 

band 
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Table 3-3. Continued 

 

a15 Hz device interpolated from 5 Hz 

 

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 
Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

 

(Pollard et 

al., 2018) 

Rugby 

Union 
GPS STATSports Viper 10 Hz N/S N/S Acc N/S N/S 

Total: 

>3 

Counts per 

minute 

(n/min-2) 

Efforts in respective 

threshold band 

 

Efforts in respective 

threshold band with 

respect to activity 

time 

(Portillo et 

al., 2014) 

Rugby 

Sevens 
GPS GPSports SPI Pro X 15 Hza N/S N/S Acc N/S N/S 

Z1: 

>1.5 

Z2: 

>2.0 

Z3: 

>2.5 

Z4: 

>2.75 

Counts 

(n) 

Efforts in respective 

threshold band 

(M. J. 

Rennie et 

al., 2020) 

Australian 

Football 
GPS 

Catapult 

Sports 

Optimeye 

S5 
10 Hz 1.1 ± 0.1 

18.2 ± 

1.1 

Acc 

Dec 
N/S 

0.2 s 

Two 

Samples 

Efforts: 

>2.78 

Counts 

(n) 

Two consecutive 

samples in 

respective threshold 

band 

(Romero-

Moraleda 

et al., 2020) 

Field 

Hockey 
GPS GPSports SPI Elite 10 Hz N/S N/S 

Acc 

Dec 
N/S N/S 

Low:  

1 – 1.9 

Moderate: 

2 – 2.9 

High: 

>3 

Counts per 

minute 

(n/min-2) 

Efforts in respective 

threshold band with 

respect to activity 

time 
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Table 3-3. Continued 

 

 

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 
Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Russell et 

al., 2015) 
Association 

Football GPS STATSports Viper 10 Hz N/S N/S 
Acc 

Dec 
N/S N/S 

Total: 

>0.5 

 

High: 

>3 

Counts  

(n) 

Efforts in respective 

threshold band 

(Russell, 

Sparkes, 

Northeast, 

Cook, 

Love, et al., 

2016) 

Association 

Football GPS STATSports Viper 10 Hz N/S N/S 
Acc 

Dec 
N/S 0.5 s 

Total: 

>0.5 

 

High: 

>3 

Counts  

(n) 

Efforts in respective 

threshold band 

(Sangnier 

et al., 2019) 
Association 

Football GPS K-Sport K-GPS 10 Hz N/S N/S 
Acc 

Dec 
N/S 

0.4 s (over 

3s 

threshold) 

 

Distance:  

>2  

 

Counts:  

>3 
 

Counts per 

minute 

(n/min-2) 

  

Distance per 

min (m/min) 

Efforts >0.4 s (over 

3 m·s-2 threshold) 

Distance in 

threshold band with 

respect to activity 

time  

 

(Silva et al., 

2018) 

Association 

Football GPS STATSports Viper 10 Hz N/S N/S 
Acc 

Dec 
N/S 0.5 s  

Z1: 

 >2 

  

Z2:  

>2.5 

 

Z3:  

>3 

Counts 

(n) 

 

Counts per 

minute 

(n/min-2) 

Efforts in respective 

threshold band 

lasting at least 0.5 s 

of magnitude > 0.5 

m·s-2 
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Table 3-3. Continued 

 

 

 

 

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 
Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Smpokos 

et al., 

2018a) 

Association 

Football GPS STATSports 
Viper Pod 

2 
10 Hz N/S N/S 

Acc 

Dec 
N/S 0.5 s 

Total: 

>2 

Counts (n) & 

Counts per 

minute 

(n/min-2) 

Efforts in respective 

threshold band 

lasting at least 0.5 s 

of magnitude > 0.5 

m·s-2 

. (Smpokos 

et al., 

2018b) 

Association 

Football GPS STATSports 
Viper Pod 

2 
10 Hz N/S N/S 

Acc 

Dec 
N/S 0.5 s 

Total: 

>2 

Counts (n) & 

Counts per 

minute 

(n/min-2) 

Efforts in respective 

threshold band 

lasting at least 0.5 s 

of magnitude > 0.5 

m·s-2 

(Stevens et 

al., 2016) 
Association 

Football LPS Inmotio 
Inmotio 

LPS 
24 Hz N/A N/A Acc 

Weighted 

Gaussian 

Average 

N/S >2 Distance 

(m) 

Distance in 

respective threshold 

band 

(Stevens et 

al., 2017) 
Association 

Football LPS Inmotio LPS 
Inmotio 

LPS 
31 Hz N/A N/A 

Acc 

Dec 

Weighted 

Gaussian 

Average 

0.5 s 

Medium: 

>1.5 

High: >3 

Counts 

(n) 

Efforts in respective 

threshold band 
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Table 3-3. Continued 

 

a15 Hz device interpolated from 5 Hz 

 

 

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 
Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Suarez-

Arrones et 

al., 2016) 

Rugby 

Sevens 
GPS GPSports SPI Pro X 15 Hza N/S N/S 

Acc 

Dec 
N/S 1 s 

Maximal: 

2.78 – 4 

 

Extremely 

High: 

> 4 

Counts  

(n) 

1-second at  

>2.78 m·s-2  

or above 

(Suarez-

Arrones et 

al., 2014) 

Rugby 

Union 
GPS GPSports SPI Pro X 15 Hza N/S N/S Acc N/S N/S 

Maximal: 

>2.78 

Counts  

(n) 

Efforts in respective 

threshold band 

  

(Sullivan et 

al., 2014a) 

Australian 

Football 
GPS 

Catapult 

Sports 

MinimaxX 

Team 

Sport 2.5 

10 Hz 
1.25 ± 

0.19 
N/S Acc N/S N/S 

One 

Threshold: 

0 - 4 

Counts per 

minute 

(n/min-2) 

Efforts with respect 

to activity time 

(Sullivan et 

al., 2014b) 

Australian 

Football 
GPS 

Catapult 

Sports 

MinimaxX 

Team 

Sport 2.5 

10 Hz 
1.25 ± 

0.19 
N/S Acc N/S N/S 

One 

Threshold: 

0 - 4 

Counts per 

minute 

(n/min-2) 

Efforts with respect 

to activity time 
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Table 3-3. Continued 

 

 

 

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 
Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Sweeting, 

Aughey, et 

al., 2017) 
Netball 

Radio 

Tracking 

System 
WASP 

WASP 

Node 
10 Hz N/A N/A Acc 

Kalman 

Filter 
N/S N/A 

Intensity-

based 

clusters 

(m·s-2) 

Acceleration 

calculated from 

speed data. 

(Tee et al., 

2019) 

Rugby 

Union 
GPS GPSports SPI Pro 10 Hz N/S N/S Acc N/S N/S 

Efforts: 

>2.75 

Minutes per 

Accel 

(n/min) 

Efforts with respect 

to activity time 

(Tee et al., 

2016) 
Rugby 

Union 
GPS GPSports SPI Pro  5 Hz N/S N/S Acc N/S 1 s 

Maximal: 

>2.75 

Minutes per 

Accel 

(n/min) 

Efforts in respective 

threshold band with 

respect to activity 

time 

(Tee et al., 

2017) 

Rugby 

Union 
GPS GPSports SPI Pro  5 Hz N/S N/S Acc N/S N/S 

Total: 

>2.75 

Minutes per 

Accel 

(n/min) 

Efforts in respective 

threshold band with 

respect to activity 

time 
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Table 3-3. Continued 

 

a15 Hz device interpolated from 5 Hz 

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 
Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Thornton 

et al., 2018) 
Rugby 

League 
GPS GPSports SPI HPU  15 Hza N/S N/S 

Acc 

Dec 
N/S N/S N/A 

Acc/Dec 

Load  

(AU) 

Average absolute 

value of all acc/dec 

data relative to a 

defined period.  

 

 Absolute value 

multiplied by 

defined duration to 

convert to load 

metric 

(Varley & 

Aughey, 

2013) 

Association 

Football GPS GPSports SPI Pro 5 Hz N/S 8 ± 1 Acc N/S N/S 
Maximal: 

>2.78 

Counts  

(n) 

Efforts in respective 

threshold band 

(Varley et 

al., 2014) 

Association 

Football  
 

Rugby 

League 

 

Australian 

Football 

GPS 

AF & RL: 

Catapult 

Sports 

 

 
Association 

Football 
GPSports 

AF & RL: 

MinimaxX 

Team 

Sport 

2.5 

 
Association 

Football: 

SPI Pro 

 

5 Hz N/S N/S Acc N/S N/S 
Maximal: 

>2.78 

Counts  

(n) 

 

Counts per 

minute 

(n/min-2) 

Efforts in respective 

threshold band 

 

Efforts in respective 

threshold band with 

respect to activity 

time 
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Table 3-3. Continued 

 

 

 

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 
Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Vazquez-

Guerrero et 

al., 2018) 
Basketball LPS 

Realtrack 

Systems 

WIMU 

Pro 
20 Hz N/A N/A 

Acc 

Dec 
N/S N/S 

Total Acc: 

All counts 

 

High- 

Intensity: 

>2 

Peak 

Acceleration 

(m·s-2) 

 

Counts 

(n) 

 

Counts per 

minute 

(n/min-2) 

 

Highest acc value 

obtained during 

analysed period 

 

Efforts in respective 

threshold band 

 

Efforts in respective 

threshold band with 

respect to activity 

time 

(Vescovi & 

Frayne, 

2015) 

Field 

Hockey 
GPS GPSports  SPI Pro 5 Hz 

Values   

<4 

8–12 

Satellites 

connecte

d during 

collectio

n 

Acc 

Dec 
N/S N/S 

All 

Events: 

 

Counts  

(n) 

 

Efforts in respective 

threshold band 

 

 

(Vigh-

Larsen et 

al., 2018) 

Association 

Football 

Radio 

Tracking 

System 
Chryon-Hego 

ZXY  

Tracking 

System 

20 Hz N/A N/A 
Acc 

Dec 
N/S 0.5 s 

Total: 

>2 

Counts 

(n) 

 

Counts per 

minute 

(n/min-2) 

Efforts lasting at 

least 0.5 s and 

reaching at least 

1m·s-2 

 

Efforts lasting for at 

least 0.5 s and 

reaching at least   1 

m·s-2. 
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Table 3-3. Continued 

 

 

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 
Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Wehbe et 

al., 2014) 
Association 

Football GPS GPSports SPI Pro 5 Hz N/S N/S 
Acc 

Dec 
N/S 0.5 s 

Medium: 

2.5 – 4 

 

High: 

>4 

Counts  

(n) 

Efforts in respective 

threshold band 

lasting at least 0.5 s 

(Wellman 

et al., 2017) 

American 

Football 
GPS 

Catapult 

Sports 

MinimaxX 

S5 
10 Hz N/S N/S 

Acc 

Dec 
N/S N/S 

Low:   

0 – 1.0 

 

Medium: 

1.1 – 2.0  

 

High:  

2.1 – 3.0 

 

Maximal: 

>3.0 

Distance  

(m) 

Distance attained in 

respective threshold 

band 

(Wellman 

et al., 2019) 
American 

Football 
GPS 

Catapult 

Sports 

Optimeye 

S5 
10 Hz N/S N/S 

Acc 

Dec 
N/S N/S 

Low: 

0 – 1.0 

 

Medium: 

1.1 – 2.0 

 

High: 

2.1 – 3 
 

Maximal: 

>-3 

Distance  

(m) 

Distance attained in 

respective threshold 

band 
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Table 3-3. Continued 

 

a15 Hz device interpolated from 5 Hz 

 

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 
Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 

Calculation of 

Metric 

(Wellman 

et al., 2016) 
American 

Football 
GPS GPSports SPI HPU 15 Hza N/S N/S 

Acc 

Dec 
N/S N/S 

Moderate: 

1.5–2.5  

 

High: 

2.6–3.5  

 

Maximal:  

> 3.5  

 

Counts  

(n) 

Efforts in respective 

threshold band 

(White & 

MacFarlan

e, 2013) 

Field 

Hockey 
GPS 

Catapult 

Sports 
MinimaxX 5 Hz 

Scotland 

Analysis: 

1.3 ± 0.4   

 

Ukraine 

Analysis: 

1.0 ± 0.4   

Scotland 

Analysis: 

12.3 ± 

1.0  

 

Ukraine 

Analysis: 

10.3 ± 

1.2 

Acc N/S N/S 
High: 

>2 

Counts 

(n) 

Efforts in respective 

threshold band 

(White & 

MacFarlan

e, 2015a) 

Field 

Hockey 
GPS 

Catapult 

Sports 
MinimaxX 5 Hz 

Scotland 

Analysis: 

1.3 ± 0.4   

 

Ukraine 

Analysis: 

1.0 ± 0.4   

Scotland 

Analysis: 

12.3 ± 

1.0  

 

Ukraine 

Analysis: 

10.3 ± 

1.2 

Acc 

Dec 
N/S 1 s 

High: 

>2 

Counts 

(n) 

Efforts in respective 

threshold band 

lasting for at least 1 

s 
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Table 3-3. Continued 

 

 

Study 
Team 

Sport 
Device Manufacturer Model 

Sample  

Rate 

(Hz) 

HDOP 
No. 

Satellites 

Acc 

/Dec 
Filter 

Calculation 

Interval/ 

MED 

Threshold 

(m·s-2) 

Acc/Dec 

Metric 
Calculation of Metric 

(White & 

MacFarlane, 

2015b) 

Field 

Hockey 
GPS Catapult Sports MinimaxX 5 Hz 

0.99 ± 

0.2 

11.2 ± 

1.3 
Acc N/S >1 s 

High- 

Intensity: 

>3 

Counts  

(n) 

Efforts in respective 

threshold band lasting 

at least 0.5 s 

(Yamamoto et 

al., 2020) 

Rugby 

Union 
GPS GPSports SPI Pro X 5 Hz N/S N/S Acc N/S N/S 

AZ1: 

 1.5–2.0  

AZ2: 

 2–2.5 

AZ3:  

>2.5 

Counts  

(n) 

Efforts in respective 

threshold band 

 

(Young et al., 

2019) 

Hurling GPS STATSports Viper Pod 10 Hz N/S N/S 
Acc 

Dec 
N/S N/S 

Total: 

>2 

Counts 

(n) 

Efforts in respective 

threshold band 
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3.4.3 Team Sport Characteristics  

 

The team sport characteristics of each of the 124 studies is featured in Table 3-4. Of the 

124 articles, research from association football provided the greatest contribution of 

studies to the review (33.9%), followed by rugby league (14.2%), Australian Football 

(11.8%) and field hockey (11.0%). Athlete sex was mixed in each sport contribution, 

except for Australian and American football, basketball, hurling, rugby league, rugby 

league nines and ultimate frisbee.  
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Table 3-4 Characteristics of Studies 

 

 

Sport Study Count 
% Sport Contribution to 

Review 

Study Athlete Sex 

Athlete Level 

% Male % Female 

3x3 Basketball 1 0.8 50 50 Elite, Junior International 

American Football 4 3.1 100 0 Elite Collegiate 

Australian Football 15 11.8 100 0 Elite 

Basketball 1 0.8 100 0 Elite 

Field Hockey 14 11.0 66 33 Elite, Elite Collegiate 

Hurling 1 0.8 100 0 Elite 

Lacrosse 3 2.4 66 33 Elite 

Netball 2 1.6 0 100 Elite 
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Table 3.4 Continued 

Sport Study Count 
% Sport Contribution to 

Review 

Study Athlete Sex 

Athlete Level 

% Male % Female 

Rugby League 18 14.2 100 0 Elite 

Rugby League Nines 1 0.8 100 0 Elite 

Rugby Sevens 10 7.9 90 10 Elite 

Rugby Union 13 10.2 92 8 Elite, Junior International 

Association Football 43 33.9 88 12 Elite, Junior International 

Ultimate Frisbee 1 0.8 0 100 Junior International 

Total 127 100 75 25  
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3.4.4 Tracking Device Characteristics 

 

The wearable technology type, as well as respective manufacturers and devices is outlined 

in Table 3-5. Global Positioning System/GNSS-based studies were assessed on two data 

quality metrics. HDOP (mean ± SD) and the number of satellites (mean ± SD) in 

connection with the GPS device during athlete tracking were observed in this review. Of 

the 113 eligible GPS/GNSS studies, 23.9% (27/113 studies) of the included articles 

specified the mean HDOP for their research. For the number of satellite connections 

during the tracking period, 27.4% (31/113) of studies specified the mean ± SD value. This 

information is presented in Table 3-6.  
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Table 3-5 Tracking System Characteristics 

Tracking Technology Manufacturer Device Sample Rate 

GPS Catapult Sports Optimeye S5 

 

 

Optimeye G5 

 

Optimeye X4 

 

MinimaxX S5 

 

MinimaxX S4 

 

 

MinimaxX S3 

 

 

 

MinimaxX Team Sport 

2.0 

 

 

MinimaxX Team Sport 

2.5 

 

 

MinimaxX Team Sport 

4.0 

 

MinimaxX 

 

 

10 Hz 

 

 

10 Hz 

 

10 Hz 

 

10 Hz 

 

10 Hz 

 

 

5 Hz 

 

 

 

5 Hz 

 

 

 

5 Hz 

 

10 Hz 

 

10 Hz 

 

 

5 Hz 

 

10 Hz 

 STATSports APEX 

 

Viper 

 

 

Viper 2 

10 Hz 

 

10 Hz 

 

 

10 Hz 
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Table 3.5 Continued 

Tracking Technology Manufacturer Device Sample Rate 

 

GPS 

 

GPSports 

 

SPI Elite 

 

SPI HPU 

 

 

 

 

SPI Pro 

 

 

 

 

SPI Pro X 

 

10 Hz 

 

15 Hza 

 

5 Hz 

 

 

10 Hz 

 

15 Hza 

 

 

10 Hz 

 

 

 

 Polar Polar Team Pro 10 Hz 

 Digital Simulation SensorEverywhere 8 Hz 

16 Hz 

 JOHAN Sports Johan GPS 10 Hz 

 K-Sport K-GPS 10 Hz 

LPS Catapult Sports ClearSky T6 10 Hz 

 Realtrack Systems WIMU Pro 20 Hz 

 Inmotio Inmotio LPM 24 Hz 

  Inmotio LPM 31 Hz 

Radio Frequency Chyron Hego ZXY Tracking System 40 Hz 

  ZXY Tracking System 20 Hz 

 WASP WASP Node 10 Hz 

Optical-based tracking ProZone Sports ProZone 3.0 N/S 

 Sport 

Universal Process 
Amisco Pro 25 Hz 



106 

 

 

Table 3-6 GPS/GNSS data quality metrics of included studies 

 

 

 

GPS/GNSS 

Data Quality Metric 
Unit of Measure Studies that outlined variable 

% of Studies in Review that 

outlined information 

Horizontal Dilution of Precision 

(HDOP) 
Mean ± SD 27/113 23.9% 

Number of Satellites Connected Mean ± SD 31/113 27.4% 
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3.4.5 Acceleration Processing Characteristics 

 

The processing methods in which studies implemented to calculate acceleration events is 

outlined in Table 3-7. The speed/acceleration filters that were implemented to process 

athlete movement data was specified by 12.9% (16/124 studies) of the studies included 

in this review. The minimum effort duration for the calculation of acceleration metrics 

were specified in 32.3% (40/124 studies) of the included studies. The specified minimum 

effort duration of 0.5 s was most frequent in the included studies, followed by 0.4 s, 1 s 

and 0.2 s.  
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Table 3-7 Acceleration Characteristics of Included Studies 

 

 

 

Acceleration/Deceleration 

Calculation Metric 
Unit of Measure 

Minimum Effort 

Duration 
Outlined in Studies 

% of Studies in 

review 

Speed or Acceleration Filter N/A N/A 16/124 12.9% 

Minimum Effort 

Duration/Calculation Interval 
Seconds (s) 

 

Total 

 

40/124 32.3% 
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3.4.6 Acceleration Metrics 

 

Acceleration events in this review were quantified via numerous different metrics. These 

metrics encompassed counts, distance, time, load, intensity and ratio markers. Of these 

metrics, count-based variables were predominant. Acceleration counts were selected in 

72% of the studies in this review. 63% of studies included absolute acceleration counts 

(regardless of magnitude), whilst 32% of studies implemented acceleration counts 

relative to the athlete or team’s time during the activity (counts per minute). Distance, 

(m) was next highest in terms of prevalence with 13.7% of the research in this review 

opting to quantify acceleration events with respect to the distance attained in threshold 

bands. Metrics of acceleration intensity followed, with a combined 10.9% of studies 

(acceleration (m·s−2): 6.7%, deceleration (m·s−2): 4.2%) opting to quantify acceleration 

with respect to the acceleration distance relative to the time period. Similarly, absolute 

acceleration was selected in 9.2% of the included studies for this review. Statistics for the 

acceleration metrics included are presented in Table 3-8. 
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Table 3-8 Acceleration Metrics of Included Studies 

Acceleration/Deceleration 

Metric 
Unit of Measure Metric Definition 

% of Studies featuring 

metric 

Counts 

Counts (number) 

 

 

 

 

Counts (number) per minute 

 

 

 

Counts (absolute and relative) 

 

 

Efforts in respective threshold band 

 

 

 

 

Efforts in respective threshold band with respect to 

activity time 

 

 

Overall absolute and relative count contribution to 

review 

 

 

62.9% 

 

 

 

 

 

31.7% 

 

 

 

71.8% 

Distance 

 

 

Metres 

 

 

 

 

 

Per minute 

 

 

 

 

Per Hour 

 

 

 

Acc/Dec Distance attained in respective threshold 

band 

 

 

 

Distance in respective threshold band with respect 

to activity time and threshold 

 

 

 

Distance attained in respective threshold band 

 

 

 

 

13.7% 

 

 

 

 

 

3.3% 

 

 

 

 

0.8% 
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Table 3.8 Continued 

 

 

 

Acceleration/Deceleration 

Metric 
Unit of Measure Metric Definition 

% of Studies featuring 

metric 

Acceleration m·s−2 

Intensity metric of any magnitude of acc over 

given analysis period. 

 

6.7% 

Deceleration m·s−2 

Intensity metric of any magnitude of dec over 

given analysis period. 

 

4.2% 

Acceleration Density Index 
Avg Acc/Dec per 

10 m; m·s− 

Average acceleration performed per 10 m of 

distance covered 

(Acceleration Load/Distance) 

 

0.8% 

Acceleration Load 

Total Acc/Dec; 

m·s−2 

 

 

 

 

AU 

 

Sum of acceleration values across the analysed 

period 

 

Average absolute value of all acc/dec data relative 

to a defined period. 

 

Absolute value multiplied by defined duration to 

convert to load metric 

0.8% 

 

 

 

 

 

 

0.8% 

Average Accel/Decel (m·s−2) 
Absolute acceleration/deceleration values averaged 

across the specified period 
9.2% 
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 Table 3.8 Continued 

Acceleration/Deceleration Metric Unit of Measure Metric Definition % of Studies featuring metric 

Time 

 

Seconds 

 

 

 

% time 

 

 

 

% time per minute 

 

 

 

 

 

 

Minutes per count 

 

 

Time in respective threshold band 

 

 

Time spent as a percentage in 

respective threshold band 

 

 

Percentage time spent in 

respective threshold band with 

respect to activity time and 

threshold 

 

 

Efforts in respective threshold 

band with respect to activity time 

 

 

4.2% 

 

 

 

0.8% 

 

 

 

 

1.7% 

 

 

 

 

 

2.5% 

 

Ratio of Dec:Acc 
Ratio 

Dec:Acc 

Duration of Dec (High) and Dec 

(Mod) 

divided by total Acc time (High + 

Mod) in each period. 

 

0.8% 
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3.5 Discussion 

The aim of this systematic review was to outline and compare the different methods that 

have been adopted to quantify acceleration events in previous team sport research. The 

main finding in this review was that the vast majority of included studies elected to 

quantify acceleration events using GPS/GNSS technology (113/124 studies) and via the 

use of count-based metrics (72% of all studies featured counts). Whilst the aim to 

ascertain how accelerations were quantified by way of metrics was achieved, this review 

could not achieve the secondary aim which was to determine how acceleration events 

were commonly processed in team sport research. Specifically, there was a lack of 

information provided by the studies in this review that outlined the filtering processes of 

acceleration events and the minimum effort duration in which these events were 

designated. In this review only ~13% of studies specified the filtering settings of their 

acceleration data whilst 32% outlined the minimum effort duration. Moreover, for 

GPS/GNSS research, the reporting of HDOP and the number of satellites was only 

specified in approximately a quarter of all eligible studies. Given the known influence of 

data quality metrics, filtering techniques and calculation intervals on 

acceleration/deceleration as it’s calculated, future team sport research should endeavour 

to outline how acceleration and deceleration events are processed. 

3.5.1 Variables chosen to Quantify Acceleration  

The results of this review overwhelmingly highlight the use of counts to outline 

acceleration of team sport athletes. Counts and to a lesser extent, counts relative to time, 

accounted for the vast majority (counts: ~72% of all metrics) of acceleration variables 

selected by team sport researchers. The use of counts is not surprising given the 

practicality of implementing count-based metrics into the athlete monitoring process. 

Counts are advantageous to the practitioner for several reasons. Firstly, due to the ability 
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to detail the number of actions occurring, usually with respect to thresholds. The volume 

of counts provides an indication of the total acceleration activity profile and when coupled 

with activity time of the athlete, can also provide an indication of the acceleration 

intensity. Secondly, it is relatively simple for a practitioner to apply thresholds to count 

metrics via the manufacturer proprietary software. This simplicity allows for efficient 

processing and analysis of the acceleration activity profile of the athlete or team. 

In isolation, outlining the acceleration activity profile via counts is an acceptable choice 

for most researchers and practitioners. However, counts are regularly implemented in 

conjunction with speed-based thresholds that may separate efforts into corresponding 

bands (Harper et al., 2019). Despite the use of threshold bands being a common practice 

in applied sport science, this method is limited by the validity and reliability of the athlete 

tracking system recording the event (Delaney, Cummins, et al., 2018). Specifically, 

threshold-based counts for accelerations have been set at discrete intervals which may 

separate counts from being moderate or high with small differences separating the bands. 

For example, acceleration counts have been quantified using thresholds of 0 – 2.77 m·s−2 

(low) and >2.78 m·s−2 (high) (Bauer et al., 2015). Moreover, similar research specified 

low acceleration counts at 1.5 – 2.5 m·s−2  and high counts at > 2.5 m·s−2 (Blair et al., 

2017). Whilst it is logical to define a lower and upper threshold for each band, counts are 

also influenced by the level of error in the wearable technology (Delaney, Cummins, et 

al., 2018; Thornton, Nelson, et al., 2019). For example, large inter-unit variations were 

found between GPS units in acceleration and deceleration counts (Coefficient of 

Variation (CV): 10 – 56%) during a team sport movement simulation (Buchheit, Al 

Haddad, et al., 2014; Delaney, Cummins, et al., 2018). Following on from the team sport 

movement simulation research, the issue was raised that the variation seen in the study 

could have been a result of the use of threshold-based counts (Delaney, Cummins, et al., 
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2018). Specifically, the use of discrete bands for count-based acceleration events were 

suggested to be subject to the unit reliability and that the intensity threshold could then 

be subject to between-device variation (Delaney, Cummins, et al., 2018). Using the 

example previously provided, a 3 m·s−2 threshold could be measured differently by two 

different tracking devices (Delaney, Cummins, et al., 2018). One device may measure the 

event at 2.98 m·s−2, which would not qualify for the threshold, whilst the other may 

measure the effort at 3.01 m·s−2, which would constitute an event. It is then problematic 

if one device records the effort as an event, whilst the other does not, which may create 

inconsistencies in both the literature and the athlete monitoring process.  

Issues surrounding the reliability of threshold-based variables also applies to the 

acceleration metrics that are measured in terms of distance (metres). Outside of the count-

based metrics, distance-based acceleration variables were the third most frequent (18% 

combined) metric implemented by the included studies in this review. Despite sharing 

similar advantages to the use of count variables, distance-based metrics are also 

susceptible to similar issues of inter-unit reliability, particularly at moderate to high 

acceleration thresholds. A team sport simulation circuit was implemented to identify the 

inter-unit reliability for three commercially available GPS/GNSS units. For acceleration 

metrics, software-calculated, moderate acceleration distance for STATSports APEX units 

were classified as having poor reliability (CV; 90% Confidence Limit: 19.7%; ± 1.5%) 

whilst GPSports EVO (2.7%; ± 1.5%) and Catapult Sports S5 (3.1%; ± 1.6%) showed 

greater reliability (Thornton, Nelson, et al., 2019). The substantial variation seen across 

the results of the three GPS/GNSS manufacturers highlights the potential issues 

associated with threshold-based variables of acceleration metrics as measured by athlete 

tracking technology (Thornton, Nelson, et al., 2019). Moreover, interchanging tracking 

systems (e.g., GNSS & LPS) can also provide reliability issues between technologies for 
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practitioners and researchers (Buchheit, Allen, et al., 2014). Given the increased use of 

LPS and camera-based systems within outdoor stadiums, practitioners may need to 

change between technologies depending on their training and competition locations 

(Thornton, Nelson, et al., 2019). Research. highlighted small to very large variation from 

one LPM system (Inmotio) against GPS (GPSports SPI Pro XII & VX VX340a) and a 

semi-automated camera system across acceleration efforts (>3 m·s-2) during match play 

analysis of the study (Buchheit, Allen, et al., 2014). With the results of the study, any 

variability between tracking systems may then have practical implications for 

practitioners. Generally, athletes complete the same team drills and therefore have an 

expectation surrounding the respective exercise volume associated with those drills.  

A suggested way to alleviate the concerns with inter-unit variability in count-based 

approaches is to assign a wearable technology to an athlete for the duration of the season 

(Delaney, Cummins, et al., 2018; Jennings et al., 2010b). Whilst this suggestion is 

important to maintain consistency in the volume or intensity reporting for each athlete, it 

is not without limitation. The wearable device may consistently measure under the count 

threshold which may have practical implications for the practitioner and researcher 

(Delaney, Cummins, et al., 2018). Moreover, at the applied level it is not uncommon to 

group athlete positional data together to gain an understanding of the training and 

competition activity profile (Delaney, Cummins, et al., 2018). If the combined positional 

average data has existing variability at the individual athlete level, this may then extend 

into variation seen in the group average (Delaney, Cummins, et al., 2018). This review 

anticipates the implementation of count, distance and other threshold-based metrics in the 

reporting of acceleration will continue in future team sport research. However, it is 

important that researchers and practitioners understand the respective limitations outlined 

in these metrics before choosing to incorporate them in athlete monitoring workflows.  
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3.5.2 Choice of Athlete Tracking System 

Whilst this review sought to include all forms of athlete tracking technology that outlined 

acceleration or deceleration, it is overwhelmingly clear that GPS/GNSS remains the most 

abundant and popular tracking technology within team sport research. From the results of 

this review, 113 out of the possible 124 studies (91%) implemented GPS or GNSS 

technology to track athlete locomotion. This is not surprising given GPS/GNSS 

technology was initially introduced in ~2003 in elite team sport and as such has seen 

continued developments as well as improvements in their commercial availability to 

practitioners (Aughey, 2011a; Edgecomb & Norton, 2006). The continued progressions 

in the capabilities of GPS/GNSS technology, regarding improvements in samples rates, 

along with the allowance to wear the technology in most major competitions, have seen 

these tools become commonplace in the monitoring of team sport athletes (Harper et al., 

2019; Malone et al., 2017; Varley, Fairweather, et al., 2012). The wide-spread acceptance 

of these units (at the applied level) can be attributed to the many benefits GPS/GNSS 

provide the practitioner. These tools provide objective and unobtrusive data collection 

from the athlete on their volume and intensity in real time, which can be further analysed 

to develop training programs and activity profiles aimed at preparation for competition 

(Scott et al., 2016) . This is aided by the nature of outdoor team sports, particularly those 

conducted at stadia/practice facilities with no overhanging structures or surrounding 

infrastructure that may occlude or partially occlude the sky. With minimal occlusion, 

GPS/GNSS satellite signal connection is maintained and therefore allows for improved 

athlete tracking data quality. In turn there is no additional GPS/GNSS setup required by 

the practitioner, which enhances the practicality of tracking athlete movement during 

training and competition (Aughey, 2011a).   
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3.5.3 Distribution of GPS/GNSS Technology 

The results of this review saw the utilisation of 21 different GPS/GNSS models from 

seven manufacturers in the outlining of acceleration and deceleration from the study 

cohort. Whilst the inclusion criteria of this review only included GPS/GNSS technology 

with sample rates at or above 5 Hz, there was a representation of both 5 Hz and 10 Hz 

sample rates from manufacturers. It is generally accepted that the use of 5 Hz GPS 

technology is disadvantaged compared to the greater capacities of 10 Hz technology, 

particularly for high-intensity acceleration and decelerations (Cummins et al., 2013; Scott 

et al., 2016). However, in the context of the calculation of acceleration and deceleration, 

the number of manufacturers and GPS/GNSS devices used, regardless of sample rate 

raises concern surrounding data consistency in reporting and methodology. The concern 

surrounding the number of GPS/GNSS devices used stems from the known differences 

that exist in the data filtering methods and minimum effort durations utilised between 

manufacturers in the calculation of acceleration (Thornton, Nelson, et al., 2019; Varley 

et al., 2017). This review is not suggesting that the number of models or manufacturers 

of wearable technologies is an issue, but rather the issue lies in the differences in their 

methods to calculate acceleration. With the number of the devices seen in this review, it 

is anticipated that at least on the manufacturer level, differences exist in acceleration 

processing (Thornton, Nelson, et al., 2019). The difference in acceleration processing 

may then extend between unit models, device firmware and between the proprietary 

software processing acceleration data (Thornton, Nelson, et al., 2019). Ultimately, 

variation between tracking technology could have the potential to create technology-

influenced rather than athlete-driven differences in acceleration/deceleration volume or 

intensity (Thornton, Nelson, et al., 2019).  
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3.5.4 Local Positioning Systems in Team Sport Research 

3.5.4.1 Background 

Historically, it has been difficult for indoor-based team sports to capture the activity 

profile during training and competition (Hodder et al., 2020; Luteberget et al., 2018). 

Despite the continued growth of GPS/GNSS technology for outdoor team sports, the 

obvious limitation of enclosed stadium infrastructure means that GPS/GNSS signals 

cannot accurately penetrate and track indoor sports (Sweeting, Aughey, et al., 2017). As 

a consequence, there has been limited technology available to indoor team sport 

practitioners to adequately capture the activity profile of sports such as basketball, netball, 

handball and futsal, instead relying upon optical systems to track athlete locomotion 

(Hodder et al., 2020). However, the introduction of local positioning systems (LPS) or 

local positioning measurement (LPM) have seen sustained development since the 

inception of Radio Frequency Identification systems (RFID) (Frencken et al., 2010; 

Luteberget et al., 2018; Ogris et al., 2012; Sathyan et al., 2012; Stevens et al., 2014). 

Previously suggested to be the most abundant LPS within applied sport science, RFID 

systems operate by measuring the distance between anchor nodes at known locations 

around the field of play with athletes wearing the mobile nodes (Luteberget et al., 2018; 

Serpiello et al., 2018). Acceptable levels of accuracy exist during locomotion for RFID 

systems for measuring distance (mean error:  1.26 – 3.87 %) and for average and maximal 

speed (3.54 % and 13.15 %, respectively) (Ogris et al., 2012; Sathyan et al., 2012; 

Serpiello et al., 2018). However, RFID systems can be limited by incidents of signal 

instability and interference (Alarifi et al., 2016; Serpiello et al., 2018). The developments 

of LPS systems that operate via Ultra-Wideband (UWB) technology have been suggested 

to overcome the limitations of signal instability in RFID systems (Hodder et al., 2020; 

Serpiello et al., 2018). The enhanced technology seen in UWB systems allows for greater 
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precision, with signals that can penetrate many structural materials (Alarifi et al., 2016; 

Hodder et al., 2020). The existing literature evaluating UWB-based LPS systems is 

limited but two UWB systems (WIMU Pro & Catapult ClearSky T6) are a valid means 

to assess the positioning of indoor court athletes (Bastida-Castillo, Gómez-Carmona, et 

al., 2019; Hodder et al., 2020; Luteberget et al., 2018; Serpiello et al., 2018). 

Operationally, LPS units operate through short-range communication wave generators 

that are in contact with receivers (Hodder et al., 2020). Local positioning system receivers 

are fixed to various points around the stadium to maximise full court coverage of the 

technology (Hodder et al., 2020).  

3.5.4.2 Interaction of LPS Systems with outdoor team sport tracking 

Whilst LPS-based studies represented a small contribution to the overall review, it is 

important to discuss the interaction of UWB and radiofrequency technology with outdoor 

team sport tracking. Given the development of UWB technology, the recent validation 

studies and the requirement for tracking system technology for indoor-based team sport 

athletes, it is anticipated that the use of LPS to measure acceleration will continue (Hodder 

et al., 2020). The prevalence of UWB LPS can be seen in applied sport science with the 

increasing utilisation of LPS in outdoor-team sport stadia (Aughey, 2011a; Thornton, 

Nelson, et al., 2019). Except for the use of optical tracking in association football, many 

outdoor team sports have historically tracked the activity profile in training and 

competition using GPS/GNSS technology. However, during outdoor-team sport 

competition in stadiums with obtrusive infrastructure, there may be instances of 

disruptions in signal quality. The disruptions may occur from overhanging stadium 

structures which disrupt the signal line of sight with satellites (Aughey, 2011a; Malone et 

al., 2017). To alleviate signal quality concerns, UWB LPS technology has been erected 

within outdoor stadia to remove the signal interference seen in GPS/GNSS data 
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(Thornton, Nelson, et al., 2019). It may be that with further UWB LPS development, these 

systems will be preferred over the traditional GPS/GNSS technology during competition 

within large stadiums. Regardless, the development of LPS for indoor-based team sports 

is important for the analysis of the acceleration of these athletes. However, it must be 

presented to practitioners that LPS technology is not without limitation. To utilise LPS, 

stadia must be appropriately fitted with the correct infrastructure before tracking can take 

place. This cost is expensive and may be problematic with venues that facilitate sporting 

and entertainment events (Serpiello et al., 2018). Similarly, to utilise this technology for 

away fixtures, the LPS infrastructure must be installed in the away venue which requires 

compatible technology to be of use (Thornton, Nelson, et al., 2019).  

3.5.5 Alternative Acceleration Metrics. 

The results of this review identified metrics outside of the traditional threshold-based 

variables for quantifying acceleration. This review identified that team sport researchers 

have implemented an absolute acceleration variable to quantify acceleration. Specifically, 

9% of the studies included in this review presented the absolute acceleration metric, with 

many of the studies originating from the same research group (Brooks et al., 2020; 

Delaney, Cummins, et al., 2018; Delaney, Thornton, Burgess, et al., 2017; Delaney, 

Thornton, Pryor, et al., 2017; Delaney, Thornton, et al., 2018; Delves et al., 2019; Duthie 

et al., 2022; Johnston, Devlin, et al., 2019; Johnston et al., 2022; Johnston, Weaving, et 

al., 2019; Thornton et al., 2018). Absolute acceleration combines the absolute value of all 

acceleration data, (regardless of the magnitude) and is averaged over the given period 

(e.g., drill or match) (Delaney, Duthie, et al., 2016). The use of absolute acceleration 

avoids the issue of dichotomising a continuous variable into acceleration thresholds, as 

all acceleration events are included and are not subject to reliability issues that are seen 

with threshold-based metrics (Douglas & Patrick, 2006). For athlete monitoring, 
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incorporating all acceleration events may be beneficial as all acceleration events carry a 

physiological and mechanical cost that needs to be accounted for (Delaney, Cummins, et 

al., 2018). At the research level, the reliability of this method was also found to be good 

to moderate in both 5 Hz (CV: 5.7%) and 10 Hz (CV: 1.2 %) technology (Delaney, 

Cummins, et al., 2018) when compared to VICON (Delaney et al., 2019), rendering the 

variable suitable for team sport monitoring.  

Since the introduction of the absolute acceleration metric, there have been derivative 

metrics of this variable introduced into research (Delaney, Duthie, et al., 2016). Firstly, 

acceleration density index (ADI) (avg Acc/Dec per 10 m; m·s−2) incorporates the absolute 

acceleration metric, but is calculated as absolute acceleration performed per 10-metres of 

distance covered (Brooks et al., 2020). In essence, ADI is analysing acceleration volume 

relative to distance (Brooks et al., 2020). At the applied level, ADI may provide benefit 

to court-based sports such as netball or basketball where athletes may not accumulate 

high acceleration volume relative to total activity time (subject to rest), but accumulate 

substantial acceleration intensity during locomotion (e.g., goal shooters/goal keepers in 

netball or centres/power forwards in basketball) (Brooks et al., 2020). Secondly, volume 

measures calculated from absolute acceleration were evident in this review. Acceleration 

total load (total Acc/Dec; m·s−2) summates the accumulation of all acceleration events 

over an analysed time period (Brooks et al., 2020). For athlete monitoring, total 

acceleration load can be implemented as a standalone metric or it can be used as a 

supplementary variable which summates the information in threshold-based acceleration 

metrics (Brooks et al., 2020). Similarly, acceleration load (arbitrary units; AU) featured 

in this review, which was quantified by calculating absolute acceleration over the 

analysed period before multiplying the value by duration to convert to load (AU) 

(Thornton et al., 2018). With the growth of the absolute acceleration metric and the 
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subsequent derivate metrics, the implementation of these variables both practically and 

in research is likely to continue.  

3.5.6 Limitations of Included Studies 

With the increasing prevalence of athlete tracking technologies in applied sport science 

there has been a requirement for standardised processes when collecting and reporting 

upon athlete datasets (Harper et al., 2019; Malone et al., 2017). The basis for a 

standardised collecting and reporting process is to ensure greater consistency and 

transparency when reporting activity profiles in research. In keeping with previous 

recommendations, this review attempted to extract values surrounding the quality of 

satellite data when tracking athletes over the analysed period (Malone et al., 2017) . 

Specifically, this review analysed the HDOP, and the number of satellites during the 

analysed activity. The horizonal dilution of precision provides a value of the accuracy of 

the GPS/GNSS horizontal positional signal as determined by the geographical positioning 

of the satellites (Hsu, 1994)  Generally, when satellites are spread out, HDOP is low 

which enhances data quality (Williams & Morgan, 2009; Witte & Wilson, 2004). To rank 

HDOP quality, a scale of 1-50 is implemented (Malone et al., 2017; Witte & Wilson, 

2004). Any HDOP value below 1 is considered optimal for HDOP readings with at least 

four to six satellites being required to capture human movement (Malone et al., 2017; 

Witte & Wilson, 2004). Despite the importance of these metrics pertaining to the data 

quality of each individual study, this review was limited by a lack of information 

surrounding HDOP and the number of satellite details. For HDOP, only 24% of the 

eligible GPS/GNSS studies specified a HDOP value for their respective study. Similarly, 

only 27% of studies outlined the mean number of satellites during the analysed periods. 

Consequently, it is difficult to make inferences regarding the studies included in this 

review without sufficient information regarding their data quality. Moreover, at an 
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applied level it is then difficult for practitioners to make judgements regarding activity 

profiles. However, the researcher does acknowledge that whilst all GPS/GNSS units are 

capable of collecting HDOP and information on the number of satellites, the access to 

this information may be limited by EPTS providers, which in turn may not have been 

made available to researchers (Malone et al., 2017). However, with the availability of 

GNSS planning tools, researchers and practitioners are still to be able to obtain 

information relating to the availability of satellites and HDOP measures during data 

collection. Planning tools should be consulted to document the satellite activity during 

the data collection to supplement the satellite information from GPS/GNSS technology. 

Future research should endeavour to specify HDOP and satellite information where 

possible to allow researchers and practitioners a wholistic opportunity to evaluate 

research data quality.  

Despite the potential differences that may exist between EPTS hardware and 

specifications (e.g., sample rate), the way in which acceleration events are calculated can 

result in substantial variation in the quantification of acceleration (Malone et al., 2017; 

Thornton, Nelson, et al., 2019; Varley et al., 2017). It is accepted that different EPTS 

manufacturers process acceleration events in different ways. Firstly, acceleration is not 

directly measured by the tracking technology. As a result, acceleration is calculated as a 

derivative measure of speed (for GNSS) (Akenhead et al., 2014; Winter, 2009). Secondly, 

there is a sweeping issue with the reporting of athlete tracking data in which there is no 

consensus method to process acceleration events. These two points coupled with the 

increasing amount of wearable tracking manufacturers available to practitioners has 

potentially created technology-influenced variations in acceleration volume and intensity 

between units (Malone et al., 2017; Thornton, Nelson, et al., 2019). Variations include 

the filtering of speed and/or acceleration data by EPTS manufacturers and also the 
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selection of minimum effort durations (MED) for acceleration events (Harper et al., 2019; 

Varley et al., 2017).  

The filtering of athlete tracking data can directly influence acceleration, regardless of the 

magnitude or metric used to quantify the event (Harper et al., 2019; Malone et al., 2017; 

Thornton, Nelson, et al., 2019; Varley et al., 2017). The purpose of filtering extends to 

maintaining data quality, removing poor signals and to decrease the noise content of the 

signal (Carling et al., 2008; Rader & Gold, 1967; Sweeting, Cormack, et al., 2017; Winter, 

2009; Winter et al., 1974). In human movement, there are many different types of filters 

which have been introduced to process athlete data (Sweeting, Cormack, et al., 2017). In 

LPS, common filtering methods include, but are not limited to, Kalman and Butterworth 

filters, whilst GPS/GNSS technology can also utilise Butterworth as well as moving 

average, moving median, median or exponential filters (Couderc et al., 2019; Furlan et 

al., 2015; Malone et al., 2017; Sathyan et al., 2012; Stevens et al., 2014; Sweeting, 

Aughey, et al., 2017; Sweeting, Cormack, et al., 2017; Winter, 2009). However, the 

process by which manufacturers select their filtering process is arbitrary and can vary 

from manufacturer to manufacturer (Malone et al., 2017). In research and for applied 

sport science practitioners, this is problematic as there are many different manufacturers 

commercially available. As such there are many different types of filters that can be 

modified, potentially altering the magnitude of an acceleration event (Thornton, Nelson, 

et al., 2019). For example, manufacturers may elect to filter the speed trace using a 

determined filter and then calculate acceleration from the speed trace. Manufacturers may 

also filter the speed trace and then filter the calculation of acceleration using a predefined 

filter. Therefore, consistency in the reporting of filtering methods is required when 

processing athlete acceleration data. In this review, only 13% of studies detailed the filter 

used when processing athlete movement data. This detail includes proprietary filters as 
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defined by the manufacturers and custom filters applied by researchers. The lack of 

information surrounding the filtering processes in these studies then raises questions as 

to any identified differences between research. Are these differences driven by the 

discrepancies between athlete-based external outputs or are they located from technology-

driven influences from the use of different data processing methods (Thornton, Nelson, 

et al., 2019)? However, in posing this question, the researchers do acknowledge that in 

similar regard to satellite and HDOP information, the filtering process used in the 

calculation of acceleration via the manufacturer’s proprietary software may not be made 

available. 

With the lack of critical information on filtering and signal quality, the researcher was 

limited in the ability to make judgments and comparisons on acceleration. It is difficult 

to assess the activity profile without knowing how the acceleration data was processed, 

given the known influence these processes have on athlete volume and intensity (Harper 

et al., 2019; Malone et al., 2017; Thornton, Nelson, et al., 2019). Therefore, it is important 

that future research outlines the filtering processes used in the calculation of acceleration 

to ensure appropriate comparisons between tracking technology and the activity profile. 

However, if future research begins to improve the reporting process on filtering in the 

calculation of acceleration, there may still be issues surrounding the comparability of 

acceleration load between athlete tracking technologies and manufacturers. There may 

still be technology-driven discrepancies between activity profiles and validity and 

reliability studies of wearable technology (Thornton, Nelson, et al., 2019). Following on 

from previous summations, this review contends that future research should be centred 

towards a consistent method to process acceleration (Thornton, Nelson, et al., 2019). 

Despite the majority of the discussion surrounding GPS/GNSS technology, it is 
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anticipated that these same difficulties would occur with local positioning systems and 

optical systems (Thornton, Nelson, et al., 2019).  

The minimum effort duration (MED) is a qualifying criterion in which acceleration events 

need to be sustained for a specific time frame for the effort to be acknowledged as an 

event (Harper et al., 2019; Varley et al., 2017). For instance, if a MED of 0.5 s was chosen, 

the athlete would need to maintain the acceleration for at least 0.5 s for it to qualify as an 

event (Varley et al., 2017). However, the selection of the MED is problematic as the MED 

and any accompanying speed threshold and filter (where applicable) is generally 

arbitrary. The arbitrary selection of the MED may be due to many factors including the 

inconsistency in the selection of the MEDs within previous team sport research and the 

use of different EPTS manufacturers. Currently there is no consensus or consistent MED 

outlined in athlete tracking-based studies and as such, there has been a wide variety of 

different MEDs presented to calculate athlete acceleration (Harper et al., 2019; Varley et 

al., 2017). In this review there were six different MEDs selected, ranging from 0.2 s to 2 

s, with the 0.5 s threshold being the most frequent. Moreover, approximately 68% of the 

included studies in this review did not specify their MED for acceleration or deceleration 

events.  

The variation in MEDs between studies is problematic, as the calculation interval as well 

as the filter used directly influences the magnitude of an acceleration (Harper et al., 2019; 

Varley et al., 2017). In a previous review, the study made the point that small fluctuations 

between MED intervals (i.e., 0.1 s) can result in differences in the number of high-

intensity acceleration efforts  (Harper et al., 2019). The suggestion is based on original 

research which quantified the impact of differing MEDs (from 0.1 s to 1.0s (0.1 s 

increments) upon acceleration counts (Varley et al., 2017). In this research, the authors 

concluded that during an elite Dutch association football match, there was an exponential 
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decline in the number of observed acceleration efforts as the MED increased, across all 

filtering methods (Varley et al., 2017). In essence, this finding confirmed that the 

selection of a lower MED of 0.1-0.3 seconds is more appropriate for capturing short and 

discrete GNSS acceleration events (Harper et al., 2019). However, MEDs of 0.1-0.3-

seconds in length are also more susceptible to any error in measurement that may be as a 

result of numerous repeat accelerations that occur too closely together (Harper et al., 

2019). Conversely, a MED of longer duration (> 0.5 s) may have a smoothing effect on 

the acceleration datapoints for GNSS-based technology, which in turn may dampen the 

magnitude of higher acceleration events or may underestimate the number of efforts 

(Varley et al., 2017). Moreover, the impact of any applied filter may also have 

implications on the magnitude of the acceleration count in conjunction with the defined 

MED. Longer MEDs may be more suitable for certain filter types compared to short 

MEDs. For example, a 2 s MED is substantially longer than a 0.5 s MED, which could 

impact filter use or MED selection. It may be that the choice of filter should align with 

the choice of MED duration to better handle acceleration data. It should be stressed that 

this research is GNSS based and may have different implications for LPS/LPM 

technology.  

There is no one ‘perfect’ MED for the calculation of athlete acceleration (Varley et al., 

2017). However, it is prudent for practitioners to realise the implications of the selection 

of a MED and how this may be compared with similar team sport activity profiles (Varley 

et al., 2017). It is also recognised by the researchers that the choice of a MED may be 

dictated by the EPTS manufacturer. Similar to the choice of filtering applied to 

acceleration data, practitioners may be limited to the MED specifications outlined by the 

manufacturer, whilst other manufacturers may allow complete customisation of the 
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process. Regardless of the situation, differences in MED settings can still lead to 

differences in acceleration between research studies.  

To alleviate the potential differences in volume or intensity as a result of different MED 

settings, previous research has highlighted the use of a threshold inclusion criteria (Harper 

et al., 2019; Varley et al., 2017). The inclusion criteria suggested that a qualifying 

threshold standard for an acceleration effort could be implemented alongside a MED. For 

example, the acceleration must eclipse 1 m.s-2 for the effort to be counted. Moreover, to 

establish an acceleration endpoint for an effort, this could be implemented when 

acceleration falls below 0 m.s-2 (Harper et al., 2019; Varley et al., 2017). However, the 

issue of varied MEDs in research still exists with this method. With inconsistencies seen 

between MEDs in this review, future research may then look to identify appropriate 

MEDs with respect to each team sport. The presence of MEDs with respect to each team 

sport would then create a more consistent approach to acceleration/deceleration reporting. 

 

3.5.7 Future Research 

To improve future research, studies should attempt to improve the consistency in the 

processing and reporting of team sport acceleration and deceleration. Specifically, future 

research should be guided by the following recommendations: 

• Report the HDOP and number of satellites during data collection (satellite-based 

technology only). 

• Report the acceleration processing method, including any filtering methods and 

the minimum effort duration (if known and applicable). Consideration of how the 

filtering method and MED align in the data handling process should also be 

recommended.  
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• Utilise GNSS planning tools (where applicable) to evaluate the performance of 

their respective wearable tracking system relative to the available satellites 

(satellite-based technology only). 

• Move towards the determination of a common acceleration filter that can be used 

practically and within research that may be sport specific.  

When reporting acceleration from tracking technology it is important that future studies 

attempt to outline the HDOP and the average number of satellites during analysis. 

Satellite information can be used by researchers and practitioners as an indication of 

signal quality and can aid in the evaluation of the quality of the acceleration/deceleration 

datasets. In terms of acceleration metrics, future research should also endeavour to outline 

the acceleration filtering used to process the acceleration data and the MED to quantify 

any threshold-based metrics (if known and applicable).  

Future research should attempt to introduce a common acceleration filtering technique 

for the processing of athlete acceleration and deceleration. A common filtering technique 

that is sport specific may be appropriate. However, the number of tracking devices, 

manufacturers and systems seen in this review highlights the importance of having a 

consistent process to handle and process acceleration data. Without a consistent process 

and with the known influence filtering methods have upon acceleration/deceleration data, 

future research will continue to question whether differences in acceleration/deceleration 

volume and/or intensity are athlete or technology driven (Thornton, Nelson, et al., 2019).     
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3.6 Conclusions 

Acceleration metrics are important components in the exercise monitoring process of 

team sport athletes. The ability to quantify acceleration events allows practitioners to 

understand the energetic (acceleration-focused) and eccentric stimulus placed upon the 

athlete during training and competition (Delaney, Cummins, et al., 2018). With athlete 

acceleration information, acceleration-specific volume and intensity can be accounted for 

in the athlete preparatory process. 

Acceleration events in team sport research have been predominately quantified via the 

use of effort counts, including counts related to time. Other ‘traditional’ metrics in terms 

of acceleration being quantified via distance remains a relevant selection, as does average 

intensity by practitioners.  

Global Positioning Systems and now GNSS, are the most common tracking systems 

utilised in the quantification of acceleration in the team sport athlete. However, despite 

the widespread use of GPS/GNSS technology in tracking athlete locomotion, there is a 

lack of information surrounding the signal quality via the HDOP and number of satellite 

metrics. Future research should aim to outline HDOP and the number of satellites where 

possible, to allow researchers to evaluate the quality of the athlete tracking data. 

The calculation of acceleration is influenced by MEDs and the specification of data 

filtering processes. Despite the influence and variation of data filtering and MEDs 

between EPTS manufacturers, these metrics have not been consistently published in 

research. This review concludes that even if future studies outlined the acceleration data 

filtering process, the anticipated variation between tracking manufacturers may highlight 

technology-influenced variation in acceleration/deceleration outputs. Therefore, a 
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consistent and potentially sport specific acceleration filtering process and reporting 

structure needs to be developed and introduced within applied team sport research.  
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CHAPTER 4 - A QUANTITATIVE SURVEY TO 

WEARABLE TECHNOLOGY MANUFACTURERS ON 

THE PROCESSING OF ATHLETE SPEED AND 

ACCELERATION DATA 
 

 

4.1 Directions from Chapter 3 
 

The systematic review on the quantification of acceleration in elite team sports in Chapter 

3 showed a lack of information on the filter settings of athlete tracking technology. 

Approximately 13% of studies within the review detailed the filter settings that 

underpinned the calculation of athlete speed and/or acceleration. However, within activity 

profile research, it is not uncommon for practitioners and/or researchers to be unaware of 

the filter settings applied upon their proprietary tracking systems (Malone et al., 2017). 

For some athlete tracking system manufacturers, this information may not be made 

accessible to the end-user, which can translate to a lack of filter information circulated 

within research (Thornton, Nelson, et al., 2019). A lack of understanding on how 

acceleration is ultimately filtered/processed could contribute to some of the differences 

in the acceleration component of team sport activity profiles. To identify filter settings 

and to attempt to fill the gap in understanding of common filtering practices, this thesis 

proceeded to extend a quantitative survey to athlete tracking system manufacturers to 

outline how speed and subsequently acceleration is processed within their respective 

technologies.  
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4.2 Introduction  
 

The use of electronic performance and tracking systems (EPTS) to track and measure 

athlete volumes and intensity in training and competition has become commonplace 

(Malone et al., 2017; Scott et al., 2016; Sweeting, Cormack, et al., 2017). Incorporating 

the Global Navigation Satellite Systems (GNSS), as well as local positioning systems 

(LPS) and optical camera systems, EPTS technologies provide information on external 

volume and intensity metrics of athletes (Linke et al., 2018; Sweeting, Cormack, et al., 

2017; Taberner et al., 2020). The locomotion information provided by EPTS allows for 

the objective collection of athlete movement data, including information on athlete 

distances, velocities and accelerations which forms the basis of activity profiles of 

respective sports (Aughey, 2011a; Malone et al., 2017). For conditioning and support 

staff, details of the activity profile in training and in competition allows for appropriate 

training and rehabilitation program prescription (Aughey, 2011a; Malone et al., 2017). 

Acceleration is an important variable for successful team sport performance and for 

athlete monitoring in team sport competition (Delaney, Cummins, et al., 2018; Lockie et 

al., 2011; Young et al., 1995). For team sports such as rugby league, rugby union and 

American football, the importance of acceleration is heightened, given the close 

proximity of attacking and defending players, which limits the ability to attain maximum 

speed (Duthie et al., 2006; Lockie et al., 2011; Young et al., 1995). Subsequently, rugby 

league has been identified has having the highest mean peak acceleration intensity of 

various football codes (rugby league; 1.25 m·s-2, Australian rules football; 1.01 m·s-2, 

rugby union; 0.96 m·s-2, association football; 0.85 m·s-2) (Delaney, Duthie, et al., 2016; 

Delaney, Thornton, Burgess, et al., 2017; Delaney, Thornton, Pryor, et al., 2017). 

Similarly, at peak competition intensity (1-minute epochs), average acceleration (m·s-2) 

intensity is greater than 1 m·s-2 across each rugby league position which equates to 60 
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m·min-2 (Delaney, Duthie, et al., 2016). Practically, this means that over each peak 1-

minute interval, where speed intensity averaged 180 m·min-1, the speed changed by 60 

m·min-2. Given the speed changed (in this example) by 33% of the mean speed intensity 

every second, the ability to facilitate rapid changes in intensity is necessary for the activity 

profile of competition (Delaney, Duthie, et al., 2016). From a physiological standpoint, 

accelerations and decelerations that occur during competition can have the potential to 

incite muscle damage (through increased creatine kinase [CK]) and neuromuscular 

fatigue in the athlete post-competition (Gastin et al., 2019; Harper et al., 2019; Nedelec 

et al., 2014; Russell, Sparkes, Northeast, Cook, Bracken, et al., 2016). Therefore, given 

the energetically demanding nature of accelerations and the eccentric demand on the 

athlete when decelerating, it is important to measure these events as part of the overall 

athlete and team management practices (Delaney, Cummins, et al., 2018). 

However, the ability to effectively measure acceleration via EPTS has been scrutinised 

within research (Buchheit, Al Haddad, et al., 2014; Thornton, Nelson, et al., 2019). Since 

the initial validity study on a commercially available Global Positioning System (GPS) 

device for use in sport was completed in 2006, there has been a rapid rise in the number 

of publications pertaining to research surrounding the use of wearable technologies in 

human movement (Edgecomb & Norton, 2006; Malone et al., 2017). However, in terms 

of the measurement of acceleration, the continued development in wearable technology 

has become problematic. Given acceleration is not directly measured from wearable 

technologies (e.g., GNSS or LPS units) and is derived from doppler shift speed 

calculations, acceleration commonly undergoes filtering by the EPTS manufacturer to 

preserve data quality and to smooth erroneous datapoints (Malone et al., 2017; Thornton, 

Nelson, et al., 2019; Varley et al., 2017). A filter is required as the amount of noise in the 

signal increases with each calculation of a derivative. As acceleration is a second 
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derivative, the noise has been stated to have the potential to increase up to nine times the 

original signal (Campbell et al., 2020; Winter, 2009). As a result, the time-interval over 

which acceleration is calculated can impact the data initially, with a smoothing effect 

created as the duration of the time-interval increases (Varley, Fairweather, et al., 2012; 

Varley et al., 2017). Typically, 10 Hz GPS technology will see time-intervals between 

0.2 – 0.7 seconds, however, this can vary between units and manufacturers with no 

consensus time-interval currently in practice or in research (Varley, Fairweather, et al., 

2012; Varley et al., 2017). Consequently, after acceleration has been calculated, data may 

then be filtered by methods determined by the manufacturer (Malone et al., 2017; 

Thornton, Nelson, et al., 2019; Varley et al., 2017). Both points are important as currently 

there are no consensus filtering methods in applied practice or research and information 

pertaining to acceleration filtering methods by manufacturers is not readily available 

(Malone et al., 2017; Thornton, Nelson, et al., 2019). For example, a previous systematic 

review on acceleration metrics identified that less than a quarter of all included studies (n 

= 124) identified the acceleration filtering process used in the formation of activity 

profiles from various team sports (Chapter 3). Subsequently many different types of 

filters could be applied to volume and intensity data, such as Butterworth, moving 

average, moving median, or exponential which all process tracking data differently, thus 

returning different outputs of acceleration (Campbell et al., 2020; Sweeting, Cormack, et 

al., 2017). Moreover, the cutoff frequency of the filter can impact acceleration. If the 

cutoff frequency is too low for a dataset, then some of the “true” signal may be removed, 

whilst if the cutoff frequency is too high, too much noise will be kept (Campbell et al., 

2020; Erer, 2007). 

At the applied level, comparisons between acceleration-based demands in team sport 

research becomes problematic, as activity profiles outlining competition are largely 
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dependent on the EPTS manufacturer used (Thornton, Nelson, et al., 2019; Varley, 

Fairweather, et al., 2012; Varley et al., 2017). For example, in GPS research, it was 

suggested that given the different filtering techniques employed by manufacturers, 

differences in athlete volume during locomotion may be as a result of the influence on 

how the data is processed rather than differences between athlete outputs (Thornton, 

Nelson, et al., 2019). This point was further highlighted when reporting upon threshold-

based acceleration and deceleration events of different intensity (e.g., low-intensity 

decelerations/high-intensity acceleration)(Thornton, Nelson, et al., 2019). In three 

commercially available, 10 Hz GPS devices (STATSports Apex, Catapult Sports S5 and 

GPSports EVO), the study found a most likely to very likely difference between 

manufacturers (S5 – EVO: Effect Size (ES) −1.9; ± 0.3, S5 – Apex: 1.2; ± 0.6, EVO – 

Apex: 1.7; ± 0.4) for high deceleration distance (measured in metres) and a most likely 

difference in high acceleration (m) events (S5 – EVO: −1.9; ± 0.1, S5 – Apex: -1.9; ± 0.2, 

EVO – Apex: -1.9; ± 0.1). Moreover, the study compared the demands calculated from 

each devices’ raw processing and manufacturer-applied filters (Thornton, Nelson, et al., 

2019). It was determined that the software-calculated acceleration demands across all 

thresholds were most likely (acceleration: −1.95; ± 0.04 to 1.93; ± 0.12) greater across all 

devices than compared to the respective demands determined by raw filtering. 

Additionally, deceleration (−1.94; ± 0.08 to 1.94; ± 0.06) demands across all thresholds 

were higher in the raw filtering for all units compared to the demands processed by the 

respective-manufacturer settings (Thornton, Nelson, et al., 2019). These findings 

highlight the influence of filtering methods on the exercise volume and intensity of 

athletes and the importance of knowing how athlete data is being processed to achieve 

the specified outputs. 
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However, the research did not provide or were not given access to the filtering methods 

used by each manufacturer (Thornton, Nelson, et al., 2019). This is important as given 

the inevitable growth of tracking technology used in applied sport science practice, and 

the variety of units used, it is prudent to know if/how athlete volume and intensity data is 

processed by commercial technology, as activity profiles are directly impacted which 

influences athlete training programs and protocols (Aughey et al., 2022; Sweeting, 

Cormack, et al., 2017). Given the importance of acceleration in team sport monitoring, 

the wide variation in activity demands found between tracking technology manufacturers 

and the lack of information surrounding filtering settings in research, it is prudent to 

analyse the current filtering techniques employed by EPTS manufacturers for greater 

clarification on how athlete data is handled. Therefore, the primary aim of this research 

is to anonymously outline the different acceleration filtering processes implemented by 

commercial EPTS manufacturers. Specifically, the study aimed to outline the filter types 

and cutoff frequencies implemented in the processing of athlete acceleration.  
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4.3 Methodology 

4.3.1 Design and Participants 

 

Twenty EPTS manufacturers were directly invited to participate in the study as part of an 

anonymous survey. The manufacturers who were invited to participate provided either 

GPS/GNSS, LPS and/or optical tracking systems. Tracking technology providers were 

identified from reliability and validity research articles, activity profile research, 

professional networks and through various sporting organisations globally. The invited 

manufacturers supplied tracking technology to team sport governing bodies, competitions 

and/or individual clubs/organisations. All participating manufacturers provided informed 

consent to participate in the study which was obtained electronically prior to the 

commencement of the questionnaire. Institutional ethical approval was granted prior to 

the commencement of the study (Victoria University Human Research Ethics Committee: 

HRE-21-011).  

4.3.2 Procedure 

An invitation to participate in the study was extended to EPTS manufacturers via email, 

direct website enquiry and through advertisements on institutional social media 

platforms. Emails and direct website enquiries to the manufacturers were directed to the 

sport scientist or sport science department of each manufacturer. If no response was 

received following the first two weeks of delivery of the first email, a second reminder 

email was sent. In the case of no response following this email, a third email was sent two 

weeks after delivery of the second email. If no response was received following the third 

reminder email, the manufacturer was excluded from participation in the study. 

Advertisements on social media platforms (Twitter™ & LinkedIn™) including personal 

accounts of the research group and institutional groups were displayed. Advertisements 
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featured brief information regarding the study’s background, aims and information to 

participants’ document. The direct and anonymous electronic link to the survey was also 

provided.  

To elect to participate in the study, representatives of each EPTS manufacturer were 

required to confirm their participation via selecting the participation option on the first 

page of the questionnaire. Manufacturers were required to submit their answers via a 

commercially available online survey provider (Qualtrics™, Sydney, Australia). The 

online survey did not require manufacturers to reveal their identities. However, in order 

for manufacturers to have the ability to withdraw from the study, manufacturers were 

asked to create a unique, eight-digit code that could be used to identify them to remove 

their responses. Researchers were not notified of which manufacturer had completed the 

survey; notification only detailed that a survey attempt had been completed. The 

electronic link to the survey was deactivated 12 weeks after the initial invitation emails 

had been sent. 

The questionnaire contained 31 questions, all pertaining to the specific properties chosen 

by each manufacturer in processing speed and acceleration data for human movement. 

The questions asked in the survey were both open and closed in nature.  Manufacturers 

were initially asked for details surrounding their tracking technology products and 

clientele, including the array of team sports in which they supplied their products. Specific 

questioning was directed towards their filtering process of acceleration data through 

segmented questioning, before asking for their reasoning for selecting this process and 

how they believed this was optimal for processing acceleration data.  
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4.3.3 Statistical Analysis 

Due to the lack of survey responses received no statistical analysis was implemented on 

the survey datasets.  

 

4.4 Results 

Of the 20 direct invitations to manufacturers, two manufacturers fully completed the 

survey (10% participation). Five surveys were incomplete and were subsequently deemed 

not useful to the results of this study (25%). Two manufacturers declined to participate 

on grounds of commercial risk to their intellectual property (10%). Eleven manufacturers 

did not respond to any direct invitation correspondence (55%).  

 

4.5 Discussion 

The aim of the current study was to anonymously outline the range of acceleration 

filtering techniques used by EPTS manufacturers who supplied tracking technology to 

team sport clubs and competitions. Specifically, this study aimed to provide information 

on the filter types and cutoff frequencies used by manufacturers to improve the significant 

gap in the knowledge base within applied sport science research. Unfortunately, due to 

the low participation rates from EPTS manufacturers (2/20 complete survey results), this 

study was unable to achieve its aim. The current study cannot outline the range of filters 

and cutoff frequencies implemented across EPTS manufacturers.  

It is difficult to attribute the low response rate from EPTS manufacturers to one 

explanation. The nature of the survey, structure, questions or recruitment could have 

limited the response rate. However, given two manufacturers (2/20) had declined to 

participate upon either direct invitation or within the survey itself, citing reasons 

surrounding commercial risk, it is believed by the researcher that the potential impact to 
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the manufacturer’s intellectual property may have hindered participation. This is not 

surprising given the commercial incentives that exist to EPTS manufacturers to secure 

contracts to provide clubs and governing bodies with their respective technologies 

(Aughey et al., 2022). Specifically, it is expected that the competitiveness of the EPTS 

market will continue to grow, with estimates of market worth increasing towards $7 

billion USD by 2023 (MarketsandMarkets, 2019). Moreover, as currently there is limited 

independent certification of the validity and reliability in EPTS manufacturers from 

governing bodies and regulatory leagues/associations, there is a lack of incentive for 

EPTS manufacturers to supply their technology and software for assessment within 

research. However, the Fédération Internationale de Football Association (FIFA) has 

introduced the FIFA Quality Program which provides certification for EPTS 

manufacturers involved within association football. The Quality Program is intended to 

establish the validity and reliability in EPTS from different manufacturers by comparing 

EPTS manufacturer data against the criterion three-dimensional motion capture system  

(Aughey et al., 2022; Oliva-Lozano & Muyor, 2021). However, whilst the validity of 

EPTS technology can be evaluated in the FIFA Quality Program, as manufacturers are 

required to send their data for comparison against the criterion, the filter and processing 

settings may still remain confidential which hinders comparison between EPTS 

manufacturers at the research and applied level (Oliva-Lozano & Muyor, 2021).  

The results of this study may indicate the unwillingness of EPTS manufacturers to provide 

information surrounding how they process athlete tracking data. At the research level this 

is a disappointing result, particularly for EPTS validity and reliability research. It is 

difficult to compare between units or manufacturers, particularly for derivative measures 

such as acceleration, given the lack of knowledge surrounding how acceleration has been 

calculated initially (Malone et al., 2017; Thornton, Nelson, et al., 2019; Varley, 
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Fairweather, et al., 2012; Varley et al., 2017). Any differences identified between validity 

and research studies may be as a result of how acceleration is calculated rather than 

hardware and technology sample rate specifications (Thornton, Nelson, et al., 2019). 

Moreover, the existing validity and reliability research has generally provided an 

overview of how athlete tracking data can be filtered by manufacturers, but without any 

specific information regarding cutoff frequencies and filter types for manufacturers 

(Malone et al., 2017; Stevens et al., 2014; Sweeting, Cormack, et al., 2017; Varley et al., 

2017). Research has compared raw GNSS files to the manufacturer’s filter, but without 

knowledge of the specific manufacturer filtering settings (Thornton, Nelson, et al., 2019). 

Moreover, with continued development in EPTS technology and in particular, 

improvements in sample rates, it is believed that without greater transparency surrounding 

how EPTS manufacturers filter their data, the issue of inconsistency in validity and 

reliability research will continue.  

Moreover, at the applied level, practitioners may also be impacted by a lack of 

transparency surrounding filtering processes. Practitioners are regularly required to 

compare training or competition activity profiles longitudinally across playing 

seasons/competitions (Aughey, 2011a; Bradley et al., 2009; Jennings et al., 2012a). Given 

the inevitable hardware, software or firmware upgrades in EPTS technology, longitudinal 

analysis would be impractical given the likely differences that would exist in the 

processing of derivative measures such as acceleration (Thornton, Nelson, et al., 2019). 

Without consistent processing of athlete acceleration data, information on the volume and 

intensity of training drills and match play may become varied which directly impacts 

upon athlete training program and rehabilitation prescription (Aughey, 2011a; Boyd et 

al., 2013; Sweeting, Cormack, et al., 2017).  
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Given that there may be a financial/commercial interest from EPTS manufacturers 

supplying tracking technologies to team sports and governing bodies, the withholding of 

filtering information to protect tracking products may continue. Consequently, for 

researchers and practitioners, it may be that if manufacturers are unable to outline the 

filtering settings for their technology, the development of a consistent filter may be 

required for individual or organisational use (Thornton, Nelson, et al., 2019). Specifically, 

the introduction of a consistent filter type with an appropriate cutoff frequency that can 

be implemented across an EPTS for use in either research or the applied setting. The use 

of a consistent filter and cutoff frequency could alleviate the current levels of variation 

seen in acceleration between EPTS manufacturers, with reference to longitudinal 

comparison.  

If a common filter can be generated for the processing of acceleration, then researchers 

and practitioners could see greater levels of consistency in their various environments. 

For example, practitioners could elect to apply the filter when assessing the validity and 

reliability of acceleration metrics in new tracking technologies in comparison to existing 

technologies. At the applied level, practitioners may be required to upgrade their wearable 

tracking technologies or swap manufacturers. If practitioners can implement a common 

method to process acceleration outside of the manufacturer’s processing (i.e., their own 

filtering), then there may be greater consistency in their acceleration metrics 

longitudinally. Greater consistency across multiple seasons worth of data would allow for 

improved decision making surrounding the acceleration-based volume and intensity of 

athletes and the respective demands associated with individual drills and sessions.  

Future research should endeavour to determine the influence of applying a common 

acceleration filtering process to multiple wearable tracking technologies (from different 

manufacturers) during the same bout of locomotion. If a common filter can improve the 



145 

 

agreement in acceleration between manufacturers there may be potential to further 

develop a common filter to be used within the applied and research environments. If a 

common filter does improve the variation seen in acceleration metrics between 

technology, it should be then validated against criterion technology to assess the validity 

of a common metric for future applications.  

 

 

4.6  Conclusion 

The current study could not sufficiently outline the acceleration processing techniques of 

wearable technology manufacturers. This study received two responses, potentially 

indicating the unwillingness of wearable technology manufacturers to reveal information 

surrounding how they process their athlete tracking data and the potential impact on 

external metrics. Given the commercial interests and continued development into 

wearable technologies for team sport performance, it may be researchers and practitioners 

should look towards the development of a consistent filter that can be applied between 

EPTS devices and manufacturers in both the research and applied environments.  
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CHAPTER 5 - APPLYING COMMON FILTERING 

PROCESSES TO GNSS-DERIVED ACCELERATION 

DURING TEAM SPORT LOCOMOTION 
 

5.1 Declaration of co-authorship and co-contribution 
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5.2 Directions from Chapter 4 

The results from Chapter 4 in this thesis did not update the current knowledge base on the 

filter processes implemented by EPTS manufacturers. The lack of survey responses in 

Chapter 4 could suggest that the filter settings used in processing athlete speed and/or 

acceleration are protected by manufacturers to maintain any perceived competitive or 

commercial advantage. However, for the practitioner and researcher, a lack of clarity on 

how speed and/or acceleration is calculated can hinder longitudinal comparisons of 

activity profiles across different units, software, firmware, both internally and towards 

published literature. Due to the unwillingness of manufacturers to provide information on 

their filter settings, this thesis then pivots to investigate the use of a common filter process 

to apply on GNSS technology from different manufacturers during team sport training 

sessions. Firstly, the thesis will begin to outline whether manufacturers process 

acceleration in different methods via Chapter 5, before beginning to analyse how a 

common filter could improve the comparison of athlete acceleration in a range of different 

experimental settings.  
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5.3 Introduction 
 

Through the continued development of athlete tracking systems, team sport practitioners 

have increasingly elected to monitor their athlete’s locomotion during training and 

competition with the Global Navigation Satellite System (GNSS) (Buchheit, Al Haddad, 

et al., 2014; Cummins et al., 2013; Jackson et al., 2018; Malone et al., 2017; Scott et al., 

2016). Typically worn in either custom-made undergarments or jersey pouches, GNSS 

units are positioned near the scapulae and allow for the objective collection of an athlete’s 

position and speed during training and competition (Aughey, 2011a; Malone et al., 2017). 

The tracking of positional and time data from the GNSS unit allows for the subsequent 

calculation of other variables, including acceleration (Aughey, 2011a, 2011b; Varley & 

Aughey, 2013). Information outlining the different locomotion variables then allows for 

the creation of activity profiles for respective sports, which detail the different volumes 

and intensity experienced when competing within that sport (Aughey, 2011a). For 

performance staff, information on activity profiles enables prescription of athlete training 

programs that are centred towards competition (Aughey, 2011a; Jackson et al., 2018; 

Jennings et al., 2010a; Malone et al., 2017; Petersen et al., 2009). 

The ability to accelerate, decelerate and change direction are important attributes for 

successful performance in many team sports (Delaney, Cummins, et al., 2018; Hoffmann 

Jr et al., 2014; Lockie et al., 2011; Young et al., 2018). For example, running speeds for 

many team sport athletes may be limited due to opponent movements and space 

limitations in invasion sports (Delaney et al., 2019). Space limitations may prompt the 

need to both accelerate and negatively accelerate (decelerate) in order to penetrate 

defensives lines and to capitalise on scoring opportunities (Delaney et al., 2019). For 

example, the nature of rugby league and rugby union competition promotes accelerations 

and decelerations through the proximity of the attacking and defending lines (Delaney, 
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Cummins, et al., 2018; Delaney et al., 2019). Mean peak acceleration intensity across 

rugby league positions and phases of play have ranged from 1.00 to 1.46 m·s-2, which is 

comparatively higher to values reported in other football codes such as association 

football (~0.75 – 0.86 m·s-2) (Delaney, Duthie, et al., 2016; Delaney, Thornton, et al., 

2016; Delaney, Thornton, et al., 2018; Whitehead et al., 2021). The differences in 

acceleration intensity between team sports indicates the importance of the assessment of 

acceleration in the determination of team sport activity profiles.  

The quantification of acceleration is central to athlete management (Harper et al., 2019). 

Accelerations incorporate a significant portion of the activity profile during competition 

(de Hoyo et al., 2016; Gastin et al., 2019; Harper et al., 2019; Russell, Sparkes, Northeast, 

Cook, Bracken, et al., 2016; Young et al., 2012). However, both accelerations and 

decelerations provide a different stimulus on the body. Accelerations have a greater 

metabolic cost and can contribute to neuromuscular fatigue, whilst decelerations are 

known to be eccentrically demanding (Clarkson & Newham, 1995; Newham, McPhail, 

et al., 1983; Newham, Mills, et al., 1983). The eccentric loading from decelerations 

creates a greater mechanical load from high force rates and subsequent braking which is 

dampened by soft-tissue structures (Clarkson & Newham, 1995; de Hoyo et al., 2016; 

Gastin et al., 2019; Harper et al., 2019; Newham, McPhail, et al., 1983; Russell, Sparkes, 

Northeast, Cook, Bracken, et al., 2016; Young et al., 2012). Consequently, in team sport 

athletes, muscle damage (quantified by increased creatine kinase [CK]) post competition 

has been identified from high-intensity accelerations and decelerations (Gastin et al., 

2019; Harper et al., 2019; Oxendale et al., 2016).  

To quantify acceleration during training or competition, GNSS technology is frequently 

utilised (Akenhead et al., 2014; Buchheit, Al Haddad, et al., 2014; Harper et al., 2019). 

Commonly, acceleration in team sport has been quantified via threshold-based variables, 
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where counts, time or distance spent in certain thresholds (e.g., > 3.5 m·s-2 for high-

intensity accelerations) have been analysed (Chapter 3). However, threshold-based 

measures are limited by the efficacy and processing settings of the tracking technology 

measuring the event (Delaney, Cummins, et al., 2018; Thornton, Nelson, et al., 2019). 

For example, the very large variations seen in a team sport simulation circuit during 

positive (CV = 10–43%) and decelerations (CV = 42–56%) could be attributed to the 

between-unit reliability (Buchheit, Al Haddad, et al., 2014). 

Before the interpretation of activity profile variables such as acceleration, tracking 

technology validity and reliability should be established. Previous research has detailed 

that tracking technology is evaluated at three levels (Linke et al., 2018). These levels 

include positional accuracy (spatial domain) followed by the accuracy of instantaneous 

speed and acceleration and lastly, the accuracy of individual variables (i.e., max speed, 

high-speed distance). Previous research reported inferior validity in the measurement of 

positional accuracy in GPS (96 ± 49 cm) technology compared to a local positioning 

system (LPS) (23 ± 7 cm) against VICON (Linke et al., 2018). However, for measures of 

instantaneous speed (0.28 ± 0.07 m·s-1) and subsequently, acceleration (0.67 ± 0.21 m·s-

2), GPS was identified by the authors as valid with improved root mean square error 

(RMSE) against VICON, potentially due to the lack of “cycle slips” associated with 

doppler shift derived speed (Linke et al., 2018). Research indicates that GPS/GNSS 

technology has the potential to be valid for instantaneous speed measures which then 

allows for acceleration to be calculated (Linke et al., 2018). However, the initial process 

in quantifying acceleration is immediately influenced by any pre-processing and data 

filtering from the EPTS manufacturer (Carling et al., 2008; Delaney et al., 2019; Linke et 

al., 2020; Stevens et al., 2014; Sweeting, Cormack, et al., 2017; Wundersitz et al., 2015). 

Data from wearable technology may be pre-processed in what would be considered raw 
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manufacturer data, which may alter the magnitude of outputs to some degree (Malone et 

al., 2017). Speed is then initially filtered via various mathematical algorithms to maintain 

data quality and to smooth erroneous points (Malone et al., 2017; Sweeting, Cormack, et 

al., 2017; Wundersitz et al., 2015). However, the process in the selection of the respective 

pre-processing, filter and the associated cutoff frequency is generally arbitrary (Malone 

et al., 2017; Wundersitz et al., 2015). The arbitrary selection of any imposed filter is 

problematic, as currently, there is no consensus method in the processing of speed data 

prior to the calculation of acceleration (Linke et al., 2018; Malone et al., 2017; Sweeting, 

Cormack, et al., 2017; Thornton, Nelson, et al., 2019). Further, once acceleration is 

calculated, it is not known if it is then filtered again. Processing methods may vary from 

manufacturer to manufacturer, resulting in differences in acceleration that could be 

influenced by a filter. However, it must be stressed that differences in acceleration could 

also be influenced by the accuracy of instantaneous speed data, as well as hardware 

specifications (Thornton, Nelson, et al., 2019; Varley et al., 2017). However, hardware 

specifications (i.e., sample rate, satellite system, magnetometer) are commonly provided 

in research or accessible from the manufacturer, promoting direct comparison between 

manufacturers. Filtering details, however, are not (Chapter 3). In Chapter 3, 13% of 

studies included information regarding the filter of their speed or acceleration data. The 

result from Chapter 3 may be due to the lack of information from manufacturers on their 

filtering settings, hindering direct comparisons between manufacturers. The limited 

information from manufacturers may be due to the protection of commercial interests in 

not wanting to divulge intellectual property that directly influences their product (French 

& Ronda, 2021; Malone et al., 2017).   

Comparisons between GNSS-based results in team sport research are problematic as 

practitioners are unable to compare units from different manufacturers due to potential 
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differences in processing methods and hardware specifications (Linke et al., 2020; 

Thornton, Nelson, et al., 2019). Despite the ability to smooth affected data points during 

times of poor signal, it is the presence of filters that can influence measured activity 

profile variables (Delaney et al., 2019; Malone et al., 2017; Sweeting, Cormack, et al., 

2017; Thornton, Nelson, et al., 2019). For example, three commercially available, 10 Hz, 

GNSS devices (Catapult Sports S5, GPSports EVO, STATSports APEX) were used to 

measure activity during a team sport simulation session (Thornton, Nelson, et al., 2019). 

The study concluded that standardized data processing methods were recommended 

which was in part, due to the large differences found between acceleration outputs from 

the three manufacturer-based filters (Thornton, Nelson, et al., 2019). The differences 

found between the manufacturers could indicate that the filtering applied to any one of 

these units was substantially different to the other (Thornton, Nelson, et al., 2019). 

Knowledge of the filtering settings between manufacturers is important irrespective of 

similar sample rates and other hardware specifications. It is of interest to assess whether 

the filter settings are influencing the variation in activity profile results between GNSS 

units (Thornton, Nelson, et al., 2019). Furthermore, with the sustained development in 

GNSS tracking technology, it is imperative that as tracking technology evolves, 

researchers and practitioners understand the role of data filtering in quantifying the 

activity profiles of athletes.  

Given the lack of knowledge surrounding manufacturer filters in research, it is prudent to 

examine the effect of applying a common filter on different GNSS units during the same 

testing bout (Thornton, Nelson, et al., 2019). It is of interest to examine whether data from 

GNSS technology from different manufacturers can be filtered with a similar process to 

render comparable acceleration outputs during team sport locomotion. Therefore, the aim 

of this study was twofold. Firstly, the study aimed to observe whether there were 
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substantial differences in acceleration between GNSS manufacturers as extracted from 

the proprietary software. Subsequently, this study then aimed to apply common filtering 

properties to acceleration to enable more appropriate comparison between GNSS 

manufacturers for acceleration outputs.   

5.4 Methods 

5.4.1 Design and Participants 

 

An observational study design was implemented to examine acceleration data from 

different GNSS manufacturers during elite rugby league training sessions. Seven, elite 

male rugby league athletes (mean ± SD; 22 ± 3 years, age range; 18 to 26 years, 1.86 ± 

0.09 m, 94 ± 10 kg) who were all contracted full time during the 2018 National Rugby 

League (NRL) season participated in the study. All participants provided informed 

consent to researchers. Institutional ethical approval was granted for the commencement 

of the study (Victoria University: HRE21-017). 

5.4.2 Procedure  

 

During analysed training sessions, athlete movements were tracked with two different, 

commercially available 10-Hz GNSS units (GPSports EVO, firmware: 1.158,  Catapult 

Sports, Melbourne, Australia, and STATSports APEX, firmware: 2.45, Newry, Ireland) 

that were positioned between the athlete’s scapulae, worn in a custom-made 

undergarment. GNSS units were placed in the same pouch in each participant’s vest. It is 

acknowledged that wearing two units in one undergarment is not standard practice. 

However, given the obtrusive nature of wearing two undergarments in training sessions 

featuring ground-based contacts, this was not feasible. Moreover, GNSS units in these 

pouches were facing with their antenna in the correct position to promote satellite 

connectivity. The combined average number of satellites (mean ± SD; 9.3 ± 0.9) and 
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horizontal dilution of precision (HDOP) (1.06 ± 0.07) were acceptable for human 

locomotion (Malone et al., 2017) Additionally, through the use of online GNSS planning 

tools (gnnsplanning.com), the expected satellite availability and HDOP over the course 

of all testing sessions was retrospectively recorded (satellites; 11.3 ± 0.5, HDOP; 0.92 ± 

0.08). The outdoor training facility for the observed team was free from any surrounding 

and overhanging infrastructure that could obstruct satellite signals.  Importantly, for the 

calculation of acceleration, both GNSS models, (including previous models) in this 

research have been previously accepted for variables of either speed or 

acceleration.(Beato et al., 2018; Delaney et al., 2019; Linke et al., 2018)  

GNSS data was collected during 13 selected training sessions with a total of 34 training 

observations collected by both GNSS manufacturers (GPSports: 34 observations, 

STATSports: 34 observations: 68 in total). During training, the commencement and finish 

time of each drill was recorded. Each training file was included in the analysis regardless 

of how many drills had been completed by that athlete during the given session.  

The accompanying proprietary software from both respective manufacturers was used 

(GPSports Console; version 1.5.0 and STATSports APEX console; version 2.0.2.4) to 

extract the athlete GNSS files for further analysis of movement variables in Rstudio 

software (version 1.1.419). Speed traces from the manufacturers for each athlete and 

session were synchronised using cross correlation via the ccl function within the stats 

library in Rstudio (Linke et al., 2020). The cross correlation of the speed traces resulted 

in a single data frame for each athlete and each session that contained both sets of the 

manufacturer’s speed data. As per Figure 5-1, the data handling methodology followed 

several steps. From the extraction of the manufacturer’s speed data, acceleration was 

calculated. To determine the appropriate cutoff frequency for processing athlete speed 

data, a residual analysis was implemented using a range of cutoff frequencies within a 4th 
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order low-pass Butterworth filter (Linke et al., 2020; Winter, 2009). To plot the 

differences between the filtered and software exported (raw) GNSS speed traces, 100 

different cutoff frequencies (0.1 – 10.0 Hz) at 0.1 Hz increments were implemented. From 

this analysis and by following the processes outlined previously, a 1 Hz cutoff frequency 

was determined as being the most appropriate for handling speed (Winter, 2009). 

Following the formation of the filtered speed variable, acceleration was then calculated 

using finite differentiation (central difference) of the filtered speed, resulting in the 

filtered acceleration variable. At this point, another residual analysis identified the most 

appropriate cutoff frequency for the filtered acceleration variable was at 1 Hz. Filtered 

acceleration was then filtered again (twice filtered) using the optimal cutoff frequency (1 

Hz) and experimental filter (4th order Butterworth). Following the filtering and calculation 

of the athlete GNSS data, all session data was trimmed to only include drill time, where 

athletes were actively participating in the training drill. The mean speed (m·s-1) and 

acceleration (m·s-2) for each athlete within each drill were established, along with the 

total high-speed distance (m; > 5 m·s-1) and total acceleration counts (n; > 2 m·s-2). Total 

acceleration counts were calculated by the researchers in R Studio software for the 

software exported as well as filtered and twice filtered conditions to enable appropriate 

comparison between conditions and manufacturers. For example, if an acceleration 

occurred > 2 m·s-2, during an instance, this would be classed as a count provided it was 

of minimum duration. An MED time of 0.4 seconds was used in the calculation of 

acceleration counts which is similar to that used in previous research (Chapter 3). The 0.4 

second MED time was selected given the common use of this MED time within team 

sport activity profile research, as found within the results section of Chapter 3.  
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Figure 5-1. Data processing flowchart depicting order of events for handling GNSS data. 
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5.4.3 Statistical Analysis 

To determine the difference between each GNSS device and their respective speed and 

acceleration values, a root mean square deviation analysis (RMSD) was used. Raw data 

from each manufacturer was assessed both before and after the application of a 1 Hz 

Butterworth filter. Athlete values from one GNSS manufacturer across all drills from each 

training session were compared against the other manufacturer with a resulting RMSD 

provided for each drill, variable and filtering condition.   

To determine the difference in RMSD values and summary values between GNSS 

models, this study implemented a linear mixed model approach. For the RMSD analysis, 

a separate linear mixed model was constructed for speed and acceleration and included 

fixed and random effects. Each athlete was designated as a random effect in both models 

to account for any error associated with recurring values from the same athlete (Delaney, 

Thornton, Burgess, et al., 2017; Delves et al., 2019). Each drill was included as a random 

effect, whilst each filter setting was designated as a fixed effect. Linear mixed models 

were also used for the analysis of the summary variables and included the same random 

and fixed effects as used for RMSD analysis, except the GNSS manufacturer, rather than 

the filter type, was included as a fixed effect. Using similar methodology published 

previously, the linear models then provided resultant standard deviations (SD) and mean 

differences that were implemented to determine standardised effect sizes (ES), which 

were classified as; <0.20 trivial; 0.21- 0.60 small; 0.61 – 1.20 moderate; 1.21 – 2.0 large 

and >2.01 very large (Hopkins et al., 2009; Johnston et al., 2022; Thornton, Delaney, et 

al., 2019). Real effects were required to be at least 75% greater than a moderate ES 

(Johnston et al., 2022). The definition of a real effect was based on a moderate worthwhile 

difference, in keeping with rationale from previous GNSS technology research (Delaney 

et al., 2019; Johnston et al., 2022).  
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5.5 Results 

The RMSD in raw, filtered and twice filtered for speed and acceleration is outlined in 

Table 5-1. The RMSD for acceleration substantially decreased in the filtered (ES; CI: 

4.84; 3.23 to 6.46) and twice filtered (ES; CI: 4.94; 3.29 to 6.58) variables compared to 

the raw variable. The residual analysis of speed and acceleration is shown in Figure 5-2.  

Table 5-2 presents the summary values (Mean ± SD) from this study. Raw average 

acceleration was substantially higher in STATSports APEX units compared to GPSports 

EVO (ES; CI: 0.82; 0.84 to 0.80). Similarly, in raw acceleration counts, STATSports 

APEX recorded greater counts compared to GPSports EVO (ES; CI: 6.18; 6.88 to 5.48). 

There were no differences in speed, high-speed distance or filtered and twice filtered 

acceleration variable.  

Athlete speed and acceleration encompassing all data points from each drill across both 

GNSS manufacturers is presented in Figures 5-3 and 5-4 respectively. The difference in 

speed between the two systems relative to the speed measured by the GPSports EVO is 

displayed in Figure 5-3. Similarly, Figure 5-4 presents the difference in acceleration 

between systems relative to the acceleration measured from the GPSports EVO.  

The distribution of all summary values in this study is presented in Figure 5-5. All 

boxplots feature the raw and filtered processing of the combined athlete data from both 

GNSS models.  
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Table 5-1 Observed Root Mean Square Differences between analysed variables across both GNSS units in Raw, Filtered and Twice 

Filtered Settings. 

 

 

*Denotes substantially different compared to raw values. All observed differences are >75% likelihood of being greater than the smallest 

worthwhile change (calculated as 0.6 x between-subjects SD).  

 
Filter settings  

(Mean ± SD) 

Effect Size  

(90% Confidence Interval) 

Variable Raw Filtered Twice 

filtered 

Raw – Filtered Raw – Twice 

Filtered 

Filtered – Twice 

Filtered 

Speed (m·s-1) 0.35 ± 0.43 0.28 ± 0.44 
- 

0.16 (0.11 to 

0.21) 

- - 

Acceleration (m·s-2) 1.77 ± 0.37 0.27 ± 0.23* 0.24 ± 0.23* 4.84 (3.23 to 

6.46) 

4.94 (3.29 to 6.58) 0.10 (0.09 to 0.29) 
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Figure 5-2. GNSS manufacturer residuals to determine the appropriate cutoff frequency 

for speed (A) and acceleration (B). 
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Table 5-2. Summary values (Mean ± SD) of GPSports EVO and STATSports APEX units 

during Elite Rugby League Training Sessions as processed by Raw, Filtered and Twice 

Filtered properties. Differences between units and corresponding effect sizes outlined as 

Diff/ES; 90% CI. 

Condition 

GPSports 

EVO 

STATSports 

APEX 
Difference Effect size 

Mean ± SD Mean ± SD 
Diff 

90% CI 

ES 

90% CI 

Speed 

(ms-1) 
    

Raw 1.19 ± 0.36 1.22 ± 0.35 
-0.03 

-0.04 to -0.02 

-0.09 

-0.12 to -0.06 

Filtered 1.19 ± 0.37 1.22 ± 0.35 
-0.03 

-0.04 to -0.02 

-0.09 

-0.12 to -0.06 

High-Speed 

Distance 

(m) 

    

Raw 8.22 ± 5.62 9.05 ± 5.19 
-0.83 

-1.00 to -0.66 

-0.18 

-0.23 to -0.12 

Filtered 8.16 ± 5.69 8.64 ± 5.59 
-0.48 

-0.62 to -0.33 

-0.09 

-0.12 to -0.06 

Acceleration 

(ms-2) 
    

Raw 0.37 ± 0.11 1.19 ± 0.27 
-0.82 

-0.84 to -0.80* 

-3.72 

-4.95 to -2.50 

Filtered 0.38 ± 0.12 0.42 ± 0.12 
-0.04 

-0.04 to -0.04 

-0.31 

-0.41 to -0.21 

Twice 

Filtered 
0.37 ± 0.11 0.41 ± 0.12 

-0.03 

-0.04 to – 0.03 

-0.25 

-0.33 to -0.17 

Acceleration 

> 2 ms-2 (n) 
    

Raw 3.8 ± 2.8 10.0 ± 7.6 
-6.2 

-6.9 to -5.5* 

-1.1 

-1.4 to -0.7 

Filtered 4.2 ± 3.0 5.3 ± 3.8 
-1.1 

-1.3 to -1.0 

-0.3 

-0.4 to -0.2 

Twice 

Filtered 
3.8 ± 2.7 4.7 ± 3.3 

-0.9 

-1.1 to – 0.9 

-0.3 

-0.4 to -0.2 

 

*Metric values substantially different between GNSS models. 

All observed differences are >75% likelihood of being greater than the smallest 

worthwhile change (calculated as 0.6 x between-subjects SD).  
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Figure 5-3. Combined athlete speed from GNSS units expressed as a difference between 

manufacturers. A = GPSports speed compared against speed difference (including 

STATSports speed). B = Filtered GPSports speed compared against filtered speed 

difference (including STATSports filtered speed). 
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Figure 5-4. Combined acceleration across athletes. Expressed as GPSports versus 

acceleration difference (including STATSports). A = GPSports acceleration versus 

acceleration difference (including STATSports acceleration). B = GPSports filtered 

acceleration versus filtered acceleration difference (including filtered STATSports 

acceleration). 
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Figure 5-5. Distribution of summary values in the analysed study outlined in raw, filtered 

and twice filtered variations by GNSS manufacturer. A = average speed (m·s-1), B = high-

speed distance (> 5 m·s-1; m), C = average acceleration (m·s-2), D = acceleration counts (> 2 

m·s-2; n). * Denotes substantially different between raw filter settings. 
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5.6 Discussion 
 

This study aimed to observe whether there were substantial differences in acceleration 

during team sport locomotion between GNSS manufacturers. This study then aimed to 

apply common filtering properties to acceleration to enable more appropriate comparison 

between GNSS manufacturers for acceleration outputs. This study observed that the 

RMSD for average acceleration (ms-2) decreased from raw outputs (RMSD: 1.77 ± 0.37 

ms-2) to those observed at the filtered (RMSD: 0.27 ± 0.23 ms-2, ES; (CI): 4.8; 3.2 to 

6.5) and twice filtered (0.24 ± 0.23 ms-2, ES; CI: 4.9; 3.3 to 6.6) variables. Similarly, for 

summary acceleration variables in average acceleration (ms-2) and acceleration counts 

(n), there were no substantial differences found between APEX and EVO in the filtered 

(speed) and the twice filtered (acceleration) parameters. The RMSD and summary 

variable results suggest that the GNSS manufacturers derive acceleration data in different 

ways which influences the calculation of acceleration. Moreover, the use of a common 

filter improved the difference in acceleration between unit models. The improved 

difference suggests that future research should investigate the development of a common 

acceleration filtering method that can be reported upon in research. A common filter could 

be implemented by practitioners at the applied level to maintain consistency in tracking 

data longitudinally and by researchers in activity profile and validity and reliability 

research (Linke et al., 2020; Thornton, Nelson, et al., 2019).   

Despite the continued development of GNSS technology within applied sport science, the 

processing of acceleration between manufacturers continues to be of concern (Delaney et 

al., 2019; Linke et al., 2020; Thornton, Nelson, et al., 2019). The raw acceleration-based 

results from manufacturers in this study were substantially different. STATSports APEX 

raw average acceleration (ms-2) was noticeably higher compared to GPSports EVO, but 

there was a greater difference in acceleration counts (n: > 2 ms-2), where APEX counts 
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(10.0 ± 7.6) presented a substantially higher amount compared to EVO (3.8 ± 2.8). In 

similar research, software and raw-derived acceleration data showed consistent 

differences in variables between STATSports APEX and GPSports EVO (Thornton, 

Nelson, et al., 2019). In absolute acceleration (ms-2), both the raw and proprietary 

software-derived values in STATSports APEX and GPSports EVOs were most likely 

different (ES; confidence limits: 1.9; ± 0.1), which is consistent with the average 

acceleration findings in the current study. Whilst the current study opted to analyze 

acceleration counts (n: > 2 ms-2) instead of distance-based thresholds, similar differences 

were seen to that of previous research with the application of threshold-based variables 

(Thornton, Nelson, et al., 2019). Despite the difference in study designs, it may be that 

the results from the controlled, sled-based trials from previous research are confirmed by 

results from the team sport locomotion patterns seen in the current study (Thornton, 

Nelson, et al., 2019). 

It is important to state that the validity of the measurement of instantaneous speed is vital 

to the subsequent validity for derivative measures such as acceleration (Linke et al., 2018, 

2020). Moreover, both GNSS models in this study have been previously validated for 

either speed or acceleration variables (Beato et al., 2018; Delaney et al., 2019). The results 

from the current study indicate that there were no substantial differences seen in average 

speed variables in both raw and filtered variations according to the study’s statistical 

criteria (Figure 5-3). However, the resulting speeds in both filtered and raw conditions 

were extremely similar between the manufacturers. The lack of substantial difference in 

average speed variables and the RMSD results indicates the differences seen in raw 

acceleration variables are most likely due to the processing and/or filtering at the 

calculation stage of determining acceleration. Despite both GPS/GNSS models in this 

study possessing similar sample rates (10 Hz), it is clear one of these systems calculates 
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acceleration differently to the other, which contributed to the discrepancies seen in the 

raw acceleration-based results. Moreover, Figure 5-4 highlights that the shape of the 

scatterplot changes substantially in plot B compared to plot A as it appears that one 

manufacturer in plot A applies a greater filter setting compared to the other. However, 

when the same filtering is applied as seen in plot B, the errors appear to be more evenly 

distributed in plot B compared to the skewed differences in plot A. The researcher, 

however, does not know how raw acceleration from each manufacturer was processed as 

this information is not made readily available by manufacturers and is not commonly 

published within research (Harper et al., 2019; Varley et al., 2017). For practitioners, the 

lack of clarity surrounding the processing of acceleration, as well as the inconsistency in 

the reporting of acceleration in research, hinders the ability to compare the acceleration-

based activity profiles of their athletes to that published in research (Linke et al., 2020). 

Given the findings of this study, it is prudent that future research attempt to report the 

filtering processes surrounding their acceleration/deceleration data where possible, to 

ensure practitioners are aware of any differences that may be technologically influenced 

(Linke et al., 2020; Thornton, Nelson, et al., 2019). 

This study applied a common filter between two GPS/GNSS manufacturers to compare 

acceleration outputs more appropriately between models. A 1-Hz low-pass Butterworth 

filter was selected by following the process outlined previously (Winter, 2009). The use 

of a 1-Hz low-pass Butterworth filter is not uncommon in team sport research, with 

variants being previously applied to variables in rugby league and rugby sevens (Couderc 

et al., 2019; Cummins et al., 2018; Ellens, Hodges, et al., 2022; Furlan et al., 2015). The 

subsequent results of applying the 1-Hz Butterworth filter to the datasets improved the 

difference in acceleration across all acceleration variables, to a point where there were no 

substantial differences in average acceleration or acceleration counts and the RMSD 



169 

 

decreased from the raw values for acceleration. It should be noted that despite 

acceleration values becoming similar following data handling, this does not mean that 

both are valid or reliable outputs of acceleration. However, the results of this portion of 

the analysis highlights the influence of applying a common filter to GNSS data from 

different manufacturers and the ability to obtain comparable results. Practically these 

results should be seen as what could be achieved with further development into the 

application of a common filtering process. For practitioners, the development towards 

such a filter would allow for appropriate comparison between the activity profiles 

published in research and those seen within their own athletes (Linke et al., 2020).  

It should also be stated that future wearable tracking research into acceleration processes 

not only impacts GNSS technology but also local positioning systems (LPS) and optical 

camera systems (Thornton, Nelson, et al., 2019). Given the growth of tracking 

installations in outdoor stadia, practitioners may be required to swap in and out of tracking 

systems whilst on the training field (i.e., GNSS) and the competition arena (i.e., LPS or 

optical systems) (Buchheit, Allen, et al., 2014; Thornton, Nelson, et al., 2019). This would 

prompt the need to filter acceleration in similar ways between these two technologies to 

maintain athlete data longitudinally. Similarly, for researchers, the use of a common 

acceleration filter may also enhance the quality of validity and reliability trials of future 

technology by providing a reference point to compare already established technologies 

(Hodder et al., 2020).  

It may also be pertinent that in the research setting, all future research on athlete wearable 

tracking data be processed by the researchers themselves, rather than the proprietary 

software. If researchers can process wearable tracking data independently of the 

proprietary technology, there may be greater clarity (within research) surrounding the 

methodology in the processing of the athlete data. As seen in the results of this study, the 
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method in which athlete tracking data is processed has a bearing on the activity profiles 

of training and competition. In terms of acceleration, this importance is further magnified 

as it is a calculated variable that is a derivative of speed. In turn, with the enhanced 

availability of data processing information (i.e., filtering properties) more appropriate 

comparisons and conclusions could be made by researchers and practitioners.  

This study was not without limitation. Firstly, training data was collected on one NRL 

team. The activity profile during training is representative of the athletes in the analysed 

team and may not be representative of all other teams within the NRL. Training data was 

also collected on outdoor training surfaces. The results of this study are therefore 

applicable to these conditions but may not be applicable to events held within stadium 

structures.  

Although the selection of the 1-Hz low-pass Butterworth filter was appropriate for the 

constraints of this research, for other team sports, this filter may not be appropriate. It 

could be that a different filter may be optimal for sports. For example, practitioners in 

individual sports such as track sprinting in athletics may require analysis on inter-stride 

acceleration, whilst team sport practitioners may require a gross assessment of 

acceleration over the training session or match (Linke et al., 2018). Both practitioners 

would then require a different processing method or tracking technology to accommodate 

such analysis (Linke et al., 2018). Regardless, the findings of this study promote further 

research into the development of a common approach to processing acceleration-based 

data of team sport athletes. The researcher suggests researchers conduct a residual 

analysis on the effects of different filters to ensure that the correct filter is applied to the 

respective athlete tracking data (Winter, 2009).   
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This study also analysed two GPS/GNSS models from two manufacturers. The results 

from this study are relevant to the models and firmware analysed. Whilst this does not 

provide a representation of GNSS technology that is commercially available to 

practitioners, practically it is the most that could be worn by an athlete during training 

sessions. It should be emphasised that having two systems capturing athlete locomotion 

during training is of practical benefit, given the unscripted nature of movement and with 

reference to acceleration intensity noted in rugby league (Delaney, Duthie, et al., 2016; 

Delaney, Thornton, et al., 2016).  

 

5.7  Practical Applications 

• Despite similarities in sample rate, average acceleration and acceleration counts 

that were calculated from each manufacturer’s proprietary software were 

substantially different when compared against each other. This indicates that the 

calculation of acceleration between manufacturers is different. 

• The common filter applied to both GNSS models improved the difference 

between the manufacturers in acceleration variables.  

• The introduction of a common filtering process for calculating acceleration 

across wearable technologies may be required. The adoption of a common 

filtering method could alleviate concerns surrounding data variability and the 

influence of the technology upon activity profiles.  

 

 

 



172 

 

5.8  Conclusions 

The results from this study indicate that GNSS technology from different manufacturers 

derive acceleration data differently. Additionally, technologically influenced variations 

may exist in the acceleration of athletes. For practitioners and researchers, it is important 

to standardize the processes in the calculation of acceleration to outline how acceleration 

events are calculated in each research study. Ultimately, the findings of this study suggest 

that the development of a common acceleration filtering process for different 

technologies and manufacturers may be required in team sport research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



173 

 

CHAPTER 6 - VALIDITY OF GNSS FOR QUANTIFYING 

MOVEMENT IN TEAM SPORTS 
 

 

6.1 Directions from Chapter 5 
 

Chapter 5 built upon Chapter 4 by indicating that GNSS technology from different 

manufacturers can process acceleration data differently which could impact the overall 

magnitude of acceleration within the activity profile. For practitioners and researchers, 

the results are problematic, both when assessing the validity and reliability of different 

tracking technologies, and when evaluating activity profiles for training program 

prescription. The use of 1 Hz Butterworth filter upon GNSS technology in Chapter 5 

improved the comparison in acceleration between manufacturers, to a point where there 

was no significant difference in acceleration. Whilst the between-model comparison was 

improved with a common filter in previously validated technology, the filter settings must 

still be evaluated by a criterion measure before further application could take place both 

in research and in the applied setting. Chapter 5 is required to evaluate the device settings 

against three-dimensional motion capture in provisions for use as a possible common 

filter. 
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6.2 Introduction 
 

The Global Navigation Satellite System (GNSS) has been used to determine athlete 

position and speed during training and competition in team sports (Aughey, 2011a; 

Delaney et al., 2019; Johnston et al., 2020). Athlete tracking via GNSS technology can 

provide information on movement variables such as speed and acceleration which can 

underpin the activity profile for training and/or team sport competition (Aughey, 2011a; 

Sweeting, Cormack, et al., 2017). The GNSS is an advancement in satellite system 

technology, with increased access to satellite systems such as the Global Positioning 

System (GPS), BeiDou, GLONASSS and Galileo systems for athlete wearable 

technology (Chahal et al., 2022; Delaney et al., 2019; Johnston et al., 2020). With 

increased satellite coverage accessible to athlete wearable tracking technology, there 

could be further improvements in the validity and reliability of measures such as 

instantaneous speed, as a lesser number of connected satellites has been associated with 

greater error rates across distance and speed variables (Aughey, 2011a).  

Global Positioning System research has identified that technology that samples at 10 Hz 

can provide valid reports of distance, speed and maximum speed (Aughey, 2011a; Beato 

et al., 2018; Jennings et al., 2010a; Jennings et al., 2010b; R. J. Johnston et al., 2014; 

Johnston et al., 2013; Malone et al., 2017; Scott et al., 2016; Varley, Fairweather, et al., 

2012). However, greater variation exists with high-intensity locomotion, such as high-

speed distance, and high-intensity acceleration and deceleration events (Akenhead et al., 

2014; Aughey, 2011a; Buchheit, Al Haddad, et al., 2014; Crang et al., 2021). For GNSS 

technology, average speed and average acceleration have been validated as locomotion 

variables, with small differences found in average speed (m·s-1; 0.19–0.25; ± 0.21) and 

small to moderate differences found in raw acceleration data (m·s-2; 0.25–0.35; ± 0.24) 

against a three-dimensional motion capture system (VICON) at the centre of mass and at 
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the C7 vertebrae (Delaney et al., 2019). For GNSS-derived peak speed and distance, there 

has been mixed validity and reliability results. Total differences of 1-2% were reported 

across 400 m bouts, 128.5 m circuits, 20 m trials and max speed efforts in GNSS 

technology compared to a criterion (Beato et al., 2018). However, a similar study found 

that seven out of eight devices overestimated distance during sprint trials (Chahal et al., 

2022). Given the differences in criterions and GNSS technology used in these studies it 

is difficult to make conclusions regarding the validity of GNSS technology, particularly 

with a lack of research surrounding the validity of instantaneous speed data, which can 

underpin derivative metrics such as acceleration.   

To establish GNSS validity, tracking technology should be evaluated against a criterion. 

The use of three-dimensional motion capture systems (i.e., VICON) have been 

recommended as the most appropriate criterion to assess the validity of tracking systems 

such as GNSS technology (Duffield et al., 2010; Linke et al., 2018; Vickery et al., 2014). 

Specifically, positional and instantaneous speed and acceleration data from GNSS should 

be directly compared against a motion capture system to establish tracking system validity 

(Linke et al., 2018; Luteberget & Gilgien, 2020). However, it should be noted that GNSS 

models typically determine athlete position and speed in different ways compared to a 

motion capture system. For example, three-dimensional motion-capture systems (e.g., 

VICON) determine athlete position via the use of X, Y coordinates, from which, athlete 

speed can be derived (Linke et al., 2018, 2020). Tracking systems such as GNSS, 

however, determine position and speed via positional differentiation and doppler shift, 

respectively (Aughey, 2011a; Malone et al., 2017). However, the existing research 

analysing the validity of either instantaneous positional or speed data in GNSS technology 

against a three-dimensional motion capture system is limited (Delaney et al., 2019; Linke 

et al., 2018; Luteberget & Gilgien, 2020). In GPS technology, it has been reported that a 
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5 Hz GPS (96 ± 49 cm) had inferior positional accuracy results compared to an LPS 

system (23 ± 7 cm) in a validity study against a three-dimensional motion capture system 

(VICON) during a series of movement circuits and small-sided games (SSGs)(Linke et 

al., 2018). However, despite an inferior level of positional accuracy, both instantaneous 

speed and acceleration from the GPS device showed improved levels of validity with no 

substantial difference found in GPS outputs against the other tracking systems examined 

(Linke et al., 2018). The authors suggested that the improved results in instantaneous 

speed and acceleration were due to the impact of calculating athlete speed via doppler 

shift, which is more resistant to “cycle slips”, potentially enhancing the validity of 

instantaneous speed measures (Linke et al., 2018). The cited research would then suggest 

that determining the validity of instantaneous speed is of importance before analysing 

derivative variables in team sport activity profiles. Moreover, given that 5 Hz GPS 

technology is largely superseded by the current standard of 10 Hz technology, the validity 

for instantaneous speed during team sport movements should be established for this 

sample rate (Aughey, 2011a; Malone et al., 2017).   

Importantly for team sport activity profiles, instantaneous speed can be used to calculate 

locomotion variables that are commonly assessed by practitioners (French & Ronda, 

2021; Linke et al., 2018). For example, acceleration-based metrics such as average 

acceleration (m·s-2) or acceleration distance (m) as well as metabolic variables such as 

metabolic power (W·kg-1) are subsequently calculated from the initial instantaneous 

speed trace.  Variables such as average acceleration (m·s-2) or metabolic power (W·kg-

1)could also be then categorised further into thresholds indicating the distribution of each 

variable (Linke et al., 2018). However, the validity of any derived metric is subject to the 

validity of instantaneous speed as measured via the tracking technology (French & 

Ronda, 2021; Linke et al., 2018). In the existing literature there is limited research on the 
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validity of instantaneous speed measures for GNSS technology (Delaney et al., 2019; 

Luteberget & Gilgien, 2020). Previous research has validated the use of average speed 

and acceleration in GNSS technology against a three-dimensional capture system 

(Delaney et al., 2019). Average speed and acceleration was associated with at least a 

moderate bias compared to the criterion (Delaney et al., 2019). However, as the cited 

study did not evaluate instantaneous measures of speed or acceleration, it is difficult to 

determine the initial levels of error at the instantaneous speed level (Delaney et al., 2019).  

Moreover, the instantaneous acceleration root mean square error (aRMSE) in GPS 

technology is similar to the error in instantaneous speed (vRMSE) (Linke et al., 2018). 

Due to acceleration being a derivative of speed and a second derivative of displacement 

with time, the initial error at the speed level has previously been magnified in the 

calculation of acceleration (French & Ronda, 2021; Linke et al., 2018). Acceleration error 

in GPS technology during a sport-specific course (1.18 ± 0.14 m·s-2) was double 

compared to the shuttle run condition (0.56 ± 0.17 m·s-2). Additionally, in the same 

research. the variables of high acceleration (m) (RMSE:50.3%) and deceleration distance 

(m) (RMSE: 93.3%) exhibited small and medium effect sizes respectively during small-

sided games with 5 Hz GPS technology (Linke et al., 2018). Despite the results from the 

summary metrics, it should be noted that 5 Hz technology has been accepted within 

research has having limited validity for high-intensity movement compared to the current 

standard of 10 Hz technology (Malone et al., 2017; Scott et al., 2016). Determining the 

validity of instantaneous speed is thus important to subsequently calculating derivative 

metrics.  

Therefore, it is of interest to establish the existing levels of error calculated at the 

instantaneous speed level before deriving GNSS metrics such as acceleration or metabolic 

power. As the origin of error in calculated acceleration metrics mainly derives from the 
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level of error at the instantaneous speed level, this research will establish that future 

validity studies should assess the accuracy of variables at the instantaneous speed level. 

For example, instantaneous speed for GNSS systems should be assessed for validity, 

whilst the validity of position for X, Y coordinates for LPS and optical systems should be 

assessed. This study aims to highlight the existing levels of validity for instantaneous 

speed during team sport movements via GNSS technology. Subsequently this research 

will aim to establish that future research on wearable technology validity should focus 

assessment on the validity of instantaneous values of speed rather than derivative 

variables from speed.  
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6.3 Methods 

6.3.1 Design and Participants 

 

Ten elite youth academy and community-level football athletes participated in the study. 

Prior to the commencement of the study, all athletes, or their parents (for youth athletes) 

provided informed written consent to participate and to wear GNSS devices and VICON 

markers. Institutional ethics committee approval was obtained prior to the 

commencement of the research to conduct the study (HRE: 16-278).  

 

6.3.2 Testing Environment  

Testing was completed in a stadium that featured a full-sized, regulation football pitch. 

The testing stadium was used for national level competition and featured grandstand 

infrastructure that seated approximately 15,000 people. The testing area was a 30 x 30-m 

section where athletes were captured with both GNSS technology and via a three-

dimensional capture system simultaneously.  

 

6.3.3 Movement Protocols 

To assess the validity of GNSS technology in quantifying team sport movement, athlete 

movement was assessed via a sport-specific movement circuit and two small-sided game 

variations. All 10 subjects in the research participated in the movement protocols, which 

were deemed to be representative of movement patterns closely associated with football. 

Movements included self-paced walking, jogging, changes of direction and maximal 

accelerations. All movement protocols took place inside the testing area. The design and 

operation of the sport-specific movement circuit was replicated based on previous 

research (Aughey et al., 2022). The movement circuit in the current research was 
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completed first in two sets of 4-minute bouts. Five players participating in the first set of 

the 4-minute circuit, followed by the other 5 players in the second set. Small-sided games 

were structured in a 2v2 and a 5v5 format. One, 4-minute 2v2 game was played by four 

participants, which was followed by a 4-minute 5v5 game featuring all participants.  

 

6.3.4 Tracking Systems 

6.3.4.1 Global Navigation Satellite System 

During testing, each athlete was tracked with commercially available 10-Hz GNSS 

technology (Optimeye S5, firmware: 7.42 Catapult Sports, Victoria, Australia) that was 

positioned between the scapulae, worn in a custom-made undergarment. GNSS devices 

were turned on at least 10-minutes prior to the commencement of testing to enable 

maximum satellite connectivity. GNSS devices were positioned in the undergarment to 

ensure the antenna was in the optimal position for satellite connectivity. Athlete tracking 

quality during testing was assessed with the number of satellites in connection with the 

device and via the horizontal dilution of precision (HDOP) (Malone et al., 2017). The 

mean number of satellites (mean ± standard deviation; 12.0 ± 0.14) and HDOP (0.93 ± 

0.23) were acceptable for tracking human locomotion (Aughey, 2011a; Malone et al., 

2017).  

Following completion of the movement circuit and small-sided games, 24 individual 

GNSS files were downloaded (movement circuit = 10 files, 2v2 game = 4 files, 5v5 game 

= 10 files) using the GNSS proprietary software (Catapult Openfield, version 2.3.0, build 

52085). GNSS files were trimmed to only include each activity in the movement protocol. 

GNSS files were then exported as comma-separated files (.csv) and imported into R 

Studio software (version 1.4.1717) for further analysis. Each raw export contained time, 

speed and acceleration values. Speed data was filtered in this research by a 1 Hz fourth-
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order, low-pass Butterworth filter. Butterworth filters have been deemed as being 

appropriate for processing human locomotion data due to human movement (i.e., running) 

tending to occur at the low end of the frequency spectrum (Ellens, Middleton, et al., 2022; 

Wei-zhong et al., 2011; Winter, 2009). Butterworth filters are commonly used in 

biomechanics as these filters attenuate high frequency noise whilst attempting to maintain 

the true signal as it passes over lower frequencies (Campbell et al., 2020; Winter, 2009). 

The cutoff frequency (1 Hz) in this study was selected following the application of a 

residual analysis on speed data residuals (Campbell et al., 2020; Winter, 2009). Selecting 

the cutoff frequency is important as selecting a frequency that is too high for the dataset 

may cause too much noise to pass through, whilst a cutoff frequency that is too low may 

compromise the true signal as typically the signal and noise would not be separate 

(Campbell et al., 2020; Winter, 2009). A residual analysis has been previously used in 

similar research despite concerns surrounding the underestimation of the optimal cutoff 

frequency (at frequencies well greater higher than 10 Hz) (Campbell et al., 2020; Yu et 

al., 1999). The residual analysis for this study can be seen in Figure 6-1 which outlines 1 

Hz to be most appropriate for the current dataset. Following this methodology, the 

variables of mean speed and acceleration via GNSS were determined.  
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6.3.4.2 Three-dimensional Capture System 

The criterion measure of athlete locomotion was a three-dimensional motion capture 

system (VICON Vantage; Oxford Metrics, Ltd, Oxford, United Kingdom) that featured 

36 VICON Vantage cameras (Oxford Metrics Group Plc [OMG], Oxford, UK) with a 

sampling frequency of 100 Hz. The cameras were placed around the 30 x 30-m testing 

area for both the small-sided games and the movement circuit as used previously (Aughey 

et al., 2022; Linke et al., 2018). To track athlete locomotion during testing, participants 

wore five 38-mm retro-reflective spherical markers that were placed on anatomical 

landmarks following similar methodology from previous research (Aughey et al., 2022). 

Figure 6-1 Residual analysis performed on the participant GNSS data. 
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One marker was placed on each shoulder, with three markers placed on the pelvis (left-

anterior superior iliac spine, right anterior superior iliac spine and sacrum) (Linke et al., 

2018). Data for each athlete’s markers was labelled with the VICON Nexus software 

before being exported for further analysis.  

6.3.5 Data Processing 

To make appropriate comparison between the GNSS technology and the criterion, athlete 

locomotion data was processed using the following methodology. Firstly, speed was 

determined via doppler shift speed in GNSS technology and from the rate of change in 

horizontal X, Y position coordinates in the criterion measure. Acceleration was calculated 

as the rate of change in each respective technology’s speed outputs. Positional data were 

exported in X, Y coordinate form from VICON. To obtain horizontal plane speed, raw 

positional data (X, Y coordinates) from the three-dimensional capture system were 

differentiated using a three-point finite central difference formula (Delaney et al., 2019; 

Gilat, 2013). As VICON sampled at 100 Hz and the GNSS technology sampled at 10 Hz, 

VICON data was down sampled to 10 Hz to align with GNSS technology as that is the 

primary tracking system of interest in this research. Once the data was processed to 

sample at 10 Hz, a residual analysis was performed on the X, Y and speed export data 

from VICON where a 1 Hz cutoff was selected (Campbell et al., 2020; Winter, 2009). 

Following the selection of the 1 Hz cutoff frequency, the fourth order, low-pass 

Butterworth filter was applied to the VICON X, Y and speed data (Chapter 5, Chapter 7 

& Chapter 8). Once the VICON speed data was processed, acceleration was calculated. 

The above process was replicated for the GNSS dataset before a cross correlation was 

performed to synchronise both datasets using speed data. GNSS data was subsequently 

shifted forward and back by 10 seconds to obtain an optimal synchronisation to minimise 

the root mean square deviation (RMSD) in speed. Once data was aligned, the difference 
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(error) between GNSS and VICON for speed and acceleration was calculated. A rolling 

three-point RMSD was then calculated and subsequently plotted to examine the 

magnitude of error in acceleration in relation to the magnitude of error in speed. All data 

processing following the export from the respective proprietary software was performed 

in R Studio software (version 1.4.1717). 

 

6.3.6 Statistical Analysis 

Following the processing of the GNSS and criterion data, the validity of GNSS for 

quantifying team sport movement was assessed via RMSD. Both speed and acceleration 

variables were compared against the criterion (24 total observations, 52178 data points) 

with the RMSD determined. Root mean square deviation analysis depicts the standard 

deviation of the differences between the GNSS calculated speed or acceleration against 

the respective variable from the criterion (VICON) (Aughey et al., 2022). The relationship 

between speed and acceleration error was then observed. The maximum absolute 

acceleration error that occurred as the speed error increased up to 0.4 m·s-1 (0.02 m·s-

1intervals) was calculated, which resulted in 20 data points. The resulting 20 data points 

were plotted as a solid line in Figure 6-4 via a linear model, with the model returning a 

coefficient of determination of 0.98. Figure 6-4 shows the output from the linear model, 

with the solid line depicting maximal acceleration error occurring in 0.1 m/s speed error 

increments. The process in describing the maximal acceleration error against the speed 

error was not designed to be comprehensive, but rather to demonstrate that maximal 

acceleration error is related to the magnitude of the speed error.  
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6.4 Results 

The results of the residual analysis are outlined in Figure 6-1. Upon completion of the 

residual analysis, a 1 Hz cutoff filter was selected. The RMSD for speed and acceleration 

(RMSD ± standard deviation [SD]) was 0.17 ± 0.04 m·s-1 and 0.55 ± 0.17 m·s-2 

respectively. The speed error from GNSS and VICON speed is plotted in Figure 6-2. The 

acceleration error from GNSS and VICON acceleration is plotted in Figure 6-3. Speed 

error is plotted against acceleration error in Figure 6-4. Figure 6-4 shows an increase in 

the maximal acceleration error as the speed error increased.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-2 Speed (m·s-1) error derived from GNSS against the criterion speed. Density 

determined by a log of the instances. 
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Figure 6-3 Acceleration (m·s-2) error derived from GNSS against the criterion acceleration. 

Density determined by a log of the instances. 
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Figure 6-4 Speed error (m·s-1) derived from GNSS against the criterion acceleration plotted against 

Acceleration error (m·s-2). Density determined by a log of the instances. 
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6.5 Discussion 

This study identified the validity of a GNSS device against a three-dimensional motion 

capture system during team sport movements. The GNSS device had strong agreement in 

speed and acceleration across a team sport movement circuit and multiple small-sided 

games when compared to the three-dimensional motion capture criterion.  

The results from the current study showed a RMSD for speed and acceleration of 0.17 

m·s-1 and 0.55 m·s-2 respectively. Currently there is limited research comparing GNSS 

technology validity against a three-dimensional motion capture system in a stadium 

environment (Aughey et al., 2022; Delaney et al., 2019). However, speed accuracy less 

than 0.50 m·s-1 is likely to be satisfactory in practical applications (i.e., team sport training 

and competition) as long as the error and subsequent impact on the athlete activity profile 

is understood (Aughey et al., 2022). Whilst the speed accuracy in the current study is 

considerably less than 0.50 m·s-1, it is difficult to make direct assessment as to the level 

of validity of the GNSS technology in this study with limited comparisons within 

research. In the limited research available, the validity of various EPTS in a stadium 

environment against VICON has been assessed (Linke et al., 2018). Global Positioning 

System technology reported a RMSD for speed of 0.28 m·s-1 which increased to 0.67 m·s-

2 for acceleration (Linke et al., 2018).  The reported results showed greater error compared 

to the GNSS results in the current study. However, the GPS technology used in the cited 

research, sampled at 5 Hz (interpolated to 15 Hz) which would be considered inferior to 

the 10 Hz GNSS technology used in the current study and as such may have contributed 

to the stated differences.  

The results from this study also highlighted the importance of minimising speed error on 

the subsequent validity of derivative variables. Acceleration is a common variable for 

analysis in team sport activity profiles, but acceleration is also a second derivative of 
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displacement and time and a first derivative of speed (Aughey, 2011b; Aughey et al., 

2022; Delaney, Cummins, et al., 2018). As such, any existing error at the speed level may 

be magnified when acceleration is derived (Delaney et al., 2019; Duran & Earleywine, 

2012; Thornton, Nelson, et al., 2019). The results from this study indicated that RMSD 

for speed (0.17 m·s-1) further increased when acceleration was subsequently derived (0.55 

m·s-2). The influence on the existing levels of error in speed upon acceleration is 

illustrated in Figure 6-4 and shows high levels of density below the speed error threshold 

of 0.5 m·s-1. Moreover, Figure 6-4 indicates that as the magnitude of the speed error 

increased, the magnitude on acceleration error also increased. It should be noted as Figure 

6-3 illustrates, the majority of acceleration error in the current study occurred at 

approximately 0 – 1 m·s-2. This finding is not novel given the results from previous 

research, where existing levels of speed error have been further magnified when 

derivative variables have been formulated (Linke et al., 2018). However, there are 

practical instances within applied team sport where the GNSS-calculated speed error 

could be high whilst the acceleration error remains low. For example, an attacking player 

breaks through the defensive line in rugby league and sprints towards the try line 

uncontested at a 9 m·s-1 as tracked by an optical system or 3D motion capture system. 

The GNSS technology records the effort at 8 m·s-1, which results in a speed error of 

approximately -1 m·s-1. If the speed within this effort isn’t changing substantially (which 

minimises changes in acceleration) and both tracking models record acceleration at 0 m·s-

2, the resulting acceleration error is still 0 m·s-2. Regardless, the results from this study 

indicate that establishing the validity of instantaneous speed is important before 

attempting to produce derivative variables for analysis, such as acceleration. Specifically, 

acceleration metrics in team sports can be quantified using discrete variables that rely 

upon thresholds (i.e., counts, distances, time in zones) and as such, the validity for these 
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measures should be established before practitioners make informed decisions on activity 

profiles (Chapter 3). Additionally, metrics such as metabolic power have become 

common in team sport activity profiles, which is also partly derived from acceleration 

data, again highlighting the importance of not only establishing the validity for 

acceleration but for the initial validity of speed (Delaney, Duthie, et al., 2016; Delaney, 

Thornton, Burgess, et al., 2017; Delaney, Thornton, et al., 2018; Delves et al., 2019; di 

Prampero et al., 2005; Osgnach et al., 2010). 

The choice of filter and cutoff frequency can have an influence upon the validity of speed 

and acceleration data as calculated from GNSS technology (Delaney et al., 2019; Malone 

et al., 2017; Thornton, Nelson, et al., 2019; Winter, 2009). This study largely performed 

the handling and processing of the participant data independently of the GNSS 

manufacturer’s proprietary software. Firstly, the researchers selected a Butterworth filter 

given most human locomotion is undertaken at lower frequencies (Campbell et al., 2020; 

Winter, 2009; Yu et al., 1999). As a result, the researchers performed a residual analysis 

on the instantaneous speed data to identify the optimal cutoff frequency for this dataset 

(Campbell et al., 2020; Winter, 2009). A residual analysis was performed as the 

effectiveness of the Butterworth low-pass filter can depend upon the appropriateness of 

the cutoff frequency selected (Campbell et al., 2020; Yu et al., 1999). The results of the 

study showed that despite the researchers processing the participant data independently 

of the GNSS proprietary software, instantaneous speed was identified as being valid 

against the criterion. The researcher suggests that the use of the fourth-order 1 Hz 

Butterworth filter used in the current study is suitable for processing athlete GNSS data, 

with respect to team sport athletes, given the completion of the team sport movement 

circuit and series of SSGs completed within the study.   
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6.6 Practical Applications 

The practical application of a residual analysis could allow practitioners to begin to 

process athlete tracking data using their own filtering settings by following a similar 

methodology to the current study. Practically, this may aid practitioners who may wish 

to complete longitudinal analysis of athlete tracking data over competitive seasons whilst 

trying to maintain as much consistency in the data handling process as possible. Greater 

consistency in the data handling process may improve the ability to make comparisons 

between seasons, given the potential impact of manufacturer software updates upon 

variables such as acceleration which are periodically available across seasons. Moreover, 

the results from this study have shown that the filter chosen for this dataset may have 

facilitated valid results compared to the criterion. It should be reiterated that Butterworth 

filters have been widely used throughout research into human locomotion, given human 

movement occurs at lower frequencies and Butterworth filters typically allow lower 

frequencies to pass through whilst filtering higher frequencies (Campbell et al., 2020; 

Couderc et al., 2019; Ellens, Hodges, et al., 2022; Furlan et al., 2015; Winter, 2009).  The 

choice of a common filter may promote greater consistency for practitioners who elect to 

process athlete tracking data themselves, where typically they may have greater control 

over the processing methodology (i.e., filter choice and cutoff frequency) as opposed to 

relying upon the manufacturer processing and any subsequent updates to software or 

device firmware (Harper et al., 2019; Malone et al., 2017). However, it should be noted 

that different wearable tracking manufacturers may allow greater access and transparency 

to practitioners who wish to process tracking data themselves compared to other 

manufacturers. This may mean that some practitioners or academics may be continually 

reliant upon manufacturer processing to handle athlete tracking data as the end-users of 
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the technology are generally subject to what the manufacturer provides in terms of 

processing, filtering and software/firmware updates with little consultation.  

 

6.7 Limitations 

Whilst this study assessed the validity of instantaneous speed and acceleration via GNSS 

technology, the study did not assess the validity of GNSS-calculated athlete position 

compared to the criterion. However, previous research has indicated that despite GPS 

technology having inferior levels of positional accuracy compared to LPS systems, GPS, 

or in the current study’s example, GNSS, can overcome positional limitations when 

calculating instantaneous speed through the avoidance of cycle slips via Doppler 

measurements (Linke et al., 2018). 

Currently it is not feasible to assess the validity of GNSS technology during competitive 

football matches due to the technological difficulties of creating a capture area so vast 

and due to the configuration of cameras near the playing surface. Thus, there is no gold 

standard criterion to assess GNSS technology during competitive, outdoor team sports 

(Linke et al., 2018). Moreover, whilst the incorporation of a movement circuit in 

conjunction with the use of SSGs provides an element of game simulation regarding 

movement patterns, the size of the capture area is not a direct representation of 

competition movements and work to rest patterns. Lastly, this study assessed the validity 

of GNSS technology from one model from one manufacturer. Given the growth in GNSS 

technology in team sports, there are numerous manufacturers across various sample rates 

that should also be considered (Malone et al., 2017).  
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6.8 Conclusions 

This study established the validity of a GNSS device during a team sport circuit and SSG 

testing battery against a three-dimensional motion capture system. The results from the 

study suggest that the GNSS technology, which processed athlete movement data using 

a fourth order, 1 Hz Butterworth filter was valid for instantaneous speed. The RMSD for 

acceleration showed to increase as the RMSD for speed increased, indicating that 

practitioners and researchers should elect to establish the validity of instantaneous speed 

first before processing derivative measures such as acceleration or metabolic power.  
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CHAPTER 7 - ASSESSING THE ACCELERATION 

INTENSITY ACROSS NATIONAL RUGBY LEAGUE 

SEASONS FOLLOWING THE INTRODUCTION OF THE 

SIX-AGAIN RULE 
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7.2 Directions from Chapter 6 

Chapter 6 established the validity of a GNSS device for instantaneous speed against a 

three-dimensional motion capture system. The filter used in Chapter 6 (and Chapter 5) 

helped establish validity for instantaneous speed against the criterion measure, indicating 

a level of appropriateness for practical use on team sport data in the applied setting. Rugby 

league has experienced rule changes which the governing body in Australia (Australian 

Rugby League Commission) believed would increase the pace of play (Australian Rugby 

League Commission, 2020). However, given the notable acceleration component in rugby 

league, it would be of interest to examine any differences in acceleration in the 

competition activity profile (Delaney, Duthie, et al., 2016). Updating and reviewing the 

competition activity profile is a common task performed by sport scientists in ensuring 

that training and rehabilitation protocols are suitable for the current activity profile 

(Delves et al., 2019; Sunderland & Edwards, 2017). However, to compare between 

seasons before and after the implementation of rule changes, consistency is needed in 

processing of athlete tracking data. To provide a more appropriate comparison, Chapter 

7 will process athlete acceleration data from National Rugby League (NRL) competition 

in seasons before and following the introduction of a rule change with the filter settings 

used in Chapters 5 and 6. Thus Chapter 7 will build upon the previous chapters by 

replicating a common scenario faced by applied practitioners in analysing the competition 

activity profile, but with an improved capacity to compare activity profiles with similar 

processing settings for athlete acceleration.  
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7.3 Introduction  
 

Rugby league is a collision-based team sport that features intermittent bouts of repeated 

high-intensity activity distributed between low-intensity movement (Cummins et al., 

2018; Gabbett, 2015; Hausler et al., 2016; R. Johnston et al., 2014; Kempton et al., 2013). 

In the National Rugby League (NRL), the adoption of GNSS technology has led to 

substantial research on the activity profile of rugby league competition (Austin & Kelly, 

2013; R. Johnston et al., 2014; Waldron, Twist, et al., 2011). Subsequently, speed (m·min-

1) and acceleration (ms-2) intensity during competition has been quantified across rugby 

league competition, with whole-match averages described by positional group and for full 

and modified athlete participation (Cummins et al., 2018; Dalton-Barron et al., 2021; 

Dempsey et al., 2018; Kempton, Sirotic, & Coutts, 2015; Varley et al., 2014).  

Moving average windows ranging from 1 to 10 minutes in duration have been used to 

investigate the running speed of rugby league competition (Delaney et al., 2015; Weaving 

et al., 2019; Whitehead et al., 2019; Whitehead et al., 2018). The peak 1-minute speed 

has been found to range between ~154 to 179 m·min-1 across all positional groups within 

the NRL and Super League (SL), with fullbacks identified as having the greatest intensity 

(~179 m·min-1) (Delaney, Duthie, et al., 2016; Delaney et al., 2015; Weaving et al., 2019).  

However, the maximal mean speed and acceleration over a given duration only quantifies 

a small proportion of the game, specifically, 1-minute (Johnston et al., 2022; Novak et 

al., 2021; Thornton et al., 2020). As such, practitioners also need to have information 

regarding the distribution of intensity over the duration of games when preparing athletes 

for the rigors of competition. Data attained from games can be used to monitor drills that 

are designed to mimic or exceed the activity profile of competition or can be used to 

inform rehabilitation protocols (Aughey, 2011a; Bradley et al., 2009; Delaney, Duthie, et 

al., 2016; Jennings et al., 2012a). Further, athlete intensity data from matches can allow 
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practitioners to record and evaluate the intensity of conditioning games and context-

specific drills (i.e., 13 vs 13 team drills) relative to competition. However, despite the 

application of activity profiles to training programs, the findings published in research 

are relevant to competition rules invoked during the time of publication (Austin & Kelly, 

2013; Delaney, Duthie, et al., 2016; Delaney et al., 2015; R. Johnston et al., 2014). 

Changes in the existing competition rules may alter the activity profile of competition and 

therefore, may warrant corresponding changes to athlete training programs (Delaney, 

Duthie, et al., 2016; Sunderland & Edwards, 2017).  

The modification of competition rules can impact existing activity profiles (Delves et al., 

2019; McMahon & Kennedy, 2019; Sunderland & Edwards, 2017). In 2014, elite field 

hockey reduced total playing time from 70 minutes to 60 minutes (Delves et al., 2019; 

McMahon & Kennedy, 2019; Sunderland & Edwards, 2017). This rule change 

substantially increased the mean speed (across all positions) (McMahon & Kennedy, 

2019). In rugby league, the New South Wales Rugby League extended the 5 m retreat by 

the defensive team after each completed tackle to a 10 m retreat (McLellan et al., 2011; 

Meir et al., 2001). Via retrospective time-motion analysis, it was determined that due to 

the extension of the separation between the attacking and defending lines, forwards 

increased their time jogging (8% increase) (Meir et al., 2001). Importantly, differences in 

the locomotion pattern of athletes reported in research may prompt practitioners to review 

and/or alter their training programs to reflect the updated activity profile (McMahon & 

Kennedy, 2019; Meir et al., 2001) .  

Following the initial suspension of the 2020 season due to the COVID-19 pandemic, the 

NRL implemented changes to the competition rules. The two-referee system was reduced 

to one referee, whilst adjustments were made to ruck infringements (McLellan et al., 

2011). Colloquially termed the “six-again” rule, ruck infringements (area immediately 
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surrounding the tackled player) were changed from the awarding of a traditional penalty, 

where teams were given the option of kicking into touch, restarting an attacking set from 

the penalty spot or a penalty shot at goal; to an automatic reset of the team’s tackle count 

to a full six tackle allocation. The six-again rule is believed to increase the speed of the 

game and promote greater ball-in-play time, which could have ramifications on the 

activity profile of athletes in competition (Australian Rugby League Commission, 2020). 

However, there is limited research surrounding the impact of the revised competition rules 

on the activity profile of NRL matches. Specifically, given the intention of the six-again 

rule, it is important that research details the changes in intensity under the current 

competition format.  

Therefore, the primary aim of this study was to update and compare the peak movement 

intensity of NRL athletes via GNSS technology between the 2019 (previous competition 

format), 2020 and 2021 seasons (current competition format). The secondary aim of this 

study was to analyse the effect of the six-again rule on athlete mean acceleration and 

speed relative to ball-in-play times. Lastly, the change in the distribution of running 

volumes across competition formats relative to ball-in-play times was evaluated. 
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7.4  Methods 

7.4.1 Design and Participants 

 

An observational, longitudinal study design was implemented to investigate the study 

aims. The mean peak running intensity, mean acceleration/speed and the distribution of 

volume relative to ball-in-play times between the 2019, 2020 and 2021 NRL seasons were 

investigated. The activity profile of competition was quantified through GNSS 

technology worn in competition and ball-in-play times were obtained from NRLPRO 

(Stats Perform, Sydney, Australia). All experimental data was collected from one 

participating club. All athletes provided informed written consent to participate, and 

institutional ethical approval was granted by the Victoria University Human Research 

Ethics Committee (HRE21-017). 

Global Navigation Satellite System data was collected from 42 elite rugby league athletes 

(mean ± SD; 26 ± 2 years, age range; 18 to 32 years, 185 ± 7.8 cm, 94 ± 4.6 kg) during 

the 2019, 2020 and/or 2021 seasons. The data collection period took place across the 2019 

(20 matches), 2020 (21 matches) and 2021 (15 matches) seasons. The dataset comprised 

a total of 56 matches with 876 individual athlete competition files analysed. 20 matches 

were analysed prior to the introduction of the six-again rule change, whilst 36 matches 

were analysed following the introduction of the rule change. Match files from the 2020 

and 2021 seasons were separated due to the interruption of the 2020 season. From the 42 

athletes who participated in the study, the mean and SD match observations was 21 ± 14 

(range: 1 to 46). To evaluate differences in the activity profile between positions, match 

files were categorised into their playing positions, determined by where the athlete spent 

the majority of the time during each match. Athletes (n = 42) were allocated to four 

positional groups; edge forwards (n = 6), halves and hookers (half-back, five-eighth and 
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hooker; n = 10) outside backs (winger, centre and fullback; n = 14) and middle forwards 

(middle forward, lock and interchange forward; n = 12). Edge forwards were separated 

from middle forwards due to their extended match durations compared to middle forwards 

and wider field positioning. Hookers were grouped with halves due to ball-playing 

responsibilities and extended match durations, despite generally playing in the middle of 

the field when defending. Fullbacks were grouped with outside backs rather than halves 

and hookers due to the field positioning, particularly when defending. Fullbacks do not 

defend in the defensive line for a full six-tackle set and share similar responsibilities to 

outside backs on kick returns and first-tackle carries after a defensive possession.  

7.4.2 Procedures 

During all matches across the 2019, 2020 and 2021 NRL seasons, athlete GNSS data was 

collected with a commercially available, 10-Hz GNSS (Vector S7, firmware; 8.1, 

Catapult Sports, Victoria, Australia). The GNSS was worn between the scapulae in either 

a custom undergarment or within a pouch attached to the athlete’s game jersey. Where 

possible, athletes wore the same GNSS across each respective season to minimise inter-

unit variability (Buchheit, Al Haddad, et al., 2014). The quality of data was evaluated via 

the horizontal dilution of precision (HDOP) and satellite count. No files had a HDOP 

value >1.5 (typical cut off for removal) (mean ± SD; 0.61 ± 0.22), whilst the satellite 

count (11 ± 2) was acceptable (Aughey, 2011a; Malone et al., 2017). 

Upon completion of each match, athlete GNSS files were downloaded and trimmed using 

the proprietary software (Openfield, version; 3.3.1, build #68050, Catapult Sports, 

Victoria, Australia) to only include instances where the player was on field (i.e., excluded 

bench players). Raw 10 Hz GNSS files were exported as comma-separated files (.csv) 

from the proprietary software and imported into R Studio software (RStudio v. 1.4.1106, 

RStudio, Boston, MA) for further analysis. Each raw export included time, speed and 
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acceleration. Units of measure for speed was converted from kilometres per hour (km·h-

1) to metres per second (m·s-1). Speed was processed using a fourth-order, low-pass 

Butterworth filter with a cutoff frequency of 1 Hz (Delaney, Duthie, et al., 2016). 

Following the processes outlined previously, a residual analysis was used to determine 

the appropriate cutoff frequency for the processing of speed (Winter, 2009). Acceleration 

was then computed using finite differentiation (central difference) of the filtered speed 

with a 0.4 s dwell time. Following the calculation of acceleration, speed was converted 

from metres per second (m·s-1) to metres per minute (m·min-1) to facilitate analysis of the 

observed metrics. Maximal mean speed (m·min-1) and acceleration (m·s-2) were included 

as analysed variables representing the peak intensity in rugby league competition, 

following on from similar research (Delaney, Duthie, et al., 2016; Delaney et al., 2015). 

Both maximal mean speed (m·min-1) and acceleration (m·s-2) were calculated from 10 

seconds to 10 minutes in 10-second increments. Following this process, categorising 

variables such as position and season were included in the dataset.  

7.4.3 Peak Intensity Analysis 

Using the 10-second to 10-minute maximal mean speed (m·min-1) and acceleration (m·s-

2) data, the relationship between running intensity and duration was observed using a 

power law relationship (Delaney, Thornton, et al., 2018; G. Rennie et al., 2020). To 

establish this relationship, a linear model was fitted to the log transformed duration and 

log transformed intensity (speed or acceleration) to identify the intercept (c) (mean 

estimates) and slope (n) (rate of decay) for each player file (Delaney, Thornton, et al., 

2018; Delves et al., 2019; G. Rennie et al., 2020). An intercept and slope were calculated 

for each match observation.  
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7.4.4 Ball-in-play Analysis 

Following each match, an export of the ball-in-play phases within the match were 

downloaded from NRLPRO (official match statistics provider). Within these files, the 

start and end time of each event within a game was provided. After removing non-ball-

in-play phases, this file was imported into the GNSS proprietary software in an extensible 

markup language (XML) format and were synced to the Openfield cloud-based software. 

Once on the Openfield cloud, a common separated file of the match was exported, which 

included each ball-in-play phase and the corresponding GNSS data for each player. Match 

ball-in-play time was determined through summating the coded ball-in-play phase. Each 

match total was then averaged against all other matches in the respective season to 

determine a mean ball-in-play match time. Mean speed (m·s-1) and acceleration (m·s-2) 

relative to ball-in-play time were calculated by extracting the mean value respectively for 

each match and then averaging for each corresponding season. The mean total match time 

(minutes), mean ball-in-play phase (seconds) as well as mean speed (m·s-1) and 

acceleration (m·s-2) relative to ball-in-play time were analysed. 

7.4.5 Distribution Analysis 

The distribution of acceleration and speed were also assessed relative to ball-in-play time. 

Distance accumulated at speed thresholds (0.5 m·s-1 increments, range; 2 to 9 m·s-1) and 

impulse accumulated at acceleration thresholds (0.25 m·s-2 increments, range; 1 to 6 m·s-

2) were quantified. Individual athlete mass (kg) was included to determine impulse. 

Unlike the methodology for power law analysis, upon completion of each match, athlete 

GNSS files were trimmed to reflect athlete locomotion during ball-in-play time. Raw 10 

Hz GNSS files were imported into R Studio software as previously mentioned. For each 

ball-in-play phase, distance (speed x 0.1) and impulse (speed x mass x 0.1) were 

calculated at each 1 Hz sample. All speed data < 2 m·s-1 and all acceleration data <1 m·s-
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2 were removed from analysis. Distances at each speed and impulse at each acceleration 

increment were summated across all ball-in-play phase during each game to determine 

individual player totals. Individual game totals for distance and impulse were log 

transformed. A quadratic model was then fitted to log transformed game totals to derive 

the quadratic coefficient (a), linear coefficient (b), and intercept (c) coefficients and the 

coefficient of determination (r2) for speed and acceleration for each player for each match. 

The quadratic coefficients describe the relationship between the volume covered in a 

game, and the intensity of which that volume was completed. Specifically, a represents 

the overall position of the curve up and down the y axis (i.e., wide or narrow), b reflects 

the upward or downward linear trend in y values along the x axis, and c is a constant 

(intercept), representing where the relationship sits on the y axis (Duthie et al., 2021).  

 

7.4.6 Statistical Analysis  

7.4.6.1 Peak Intensity Analysis 

To investigate any differences between the peak intensity of NRL athletes across the 

2019, to 2021 seasons, multiple random intercept linear mixed models were used. The 

analysed dataset was separated by metric (e.g., maximal mean speed or acceleration), 

before being filtered by position. Rather than using an interaction between playing 

position and either speed or acceleration intercept/slope, the dataset was filtered to only 

include one playing position at a time in separate models, due to overfitting of the models. 

This process led to the use of 16 separate models (two metrics [speed or acceleration] x 

four playing positions x two variables [slope or intercept]). In these models, either the 

speed or acceleration intercept/slope (depending on the model) from the initial power law 

relationship determined previously was used as the outcome measure (dependent 

variable; value will depend on the season), whilst playing season was designated as a 
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fixed effect (independent variable). Athlete identification was included as a random 

intercept. For each model, the least squares mean test was used to determine the 

differences between playing seasons (fixed effect). The resulting mean, standard 

deviation (SD) and mean difference for each position, variable and metric were then 

analysed to establish effect sizes (ES) and confidence limits (CL; 90%). The magnitude 

of effect sizes was described as previously implemented; <0.20 trivial; 0.21- 0.60 small; 

0.61 – 1.20 moderate; 1.21 – 2.0 large and >2.01 very large (Hopkins et al., 2009). Effect 

sizes were described according to previous research, with any effect deemed to be real if 

they were at least 75% greater than the smallest worthwhile change (SWC) (calculated as 

0.6 x between-athlete SD) (Duthie et al., 2022; Hopkins et al., 2009; Johnston et al., 

2022).  

7.4.6.2 Ball in Play Analysis 

The differences in ball-in-play-based metrics were assessed via the use of random 

intercept linear mixed models. Mean ball-in-play phase and mean speed and acceleration 

were log transformed and were included as the model’s outcome measure and playing 

season was included as the fixed effect. The model for mean match duration designated 

playing round as a random effect as there were no individual players in the dataset. 

Differences between playing seasons were determined through similar methods for 

intercept/slope analysis using the least squares mean test. However, effect sizes, for mean 

match duration and mean ball-in-play phase, were deemed to be real if they were at least 

75% greater than the smallest worthwhile change (SWC) (calculated as 0.2 x between-

athlete SD). Differences in mean acceleration and speed relative to ball-in-play time were 

assessed using similar methods for intercept and slope analysis. In keeping with the GNSS 

related metrics, the SWC was calculated as 0.6 x between-athlete SD.  
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7.4.6.3 Distribution Analysis 

To analyse the difference in the distribution of speed and acceleration intensity across the 

2019, 2020 and 2021 seasons, random intercept linear mixed models were also 

implemented, following similar methods to the previous sections. Coefficients (a, b and 

c) for distance and impulse were included separately in models as the outcome measure, 

and season was included as the fixed effect. As per the methods of the peak intensity 

analysis, the dataset was separated by positional group, whereby a separate model was 

run for each positional group. Effect sizes were established using the methodology 

previous stated. Effects for this analysis were deemed to be real if they were at least 75% 

greater than the SWC (calculated as 0.6 x between-athlete SD). All statistical analysis 

was conducted using R Studio software (RStudio v. 1.4.1106, RStudio, Boston, MA). 
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7.5 Results 

7.5.1 Changes in Intensity 

Compared to the 2019 season, power law-based speed intercepts in the 2021 season were 

higher for edge forwards (ES = 1.03; ± 0.49) and halves and hookers (ES = 0.78; ± 0.36) 

(Table 7-1, Figure 7-1). Compared to the 2019 season, speed slopes for outside backs 

were higher in the 2020 season (ES = 0.86; ± 0.30) as well as the 2021 season (ES = 0.83; 

± 0.33).  

The power-law based acceleration intercept was substantially different for all positional 

groups between playing seasons. Compared to the 2019 season, edge forwards had an 

increase in acceleration intercepts in 2020 (ES = 1.28 ± 0.53) as well as an increase in 

season 2021 (ES = 2.78; ± 1.14). Compared to the 2019 season, halves and hooker’s 

acceleration intercepts were greater in seasons 2020 (ES = 1.74; ± 0.72) and 2021 (ES = 

2.19; ± 0.91). Acceleration intercepts for middle forwards were greater in season 2020 

compared to the 2019 season (ES = 1.43; ± 0.60), whilst acceleration intercepts in 2021 

were greater (ES = 2.29; ± 0.96) than the 2019 season. Compared to 2019, acceleration 

intercepts for outside backs were greater in the 2020 (ES = 1.67; ± 0.70) and 2021 seasons 

(ES = 2.47; ± 1.03). No substantial differences were found in the acceleration slopes 

across all positional groups between seasons.  
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Table 7-1. Intercept and slope values (mean ± SD) for speed and acceleration based upon a 1-minute moving average in NRL athletes across 

the 2019, 2020 and 2021 Premiership seasons. 

 

 

*Denotes season being different (at least 75% greater than the SWC (calculated as 0.6 x between-athlete SD) compared to previous rule 

format (season 2019). 

 

 

 

Position 
Intercept Slope 

2019 2020 2021 2019 2020 2021 

Acceleration (m·s-2)       

Edge Forward 0.94 ± 0.04 1.03 ± 0.09* 1.07 ± 0.05* -0.26 ± 0.02 -0.25 ± 0.03 -0.25 ± 0.02 

Halves & Hooker 0.96 ± 0.06 1.09 ± 0.08* 1.09 ± 0.06* -0.25 ± 0.03 -0.23 ± 0.04 -0.23 ± 0.03 

Middle Forward 0.89 ± 0.05 0.99 ± 0.08* 1.03 ± 0.07* -0.26 ± 0.03 -0.26 ± 0.03 -0.26 ± 0.03 

Outside Back 0.87 ± 0.06 1.02 ± 0.12* 1.05 ± 0.09* -0.27 ± 0.03 -0.25 ± 0.03 -0.25 ± 0.03 

All Positions 0.91 ± 0.07 1.02 ± 0.10* 1.06 ± 0.07* -0.26 ± 0.03 -0.25 ± 0.04 -0.25 ± 0.03 

       

Speed (m·min-1)       

Edge Forward 179 ± 9 182 ± 9 189 ± 11* -0.24 ± 0.02 -0.24 ± 0.03 -0.23 ± 0.04 

Halves & Hooker 180 ± 12 185 ± 11 188 ± 13* -0.23 ± 0.03 -0.22 ± 0.03 -0.22 ± 0.03 

Middle Forward 171 ± 11 175 ± 11 179 ± 10 -0.24 ± 0.03 -0.24 ± 0.03 -0.23 ± 0.04 

Outside Back 181 ± 13 184 ± 12 186 ± 12 -0.26 ± 0.03 -0.24 ± 0.03* -0.23 ± 0.04* 

All Positions 177 ± 12 181 ± 12 185 ± 12 -0.25 ± 0.03 -0.23 ± 0.03 -0.23 ± 0.04 
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Figure 7-1. Intercept and slope values for speed (A and B) and acceleration (C and D) by position and season. The box plots represented the 

median, first and third quartiles and the whiskers are 1.5 x interquartile range.
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7.5.2 Ball-in-Play 

Total match duration relative to ball-in-play time was greater in season 2020 compared 

to season 2019 (ES = 0.57; ± 0.51) (Table 7-2). Mean ball-in-play phase lengths were 

greater in both the 2020 (ES = 1.00; ± 0.55) and 2021 (ES = 0.90; ± 0.61) seasons 

compared with season 2019. Mean acceleration relative to ball-in-play time was greater 

in season 2020 (ES = 0.75; ± 0.32) compared with season 2019. There was no difference 

in mean speed relative to ball-in-play across seasons. 

 

Table 7-2. Ball-in-play times (mean ± SD) across NRL competition during the 2019, 2020 

and 2021 Premiership seasons. 

 
 

*Denotes season being different (at least 75% greater than the SWC (calculated as 0.6 x 

between-athlete SD) compared to previous rule format (season 2019). 

 

 

 

 

 

 

 

 

 

Ball-in-play metric 
Season 

2019 2020 2021 

Total ball-in-play match 

duration (mins) 
53 ± 3 56 ± 5* 55 ± 4 

Mean ball-in-play phases (s) 76.6 ± 11.9 90.1 ± 14.9* 89.7 ± 17.5* 

Mean speed (m·min-1) 111 ± 14 116 ± 13 108 ± 16 

Mean acceleration (m·s-2) 0.59 ± 0.17 0.67 ± 0.18* 0.63 ± 0.19 
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7.5.3 Differences in the Distribution of Intensity  

 

There were no substantial differences between competition formats across all positional 

groups for acceleration coefficients (Figure 7.2) (Table 7-3). For speed, middle forwards 

had greater (ES = 0.74; ± 0.24) coefficients in season 2021 compared with the previous 

competition format in 2019 (Table 7-3). There were no other substantial differences in 

speed between competition formats and individual positions.  
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Figure 7-2. Distribution of distance and impulse across the speed and acceleration 

spectrum. 
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Table 7-3. Quadratic coefficients (a, b, c) of acceleration (m·s-2) and speed (m·min-1) (mean ± SD) across each positional group during the 2019, 

2020 and 2021 NRL Premiership seasons. 

 

*Denotes season being different (at least 75% greater than the SWC (calculated as 0.6 x between-athlete SD) compared to previous rule 

format (season 2019).

Position 

a b c 

2019 2020 2021 2019 2020 2021 2019 2020 2021 

Acceleration (m·s-2)          

Edge Forward -0.29 ± 0.19 -0.29 ± 0.16 -0.28 ± 0.13 0.03 ± 0.96 0.19 ± 0.82 0.29 ± 0.70 10.23 ± 1.13 10.05 ± 0.98 9.77 ± 0.90 

Halves & Hookers -0.31 ± 0.23 -0.27 ± 0.18 -0.32 ± 0.15 0.04 ± 1.04 0.08 ± 0.86 0.39 ± 0.78 10.22 ± 1.14 10.38 ± 0.99 10.07 ± 1.01 

Middle Forwards -0.36 ± 0.28 -0.28 ± 0.21 -0.37 ± 0.14 0.30 ± 1.24 0.17 ± 1.01 0.75 ± 0.65 9.53 ± 1.28 9.67 ± 1.09 8.97 ± 0.84 

Outside Backs -0.18 ± 0.18 -0.17 ± 0.18 -0.20 ± 0.13 -0.57 ± 0.90 -0.45 ± 0.92 -0.18 ± 0.69 10.76 ± 0.96 10.87 ± 1.10 10.61 ± 0.78 

All Positions -0.29 ± 0.24 -0.24 ± 0.19 -0.29 ± 0.16 -0.03 ± 1.12 -0.02 ± 0.94 0.29 ± 0.81 10.11 ± 1.23 10.20 ± 1.12 9.80 ± 1.09 

Speed (m·min-1)          

Edge Forward -0.13 ± 0.04 -0.14 ± 0.05 -0.16 ± 0.08 0.59 ± 0.34 0.68 ± 0.43 0.89 ± 0.63 5.68 ± 0.63 5.58 ± 0.80 5.08 ± 1.04 

Halves & Hookers -0.13 ± 0.08 -0.12 ± 0.07 -0.17 ± 0.07 0.45 ± 0.61 0.44 ± 0.53 0.85 ± 0.54 6.06 ± 1.18 6.30 ± 1.05 5.55 ± 0.97 

Middle Forwards -0.12 ± 0.07 -0.16 ± 0.08 -0.17 ± 0.07 0.47 ± 0.55 0.76 ± 0.62 0.92 ± 0.54* 5.53 ± 1.15 5.03 ± 1.15 4.63 ± 1.09 

Outside Backs -0.11 ± 0.06 -0.16 ± 0.08 -0.17 ± 0.07 0.45 ± 0.52 0.49 ± 0.53 0.59 ± 0.33 5.87 ± 1.01 6.00 ± 1.06 5.80 ± 0.66 

All Positions -0.12 ± 0.06 -0.13 ± 0.07 -0.15 ± 0.07 0.46 ± 0.53 0.59 ± 0.56 0.78 ± 0.55 5.81 ± 1.10 5.69 ± 1.17 5.26 ± 1.12 
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Figure 7-3. A) shows density of the duration of each ball-in-play phase by year, B) shows 

the density of the mean speed of each ball-in-play phase. C) is mean speed for each duration. 
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7.6 Discussion 
 

The main findings revealed that the peak acceleration intensity of NRL athletes 

substantially increased across all positional groups in the 2020 and 2021 seasons (current 

competition format) compared to the 2019 season (previous competition format). The 

combined acceleration intercept (power law analysis) encompassing all positional groups 

substantially increased from the 2019 season compared to the 2020 and 2021 seasons. 

Moreover, mean acceleration relative to ball-in-play time increased in the 2020 season 

following the rule change compared to the 2019 season. Additionally, despite the 

introduction of the six-again rule, there were minor differences between the current and 

previous competition formats for maximal mean speed. Speed intercepts (power law 

analysis) for edge forwards and halves and hookers were greater in the 2021 season 

compared to the 2019 season. Mean match times and ball-in-play phase lengths also 

increased following the modification of the competition format compared to season 2019. 

For the distribution of distance, the results from the determination of quadratic 

coefficients suggests that middle forwards had increased speed intensity in the 2021 

season for the b coefficient following the introduction of the six-again rule.  

Following collation of player tracking data (from all clubs) from the entire 2020 season 

and from the first half of season 2021, the NRL published a release contending that the 

data did not support the assertion that the intensity in athletes was greater compared to 

the previous competition format (National Rugby League, 2021). However, as depicted 

in Table 7-1 and Figure 7-1, the results of the current study do not concur with the 

assessment published by the NRL, albeit with the current data representing only one club 

in the competition. Specifically, when comparing the intercept and slopes between 

seasons, maximal mean acceleration intensity was substantially higher in the current 

study across all positions in both the 2020 and 2021 seasons compared to the 2019 season. 



216 

 

Although, the NRL release was limited in its detail as to the methodologies used in 

determining the metrics they presented, which may or may not contribute to the 

differences found between this research and the release. Moreover, the NRL release did 

not present information relating to changes in acceleration across seasons, which is 

significant as acceleration is an important metric in assessing the intensity of competition 

(Lockie et al., 2011; Oxendale et al., 2016; Young et al., 1995; Young et al., 2012).  

High-intensity acceleration and deceleration events are associated with increased levels 

of creatine kinase (CK), which is an objective marker of muscle damage following team 

sport competition (Gastin et al., 2019; Nedelec et al., 2014; Oxendale et al., 2016; Russell, 

Sparkes, Northeast, Cook, Bracken, et al., 2016; Young et al., 2012). In rugby league 

research, a moderate correlation between high-intensity acceleration (r = 0.44) and 

deceleration (r = 0.48) efforts and CK concentration was observed (Oxendale et al., 2016). 

Given the maximal mean acceleration intensity increased across all positions under the 

revised NRL competition format, the research highlights the importance of  not only 

measuring the intensity of movement (speed), but also the need to account for the change 

of speed (acceleration) when reporting upon activity profiles (Oxendale et al., 2016). 

Moreover, the increase in maximal mean acceleration intensity during the 2020 and 2021 

competitions could be attributed to the six-again rule where stoppages in play for ruck 

penalties were replaced with automatic tackle count restarts. Additionally, ball-in-play 

time before a stoppage increased between competition formats which limits the amount 

of recovery time and promotes sustained acceleration and deceleration efforts, 

particularly for the defensive team that is required to retreat 10 m after each completed 

tackle (National Rugby League, 2021).  

The use of power law models for athlete locomotion metrics is established within team 

sport research (Delaney, Thornton, et al., 2016; Delaney, Thornton, et al., 2018; G. 
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Rennie et al., 2020). The power law-derived acceleration intercepts from the current study 

in both competition formats are considerably lower than previous research. (Delaney, 

Thornton, et al., 2016). For example, the acceleration intercept for halves was previously 

reported at 1.22 ± 0.13 m·s-2, whilst in the current study, the range for halves and hookers 

across both competition formats was noticeably lower (2021; 1.09  ± 0.06 m·s-2) 

(Delaney, Thornton, et al., 2016). However, the differences between the GPS/GNSS 

technology hardware and processing settings may have contributed to differences in 

athlete outputs between the two studies (Malone et al., 2017; Thornton, Nelson, et al., 

2019). The current study filtered the GNSS speed data which dampened the magnitude 

of acceleration unlike previous research (Delaney, Thornton, et al., 2016). The filtering 

processes implemented in the current study were deemed appropriate for the locomotion 

patterns in rugby league competition. Briefly, the current study selected the filtering 

processes by implementing a residual analysis on the athlete tracking data across 10 cutoff 

frequencies (0.1 – 10.0 Hz; 0.1 Hz increments) within a fourth order Butterworth filter 

(Winter, 2009). From this analysis and the process outlined previously, a 1 Hz cutoff 

frequency was selected  (Winter, 2009).  

Power law analysis can provide benefit in athlete monitoring, as practitioners can utilise 

competition intensity to monitor training intensity through the use of intercept and slope 

information (Delaney, Thornton, et al., 2018). If a SSG is intended to elicit a stimulus 

focusing on acceleration (m·s-2), the drill duration and respective intercept and slope for 

a positional group can be included into an equation to extract the predicted intensity of 

the drill (Delaney, Thornton, et al., 2018). For example, if outside backs were 

participating in an SSG for three minutes, the predicted acceleration intensity to replicate 

competition intensity could be determined using the 2021 results from this study (and 

current filtering practices): 
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𝐼𝑛𝑡𝑒𝑛𝑠𝑡𝑦 (𝑖) = 1.05 (3)−0.25 

The predicted acceleration intensity for the SSG is 0.80 m·s-2. Coaches and support staff 

could then track this information across training sessions or for use in the planning of 

training sessions for tactical and/or rehab sessions relative to competition intensity. It may 

be that practitioners could replicate similar power law analysis using their own filtering 

practices across their longitudinal data (multiple seasons) to replicate such equations 

derived in this research. This would provide greater accuracy than solely relying upon the 

information provided in this study. Live tracking of such intensities could be facilitated 

if similar processing/filtering occurred at the live and post-session downloads, however, 

this may be challenging at the current juncture depending on the manufacturer, device, 

software and filter used. Regardless, post-training analysis could be completed to assess 

training intensity relative to competition intensity on a consistent basis with respect to 

acceleration variables.   

The ball-in-play times of NRL competition have increased following the introduction of 

the six-again rule in the 2020 season. The average ball-in-play match times released by 

the NRL are similar to those found in the current study, with the exception of ball-in-play 

phase times (National Rugby League, 2021). While this study’s results are limited to one 

team and the methodology in determining mean ball-in-play phases may differ, the 

findings are supported by research in Super League (Rennie et al., 2021). Across 11 Super 

League teams, the mean ball-in-play phase durations had also increased across all 

positional groups, following the inclusion of a six-again rule following a COVID-

enforced suspension in the season (Rennie et al., 2021). Moreover, similar to acceleration 

intercept and slope findings, the mean athlete acceleration relative to ball-in-play was also 

greater in season 2020 compared to season 2019. Practically, the increased mean length 

in ball-in-play phases and mean acceleration following the six-again rule may have 
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applications for practitioners. Conditioning games may need to feature extended periods 

of uninterrupted ball-play to better replicate the changes seen in the results of the current 

study.  

The distribution of distance (distance summated into speed thresholds) relative to ball-in-

play times was different for middle forwards between seasons. The b coefficient for 

middle forwards saw discrepancies between competition formats, in the 2019 and 2021 

seasons, where it was substantially higher in 2021. The b coefficient represents reflects 

the upward or downward linear trend in y values along the x axis, therefore a greater value 

such as in this context represents that more volume was covered at a higher intensity 

compared to previous seasons (Duthie et al., 2021). The difference in the distribution of 

speed for middle forwards could be attributed to the influence of the six-again rule. 

Generally, middle forwards play centrally in the attacking and defending lines and are 

frequently involved in active play compared to outside backs (Austin & Kelly, 2013; 

Cummins et al., 2018). With the automatic tackle count restart in effect after a ruck 

infringement, play is sustained through the middle of the field with reduced recovery 

time. With the ball-in-play results of the current study also indicating that match duration 

and phase time increased after the introduction of the rule change, it may be that there is 

an increase in the mean speed intensity of middle forwards. Specifically, for both 

attacking and defending plays, increased mean speed could be as a result of either 

increased hit-ups (attacking carries) or defensive tackles in repeated succession, 

potentially promoting a greater overall average intensity during active play (Gabbett et 

al., 2011).  

Observing the distribution of match intensity relative to distance can provide practitioners 

with information on the volume accumulated across speed thresholds during competition. 

(Johnston et al., 2022). In isolation, mean peak intensity results do not indicate how much 
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volume is obtained at each threshold (Johnston et al., 2022). To achieve a more 

wholistic/specific prescription of SSGs, it may be that practitioners can utilise 

information on the distribution of competition volumes to determine more appropriate 

programming for training drills and sessions (Johnston et al., 2022).   

 

7.7 Practical Applications 

• The increase in acceleration intensity highlights to practitioners the need to tailor 

training programs that prepare athletes for the changes in competition. 

• Through the use of power law analysis, intercept and slope information can be 

generated by positional group to provide specific information on the mean peak 

competition intensity for SSG prescription. 

• The distribution of distance and impulse provides practitioners with an indication 

of the volume in intensity attained in competition which can aid in the prescription 

of SSGs. 

• The results from the ball-in-play findings indicate that practitioners may look to 

program SSGs with longer uninterrupted periods to better replicate the longer 

ball-in-play phases found under the current competition format.  

 

7.8 Limitations 

The current study analysed tracking data from one NRL team. The current results are 

representative of the activity profile and game style of the analysed team, which may not 

be representative for other competing teams. Moreover, the strength of 

opposition/scheduling for the one team could impact the magnitude of the analysed 
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metrics in this study. Practitioners should elect to run similar analysis on their athlete’s 

tracking data to produce specific competitions intensity to facilitate training interventions.  

 

7.9 Conclusions 

Following the introduction of the six-again rule during the 2020 season, the activity 

profile of the NRL has changed. Acceleration intensity has substantially increased across 

all positions following the introduction of the six-again rule compared to the previous 

format. Forwards showed an increase in the distribution of speed intensity in season 2021 

with the introduction of the six-again rule. Ball-in-play times for match duration and 

phases of play increased with the introduction of the six-again rule. The increases in 

acceleration intensity requires specific training program development for athletes to 

ensure they are adequately prepared for competition. Practitioners can elect to replicate 

the analysis used in the current study to integrate the use of the power law intercept and 

slope to predict speed and/or acceleration intensity for the purpose of SSG prescription.  
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CHAPTER 8 - OUTLINING THE DISTRIBUTION OF 

ACCELERATION AND SPEED INTENSITY IN 

NATIONAL RUGBY LEAGUE TRAINING WEEKS 

RELATIVE TO MATCH TURNAROUND TIME 
 

 

8.1 Directions from Chapter 7 
 

Chapter 7 outlined the differences in the acceleration activity profile in elite rugby league 

as a result of the changes in competition rules. The acceleration intensity across all 

positions increased following the six-again rule change, which may prompt changes in 

training program prescription from practitioners. However, the ability to compare and 

evaluate changes in the activity profile of competition was enhanced by being able to 

compare acceleration more appropriately between seasons and independently of the 

tracking system manufacturer. With greater independence in data processing to be able to 

filter speed and derive acceleration with a similar methodology, greater confidence may 

be had in the overall assessment of any rule changes. Whilst the analysis of competition 

is vital in understanding the activity profile of team sports such as rugby league, in-season 

analysis of training volume and intensity with respect to competition outputs may also be 

important for practitioners (Aughey, 2011a; Bradley et al., 2009; R. Johnston et al., 2014). 

Having a consistent filtering process can aid the longitudinal analysis of the training 

activity profile, and through Chapter 8, the research can replicate common workflows 

practitioners and researchers regularly undertake throughout the competitive team sport 

season.  
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8.2 Introduction 

 

Rugby league features efforts of high-intensity activity interspersed with low-intensity 

movement and physical contacts (Hausler et al., 2016; R. Johnston et al., 2014; Johnston 

et al., 2022). Using wearable technologies such as Global Navigation Satellite System 

(GNSS) devices, the activity profile of training or competition can be outlined (Delaney 

et al., 2015; Hausler et al., 2016; R. Johnston et al., 2014; McLellan et al., 2011). Using 

these devices, typically, rugby league research has outlined summary values that 

incorporate whole match averages, typically presenting metrics such as total distance (m) 

covered, or distances at pre-defined speed thresholds (i.e., >5 m·s−1) (Johnston et al., 

2022). For example, Australian elite rugby league athletes generally cover total distances 

between 5000 and 9000 m, depending on game time or position played, with the average 

running distance covered as a unit of time (speed) reported between 80 to 100 m·min-1 

(Austin & Kelly, 2013; Delaney et al., 2015; Hausler et al., 2016; R. Johnston et al., 2014; 

McLellan et al., 2011). The ability to accelerate is also important in rugby league 

competition, as the proximity of the defensive and attacking lines limit sustained high-

speed running and promote short efforts (Gabbett, 2012; R. Johnston et al., 2014). 

Acceleration within rugby league research has been typically measured as counts and 

summarised as the average count attained in matches, or the distance or time spent over 

the course of the analysed period (Delaney, Cummins, et al., 2018). For example, in the 

National Rugby League (NRL) competition, maximal accelerations have ranged between 

50 and 80 per game (≥ 2.78 m·s−2), with a frequency of 1.1 ± 0.6 per minute (Hausler et 

al., 2016; Kempton, Sirotic, Rampinini, et al., 2015; Varley et al., 2014). 

Analysing the sum of total distance across competition provides limited context 

comparative to the peak intensity and the distribution of intensity (Johnston et al., 2022). 

To overcome the limitations of absolute variables, expressing commonly used intensity 
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metrics such as speed and acceleration over rolling time epochs of different durations can 

be used (Cunningham et al., 2018; Delaney, Duthie, et al., 2016; Delaney et al., 2015; 

Delaney, Thornton, Burgess, et al., 2017; Delaney, Thornton, Pryor, et al., 2017; Varley, 

Elias, et al., 2012). A 1 to 10-minute moving mean in elite rugby league outlined the 

maximal (highest attained intensity) mean 1-minute speed intensity between 154 and 172 

m·min-1 across positions, which was significantly higher than the absolute estimates of 

80 to 100 m·min-1 in prior research which used whole match averages (Austin & Kelly, 

2013; Delaney et al., 2015).  

The maximal mean intensity has been used as a reference point for prescribing and 

monitoring training intensity with different drill durations (Delaney, Duthie, et al., 2016; 

Delaney et al., 2015; Delaney, Thornton, Burgess, et al., 2017; Delaney, Thornton, Pryor, 

et al., 2017). However, the mean peak intensity for both speed and acceleration generally 

occurs in competition only once per game for very limited durations, and as such do not 

detail the distribution of intensity throughout competition (Johnston et al., 2022; Thornton 

et al., 2020). For example, if an athlete spent only 1-minute of a match at an intensity 

similar to the mean peak, it would be inappropriate and excessive to program small-sided 

games that require athletes to compete at a similar intensity during 10-minute bouts in 

training (Johnston et al., 2022). Therefore, without information on the distribution of 

intensity across various epochs in competition, practitioners have limited information to 

compare the distribution of intensity completed in training to that in competition.  

The maximal mean speed and acceleration, as well as the distribution of speed and 

acceleration intensity in elite rugby league has been quantified (Chapter 7). Across all 

positions, the maximal mean speed and acceleration intercepts (estimated peak intensity 

as time approaches 0s) for the 2021 season were reported as 185 ± 12 m·min-1 and 1.06 

± 0.07 m·s-2 respectively (Chapter 7). To assess the distribution of intensity of 
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competition, intensity metrics such as speed and acceleration, are later converted to their 

volume equivalents (distance and impulse respectively). Specifically in rugby league, 

across all seasons and positions, the majority of total distance within the NRL competition 

was distributed across what would be considered low intensity activity, with an average 

of approximately 1000 - 4500 m covered (depending on playing time) between 1-4 m·s-1 

per match (Chapter 7). Similarly for impulse, much of the total distribution during 

competition was at low to moderate acceleration intensity of 1-3 m·s-2 across all seasons 

and positions (Chapter 7). Whilst practitioners have access to improved knowledge 

surrounding intensity during NRL competition, currently there is limited research 

examining how rugby league training compares to the distribution of intensity in 

competition, especially when time between fixtured matches is considered. The current 

literature has examined the activity profile of NRL and Super League (SL) teams with 

respect to the length of the microcycle, but not the distribution of training intensity 

(McLean et al., 2010; Moreira et al., 2015; Parmley et al., 2022). Thus, key gaps in 

understanding of training versus competition still exist. 

 

Research in association football (soccer) and women’s Australian rules football has 

analysed total distance and impulse within training sessions (Riboli et al., 2021; Thornton 

et al., 2020). In Australian Woman’s Football League (AFLW), training drills were 

assessed against the 1-minute mean peak intensity for distance and impulse (Thornton et 

al., 2020). A greater proportion of total distance was accumulated between 70 to 100% of 

the mean peak in competition compared to skill drills and warm ups (Thornton et al., 

2020). For impulse, matches had a greater distribution between 60 to 80% of the mean 

peak compared to conditioning drills (Thornton et al., 2020). A portion of the AFLW 

research was conducted during the pre-season, without the constraints of matches, and 
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importantly the number of days available for training between matches. Commonly, the 

pre-season period has consistent structure week-to-week with less fluctuation in training 

intensity and volume compared to the in-season phase. It is not currently known how the 

distribution of intensity for a given impulse and distance changes during the season. 

Given the limited opportunities for training between matches in-season, maximising the 

intensity for a given impulse is critical to maintain or enhance fitness and minimise 

fatigue for matches. 

 

Therefore, the aims of this study were to assess the distribution of distance and impulse 

in NRL training sessions relative to microcycle length. Further, the distribution of 

distance and impulse in training relative to the intensity and volume in NRL competition 

was compared.  
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8.3 Methods 
 

8.3.1 Design and Participants 

 

An observational, longitudinal study design was used to evaluate the distribution of 

training intensity across different microcycle epochs in elite rugby league competition. 

GNSS devices measured running intensity for speed (m·s-1) and acceleration (m·s-2) and 

were used to provide the volume measures of total distance (m) and impulse (kN·s) 

respectively. Training session data were collected during the 2021 National Rugby 

League season (NRL). All athletes in the study provided informed consent to researchers 

to confirm participation. Ethical approval was granted prior to the commencement of the 

study by the Victoria University Human Research Ethics Committee (HRE21-017). 

Athlete tracking data was collected from 35 athletes (mean ± SD; 25 ± 3 years, age range; 

18 to 33 years, 186 ± 6.9 cm, 93 ± 5.1 kg) who were all contracted to one team for the 

duration of the 2021 NRL season. Tracking data was collected from the beginning of the 

2021 season, through to the completion of the final game of the season. The dataset 

consisted of 73 training sessions throughout the home and away season with 1932 

individual files (51.8 ± 15.6 files per athlete, range: 20 – 71 files) across the season. 

Although athletes weren’t categorised by playing position for the analyses, the dataset 

collected represents athletes across all positional groups. Specifically, athletes 

represented the following positional groups; edge forwards (match files [n] = 405), halves 

and hookers (half-back, five-eighth and hooker; n = 512), outside backs (winger, centre 

and fullback; n = 503) and middle forwards (middle forward, lock and interchange 

forward; n = 512).  
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8.3.2 Training Activity Profile and Technology 

 

Athlete locomotion was quantified during training sessions via the use of GNSS 

technology. A 10 Hz GNSS device (Vector S7, firmware: 8.1.0 +f0455e7b, Catapult 

Sports, VIC, Australia) was worn by each athlete in a custom-made undergarment or in a 

pouch in the athlete’s playing jersey. Athletes wore the same GNSS device across the 

season (where possible) to maintain inter-unit reliability (Buchheit, Al Haddad, et al., 

2014). To assess the quality of each individual GNSS file, the number of satellites and 

the mean horizontal dilution of precision (HDOP) was determined, and files a HDOP >1.5 

were considered inappropriate and were removed from the analysis. The mean ± standard 

deviation (SD) satellite count (14.7 ± 3.5) and HDOP quality (0.76 ± 0.16) were deemed 

acceptable for accurate athlete locomotion (Aughey, 2011a; Malone et al., 2017), and as 

such, no files were removed due to poor satellite connection/HDOP.  

 

8.3.3 Data Processing 

 

Following the completion of each training session, GNSS files were downloaded and 

trimmed via the GNSS manufacturer’s proprietary software (OpenField, version 3.3.1, 

build 68050, Catapult Sports, Victoria, Australia). Each training session was trimmed to 

only include instances where the athlete was a full participant in each training drill. GNSS 

files were exported in their raw 10 Hz form as comma-separated files (.csv) from the 

manufacturer’s software and were imported into R Studio software (version 1.4.1717). 

Raw exports included time, speed and acceleration. Speed was converted to metres per 

second (m·s-1) and processed with a fourth-order, low-pass Butterworth filter. The current 

study applied a residual analysis to determine the appropriate cutoff frequency for speed 

(Campbell et al., 2020; Winter, 2009). Upon inspection of the residual analysis, a 1 Hz 

cutoff frequency was determined as being appropriate for this dataset (Winter, 2009). The 
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selection of a 1 Hz, Butterworth filter has been previously used in team sport research 

(Couderc et al., 2019; Cummins et al., 2018; Ellens, Middleton, et al., 2022). Acceleration 

was calculated via finite differentiation of speed (filtered) and was not filtered again 

(Linke et al., 2018). Acceleration (m·s-2) was made absolute to remove negative values 

(decelerations) (Delaney, Cummins, et al., 2018; Thornton, Nelson, et al., 2019). 

A 1-minute moving average was then applied to speed and acceleration data. Speed was 

converted to m·min-1 and acceleration converted to m·min-1·s-1. The volume of speed 

[distance (m) covered] and acceleration [impulse (kN·s) accumulated] was then 

established with the distribution of these variables categorised into 10 mmin-1 and 10 

m·min-1·s-1 ‘buckets’ for speed and acceleration respectively. The total volume of 

distance and impulse in each ‘bucket’ across each microcycle was calculated, with the 

total microcycle volume of each intensity bucket calculated and then expressed relative 

to the microcycle volume as a percentage. As such, there were four variables obtained 

from such analyses: distance, relative distance, impulse and relative impulse.  

All drills that were scheduled as part of the main skill component of the session were 

included in the analysis. Drills were labelled as either warm up, 13v13 skills, position 

specific, small-sided game, conditioning, or game simulation. Each microcycle was 

filtered to only include athletes who were full participants in all training sessions that 

week (i.e., non-injured, non-modified athletes). Microcycles were defined as the number 

of days separating matches from one round to the next. Microcycles were grouped as 5-6 

days, 7-8 days and 9-10 days, accounting for the common rest intervals in NRL 

competition from one round to the next (Moreira et al., 2015). Grouped intervals were 

used in this analysis as pilot results indicated similar training volumes and intensity in 

distance and impulse between 5 and 6-day microcycles, 7- and 8-day microcycles and 9- 

and 10-day microcycles, and further to restrict the number of statistical comparisons 
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made. The phase of the season (early, mid, late etc) was not considered in this study, as 

training was kept consistent (intensity and volume was not altered) across the duration of 

the season.  

The volume and intensity for both distance and impulse were visually inspected, revealing 

a quadratic (non-linear curvilinear) relationship. To describe the distribution of distance 

and impulse across the intensity spectrum, four different quadratic models were 

established for each player for each microcycle. Quadratic coefficients demonstrate the 

shape of the data (the relationship). As such, four separate quadratic models developed 

were, to describe the shape of the distribution for each variable. The quadratic models 

were: 

Distance model: Speed (x) in 10 m·min-1 buckets versus the logarithm of accumulated 

distance (y). 

Relative distance model: Speed (x) in 10 m·min-1 buckets versus the logarithm of relative 

accumulated distance (y). Relative was defined as a percentage of the total microcycle 

distance. 

Impulse model: Acceleration (x) in 10 m·min-1·s-1 buckets versus the logarithm of 

accumulated impulse. 

Relative impulse model: Acceleration (x) in m·min-1·s-1 buckets versus the logarithm of 

relative accumulated impulse. Relative was defined as a percentage of the total 

microcycle impulse. 

For each athlete’s microcycle, the four quadratic models returned the quadratic coefficient 

(a), linear coefficient (b), and intercept (c). The a coefficient represents the overall 

position of the curve up and down the y axis (i.e., wide or narrow), b reflects the upward 

or downward linear trend in y values along the x axis, and c is a constant (intercept), 

representing where the relationship sits on the y axis (Duthie et al., 2021). 
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8.3.4 Statistical Analysis 

 

The quadratic coefficients that describe the shape of the distribution that were obtained 

from the quadratic models were statistically analysed. To compare the difference in the 

quadratic coefficients for the four variables (distance, relative distance, impulse and 

relative impulse) between microcycles, random slope linear mixed models were used. 

Separate linear mixed models were run for each of the four quadratic model’s (the four 

variables) coefficient values (12 models). Coefficients (a, b and c) were non-normally 

distributed, however, residual plots (quantile-quantile plots) demonstrated normality of 

the residuals, an assumption of linear mixed models. The coefficients were used 

individually as outcome measures, whilst microcycle length (entered as a categorical 

variable) was designated as the fixed effect in all models. Athlete identification was 

included as a random effect, where a random slope design was selected to allow for 

varying intensity distributions between athletes (varying effects of microcycle length). 

For each linear mixed model, a least squares means test determined the differences in 

coefficients between microcycles (fixed effect), with the resulting mean, standard 

deviation (SD) and mean difference for each athlete analysed to calculate standardised 

effect sizes (ES) and confidence limits (CL; 90%). The magnitudes of effect sizes were 

described as; < 0.20 trivial; 0.21–0.60 small; 0.61–1.20 moderate; 1.21–2.0 large and > 

2.01 very large (Hopkins et al., 2009; Johnston et al., 2022; Thornton et al., 2020). Effects 

were deemed real if they were at least 75% greater than the smallest worthwhile 

difference (SWD), which was calculated as 0.2 x the between-athlete SD (Duthie et al., 

2022; Hopkins et al., 2009; Johnston et al., 2022; Thornton et al., 2020). All analysis was 

completed in R Studio software (version 2021.09.0).  
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8.4 Results 
 

The results are expressed in Figure 1 and Table 1. Figure 1 depicts the four different 

quadratic models for each of the different microcycle lengths. Table 1 shows the quadratic 

coefficients for each of the four quadratic models for the different microcycle lengths.  
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Table 8-1 Quadratic coefficients (a, b, c) of acceleration (m·s-2), relative acceleration (m·s-2), speed (m·min-1) and relative speed (m·min-1) (mean ± 

SD) across different microcycle lengths (5-6 days, 7-8 days, or 9-10 days) in National Rugby League athletes. 

 

 

*Denotes microcycle being different (at least 75% greater than the SWC (calculated as 0.2 x between-athlete SD) compared to 5–6-day 

microcycle 

Variable 

Coefficient 

a b c 

5-6 Days 7-8 Days 9-10 Days 5-6 Days 7-8 Days 9-10 Days 5-6 Days 7-8 Days 9-10 Days 

Acceleration (m·s-2) 
-0.0056 ± 

0.0020 

-0.0054 ± 

0.0019 

-0.0054 ± 

0.0016 
0.33 ± 0.09 0.32 ± 0.10 0.33 ± 0.09 5.48 ± 1.07 5.93 ± 1.25* 5.99 ± 1.20* 

Relative 

acceleration (m·s-2) 
-0.0056 ± 

0.0020 

-0.0054 ± 

0.0019 

-0.0054 ± 

0.0016 
0.33 ± 0.09 0.32 ± 0.10 0.33 ± 0.09 -1.73 ± 1.03 -1.77 ± 1.17 -2.02 ± 1.14* 

Speed (m·min-1) 
-0.0007 ± 

0.0002 

-0.0006 ± 

0.0001* 

-0.0006 ± 

0.0001* 
0.11 ± 0.02 0.09 ± 0.02* 0.10 ± 0.02* 2.41 ± 0.86 3.33 ± 0.88* 3.46 ± 0.81* 

Relative speed  

(m·min-1) 
-0.0007 ± 

0.0002 

-0.0006 ± 

0.0001* 

-0.0006 ± 

0.0001* 
0.11 ± 0.02 0.09 ± 0.02* 0.10 ± 0.02* -1.23 ± 0.83 -0.80 ± 0.74* -0.98 ± 0.60* 
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Figure 8-1 The distribution of distance and impulse across different microcycle lengths in both 

absolute and relative forms during an NRL season. A = weekly distance plotted against speed 

intensity, b = relative distribution of distance in various speed thresholds, c = weekly impulse 

plotted against acceleration and d = relative distribution of impulse in various acceleration 

thresholds across each microcycle length. 



235 

 

For impulse, there were no substantial differences in a or b coefficients between all microcycles 

(Table 1). The c coefficient in the impulse model for both 7-8 day (ES = 0.37; ± 0.18) and 9-

10-day microcycles (ES = 0.44; ± 0.19) was greater when compared with 5–6-day microcycles. 

The relative impulse model showed no substantial differences in a or b coefficients between all 

microcycles (Table 1). The c coefficients in the relative impulse model for 9–10-day 

microcycles (ES = 0.29; ± 0.19) was smaller compared with 5–6-day microcycles. 

For the distance model, all coefficients in 7-8 day and 9–10-day microcycles were different 

when compared with 5–6-day microcycles. The a coefficient in both 7-8 day (0.59;  

± 0.22) and 9–10-day microcycles (0.61; ± 0.25), was greater compared to 5–6-day 

microcycles. The b coefficients were smaller in 7–8-day microcycles (0.63; ± 0.18) and 9-10 

microcyles (0.54; ± 0.19) compared to the 5–6-day microcycles. C coefficients were greater in 

7–8-day (1.05; ± 0.15) and 9–10-day (1.26; ± 0.17) microcycles compared to 5–6-day 

microcycles. For the relative distance model, all coefficients in 7-8 day and 9-10 microcycles 

were different compared to 5–6-day microcycles. The a coefficient was greater in 7-8 day (0.59; 

± 0.22) and 9-10-day microcycles (0.61; ± 0.25) compared to 5–6-day microcycles. The b 

coefficients were smaller in 7–8-day microcycles (0.63; ± 0.18) and 9–10-day microcycles 

(0.54; ± 0.19) when compared with 5–6-day microcycles. The c coefficient was greater in  

7–8-day microcycles (0.54; ± 0.14) and 9–10-day microcycles (0.34; ± 0.16) compared to  

5–6-day microcycles.  
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8.5 Discussion 
 

This study aimed to outline the distribution of distance and impulse in NRL training with 

respect to match fixture. Additionally, this study also aimed to outline the relative distribution 

of distance and impulse in NRL training relative to the total volume accumulated for the given 

microcycle. The main findings of the study revealed that the training distributions of both 

distance and impulse varied with differences in microcycle length. Specifically, both the 

distance model and impulse model showed greater distance and impulse values in 7-8 day and 

9-10 microcycles respectively compared to 5–6-day microcycles. As depicted in Figure 1, a 

greater total volume of distance was covered across the intensity spectrum during longer 

microcycles (7-8 day and 9-10 day) compared to short microcycles (5-6 days). Similarly, the 

relative distance model (percentage of microcycle distance total) indicated that short 

microcycles accumulated greater relative distance at a lower speed intensity compared to 

longer (> 7–8-day) microcycles. Impulse in 7-8 and 9-10-day microcycles indicated greater 

values compared to 5–6-day microcycles, with slightly greater relative impulse distributions 

seen at a higher acceleration intensity (% of microcycle impulse total). 

As the relationship between both volume and intensity measures were non-linear (quadratic), 

this study used quadratic models to describe the relationship (shape). The quadratic coefficients 

which describe the shape of the relationship indicated that all coefficients for speed were 

substantially different in 7-8 days and 9–10-day microcycles compared to 5–6-day microcycles 

for both total and relative distance accumulated. Collectively, the results demonstrated that 

training intensity and volume are manipulated across the various microcycle lengths (as 

indicated by the coefficients). Although not directly measured or recorded in this study, the 

manipulation of volume and intensity between each microcycle may have been to allow 

adequate recovery where needed, or logistical/time constraints of training (short microcycles), 
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and to elicit a positive training response, or longer sessions where time permits (longer 

microcycles). The results of this study are novel and are highly practical, as no study is yet to 

provide the distribution of volume across the intensity spectrum specific to rugby league or 

regarding microcycle length. This data has applications for practitioners in planning training 

during the in-season period.   

When comparing the results from the distance and impulse models between microcycles, the 

findings from the current study are similar to the limited research available (McLean et al., 

2010; Moreira et al., 2015; Parmley et al., 2022). The current study identified that both the 7-

8 day and 9–10-day microcycles had greater overall distance and impulse compared to the 5–

6-day microcycle (as seen in Figure 1). For example, total distance for training sessions during 

the 5–6-day microcycle was approximately 7360 m compared to 13000 m of the 9–10-day 

microcycle, being approximately 43% less volume, due to typically two less field-based 

training sessions, presumably due to the limited time available to train and the need to 

adequately recover between matches. Research from SL competition identified similar findings 

via GNSS technology to the current study with significantly lower total distances found in 5-

day microcycles compared to 10-day microcycles, as well as 5-day compared to 8-day 

microcycles (Parmley et al., 2022). Although, it should be acknowledged that the 

aforementioned research chose to analyse each microcycle in an individual day context rather 

than grouping days closer in proximity (i.e., 5-6 days) as in the current study (Parmley et al., 

2022).  

In similar NRL research, the training activity profile have been quantified using subjective 

measures such as the session rating of perceived exertion (s-RPE) (McLean et al., 2010; 

Moreira et al., 2015). The training activity profile (arbitrary units; AU) during shorter 

microcycles (5-6 days; 209 ± 63 AU) was significantly reduced compared to normal (7-8 days; 
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235 ± 46 AU) and long (9-10 days; 242 ± 40 AU) microcycles (Moreira et al., 2015). These 

findings are in agreement with the current study, despite the use of internal metrics rather than 

the external variables (GNSS technology) such as that used in the current study. The results 

from the current study and previous literature suggest that the reduction in training volume 

seen in 5–6 day microcycles may be simply due to the lack of time and logistical constraints 

(i.e., travel) of completing various training sessions, although the prioritisation of athlete 

recovery to help maintain performance for the upcoming match (McLean et al., 2010; Moreira 

et al., 2015; Parmley et al., 2022) is another likely contributor. Facilitating recovery in short 

microcycle situations is important within NRL competition, as athlete neuromuscular 

performance and perception of fatigue decline for at least 48 hours post-competition with 

recovery to baseline levels expected within four days (McLean et al., 2010; Murray et al., 

2014). From the results of the current study and when compared with the existing literature, it 

seems rugby league practitioners promote recovery through manipulation of training program 

variables such as training volume (Moreira et al., 2015; Parmley et al., 2022). 

Whilst training volume decreased as microcycle length between matches reduced, training 

intensity results were mixed. Firstly, in the relative impulse model, which was expressed as a 

percentage of the total impulse accumulated during the microcycle was similar between 

microcycle lengths, indicating limited variability. These results indicate that whilst the overall 

volume of impulse decreased, the relative distribution of this impulse remained stable, which 

could suggest an emphasis upon maintaining acceleration intensity irrespective of the 

microcycle length throughout the season. Perhaps increasing practitioners’ understanding of 

impulse and the important role of periodising acceleration intensity and volume (impulse) will 

increase the body of research available. Currently, it is difficult to compare impulse-based 

results to previous literature given the limited research available. The relative distance model 
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conversely showed greater variation in intensity across different microcycle lengths. The 

results from the current study showed that 28% of the microcycle distance total in 5–6-day 

microcycles were obtained at speeds of approximately 80 mmin-1, whereas the longer 

microcycle lengths in 7-8 days (26%) and 9-10 days (27%) showed peak distance accumulated 

around 90 mmin-1. However, there were similar distributions at 100 mmin-1 across all 

microcycles with minimal difference between 5-6 day and 7–8-day microcycles. In another 

study, weekly training intensity was maintained in elite rugby league training programs despite 

reduced training volume with a shortened microcycle between matches (Moreira et al., 2015). 

However, intensity was quantified via internal measures (i.e., RPE) and not via external metrics 

as used in the current study (Moreira et al., 2015). Similarly, in SL research, using GNSS 

technology, the training duration rather than training intensity was manipulated to facilitate 

athlete recovery and a maintained level of performance (Parmley et al., 2022). Given the results 

of the current study, it seems that to facilitate athlete recovery and performance, training 

volume is reduced as the length between matches is shortened, whilst relative intensity in 

training sessions is maintained for impulse. This finding is timely, as recent research has 

outlined the activity profile of NRL competition before and after the inception of the “six-

again” rule which is likely to have caused the increase in acceleration intensity in competition 

(Chapter 7). Potentially, this rule change and greater emphasis on acceleration intensity within 

training has led to limited variability between match microcycles as shown in the current study. 

In the 2021 NRL season, over half (4192 m; 53%) of all match distance attained would be 

considered low intensity, ranging between 60 and 180 mmin-1 (1-3 ms-1) (Chapter 7). 

Distances obtained at high intensity (> 300 mmin-1; > 5 ms-1) accounted for 12% of the entire 

match distribution (Chapter 7). Moreover, Figure 1 in the current study demonstrates that speed 

(expressed as a percentage of the microcycle total) peaks at less than 30% for intensity of 
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approximately 80 to 95 mmin-1 across each training week, with minimal distribution at higher 

intensity, indicating that most of the training distribution is attained at lower intensity exercise. 

This result is not surprising given the composition of rugby league training sessions where drill 

intensity is dictated by the purpose of the drill. For example, tackling/contact drills in training 

sessions may be of considerable duration, but may also be of minimal intensity with reference 

to external running variables such as speed. Similarly, training drills that are based on skill 

development would be also completed at lower intensity (for the purposes of distributing 

intensity) when compared to 13v13 match simulation drills. However, it is important that 

appropriate comparison between competition and training can take place to enable practitioners 

to tailor training and rehabilitation protocols that are specific to the current competition format 

(Chapter 7). Specifically, to enable more appropriate comparison, this study processed both 

distance and impulse using a similar processing methodology (i.e., filter and cutoff frequency) 

with the same GNSS technology as previous research (Chapters 5 & 7). With acceleration-

based metrics such as impulse it is important that acceleration is processed similarly given the 

potential variance of different filter types from different GNSS manufacturers on the 

processing of acceleration (Sweeting, Cormack, et al., 2017). By employing a similar 

processing methodology, the results from both Chapter 7 and current study can be more 

appropriately compared longitudinally, which may be of benefit to practitioners comparing 

between seasons.  

Whilst the results of this study have outlined the distribution of distance and impulse across in-

season training weeks with different microcycle lengths, this data is representative of one single 

club, given the difficulty and constraints of obtaining multiple clubs data, therefore may not be 

representative of all other NRL clubs. Further, the current research is also limited by the use of 

one external device (GNSS) to analyse the training activity profile (Parmley et al., 2022), rather 
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than using a combination of internal measures (i.e., heart rate, RPE) which may also provide a 

more holistic view of training practices between microcycle lengths during the season (Moreira 

et al., 2015; Parmley et al., 2022). This study also did not take into account physical contact-

based variables such as collisions or tackles which may also account for the activity profile 

between microcycle lengths (Parmley et al., 2022). Given the association between 

contacts/tackles in rugby league competition and muscle damage markers such as creatine 

kinase, future research should consider examining collision-based metrics in conjunction with 

internal and external activity profile metrics (Murray et al., 2014; Parmley et al., 2022; Twist 

et al., 2012). 

Quadratic coefficients have been used previously in activity profiles for team sport athletes 

(Duthie et al., 2021). However, it is important to practically outline how activity profile data 

can be manipulated after the coefficients have been determined. For example, if a practitioner 

wished to identify the distribution of any given speed intensity across the 7–8-day microcycle 

they could program this information via the following example:  

a coefficient = -0.0006, b coefficient = 0.0976, c coefficient = 3.4629 

 

((a × speed intensit𝑦2) + (𝑏 × speed intensity) + c)𝑒   

 

((−0.0006 × speed intensit𝑦2) + (0.0976 × 100) + 3.4629)𝑒 

This information could become useful when practitioners are required to conduct longitudinal 

comparisons across seasons. The differences in coefficients themselves can also be used as an 

indication that differences may exist. 
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The comparison between microcycle lengths in impulse and distance allows practitioners to 

observe the differences in training volume across different microcycles. This may provide 

practitioners with an understanding of structuring training sessions regarding volume and 

intensity, whilst considering available time/logistics, facilitating recovery, and facilitating an 

adequate training stimulus. As the length of the microcycle deceased (i.e., 5-6 day compared 

to 7-8 and 9-10 day), the overall training volume for distance and impulse reduced. The relative 

distribution of intensity for impulse was similar between microcycle lengths, with greater 

variation seen in the relative distribution of distance, where there was a greater volume 

accumulated at lower intensity during 5–6-day microcycles compared to 7-8- and 9-10-day 

microcycles. The results from the study indicate that in shorter microcycles (i.e., 5-6 days), 

recovery was prioritised and to maintain athlete physical performance in-season, training 

volume was manipulated, and to a lesser extent, intensity. Further, practitioners can compare 

the distribution of their training intensity and volume relative to their competition data. 

Longitudinally, this may enable historical comparisons across seasons to identify trends in 

training relative to competition data. 
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8.6 Conclusions 
 

The current study identified that as the length of the microcycle length between matches 

decreased, the overall training volume for distance and impulse reduced. Specifically, there 

were lower totals for both distance and impulse in 5–6-day microcycles compared to the longer 

durations of 7-8 days and 9-10 days. The relative distribution of intensity for impulse was 

similar between microcycle lengths, however, despite any reduction in microcycle length. For 

example, a 5-6-day microcycle did not see a commensurate reduction in the relative distribution 

of impulse compared to a 9-10-day microcycle, indicating that acceleration-based intensity 

wasn’t directly scaled with training volume. Greater variation was seen in the relative 

distribution of distance, where there was a greater volume accumulated at lower intensity 

during 5–6-day microcycles compared to 7-8- and 9-10-day microcycles. The results from the 

study indicate that in shorter microcycles (i.e., 5-6 days), recovery was prioritised and to 

maintain athlete physical performance in-season, training volume was manipulated. To a lesser 

extent, training intensity was manipulated, however, acceleration-based intensity was largely 

maintained despite any decrement in training volume.  
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CHAPTER 9 - GENERAL DISCUSSION, CONCLUSIONS AND 

DIRECTIONS FOR FUTURE RESEARCH 
 

 

9.1 Introduction 
 

This thesis examined the effects of a common filter applied to GNSS technology during team 

sport movements for the processing of acceleration. Subsequently this thesis then examined 

acceleration in NRL competition following a rule change and the distribution of training 

volume and intensity during NRL training weeks. The use of a common filter reduced the 

differences in acceleration outputs between two GNSS devices during rugby league training 

sessions before being validated against VICON systems. The common filter was applied 

practically and helped to determine that the acceleration intensity of NRL competition 

increased across all positions following the introduction of the six-again rule, before identifying 

how speed was manipulated whilst impulse was maintained across NRL training weeks in-

season. The application of this thesis has identified a method that allows for processing 

acceleration data in an independent, and importantly, more consistent way to help alleviate 

discrepancies that exist between player tracking provider processes and with changes in 

tracking device software and firmware. To process acceleration data with a more consistent 

methodology, practitioners and/or researchers should firstly consider a desired filter and 

consequently, a desired cutoff frequency via the use of residual analysis and consider a 

minimum effort duration. Pending the determination of validity and reliability with the selected 

processing methodology, practitioners and researchers can elect to process their athlete 

tracking data independently of proprietary software which may allow for more appropriate 

longitudinal comparison of acceleration data across important junctures (i.e., season versus 

season or athlete performance over time). By using this method, this thesis found that the six-
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again rule change substantially altered the acceleration profile of NRL players across all 

positions, Moreover, the distribution of volume and intensity for speed and impulse was 

identified using this method where speed in training was altered depending on the turnaround 

time between matches whilst impulse was consistent.  

 

9.2 Discussion and Future Directions 

The results from the systematic review in this thesis indicated that quantifying acceleration in 

team sports via counts was selected in well over half (~72%) of the included studies. The 

selection of counts to express part of the acceleration profile for a team sport is common 

practice, but the processing of acceleration to derive the count has shown considerable variation 

(Chapter 5). Chapter 5 in this thesis identified that the counts for the same activities in rugby 

league training sessions were substantially different, with double the number of counts 

identified by one device compared to the other (GPSports: 3.8 ± 2.8, STATSports: 10.0 ± 7.6). 

Given both devices were worn at the same time, the differences suggest that the processing of 

acceleration can directly impact upon the number of counts for the activity profile. Within 

rugby league research such discrepancies may already exist. Research from one study has 

identified that NRL athletes can attain approximately 71 counts during competition, whilst 

another study identified a range of 50-80 counts across positions (Kempton, Sirotic, Rampinini, 

et al., 2015; Varley et al., 2014). It should be highlighted that both studies used 5 Hz GPS 

technology from different providers, which may contribute to the differences and highlights 

the issue of a lack of information surrounding the processing of acceleration. Importantly, if a 

practitioner is observing the counts identified within their team versus those in research, it may 

become difficult to make informed decisions about any training or competition intervention if 

the difference in counts is substantial. If the practitioner uses a player tracking provider that’s 
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different from the provider within a research article and the counts are substantially different, 

then this may lead to inappropriate decisions regarding training or load management. For 

example, if a half-back in rugby league is quoted as completing 100 acceleration counts per 

match (> 2.5 m·s-2) within research, but the practitioner’s tracking system has shown an 

average of only 50 counts across the season average, it becomes difficult to make any decision 

regarding performance or recovery interventions. Similarly, for comparisons with research, it 

may be difficult to know if there have been accurate changes in the activity profile if differences 

in processing are not outlined or established. Specifically, given the relevance of counts and 

other threshold-based acceleration metrics, it’s important that a common process is established 

or at least reported upon in the research.  

The filtering methodology introduced in Chapter 5 showed that the use of a common filtering 

process reduced the difference in acceleration between two GNSS devices from different 

providers across a series of rugby league training sessions. The same methodology, being a 1 

Hz Butterworth, fourth-order filter, was subsequently validated against a three-dimensional 

motion capture system (VICON) in Chapter 6. The findings from Chapters 5 and 6 indicated 

that applying a common filtering process to GNSS devices from different manufacturers can 

reduce the differences seen in the magnitude of acceleration variables while, crucially, mot 

altering the data to render it invalid or inaccurate. As a result, the use of a common filtering 

process can provide a valid approach to improve the consistency in processing athlete tracking 

data independently of the tracking system provider’s software. 

Using the common filtered data, differences in acceleration profiles were found between the 

NRL competition activity profile before and after the introduction of the six-again rule. 

Commonly, the introduction of rule changes into team sport competition prompts practitioners 

to review the activity profile of competition over multiple seasons to evaluate the need to alter 
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training and/or rehabilitation programs to reflect the change in the competition activity profile 

(Delves et al., 2019; Sunderland & Edwards, 2017). However, evaluating athlete tracking data 

over a longitudinal period can be difficult due to software and firmware updates that are 

inevitably released by manufacturers over a similar period (Malone et al., 2017). Software or 

device firmware updates can alter the way tracking data is processed which consequently can 

alter the outputs for variables such as acceleration. For practitioners it is then difficult to 

ascertain whether any differences between seasons or phases within a season are driven by 

changes in competition play or due to changes in the processing and calculation of the athlete 

tracking data. Chapter 7 in this thesis showed that this research could analyse longitudinal-type 

studies which had software and firmware updates during the competitive seasons analysed. 

Moreover, greater confidence could be had that the differences in the acceleration profile were 

real and not due to differences in processing. Specifically, the use of a standard methodology 

to process athlete tracking data could help the practitioner to create greater consistency in their 

analysis longitudinally by enabling clearer analysis surrounding the impact of any rule changes 

upon the respective activity profile.  

Practitioners are commonly required to evaluate the competition activity profile in comparison 

to their training programs to assess suitability for their athletes (Sweeting, Cormack, et al., 

2017). Moreover, practitioners are also required to manipulate training volume, intensity, and 

recovery periods during the in-season phase of competition to promote training adaption or 

recovery where required. To enable comparison both distribution of speed and acceleration in 

competition and between microcycle lengths within season, practitioners should have a 

consistent methodology in the processing of their athlete tracking data. Without a consistent 

methodology to process tracking data like in Chapter 8, practitioners may again be subject to 

device firmware updates or software updates across the season which could influence the 
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magnitude of any acceleration outputs. Any inconsistencies between processing may 

negatively impact the ability to compare between similar microcycle lengths across the length 

of the season, or across multiple seasons in relation to competition. Importantly, being able to 

also consistently complete analysis of training stimuli against competition regularly is 

enhanced with the use of a reproducible and consistent processing methodology.  

The determination of a common filtering method for acceleration could be implemented across 

a variety of team sports. The validation of GNSS technology for speed in Chapter 6 was 

processed using the common filter applied in this thesis upon association football athletes, 

whilst the practical application of the common filter approach was used in training and 

competitive environments within rugby league. Whilst the validation of this process against 

the criterion took place in a different sport to the longitudinal application in a practical setting, 

it’s important to note that the initial residual analysis to determine the optimal cutoff frequency 

for rugby league training data took place in Chapter 5, with respect to the rugby league studies 

in Chapter 7 and 8. It is also understood that it would be difficult to globally recommend the 

use of 1 Hz Butterworth fourth, despite the use already within research, in order filter to all 

team sport practitioners using GNSS technology, given the differences between the activity 

profiles of most team sports (Ellens, Middleton, et al., 2022). However, tracking system 

providers may currently apply one filtering process to their tracking device models or systems 

regardless of the different types of team sports currently using their products. Regardless, what 

could be generalized across different team sports is the notion of instilling a common filtering 

process once the analysis and subsequent internal validity and/or reliability is examined.  
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9.2.1 Future Directions 

Future research on the application of a consistent method to process acceleration from athlete 

tracking devices should extend across to LPS and optical tracking systems. This thesis focused 

upon GNSS technology, given the widespread use of GNSS devices in outdoor team sport 

competitions at the elite level (Aughey, 2011a; Malone et al., 2017). However, there is an 

increasing trend for outdoor team sports such as rugby league and Australian rules football to 

interchange wearable tracking systems from training to competition (Thornton, Nelson, et al., 

2019). For example, an NRL team may train with GNSS devices as their training facility may 

be outdoors and free from stadium infrastructure. During competition in stadia, a common 

alternative is for athletes to wear LPS devices with local infrastructure installed within the 

stadium to maintain or improve signal quality for competition. However, for practitioners and 

researchers, the interchanging of systems may impact athlete monitoring as the devices may 

process tracking data differently, with different sample rates and consequently, error rates 

which may provide incompatible data between training and competition (Buchheit, Allen, et 

al., 2014; Thornton, Nelson, et al., 2019). Therefore, it would be of interest to analyse the 

impact of applying a common filter to wearable tracking technology and optical technology to 

identify the levels of compatibility between the datasets with identical processing 

methodologies. 

In the applied setting, within elite team sports, it may be pertinent for practitioners to analyse 

longitudinal athlete tracking data over several seasons (Dalton-Barron et al., 2021; Rennie et 

al., 2021). Currently, it is difficult for practitioners to analyse longitudinal data as inevitably 

there are device changes/upgrades, firmware updates, software updates or filtering changes that 

occur at regular intervals across a season or multiple seasons which can inhibit valid 

comparisons across seasons (Brosnan et al., 2021; Malone et al., 2017; Thornton, Nelson, et 
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al., 2019). Any changes or updates to tracking device technology can lead to differences in the 

outputs of athlete tracking metrics such as acceleration (Brosnan et al., 2021). For team sport 

practitioners, it may be valuable to analyse their longitudinal data over seasons to enhance their 

decision-making processes surrounding athlete management and the prescription of training 

interventions. It may be that the requirements of competition have changed for the respective 

team and perhaps different training interventions may be required. (Chapter 7) Practitioners 

could improve their ability to conduct longitudinal analysis of their tracking data by following 

the methodologies outlined in this thesis. For example, practitioners could firstly identify an 

appropriate filtering method that is valid against a criterion measure to begin processing their 

data, similar to the methods outlined in Chapters 5 and 6. After this point, practitioners could 

then apply a consistent filter with similar rationale to that in Chapters 7 & 8, with a longitudinal 

project that could be applied across a season or multiple seasons with analysis on training 

and/or competition. Future applied research from elite team sports could also follow a similar 

process in the outlining of activity profiles or comparing activity profiles from previous 

seasons. Reanalysis of historical activity profiles from respective sports could be examined and 

processed using a consistent methodology to make more appropriate comparison between 

seasons. Commonly, the updating of activity profiles following the introduction of competition 

rule changes are required and could be appropriate to apply some of the methods used in this 

thesis (Delves et al., 2019; McMahon & Kennedy, 2019; Meir et al., 2001; Sunderland & 

Edwards, 2017).   

For team sport practitioners, the introduction of rule changes within team sports can prompt 

the need to revaluate the potential changes in the competition activity profile (Delves et al., 

2019; McMahon & Kennedy, 2019; Meir et al., 2001; Sunderland & Edwards, 2017). Chapter 

7 highlighted how the change in competition rules can impact upon the activity profile, with 
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emphasis upon acceleration. The ability to analyse the impact of any rule change can hold direct 

influence upon training program prescription. Importantly, rule changes can occur frequently 

depending upon the sport and competition. For example, the NRL have since altered the 

competition rules since the publication of Chapter 7 by reinstating traditional penalties for 

defending teams within the opposition’s 40m. For practitioners, it is then important to be able 

to repeat the process of analysing the competition activity profile before and following 

subsequent rule changes. Establishing a consistent process to do this by way of filtering and 

data processing can improve or maintain the quality of these comparisons and potentially lend 

more confidence to any changes in training program prescription as a result. Figure 9-1 shows 

an example process practitioners could follow to establish a consistent process for athlete 

wearable tracking data in competition and training.  

  

This thesis focused primarily on the practical application within elite sport science for team 

sport performance. However, an important component of athlete tracking research is that of 

establishing the validity and reliability of wearable tracking devices and systems as they are 
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• Determine optimal 
cutoff frequency
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Apply processing 
to athlete tracking 
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• Ensure consistency 
in the determination 
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maximum distances
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as needed

Figure 9-1 Example process in applying a consistent filter process in the applied team sport 

environment 



252 

 

introduced into the market (Aughey, 2011a; Jennings et al., 2010a; Malone et al., 2017; Scott 

et al., 2016). Governing bodies of sports such as FIFA, have introduced accreditation and 

preferred provider programmes that endorse different commercial athlete tracking devices and 

systems that have established validity and reliability (Aughey et al., 2022). It may be that other 

sporting organisations and governing bodies establish validity and reliability programs for 

athlete tracking systems in the future. In that case it may be important to evaluate tracking 

technology from different providers using a similar filtering process to identify the validity and 

reliability of the technology. Having a consistent method to process tracking data independent 

of the proprietary software may provide a more appropriate comparison of validity and 

reliability between providers to then award certification and/or preferred provider status.  

Within research, both the individual device models and systems (in the case of LPS and optical) 

need to be validated by researchers to enable confidence for use at the elite level (Aughey, 

2011a; Jennings et al., 2010a; Malone et al., 2017; Scott et al., 2016). However, the majority 

of validity and reliability research for athlete tracking devices usually compare each individual 

device model to other devices or criterion measures with an emphasis on the hardware 

characteristics of the technology (e.g., device sample rate), with limited consideration as to 

how variables such as speed or acceleration are processed (Scott et al., 2016). As stated 

previously, researchers may not be aware of how manufacturers may process data, which may 

also have a direct influence on the validity and reliability for that research (Malone et al., 2017; 

Varley et al., 2017). For research examining the validity and reliability of acceleration and/or 

deceleration as measured by wearable technologies, there have been large variations and 

questionable validity in high intensity deceleration (CV: 56%) (Buchheit, Al Haddad, et al., 

2014). Future research may then apply a common filter between devices or systems to compare 

similar devices more appropriately against a criterion measure. For example, future research 
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may wish to evaluate two 10 Hz GNSS devices from different manufacturers against a three-

dimensional motion capture system as a criterion. Hardware between the GNSS devices may 

be similar, but if the data is processed using the manufacturer’s software, researchers may be 

unaware as to the impact of any filtering imposed on the data (Thornton, Nelson, et al., 2019). 

Moreover, given the presence of 18 Hz GNSS technology and the comparison of GNSS data 

compared to higher sampling criterions (i.e., three-dimensional capture systems), up sampling 

and down sampling of sample rates is common (Beato et al., 2018; Winter, 2009). Again, it 

may prove inappropriate for practitioners or researchers to try to compare outputs from devices 

that sample at different rates if the processing of the variable, such as acceleration, is unknown 

or know to be calculated differently (Buchheit, Al Haddad, et al., 2014). However, if 

researchers could process the data independently and then apply an experimental or common 

filter to the tracking devices, they may be able to make more appropriate comparison as to the 

suitability of the devices in terms of validity and reliability (Figure 9-2).  
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9.3 Summary 

This thesis examined the use of a common filter in the processing of athlete acceleration from 

GNSS technology in team sports. Chapter 3 examined how acceleration had been quantified 

across team sport activity profiles, which identified a lack of information surrounding how 

acceleration had been processed by wearable tracking manufacturers. The thesis then attempted 

to identify how acceleration had been processed by wearable tracking manufacturers via an 

anonymous survey (Chapter 4). However, a lack of survey responses, which may be due to the 

intellectual property and commercial risk facing manufacturers, limited the scope of the survey. 

As a countermeasure, the thesis then examined the use of applying a common processing 

method between two different GNSS/GPS devices during rugby league training sessions 

(Chapter 5). The experimental filter showed no substantial difference in acceleration between 

both devices. The experimental filter was then validated against a three-dimensional motion 

capture system during team sport movements and small-sided games to assess wider, 

longitudinal applications in the forthcoming chapters (Chapter 6). To assess the suitability of 

the 1 Hz Butterworth filter, the processing methodology was applied across three rugby league 

seasons to assess the impact of a rule change that was hypothesised to directly impact upon 

acceleration (Chapter 7). Chapter 7 allowed for longitudinal use of the experimental filter 

across numerous seasons, which was identified as a common applied scenario for practitioners. 

Further, the experimental filter was used again during an in-season analysis looking at the 

distribution of the training activity profile in elite rugby league with different microcycle 

lengths during the season (Chapter 8). The experimental filter allowed for comparison between 

training weeks, but also allowed for more appropriate comparison between training and 

competition volume and intensity, with respect to acceleration-based metrics. The rationale for 

Chapter 8 again highlighted the practical significance of being able to apply consistent filtering 
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processes in the calculation of acceleration in team sport conditions. As the notion of applying 

a consistent filtering process in the handling of athlete acceleration is largely unexplored, future 

application should analyse the impact of common processing when interchanging tracking 

systems and for use when establishing or comparing the validity and reliability of introduced 

tracking devices and systems. Given the experimental filter was used in the validation against 

a three-dimensional motion system during team sport movements, generalisation of this 

technique to other team sports would be expected, provided researchers and practitioners 

established the validity of the processing and handling methodology, in similar fashion to the 

methodology used in this thesis.  
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9.4 Practical Applications 

The practical applications of this thesis are: 

1. Researchers and practitioners may elect to process athlete GNSS data independently of the 

GNSS proprietary software in order to enable more appropriate comparisons of variables such 

as acceleration across longitudinal periods. 

2. This experimental methodology (1 Hz, fourth order Butterworth filter) or another validated 

methodology could be used by team sport practitioners and researchers if they wish to process 

their athlete tracking data independently of the GNSS proprietary software, and if appropriate 

for their athletes and datasets.  

3. To identify their own custom data-handling process, researchers and practitioners may elect 

to incorporate a residual analysis or other method to identify appropriate cutoff frequencies for 

their athlete tracking data sets in conjunction with the selection of a filter. 

4. Researchers and practitioners should attempt to validate their choice of filter/cutoff 

frequency against a criterion measure before applying custom processing to their athlete GNSS 

data.  

5. The use of a consistent process to handle athlete GNSS data may allow for better comparison 

between athlete wearable tracking devices and systems when assessing device validity and 

reliability.  

6. With the use of a consistent process, longitudinal analysis of athlete tracking data over 

several seasons or years may be possible. The consistent processing of data may help improve 

the accuracy of the data and minimise the impact of software or device firmware updates that 

inevitably occur over a longitudinal period.  
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9.5 Conclusions 

The conclusions of this thesis are: 

1. There is a lack of knowledge within research as to how EPTS manufacturers filter and 

process GNSS data which may have an impact upon the consistency in the calculation of 

acceleration. However, it is clear from the results in this thesis that EPTS manufacturers 

process GNSS data differently which has implications for acceleration outputs which will differ 

between systems for the same activity. 

2. The use of a common filter and cutoff frequency reduced the difference in acceleration 

outputs between two GNSS devices from different manufacturers. 

3. This thesis developed a common filtering process for GNSS-based acceleration using a 1 

Hz, fourth order Butterworth filter that was subsequently validated against a criterion measure 

for applied use.  

4. Through longitudinal analysis with a common filter, the introduction of the six-again rule 

changed the activity profile of NRL competition, with an increase in acceleration intensity 

across all positions.    

5. Through longitudinal analysis with a common filter, speed intensity during NRL training 

weeks in-season were manipulated to facilitate performance when fewer training sessions were 

completed in shorter microcycles. The intensity of impulse was maintained regardless of the 

recovery between matches. 
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