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Abstract 

Over the last decade, many quality research papers and monographs have been 

published focusing on numerical approximations of nonlinear partial differential 

equations (NPDEs). These equations are very important in mathematics and relevant 

to the study of various real-life phenomena from nature, physics, engineering and 

sciences. In this thesis, the cubic B-spline (CBS), non-polynomial spline, fractional 

calculus and Adomian decomposing methods are used to approximate solutions to 

the dissipative wave, the dispersive partial differential, coupled nonlinear non-

homogeneous Klein–Gordon, linear space-fractional telegraph partial differential and 

generalised Burgers–Huxley equations. These approximate solutions have been 

proven to be stable and convergent in various studies. The numerical examples 

considered in this paper illustrate the efficiency of the method compared with those 

used in recent works published in this field. 

This thesis investigates the treatment of some PDEs using numerical methods. One 

of the objectives of this thesis is to obtain accurate and constant numerical solutions 

to nonlinear integer and fractional order NPDEs. 

The first chapter presents a general introduction, motivation for the study, research 

questions, contributions and objectives of the research and the research methodology, 

and outlines the thesis organisation. 

Chapter 2 covers four main topics: PDEs, the B-spline method, the fractional calculus 

method and the Adomian method. 

Chapter 3 focuses on numerical approximations to solve the dissipative wave 

equation based on the CBS method. The steps followed involve the governing 

equation and derivation of the proposed method; the initial state; stability analysis; 

and numerical examples. 

Chapter 4 applies the non-polynomial spline method to identify an approximation 

solution for the third-order dispersive PDE. The steps followed involve analysis of 

the method; error analysis; stability analysis; and numerical examples. 
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Chapter 5 provides an approximate analysis for coupled nonlinear non-homogeneous 

Klein–Gordon equations using the CBS method. The steps followed involve the 

numerical method; stability analysis; and numerical examples. 

Chapter 6 discusses the fractional calculus method for solving the linear space-

fractional telegraph PDE. The steps followed involve derivation of the method; the 

spline relations; stability analysis; and numerical examples. 

Chapter 7 investigates solution of the generalised Burgers–Huxley equation with 

high-order nonlinearity terms using the Adomian decomposition method. The steps 

followed involve global exponential stability; construction of the adaptive boundary 

control; the initial boundary value problem; and numerical examples. 

The last chapter provides a summary of the thesis and makes some suggestions for 

further research. 
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Chapter 1: Introduction 

This introductory chapter provides a general introduction to the thesis and outlines 

the motivations and research questions of the study. This is followed by a description 

of the contributions and objectives of the research. Last, this chapter describes the 

research methodology and thesis organisation. 

1.1 General Introduction 

Partial differential equations (PDEs) are an essential tool used in various areas of 

applied mathematics. Solutions to PDEs form the basis of many mathematical models 

in physics and medicine. Numerical methods for solving scientific and engineering 

problems are becoming more important and the subject has become an essential part 

of the training of applied mathematicians, engineers and scientists. Having no exact 

solution is a critical informational issue for mathematicians—especially those who 

plan to approximate solutions for nonlinear partial differential equations (NPDEs), 

except under some initial boundary conditions. One important reason for this is that 

numerical methods can provide the solution when ordinary analytical methods fail. 

Many mathematical models for engineering problems are expressed in terms of 

boundary value problems, which are PDEs with boundary conditions. Four of the 

most popular techniques for solving PDEs are the B-spline (or basis spline), non-

polynomial splines, fractional calculus and Adomian decomposing methods. In the 

last few decades, numerical techniques have been increasingly used to build 

mathematical models in engineering research. This thesis focuses on the use of 

different numerical methods to solve both linear PDEs and some NPDEs. The main 

objective of the thesis is to study treatments for some types of NPDE using the 

collocation method with the B-spline and non-polynomial spline. More broadly, this 

thesis aims to compare approximate solutions for NPDEs with exact solutions. It also 

seeks to categorise the selected methods and assess their accuracy and efficiency. 

Further it discusses challenges faced by researchers in this field and emphasises the 

importance of interdisciplinary effort for advancing the study of use of numerical 

methods for solving some PDEs. The thesis consists of eight chapters followed by a 
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list of references considered to be useful to the development and application of the 

methods discussed in this thesis. A brief description of the contents of each chapter 

is as follows. 

This chapter introduces the main ideas of the thesis including its aim and objectives 

and outlines the research. Preliminary definitions and a literature review are presented 

in Chapter 2. Chapter 3 focuses on finding an approximate solution for the dissipative 

wave equation using the cubic B-spline (CBS) method. Solving the third-order 

dispersive partial differential equation by using a quartic non-polynomial spline is 

discussed in Chapter 4. Chapter 5 describes numerical investigations of the coupled 

nonlinear non-homogeneous Klein–Gordon equations. A new approach to the linear 

space-fractional telegraph PDE is outlined in Chapter 6. Chapter 7 introduces the 

adaptive boundary control for the generalised Burgers–Huxley equation (GBHE) 

with high-order nonlinearity terms. It also outlines the boundary control problem for 

the unforced GBHE with high-order nonlinearity when the spatial domain is [0, 1]. 

Finally, Chapter 8 provides a brief conclusion and considerations for possible future 

research in these areas. 

1.2 Motivations and Research Questions 

Some important issues relating to NPDEs include finding exact solutions for some 

initial and boundary conditions. This thesis aims to investigate the numerical 

treatments for some types of NPDE. The proposed method is the collocation method 

with the B-spline and the non-polynomials spline. 

This thesis also aims to obtain accurate and stable numerical solutions for these 

NPDEs with integer and fractional orders. Having no exact solution is a critical 

informational issue for mathematicians—especially those who plan to approximate 

solutions for NPDEs, except under some initial boundary conditions. 

This thesis aims to compare the CBS and non-polynomial spline methods for both 

the same and separate PDEs. This comparison is an attempt to confirm the suitability 

of methods applied in this research. More broadly, this research aims to compare 

approximate solutions for the NPDEs with exact solutions. The thesis also aims to 
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obtain percentage improvements in terms of accuracy, convergence, stability and so 

on, by comparison with previous methods. 

What makes this study unique is its use of the two methods, the B-spline and the non-

polynomial spline, combined to solve some recently discovered types of NPDE. 

Specifically, this thesis addresses the following research questions: 

1. Why do we use approximate solutions for nonlinear partial differential 

equations? 

2. What methods are required to obtain these approximate solutions? 

3. What are the accuracy and stability of such numerical approximations? 

4. What are the accuracy and convergence of such numerical approximations? 

5. How are nonlinear partial differential equations of fractional order treated? 

1.3 Contributions and Objectives of the Research 

This thesis contributes to the provision of numerical solutions for NPDEs. The results 

are analysed by comparing exact solutions under some initial and boundary 

conditions—when available—with approximates ones. Consequently, this thesis 

offers researchers and mathematicians the opportunity to assess the stability and 

effectiveness of methods under consideration. More widely, the findings could be 

used to identify approximate solutions for NPDEs using up-to-date technology, and 

saving time and money. 

Despite the large body of qualitative literature relating to the treatment of NPDEs, 

further research is needed. Previous research has commonly sought to solve PDEs 

using one method; this research, in contrast, explores numerical approximations for 

NPDEs by using a combination of two methods. Use of this combined methodology 

is expected to greatly enhance the efficacy of approximations. 

The results of this study may be of interest to mathematicians who aim to approximate 

solutions for certain NPDEs; although there are no exact solutions under some initial 

and boundary conditions. The results may also be beneficial to the field of numerical 

analysis in general; and for applications in theoretical physics, biology and 
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engineering in particular. In addition, the results may help to improve the stability, 

effectiveness and convergence of numerical solutions of NPDEs encountered in other 

fields of science or engineering. 

1.4 Research Methodology 

There are several approximate methods for solving NPDEs. This thesis focuses on 

two of these: CBS and the non-polynomial methods. The methods are described along 

with the accuracy and stability of such approximations. The obtained results are then 

presented. 

The study begins by analysing each method in detail. I select some NPDEs that have 

not been solved using previous methods and address why they were chosen and why 

approximate solutions are required. Afterwards, I apply CBS methods to the various 

equations. In addition, I assess the accuracy and stability of these approximations. I 

then similarly apply another method (non-polynomial spline). I then study the 

accuracy and stability of these approximations. Finally, arriving at what makes this 

research different from previous studies, I compare my findings and determine the 

most accurate methods. 

My primary goal is to focus on the polynomial and non-polynomial spline methods 

to find approximate solutions for some important applications of NPDEs, with integer 

and fractional orders, and discuss the stability and convergence of such numerical 

solutions. To achieve this goal, I take the following steps: 

1. I consider a series solution as the multiplication of two functions; one 

dependent on time (t) and the other on discretisation (x). 

2. I convert the NPDEs into a system of ordinary differential equations (ODEs). 

3. By applying the spline method, I convert the ODEs into a system of algebraic 

equations. 

4. By employing some computer programs (Maple, Mathematica, Matlab), I find 

approximate solutions. 

5. I apply the Von Neumann stability scheme to the existence system after 

linearisation. 
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6. I conduct a comparison between the obtained numerical approximations and 

the exact solutions where they exist. 

7. I perform an analysis to demonstrate the accuracy of the numerical method. 

1.5 Thesis Organisation 

The main objective of this thesis, which consists of eight chapters, is to introduce an 

analytical and numerical treatment based on the B-spline and non-polynomial spline 

methods for solving some types of PDE. The thesis organisation is as follows. 

This chapter provides a general introduction to the research, outlining the motivation 

and research questions, contributions and objectives of the research, research 

methodology and thesis organisation. 

Chapter 2 provides some basic definitions, necessary details and mathematical 

preliminaries relating to the PDEs, which are required to establish the results. This 

chapter contains four sections. Section 2.1 introduces PDEs and outlines some basic 

definitions such as PDEs, the order of PDEs, linear PDEs and NPDEs, homogeneous 

and inhomogeneous PDEs, initial conditions, boundary conditions and classification 

of second-order PDEs. Section 2.2 provides some background on B-splines including 

a literature review, an overview of the B-spline method and spline functions, and 

some basic definitions for the spline function of degree m, the CBS function local 

truncation error, consistency, total error, convergence, stability and non-polynomial 

spline functions. Section 2.3 discusses fractional calculus, providing the history of 

fractional functions and some important definitions and concepts in this field. The 

last section introduces the Adomian decomposition method (ADM) . 

Chapter 3 solves the dissipative wave equation using the CBS method to find the best 

approximation. I begin by considering the governing equation and the derivation of 

the proposed method. Next, I use the boundary conditions to obtain N+3 equations in 

N+3 unknowns. I then apply the initial conditions to obtain the independent variables. 

The Von Neumann stability method is then used to find the method conditionally 

stable. Finally, I calculate L∞ error norms for an example of the dissipative wave 
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equation using the Mathematica program and compare the results with those from 

some previous studies. 

Chapter 4 solves a third-order dispersive PDE using the quartic non-polynomial 

spline method to find the best approximation of this solution. I analyse the 

effectiveness of the method depending on the quartic formula by using the continuity 

condition of the first and second derivatives of the non-polynomial spline functions. 

I then apply the boundary conditions to obtain an ODE, which can be described in 

the form of a matrix. An error analysis is conducted using Taylor’s expansion of the 

truncation error. I use the Von Neumann stability analysis to discuss the stability of 

the method. Finally, I present the full numerical results for the non-homogeneous 

third-order dispersive PDE with the best approximations relative to previous studies. 

Chapter 5 provides a brief description of numerical investigations of coupled 

nonlinear non-homogeneous PDEs using the CBS method. I start with the numerical 

method, which is based on approximations such as wavelet approximations. I use the 

values of the cubic function through the knots as well as the values of its first and 

second derivatives. I examine and analyse the proposed method using the Von 

Neumann stability method to show that it is conditionally stable. Finally, I introduce 

a numerical example to solve coupled nonlinear non-homogeneous Klein–Gordon 

equations. The results are compared with the exact solution and a brief description of 

the maximum absolute errors is provided . 

In Chapter 6, a novel approach based on the quadratic-polynomial spline-based 

method is used to obtain the numerical solution for the time–space-fractional order 

telegraph equation. The chapter outlines the derivation of the quadratic-polynomial 

spline method. Next, the spline relationships are examined through continuity 

conditions and truncation error. The stability is then discussed theoretically using the 

Von Neumann stability method. Finally, a numerical example is presented to 

illustrate the practical implementation of the proposed method. The results are then 

compared with the exact solutions . 

Chapter 7 deals with the boundary control problem for the unforced GBHE with high-

order nonlinearity when the spatial domain is [0, 1]. The adaptive boundary control 
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for the GBHE with high-order nonlinearity terms is introduced. I use an adaptive 

nonlinear boundary controller to show that it achieves global asymptotic stability in 

time and to demonstrate convergence of the solution with the trivial solution. I 

introduce numerical simulations for the controlled equation using the ADM to 

illustrate the performance of the controller applied to the GBHE. 

Finally, Chapter 8 draws conclusions, provides recommendations for future work in 

this field and highlights some areas for further development.  
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Chapter 2: Preliminary Definitions and Literature Review 

In this chapter, I provide an introduction to PDEs and describe some commonly used 

PDEs, various initial conditions and boundary conditions. I then analyse some state-

of-the art numerical methods for PDEs and conduct a review of the relevant literature . 

2.1 Partial Differential Equations 

Fields such as medicine, engineering, physics and biology are significantly 

influenced by PDEs. Physical phenomena within sound propagation, diffusion, heat 

transfer, electrodynamics, elasticity, fluid dynamics, optics and electrostatics are 

outlined via PDEs [1]. 

2.1.1 Definition of Partial Differential Equations 

A PDE is an equation that contains a dependent variable (the unknown function) and 

its partial derivatives 𝐹(𝑥, 𝑦, 𝑡, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥 , 𝑢𝑦, 𝑢𝑡 , 𝑢𝑥𝑦, … ) = 0. It is known that in 

ODEs, the dependent variable 𝑢 = 𝑢(𝑥) depends only on one independent variable 

x. Unlike ODEs, the dependent variable in a PDE, such as 𝑢 = 𝑢(𝑥, 𝑡) or 𝑢 =

𝑢(𝑥, 𝑦, 𝑡), must depend on more than one independent variable. If 𝑢 = 𝑢(𝑥, 𝑡), then 

the function u depends on the independent variable 𝑥, and on the time variable 𝑡. 

However, if 𝑢 = 𝑢(𝑥, 𝑦, 𝑡), then the function 𝑢 depends on the space variables 𝑥, 𝑦, 

and on the time variable 𝑡. Examples of PDEs are as follows: 

 𝑢𝑡 − 𝑘𝑢𝑥𝑥 = 0  (2.1.1) 

 𝑢𝑡 = 𝑘(𝑢𝑥𝑥 + 𝑢𝑦𝑦)  (2.1.2) 

 𝑢𝑡 = 𝑘(𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧)  (2.1.3) 

They describe the heat flow in one-dimensional (1D) space, two-dimensional (2D) 

space and three-dimensional (3D) space respectively. In Eq. (2.1.1), the dependent 

variable 𝑢 = 𝑢(𝑥, 𝑡) depends on the position 𝑥 and on the time variable 𝑡. However, 

in Eq. (2.1.2), 𝑢 = 𝑢(𝑥, 𝑦, 𝑡) depends on three independent variables: the space 

variables 𝑥, 𝑦 and the time variable 𝑡. In Eq. (2.1.3), the dependent variable 𝑢 =



13 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) depends on four independent variables: the space variables 𝑥, 𝑦 and 𝑧, 

and the time variable 𝑡 [2]. 

2.1.2 Order of Partial Differential Equations 

The order of a PDE is the order of the highest partial derivative that appears in the 

equation. For example, the following equations are PDEs of first, second, and third 

order respectively [3]: 

𝑢𝑥 − 𝑢𝑦 = 0 

 𝑢𝑥𝑥 − 𝑢𝑡 = 0  (2.1.4) 

𝑢𝑦 − 𝑢𝑢𝑥𝑥𝑥 = 0. 

2.1.3 Linear and Nonlinear Partial Differential Equations 

PDEs are classified as linear or nonlinear. A PDE is called linear if: 

1. the power of the dependent variable and each partial derivative contained in 

the equation is one 

2. the coefficients of the dependent variable and the coefficients of each 

partial derivative are constants or independent variables.  

If any of these conditions is not satisfied, the equation is called nonlinear [3]. 

2.1.4 Homogeneous and Inhomogeneous Partial Differential Equations 

PDEs are also classified as homogeneous or non-homogeneous. A PDE of any order 

is called homogeneous if every term in the PDE contains the dependent variable u or 

one of its derivatives; otherwise, it is called an inhomogeneous PDE. This is 

illustrated by the following examples: 

(𝑎) 𝑢𝑡 = 4𝑢𝑥𝑥 

(𝑏) 𝑢𝑡 = 𝑢𝑥𝑥 + 𝑥 

 (𝑐) 𝑢𝑥𝑥 − 𝑢𝑦𝑦 = 0  (2.1.5) 

(𝑑) 𝑢𝑥 + 𝑢𝑦 = 𝑢 + 4 
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(a) The terms of the equation contain partial derivatives of 𝑢 only; therefore it is a 

homogeneous PDE. 

(b) The equation is an inhomogeneous PDE because one term contains the 

independent variable 𝑥. 

(c) The equation is a homogeneous PDE. 

(d) The equation is an inhomogeneous PDE [4]. 

2.1.5 Initial Conditions 

It was indicated that PDEs mostly govern physical phenomena such as heat 

distribution, wave propagation and quantum mechanics. Most PDEs, such as the 

diffusion equation and the wave equation, depend on the time 𝑡. Accordingly, the 

initial values of the dependent variable 𝑢 at starting time 𝑡 = 0 should be prescribed. 

As discussed later in more detail for the heat case, the initial value 𝑢(𝑡 = 0), which 

defines the temperature at the starting time, should be prescribed. For the wave 

equation, the initial conditions 𝑢(𝑡 = 0) and 𝑢𝑡(𝑡 = 0) should also be prescribed [5]. 

2.1.6 Boundary Conditions 

The exact solution of a PDE is of little use. A particular solution is frequently required 

that will satisfy prescribed conditions. Given a PDE that controls the mathematical 

behaviour of a physical phenomenon in a bounded domain 𝐷, the dependent variable 

u is usually prescribed at the boundary of the domain 𝐷 [5]. 

2.1.7 Classification of Second-order Partial Differential Equations 

A second-order linear PDE with two independent variables 𝑥 and 𝑦 in its general 

form is given by 

 𝐴𝑢𝑥𝑥 + 𝐵𝑢𝑥𝑦 + 𝐶𝑢𝑦𝑦 + 𝐷𝑢𝑥 + 𝐸𝑢𝑦 + 𝐹𝑢 = 𝐺, (2.1.6) 

where A, B, C, D, E, F and G are constants or functions of the variables 𝑥 and 𝑦. A 

second-order PDE such as Eq. (2.1.6) is usually classified into three basic classes of 

equations, namely [3]: 
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Parabolic: 

A parabolic equation is an equation that satisfies the property 

 𝐵2 − 4𝐴𝐶 = 0.  (2.1.7) 

Examples of parabolic equations are heat flow and diffusion processes equations. 

The heat transfer equation is 

 𝑢𝑡 = 𝑘𝑢𝑥𝑥.  (2.1.8) 

Hyperbolic: 

A hyperbolic equation is an equation that satisfies the property 

 𝐵2 − 4𝐴𝐶 > 0.  (2.1.9) 

Examples of hyperbolic equations are wave propagation equations. The wave 

equation is: 

 𝑢𝑡𝑡 = 𝑐
2𝑢𝑥𝑥.  (2.1.10) 

Elliptic: 

An elliptic equation is an equation that satisfies the property 

 𝐵2 − 4𝐴𝐶 < 0. (2.1.11) 

Examples of elliptic equations are Laplace’s and Schrödinger’s equations. 

The Laplace equation in a 2D space is 

 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0.  (2.1.12) 

2.1.8 Some Useful Definitions 

Definition: [6]  

The 𝑙2 and 𝑙∞ norms for the vector 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)
𝑡 ∈ 𝑅𝑛 are defined by 
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 ‖𝑥‖2 = {∑ 𝑥𝑖
2𝑛

𝑖=1 }
1 2⁄

and ‖𝑥‖∞ = 𝑚𝑎𝑥
1≤𝑖≤𝑛

|𝑥𝑖|.  (2.1.13) 

Definition: [6] 

If 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)
𝑡 and 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛)

𝑡 are vectors in Rn, the 𝑙2 and 𝑙∞ 

distances between x and y are defined respectively by 

 ‖𝑥 − 𝑦‖2 = {∑ (𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1 }1 2⁄  and ‖𝑥 − 𝑦‖∞ = 𝑚𝑎𝑥
1≤𝑖≤𝑛

|𝑥𝑖 − 𝑦𝑖|.  (2.1.14) 

Definition: [7] 

The set 𝜑 = {𝜑1, 𝜑2, 𝜑3, . . . , 𝜑𝑘} is said to be the basis of the set 𝑢 =

{𝑢1, 𝑢2, 𝑢3, . . . , 𝑢𝑘} if and only if the set 𝑢 = 𝑠𝑝𝑎𝑛(𝜑) and the set 𝜑 is linearly 

independent. 

Definition: [8] 

The finite difference method involves transforming the partial derivatives into 

difference equations over a small interval. Assume that u is function of independent 

variables x and y and we can divide the x-y plane into equal mesh points using step 

sizes 𝛿𝑥 = ℎ and 𝛿𝑦 = 𝑘 as shown below: 

  

We can evaluate u at point P by 

𝑢𝑝 = 𝑢(𝑖ℎ, 𝑗𝑘) = 𝑢𝑖
𝑗

 

The value of the first derivative at P can be evaluated using three approximations: 
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Central difference: 

(𝑢𝑥)𝑝 = (𝑢𝑥)𝑖,𝑗 ≅
𝑢𝑖+1
𝑗

−𝑢𝑖−1
𝑗

2ℎ
, (𝑢𝑦)𝑝 = (𝑢𝑦)𝑖,𝑗 ≅

𝑢𝑖
𝑗+1

−𝑢𝑖
𝑗−1

2𝑘
, 

Forward difference: 

(𝑢𝑥)𝑝 = (𝑢𝑥)𝑖,𝑗 ≅
𝑢𝑖+1
𝑗

−𝑢𝑖
𝑗

ℎ
, (𝑢𝑦)𝑝 = (𝑢𝑦)𝑖,𝑗 ≅

𝑢𝑖
𝑗+1

−𝑢𝑖
𝑗

𝑘
, 

Backward difference: 

(𝑢𝑥)𝑝 = (𝑢𝑥)𝑖,𝑗 ≅
𝑢𝑖
𝑗
−𝑢𝑖−1

𝑗

ℎ
, (𝑢𝑦)𝑝 = (𝑢𝑦)𝑖,𝑗 ≅

𝑢𝑖
𝑗
−𝑢𝑖

𝑗−1

𝑘
, 

The value of the second derivative at P could also be evaluated by 

(𝑢𝑥𝑥)𝑝 = (𝑢𝑥𝑥)𝑖,𝑗 =
𝑢𝑖+1
𝑗

−2𝑢𝑖
𝑗
+𝑢𝑖−1

𝑗

ℎ2
, (𝑢𝑦𝑦)𝑝 = (𝑢𝑦𝑦)𝑖,𝑗 =

𝑢𝑖
𝑗+1

−2𝑢𝑖
𝑗
+𝑢𝑖

𝑗−1

𝑘2
 

Definition: [8] 

We say that the finite difference scheme is consistent with a PDE if the truncation 

error tends to zero for a fixed point (𝑥, 𝑡)in the domain as 𝛥𝑥 and 𝛥𝑡 → 0 

independently and (
𝛥𝑥

𝛥𝑡
) is bounded.  

Definition: [8] 

Let u be the exact solution of the partial differential for the independent variables x 

and t and let 𝑈 be a numerical solution for the PDE at mesh point 𝑈(𝑥𝑖, 𝑡𝑖); then the 

numerical method is said to be convergent when 𝑈 tends to u at a fixed point or along 

a fixed t-level as 𝛥𝑥 and 𝛥𝑡 both approach zero. 

2.2 B-splines 

Over the last three decades or thereabouts, the wide-reaching discipline of geometric 

modelling has seen a surge in usage and recognition of B-splines in surface and curve 

form. The computationally efficacious algorithms designed for altering B-splines 

alongside their expedient notation and desirable mathematical features are prime 
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determinants of their popularity. In cases where the modelling of physical properties 

and complex data are required to portray a shape, the B-spline form is an effective 

standard in both contemporary development of dynamic models for physics-based 

manipulation of solids and surfaces and free-form deformation; and in B’ezeir 

surfaces and curves as found in the automobile industry through the initial work of 

B’ezier and de Casteljau [9]. 

2.2.1 Literature Review 

In the 1970s, an upgrade to B’ezier curves was produced in the form of B-spline 

curves. Riesenfeld pioneered work generating splines containing local support [10]. 

The overall curve is not affected by modifying the shape of a specific segment of the 

curve because B-splines possess local support. As a result, shapes generated by B-

spline curves can be controlled to a greater degree [11]. The definition of B-spline 

basis functions of any order was linked to a novel recursive formula in one study [12]. 

In the 1980s, non-uniform rational B-splines (NURBS) represented an extension of 

B-splines as per Versprille, Piegel and Tiller [13–15]. Every basis function or control 

point that enhances shape control is linked to a weight by NURBS. In computer-

supported design and graphics, the current standard is the NURBS surface or curve 

representation. 

Finite elements and other such numerical techniques have implemented B-splines 

because of their benefits, despite them being originally designed for surface and curve 

representation. B-splines were used in one study to enable the interfacing of finite 

elements with computer-aided design (CAD) systems [16]. The geometry 

representation in CAD utilises the same functions as those in finite element analysis 

using a B-spline. Convergence data for multiple degrees of B-spline functions were 

presented in a study centred on extending geometric design into mechanical analysis.  

In another paper, the finite element approach was improved upon via the use of 

NURBS [17]. In a finite element analysis, a CAD description of the boundary of a 

model was utilised. At the NURBS boundary, special piecewise polynomial functions 

were applied; conventional interpolation functions were implemented in the interior. 

Through the use of high-order interpolation and a coarser mesh, the capability of 



19 

NURBS used in the finite element method (FEM) to attain a precise solution as well 

as its computational efficacy was noted. 

Product shape design was facilitated by the application of NURBS via the finite 

element approach in the work of Inoue et al. [18]. The incorporation of computer-

supported design software and finite element analysis formed part of the research 

objective of their work. They showed that the geometry of the NURBS surface for 

the manufactured product was reflected precisely by the shell finite element, and 

implemented the NURBS finite element approach in bending analyses of shells and 

plates. In a buckling analysis, fewer errors were observed when using NURBS FEM-

approximated solutions than in the standard FEM results. The exact geometry 

modelled within NURBS FEM may have been responsible for this phenomenon. The 

application of NURBS within finite elements has been explored in several studies 

focused on continuity and refinement of the approach [19]. In finite element analyses, 

the NURBS parameters from CAD are utilised; the exact geometry generated via 

CAD is sustained while an enhanced finite element solution is found by using degree 

elevation and/or knot insertion to enable refinement. The accuracy of the solution is 

seemingly augmented in the majority of scenarios where the smoothness provisioned 

by NURBS is also augmented. 

Additional improvements in the B-spline finite element technique are presented in 

other studies. A technique for the adaptive refinement of B-spline finite elements was 

formulated in one of these [20]. That study described the continuity of solution 

approximation and presentation of multiple refinement techniques. On a similar note, 

another study described a novel 8-node quadrilateral spline finite element as well as 

simplifications to products, integrals and derivatives of shape functions [21]. A 

typical 8-node isoparametric element was found to perform less effectively than the 

novel form. 

Finite elements are not the only source of spline implementation, as demonstrated by 

their implementation in numerical analyses. A finite difference boundary value 

problem employed splines in a study by Kumar [22]. The efficacy of splines for 

solving the boundary value problem as well as the second-order convergence of the 

spline finite difference technique was noted. Kumar also implemented a finite 



20 

difference boundary value problem of fourth-order splines and reported fourth-order 

convergence [23]. A system of boundary value problems was resolved via the use of 

cubic splines in another paper [24]. Convergence behaviour was assessed and the 

technique implemented for several problems. Various techniques utilised to solve the 

system of boundary value problems were found to be inferior as they were more prone 

to errors than was the cubic-spline technique used to analyse solutions to multiple 

fourth-order boundary value problems. Singularly perturbed boundary value 

problems were solved utilising a fitted mesh B-spline technique in another study [25], 

where a tridiagonal linear system was developed via the mentioned B-spline 

technique that also generated a uniform mesh. Existing techniques were found to be 

inferior to the findings produced by the proposed approach.  

The B-spline finite element approximation to PDE surface accuracy was the focus of 

another study that also discussed data transfer between CAD systems [26]. Enhanced 

approximation was achieved by examining degree elevation and refinement. No 

substantial differences were found between non-periodic and periodic B-spline 

functions in terms of the implementation of surface approximation. 

To address a two-point boundary value problem, the finite volume, difference and 

element techniques were compared with B-spline approximation in one study [27]. 

Existing techniques were found to be inferior to the B-spline approximation technique 

in terms of maximum error norms. Thus, those techniques were concluded to be 

outstripped by B-spline functions with regard to their compatibility for approximating 

a smooth solution. 

Splines have been utilised in multiple implementations of numerical techniques. For 

example, in one study a 3D spline variational technique was utilised for analysis of a 

cross-ply laminate with a circular hole [28]. The standard finite element technique 

and the spline variational technique demonstrated good agreement. Relative to 

standard finite elements, equivalent interlaminar stress distributions were sustained 

whereas the number of degrees of freedom was reduced by a factor of 3–5 with the 

spline variational technique. 
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The bending of skew plates was examined in one study by implementing a spline 

element technique [29]. Various numerical techniques were compared in terms of 

their convergence and accuracy and displayed good agreement with the spline 

element technique. Additionally, accuracy was enhanced through the use of a mesh 

grading method and high-ordered splines. 

One study implemented finite elements to analyse plates and beams. The authors 

discussed the variation diminishing property, versatility for modelling distinct 

boundary conditions, and computational efficacy among the benefits of splines [30]. 

Finite strip solutions were among the reference techniques demonstrating good 

agreement. The efficacy of splines was highlighted by the smaller number of degrees 

of freedom. 

Another study implemented finite strip analysis of shear-deformable plates [31]. The 

research objected was to examine thick, laminated composite plates. The multiple 

continuity requirements for classical plate analysis were met via the versatility 

provided by the use of CBS. Existing and analytical numerical solutions showed very 

good agreement. 

Vibration analysis of plates was carried out via the use of a multivariable spline 

element technique in the work of Peng Cheng et al. [32]. They obtained a solution 

with high levels of accuracy and emphasised the presence of good convergence 

features. 

Shell analysis was performed via the use of CBS finite elements in one study [33]. In 

a case where cubic Hermite functions were insufficient, shell analysis was 

complemented well by the second-derivative continuity of B-splines. In the findings, 

stress discontinuities were removed by utilising CBSs. The manner in which B-spline 

usage reduced the number of degrees of freedom was also highlighted. 

In one study, the shaping and examination of a torque converter clutch disk were 

enabled by using a B-spline finite element technique [34]. Master nodes were 

relocated to drop directly onto the surface of the model via an algorithm that defined 

the B-spline curve accordingly. An enhanced finite element solution was obtained 
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through implementation of a mesh smoothing method. A substantial weight decrease 

was achieved through design of an optimum shape for the disc via the mentioned 

technique. Tall buildings were examined using spline elements in another study [35]. 

This approach facilitated the investigation of structures with boundaries and uneven 

openings, as well as tall buildings of haphazard shape. Computational efficacy was 

enhanced via the conscientious selection of the order of B-spline functions in distinct 

dimensions. A handful of elements for static and dynamic analysis providing good 

approximations were revealed.  

A thermistor problem regarding electrical conductivity was investigated in another 

paper utilising a B-spline finite element technique [36]. A Galerkin technique was 

utilised in tandem with the CBS. A diverse range of mesh refinements was used to 

present the data and findings. The known exact solution was converged upon by the 

approximated solution from the analysis. 

The solution to a 1D nonlinear Burgers’ equation was approximated by utilising 

quadratic B-splines in one paper [37]. A set of nonlinear standard differential 

equations resulted from conversion of the Burgers’ equation. A quadratic B-spline 

finite element technique then served to solve each equation. The B-spline FEM 

solution also demonstrated high accuracy. Similarly, a CBS finite element technique 

was used to approximate the solution to Burgers’ equation in the work by Gardner et 

al. [38]. Their findings revealed that other techniques displayed inferior accuracy in 

comparison with the CBS FEM method. 

Panels under mechanical and thermal loading were examined in one study via 

implementation of CBS collocation techniques [39]. 1D and 2D problems were the 

focus of the work. The nonlinear induced reaction of the panels was also investigated 

during the analytical process. The potential acceleration and efficacy of convergence 

in using B-splines were again highlighted. 

2.2.2 B-spline Method 

In the mathematical subfield of numerical analysis, the B-spline is a spline function 

that has minimal support with respect to a given degree, smoothness and domain 
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partition. Any spline function of given degree can be expressed as a linear 

combination of B-splines of that degree. Cardinal B-splines have knots that are 

equidistant from each other. B-splines can be used for curve fitting and numerical 

differentiation of experimental data. The many types of B-spline include quadratic, 

cubic, quintic and septic splines, each of which can be applied to obtain an 

approximate solution for a NPDE. In this study I apply cubic, quintic and septic 

splines. 

2.2.3 Spline Functions 

When approximating functions for interpolation or for fitting measured data, it is 

necessary to have classes of functions that have sufficient flexibility to adapt to a 

given dataset, and that, at the same time, can be easily evaluated on a computer. 

Traditionally, polynomials have been used for this purpose. These polynomials have 

some flexibility and can be computed easily. However, for rapidly changing values 

of the function to be approximated, the degree of the polynomial must increase, and 

the result is often a function exhibiting wild oscillations. The situation changes 

dramatically when the basic interval is divided into subintervals, and the 

approximating or fitting function is taken to be a piecewise polynomial; that is, the 

function is represented by a different polynomial over each subinterval. The 

polynomials are joined together at the interval endpoints (knots) in such a way that a 

certain degree of smoothness (differentiability) of the resulting function is 

guaranteed. If the degree of the polynomial is k and the number of subintervals is n+1 

the resulting function is called a (polynomial) spline function of degree k with n knots. 

Spline functions are used in many applications including interpolation, data fitting 

and numerical solutions for ordinary and partial differential equations (FEM). 

In regard to practical problems, spline functions have the following useful properties: 

• smooth and flexible 

• easy to store and manipulate on a computer 

• easy to evaluate, along with their derivatives and integrals 

• easy to generalise to higher dimensions. 
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2.2.4 Some Useful Definitions 

Definition: (Spline Function of Degree M) 

Let 𝑎 = 𝑥0 < 𝑥1 <. . . < 𝑥𝑛 = 𝑏 be a subdivision of the interval [𝑎, 𝑏] and 𝑚 ∈ 𝑁. A 

function 𝑆: [𝑎, 𝑏] → 𝑅 is called a spline of degree m with respect to this subdivision 

if S is (m – 1)-times continuously differentiable on [𝑎, 𝑏] and if the restriction of S to 

each subinterval [𝑥𝑗−1, 𝑥𝑗] for 𝑗 = 1,2, . . . , 𝑛 reduces to a polynomial of degree at 

most values of m[40]. 

Definition: (The Cubic B-spline Function) 

CBS functions {𝜑𝑖(𝑥)} are defined by 

𝜑𝑖(𝑥) =
1

ℎ3

{
 
 

 
 

(𝑥 − 𝑥𝑖−2)
3 𝑥 ∈ [𝑥𝑖−2, 𝑥𝑖−1]

ℎ3 + 3ℎ2(𝑥 − 𝑥𝑖−1) + 3ℎ(𝑥 − 𝑥𝑖−1)
2 − 3(𝑥 − 𝑥𝑖−1)

3 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖]

ℎ3 + 3ℎ2(𝑥𝑖+1 − 𝑥) + 3ℎ(𝑥𝑖+1 − 𝑥)
2 − 3(𝑥𝑖+1 − 𝑥)

3 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1]

(𝑥𝑖+2 − 𝑥)
3 𝑥 ∈ [𝑥𝑖+1, 𝑥𝑖+2]

0 otherwise,

 

where ℎ = 𝑥𝑖+1 − 𝑥𝑖 , 𝑖 = 0,1. . . . . . . . , 𝑁 − 1. The values of the CBS 𝜑𝑖(𝑥) and its 

first and second derivatives vanish outside the interval (𝑥𝑖−2, 𝑥𝑖+2). The values of 

𝜑𝑖(𝑥) and its derivatives at the knots are established in Table 2.2.4.1. This type of 

spline is used to obtain approximate solutions to PDEs (see [40]). 

 

Table 2.2.4.1 The values of 𝝋𝒊(𝒙) and its derivatives with knots at the points 

shown. 

𝒙 𝒙𝒊−𝟐 𝒙𝒊−𝟏 𝒙𝒊 𝒙𝒊+𝟏 𝒙𝒊+𝟐 

∅𝒊(𝒙) 0 1 4 1 0 

∅𝒊
′(𝒙) 0 3

ℎ
 

0 −3

ℎ
 

0 

∅𝒊
′′(𝒙) 0 6

ℎ2
 

−12

ℎ2
 

6

ℎ2
 

0 

 

Definition: 
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Let 𝑈 represent the exact solution for a PDE with independent variables 𝑥 and 𝑡, and 

𝑢 represent the exact solution of the difference equations used to approximate the 

PDE. 

Definition: (Local Truncation Error) 

The truncation error is the difference between the differential equation and its 

approximating difference equation. Let 𝐹𝑗𝑛(𝑢) = 0 represent the difference equation 

at the (𝑗, 𝑛)𝑡ℎ mesh point. If 𝑢 is replaced by 𝑈 at the mesh points of the difference 

equation, then the value of 𝐹𝑗𝑛(𝑈) is called the local truncation error at the (𝑗, 𝑛)𝑡ℎ 

mesh point: ‘We denote it by 𝑇𝑗
𝑛’ [41]. 

Definition: (Consistency) 

We say that the finite difference scheme is consistent with the PDE if the truncation 

error tends to zero for a fixed point (𝑥, 𝑡) in the domain as 𝛥𝑥, 𝛥𝑡 → 0 independently 

and (𝛥𝑡/𝛥𝑥) is bounded [41]. 

Definition: (Total Error) 

Let N be the numerical solution for the difference equation. Then the total error at 

thnj ),( is 

 ),()( n
j

n
j

n
j

n
j

n
j

n
j NuuUNU −+−=−   (2.2.1) 

where )( n
j

n
j uU − is the discretisation error jne  and )( n

j
n
j Nu − is the round-off error

ijR [41]. 

Definition: (Convergence) 

The finite difference equation is said to be convergent when u tends to U at a fixed 

point or along fixed t -level as hx = and kt = both tend to zero. (i.e. the 

discretisation error 0)( →−= n
j

n
jjn uUe as 0→h  [41]. 0→k .) 

Definition: (Stability) 
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Suppose that in a computation involving a difference scheme, an error 
0 is 

introduced at time level 
0t , and suppose that no further errors occur. Let 

n denote 

the error resulting from this error at time 
nt ; then the scheme is stable if 

n remains 

bounded as →n . (i.e. the error must no grow without limit) [41]. 

2.2.5 Stability by the Fourier Series Method: (Von Neumann’s Method) 

This method, developed by Von Neumann during World War II, was first discussed 

in detail by O’Brien, Hyman and Kaplan in a paper published in 1951. It expresses 

an initial line of errors in terms of a finite Fourier series and considers the growth of 

a function that reduces to this series for 0=t by the ‘variables separable’ method 

identical to that commonly used for deriving analytical solutions for PDEs. If we 

write 𝑁𝑗
𝑛 = 𝑢𝑗

𝑛 + 𝜉𝑗
𝑛in the difference scheme, and if it is linear, then n will satisfy 

the same equation as 𝑢𝑗
𝑛e, which expresses the error as a finite Fourier series of the 

form ∑𝜉𝑛 (𝑡)𝑒𝑖𝑘𝑥𝑗, and again if the equation is linear in which case we need consider 

only the growth of a single form: 

 𝜉𝑗
𝑛 = 𝜉𝑛𝑒𝑖𝑘𝑥𝑗 ,  (2.2.2) 

 where 1−=i , and let 

 𝜉𝑛+1 = 𝑔𝜉𝑛,  (2.2.3) 

where g is called the growth of an amplification factor. For stability, the Von 

Neumann condition requires 

).(1 tg +
  

That is, the error does not increase as t increases. 

It should be noted that this method applies only to linear difference equations with 

periodic initial data. The criterion |𝑔| ≤ 1 is both necessary and sufficient for three 

or more level equations although it is always necessary. In practice the method often 

gives useful results even when its application is not fully justified [41]. 
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Definition: (Non-polynomial Spline Functions) 

Let 𝑎 = 𝑥0 < 𝑥1 <. . . < 𝑥𝑁 = 𝑏 be a subdivision of the interval [𝑎, 𝑏]. The non-

polynomial spline function is defined by 

𝑝(𝑥, 𝑡𝑛) = {

𝑝0(𝑥, 𝑡𝑛), 𝑥 ∈ [𝑥0, 𝑥1]

𝑝1(𝑥, 𝑡𝑛), 𝑥 ∈ [𝑥1, 𝑥2]
⋮ ⋮
𝑝𝑁−1(𝑥, 𝑡𝑛), 𝑥 ∈ [𝑥𝑁−1, 𝑥𝑁]

, 

where 𝑝𝑗(𝑥, 𝑡𝑛) is a mixed spline function of the form 

𝑝𝑗(𝑥, 𝑡𝑛) = 𝑏1𝑗(𝑡𝑛) 𝑐𝑜𝑠 𝜔 (𝑥 − 𝑥𝑗) + 𝑏2𝑗(𝑡𝑛) 𝑠𝑖𝑛𝜔 (𝑥 − 𝑥𝑗) + 𝑎1𝑗(𝑡𝑛)(𝑥 − 𝑥𝑗)
𝑟 

+ 𝑎2𝑗(𝑡𝑛)(𝑥 − 𝑥𝑗)
𝑟−1+. . . +𝑎𝑟𝑗(𝑥 − 𝑥𝑗) + 𝑎(𝑟+1)𝑗, 𝑗 = 0,1, . . . , 𝑁 − 1 

and r  represents the degree of the polynomial part. 

Remark: 

We can use other functions such as ),sec,(tanh),sinh,(cosh xhxxx   

)sec,(cos xhxch   and (𝑒𝜔𝑥, 𝑒−𝜔𝑥) instead of (𝑐𝑜𝑠 𝜔 𝑥, 𝑠𝑖𝑛𝜔 𝑥) in𝑝𝑗(𝑥, 𝑡𝑛) [42]. 

2.3 Fractional Calculus 

2.3.1 Fractional Calculus History 

One definition of fractional calculus is that it is a generalisation of standard 

integration and differentiation to arbitrary non-integer order. The history of this area 

dates back to the invention of differential calculus by Newton and Leibniz [43]. 

Leibniz questioned whether the significance of derivatives with integer order could 

be generalised to derivatives with non-integer orders, in a letter written in 1695 to 

L’Hospital. The recipient of the letter responded, questioning what would occur if the 

order ended up as half. On the birthday of fractional calculus—30 September of the 

year in which the first letter was written—Leibniz proposed, in response to 

L’Hospital, that useful consequences could be produced as a result of the paradox 

when the order equals half [44]. For over 300 years, this interrogation regarding a 

fractional derivative has remained relevant. 
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Given that integrals and fractional derivatives are not point or local quantity or 

property, this subject matter remains enticing. Hence, nonlocal distributed effects and 

history are taken into account. This could be perceived to signify that the reality of 

nature is better captured by this subject matter. The description and comprehension 

of nature are enhanced via the additional dimension provided by fractional calculus, 

which, in turn, highlights the benefits of making the method widely accessible to the 

engineering and science community. Interacting with nature in the language of 

fractional calculus may lead to discovery of greater harmony and thus, efficacy and 

comprehension. In recent years, multiple disciplines within economics, science and 

engineering have integrated learning and the application of the mentioned subject 

matter, which was previously solely the focus of mathematicians [45, 46, 47]. 

Letnikov, Leibniz, Abel, Weyl, Riemann, Grunwald, Lacroix, Fourier, Caputo and 

Liouville were among the recognised mathematicians to develop fractal science 

theory. However, consideration of the fractional derivative as a local operator 

particular to this theory is a distinct contemporary aspect. The conventional integer 

order calculus forms part of the superset of fractional differential integral calculus, 

according to this novel definition, which will lead to multiple new implementations 

over the next decade or so [48]. Probability, electrical networks, signal processing, 

coloured noise, electrochemical processes, fluid flow, electromagnetic theory, 

biology, anomalous diffusion, dielectric polarisation and viscoelasticity materials are 

among the many fields of engineering and science that have focused on fractional 

calculus. 

The quadrature developed by Chern and Deithelm served as the basis for the 

fractional backward differences that exemplify one of several numerical solutions to 

fractional standard differential equations formulated by various academics [49, 50]. 

A collection of papers by one author served to pioneer the concept of fractional linear 

multistep techniques [51, 52]. A particular type of Volterra integral equations was 

numerically adopted by other authors [53]. A novel numerical solution to initial value 

problems with regard to general linear multi-term differential equations of fractional 

order possessing fractional derivatives and constant coefficients in the Caputo sense 

was provided in work utilising a novel algorithm [54]. With respect to the Mittag–



29 

Leffler-type function, the analytical solution to the problem implements the 

discretised operational calculus and convolution quadrature [55]. Reducing the 

problem to a system of fractional differential and standard equations each of order at 

greatest unity enables computation of a numerical approximation for the solution of 

a linear multi-term fractional differential equation, as demonstrated in one study [56]. 

In relation to numerical solutions for arbitrary differential equations of fractional 

order, an algorithm has been proposed [57]. Other works (see [58, 59]) demonstrate 

the development of a system of differential equations of integer order linked to 

inverse forms of Abel integral equations via the decomposition of the differential 

equations. The solutions to nonlinear and linear equations are provided by the 

algorithm. 

A reformulation of the Bagley–Torvik equation system consisted of fractional 

differential equations of order 0.5 in the work of Diethelm and Ford [60]. Nonlinear 

multi-term fractional arbitrary order differential equations were solved in another 

work via the numerical techniques provided [47]. 

2.3.2 Definitions and Notations 

This section presents some basic definitions and properties of fractional calculus 

theory [61–64]. 

Definition: 

A real function 𝑓(𝑥),x > 0, is said to be in the space 𝐶𝜇, 𝜇 ∈ ℜ, if there exists a real 

number 𝑝(> 𝜇), such that 𝑓(𝑥) = 𝑥𝑝𝑓1(𝑥) where𝑓1(𝑥) ∈ 𝐶(0,∞), and it is said to 

be in the space𝐶𝜇
𝑚 if 𝑓𝑚 ∈ 𝐶𝜇, 𝑚 ∈ 𝑁 [61]. 

Definition: 

The Mittag–Leffler function [62] is a generalisation of the exponential function, first 

introduced as a one-parameter by the series, and we add to it: 

𝑀𝛼(𝑧) = ∑
𝑧𝑘

𝛤(𝛼𝑘+1)
∞
𝑘=0 , 𝛼 > 0, 𝛼 ∈ ℜ, 𝑧 ∈ 𝐶. 
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This leads to the following generalisation: 

𝑀𝛼,𝛽(𝑧) = ∑
𝑧𝑘

𝛤(𝛼𝑘+𝛽)
∞
𝑘=0 , 𝛼, 𝛽 > 0, 𝛼, 𝛽 ∈ ℜ, 𝑧 ∈ 𝐶. 

Definition: 

An incomplete gamma function [63] 𝛾∗(𝛼, 𝑧) may be defined by 

𝛾∗(𝛼, 𝑧) = 𝑒−𝑧∑
𝑧𝑘

𝛤(𝑘+1+𝛼)
∞
𝑘=0 . 

If 𝑅𝑒 𝑧 > 0, then 𝛾∗(𝛼, 𝑧) has the integral representation 

𝛾∗(𝛼, 𝑧) =
1

𝛤(𝛼)𝑧𝛼
∫ 𝑡𝛼−1𝑒−𝑡
𝑧

0
𝑑𝑡. 

Functions related to incomplete gamma functions are called related functions [63]. 

Definition: (Related Functions) [63] 

𝐸𝑧(𝛼, 𝑎) = 𝑧
𝛼𝑒𝑎𝑧𝛾∗(𝛼, 𝑎𝑧) = 𝑧𝛼 ∑

(𝑎𝑧)𝑘

𝛤(𝑘+1+𝛼)
∞
𝑘=0 , 

𝐶𝑧(𝛼, 𝑎) = 𝑧
𝛼 ∑

(−1)
𝑘
2⁄ (𝑎𝑧)𝑘

𝛤(𝑘+1+𝛼)
∞
𝑘𝑒𝑣𝑒𝑛 . 

If we put 𝑘 = 2𝑗, then 

𝐶𝑧(𝛼, 𝑎) = 𝑧
𝛼∑

(−1)𝑗(𝑎𝑥)2𝑗

𝛤(1 + 𝛼 + 2𝑗)

∞

𝑗=0

 

𝑆𝑧(𝛼, 𝑎) = 𝑧
𝛼 ∑

(−1)
(𝑘−1)

2⁄ (𝑎𝑧)𝑘

𝛤(𝑘+1+𝛼)
∞
𝑘𝑜𝑑𝑑 . 

If we put 𝑘 = 2𝑗 + 1, then 

𝑆𝑧(𝛼, 𝑎) = 𝑧
𝛼∑

(−1)𝑗(𝑎𝑥)2𝑗+1

𝛤(2 + 𝛼 + 2𝑗)

∞

𝑗=0

 

𝐸𝑧(𝛼, 𝑎) = 𝐶𝑧(𝛼, 𝑎) + 𝑖𝑆𝑧(𝛼, 𝑎). 
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The Riemann–Liouville integral, the Riemann–Liouville derivative and the Caputo 

derivatives are defined as follows. 

Definition: 

The Riemann–Liouville fraction integral operator [61–63, 65] of order 𝛼 > 0 of 

function 𝑓 ∈ 𝐶𝜇, 𝜇 ≥ −1is defined as 

 𝐷0
𝛼

𝑥
−𝛼𝑓(𝑥) = 𝐽𝛼𝑓(𝑥) =

1

𝛤(𝛼)
∫ (𝑥 − 𝑡)𝛼−1𝑓(𝑡)𝑑𝑡, 𝛼 > 0, 𝑥 > 0
𝑥

0
. (2.3.1) 

Definition: 

The Riemann–Liouville fraction derivative operator [62-63, 65] of order 𝛼 > 0,of 

function 𝑓 ∈ 𝐶𝜇, 𝜇 ≥ −1is defined as 

 𝐷0
𝛼

𝑥
𝛼𝑓(𝑥) = 𝐷𝑅𝐿

𝛼 𝑓(𝑥) =
1

𝛤(𝛼)

𝑑𝑚

𝑑𝑥𝑚
∫ (𝑥 − 𝑡)𝑚−𝛼−1𝑓(𝑡)𝑑𝑡, 𝑥 > 0, 𝛼 ∈ (𝑚 − 1,𝑚),𝑚 ∈ 𝑁
𝑥

0
. 

  (2.3.2) 

Representation: 

𝐷𝑅𝐿
𝛼 𝑓(𝑥) = 𝐷𝑚[𝐽𝑚−𝛼(𝑓(𝑥))],𝑚 − 1 < 𝛼 < 𝑚,𝑚 ∈ 𝑁, 𝑥 > 0, 𝑓 ∈ 𝐶−1

𝑚  

The Riemann–Liouville derivative has certain disadvantages when trying to model 

real-world phenomena with fractional equations. Therefore, I introduce the modified 

fractional differential operator 

*D  proposed by Caputo in his work on the theory of 

viscoelasticity. 

Definition: 

The fractional derivative of 𝑓(𝑥) in the Caputo sense [61–62, 64–65] is defined as 

𝐷𝐶
𝛼𝑓(𝑥) =

1

𝛤(𝑚−𝛼)
∫ (𝑥 − 𝑡)𝑚−𝛼−1
𝑥

0
𝑓(𝑚)(𝑥)𝑑𝑡, 𝑚 − 1 < 𝛼 < 𝑚,𝑚 ∈ 𝑁, 𝑥 > 0, 𝑓 ∈ 𝐶−1

𝑚    

  (2.3.3) 

Representation: 

𝐷𝐶
𝛼𝑓(𝑥) = 𝐽𝑚−𝛼[𝐷𝑚(𝑓(𝑥))] 
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Caputo’s definition is a modification of the Riemann–Liouville definition and has the 

advantage of dealing properly with initial value problems in which the initial 

conditions are given in terms of the field variables and their integer order, which is 

the case in most physical processes. 

Properties of Fractional Integral and Derivatives: 

I mention only the following properties [63, 66] for 𝑓, 𝑔 ∈ 𝐶𝜇, 𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0. 

Differintegration Term by Term: 

The linearity of differintegral operators means that may be distributed through the 

terms of a finite sum, that is: 

𝑑𝛼

[𝑑(𝑥−𝑎)]𝛼
∑ 𝑓𝑗
𝑛
𝑗=0 (𝑥) = ∑

𝑑𝛼𝑓𝑗(𝑥)

[𝑑(𝑥−𝑎)]𝛼
𝑛
𝑗=0 . 

I establish a generalisation of the classical theorem on differintegration term by 

term. 

If the infinite series ∑ 𝑓𝑗
𝑛
𝑗=0 (𝑥) and ∑ 𝑑𝛼𝑓𝑗(𝑥) [𝑑(𝑥 − 𝑎)]

𝛼⁄𝑛
𝑗=0 , the series converge 

uniformly in 0 < |𝑥 − 𝑎| < 𝑋, then: 

𝑑𝛼

[𝑑(𝑥−𝑎)]𝛼
∑ 𝑓𝑗
𝑛
𝑗=0 (𝑥) = ∑

𝑑𝛼𝑓𝑗(𝑥)

[𝑑(𝑥−𝑎)]𝛼
𝑛
𝑗=0 , 𝛼 > 0. 

Leibniz Rule: 

For the Riemann–Liouville integral and derivative [63, 66] 

𝐷𝑥
±𝛼(𝑓(𝑥)𝑔(𝑥)) = ∑

𝛤(1+𝛽)

𝛤(1+𝑘)𝛤(1−𝑘+𝛽)
(𝐷𝛼−𝑘𝑓(𝑥))𝑔(𝑘)(𝑥)∞

𝑘=0 . 

However, for Caputo’s derivative [4] 

𝐷_ ∗ ^𝛼 (𝑓(𝑥)𝑔(𝑥)) = ∑
𝛤(1 + 𝛼)

𝛤(1 + 𝑘)𝛤(1 − 𝑘 + 𝛼)
(𝑓(𝑘)(𝑥))𝑔(𝛼−𝑘)(𝑥)

∞

𝑘=0

 

− ∑
𝑥𝑘−𝛼

𝛤(𝑘 + 1 − 𝛽)
((𝑓(𝑥)𝑔(𝑥)

𝑚−1

𝑘=0

)(𝑘)(0)). 
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Other Properties of the Operator J [61–62, 64–65] 

For𝑓, 𝑔 ∈ 𝐶𝜇, 𝜇 ≥ −1 and 𝛼, 𝛽 ≥ 0: 

1.  𝐽𝛼[𝑓(𝑥) + 𝑔(𝑥)] = 𝐽𝛼𝑓(𝑥) + 𝐽𝛼𝑔(𝑥), 

2. 2. 𝐽𝛼𝐽𝛽𝑓(𝑥) = 𝐽𝛼+𝛽𝑓(𝑥), 

3. 3. 𝐽𝛼𝐽𝛽𝑓(𝑥) = 𝐽𝛽𝐽𝛼𝑓(𝑥), 

Also, note the following basic properties [61–62]: 

Lemma 1: If 1,,0,,1 −− 
C
m

fxNmmm , then 

𝐷𝐶
𝛼𝐽𝛼𝑓(𝑥) = 𝑓(𝑥), 

and 

𝐽𝛼𝐷𝐶
𝛼𝑓(𝑥) = 𝑓(𝑥) − ∑

𝑥𝑘

𝑘!
𝑓(𝑘)(0+), 𝑥 > 0𝑚−1

𝑘=0 . 

Lemma 2: If 1,,0,,1 −− + 
C
m

fxmmm , then 

𝐷𝑅𝐿
𝛼 𝐽𝛼𝑓(𝑥) = 𝑓(𝑥), 

and 

𝐽𝛼𝐷𝑅𝐿
𝛼 𝑓(𝑥) = 𝑓(𝑥) − ∑

𝑥𝛼−𝑘

𝛤(𝛼−𝑘+1)
𝐷𝑅𝐿
𝛼 𝑓(𝑘)(0+), 𝑥 > 0𝑚

𝑘=0 . 

Theorem 1: If 1,,0,,1 −− + 
C
m

fxZmmm , then 

𝐷𝐶
𝛼𝑓(𝑥) = 𝐷𝑅𝐿

𝛼 𝑓(𝑥) − ∑ 𝑓(𝑘)(0+)
𝑥𝑘−𝛼

(𝑘−𝛼)!
, 𝑥 > 0𝑚−1

𝑘=0 . 
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2.4 The Adomian Method 

2.4.1 The Adomian Decomposition Method 

Solutions to nonlinear functional equations were provided by an effective method 

proposed by George Adomian, an American mathematician, in the 1980s. The ADM 

is the contemporary nomenclature for this method [67, 68, 69]. 

As described by Adomian (1988), Adomian and Rach (1991) and Adomian (1994), 

this method is based on decomposition of the nonlinear operator into a series in which 

the terms are obtained from a polynomial produced through expansion of Adomian 

polynomials—an analytic function—following the search for a solution representing 

a series [70]. Validating the convergence of the series of functions and computing the 

polynomials represents the challenging portion of this technique. Traditional methods 

are outstripped by the benefits of the ADM in a variety of ways [70, 71]. For example, 

solutions to nonlinear equations are obtained by averting perturbation. 

Discretisation of the solution is not necessary in the decomposition process of the 

ADM, and this is one of its principal benefits relative to classical techniques. Thus, 

no large systems of nonlinear or linear equations are produced, unlike with the use of 

traditional numerical techniques. Further, high accuracy levels regarding the 

numerical solution are achieved and significantly less computer memory and time are 

required to discover a solution given its immunity to computation round-off errors. 

Hence, an efficacious numerical solution is provided by the ADM in the form of a 

precise approximation of the solution in closed form. A rapidly convergent infinite 

series with every term calculated expediently is representative of the form this 

technique generates for its realistic solutions. 

With respect to types of integral and differential equations, such as inhomogeneous 

or homogeneous, nonlinear or linear equations possessing variable coefficients or 

constant coefficients, the obtention of numerical approximations in closed form is 

facilitated substantially by the effective ADM [72]. Partial differential, differential 

delay, differential, integral, integro-differential and algebraic equations are among 

the broad class of deterministic and stochastic problems within engineering and 
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science that are formal solutions provided via implementation of this technique. This 

is exemplified by the utilisation of this method to solve variational problems [73], 

provide approximate solutions for unusual differential equations [74] and discover a 

solution to nonlinear vibrations of multi-walled carbon nanotubes [75]. 

2.4.2 Analysis of the Adomian Decomposition Method 

The decomposition method requires that the nonlinear fractional differential 

equation be expressed in operator form: 

 𝐷∗𝑡
𝛼𝑢(𝑥, 𝑡) + 𝐿[𝑢(𝑥, 𝑡)] + 𝑁(𝑢(𝑥, 𝑡)) = 𝑔(𝑥, 𝑡), 𝑥 > 0,𝑚 − 1 ≤ 𝛼 ≤ 𝑚,𝑚 ∈ 𝑁  

  (2.4.1)  

where L  is a linear operator that might include other fractional derivatives of order 

less than  , ℵ is a nonlinear operator that also might include other fractional 

derivatives of order less than  , 𝐷∗𝑡
𝛼  is the Caputo fractional derivative (CFD) [62, 

64–63] of order  and g is the source function. 

Applying the operator 
J ,the inverse the operator 


tD * , to both sides of equation 

(1.2.1) yields 

 𝑢(𝑥, 𝑡) = ∑
𝜕𝑘𝑢

𝜕𝑘𝑡
𝑚−1
𝑘=0 (𝑥, 0+)

𝑡𝑘

𝑘!
+ 𝐽𝛼𝑔(𝑥, 𝑡) − 𝐽𝛼[𝐿[𝑢(𝑥, 𝑡)] + 𝑁(𝑢(𝑥, 𝑡))]. 

  (2.4.2) 

The ADM [61,67–77] suggests the solution ),( txu be decomposed into the infinite 

series of components: 

 𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡),
∞
𝑛=0    (2.4.3) 

and the nonlinear function in Eq. (2.4.2) be decomposed as follows: 

 𝑁(𝑢(𝑥, 𝑡)) = ∑ 𝐴𝑛
∞
𝑛=0 ,  (2.4.4) 

where nA  are the so-called Adomian polynomials [76]. 
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Substitution of the decomposition series Eqs. (2.4.3) and (2.4.4) into both sides of 

Eq. (2.4.2) gives: 

 ∑ 𝑢𝑛(𝑥, 𝑡)
∞
𝑛=0 = ∑

𝜕𝑘𝑢

𝜕𝑘𝑡
𝑚−1
𝑘=0 (𝑥, 0+)

𝑡𝑘

𝑘!
+ 𝐽𝛼𝑔(𝑥, 𝑡) − 𝐽𝛼[𝐿(∑ 𝑢𝑛(𝑥, 𝑡))

∞
𝑛=0 + ∑ 𝐴𝑛

∞
𝑛=0 ].  

  (2.4.5) 

From this equation, the iterates are determined in the following recursive way: 

𝑢0(𝑥, 𝑡) = ∑
𝜕𝑘𝑢

𝜕𝑘𝑡

𝑚−1

𝑘=0

(𝑥, 0+)
𝑡𝑘

𝑘!
+ 𝐽𝛼𝑔(𝑥, 𝑡), 

𝑢1(𝑥, 𝑡) = −𝐽
𝛼(𝐿𝑢0(𝑥, 𝑡) + 𝐴0), 

𝑢3(𝑥, 𝑡) = −𝐽
𝛼(𝐿𝑢2(𝑥, 𝑡) + 𝐴2), 

⋮ 

 𝑢𝑛+1(𝑥, 𝑡) = −𝐽
𝛼(𝐿𝑢𝑛(𝑥, 𝑡) + 𝐴𝑛).  (2.4.6) 

The Adomian polynomial can be calculated for all forms of nonlinearity according 

to specific algorithms constructed by Adomian [76]. 

The general form of formula for Adomian polynomials is 

 𝐴𝑛 =
1

𝑛!
[
𝑑𝑛

𝑑𝜆𝑛
[𝑁(∑ 𝜆𝑘𝑢𝑘)]]𝜆=0

∞
𝑘=0 .   (2.4.7) 

This formula is easy to compute using Mathematica software or by writing a 

computer code to obtain as many polynomials as needed for calculation of the 

numerical as well as explicit solutions. 

Finally, we approximate the solution ),( txu  via a truncated series: 

 𝐿𝑖𝑚𝑡
𝑁→∞

∑ 𝑢𝑛(𝑥, 𝑡)
𝑁−1
𝑛=0 = 𝑢(𝑥, 𝑡).  (2.4.8) 

However, in many cases the exact solution in a closed form may be obtained. 

Moreover, the decomposition series solutions generally converge very rapidly. 

Convergence of the decomposition series has been investigated [77]. 
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Chapter 3: Approximate Solution of the Dissipative Wave 

Equation via the Cubic B-Spline Method 

3.1 Introduction 

In the past few decades, PDEs have attracted considerable attention owing to their 

ability to model certain physical phenomena. The NPDE is relevant to a wide variety 

of physical phenomena in several topics in physics, such as water wave theory, fluid 

dynamics, plasma physics, solid mechanics and nonlinear optics. There are many 

methods for solving PDEs via numerical solutions. One of these is numerically 

solving a nonlinear dissipative wave equation using the ADM [78,79]. The CBS has 

been used by many researchers to solve NPDEs. The most well-known and well-

focused results are those of Daǧ et al. (2004), who presented a way to solve 

regularised long wave (RLW) equations. The numerical results obtained in that paper 

demonstrate that the method is capable of solving RLW equations accurately and 

reliably [80]. Daǧ et al. also published a description of a numerical solution for the 

1D Burgers equation in 2005.  

Comparison of the calculations with the analytic solution shows that a CBS 

collocation method is capable of accurately solving the Burgers equation. The 

proposed method is easy to implement and does not require any inner iteration or 

corrector to deal with the nonlinear term of the Burgers equation [81]. Khalifa et al. 

(2008) discussed a modified RLW equation. They applied a collocation method using 

CBSs to study the solitary waves of their equation, showing that the scheme is 

marginally stable. Moreover, although the wave does not change, the results showed 

that the interaction results in a tail of small amplitude in two, and clearly in three, 

soliton interactions and the conservation laws were reasonably satisfied. The 

appearance of such a tail can be beneficial for further studies [82]. In 2008, El-Danaf 

and E.I. Abdel Alaal constructed a non-polynomial spline-based method to obtain 

numerical solutions for a dissipative wave equation. The numerical results obtained 

showed that their proposed method retains good accuracy [83]. Later, Mittal and Jain 

(2012) argued that numerical methods should be proposed to approximate the 
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solution of the nonlinear parabolic PDE with Neumann’s boundary conditions. The 

numerical results produced by the present method are quite satisfactory and in good 

agreement with the exact solutions. The computed results justify the advantage of this 

method. The proposed method can be extended to solve multi-dimensional parabolic 

equations [84].  

In 2015, Zaki developed a numerical method based on quadratic non-polynomial 

spline functions, which has three coefficients in each sub interval for solving a 

dissipative wave equation. The results obtained by the proposed technique showed 

that the approach is easy to implement and computationally attractive. The proposed 

method was shown to be robust, efficient and easy to implement for linear and 

nonlinear problems arising in science and engineering [85]. A year later, El-Danaf et 

al. presented methods for solving generalised regularised long wave (GRLW) 

equations. The CBSs used to study the solitary waves of GRLW equations showed 

that the scheme is unconditionally stable. Also, the approximate numerical solutions 

obtained showed good accuracy compared with the exact solutions [86].  

Hepson and Daǧ, in their 2017 research, implemented a numerical technique to obtain 

approximate solutions to Fisher’s equation. The method is capable of producing fair 

solutions for Fisher’s equation and can be used as an alternative to the method’s 

accompanying B-spline functions [87]. In 2017, Iqbal et al.’s proposed numerical 

technique is based on the CBS collocation method. Their version uses a new 

approximation for the second-order derivative. The proposed scheme is based on the 

CBS collocation method equipped with a new approximation for the second-order 

derivative, and produces fifth-order accurate results. The proposed method also 

generates a piecewise spline solution in the presence of singularity, which can be used 

to obtain a numerical solution at any point in the domain and is not restricted to the 

values at the selected knots, unlike existing finite difference methods [88].  

A year later, Başhan (2018) studied numerical solutions for the third-order nonlinear 

Korteweg–de Vries (KdV) equation by using modified CBSs in five different test 

problems. The performance and accuracy of the modified CBS method was shown 

by calculating and comparing the L2 and L∞ error norms with earlier work. A stability 

analysis was performed for all of the test problems, and all eigenvalues are in 
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convenience with stability criteria. Thus, the modified cubic B-spline differential 

quadrature (MCBC-DQM) method may be useful for obtaining numerical solutions 

for other important nonlinear problems [89]. In research conducted in 2019 by 

Başhan, the MCBC-DQM method was successfully implemented for a numerical 

solution to the nonlinear Kawahara equation to obtain the first-, third- and fifth-order 

derivative approximations. Four test problems were investigated separately. These 

newly obtained results clearly indicate that the MCBC-DQM method can be used to 

produce numerical solutions to the Kawahara equation with high accuracy [90].  

More recently, Iqbal et al. studied the Galerkin method based on a CBS function, 

where the shape and weight functions were applied to find a numerical solution for 

the 1D-coupled nonlinear Schrödinger equation. The use of the CBS Galerkin method 

produced smooth solutions without numerical smearing in 2020 [91]. In the same 

year, Ahmed et al. (2020) used a non-polynomial spline function to obtain numerical 

solutions to a dissipative wave equation at the middle points for a lattice in the space 

direction; at the same time, a finite difference method was used in the time direction. 

The presented method was shown to be conditionally stable. The approximating 

results proved to have good agreement with the true solutions; hence the method can 

be used to find approximate solutions for these types of problem [92].  

In the current work, I propose a mathematical treatment for the nonlinear dissipative 

wave equation, utilising the collocation technique with CBS shape functions. For the 

mathematical methodology, the time derivatives are achieved by using the typical 

finite difference method. The technique is shown to be conditionally stable by 

applying the Von Neumann stability investigation procedure. I test the precision of 

the proposed strategy by conducting an examination of the mathematical outcomes 

and the specific arrangement of the condition. 

3.2 The Governing Equation and the Derivation of the Proposed 

Method 

This section is concerned with applying the CBS method to develop a mathematical 

strategy for approximating the specific arrangement of a nonlinear dissipative wave 

equation [78] of the structure 
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 𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 2𝑢𝑡𝑢 = 𝜂(𝑥, 𝑡), 𝜂(𝑥, 𝑡) = −2𝑠𝑖𝑛
2 𝑥 𝑠𝑖𝑛 𝑡 𝑐𝑜𝑠 𝑡.  (3.2.1)  

Under the boundary and initial conditions 

𝑢𝑥𝑥(𝑎, 𝑡) = 0, 𝑢𝑥𝑥(𝑏, 𝑡) = 0, 

 𝑢(𝑥, 0) = 𝑠𝑖𝑛 𝑥, 𝑢𝑡(𝑥, 0) = 0.  (3.2.2) 

The interval [𝑎, 𝑏] can be divided into equal subintervals [𝑥𝑖−1, 𝑥𝑖], 𝑖 = 0,1, … ,𝑁 +

1, where 𝑥𝑖 = 𝑎 + 𝑖ℎ, and ℎ =
𝑏−𝑎

𝑛
. 

Let the CBS basis functions ∅𝑖(𝑥) be given as 

∅𝑖(𝑥) =
1

ℎ3

{
 
 

 
 

(𝑥 − 𝑥𝑖−2)
3

ℎ3 + 3ℎ2(𝑥 − 𝑥𝑖−1) + 3ℎ(𝑥 − 𝑥𝑖−1)
2 − 3(𝑥 − 𝑥𝑖−1)

3  
𝑥 ∈ [𝑥𝑖−2, 𝑥𝑖−1]
𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖]

ℎ3 + 3ℎ2(𝑥𝑖+1 − 𝑥) + 3ℎ(𝑥𝑖+1 − 𝑥)
2 − 3(𝑥𝑖+1 − 𝑥)

3 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1]

(𝑥𝑖−2 − 𝑥)
3

0
 
𝑥 ∈ [𝑥𝑖+1, 𝑥𝑖+2]
𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where {∅𝑖} for 𝑖 = 0,1, … ,𝑁 + 1 are the basis for the function defined over the 

interval [𝑎, 𝑏]; this implies that the estimates of the CBS ∅𝑖(𝑥) and its derivatives 

vanish outside the interval [𝑥𝑖−2, 𝑥𝑖+2], 𝑖 = 0,1, . . . . . . . . 𝑁.  

Table 3.2.1 The values of ∅𝒊(𝒙) and their derivative within the interval 

[𝒙𝒊−𝟐, 𝒙𝒊+𝟐]. 

𝒙 𝒙𝒊−𝟐 𝒙𝒊−𝟏 𝒙𝒊 𝒙𝒊+𝟏 𝒙𝒊+𝟐 

∅𝒊(𝒙) 0 1 4 1 0 

∅𝒊
′(𝒙) 0 3/h 0 -3/h 0 

∅𝒊
′′(𝒙) 0 6

ℎ2⁄  −12
/ℎ2 

6
ℎ2⁄  0 

We obtain three ODEs as follows:  

{
 
 

 
 

 

𝑈𝑗 = 𝑈(𝑥𝑗, 𝑡) =  𝑔𝑗−1 + 4𝑔𝑗 + 𝑔𝑗+1,

𝑈𝑗
′ = 𝑈′(𝑥𝑗, 𝑡) =  

3

ℎ
 (𝑔𝑗+1 − 𝑔𝑗−1),

𝑈𝑗
′′ = 𝑈′′(𝑥𝑗, 𝑡) =  

6

ℎ2
 (𝑔𝑗−1 − 2𝑔𝑗 + 𝑔𝑗+1).
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The mathematical treatment for Eq. (3.2.1) by the collocation method with CBSs 

involves tracking down an inexact arrangement 𝑈𝑁(𝑥, 𝑡) to the exact solution 𝑢(𝑥, 𝑡). 

Set the approximate solution 𝑈𝑁(𝑥, 𝑡) as follows: 

 𝑈𝑁(𝑥, 𝑡) = ∑ 𝜔𝑖(𝑡)∅𝑖(𝑥),
𝑁+1
𝑖=−1    (3.2.3)  

where 𝜔𝑖(𝑡) are time-dependent parameters that can be resolved utilising the 

boundary conditions 

 (𝑈𝑥𝑥)𝑁(𝑎, 𝑡) = 0, (𝑈𝑥𝑥)𝑁(𝑏, 𝑡) = 0,  (3.2.4) 

and the collocation form of Eq. (3.2.1) 

 (𝑈𝑡𝑡)𝑁(𝑥𝑗, 𝑡) − (𝑈𝑥𝑥)𝑁(𝑥𝑗, 𝑡) + 2(𝑈)𝑁(𝑥𝑗 , 𝑡)(𝑈𝑡)𝑁(𝑥𝑗, 𝑡) = 𝜂(𝑥𝑗, 𝑡).     (3.2.5)  

By substituting Eq. (3.2.3) into Eq. (3.2.5), we obtain 

 ∑
𝑑2𝜔𝑖(𝑡)

𝑑𝑡2
𝑁+1
𝑖=−1 ∅𝑖(𝑥) − ∑ 𝜔𝑖

𝑁+1
𝑖=−1 (𝑡)∅𝑖

′′(𝑥𝑗) + 2𝜔𝑖(𝑡)∅𝑖(𝑥𝑗)∑
𝑑𝜔𝛿(𝑡)

𝑑𝑡
∅𝛿(𝑥𝑗)

𝑁+1
𝛿=−1 =

𝜂𝑗
𝑛(𝑥, 𝑡).   (3.2.6)  

Applying the finite difference method results in 

 𝜔𝑖
𝑛 =

𝜔𝑖
𝑛+1+𝜔𝑖

𝑛−1

2
, 
𝑑2𝜔

𝑑𝑡2
=

𝜔𝑖
𝑛−1−2𝜔𝑖

𝑛+𝜔𝑖
𝑛+1

𝑘2
, where 𝑘 = 𝛥𝑡.  (3.2.7) 

By substituting Eq. (3.2.7) into Eq. (3.2.6) and simplifying the results, we obtain 

∑[𝜔𝑖
𝑛−1 − 2𝜔𝑖

𝑛 +𝜔𝑖
𝑛+1] ∅𝑖

𝑁+1

𝑖=−1

(𝑥𝑗) − 𝑘
2 ∑ 𝜔𝑖

𝑁+1

𝑖=−1

(𝑡) ∅𝑖
′′(𝑥𝑗)

+ 𝑘2[𝜔𝑖
𝑛+1 +𝜔𝑖

𝑛−1]∅𝑖(𝑥𝑗) ∑
𝑑𝜔𝛿(𝑡)

𝑑𝑡
 ∅𝛿(𝑥𝑗)

𝑁+1

𝛿=−1

 

 = 𝑘2𝜂𝑗
𝑛(𝑥, 𝑡).  (3.2.8) 

Using the values of ∅𝑖(𝑥𝑗) and ∅𝑖
′′(𝑥𝑗) from Table 3.2.1 

𝜔𝑖−1
𝑛−1 − 2𝜔𝑖−1

𝑛 +𝜔𝑖−1
𝑛+1 + 4𝜔𝑖

𝑛−1 − 8𝜔𝑖
𝑛 + 4𝜔𝑖

𝑛+1 +𝜔𝑖+1
𝑛−1 − 2𝜔𝑖+1

𝑛 +𝜔𝑖+1
𝑛+1 −

6

ℎ2
 𝑘2𝜔𝑖−1

𝑛  
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+ 
12

ℎ2
 𝑘2𝜔𝑖

𝑛 − 
6

ℎ2
 𝑘2𝜔𝑖+1

𝑛 + 𝑘2[𝜔𝑖−1
𝑛+1 +𝜔𝑖−1

𝑛−1]∅𝑖(𝑥𝑗)
𝑑𝜔𝛿(𝑡)

𝑑𝑡

+ 4 𝑘2[𝜔𝑖
𝑛+1 +𝜔𝑖

𝑛−1]∅𝑖(𝑥𝑗)
𝑑𝜔𝛿(𝑡)

𝑑𝑡
 

+ 𝑘2[𝜔𝑖+1
𝑛+1 +𝜔𝑖+1

𝑛−1]∅𝑖(𝑥𝑗)
𝑑𝜔𝛿(𝑡)

𝑑𝑡
= 𝑘2𝜂𝑗

𝑛(𝑥, 𝑡), 

(1 + 𝑘2 ∅𝑖(𝑥𝑗)
𝑑𝜔𝛿(𝑡)

𝑑𝑡
 )𝜔𝑖−1

𝑛+1 + ( 4 + 4 𝑘2 ∅𝑖(𝑥𝑗)
𝑑𝜔𝛿(𝑡)

𝑑𝑡
)𝜔𝑖

𝑛+1 + ( 1

+ 𝑘2 ∅𝑖(𝑥𝑗)
𝑑𝜔𝛿(𝑡)

𝑑𝑡
)𝜔𝑖+1

𝑛+1 

+(−2 −
6

ℎ2
 𝑘2)𝜔𝑖−1

𝑛 + ( −8 +
12

ℎ2
 𝑘2)𝜔𝑖

𝑛 + ( −2 − 
6

ℎ2
 𝑘2)𝜔𝑖+1

𝑛 + (1

+ 𝑘2 ∅𝑖(𝑥𝑗)
𝑑𝜔𝛿(𝑡)

𝑑𝑡
 )𝜔𝑖−1

𝑛−1 

+(4 + 4 𝑘2 ∅𝑖(𝑥𝑗)
𝑑𝜔𝛿(𝑡)

𝑑𝑡
 )𝜔𝑖

𝑛−1 + (1 + 𝑘2 ∅𝑖(𝑥𝑗)
𝑑𝜔𝛿(𝑡)

𝑑𝑡
 )𝜔𝑖+1

𝑛−1 = 𝑘2𝜂𝑖
𝑛(𝑥, 𝑡), 

Eq. (3.2.8) can be determined at 𝑥𝑗 , 𝑗 = 0,1,2, . . . , 𝑁, so that 

𝑎𝑖𝜔𝑖−1
𝑛+1 + 𝑏𝑖𝜔𝑖

𝑛+1 + 𝑐𝑖𝜔𝑖+1
𝑛+1 = −𝑑𝑖𝜔𝑖−1

𝑛 − 𝑒𝑖𝜔𝑖
𝑛 − 𝑓𝑖𝜔𝑖+1

𝑛 − 𝑛𝑖𝜔𝑖−1
𝑛−1 − 𝑠𝑖𝜔𝑖

𝑛−1 −

𝑙𝑖𝜔𝑖+1
𝑛−1 + 𝑘2𝜂𝑖

𝑛(𝑥, 𝑡),   (3.2.9) 

where 

𝑎𝑖 = 1 + 𝑘
2𝑧𝑖−1, 𝑑𝑖 = −2 −

6

ℎ2
𝑘2, 𝑛𝑖 = 1 + 𝑘

2𝑧𝑖−1, 

 𝑏𝑖 = 4 + 4𝑘
2𝑧𝑖−1, 𝑒𝑖 = −8+ 12

𝑘2

ℎ2
, 𝑠𝑖 = 4 + 4𝑘

2𝑧𝑖−1,  (3.2.10) 

𝑐𝑖 = 1 + 𝑘
2𝑧𝑖−1, 𝑓𝑖 = −2−

6

ℎ2
𝑘2, 𝑙𝑖 = 2 + 𝑘

2𝑧𝑖−1. 

with 𝑧𝑖−1 =
𝜕𝑈𝑁(𝑥𝑖,𝑡𝑛)

𝜕𝑡
= [

𝜔𝑖−1
𝑛 −𝜔𝑖−1

𝑛−1

𝑘
+ 4

𝜔𝑖
𝑛−𝜔𝑖

𝑛−1

𝑘
+
𝜔𝑖+1
𝑛 −𝜔𝑖+1

𝑛−1

𝑘
], 

for all 𝑖 = 0,1,2, . . . . , 𝑁. The nonlinear logarithmic system in Eq. (3.2.9) contains 

(N+1) equations of (N+3) unknowns. To find the solution for this system, we need 
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two additional conditions that are obtained from the conditions in Eq. (3.2.4) as 

follows: 

6

ℎ2
𝜔−1 −

12

ℎ2
𝜔0 +

6

ℎ2
𝜔1 = 0, 

 
6

ℎ2
𝜔𝑁−1 −

12

ℎ2
𝜔𝑁 +

6

ℎ2
𝜔𝑁+1 = 0.  (3.2.11) 

System Eq. (3.2.9) and additional equations in (3.2.11) have (N+3) equations with 

(N+3) unknowns, so we can identify the time-dependent variables 𝜔𝑖 in the matrix 

form: 

 𝐴𝜔𝑛+1 = −𝐵𝜔𝑛 − 𝐶𝜔𝑛−1 + 𝑘2𝜂𝑖
𝑛(𝑥, 𝑡),  (3.2.12) 

where 

𝐴 =

[
 
 
 
 
 
 
6

ℎ2
−12

ℎ2
6

ℎ2
0 . . . 0

𝑎0 𝑏0 𝑐0 0 . . . 0
0 . . . . . . . . . . . . .
. . . . . . . . . . 0
0 . . . 0 𝑎𝑁 𝑏𝑁 𝑐𝑁

0 . . . 0
6

ℎ2
−12

ℎ2
6

ℎ2 ]
 
 
 
 
 
 

, 

𝐵 =

[
 
 
 
 
 
0 0 0 0 . . . 0
𝑑0 𝑒0 𝑓0 0 . . . 0
0 . . . . . . . . . . . . .
. . . . . . . . . . 0
0 . . . 0 𝑑𝑁 𝑒𝑁 𝑓𝑁
0 . . . 0 0 0 0 ]

 
 
 
 
 

, 

𝐶 =

[
 
 
 
 
 
0 0 0 0 . . . 0
𝑛0 𝑠0 𝑙0 0 . . . 0
0 . . . . . . . . . . . . .
. . . . . . . . . . 0
0 . . . 0 𝑛𝑁 𝑠𝑁 𝑙𝑁
0 . . . 0 0 0 0 ]

 
 
 
 
 

. 

3.3 The Initial State 

In this section, we apply the first initial condition: 

 𝑢(𝑥, 0) = 𝑠𝑖𝑛 𝑥   (3.3.1) 
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The initial conditions can be communicated as 

(𝑈𝑥)𝑁(𝑎, 0) = 𝑢𝑥(𝑎, 0), 

 𝑈𝑁(𝑥𝑗, 0) = ∑ ∅𝑖
𝑁+1
𝑖=−1 (𝑥𝑗) 𝜔𝑖

0, 𝑗 = 0,1,2, . . . . , 𝑁,  (3.3.2) 

(𝑈𝑥)𝑁(𝑏, 0) = 𝑢𝑥(𝑏, 0). 

By using the values of ∅𝑖  and their derivatives in Table 2.2.4.1, the system in (3.3.2) 

takes the structure 

−3𝜔−1
0 + 3𝜔1

0 = ℎ𝑢𝑥(𝑎, 0), 

 𝜔𝑖−1
0 + 4𝜔𝑖

0 +𝜔𝑖+1
0 = 𝑢(𝑥𝑗, 0), 𝑗 = 0,1,2, . . . , 𝑁,  (3.3.3) 

 −3𝜔𝑁−1
0 + 3𝜔𝑁+1

0 = ℎ𝑢𝑥(𝑏, 0). 

I rewrite the system (3.3.3) in matrix form: 

 𝑀𝑣 = 𝑞  (3.3.4) 

where 

𝑀 =

[
 
 
 
 
 
−3 0 3 0 . . . 0
1 4 1 0 . . . 0
0 . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 0
0 . . . 0 1 4 1
0 . . . 0 −3 0 3 ]

 
 
 
 
 

, 

and 𝑣 = (𝜔−1
0 , 𝜔0

0, . . , 𝜔𝑁
0 , 𝜔𝑁+1

0 )𝑇, 𝑞 = (ℎ𝑢𝑥(𝑎, 0), 𝑢(𝑥0, 0), . . . . . . , 𝑢(𝑥𝑁 , 0), ℎ𝑢𝑥(𝑏, 0))
𝑇. 

To find the second initial condition using Taylor expansion to 𝑈𝑁(𝑥, 𝑡𝑖) at 𝑡 = 𝑡0 

we apply 

 𝑈𝑁(𝑥, 𝑡1) = 𝑈𝑁(𝑥, 𝑡0) + 𝑘
𝜕𝑈𝑁(𝑥,𝑡0)

𝜕𝑡
+
𝑘2

2!

𝜕2𝑈𝑁(𝑥,𝑡0)

𝜕𝑡2
+ 𝑂(𝑘3), 𝑘 = 𝑡1 − 𝑡0.  

  (3.3.5) 

Setting 𝑡0 = 0, we obtain 
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 𝑈𝑁(𝑥, 𝑡1) = 𝑈𝑁(𝑥, 0) + 𝑘
𝜕𝑈𝑁(𝑥,0)

𝜕𝑡
+
𝑘2

2!

𝜕2𝑈𝑁(𝑥,0)

𝜕𝑡2
+ 𝑂(𝑘3).  (3.3.6)  

Subbing Eq. (3.2.1) into Eq. (3.3.6) results in 

 𝑈𝑁(𝑥, 𝑡1) ≈ 𝑈𝑁(𝑥, 0) +
𝑘2

2!
(
𝜕2𝑈𝑁(𝑥,0)

𝜕𝑥2
− 2𝑢

𝜕𝑈𝑁(𝑥,0)

𝜕𝑡
+ 𝜂(𝑥, 0)).  (3.3.7)  

After simplifying, Eq. (3.3.7) becomes 

 𝑈𝑁(𝑥, 𝑡1) ≈ 𝑈𝑁(𝑥, 0) +
𝑘2

2!

𝜕2𝑈𝑁(𝑥,0)

𝜕𝑥2
,  (3.3.8) 

where 𝜂(𝑥, 0) = 0. 

Substituting Eq. (3.3.1) and initial condition (3.2.2) into Eq. (3.3.8), we obtain 

 ∑ 𝜑(𝑥𝑗)𝜔𝑖
1𝑁+1

𝑖=−1 ≈ 𝜂(𝑥𝑗), 𝑗 = 0,1, . . . , 𝑁,  (3.3.9) 

where 

𝜂(𝑥𝑗) = 𝑠𝑖𝑛 𝑥𝑗 −
𝑘2

2!
𝑠𝑖𝑛 𝑥𝑗. 

To complete this system, we differentiate Eq. (3.3.9) with respect to x, and compute 

its value at the ends of the range, which gives the following system: 

−3𝜔−1
1 + 3𝜔1

1 = ℎ𝜂′(𝑥0), 

 𝜔𝑖−1
1 + 4𝜔𝑖

1 +𝜔𝑖+1
1 = ℎ𝜂(𝑥𝑗),  (3.3.10)  

−3𝜔𝑁−1
1 + 3𝜔𝑁+1

1 = ℎ𝜂′(𝑥𝑁). 

The system (3.3.10) can be expressed in a matrix equation form as 𝑀𝑦 = 𝐻, 

where 

𝑀 =

[
 
 
 
 
 
−3 0 3 0 . . . . 0
1 4 1 0 . . . 0
0 . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 0
0 . . . 0 1 4 1
0 . . . 0 −3 0 3 ]

 
 
 
 
 

, 
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and 

𝑦 = (𝜔−1
1 , 𝜔0

1, . . . , 𝜔𝑁
1 , 𝜔𝑁+1

1 )𝑇, 

while H has the form: 

𝐻 = (ℎ𝜂′(𝑥0), ℎ𝜂(𝑥0), . . . . . . . . . . . , ℎ𝜂(𝑥𝑁), ℎ𝜂
′(𝑥𝑁))

𝑇
. 

3.4 Stability Analysis 

The Von Neumann stability analysis for system (3.2.9) takes effect after linearising 

the nonlinear term as 

𝑧𝑖−1 = 𝑑 + 4𝑑 + 𝑑 = (6𝑑), 𝑚 = 6𝑑. 

Then the Von Neumann stability analysis takes the form 

 𝜔𝑗
𝑛 = 𝜀𝑛 𝑒𝑥𝑝( 𝑞𝜎𝑗ℎ), 𝑞 = √−1,  (3.4.1) 

where 𝜎 is the wave number and h is the element size. At 𝑥 = 𝑥𝑖 , Eq. (3.2.9) can be 

written as 

 𝑎𝑖𝜔𝑖−1
𝑛+1 + 𝑏𝑖𝜔𝑖

𝑛+1 + 𝑐𝑖𝜔𝑖+1
𝑛+1 = −𝑑𝑖𝜔𝑖−1

𝑛 − 𝑒𝑖𝜔𝑖
𝑛 − 𝑓𝑖𝜔𝑖+1

𝑛 − 𝑛𝑖𝜔𝑖−1
𝑛−1 − 𝑠𝑖𝜔𝑖

𝑛−1 −

𝑙𝑖𝜔𝑖+1
𝑛−1 + 𝑘2𝜂𝑖

𝑛.   (3.4.2) 

Substituting Eq. (3.4.1) into the recurrence relationship (3.4.2) results in 

𝑎𝑗𝜀
𝑛+1 exp(𝑞∅ℎ(𝑗 − 1)) + 𝑏𝑗𝜀

𝑛+1 exp(𝑞∅ℎ𝑗) + 𝑐𝑗𝜀
𝑛+1 exp(𝑞∅ℎ(𝑗 + 1)) +

𝑑𝑗𝜀
𝑛 exp(𝑞∅ℎ(𝑗 − 1)) +𝑒𝑗𝜀

𝑛 exp(𝑞∅ℎ𝑗) + 𝑓𝑗𝜀
𝑛 exp(𝑞∅ℎ(𝑗 + 1)) +

𝑛𝑗𝜀
𝑛−1 exp(𝑞∅ℎ(𝑗 − 1)) + 𝑠𝑗𝜀

𝑛−1 exp(𝑞∅ℎ𝑗) +𝑙𝑗𝜀
𝑛−1 exp(𝑞∅ℎ(𝑗 + 1)) = 𝑘2𝜂𝑗

𝑛.  

Dividing both sides by 𝜀𝑛−1 𝑒𝑥𝑝( 𝑗𝑞𝜙ℎ), results in 

𝑎𝑗𝜀
2 exp(−𝑗𝑞∅ℎ) + 𝑏𝑗𝜀

2  + 𝑐𝑗𝜀
2 exp(𝑗𝑞∅ℎ) + 𝑑𝑗𝜀 exp(−𝑗𝑞∅ℎ) + 𝑒𝑗𝜀 + 𝑓𝑗𝜀 exp(𝑗𝑞∅ℎ) +

𝑛𝑗 exp(−𝑗𝑞∅ℎ) + 𝑠𝑗  + 𝑙𝑗 exp(𝑗𝑞∅ℎ) =
𝑘2𝜂𝑗

𝑛

 𝜀𝑛−1 𝑒𝑥𝑝(𝑗𝑞𝜙ℎ)
. 

Using Euler’s formula, results in 
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𝑒𝑥𝑝[ 𝑞𝜑] = 𝑐𝑜𝑠 𝜑 + 𝑞 𝑠𝑖𝑛 𝜑 ,    𝜑 = 𝜙ℎ, 

𝑎𝑗𝜀
2(𝑐𝑜𝑠∅ℎ − 𝑞𝑠𝑖𝑛∅ℎ) + 𝑏𝑗𝜀

2  + 𝑐𝑗𝜀
2(𝑐𝑜𝑠∅ℎ + 𝑞𝑠𝑖𝑛∅ℎ) + 𝑑𝑗𝜀(𝑐𝑜𝑠∅ℎ − 𝑞𝑠𝑖𝑛∅ℎ) + 𝑒𝑗𝜀  

+𝑓𝑗𝜀(𝑐𝑜𝑠∅ℎ + 𝑞𝑠𝑖𝑛∅ℎ) + 𝑛𝑗(𝑐𝑜𝑠∅ℎ − 𝑞𝑠𝑖𝑛∅ℎ) + 𝑠𝑗  + 𝑙𝑗(𝑐𝑜𝑠∅ℎ + 𝑞𝑠𝑖𝑛∅ℎ)

=
𝑘2𝜂𝑗

𝑛

 𝜀𝑛−1 𝑒𝑥𝑝( 𝑗𝑞𝜙ℎ)
, 

𝜀2[ 𝑎𝑗𝑐𝑜𝑠∅ℎ − 𝑎𝑗𝑞𝑠𝑖𝑛∅ℎ + 𝑏𝑗  + 𝑐𝑗𝑐𝑜𝑠∅ℎ + 𝑐𝑗𝑞𝑠𝑖𝑛∅ℎ ] 

+𝜀 [𝑑𝑗𝑐𝑜𝑠∅ℎ − 𝑑𝑗𝑞𝑠𝑖𝑛∅ℎ + 𝑒𝑗  + 𝑓𝑗𝑐𝑜𝑠∅ℎ + 𝑓𝑗𝑞𝑠𝑖𝑛∅ℎ] 

+[ 𝑛𝑗𝑐𝑜𝑠∅ℎ − 𝑛𝑗𝑞𝑠𝑖𝑛∅ℎ + 𝑠𝑗  + 𝑙𝑗𝑐𝑜𝑠∅ℎ + 𝑙𝑗𝑞𝑠𝑖𝑛∅ℎ] =
𝑘2𝜂𝑗

𝑛

 𝜀𝑛−1 𝑒𝑥𝑝( 𝑗𝑞𝜙ℎ)
 

𝜀2[(𝑐𝑗 + 𝑎𝑗) 𝑐𝑜𝑠 𝜙 ℎ + 𝑏𝑗 + 𝑞(𝑐𝑗 − 𝑎𝑗) 𝑠𝑖𝑛𝜙 ℎ] + 𝜀[(𝑓𝑗 + 𝑑𝑗) 𝑐𝑜𝑠 𝜙 ℎ + 𝑒𝑗 +

𝑞(𝑓𝑗 − 𝑑𝑗) 𝑠𝑖𝑛 𝜙 ℎ] + [(𝑙𝑗 + 𝑛𝑗) 𝑐𝑜𝑠 𝜙 ℎ + 𝑠𝑗 + 𝑞(𝑙𝑗 − 𝑛𝑗) 𝑠𝑖𝑛 𝜙 ℎ] = 0.  (3.4.3) 

Thus, we have 

𝜀2[(2 + 2𝑘2𝑚)𝑐𝑜𝑠 𝜙 ℎ + (4 + 4𝑘2𝑚)] + 𝜀[(−4 − 2𝑟1) 𝑐𝑜𝑠 𝜙 ℎ + (−8 + 2𝑟1)] 

+[(2 + 2𝑘2𝑚)𝑐𝑜𝑠 𝜙 ℎ + (4 + 4𝑘2𝑚)] = 0,𝑚 = 6𝑑,  (3.4.4) 

where 𝑟1 = [
6

ℎ2
𝑘2]. 

Dividing Eq. (3.4.4) by [(2 + 2𝑘2𝑚) 𝑐𝑜𝑠 𝜙 ℎ + (4 + 4𝑘2𝑚)] gives the equation 

 𝜀2 + 𝜀
[(−4−2𝑟1) 𝑐𝑜𝑠𝜙ℎ+(−8+2𝑟1)]

[(2+2𝑘2𝑚)𝑐𝑜𝑠𝜙ℎ+(4+4𝑘2𝑚)]
+ 1 = 0.  (3.4.5) 

Eq. (3.4.5) can be written as: 

 𝜀2 + 2𝛽𝜀 + 1 = 0,  (3.4.6) 

where  

𝛽 =
[(−2−𝑟1) 𝑐𝑜𝑠𝜙ℎ+(−4+𝑟1)]

[(2+2𝑘2𝑚)𝑐𝑜𝑠𝜙ℎ+(4+4𝑘2𝑚)]
. 
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Eq. (3.4.6) is a quadratic in 𝜀 and hence will have two roots; that is 𝜀 = −𝛽 ±

√𝛽2 − 1. 

For stability, |𝜀| ≤ 1. Now, from Eq. (3.4.6) we see that the result of the two 

estimations of ε should rise to solidarity, which results in the following three cases. 

Case 1: On the off chance that the two roots are equivalent to solidarity, which 

infers that the segregate of the Eq. (3.4.6) is zero. 

Case 2: One of the two roots is more prominent than solidarity. At that point, the 

separate is more noteworthy than nothing. This implies that the steadiness condition, 

(|ε| ≤ 1), is not fulfilled. 

Case 3: The discriminate is less than zero, that is 𝛽2 − 1 < 0. 

Thus for stability: 

 −1 ≤ 𝛽 ≤ 1.  (3.4.7) 

Using Eq. (3.4.7), the above inequality becomes 

 −1 ≤
[(−2−𝑟1) 𝑐𝑜𝑠𝜙ℎ+(−4+𝑟1)]

[(2+2𝑘2𝑚) 𝑐𝑜𝑠𝜙ℎ+(4+4𝑘2𝑚)]
≤ 1.  (3.4.8) 

The right inequality (3.4.8) takes the form 

 
[(−2−𝑟1) 𝑐𝑜𝑠𝜙ℎ+(−4+𝑟1)]

[(2+2𝑘2𝑚)𝑐𝑜𝑠𝜙ℎ+(4+4𝑘2𝑚)]
≤ 1.  (3.4.9) 

[(−2 − 𝑟1) 𝑐𝑜𝑠 𝜙 ℎ + (−4 + 𝑟1)] ≤ [(2 + 2𝑘
2𝑚)𝑐𝑜𝑠 𝜙 ℎ + (4 + 4𝑘2𝑚)] 

𝑟1 ≤ [(2 + 2𝑘
2𝑚)𝑐𝑜𝑠 𝜙 ℎ + (4 + 4𝑘2𝑚)+ (2 + 𝑟1) 𝑐𝑜𝑠 𝜙 ℎ + 4] 

𝑟1 ≤ (4 + 2𝑘
2𝑚+ 𝑟1) 𝑐𝑜𝑠 𝜙 ℎ + 4𝑘

2𝑚+ 8. 

After simplifying inequality (3.4.9), we obtain  

6

ℎ2
𝑘2 ≤ [(

6

ℎ2
𝑘2 + 4 + 2𝑘2𝑚)𝑐𝑜𝑠 𝜙 ℎ + (8 + 4𝑘2𝑚)], 

or 
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 6 ≤ [(6 + 4
ℎ2

𝑘2
+ 2ℎ2𝑚)𝑐𝑜𝑠 𝜙 ℎ + (8

ℎ2

𝑘2
+ 4ℎ2𝑚)].  (3.4.10) 

Then, using the relationship 𝑐𝑜𝑠 𝜙 ℎ = 1 − 2 𝑠𝑖𝑛2
𝜙ℎ

2
, inequality (3.4.10) reduces to 

 6 ≤ [(6 + 12
ℎ2

𝑘2
+ 6ℎ2𝑚) − (12+ 8

ℎ2

𝑘2
+ 4ℎ2𝑚)𝑠𝑖𝑛2

𝜙ℎ

2
].  (3.4.11) 

After simplifying inequality (3.4.11), we obtain 

12
ℎ2

𝑘2
+ 6ℎ2𝑚 ≥ (12 + 8

ℎ2

𝑘2
+ 4ℎ2𝑚)𝑠𝑖𝑛2

𝜙ℎ

2
,  

which is satisfied for 𝑘 << ℎ, if h is small enough. However, the left inequality 

(3.4.8) becomes 

 −1 ≤
[(−2−𝑟1) 𝑐𝑜𝑠𝜙ℎ+(−4+𝑟1)]

[(2+2𝑘2𝑚)𝑐𝑜𝑠𝜙ℎ+(4+4𝑘2𝑚)]
.  (3.4.12) 

(−1)[(2 + 2𝑘2𝑚)𝑐𝑜𝑠 𝜙 ℎ + (4 + 4𝑘2𝑚)] ≤ [(−2 − 𝑟1) 𝑐𝑜𝑠 𝜙 ℎ + (−4 + 𝑟1)] 

[(2 + 2𝑘2𝑚)𝑐𝑜𝑠 𝜙 ℎ + (4 + 4𝑘2𝑚)] ≥ [(2 + 𝑟1) 𝑐𝑜𝑠 𝜙 ℎ + (4 − 𝑟1)] 

[(2𝑘2𝑚− 𝑟1) 𝑐𝑜𝑠 𝜙 ℎ] ≥ [(−4𝑘
2𝑚− 𝑟1)] 

[(𝑟1 − 2𝑘
2𝑚)𝑐𝑜𝑠 𝜙 ℎ] ≤ [(4𝑘2𝑚+ 𝑟1)]. 

After simplifying inequality (3.4.12), we obtain 

(−2𝑘2𝑚+
6

ℎ2
𝑘2) 𝑐𝑜𝑠 𝜙 ℎ ≤

6

ℎ2
𝑘2 + 4𝑘2𝑚, 

or 

 (
−𝑚ℎ2

3
+ 1) 𝑐𝑜𝑠 𝜙 ℎ ≤ 1 +

2𝑚ℎ2

3
.  (3.4.13) 

Using the relationship 𝑐𝑜𝑠 𝜙 ℎ = 1 − 2 𝑠𝑖𝑛2
𝜙ℎ

2
, inequality (3.4.13) becomes 

 (
−𝑚ℎ2

3
+ 1) + (

2𝑚ℎ2

3
− 2) 𝑠𝑖𝑛2

𝜙ℎ

2
≤ (1 +

2𝑚ℎ2

3
),  (3.4.14) 

if h is small enough. Thus the method is conditionally stable. 
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3.5 Numerical Illustration 

I apply the CBS method to obtain a numerical solution for the dissipative equation 

for one standard issue. The precision of the proposed mathematical technique is 

estimated by registering the 𝐿∞ error norm. The exact solution to the dissipative Eq. 

(3.2.1) obtained in [78] is given by 

𝑢(𝑥, 𝑡) = 𝑐𝑜𝑠 𝑡 𝑠𝑖𝑛 𝑥 , 0 ≤ 𝑥 ≤ 𝜋, 𝑡 ≥ 0. 

I use the following conditions: 

𝑢(𝑥, 0) = 𝑠𝑖𝑛 𝑥, 

𝑢𝑥𝑥(0, 𝑡) = 0, 

𝑢𝑥𝑥(𝜋, 𝑡) = 0. 

I enter the acquired mathematical outcomes in Tables 3.5.1–3.5.6. 
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Table 3.5.1 Comparison between the numerical and exact solutions at 𝒕 =

𝟎. 𝟐, 𝒌 = 𝟎. 𝟎𝟎𝟐, 𝒉 =
𝝅

𝟐𝟎
. 

𝒙 Numerical Solution Exact Solution 

0.1𝝅 0.302857 0.303116 

0.2𝝅 0.576069 0.576509 

0.3𝝅 0.792891 0.793442 

0.4𝝅 0.932099 0.932707 

0.5𝝅 0.980067 0.980692 

0.6𝝅 0.932099 0.932707 

0.7𝝅 0.792891 0.793442 

0.8𝝅 0.576069 0.576509 

0.9𝝅 0.302857 0.303116 

 

Table 3.5.2 The 𝑳∞𝒆𝒓𝒓𝒐𝒓 for the numerical and exact solutions when 𝒌 =

𝟎. 𝟎𝟎𝟏, 𝒉 =
𝝅

𝟐𝟎
 from t=0.05 to t=0.2. 

Time 0.05 0.1 0.15 0.20 

𝑳∞𝒆𝒓𝒓𝒐𝒓[𝑶𝒖𝒓] 2.0097×10-5 3.1051 ×10-5 3.3695 ×10-5 2.8898 ×10-5 

𝑳∞𝒆𝒓𝒓𝒐𝒓[𝟗𝟐 ] 2.5236× 10-4 9.8616×10-4 2.1532×10-3 3.7090×10-3 

 

Table 3.5.3 The 𝑳∞𝒆𝒓𝒓𝒐𝒓 for the numerical and exact solutions when 𝒌 =

𝟎. 𝟎𝟏, 𝒉 =
𝝅

𝟐𝟎
 from t=0.5 to t=2.0. 

Time 0.5 1.0 1.5 2.0 

𝑳∞𝒆𝒓𝒓𝒐𝒓[𝑶𝒖𝒓] 6.2131×10-4 6.2454 ×10-4 1.92996×10-3 3.87406×10-3 

𝑳∞𝒆𝒓𝒓𝒐𝒓[𝟗𝟐 ] 8.7356×10-4 2.5274×10-3 4.4852×10-3 7.5875×10-3 
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Table 3.5.4 The L∞ error for the numerical and exact solutions when 𝒌 =

𝟎. 𝟎𝟏, 𝒉 =
𝝅

𝟐𝟎
 from t=6.0 to t=9.0. 

Time 6.0 7.0 8.0 9.0 

𝑳∞𝒆𝒓𝒓𝒐𝒓 2.9063×10-2 2.7145×10-2 1.7337×10-2 3.1307×10-2 

 

Table 3.5.5 The 𝑳∞𝒆𝒓𝒓𝒐𝒓 for the numerical and exact solutions for a big time 

when 𝒌 = 𝟎. 𝟎𝟏, 𝒉 =
𝝅

𝟐𝟎
 from t=10.0 to t=40.0. 

Time 10.0 20.0 30.0 40.0 

𝑳∞𝒆𝒓𝒓𝒐𝒓 3.4557×10-2 3.3574×10-2 1.4119×10-2 2.3355×10-2 

 

Table 3.5.6 Comparison between the numerical and exact solutions at 𝒕 =

𝟐, 𝒌 = 𝟎. 𝟎𝟎𝟐, 𝒉 =
𝝅

𝟐𝟎
. 

𝒙 Numerical Solution Exact Solution 

0.1 𝝅 −0.128596 −0.129169 

0.2 𝝅 −0.244605 −0.245756 

0.3 𝝅 −0.33667 −0.338348 

0.4 𝝅 −0.395779 −0.397833 

0.5 𝝅 −0.416147 −0.418337 

0.6 𝝅 −0.395779 −0.397833 

0.7 𝝅 −0.33667 −0.338348 

0.8 𝝅 −0.244605 −0.245756 

0.9 𝝅 −0.128596 −0.129169 
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Figure 3.5.1 The exact and numerical results for time t=2.0 with k=0.01. 

 

 

Figure 3.5.2 The exact and numerical results for time t=2.5 with k=0.01. 
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Figure 3.5.3 The exact and numerical results for time t=3.0 with k=0.01. 

 

 

Figure 3.5.4 The exact and numerical results for time t=4.0 with k=0.01. 
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Figure 3.5.5 The exact and numerical results for time t=5.0 with k=0.01. 

 

 

Figure 3.5.6 The exact and numerical results for time t=6.0 with k=0.01. 
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Figure 3.5.7 The exact and numerical results for time t=7.0 with k=0.01. 

 

 

Figure 3.5.8 The exact and numerical results for time t=10.0 with k=0.01. 
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Figure 3.5.9 The exact and numerical results for time t=20.0 with k=0.01. 

 

 

Figure 3.5.10 The exact and numerical results for time t=30.0 with k=0.01. 
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Figure 3.5.11 The exact and numerical results for time t=40.0 with k=0.01. 

 

Figure 3.5.12 The exact and numerical results for time t=50.0 with k=0.01. 
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Tables 3.5.2–3.5.6 show that the smaller 𝛥𝑡 = 𝑘 (than the value of h), the better the 

accuracy. The numerical approximations are still acceptable within the large time. 

Figures 3.5.13–3.5.16 present the 3D numerical solutions of the dispersive equation 

for various times with the same discretisations (h). 

 

 

Figure 3.5.13 3D representation of the behaviour of the numerical solutions of 

the dissipative wave equation from time t=0.0 to t=10.0 
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Figure 3.5.14 3D representation of the behaviour of the numerical solutions of 

the dissipative wave equation from time t=0.0 to t=20.0 

 

 

Figure 3.5.15 3D representation of the behaviour of the numerical solutions of 

the dissipative wave equation from time t=10.0 to t=20.0 
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Figure 3.5.16 3D representation of the behaviour of the numerical solutions of 

the dissipative wave equation from time t=20.0 to t=40.0 

 

3.6 Conclusion 

In this chapter, a numerical solution for the nonlinear dissipative wave equation was 

proposed, utilising a collocation strategy with the CBS. To illustrate the method and 

demonstrate its convergence and applicability computationally, I applied the Von 

Neumann stability method. The stability analysis investigation showed that the 

method is conditionally stable. The performance and accuracy of the present method 

were shown by calculating and comparing the L∞ error norms with earlier work. The 

obtained invariants are considered acceptable in comparison with some earlier 

studies. The numerical results produced by the present method are quite satisfactory 

and show good agreement with the exact solutions. The computed results demonstrate 

the advantages of this method. As seen in Tables 3.5.2 and 3.5.3, the results are better 

than those in [92]. The estimated mathematical arrangements achieve great precision 

with the specific arrangements, particularly when Δt is more modest than the estimate 

of h. 
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Chapter 4: Quartic Non-polynomial Splines for Solving 

Third-Order Dispersive Partial Differential Equations 

4.1 Introduction 

Third-order singularly perturbed boundary value problems occur frequently in many 

areas of applied sciences such as solid mechanics, quantum mechanics, chemical 

reactor theory, Newtonian fluid mechanics, optimal control, convection diffusion 

processes, hydrodynamics and aerodynamics. These problems have various 

important applications in fluid dynamics. The field of nonlinear dispersive waves has 

undergone enormous development since the work of Stokes, Boussinesq, Korteweg 

and de Vries, all of whom studied water wave problems in the nineteenth century. In 

the 1960s, researchers developed effective asymptotic methods for deriving nonlinear 

wave equations such as the KdV equation that govern a broad class of physical 

phenomena [93].  

Some approaches to solving NPDEs have been described in the recent literature; the 

most prominent of which are non-polynomial spline methods. The non-polynomial 

spline used for solving NPDEs has been employed by many researchers. The most 

well-known and well-focused results are those presented by Ramadan et al. (2005), 

who used a numerical method for approximation of the Burgers equation [94]. Shock 

waves and blowup arising in third-order nonlinear dispersive equations were studied 

in 2008 by Galaktionov and Pohozaev [95]. In [96, 97], criteria for deriving stability 

conditions for the difference method were considered for the numerical solution to a 

third-order linear dispersive equation. Tirmizi et al. (2008) used quartic non-

polynomial spline functions to develop a class of numerical methods for solving self-

adjoint singularly perturbed problems [98]. In 2011, Taiwo and Ogunlaran developed 

a numerical technique for solving linear fourth-order boundary value problems, 

which were initially reduced to a system of second-order boundary value problems 

[99]. In research by Lin (2014), a numerical method based on splines in tension was 

developed for solving RLW equations. The method was tested by using single solitary 

waves, the interaction of two solitary waves, and solitary waves with Maxwellian 
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initial condition [100]. In the same year, Mustafa and Ilhame discussed the method 

of lines as applied to the boundary value problem for a third-order PDE [101]. In 

2017, El-Danaf et al. considered the GRLW equation. They studied the interaction of 

solitons when no analytic solution is known during the interaction. The Maxwellian 

initial condition for the GRLW equation was used [102]. A year later, Li et al. solved 

the time-fractional NLS equation [103]. In 2018, Sultana et al. presented a new three-

level implicit method, which was developed to solve linear and nonlinear third-order 

dispersive PDEs [104]. In 2019, Shahna demonstrated how to solve fourth-order 

boundary value problems whose highest-order derivative is multiplied by a small 

perturbation parameter [105]. In this chapter, a novel approach, based on the use of 

non-polynomial splines to solve a third-order dispersive PDE is proposed. The third-

order dispersive PDE used is [106] 

 
𝜕𝜂

𝜕𝑡
+
𝜕3𝜂

𝜕𝑥3
= 𝑔(𝑥, 𝑡),      𝑎 ≤ 𝑥 ≤ 𝑏,   𝑡 > 0,  (4.1.1) 

where 𝑔(𝑥, 𝑡) is a source term. The boundary conditions associated with Eq. (4.1.1) 

are assumed to be of the form 

 𝜂(𝑎, 𝑡) = 𝛽1(𝑡),   𝜂(𝑏, 𝑡) = 𝛽2(𝑡), 𝜂𝑥𝑥(𝑏, 𝑡) = 𝛽3(𝑡)  𝑡 > 0 ,  (4.1.2) 

and the initial condition is 

 𝜂(𝑥, 0) = 𝑓(𝑥),          𝑎 ≤ 𝑥 ≤ 𝑏.  (4.1.3) 

The spline functions proposed, as defined in [107], have the form 

𝑇4 = 𝑠𝑝𝑎𝑛{1, 𝑥, 𝑥
2, 𝑠𝑖𝑛 𝜔 𝑥, 𝑐𝑜𝑠𝜔 𝑥}, 

where 𝜔 is the frequency of the trigonometric part of the spline functions, which are 

used to increase the accuracy of the method. 
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4.2 Analysis of the Method 

The first step in the non-polynomial spline method is to create a grid with two mesh 

constants and . The grid points for this situation are  where  

 and   

Let  be an approximation to  obtained by the segment  of the 

mixed spline function passing through the points  and . Each 

segment has the form 

 𝑃𝑖(𝑥, 𝑡𝑗) = 𝑎𝑖(𝑡𝑗) 𝑐𝑜𝑠 𝜔 (𝑥 − 𝑥𝑖) + 𝑏𝑖(𝑡𝑗) 𝑠𝑖𝑛 𝜔 (𝑥 − 𝑥𝑖) + 𝑐𝑖(𝑡𝑗) (𝑥 − 𝑥𝑖)
2 + 

  𝑑𝑖(𝑡𝑗)(𝑥 − 𝑥𝑖) + 𝑒𝑖(𝑡𝑗).    (4.2.1) 

for each  To obtain expressions for the coefficients of Eq. (4.2.1) in 

terms of , , , , and , we first define  

𝑃𝑖(𝑥𝑖, 𝑡𝑗) = 𝑍𝑖
𝑗
,   𝑃𝑖(𝑥𝑖+1, 𝑡𝑗) = 𝑍𝑖+1

𝑗
,  𝑃𝑖

(1)(𝑥𝑖) = 𝑀𝑖
𝑗
,  𝑃𝑖

(3)
(𝑥𝑖, 𝑡𝑗) =

𝑆𝑖
𝑗
, 𝑎𝑛𝑑  𝑃𝑖

(3)
(𝑥𝑖+1, 𝑡𝑗) = 𝑆𝑖+1

𝑗
.  (4.2.2) 

Using Eqs. (4.2.1) and (4.2.2), we obtain: 

𝑎𝑖 + 𝑒𝑖 = 𝑍𝑖
𝑗
, 

𝑎𝑖 𝑐𝑜𝑠 𝜃 + 𝑏𝑖 𝑠𝑖𝑛 𝜃 + ℎ
2𝑐𝑖 + ℎ𝑑𝑖 + 𝑒𝑖 = 𝑍𝑖+1

𝑗
, 

 𝑏𝑖𝜔 + 𝑑𝑖 = 𝑀𝑖
𝑗
,  (4.2.3) 

−𝜔3𝑏𝑖 = 𝑆𝑖
𝑗
, 

𝑎𝑖𝜔
3 𝑠𝑖𝑛 𝜃 − 𝑏𝑖𝜔

3 𝑐𝑜𝑠 𝜃 = 𝑆𝑖+1
𝑗

, 

where 𝑎𝑖 ≡ 𝑎𝑖(𝑡𝑗), 𝑏𝑖 ≡ 𝑏𝑖(𝑡𝑗), 𝑐𝑖 ≡ 𝑐𝑖(𝑡𝑗), 𝑑𝑖 ≡ 𝑑𝑖(𝑡𝑗),  𝑒𝑖 ≡ 𝑒𝑖(𝑡𝑗), and 𝜃 =

𝜔ℎ.  

h k ( )
ji tx , ,ihaxi +=

1,,1,0 += Ni  ,jkt j = .,1,0 =j

j

iZ ),,( ji tx ),( ji txP

),( j

ii Zx ),( 11

j

ii Zx ++

.,,1,0 Ni =

j

iZ
j

iZ 1+

j

iM
j

iS
1+j

iS



69 

By solving the last five equations in (4.2.3), we obtain the following; from the 

fourth equation in (4.3.2): 

𝑏𝑖 = −
𝑆𝑖
𝑗

𝑤3 = −ℎ
3 𝑆𝑖

𝑗

𝜃3
. 

Then, from the last equation in (4.3.2) we obtain 

𝑎𝑖𝜔
3 𝑠𝑖𝑛 𝜃 − 𝑏𝑖𝜔

3 𝑐𝑜𝑠 𝜃 = 𝑆𝑖+1
𝑗

 

𝑎𝑖 =
𝑆𝑖+1
𝑗
+ 𝑏𝑖𝜔

3 𝑐𝑜𝑠 𝜃

𝜔3 𝑠𝑖𝑛 𝜃
 

=
𝑆𝑖+1
𝑗
− 𝑆𝑖

𝑗
𝑐𝑜𝑠 𝜃

(
𝜃

ℎ
)3 𝑠𝑖𝑛 𝜃

 

= ℎ3
𝑆𝑖+1
𝑗
−𝑆𝑖

𝑗
𝑐𝑜𝑠 𝜃

𝜃3 𝑠𝑖𝑛 𝜃
. 

By the same manner we obtain the other unknown coefficients: 

𝑎𝑖 𝑐𝑜𝑠 𝜃 + 𝑏𝑖 𝑠𝑖𝑛 𝜃 + ℎ
2𝑐𝑖 + ℎ𝑑𝑖 + 𝑒𝑖 = 𝑍𝑖+1

𝑗
 

𝑐𝑖 =
𝑍𝑖+1
𝑗

ℎ2
−
𝑎𝑖 𝑐𝑜𝑠 𝜃

ℎ2
−
𝑏𝑖 𝑠𝑖𝑛 𝜃

ℎ2
−
ℎ𝑑𝑖
ℎ2

−
𝑒𝑖
ℎ2

 

=
𝑍𝑖+1
𝑗

ℎ2
−
𝑎𝑖
ℎ2
+
𝑎𝑖
ℎ2
−
𝑒𝑖
ℎ2
−
𝑎𝑖 𝑐𝑜𝑠 𝜃

ℎ2
−
𝑏𝑖 𝑐𝑜𝑠 𝜃

ℎ2 𝑠𝑖𝑛 𝜃
+
𝑏𝑖 𝑐𝑜𝑠 𝜃

ℎ2 𝑠𝑖𝑛 𝜃
−
𝑏𝑖 𝑠𝑖𝑛

2 𝜃

ℎ2 𝑠𝑖𝑛 𝜃
−
𝜃𝑏𝑖
ℎ2

+
𝜃𝑏𝑖
ℎ2

−
ℎ𝑑𝑖
ℎ2

 

=
𝑍𝑖+1
𝑗

ℎ2
−
(𝑎𝑖 + 𝑒𝑖)

ℎ2
+
𝑎𝑖
ℎ2
−
𝑏𝑖 𝑐𝑜𝑠 𝜃

ℎ2 𝑠𝑖𝑛 𝜃
−
𝑎𝑖 𝑐𝑜𝑠 𝜃

ℎ2
+
𝑏𝑖 𝑐𝑜𝑠 𝜃

ℎ2 𝑠𝑖𝑛 𝜃
−
𝑏𝑖 (1 − 𝑐𝑜𝑠

2 𝜃)

ℎ2 𝑠𝑖𝑛 𝜃
−
ℎ𝑑𝑖
ℎ2

−
𝜃𝑏𝑖
ℎ2

+
𝜃𝑏𝑖
ℎ2

 

=
𝑍𝑖+1
𝑗

ℎ2
−
𝑍𝑖
𝑗

ℎ2
+
𝑎𝑖 ℎ 𝜃

3 𝑠𝑖𝑛 𝜃

ℎ2 ℎ 𝜃3 𝑠𝑖𝑛 𝜃
−
𝑏𝑖 𝑐𝑜𝑠 𝜃 ℎ 𝜃

3

ℎ2 𝑠𝑖𝑛 𝜃 ℎ 𝜃3
−
𝑎𝑖 𝑐𝑜𝑠 𝜃 ℎ 𝜃

3 𝑠𝑖𝑛 𝜃

ℎ2 ℎ 𝜃3 𝑠𝑖𝑛 𝜃
+
𝑏𝑖 𝑐𝑜𝑠 𝜃 ℎ 𝜃

3

ℎ2 𝑠𝑖𝑛 𝜃 ℎ 𝜃3
 

−
𝑏𝑖 ℎ 𝜃

3

ℎ2 𝑠𝑖𝑛 𝜃 ℎ 𝜃3
+
𝑏𝑖 𝑐𝑜𝑠

2 𝜃 ℎ 𝜃3

ℎ2 𝑠𝑖𝑛 𝜃 ℎ 𝜃3
−
𝜃𝑏𝑖
ℎ2

−
ℎ𝑑𝑖
ℎ2

+
𝜃𝑏𝑖 ℎ 𝜃

2

ℎ2 ℎ 𝜃2
 

=
𝑍𝑖+1
𝑗

ℎ2
−
𝑍𝑖
𝑗

ℎ2
+
ℎ𝑎𝑖 𝑤

3 𝑠𝑖𝑛 𝜃

𝜃3 𝑠𝑖𝑛 𝜃
−
ℎ 𝑏𝑖𝑤

3 𝑐𝑜𝑠 𝜃

𝜃3 𝑠𝑖𝑛 𝜃
−
ℎ 𝑎𝑖 𝑤

3𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃

𝜃3 𝑠𝑖𝑛 𝜃
+
ℎ 𝑏𝑖𝑤

3𝑐𝑜𝑠2𝜃

𝜃3 𝑠𝑖𝑛 𝜃
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−
ℎ 𝑏𝑖𝑤

3

𝜃3 𝑠𝑖𝑛 𝜃
+
ℎ 𝑏𝑖𝑤

3 𝑐𝑜𝑠 𝜃

𝜃3 𝑠𝑖𝑛 𝜃
−
 𝑏𝑖𝑤

ℎ
−
𝑑𝑖
ℎ
+
ℎ 𝑏𝑖𝑤

3

𝜃2
 

=
𝑍𝑖+1
𝑗

ℎ2
−
𝑍𝑖
𝑗

ℎ2
+
ℎ(𝑎𝑖 𝑤

3 𝑠𝑖𝑛 𝜃 − 𝑏𝑖𝑤
3 𝑐𝑜𝑠 𝜃)

𝜃3 𝑠𝑖𝑛 𝜃
−
ℎ 𝑐𝑜𝑠 𝜃 (𝑎𝑖 𝑤

3 𝑠𝑖𝑛 𝜃 − 𝑏𝑖𝑤
3 𝑐𝑜𝑠 𝜃)

𝜃3 𝑠𝑖𝑛 𝜃
 

+
ℎ( −𝑏𝑖𝑤

3)

𝜃3 𝑠𝑖𝑛 𝜃
−
ℎ( −𝑏𝑖𝑤

3) 𝑐𝑜𝑠 𝜃

𝜃3 𝑠𝑖𝑛 𝜃
−
 (𝑏𝑖𝑤 + 𝑑𝑖)

ℎ
−
ℎ (−𝑏𝑖𝑤

3)

𝜃2
 

=
𝑍𝑖+1
𝑗

− 𝑍𝑖
𝑗

ℎ2
+

ℎ 𝑆𝑖+1
𝑗

𝜃3 𝑠𝑖𝑛 𝜃
−
ℎ 𝑐𝑜𝑠 𝜃 𝑆𝑖+1

𝑗

𝜃3 𝑠𝑖𝑛 𝜃
+

ℎ 𝑆𝑖
𝑗

𝜃3 𝑠𝑖𝑛 𝜃
−
ℎ 𝑐𝑜𝑠 𝜃𝑆𝑖

𝑗

𝜃3 𝑠𝑖𝑛 𝜃
−
 𝑀𝑖

𝑗

ℎ
−
ℎ 𝑆𝑖

𝑗

𝜃2
 

=
𝑍𝑖+1
𝑗

− 𝑍𝑖
𝑗

ℎ2
+
ℎ 𝑆𝑖+1

𝑗 (1 − 𝑐𝑜𝑠𝜃) + ℎ 𝑆𝑖
𝑗(1 − 𝑐𝑜𝑠𝜃)

𝜃3 𝑠𝑖𝑛 𝜃
−
 𝑀𝑖

𝑗

ℎ
−
ℎ 𝑆𝑖

𝑗

𝜃2
 

=
𝑍𝑖+1
𝑗

− 𝑍𝑖
𝑗

ℎ2
+
ℎ (1 − 𝑐𝑜𝑠𝜃)(𝑆𝑖+1

𝑗
+ 𝑆𝑖

𝑗
) 

𝜃3 𝑠𝑖𝑛 𝜃
−
 𝑀𝑖

𝑗

ℎ
−
ℎ 𝑆𝑖

𝑗

𝜃2
 

𝑏𝑖𝜔 + 𝑑𝑖 = 𝑀𝑖
𝑗
 

𝑑𝑖 = 𝑀𝑖
𝑗
− 𝑏𝑖𝜔 = 𝑀𝑖

𝑗
− (−ℎ3

𝑆𝑖
𝑗

𝜃3
)
𝜃

ℎ
= 𝑀𝑖

𝑗
+ ℎ2

𝑆𝑖
𝑗

𝜃2
 

𝑎𝑖 + 𝑒𝑖 = 𝑍𝑖
𝑗
 

𝑒𝑖 = 𝑍𝑖
𝑗
− ℎ3

𝑆𝑖+1
𝑗
− 𝑆𝑖

𝑗
𝑐𝑜𝑠 𝜃

𝜃3 𝑠𝑖𝑛 𝜃
 

𝑎𝑖 = ℎ
3 𝑆𝑖+1

𝑗
−𝑆𝑖

𝑗
𝑐𝑜𝑠𝜃

𝜃3 𝑠𝑖𝑛 𝜃
, 𝑏𝑖 = −ℎ

3 𝑆𝑖
𝑗

𝜃3
, 

 𝑐𝑖 =
𝑍𝑖+1
𝑗
−𝑍𝑖

𝑗

ℎ2
+
ℎ(𝑆𝑖+1

𝑗
+𝑆𝑖

𝑗
)(1−𝑐𝑜𝑠𝜃)

𝜃3 𝑠𝑖𝑛 𝜃
−
𝑀𝑖
𝑗

ℎ
−
ℎ𝑆𝑖

𝑗

𝜃2
   (4.2.4) 

𝑑𝑖 = 𝑀𝑖
𝑗
+ ℎ2

𝑆𝑖
𝑗

𝜃2
, 𝑒𝑖 = 𝑍𝑖

𝑗
− ℎ3

𝑆𝑖+1
𝑗
−𝑆𝑖

𝑗
𝑐𝑜𝑠 𝜃

𝜃3 𝑠𝑖𝑛 𝜃
. 

Using the continuity condition of the first and second derivatives at —that is, 

𝑃𝑖
(𝑛)
(𝑥𝑖, 𝑡𝑗) = 𝑃𝑖−1

(𝑛)
(𝑥𝑖 , 𝑡𝑗) where n=1 and 2—we obtain the following relations: 

𝜔𝑏𝑖 + 𝑑𝑖 = −𝑎𝑖−1𝜔𝑠𝑖𝑛 𝜃 + 𝑏𝑖−1𝜔 𝑐𝑜𝑠 𝜃 + 2ℎ𝑐𝑖−1 + 𝑑𝑖−1, 

ixx =
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 −𝜔2𝑎𝑖 + 2𝑐𝑖 = −𝑎𝑖−1𝜔
2 𝑐𝑜𝑠 𝜃 − 𝑏𝑖−1𝜔

2 𝑠𝑖𝑛 𝜃 + 2𝑐𝑖−1.  (4.2.5) 

Using expressions from (4.2.4), the equations in (4.2.5) become 

 𝑀𝑖
𝑗
+𝑀𝑖−1

𝑗
=

2

ℎ
(𝑍𝑖

𝑗
− 𝑍𝑖−1

𝑗
) −

ℎ2

𝜃2
(𝑆𝑖−1

𝑗
+ 𝑆𝑖

𝑗
) +

2ℎ2

𝜃3 𝑠𝑖𝑛 𝜃
(𝑆𝑖−1

𝑗
+ 𝑆𝑖

𝑗
)(1 − 𝑐𝑜𝑠 𝜃)   

  (4.2.6) 

𝑀𝑖
𝑗
−𝑀𝑖−1

𝑗
=
ℎ2𝑆𝑖

𝑗
𝑐𝑜𝑠 𝜃

𝜃 𝑠𝑖𝑛 𝜃
−

ℎ2

2𝜃 𝑠𝑖𝑛 𝜃
(𝑆𝑖−1

𝑗
+ 𝑆𝑖+1

𝑗
) +

1

ℎ
(𝑍𝑖−1

𝑗
− 2𝑍𝑖

𝑗
+ 𝑍𝑖+1

𝑗
) + 

 
ℎ2

𝜃3 𝑠𝑖𝑛 𝜃
(1 − 𝑐𝑜𝑠 𝜃)(𝑆𝑖+1

𝑗
− 𝑆𝑖−1

𝑗
) +

ℎ2

𝜃2
(𝑆𝑖−1

𝑗
− 𝑆𝑖

𝑗
).  (4.2.7) 

Adding Eqs. (4.2.6) and (4.2.7), gives 

 𝑀𝑖
𝑗
=

1

2ℎ
(𝑍𝑖+1

𝑗
− 𝑍𝑖−1

𝑗
) −

ℎ2

𝜃2
𝑆𝑖
𝑗
+

ℎ2

2𝜃3 𝑠𝑖𝑛 𝜃
(1 − 𝑐𝑜𝑠 𝜃)(𝑆𝑖−1

𝑗
+ 2𝑆𝑖

𝑗
+ 𝑆𝑖+1

𝑗
) +

ℎ2𝑆𝑖
𝑗
𝑐𝑜𝑠 𝜃

2𝜃 𝑠𝑖𝑛 𝜃
−

 
ℎ2

4𝜃 𝑠𝑖𝑛 𝜃
(𝑆𝑖−1

𝑗
+ 𝑆𝑖+1

𝑗
).   (4.2.8) 

Similarly, 

 𝑀𝑖−1
𝑗

=
1

2ℎ
(𝑍𝑖

𝑗
− 𝑍𝑖−2

𝑗
) −

ℎ2

𝜃2
𝑆𝑖−1
𝑗
+

ℎ2

2𝜃3 𝑠𝑖𝑛 𝜃
(1 − 𝑐𝑜𝑠 𝜃)(𝑆𝑖−2

𝑗
+ 2𝑆𝑖−1

𝑗
+ 𝑆𝑖

𝑗
) 

         +
ℎ2𝑆𝑖−1

𝑗
𝑐𝑜𝑠 𝜃

2𝜃 𝑠𝑖𝑛 𝜃
−

ℎ2

4𝜃 𝑠𝑖𝑛 𝜃
(𝑆𝑖−2

𝑗
+ 𝑆𝑖

𝑗
).   (4.2.9) 

Using  and  in Eq. (4.2.7) gives the following relation: 

1

2ℎ
(𝑍𝑖+1

𝑗
− 𝑍𝑖−1

𝑗
+ 𝑍𝑖

𝑗
− 𝑍𝑖−2

𝑗
) −

ℎ2

𝜃2
(𝑆𝑖

𝑗
+ 𝑆𝑖−1

𝑗
) 

+
ℎ2(1 − 𝑐𝑜𝑠 𝜃)

2𝜃3 𝑠𝑖𝑛 𝜃
(𝑆𝑖−2

𝑗
+ 3𝑆𝑖−1

𝑗
+ 3𝑆𝑖

𝑗
+ 𝑆𝑖+1

𝑗
) +

ℎ2(𝑆𝑖
𝑗
+ 𝑆𝑖−1

𝑗
) 𝑐𝑜𝑠 𝜃

2𝜃 𝑠𝑖𝑛 𝜃
 

−
ℎ2

4𝜃 𝑠𝑖𝑛 𝜃
(𝑆𝑖−2

𝑗
+ 𝑆𝑖−1

𝑗
+ 𝑆𝑖

𝑗
+ 𝑆𝑖+1

𝑗
) =

2

ℎ
(𝑍𝑖

𝑗
− 𝑍𝑖−1

𝑗
) −

ℎ2

𝜃2
(𝑆𝑖−1

𝑗
+ 𝑆𝑖

𝑗
) 

+
2ℎ2

𝜃3 𝑠𝑖𝑛 𝜃
(𝑆𝑖−1

𝑗
+ 𝑆𝑖

𝑗
)(1 − 𝑐𝑜𝑠 𝜃), 

or 

j

iM j

iM 1−
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−𝑍𝑖−2
𝑗

− ℎ3𝑆𝑖−2
𝑗
(
𝑐𝑜𝑠 𝜃 − 1

𝜃3 𝑠𝑖𝑛 𝜃
+

1

2𝜃 𝑠𝑖𝑛 𝜃
) + 3𝑍𝑖−1

𝑗

− ℎ3𝑆𝑖−1
𝑗
(
1 − 𝑐𝑜𝑠 𝜃

𝜃3 𝑠𝑖𝑛 𝜃
−
𝑐𝑜𝑠 𝜃

𝜃 𝑠𝑖𝑛 𝜃
+

1

2𝜃 𝑠𝑖𝑛 𝜃
) 

−3𝑍𝑖
𝑗
− ℎ3𝑆𝑖

𝑗
(
1 − 𝑐𝑜𝑠 𝜃

𝜃3 𝑠𝑖𝑛 𝜃
−
𝑐𝑜𝑠 𝜃

𝜃 𝑠𝑖𝑛 𝜃
+

1

2𝜃 𝑠𝑖𝑛 𝜃
) + 𝑍𝑖+1

𝑗
− ℎ3𝑆𝑖+1

𝑗
(
𝑐𝑜𝑠 𝜃 − 1

𝜃3 𝑠𝑖𝑛 𝜃
+

1

2𝜃 𝑠𝑖𝑛 𝜃
) 

= 0, 𝑖 = 2,… ,𝑁. 

This equation can be rewritten in the following simple form: 

−𝑍𝑖−2
𝑗

+ 3𝑍𝑖−1
𝑗

− 3𝑍𝑖
𝑗
+ 𝑍𝑖+1

𝑗
= 𝛼𝑆𝑖−2

𝑗
+ 𝛽𝑆𝑖−1

𝑗
+ 𝛽𝑆𝑖

𝑗
+ 𝛼𝑆𝑖+1

𝑗
, 

 𝑖 = 2,… ,𝑁,  (4.2.10) 

where 

𝛼 = ℎ3 (
𝑐𝑜𝑠 𝜃 − 1

𝜃3 𝑠𝑖𝑛 𝜃
+

1

2𝜃 𝑠𝑖𝑛 𝜃
) ,  𝑎𝑛𝑑 𝛽 = ℎ3 (

1 − 𝑐𝑜𝑠 𝜃

𝜃3 𝑠𝑖𝑛 𝜃
−
𝑐𝑜𝑠 𝜃

𝜃 𝑠𝑖𝑛 𝜃
+

1

2𝜃 𝑠𝑖𝑛 𝜃
). 

Remark: 

As 𝜔 → 0, that is 𝜃 → 0, (𝛼, 𝛽) → (
ℎ3

24
,
11ℎ3

24
), and system (4.2.10) reduces to the 

ordinary quartic spline: 

−𝑍𝑖−2
𝑗

+ 3𝑍𝑖−1
𝑗

− 3𝑍𝑖
𝑗
+ 𝑍𝑖+1

𝑗
=
ℎ3

24
(𝑆𝑖−2

𝑗
+ 11𝑆𝑖−1

𝑗
+ 11𝑆𝑖

𝑗
+ 𝑆𝑖+1

𝑗
). 

Using Eq. (4.1.1), we can write 𝑆𝑖−2
𝑗

,𝑆𝑖−1
𝑗

, 
j

iS and 𝑆𝑖+1
𝑗

, in the form 

𝑆𝑖−2
𝑗

=
𝜕3𝑍𝑖−2

𝑗

𝜕𝑥3
= (𝑔𝑖−2

𝑗
−
𝜕𝑍𝑖−2

𝑗

𝜕𝑡
), 

𝑆𝑖−1
𝑗

=
𝜕3𝑍𝑖−1

𝑗

𝜕𝑥3
= (𝑔𝑖−1

𝑗
−
𝜕𝑍𝑖−1

𝑗

𝜕𝑡
), 

𝑆𝑖
𝑗
=

𝜕3𝑍𝑖
𝑗

𝜕𝑥3
= (𝑔𝑖

𝑗
−
𝜕𝑍𝑖

𝑗

𝜕𝑡
), 

𝑆𝑖+1
𝑗

=
𝜕3𝑍𝑖+1

𝑗

𝜕𝑥3
= (𝑔𝑖+1

𝑗
−
𝜕𝑍𝑖+1

𝑗

𝜕𝑡
). 
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These equations can be discretised in the form 

𝑆𝑖−2
𝑗

≈ (𝑔𝑖−2
𝑗

− (
𝑍𝑖−2
𝑗
−𝑍𝑖−2

𝑗−1

𝑘
)), 

𝑆𝑖−1
𝑗

≈ (𝑔𝑖−1
𝑗

− (
𝑍𝑖−1
𝑗
−𝑍𝑖−1

𝑗−1

𝑘
)), 

𝑆𝑖
𝑗
≈ (𝑔𝑖

𝑗
− (

𝑍𝑖
𝑗
−𝑍𝑖

𝑗−1

𝑘
)), 

 𝑆𝑖+1
𝑗

≈ (𝑔𝑖+1
𝑗

− (
𝑍𝑖+1
𝑗
−𝑍𝑖+1

𝑗−1

𝑘
)).  (4.2.11) 

The use of equations from (4.2.10) in Eq. (4.2.11) gives the following system: 

−𝑍𝑖−2
𝑗

+ 3𝑍𝑖−1
𝑗

− 3𝑍𝑖
𝑗
+ 𝑍𝑖+1

𝑗
= 𝛼 (𝑔𝑖−2

𝑗
−
𝑍𝑖−2
𝑗

− 𝑍𝑖−2
𝑗−1

𝑘
) + 𝛽 (𝑔𝑖−1

𝑗
−
𝑍𝑖−1
𝑗

− 𝑍𝑖−1
𝑗−1

𝑘
) + 

𝛽 (𝑔𝑖
𝑗
−
𝑍𝑖
𝑗
− 𝑍𝑖

𝑗−1

𝑘
) + 𝛼 (𝑔𝑖+1

𝑗
−
𝑍𝑖+1
𝑗

− 𝑍𝑖+1
𝑗−1

𝑘
), 

or 

𝐴𝑖𝑍𝑖−2
𝑗

+ 𝐵𝑖𝑍𝑖−1
𝑗

+ 𝐶𝑖𝑍𝑖
𝑗
+ 𝐷𝑖𝑍𝑖+1

𝑗
= 𝛼𝑍𝑖−2

𝑗−1
+ 𝛽𝑍𝑖−1

𝑗−1
+ 𝛽𝑍𝑖

𝑗−1
+ 𝛼𝑍𝑖+1

𝑗−1
+ 𝛿𝑖

𝑗
, 

 𝑖 = 2, … ,𝑁,  (4.2.12) 

where 

, 𝐵𝑖 = 3𝑘 + 𝛽,𝐶𝑖 = −3𝑘 + 𝛽, 𝐴𝑖 = −𝑘 + 𝛼 

and 𝛿𝑖
𝑗
= 𝑘(𝛼𝑔𝑖−2

𝑗
+ 𝛽𝑔𝑖−1

𝑗
+ 𝛽𝑔𝑖

𝑗
+ 𝛼𝑔𝑖+1

𝑗
). 

System (4.2.12) consists of N−1 equations in unknowns  To 

obtain a solution to this system, we need three additional equations. Two equations 

are obtained from the first two parts in (4.1.2): 

 𝑍0
𝑗
= 𝜂(𝑎, 𝑡) = 𝛽1(𝑡),  𝑍𝑁+1

𝑗
= 𝜂(𝑏, 𝑡) = 𝛽2(𝑡).  (4.2.13) 

+−= kAi

.1,,0, += NiZ j

i 
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The third equation can be obtained from the third part of (4.1.2); that is 
𝜕2𝑍𝑁+1

𝑗

𝜕𝑥2
=

𝜂𝑥𝑥(𝑏, 𝑡) = 𝛽3(𝑡), which can be discretised as 

−10𝑍𝑁−4
𝑗

+ 61𝑍𝑁−3
𝑗

− 156𝑍𝑁−2
𝑗

+ 214𝑍𝑁−1
𝑗

− 154𝑍𝑁
𝑗
+ 45𝑍𝑁+1

𝑗
≈ 

 12ℎ2
𝜕2𝑍𝑁+1

𝑗

𝜕𝑥2
= 12ℎ2𝛽3,     𝑗 ≥ 0.  (4.2.14) 

Writing the equations in (4.2.12)–(4.2.14) in matrix form gives 

 𝑄 𝑍𝑗 = 𝑄∗ 𝑍𝑗−1 + 𝑟𝑗,  (4.2.15) 

where 
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and 𝑟𝑗 = (𝛽1(𝑡𝑗), 𝛿2
𝑗
, … , 𝛿𝑁

𝑗
, 12ℎ2𝛽3(𝑡𝑗), 𝛽2(𝑡𝑗))

𝑡

. The initial condition 𝜂(𝑥, 𝑡0) =

𝑓(𝑥), for each implies that for each  These 

values can be used in Eq. (4.2.15) to find the value of for each 

 If the procedure is reapplied once all the approximations  are 

known, the values of  can be obtained in a similar manner. 

4.3 Error Analysis 

Using Eq. (4.2.12), we obtain the truncation error: 

 𝑇𝑖
𝑗
= 𝐴𝑖𝜂𝑖−2

𝑗
+ 𝐵𝑖𝜂𝑖−1

𝑗
+ 𝐶𝑖𝜂𝑖

𝑗
+𝐷𝑖𝜂𝑖+1

𝑗
− 𝛼𝜂𝑖−2

𝑗−1
− 𝛽𝜂𝑖−1

𝑗−1
− 𝛽𝜂𝑖

𝑗−1
− 𝛼𝜂𝑖+1

𝑗−1
− 𝛿𝑖

𝑗
, 

  (4.3.1) 

where 

, 𝐵𝑖 = 3𝑘 + 𝛽,𝐶𝑖 = −3𝑘 + 𝛽, 𝐴𝑖 = −𝑘 + 𝛼 and 

𝛿𝑖
𝑗
= 𝑘(𝛼𝑔𝑖−2

𝑗
+ 𝛽𝑔𝑖−1

𝑗
+ 𝛽𝑔𝑖

𝑗
+ 𝛼𝑔𝑖+1

𝑗
) 

Expanding Eq. (4.3.1) in the Taylor series, in terms of  and its derivatives, 

we obtain the following expression: 

,
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𝑇𝑖
𝑗
= 𝐴𝑖 (1 −

2ℎ

1!
𝐷𝑥 +

(2ℎ)2

2!
𝐷𝑥
2 −⋯)𝜂𝑖

𝑗
+ 𝐵𝑖 (1 − ℎ𝐷𝑥 +

ℎ2

2!
𝐷𝑥
2 −⋯)𝜂𝑖

𝑗
+ 

         𝐶𝑖𝜂𝑖
𝑗
+ 𝐷𝑖 (1 + ℎ𝐷𝑥 +

ℎ2

2!
𝐷𝑥
2 +

ℎ3

3!
𝐷𝑥
3 +⋯)𝜂𝑖

𝑗
− 

        𝛼 (1 + (−𝑘𝐷𝑡 − 2ℎ𝐷𝑥) +
1

2!
(−𝑘𝐷𝑡 − 2ℎ𝐷𝑥)

2 +⋯)𝜂𝑖
𝑗
− 

        𝛽 (1 + (−𝑘𝐷𝑡 − ℎ𝐷𝑥) +
1

2!
(−𝑘𝐷𝑡 − ℎ𝐷𝑥)

2 +⋯)𝜂𝑖
𝑗
− 

        𝛽 (1 − 𝑘𝐷𝑡 +
𝑘2

2!
𝐷𝑡
2 −

𝑘3

3!
𝐷𝑡
3 +⋯)𝜂𝑖

𝑗
− 

        𝛼 (1 + (−𝑘𝐷𝑡 + ℎ𝐷𝑥) +
1

2!
(−𝑘𝐷𝑡 + ℎ𝐷𝑥)

2 +⋯)𝜂𝑖
𝑗
− 

       𝑘𝛼 (1 − 2ℎ𝐷𝑥 +
(2ℎ)2

2!
𝐷𝑥
2 −⋯)𝑔𝑖

𝑗
− 𝑘𝛽 (1 − ℎ𝐷𝑥 +

ℎ2

2!
𝐷𝑥
2 −⋯)𝑔𝑖

𝑗
− 

  𝑘𝛽𝑔𝑖
𝑗
− 𝑘𝛼 (1 + ℎ𝐷𝑥 +

ℎ2

2!
𝐷𝑥
2 +⋯)𝑔𝑖

𝑗
, 

where . After simple calculations, we obtain: 

𝑇𝑖
𝑗
= 𝛼 (1 −

2ℎ

1!
𝐷𝑥 +

(2ℎ)2

2!
𝐷𝑥
2 −⋯)𝜂𝑖

𝑗
− 𝑘 (1 −

2ℎ

1!
𝐷𝑥 +

(2ℎ)2

2!
𝐷𝑥
2 −⋯)𝜂𝑖

𝑗
 

+𝛽(1 − ℎ𝐷𝑥 +
ℎ2

2!
𝐷𝑥
2 −⋯)𝜂𝑖

𝑗
+ 3𝑘 (1 − ℎ𝐷𝑥 +

ℎ2

2!
𝐷𝑥
2 −⋯)𝜂𝑖

𝑗
+ 𝛽𝜂𝑖

𝑗
− 3𝑘𝜂𝑖

𝑗
 

+𝛼(1 + ℎ𝐷𝑥 +
ℎ2

2!
𝐷𝑥
2 +

ℎ3

3!
𝐷𝑥
3 +⋯)𝜂𝑖

𝑗
+ 𝑘 (1 + ℎ𝐷𝑥 +

ℎ2

2!
𝐷𝑥
2 +

ℎ3

3!
𝐷𝑥
3 +⋯)𝜂𝑖

𝑗
 

−𝛼 (1 + (−𝑘𝐷𝑡 − 2ℎ𝐷𝑥) +
1

2!
(−𝑘𝐷𝑡 − 2ℎ𝐷𝑥)

2 +⋯)𝜂𝑖
𝑗
 

  −𝛽 (1 + (−𝑘𝐷𝑡 − ℎ𝐷𝑥) +
1

2!
(−𝑘𝐷𝑡 − ℎ𝐷𝑥)

2 +⋯)𝜂𝑖
𝑗
 

       − 𝛽 (1 − 𝑘𝐷𝑡 +
𝑘2

2!
𝐷𝑡
2 −

𝑘3

3!
𝐷𝑡
3 +⋯)𝜂𝑖

𝑗
 

        −𝛼 (1 + (−𝑘𝐷𝑡 + ℎ𝐷𝑥) +
1

2!
(−𝑘𝐷𝑡 + ℎ𝐷𝑥)

2 +⋯)𝜂𝑖
𝑗
 

      − 𝑘𝛼 (1 − 2ℎ𝐷𝑥 +
(2ℎ)2

2!
𝐷𝑥
2 −⋯)𝑔𝑖

𝑗
− 𝑘𝛽 (1 − ℎ𝐷𝑥 +

ℎ2

2!
𝐷𝑥
2 −⋯)𝑔𝑖

𝑗
 

      − 𝑘𝛽𝑔𝑖
𝑗
− 𝑘𝛼 (1 + ℎ𝐷𝑥 +

ℎ2

2!
𝐷𝑥
2 +⋯)𝑔𝑖

𝑗
. 

j

ix

j
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j
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77 

The local truncation error can be simplified to 

𝑇𝑖
𝑗
= −𝑘 (−

2ℎ

1!
𝐷𝑥 +

(2ℎ)2

2!
𝐷𝑥
2 −⋯)𝜂𝑖

𝑗
+ 3𝑘 (−ℎ𝐷𝑥 +

ℎ2

2!
𝐷𝑥
2 −⋯)𝜂𝑖

𝑗
+ 

     𝑘 (ℎ𝐷𝑥 +
ℎ2

2!
𝐷𝑥
2 +

ℎ3

3!
𝐷𝑥
3 +⋯)𝜂𝑖

𝑗
− 2(𝛽 + 𝛼)(−𝑘𝐷𝑡 +

𝑘2

2!
𝐷𝑡
2 −

𝑘3

3!
𝐷𝑡
3 +⋯)𝜂𝑖

𝑗
+ 

      (𝛽 + 𝛼)ℎ (
−1

2!
(
2
1
) 𝑘𝐷𝑡 +

1

3!
(
3
1
) 𝑘2𝐷𝑡

2 −⋯)𝐷𝑥𝜂𝑖
𝑗
+ 

       (𝛽 + 5𝛼)ℎ2 (
1

3!
(
3
2
) 𝑘𝐷𝑡 −

1

4!
(
4
2
) 𝑘2𝐷𝑡

2 +⋯)𝐷𝑥
2𝜂𝑖

𝑗
+ 

       (𝛽 + 7𝛼)ℎ3 (
−1

4!
(
4
3
) 𝑘𝐷𝑡 +

1

5!
(
5
3
) 𝑘2𝐷𝑡

2 −⋯)𝐷𝑥
3𝜂𝑖

𝑗
+⋯− 

   𝑘𝛼 (−2ℎ𝐷𝑥 +
(2ℎ)2

2!
𝐷𝑥
2 −⋯)(𝐷𝑡 + 𝐷𝑥

3)𝜂𝑖
𝑗
− 𝑘𝛽 (−ℎ𝐷𝑥 +

ℎ2

2!
𝐷𝑥
2 −⋯)(𝐷𝑡 + 𝐷𝑥

3)𝜂𝑖
𝑗

− 

   𝑘𝛼 (ℎ𝐷𝑥 +
ℎ2

2!
𝐷𝑥
2 +⋯) (𝐷𝑡 +𝐷𝑥

3)𝜂𝑖
𝑗
− 2𝑘(𝛽 + 𝛼)(𝐷𝑡 + 𝐷𝑥

3)𝜂𝑖
𝑗
. 

𝑇𝑖
𝑗
= 𝑘(ℎ3 − 2(𝛽 + 𝛼))𝐷𝑥

3𝜂𝑖
𝑗
+ 𝑘ℎ (

−ℎ3

2
+ (𝛽 + 𝛼))𝐷𝑥

4𝜂𝑖
𝑗
 

+𝑘ℎ2 (
ℎ3

4
−
1

2
(𝛽 + 5𝛼))𝐷𝑥

5𝜂𝑖
𝑗
+ 𝑘ℎ3 (

−ℎ3

12
+
1

6
(𝛽 + 7𝛼))𝐷𝑥

6𝜂𝑖
𝑗
 

    +𝑘ℎ4 (
ℎ3

40
−
1

24
(𝛽 + 17𝛼))𝐷𝑥

7𝜂𝑖
𝑗
+⋯+ 

   2(𝛽 + 𝛼)(−
𝑘2

2!
𝐷𝑡
2 +

𝑘3

3!
𝐷𝑡
3 −⋯)𝜂𝑖

𝑗
 

+ (𝛽 + 𝛼)ℎ (
1

3!
(
3
1
) 𝑘2𝐷𝑡

2 −
1

4!
(
4
1
) 𝑘3𝐷𝑡

3 +⋯)𝐷𝑥𝜂𝑖
𝑗
 

  +(𝛽 + 5𝛼)ℎ2 (−
1

4!
(
4
2
) 𝑘2𝐷𝑡

2 +
1

5!
(
5
2
) 𝑘3𝐷3𝑡 −⋯)𝐷𝑥

2𝜂𝑖
𝑗
 

   +(𝛽 + 7𝛼)ℎ3 (
1

5!
(
5
3
) 𝑘2𝐷𝑡

2 −
1

6!
(
6
3
) 𝑘3𝐷𝑡

3 +⋯)𝐷𝑥
3𝜂𝑖

𝑗
+.…  (4.3.2) 

For 𝛽 + 𝛼 =
ℎ3

2
,  the local truncation error is of order 𝑜(𝑘ℎ2 + 𝑘2ℎ3) but for 𝛽 +

𝛼 =
ℎ3

2
,  and 𝛼 = 0 it is of 𝑜(𝑘ℎ4 + 𝑘2ℎ3). 
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Remark: 

The previous relations, which enable us to choose , can be obtained using 

simple calculations by expanding Eq. (4.3.1) in terms of  and its derivatives, which 

is the local truncation error of Eq. (4.3.1), as follows: 

𝑇∗𝑖
𝑗
= −𝜂𝑖−2

𝑗
+ 3𝜂𝑖−1

𝑗
− 3𝜂𝑖

𝑗
+ 𝜂𝑖+1

𝑗
− 𝛼𝐷𝑥

3𝜂𝑖−2
𝑗

− 𝛽𝐷𝑥
3𝜂𝑖−1

𝑗
− 𝛽𝐷𝑥

3𝜂𝑖
𝑗
− 𝛼𝐷𝑥

3𝜂𝑖+1
𝑗
, 

𝑇𝑖
𝑗
= (ℎ3 − 2(𝛽 + 𝛼))𝐷𝑥

3𝜂𝑖
𝑗
+ ℎ(

−ℎ3

2
+ (𝛽 + 𝛼))𝐷𝑥

4𝜂𝑖
𝑗
+ ℎ2 (

ℎ3

4
−
1

2
(𝛽 + 5𝛼))𝐷𝑥

5𝜂𝑖
𝑗

+ 

       ℎ3 (
−ℎ3

12
+
1

6
(𝛽 + 7𝛼))𝐷𝑥

6𝜂𝑖
𝑗
+ ℎ4 (

ℎ3

40
−
1

24
(𝛽 + 17𝛼))𝐷𝑥

7𝜂𝑖
𝑗
+⋯ 

4.4 Stability Analysis 

Using the Von Neumann method, the stability of the method can be investigated. 

According to this method, the solution of the difference (4.2.12) can be written in 

the form: 

 𝑍𝑖
𝑗
= 𝜁𝑗 𝑒𝑥𝑝(𝑞𝜙𝑖ℎ),  (4.4.1) 

where  is the wave number, ,  is the element size, and  is the 

amplification factor at time level j. Inserting the latter expression for  in scheme 

(4.2.12), we obtain the characteristic equation in the form 

𝜁𝑗{𝐴𝑖 𝑒𝑥𝑝((𝑖 − 2)𝑞𝜙ℎ) + 𝐵𝑖 𝑒𝑥𝑝((𝑖 − 1)𝑞𝜙ℎ) + 𝐶𝑖 𝑒𝑥𝑝(𝑖𝑞𝜙ℎ) + 𝐷𝑖 𝑒𝑥𝑝((𝑖 + 1)𝑞𝜙ℎ)} = 

      𝜁𝑗−1{𝛼 𝑒𝑥𝑝((𝑖 − 2)𝑞𝜙ℎ) + 𝛽 𝑒𝑥𝑝((𝑖 − 1)𝑞𝜙ℎ) + 𝛽 𝑒𝑥𝑝(𝑖𝑞𝜙ℎ) + 𝛼 𝑒𝑥𝑝((𝑖 +

1)𝑞𝜙ℎ)}. 

𝐴𝑖 = −𝑘 + 𝛼, 𝐵𝑖 = 3𝑘 + 𝛽,𝐶𝑖 = −3𝑘+ 𝛽, 𝐴𝑖 = 𝑘 + 𝛼. 

Dividing both sides by 

𝜁𝑗−1{𝐴𝑖 𝑒𝑥𝑝((𝑖 − 2)𝑞𝜙ℎ)+:𝐵𝑖 𝑒𝑥𝑝((𝑖 − 1)𝑞𝜙ℎ) + 𝐶𝑖 𝑒𝑥𝑝(𝑖𝑞𝜙ℎ) + 𝐷𝑖 𝑒𝑥𝑝((𝑖 + 1)𝑞𝜙ℎ)} 

 and,

j

iu

 1−=q h j

j

iZ
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results in 

𝜁𝑗

𝜁𝑗−1

= 
𝛼 𝑒𝑥𝑝((𝑖 − 2)𝑞𝜙ℎ) + 𝛽 𝑒𝑥𝑝((𝑖 − 1)𝑞𝜙ℎ) + 𝛽 𝑒𝑥𝑝(𝑖𝑞𝜙ℎ) + 𝛼 𝑒𝑥𝑝((𝑖 + 1)𝑞𝜙ℎ)

𝐴𝑖 𝑒𝑥𝑝((𝑖 − 2)𝑞𝜙ℎ) + 𝐵𝑖 𝑒𝑥𝑝((𝑖 − 1)𝑞𝜙ℎ) + 𝐶𝑖 𝑒𝑥𝑝(𝑖𝑞𝜙ℎ) + 𝐷𝑖 𝑒𝑥𝑝((𝑖 + 1)𝑞𝜙ℎ)}
 

Dividing by exp (𝑖𝑞𝜙ℎ) then results in 

 𝜁 =
𝛼 𝑒𝑥𝑝(−2𝑞𝜙ℎ)+𝛽 𝑒𝑥𝑝(−𝑞𝜙ℎ)+𝛽+𝛼 𝑒𝑥𝑝(𝑞𝜙ℎ)

𝐴𝑖 𝑒𝑥𝑝(−2𝑞𝜙ℎ)+𝐵𝑖 𝑒𝑥𝑝(−𝑞𝜙ℎ)+𝐶𝑖+𝐷𝑖 𝑒𝑥𝑝(𝑞𝜙ℎ)
   (4.4.2) 

Using Euler’s formula; results in 

𝑒𝑥𝑝[ 𝑞𝜑] = 𝑐𝑜𝑠 𝜑 + 𝑞 𝑠𝑖𝑛 𝜑 ,    𝜑 = 𝜙ℎ, 

𝜁 =
𝛼(𝑐𝑜𝑠∅2 − 2𝑞𝑠𝑖𝑛∅𝑐𝑜𝑠∅ − 𝑠𝑖𝑛∅2) + 𝛽(𝑐𝑜𝑠∅ − 𝑞𝑠𝑖𝑛∅) + 𝛽 + 𝛼(𝑐𝑜𝑠∅ + 𝑞𝑠𝑖𝑛∅)

𝐴𝑖(𝑐𝑜𝑠2∅ − 𝑞𝑠𝑖𝑛2∅) + 𝐵𝑖(𝑐𝑜𝑠∅ − 𝑞𝑠𝑖𝑛∅) + 𝐶𝑖 + 𝐷𝑖(𝑐𝑜𝑠∅ + 𝑞𝑠𝑖𝑛∅)
 

=
𝛼(𝑐𝑜𝑠2∅ − 𝑞𝑠𝑖𝑛2∅) + 𝛽(𝑐𝑜𝑠∅ − 𝑞𝑠𝑖𝑛∅) + 𝛽 + 𝛼(𝑐𝑜𝑠∅ + 𝑞𝑠𝑖𝑛∅)

(𝛼 − 𝑘)(𝑐𝑜𝑠2∅ − 𝑞𝑠𝑖𝑛2∅) + (3𝑘 + 𝛽)(𝑐𝑜𝑠∅ − 𝑞𝑠𝑖𝑛∅) + (𝛽 − 3𝑘) + (𝛼 + 𝑘)(𝑐𝑜𝑠∅ + 𝑞𝑠𝑖𝑛∅)
 

=
𝛼𝑐𝑜𝑠2∅ − 𝛼𝑞𝑠𝑖𝑛2∅ + 𝛽𝑐𝑜𝑠∅ − 𝛽𝑞𝑠𝑖𝑛∅ + 𝛽 + 𝛼𝑐𝑜𝑠∅ + 𝛼𝑞𝑠𝑖𝑛∅

(𝛼 − 𝑘)𝑐𝑜𝑠2∅ − 𝑞(𝛼 − 𝑘)𝑠𝑖𝑛2∅ + (3𝑘 + 𝛽)𝑐𝑜𝑠∅ − 𝑞(3𝑘 + 𝛽)𝑠𝑖𝑛∅ + (𝛽 − 3𝑘) + (𝛼 + 𝑘)𝑐𝑜𝑠∅ + 𝑞(𝛼 + 𝑘)𝑠𝑖𝑛∅
 

 =
𝛼𝑐𝑜𝑠2∅ + (𝛼 + 𝛽)𝑐𝑜𝑠∅ + 𝛽 + (𝛼𝑞 − 𝛽𝑞)𝑠𝑖𝑛∅ − 𝛼𝑞𝑠𝑖𝑛2∅

(𝛼 − 𝑘)𝑐𝑜𝑠2∅ − (𝛼 + 𝛽 + 4𝑘)𝑐𝑜𝑠∅ + (𝛽 − 3𝑘) − 𝑞(𝛼 − 𝑘)𝑠𝑖𝑛2∅ + 𝑞(𝛼 − 𝛽 − 2𝑘)𝑠𝑖𝑛∅
 

=
𝛼𝑐𝑜𝑠2∅ + (𝛼 + 𝛽)𝑐𝑜𝑠∅ + 𝛽 + 𝑞[(−𝛼𝑠𝑖𝑛2∅) + (𝛼 − 𝛽)𝑠𝑖𝑛∅]

(𝛼 − 𝑘)𝑐𝑜𝑠2∅ − (𝛼 + 𝛽 + 4𝑘)𝑐𝑜𝑠∅ + (𝛽 − 3𝑘) + 𝑞[(𝑘 − 𝛼)𝑠𝑖𝑛2∅ + (𝛼 − 𝛽 − 2𝑘)𝑠𝑖𝑛∅]
 

Eq. (4.4.2) becomes: 

 𝜁 =
𝑋∗+𝑞𝑌∗

𝑋+𝑞𝑌
,  (4.4.3)  

where 

𝑋∗ = 𝛼 𝑐𝑜𝑠 2𝜑 + (𝛽 + 𝛼) 𝑐𝑜𝑠 𝜑 + 𝛽, 

𝑌∗ = −𝛼 𝑠𝑖𝑛 2𝜑 + (𝛼 − 𝛽) 𝑠𝑖𝑛 𝜑, 

𝑋 = (𝛼 − 𝑘) 𝑐𝑜𝑠 2𝜑 + (𝛽 + 𝛼 + 4𝑘) 𝑐𝑜𝑠 𝜑 + (𝛽 − 3𝑘), (4.4.4) 
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𝑌 = (𝑘 − 𝛼) 𝑠𝑖𝑛 2𝜑 + (−2𝑘 + 𝛼 − 𝛽) 𝑠𝑖𝑛 𝜑. 

Using , and , we can rewrite the equations in 

(4.4.4) as 

𝑋∗ = 𝛼𝑐𝑜𝑠2∅ + (𝛽 + 𝛼)𝑐𝑜𝑠∅ + 𝛽 

= 𝛼𝑐𝑜𝑠2∅ + 𝛼 − 𝛼 + 𝛼𝑐𝑜𝑠∅ + 𝛽𝑐𝑜𝑠∅ + 𝛽 

= 𝛼(𝑐𝑜𝑠2∅ − 1) + 𝛼(𝑐𝑜𝑠∅ + 1) + 𝛽(𝑐𝑜𝑠∅ + 1) 

= 𝛼(−2𝑠𝑖𝑛∅2) + 𝛼 (2𝑐𝑜𝑠2
∅

2
) + 𝛽 (2𝑐𝑜𝑠2

∅

2
) 

= −2𝛼 (2𝑠𝑖𝑛
∅

2
𝑐𝑜𝑠

∅

2
)
2

+ 𝛼 (2𝑐𝑜𝑠2
∅

2
) + 𝛽(2𝑐𝑜𝑠2

∅

2
) 

= 2𝛼𝑐𝑜𝑠2
∅

2
+ 2𝛽𝑐𝑜𝑠2

∅

2
− 8𝛼𝑠𝑖𝑛2

∅

2
𝑐𝑜𝑠2

∅

2
 

= 2(𝑐𝑜𝑠2
∅

2
) (𝛽 + 𝛼 − 4𝛼 𝑠𝑖𝑛2

∅

2
), 

which take the form 

𝑋∗ = 2(𝑐𝑜𝑠2
𝜑

2
) (𝛽 + 𝛼 − 4𝛼 𝑠𝑖𝑛2

𝜑

2
), 

𝑌∗ = −𝛼 𝑠𝑖𝑛 2∅ + (𝛼 − 𝛽) 𝑠𝑖𝑛 ∅ 

= −𝛼(2𝑠𝑖𝑛∅𝑐𝑜𝑠∅) + 𝛼𝑠𝑖𝑛∅ − 𝛽𝑠𝑖𝑛∅ 

= −2𝛼𝑠𝑖𝑛∅𝑐𝑜𝑠∅ + 2𝛼𝑠𝑖𝑛∅ − 𝛼𝑠𝑖𝑛∅ − 𝛽𝑠𝑖𝑛∅ 

= 𝑠𝑖𝑛∅[−2𝛼𝑐𝑜𝑠∅ + 2𝛼 − 𝛼 − 𝛽] 

= 𝑠𝑖𝑛∅[−𝛼 − 𝛽 − 2𝛼(𝑐𝑜𝑠∅ − 1)] 

= 𝑠𝑖𝑛∅ [−𝛼 − 𝛽 − 2𝛼 (−2𝑠𝑖𝑛2
∅

2
)] 

= 𝑠𝑖𝑛∅ [−𝛼 − 𝛽 + 4𝛼 𝑠𝑖𝑛2
∅

2
] 

 2sin212cos −=
2

sin21cos 2  −=
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= (2𝑠𝑖𝑛
∅

2
𝑐𝑜𝑠

∅

2
)(−1)[𝛼 + 𝛽 − 4𝛼𝑠𝑖𝑛2

∅

2
] 

= −2(𝑠𝑖𝑛
∅

2
𝑐𝑜𝑠

∅

2
) (𝛽 + 𝛼 − 4𝛼 𝑠𝑖𝑛2

∅

2
). 

Then, the final form of Y* is as follows: 

𝑌∗ = −2(𝑠𝑖𝑛
𝜑

2
𝑐𝑜𝑠

𝜑

2
) (𝛽 + 𝛼 − 4𝛼 𝑠𝑖𝑛2

𝜑

2
), 

𝑋 = (𝛼 − 𝑘) 𝑐𝑜𝑠 2∅ + (𝛽 + 𝛼 + 4𝑘) 𝑐𝑜𝑠 ∅ + (𝛽 − 3𝑘) 

= 𝛼 𝑐𝑜𝑠 2∅ − 𝑘 𝑐𝑜𝑠 2∅ + 𝛼𝑐𝑜𝑠∅ + 𝛽𝑐𝑜𝑠∅ + 4𝑘 𝑐𝑜𝑠 ∅ + 𝛽 − 3𝑘 

=  𝛼𝑐𝑜𝑠2∅ + 𝛼 − 𝛼 + 𝛼𝑐𝑜𝑠∅ + 𝛽𝑐𝑜𝑠∅ + 𝛽 − 𝑘𝑐𝑜𝑠2∅ + 4𝑘𝑐𝑜𝑠∅ − 3𝑘 

= 𝛼(𝑐𝑜𝑠2∅ − 1) + 𝛼(𝑐𝑜𝑠∅ + 1) + 𝛼(𝑐𝑜𝑠∅ + 1) − 2𝑘 − 𝑘𝑐𝑜𝑠2∅ − 𝑘 + 4𝑘𝑐𝑜𝑠∅ 

= 𝛼(−2𝑠𝑖𝑛2∅) + 𝛼(𝑐𝑜𝑠∅ + 1) + 𝛼(𝑐𝑜𝑠∅ + 1) − 2𝑘 − 𝑘𝑐𝑜𝑠2∅ − 𝑘 + 4𝑘𝑐𝑜𝑠∅ 

= −2𝛼𝑠𝑖𝑛2∅ + (𝛼 + 𝛽)(𝑐𝑜𝑠∅ + 1) − 2𝑘 − 𝑘(𝑐𝑜𝑠∅ + 1) + 4𝑘𝑐𝑜𝑠∅ 

= −2𝛼(2𝑠𝑖𝑛
∅

2
𝑐𝑜𝑠

∅

2
)2 + (𝛼 + 𝛽) (2𝑐𝑜𝑠2

∅

2
) − 2𝑘 − 𝑘(2𝑐𝑜𝑠2∅) + 4𝑘𝑐𝑜𝑠∅ 

= −8𝛼 (𝑠𝑖𝑛2
∅

2
𝑐𝑜𝑠2

∅

2
)
2

+ 2(𝛼 + 𝛽) (𝑐𝑜𝑠2
∅

2
) − 2𝑘(1 + 𝑐𝑜𝑠2∅ − 2𝑐𝑜𝑠∅) 

= −8𝛼 (𝑠𝑖𝑛2
∅

2
𝑐𝑜𝑠2

∅

2
)
2

+ 2(𝛼 + 𝛽) (𝑐𝑜𝑠2
∅

2
) − 2𝑘(1 − 𝑐𝑜𝑠∅)2 

= −8𝛼 (𝑠𝑖𝑛2
∅

2
𝑐𝑜𝑠2

∅

2
)
2

+ 2(𝛼 + 𝛽)(𝑐𝑜𝑠2
∅

2
) − 2𝑘(2𝑠𝑖𝑛2

∅

2
)2 

= 2(𝑐𝑜𝑠2
∅

2
) (𝛼 + 𝛽 − 4𝛼𝑠𝑖𝑛2

∅

2
) − 8𝑘𝑠𝑖𝑛4

∅

2
 

𝑋 = [2(𝑐𝑜𝑠2
𝜑

2
) (𝛽 + 𝛼 − 4𝛼 𝑠𝑖𝑛2

𝜑

2
) − 8𝑘 𝑠𝑖𝑛4

𝜑

2
] = 𝑋∗ + 𝑇, 

𝑌 = (𝑘 − 𝛼) 𝑠𝑖𝑛 2∅ + (−2𝑘 + 𝛼 − 𝛽) 𝑠𝑖𝑛 ∅ 

= 𝑘 𝑠𝑖𝑛 2∅ − 𝛼 𝑠𝑖𝑛 2∅ + 𝛼 𝑠𝑖𝑛 ∅ − 𝛽𝑠𝑖𝑛∅ − 2𝑘𝑠𝑖𝑛∅ 
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= 𝑘 𝑠𝑖𝑛 2∅ − 2𝑘𝑠𝑖𝑛∅ − 𝛼𝑠𝑖𝑛2∅ + 2𝛼𝑠𝑖𝑛∅ − 𝛼𝑠𝑖𝑛∅ − 𝛽 𝑠𝑖𝑛 ∅ 

= (𝛼 − 𝑘)(2𝑠𝑖𝑛∅ − 𝑠𝑖𝑛2∅) − 𝛼𝑠𝑖𝑛∅ − 𝛽𝑠𝑖𝑛∅ 

= (𝛼 − 𝑘)(2𝑠𝑖𝑛∅ − 2𝑠𝑖𝑛∅𝑐𝑜𝑠∅) − 2𝛼𝑠𝑖𝑛
∅

2
𝑐𝑜𝑠

∅

2
− 2𝛽𝑖𝑛

∅

2
𝑐𝑜𝑠

∅

2
 

= (𝛼 − 𝑘)(2𝑠𝑖𝑛∅)(1 − 𝑐𝑜𝑠∅) − 2𝛼𝑠𝑖𝑛
∅

2
𝑐𝑜𝑠

∅

2
− 2𝛽𝑖𝑛

∅

2
𝑐𝑜𝑠

∅

2
 

= (2𝛼𝑠𝑖𝑛∅)(1 − 𝑐𝑜𝑠∅) − (2𝑘𝑠𝑖𝑛∅)(1 − 𝑐𝑜𝑠∅) − 2𝛼𝑠𝑖𝑛
∅

2
𝑐𝑜𝑠

∅

2
− 2𝛽𝑖𝑛

∅

2
𝑐𝑜𝑠

∅

2
 

= 4𝛼 (𝑠𝑖𝑛
∅

2
𝑐𝑜𝑠

∅

2
) (2𝑠𝑖𝑛2

∅

2
) − 4𝑘 (𝑠𝑖𝑛

∅

2
𝑐𝑜𝑠

∅

2
) (2𝑠𝑖𝑛2

∅

2
) − 2𝛼𝑠𝑖𝑛

∅

2
𝑐𝑜𝑠

∅

2
 

− 2𝛽𝑖𝑛
∅

2
𝑐𝑜𝑠

∅

2
 

= 8𝛼 (𝑠𝑖𝑛3
∅

2
𝑐𝑜𝑠

∅

2
) − 8𝑘 (𝑠𝑖𝑛3

∅

2
𝑐𝑜𝑠

∅

2
) − 2𝛼𝑠𝑖𝑛

∅

2
𝑐𝑜𝑠

∅

2
− 2𝛽𝑖𝑛

∅

2
𝑐𝑜𝑠

∅

2
 

= −2(𝑠𝑖𝑛
∅

2
𝑐𝑜𝑠

∅

2
) (𝛼 + 𝛽 − 4𝛼𝑠𝑖𝑛2

∅

2
) − 8𝑘 (𝑠𝑖𝑛3

∅

2
𝑐𝑜𝑠

∅

2
) 

𝑌 = −2(𝑠𝑖𝑛
𝜑

2
𝑐𝑜𝑠

𝜑

2
) (𝛽 + 𝛼 − 4𝛼 𝑠𝑖𝑛2

𝜑

2
) − 8𝑘 𝑐𝑜𝑠

𝜑

2
𝑠𝑖𝑛3

𝜑

2
= 𝑌∗ + 𝐺, (4.4.5) 

where 𝑇 = −8𝑘 𝑠𝑖𝑛4
𝜑

2
, 𝐺 = −8𝑘𝑐𝑜𝑠

𝜑

2
𝑠𝑖𝑛3

𝜑

2
. 

Using Eq. (4.4.3), we obtain 

 |𝜁| = √
𝑋∗2+𝑌∗2

𝑋2+𝑌2
.  (4.4.6) 

Eq. (4.4.6) enables us to rewrite the last equation in the form 

|𝜁| = √
𝑋∗2+𝑌∗2

(𝑋∗+𝑇)2+(𝑌∗+𝐺)2
, 

or 

 |𝜁| = √
𝑋∗2+𝑌∗2

𝑋∗2+𝑇2+𝑌∗2+𝐺2+𝛿
,  (4.4.7) 
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where . Using (4.4.7),  becomes 

𝛿 = 2(2 (𝑐𝑜𝑠2
∅

2
) (𝛼+𝛽 − 4𝛼𝑠𝑖𝑛2

∅

2
) (−8𝑘 𝑠𝑖𝑛4

∅

2
) + 2(−2(𝑠𝑖𝑛

∅

2
𝑐𝑜𝑠

∅

2
)(𝛼 + 𝛽

− 4𝛼𝑠𝑖𝑛2
∅

2
)(−8𝑘𝑐𝑜𝑠

𝜑

2
𝑠𝑖𝑛3

∅

2
) 

= −32𝑘 (𝑠𝑖𝑛4
∅

2
𝑐𝑜𝑠2

∅

2
) (𝛼+𝛽 − 4𝛼𝑠𝑖𝑛2

∅

2
) + 32𝑘(𝑠𝑖𝑛

∅

2
𝑐𝑜𝑠

∅

2
)(𝛼 + 𝛽

− 4𝛼𝑠𝑖𝑛2
∅

2
)(𝑐𝑜𝑠

𝜑

2
𝑠𝑖𝑛3

∅

2
) 

= −32𝑘 (𝑠𝑖𝑛4
∅

2
𝑐𝑜𝑠2

∅

2
) (𝛼+𝛽 − 4𝛼𝑠𝑖𝑛2

∅

2
) + 32𝑘 (𝑠𝑖𝑛4

∅

2
𝑐𝑜𝑠2

∅

2
) (𝛼 + 𝛽 − 4𝛼𝑠𝑖𝑛2

∅

2
) 

= 0 

𝛿 = −32𝑘 𝑐𝑜𝑠2
𝜑

2
𝑠𝑖𝑛4

𝜑

2
(𝛽 + 𝛼 − 4𝛼 𝑠𝑖𝑛2

𝜑

2
) + 32𝑐𝑜𝑠2

𝜑

2
𝑠𝑖𝑛4

𝜑

2
(𝛽 + 𝛼 − 4𝛼 𝑠𝑖𝑛2

𝜑

2
) =

0. 

This result enables us to write Eq. (4.4.7) as 

 |𝜁| = √
𝑋∗2+𝑌∗2

𝑋∗2+𝑌∗2+𝑇2+𝐺2
.  (4.4.8) 

For stability, we must have  (otherwise  in Eq. (4.4.1) would grow in an 

unbounded manner). Using Eq. (4.4.8), we can say that the stability condition, that 

is , is satisfied. 

4.5 Numerical Example 

In this section, we obtain numerical solutions to Eq. (4.1.1) for a numerical 

example. Consider the non-homogeneous third-order dispersive PDE [105]: 

𝜕𝜂

𝜕𝑡
+
𝜕3𝜂

𝜕𝑥3
= −𝑠𝑖𝑛 (𝜋𝑥)𝑠𝑖𝑛 𝑡 − 𝜋3𝑐𝑜𝑠 (𝜋𝑥)𝑐𝑜𝑠 𝑡,  0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0, 

with boundary conditions 

𝜂(0, 𝑡) = 𝜂(1, 𝑡) = 𝜂𝑥𝑥(1, 𝑡) = 0,  𝑡 > 0, 

GYTX ** 22 += 

1 j

1
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and the initial condition 

𝜂(𝑥, 0) = sin 𝜋𝑥,  0 ≤ 𝑥 ≤ 1. 

The exact solution of this problem is 

𝜂(𝑥, 𝑡) = sin 𝜋𝑥cos 𝑡 

The numerical results obtained are listed in the following tables, where all 

calculations are carried out using Mathematica. The accuracy of the method is 

measured by computing the L∞ - error norm, Max. Absolute error, as shown in Tables 

4.5.1–4.5.3. Tables 4.5.4–4.5.5 show the numerical and exact solutions for ℎ =

0.025, 𝑘 = 0.0005, 𝑎𝑛𝑑 𝛽 = −𝛼 +
ℎ3

2
. 

Table 4.5.1 The 𝑳∞𝒆𝒓𝒓𝒐𝒓 for the numerical and exact solutions when 𝒉 =

𝟎. 𝟎𝟐𝟓, 𝒌 = 𝟎. 𝟎𝟎𝟎𝟓,𝜶 = 𝟎, 𝒂𝒏𝒅 𝜷 = −𝜶 +
𝒉𝟑

𝟐
. 

Time 0.500 1.500 2.00 2.500 

𝑳∞𝒆𝒓𝒓𝒐𝒓 4.59312× 10-6 5.05911× 10-7 2.01782× 10-6 4.047 ×10-6 

 

Table 4.5.2 The 𝑳∞𝒆𝒓𝒓𝒐𝒓 for the numerical and exact solutions when 𝒉 =

𝟎. 𝟎𝟐𝟓, 𝒌 = 𝟎. 𝟎𝟎𝟎𝟓,𝜶 =
𝒉𝟑

𝟏𝟔𝟎
, 𝒂𝒏𝒅 𝜷 = −𝜶 +

𝒉𝟑

𝟐
. 

Time  0.500 1.500 2.00 2.500 

𝑳∞𝒆𝒓𝒓𝒐𝒓 7.28473× 10-5 9.00942× 10-6 3.09094× 10-5 6.31829×10-5 

 

Table 4.5.3 The 𝑳∞𝒆𝒓𝒓𝒐𝒓 for the numerical and exact solutions when 𝒉 =

𝟎. 𝟎𝟐𝟓, 𝒌 = 𝟎. 𝟎𝟎𝟎𝟓,𝜶 =
𝒉𝟑

𝟐𝟒
, 𝒂𝒏𝒅 𝜷 = −𝜶 +

𝒉𝟑

𝟐
. 

Time  0.500 1.500 2.00 2.500 

𝑳∞𝒆𝒓𝒓𝒐𝒓 4.63835× 10-4 5.7401× 10-5 1.9661×10-4 4.02159×10-4 
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The reason that the accuracy in Table 4.5.1 is the best is that for 𝛼 = 0, 𝛽 = −𝛼 +

ℎ3

2
,  the local truncation error is of order 𝑜(𝑘ℎ4 + 𝑘2ℎ3) but for 𝛽 + 𝛼 =

ℎ3

2
,  it is 

of order 𝑜(𝑘ℎ2 + 𝑘2ℎ3). 

Table 4.5.4 Comparison between the numerical and exact solutions when 𝒉 =

𝟎. 𝟎𝟐𝟓, 𝒕 = 𝟐, 𝜶 = 𝟎, 𝒂𝒏𝒅 𝜷 = −𝜶 +
𝒉𝟑

𝟐
. 

𝒙 Exact Solution Numerical Solution 

0.1 𝝅 −0.128596 −0.129457 

0.2 𝝅 −0.244605 −0.2446030 

0.3 𝝅 −0.336669 −0.3366680 

0.4 𝝅 −0.395779 −0.3957770 

0.5 𝝅 −0.416147 −0.4161450 

0.6 𝝅 −0.395779 −0.3957780 

0.7 𝝅 −0.336669 −0.3366700 

0.8 𝝅 −0.244605 −0.2446046 

0.9 𝝅 −0.128596 −0.129457 
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Table 4.5.5 The 𝑳∞𝒆𝒓𝒓𝒐𝒓 for the numerical and exact solutions when 𝒉 =

𝝅

𝟐𝟎
, 𝒌 = 𝟎. 𝟎𝟎𝟐, 𝒂𝒏𝒅 𝒕𝒉𝒆 𝒕𝒊𝒎𝒆 𝒔𝒕𝒆𝒑𝒔 𝒇𝒓𝒐𝒎 𝒕 = 𝟏. 𝟗 𝒕𝒐 𝒕 = 𝟐. 𝟏. 

Time 1.9 2 2.1 

𝑳∞𝒆𝒓𝒓𝒐𝒓 2.9822  3.31405  3.68684  

 

Table 4.5.6 Comparison between the numerical and exact solutions when 𝒉 =

𝟎. 𝟎𝟐𝟓, 𝒕 = 𝟐, 𝜶 =
𝒉𝟑

𝟏𝟔𝟎
, 𝒂𝒏𝒅 𝜷 = −𝜶 +

𝒉𝟑

𝟐
. 

𝒙 Exact Solution Numerical Solution 

0.1 𝝅 −0.128596 −0.129126 

0.2 𝝅 −0.244605 −0.2445870 

0.3 𝝅 −0.336669 −0.3366450 

0.4 𝝅 −0.395779 −0.3957500 

0.5 𝝅 −0.416147 −0.4161160 

0.6 𝝅 −0.395779 −0.3957500 

0.7 𝝅 −0.336669 −0.3366450 

0.8 𝝅 −0.244605 −0.2445870 

0.9 𝝅 −0.128596 −0.129126 

 

Table 4.5.7 The 𝑳∞𝒆𝒓𝒓𝒐𝒓 for the numerical and exact solutions when 𝒉 =

𝝅

𝟐𝟎
, 𝒌 = 𝟎. 𝟎𝟎𝟎𝟒, 𝒂𝒏𝒅 𝒕𝒉𝒆 𝒕𝒊𝒎𝒆 𝒔𝒕𝒆𝒑𝒔 𝒇𝒓𝒐𝒎 𝒕 = 𝟏. 𝟗 𝒕𝒐 𝒕 = 𝟐. 𝟏. 

Time 1.9 2 2.1 

𝑳∞𝒆𝒓𝒓𝒐𝒓 1.86724  2.08023  2.31321  

 

Figures 4.5.1–4.5.12 show the relationships between the numerical and exact 

solutions for the dispersive equation for various times and the same discretisations 

(h). 
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310 −


310 −


310 −


310 −
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Figure 4.5.1 The relationship between the numerical and exact solutions of the 

dispersive equation at 𝒉 = 𝟎. 𝟎𝟐𝟓, 𝒌 = 𝟎. 𝟎𝟎𝟎𝟓,𝜶 =
𝒉𝟑

𝟏𝟔𝟎
, 𝜷 = −𝜶 +

𝒉𝟑

𝟐
, 𝒂𝒏𝒅 𝒕 =

𝟎. 𝟎𝟎𝟎𝟓. 

 

Figure 4.5.2 The relationship between the numerical and exact solutions of the 

dispersive equation at 𝒉 = 𝟎. 𝟎𝟐𝟓, 𝒌 = 𝟎. 𝟎𝟎𝟎𝟓,𝜶 =
𝒉𝟑

𝟏𝟔𝟎
, 𝜷 = −𝜶 +

𝒉𝟑

𝟐
, 𝒂𝒏𝒅 𝒕 =

𝟎. 𝟓. 
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Figure 4.5.3 The relationship between the numerical and exact solutions of the 

dispersive equation at 𝒉 = 𝟎. 𝟎𝟐𝟓, 𝒌 = 𝟎. 𝟎𝟎𝟎𝟓,𝜶 =
𝒉𝟑

𝟏𝟔𝟎
, 𝜷 = −𝜶 +

𝒉𝟑

𝟐
, 𝒂𝒏𝒅 𝒕 =

𝟏. 𝟎. 

 

Figure 4.5.4 The relationship between the numerical and exact solutions of the 

dispersive equation at 𝒉 = 𝟎. 𝟎𝟐𝟓, 𝒌 = 𝟎. 𝟎𝟎𝟎𝟓,𝜶 =
𝒉𝟑

𝟏𝟔𝟎
, 𝜷 = −𝜶 +

𝒉𝟑

𝟐
, 𝒂𝒏𝒅 𝒕 =

𝟏. 𝟓. 
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Figure 4.5.5 The relationship between the numerical and exact solutions of the 

dispersive equation at 𝒉 = 𝟎. 𝟎𝟐𝟓, 𝒌 = 𝟎. 𝟎𝟎𝟎𝟓,𝜶 =
𝒉𝟑

𝟏𝟔𝟎
, 𝜷 = −𝜶 +

𝒉𝟑

𝟐
, 𝒂𝒏𝒅 𝒕 =

𝟐. 𝟎. 

 

 

Figure 4.5.6 The relationship between the numerical and exact solutions of the 

dispersive equation at 𝒉 = 𝟎. 𝟎𝟐𝟓, 𝒌 = 𝟎. 𝟎𝟎𝟎𝟓,𝜶 =
𝒉𝟑

𝟏𝟔𝟎
, 𝜷 = −𝜶 +

𝒉𝟑

𝟐
, 𝒂𝒏𝒅 𝒕 =

𝟐. 𝟓. 
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Figure 4.5.7 The relationship between the numerical and exact solutions of the 

dispersive equation at 𝒉 = 𝟎. 𝟎𝟐𝟓, 𝒌 = 𝟎. 𝟎𝟎𝟎𝟓,𝜶 =
𝒉𝟑

𝟏𝟔𝟎
, 𝜷 = −𝜶 +

𝒉𝟑

𝟐
, 𝒂𝒏𝒅 𝒕 =

𝟑. 𝟎. 

 

 

Figure 4.5.8 The relationship between the numerical and exact solutions of the 

dispersive equation at 𝒉 = 𝟎. 𝟎𝟐𝟓, 𝒌 = 𝟎. 𝟎𝟎𝟎𝟓,𝜶 =
𝒉𝟑

𝟏𝟔𝟎
, 𝜷 = −𝜶 +

𝒉𝟑

𝟐
, 𝒂𝒏𝒅 𝒕 =

𝟑. 𝟓. 
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Figure 4.5.9 The relationship between the numerical and exact solutions of the 

dispersive equation at 𝒉 = 𝟎. 𝟎𝟐𝟓, 𝒌 = 𝟎. 𝟎𝟎𝟎𝟓,𝜶 =
𝒉𝟑

𝟏𝟔𝟎
, 𝜷 = −𝜶 +

𝒉𝟑

𝟐
, 𝒂𝒏𝒅 𝒕 =

𝟒. 𝟎. 

 

 

Figure 4.5.10 The relationship between the numerical and exact solutions of 

the dispersive equation at 𝒉 = 𝟎. 𝟎𝟐𝟓, 𝒌 = 𝟎. 𝟎𝟎𝟎𝟓, 𝜶 =
𝒉𝟑

𝟏𝟔𝟎
, 𝜷 = −𝜶 +

𝒉𝟑

𝟐
, 𝒂𝒏𝒅 𝒕 = 𝟒. 𝟓. 
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Figure 4.5.11 The relationship between the numerical and exact solutions of 

the dispersive equation at 𝒉 = 𝟎. 𝟎𝟐𝟓, 𝒌 = 𝟎. 𝟎𝟎𝟎𝟓, 𝜶 =
𝒉𝟑

𝟏𝟔𝟎
, 𝜷 = −𝜶 +

𝒉𝟑

𝟐
, 𝒂𝒏𝒅 𝒕 = 𝟓. 𝟎. 

 

 

Figure 4.5.12 The relationship between the numerical and exact solutions of 

the dispersive equation at 𝒉 = 𝟎. 𝟎𝟐𝟓, 𝒌 = 𝟎. 𝟎𝟎𝟎𝟓, 𝜶 =
𝒉𝟑

𝟏𝟔𝟎
, 𝜷 = −𝜶 +

𝒉𝟑

𝟐
, 𝒂𝒏𝒅 𝒕 = 𝟓. 𝟓. 
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Figures 4.5.13–4.5.16 show 3D numerical solutions to the dispersive equation for 

various times and the same discretisations (h). 

 

Figure 4.5.13 3D representation of the behaviour of the numerical solutions to 

the dispersive equation at time t=0.00 to t=10.0. 

 

Figure 4.5.14 3D representation of the behaviour of the numerical solutions to 

the dispersive equation at time t=10.0 to t=20.0. 
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Figure 4.5.15 3D representation of the behaviour of the numerical solutions to 

the dispersive equation at time t=20.0 to t=30.0. 

 

 

Figure 4.5.16 3D representation of the behaviour of the numerical solutions to 

the dispersive equation at times t=30.0 to t=40.0. 
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4.6 Concluding Remarks 

This chapter was devoted to the use of quartic non-polynomial spline functions for 

solving third-order dispersive PDEs. Recent trends in computational mathematics, 

mathematical physics and mechanics show the common use of spline functions to 

solve such problems. The results obtained are very encouraging. It was shown that 

the L∞ error norms confirm theoretical convergence. The convergence analysis of the 

method proved that the scheme is third-order convergent. Also, the method was 

shown to be unconditionally stable. The numerical examples illustrated that the non-

polynomial spline functions are more adaptable in approximating functions. The 

graphs comparing exact and approximate solutions for the numerical examples show 

the superiority of the method compared with [100]. 
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Chapter 5: Numerical Investigation of Coupled Nonlinear 

Non-Homogeneous Partial Differential Equations 

5.1 Introduction 

Nonlinear phenomena modelled by PDEs are relevant to many areas of scientific 

fields including solid state physics, plasma physics, fluid dynamics, mathematical 

biology and chemical kinetics. The Klein–Gordon equation is one of the most 

important mathematical models in quantum field theory. The nonlinear Klein–

Gordon equation (NKGE) is used to model many nonlinear phenomena. It appears in 

theoretical physics, particularly in the area of relativistic quantum mechanics. This 

equation is a relativistic version of the Schrödinger equation, which describes scalar 

spineless particles [78,101–108]. Many researchers have used various numerical 

methods to solve the NKGE. In 2002, Masmoudi and Nakanishi showed that 

solutions for the NKGE can be described using a system of two coupled NLS 

equations as the speed of light tends to infinity, in the strong topology of the energy 

space [109]. Later, John (2004) argued in favour of a numerical study of a particular 

form of the NKGE, based on resonant structures within the NKGE, The NKGE has 

been solved numerically using finite difference methods in one spatial dimension, 

with the asymmetric double-well potential as its nonlinear term [110].  

In 2007, Khusnutdinova asserted that a system of coupled Klein–Gordon equations 

is a model for 1D nonlinear wave processes in two-component media; for example, 

long longitudinal waves in elastic bi-layers, where nonlinearity comes only from the 

bonding material. He proposed general properties for the model (i.e. group 

classification, conservation laws, invariant solutions) and special solutions exhibiting 

an energy exchange between the two physical components of the system [111]. A 

year later, Dehghan and Shokri proposed a numerical scheme to solve the 1D NKGE 

with quadratic and cubic nonlinearity. Their scheme used collocation points and 

approximated the solution using thin-plate spline radial basis functions [112].  

In 2010, Sassaman studied coupled Klein–Gordon equations in (1+1) and (1+2) 

dimensions [113]. Li, in 2011, proposed a 1D lattice Boltzmann scheme with an 
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amending function for the NKGE. With the Taylor and Chapman–Enskog expansion, 

the NKGE was recovered correctly from the lattice Boltzmann equation [114]. Wu 

and Ge studied the Klein–Gordon equation coupled with the Maxwell equation in 

rotationally symmetric bounded domains when a non-homogeneous term breaks the 

symmetry of the associated functional. Under suitable assumptions about nonlinear 

perturbation, they obtained infinite radially symmetric solutions to the non-

homogeneous Klein–Gordon–Maxwell system [115].  

In 2013, Krämer in their diploma study demonstrated the derivation of an 

approximate solution to the NKGE via the method of multiple scales. This method 

follows the concept of expanding the solution into a perturbation series, including 

multiple temporal and spatial scales [116]. In the same year, Chen and Li proved the 

existence of multiple solutions for the non-homogeneous Klein–Gordon equation 

coupled with Born–Infeld theory [117]. Guo et al. (2015) presented a numerical 

analysis of the 1D Klein–Gordon equation with quadratic and cubic nonlinearity, 

using the element-free reproducing kernel particle Ritz method [118]. Also in 2015, 

Sarboland and Aminataei provided a numerical scheme to approximate solutions to 

the NKGE by applying the multiquadric quasi-interpolation and the integrated radial 

basis function network schemes [119]. A year later, Raza et al. presented a scheme 

for numerical approximation of solutions to the 1D NKGE. They used a common 

approach to find a solution for a nonlinear system by first linearising the equations 

through successive substitution—that is, by applying the Newton iteration method—

and then solving a linear least squares problem [120]. Rashidinia and Jokar used 

polynomial wavelets to find the numerical solution for a NKGE in 2016 [121]. In 

2018, Shi and Chen studied the multiplicity of positive solutions for a class of non-

homogeneous Klein–Gordon-Maxwell equations. They proved the existence of two 

positive solutions through use of Ekeland’s variational principle and the Mountain 

Pass Theorem [122]. Recently, in 2021, Ghazi and Tawfiq considered a new approach 

to solve a type of PDE by using coupled Laplace transformation with a decomposition 

method to find the exact solution for a nonlinear, non-homogenous equation with 

initial conditions [123]. Here we consider a nonlinear Klein–Gordon PDE in the 

following form [78]: 
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𝜕2𝑢

𝜕𝑥2
(𝑥, 𝑡) +

𝜕2𝑢

𝜕𝑡2
(𝑥, 𝑡) + 𝑣(𝑥, 𝑡)𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡), (5.1.1) 

𝜕2𝑣

𝜕𝑥2
(𝑥, 𝑡) +

𝜕2𝑣

𝜕𝑡2
(𝑥, 𝑡) + 𝑢(𝑥, 𝑡)𝑣(𝑥, 𝑡) = 𝑔(𝑥, 𝑡), (5.1.2) 

for 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑡 ≥ 0, subject to the conditions 

 𝑢(𝑎, 𝑡) = 𝜀1(𝑡), 𝑢(𝑏, 𝑡) = 𝜀2(𝑥),  (5.1.3) 

 𝑣(𝑎, 𝑡) = 𝜌1(𝑡), 𝑣(𝑏, 𝑡) = 𝜌2(𝑡),  (5.1.4) 

 𝑢(𝑥, 0) = 𝜏1(𝑥),
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝜏2(𝑥),  (5.1.5) 

 𝑣(𝑥, 0) = 𝜎1(𝑥),
𝜕𝑣

𝜕𝑡
(𝑥, 0) = 𝜎2(𝑥).  (5.1.6) 

5.2 The Numerical Method 

To approximate 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) through collocation using a CBS, let the 

region 𝑅 = [𝑎, 𝑏] × [0,∞] be discretised by a set of points 𝑅𝑖𝑗, which are the vertices 

of a grid of points (𝑥𝑖, 𝑡𝑗), where 𝑥𝑖 = 𝑎 + 𝑖ℎ, ℎ = ∆𝑥 for 𝑖 = 0,1, … , 𝑛 and 𝑡𝑗 =

𝑗𝑘, 𝑘 = ∆𝑡 for 𝑗 = 0,1, …; and let ∅𝑖(𝑥) be CBSs with knots at 𝑥−2 < 𝑥−1 < ⋯ <

𝑥𝑛+1 < 𝑥𝑛+2, where 

∅𝑖(𝑥) =
1

ℎ3

{
 
 

 
 

(𝑥 − 𝑥𝑖−2)
3, if 𝑥 ∈ [𝑥𝑖−2, 𝑥𝑖−1]

ℎ3 + 3ℎ2(𝑥 − 𝑥𝑖−1) + 3ℎ(𝑥 − 𝑥𝑖−1)
2 − 3(𝑥 − 𝑥𝑖−1)

3, if 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖] 

ℎ3 + 3ℎ2(𝑥𝑖+1 − 𝑥) + 3ℎ(𝑥𝑖+1 − 𝑥)
2 − 3(𝑥𝑖+1 − 𝑥)

3, if 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1]

(𝑥𝑖+2 − 𝑥)
3, if 𝑥 ∈ [𝑥𝑖+1, 𝑥𝑖+2]

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

. 

Table 5.2.1 presents values of ∅𝑖(𝑥) and its derivatives at the knots. Since  ∅𝑖(𝑥) and 

its first and second derivatives vanish outside the interval (𝑥𝑖−2, 𝑥𝑖+2), there is no 

need to tabulate  ∅𝑖 for other values of 𝑥.  

Table 5.2.1 The values of ∅𝒊(𝒙) and their derivative within the interval 

[𝒙𝒊−𝟐, 𝒙𝒊+𝟐]. 

𝒙 𝒙𝒊−𝟐 𝒙𝒊−𝟏 𝒙𝒊 𝒙𝒊+𝟏 𝒙𝒊+𝟐 

∅𝒊(𝒙) 0 1 4 1 0 
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∅𝒊
′(𝒙) 0 3/h 0 -3/h 0 

∅𝒊
′′(𝒙) 0 6

ℎ2⁄  −12/ℎ2 6
ℎ2⁄  0 

The collocation method for approximately solving Eqs. (5.1.1) and (5.1.2) involves 

seeking approximations 𝑈 and 𝑉 of 𝑢 and 𝑣 from the finite dimensional subspace of 

𝐶2[𝑎, 𝑏], which is spanned by the linearly independent set of CBSs 

{ ∅−1,  ∅0,  ∅1, … ,  ∅𝑛 ,  ∅𝑛+1} having the forms 

 𝑈(𝑥, 𝑡) = 𝛽−1(𝑡)∅−1(𝑥) + 𝛽0(𝑡)∅0(𝑥) + ⋯+ 𝛽𝑛(𝑡)∅𝑛(𝑥) + 𝛽𝑛+1(𝑡)∅𝑛+1(𝑥),  

  (5.2.1) 

 𝑉(𝑥, 𝑡) = 𝛼−1(𝑡)∅−1(𝑥) + 𝛼0(𝑡)∅0(𝑥) + ⋯+ 𝛼𝑛(𝑡)∅𝑛(𝑥) + 𝛼𝑛+1(𝑡)∅𝑛+1(𝑥),  

  (5.2.2) 

such that 

 
𝜕2𝑈

𝜕𝑥2
(𝑥𝑖 , 𝑡𝑗) +

𝜕2𝑈

𝜕𝑡2
(𝑥𝑖 , 𝑡𝑗) + 𝑉(𝑥𝑖, 𝑡𝑗)𝑈(𝑥𝑖 , 𝑡𝑗) = 𝑓(𝑥𝑖, 𝑡𝑗),  (5.2.3) 

  
𝜕2𝑉

𝜕𝑥2
(𝑥𝑖, 𝑡𝑗) +

𝜕2𝑉

𝜕𝑡2
(𝑥𝑖, 𝑡𝑗) + 𝑈(𝑥𝑖, 𝑡𝑗)𝑉(𝑥𝑖, 𝑡𝑗) = 𝑔(𝑥𝑖 , 𝑡𝑗),  (5.2.4) 

for 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑡 ≥ 0, subject to the conditions 

 𝑈(𝑎, 𝑡𝑗) = 𝜀1(𝑡𝑗), 𝑈(𝑏, 𝑡) = 𝜀2(𝑡𝑗),  (5.2.5) 

  𝑉(𝑎, 𝑡𝑗) = 𝜌1(𝑡𝑗), 𝑉(𝑏, 𝑡) = 𝜌2(𝑡𝑗),  (5.2.6) 

 𝑈(𝑥𝑖, 0) = 𝜏1(𝑥𝑖),
𝜕𝑈

𝜕𝑡
(𝑥𝑖, 0) = 𝜏2(𝑥𝑖),  (5.2.7) 

 𝑉(𝑥𝑖 , 0) = 𝜎1(𝑥𝑖),
𝜕𝑉

𝜕𝑡
(𝑥𝑖, 0) = 𝜎2(𝑥𝑖),  (5.2.8) 

𝑖 = 0,1, … , 𝑛 and 𝑗 = 0,1, …. Substituting Eqs. (5.2.1) and (5.2.2) into Eqs. (5.2.3) 

and (5.2.4) gives 

 ∑ 𝛽𝑚
𝑛+1
𝑚=−1 (𝑡𝑗) ∅𝑚

′′ (𝑥𝑖) + ∑
𝑑2𝛽𝑚

𝑑𝑡2
𝑛+1
𝑚=−1 (𝑡𝑗) ∅𝑚(𝑥𝑖) + 𝑉𝑖,𝑗 ∑ 𝛽𝑚

𝑛+1
𝑚=−1 (𝑡𝑗)∅𝑚(𝑥𝑖) = 𝑓𝑖,𝑗,  

  (5.2.9) 
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 ∑ 𝛼𝑚
𝑛+1
𝑚=−1 (𝑡𝑗) ∅𝑚

′′ (𝑥𝑖) + ∑
𝑑2𝛼𝑚

𝑑𝑡2
𝑛+1
𝑚=−1 (𝑡𝑗) ∅𝑚(𝑥𝑖) + 𝑈𝑖,𝑗 ∑ 𝛼𝑚

𝑛+1
𝑚=−1 (𝑡𝑗)∅𝑚(𝑥𝑖) = 𝑔𝑖,𝑗, 

  (5.2.10) 

where 

𝑈𝑖,𝑗 = ∑ 𝛽𝑚

𝑛+1

𝑚=−1

(𝑡𝑗)∅𝑚(𝑥𝑖) and 𝑉𝑖,𝑗 = ∑ 𝛼𝑚

𝑛+1

𝑚=−1

(𝑡𝑗)∅𝑚(𝑥𝑖). 

Using the values in Table 5.2.1 in Eqs. (5.2.9) and (5.2.10) gives: 

 
6

ℎ2
(𝛽𝑖−1,𝑗 − 2𝛽𝑖,𝑗 + 𝛽𝑖+1,𝑗) + (

𝑑2𝛽𝑖−1,𝑗

𝑑𝑡2
+ 4

𝑑2𝛽𝑖,𝑗

𝑑𝑡2
+
𝑑2𝛽𝑖+1,𝑗

𝑑𝑡2
) + 𝑉𝑖,𝑗(𝛽𝑖−1,𝑗 + 4𝛽𝑖,𝑗 +

𝛽𝑖+1,𝑗) = 𝑓𝑖,𝑗 ,   (5.2.11) 

 
6

ℎ2
(𝛼𝑖−1,𝑗 − 2𝛼𝑖,𝑗 + 𝛼𝑖+1,𝑗) + (

𝑑2𝛼𝑖−1,𝑗

𝑑𝑡2
+ 4

𝑑2𝛼𝑖,𝑗

𝑑𝑡2
+
𝑑2𝛼𝑖+1,𝑗

𝑑𝑡2
) + 𝑈𝑖,𝑗(𝛼𝑖−1,𝑗 + 4𝛼𝑖,𝑗 +

𝛼𝑖+1,𝑗) = 𝑔𝑖,𝑗 ,   (5.2.12) 

where 

𝑉𝑖,𝑗 = 𝛼𝑖−1,𝑗 + 4𝛼𝑖,𝑗 + 𝛼𝑖+1,𝑗, 𝑈𝑖,𝑗 = 𝛽𝑖−1,𝑗 + 4𝛽𝑖,𝑗 + 𝛽𝑖+1,𝑗,  𝛽𝑖,𝑗 = 𝛽𝑖(𝑡𝑗) and 𝛼𝑖,𝑗 =

𝛼𝑖(𝑡𝑗). 

The central finite difference approximations 

  𝛽𝑖,𝑗 ≅
𝛽𝑖,𝑗−1+𝛽𝑖,𝑗+1

2
,
𝑑2𝛽𝑖,𝑗

𝑑𝑡2
≅

𝛽𝑖,𝑗−1−2𝛽𝑖,𝑗+𝛽𝑖,𝑗+1

𝑘2
,  (5.2.13) 

  𝛼𝑖,𝑗 ≅
𝛼𝑖,𝑗−1+𝛼𝑖,𝑗+1

2
, and 

𝑑2𝛼𝑖,𝑗

𝑑𝑡2
≅

𝛼𝑖,𝑗−1−2𝛼𝑖,𝑗+𝛼𝑖,𝑗+1

𝑘2
,  (5.2.14) 

can be substituted into Eqs. (5.2.11) and (5.2.12) to give the following systems: 

 𝐴𝑖,𝑗𝛽𝑖−1,𝑗+1 +  𝐵𝑖,𝑗𝛽𝑖,𝑗+1 +   𝐴𝑖,𝑗𝛽𝑖+1,𝑗+1 = 

2

𝑘2
(𝛽𝑖−1,𝑗 + 4𝛽𝑖,𝑗 + 𝛽𝑖+1,𝑗)−𝐴𝑖,𝑗(𝛽𝑖−1,𝑗−1 + 𝛽𝑖+1,𝑗−1) −  𝐵𝑖,𝑗𝛽𝑖,𝑗−1+𝑓𝑖,𝑗, 

    (5.2.15) 

and 
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 𝐶𝑖,𝑗𝛼𝑖−1,𝑗+1 +  𝐷𝑖,𝑗𝛼𝑖,𝑗+1 +   𝐶𝑖,𝑗𝛼𝑖+1,𝑗+1 = 
2

𝑘2
(𝛼𝑖−1,𝑗 + 4𝛼𝑖,𝑗 + 𝛼𝑖+1,𝑗)−𝐶𝑖,𝑗(𝛼𝑖−1,𝑗−1 +

𝛼𝑖+1,𝑗−1) −  𝐷𝑖,𝑗𝛼𝑖,𝑗−1 + 𝑔𝑖,𝑗 ,   (5.2.16) 

where 

𝐴𝑖,𝑗 =
3

ℎ2
+
1

𝑘2
+ 0.5𝑉𝑖,𝑗, 𝐵𝑖,𝑗 =

−6

ℎ2
+
4

𝑘2
+ 2𝑉𝑖,𝑗, 

𝐶𝑖,𝑗 =
3

ℎ2
+
1

𝑘2
+ 0.5𝑈𝑖,𝑗, 𝐷𝑖,𝑗 =

−6

ℎ2
+
4

𝑘2
+ 2𝑈𝑖,𝑗, 

𝑉𝑖,𝑗 = 𝛼𝑖−1,𝑗 + 4𝛼𝑖,𝑗 + 𝛼𝑖+1,𝑗, 𝑈𝑖,𝑗 = 𝛽𝑖−1,𝑗 + 4𝛽𝑖,𝑗 + 𝛽𝑖+1,𝑗, 

for each 𝑖 = 0,1, … , 𝑛 and 𝑗 = 1,2, …. 

Systems (5.2.15) and (5.2.16) have to be complemented by the boundary conditions: 

𝑈(𝑎, 𝑡𝑗) = 𝑈(𝑥0, 𝑡𝑗) = 𝜀1(𝑡𝑗), 𝑈(𝑏, 𝑡) = 𝑈(𝑥𝑛, 𝑡) = 𝜀2(𝑡𝑗), 

𝑉(𝑎, 𝑡𝑗) = 𝑉(𝑥0, 𝑡𝑗) = 𝜌1(𝑡𝑗), 𝑉(𝑏, 𝑡) = 𝑉(𝑥𝑛, 𝑡𝑗) = 𝜌2(𝑡𝑗). 

Using Eqs. (5.2.1) and (5.2.2) and Table 2.2.4.1 these conditions give  

 𝛽−1,𝑗 + 4𝛽0,𝑗 + 𝛽1,𝑗 = 𝜀1(𝑡𝑗),  (5.2.17) 

 𝛽𝑛−1,𝑗 + 4𝛽𝑛,𝑗 + 𝛽𝑛+1,𝑗 = 𝜀2(𝑡𝑗),  (5.2.18) 

 𝛼−1,𝑗 + 4𝛼0,𝑗 + 𝛼1,𝑗 = 𝜌1(𝑡𝑗),  (5.2.19) 

 𝛼𝑛−1,𝑗 + 4𝛼𝑛,𝑗 + 𝛼𝑛+1,𝑗 = 𝜌2(𝑡𝑗),  (5.2.20) 

for each 𝑗 = 0,1, …. 

Eliminating 𝛽−1,𝑗 and 𝛼−1,𝑗 from the first equation of (5.2.15) results in 

  𝐴0,𝑗𝛽−1,𝑗+1 +  𝐵0,𝑗𝛽0,𝑗+1 +   𝐴0,𝑗𝛽1,𝑗+1 = 

2

𝑘2
(𝛽−1,𝑗 + 4𝛽0,𝑗 + 𝛽1,𝑗)−𝐴0,𝑗(𝛽−1,𝑗−1 + 𝛽1,𝑗−1) −  𝐵0,𝑗𝛽0,𝑗−1 + 𝑓0,𝑗 . 

and from Eqs. (5.2.17) and (5.2.19), 
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𝛽−1,𝑗 + 4𝛽0,𝑗 + 𝛽1,𝑗 = 𝜀1(𝑡𝑗), 𝑗 = 0,1, …. 

𝛼−1,𝑗 + 4𝛼0,𝑗 + 𝛼1,𝑗 = 𝜌1(𝑡𝑗), 𝑗 = 0,1, …. 

where 

𝐴0,𝑗 =
3

ℎ2
+

1

𝑘2
+ 0.5𝑉0,𝑗, 𝐵0,𝑗 =

−6

ℎ2
+

4

𝑘2
+ 2𝑉0,𝑗, and 𝑉0,𝑗 = 𝛼−1,𝑗 + 4𝛼0,𝑗 + 𝛼1,𝑗. 

I find 

𝐴0,𝑗(𝛽−1,𝑗+1 + 𝛽1,𝑗+1) +  𝐵0,𝑗𝛽0,𝑗+1 = 

2

𝑘2
𝜀1(𝑡𝑗) − 𝐴0,𝑗(𝜀1(𝑡𝑗−1) − 4𝛽0,𝑗−1) −  𝐵0,𝑗𝛽0,𝑗−1 + 𝑓0,𝑗 . 

𝐴0,𝑗 (𝜀1(𝑡𝑗+1)) − 4𝐴0,𝑗𝛽0,𝑗+1 +  𝐵0,𝑗𝛽0,𝑗+1 = 

2

𝑘2
𝜀1(𝑡𝑗) − 𝐴0,𝑗𝜀1(𝑡𝑗−1) + 4𝐴0,𝑗𝛽0,𝑗−1 −  𝐵0,𝑗𝛽0,𝑗−1 + 𝑓0,𝑗 . 

−4(
3

ℎ2
+
1

𝑘2
+ 0.5𝑉0,𝑗)𝛽0,𝑗+1 + (

−6

ℎ2
+
4

𝑘2
+ 2𝑉0,𝑗)𝛽0,𝑗+1 =

2

𝑘2
𝜀1(𝑡𝑗) 

−𝐴0,𝑗 (𝜀1(𝑡𝑗−1) − 𝜀1(𝑡𝑗+1)) + 4 (
3

ℎ2
+
1

𝑘2
+ 0.5𝑉0,𝑗)𝛽0,𝑗−1 

−(
−6

ℎ2
+
4

𝑘2
+ 2𝑉0,𝑗)𝛽0,𝑗−1 + 𝑓0,𝑗 . 

−18

ℎ2
𝛽0,𝑗+1 =

18

ℎ2
𝛽0,𝑗−1 +

2

𝑘2
𝜀1(𝑡𝑗) − (

3

ℎ2
+
1

𝑘2
+
1

2
𝜌1(𝑡𝑗)) (𝜀1(𝑡𝑗+1) + 𝜀1(𝑡𝑗−1)) + 𝑓0,𝑗. 

    (5.2.21) 

Similarly, eliminating 𝛽𝑛+1,𝑗 and 𝛼𝑛+1,𝑗 from the last of Eq. (5.2.15) and Eqs. 

(5.2.18) and (5.2.20) results in 

−18

ℎ2
𝛽𝑛,𝑗+1 =

18

ℎ2
𝛽𝑛,𝑗−1 +

2

𝑘2
𝜀2(𝑡𝑗) − (

3

ℎ2
+
1

𝑘2
+
1

2
𝜌2(𝑡𝑗)) (𝜀2(𝑡𝑗+1) + 𝜀2(𝑡𝑗−1))

+ 𝑓𝑛,𝑗 . 
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    (5.2.22) 

Eqs. (5.2.21), (5.2.22) and (5.2.15) for 𝑖 = 1,2, … , 𝑛 − 1 can be written in matrix 

form: 

𝐴𝛽 = 𝑑 (5.2.23) 

where 

𝐴 =

[
 
 
 
 
 
 
 
𝐿 0 0 … 0
 𝐴1,𝑗  𝐵1,𝑗  𝐴1,𝑗 0 … 0

0  𝐴2,𝑗  𝐵2,𝑗  𝐴2,𝑗 0 … 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 … 0  𝐴𝑛−2,𝑗  𝐵𝑛−2,𝑗  𝐴𝑛−2,𝑗 0

0 … 0  𝐴𝑛−1,𝑗  𝐵𝑛−1,𝑗  𝐴𝑛−1,𝑗
0 … 0 0 𝐿 ]

 
 
 
 
 
 
 

, 

where 

 𝐿 =
−18

ℎ2
, 𝐴𝑖,𝑗 =

3

ℎ2
+
1

𝑘2
+ 0.5𝑉𝑖,𝑗, 𝐵𝑖,𝑗 =

−6

ℎ2
+
4

𝑘2
+ 2𝑉𝑖,𝑗, 

𝑉𝑖,𝑗 = 𝛼𝑖−1,𝑗 + 4𝛼𝑖,𝑗 + 𝛼𝑖+1,𝑗, 𝛽 = (𝛽0,𝑗+1, 𝛽1,𝑗+1, … , 𝛽𝑛,𝑗+1)
𝑡
, 

𝑑 = (𝑑0, 𝑑1, … , 𝑑𝑛)
𝑡, 

𝑑0 =
18

ℎ2
𝛽0,𝑗−1 +

2

𝑘2
𝜀1(𝑡𝑗) − (

3

ℎ2
+
1

𝑘2
+
1

2
𝜌1(𝑡𝑗)) (𝜀1(𝑡𝑗+1) + 𝜀1(𝑡𝑗−1)) + 𝑓0,𝑗 , 

𝑑𝑛 =
18

ℎ2
𝛽𝑛,𝑗−1 +

2

𝑘2
𝜀2(𝑡𝑗) − (

3

ℎ2
+
1

𝑘2
+
1

2
𝜌2(𝑡𝑗)) (𝜀2(𝑡𝑗+1) + 𝜀2(𝑡𝑗−1)) + 𝑓𝑛,𝑗 , 

𝑑𝑖 =
2

𝑘2
(𝛽𝑖−1,𝑗 + 4𝛽𝑖,𝑗 + 𝛽𝑖+1,𝑗)−𝐴𝑖,𝑗(𝛽𝑖−1,𝑗−1 + 𝛽𝑖+1,𝑗−1) −  𝐵𝑖,𝑗𝛽𝑖,𝑗−1+𝑓𝑖,𝑗 , 

for each 𝑖 = 1,2, … , 𝑛 − 1 and 𝑗 = 1,2, …. 

A similar system can be developed by eliminating 𝛼−1,𝑗, 𝛽−1,𝑗, 𝛼𝑛+1,𝑗, and 𝛽𝑛+1,𝑗 

from the first and the last equations of (5.2.16). The result is the following system: 

𝐶𝛼 = 𝑤 (5.2.24) 
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where 

𝐶 =

[
 
 
 
 
 
 
 
𝐿 0 0 … 0
𝐶1,𝑗  𝐷1,𝑗  𝐶1,𝑗 0 … 0

0  𝐶2,𝑗  𝐷2,𝑗  𝐶2,𝑗 0 … 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 … 0  𝐶𝑛−2,𝑗  𝐷𝑛−2,𝑗  𝐶𝑛−2,𝑗 0

0 … 0  𝐶𝑛−1,𝑗  𝐷𝑛−1,𝑗  𝐶𝑛−1,𝑗
0 … 0 0 𝐿 ]

 
 
 
 
 
 
 

, 

where 

 𝐿 =
−18

ℎ2
, 𝐶𝑖,𝑗 =

3

ℎ2
+
1

𝑘2
+ 0.5𝑈𝑖,𝑗, 𝐷𝑖,𝑗 =

−6

ℎ2
+
4

𝑘2
+ 2𝑈𝑖,𝑗, 

𝑈𝑖,𝑗 = 𝛽𝑖−1,𝑗 + 4𝛽𝑖,𝑗 + 𝛽𝑖+1,𝑗,  𝛼 = (𝛼0,𝑗+1, 𝛼1,𝑗+1, … , 𝛼𝑛,𝑗+1)
𝑡
, 

𝑤 = (𝑤0, 𝑤1, … , 𝑤𝑛)
𝑡, 

𝑤0 =
18

ℎ2
𝛼0,𝑗−1 +

2

𝑘2
𝜌1(𝑡𝑗) − (

3

ℎ2
+

1

𝑘2
+
1

2
𝜀1(𝑡𝑗)) (𝜌1(𝑡𝑗+1) + 𝜌1(𝑡𝑗−1)) + 𝑔0,𝑗 , 

𝑤𝑛 =
18

ℎ2
𝛼𝑛,𝑗−1 +

2

𝑘2
𝜌2(𝑡𝑗) − (

3

ℎ2
+

1

𝑘2
+
1

2
𝜀2(𝑡𝑗)) (𝜌2(𝑡𝑗+1) + 𝜌2(𝑡𝑗−1)) + 𝑔𝑛,𝑗 , 

𝑤𝑖 =
2

𝑘2
(𝛼𝑖−1,𝑗 + 4𝛼𝑖,𝑗 + 𝛼𝑖+1,𝑗)−𝐶𝑖,𝑗(𝛼𝑖−1,𝑗−1 + 𝛼𝑖+1,𝑗−1) −  𝐷𝑖,𝑗𝛼𝑖,𝑗−1+𝑔𝑖,𝑗 , 

for each 𝑖 = 1,2, … , 𝑛 − 1 and 𝑗 = 1,2, …. 

Since 𝐴𝑖,𝑗 and 𝐵𝑖,𝑗 are given by 𝐴𝑖,𝑗 =
3

ℎ2
+

1

𝑘2
+ 0.5𝑉𝑖,𝑗 , and 𝐵𝑖,𝑗 =

−6

ℎ2
+

4

𝑘2
+ 2𝑉𝑖,𝑗, 

it is easy to see that 𝐵𝑖,𝑗 =  2 (
1

𝑘2
+0.5𝑉𝑖,𝑗 −

6

ℎ2
) + 2𝐴𝑖,𝑗. Taking absolute values 

with sufficiently small 𝑘, we have 

|𝐵𝑖,𝑗| = |2 (
1

𝑘2
+𝑉𝑖,𝑗 −

6

ℎ2
) + 2𝐴𝑖,𝑗| = 2 (

1

𝑘2
+𝑉𝑖,𝑗 −

6

ℎ2
) + 2𝐴𝑖,𝑗. 

Therefore, 

|𝐵𝑖,𝑗| > 2𝐴𝑖,𝑗 = |𝐴𝑖,𝑗| + |𝐴𝑖,𝑗|. 
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From this we observe that 𝐴 is diagonally dominant and thus nonsingular by 

Gershgorin’s theorem. Since 𝐴 is nonsingular, system (5.2.23) has a unique solution. 

Similarly, we can prove that system (5.2.24) has a unique solution if 𝑘 is chosen to 

be small enough.  

Systems (5.2.23) and (5.2.24) imply that the (𝑗 + 1)𝑠𝑡 time step requires values from 

the (𝑗)𝑠𝑡 and (𝑗 − 1)𝑠𝑡 time steps. This produces a minor starting problem since 

values for 𝑗 = 0 are given by the first parts of initial conditions (5.2.7) and (5.2.8): 

𝜕𝑈

𝜕𝑥
(𝑥0, 0) =

𝑑𝜏1
𝑑𝑥

(𝑥0), 

 𝑈(𝑥𝑖, 0) = 𝜏1(𝑥𝑖), 𝑖 = 0,1, … , 𝑛.  (5.2.25) 

𝜕𝑈

𝜕𝑥
(𝑥𝑛, 0) =

𝑑𝜏1
𝑑𝑥

(𝑥𝑛), 

𝜕𝑉

𝜕𝑥
(𝑥0, 0) =

𝑑𝜎1
𝑑𝑥

(𝑥0), 

 𝑉(𝑥𝑖, 0) = 𝜎1(𝑥𝑖), 𝑖 = 0,1, … , 𝑛.  (5.2.26) 

𝜕𝑉

𝜕𝑥
(𝑥𝑛, 0) =

𝑑𝜎1
𝑑𝑥

(𝑥𝑛), 

which can be rewritten by using Eqs. (5.2.1) and (5.2.2) and Table 5.2.1 in the 

following matrix forms: 

 𝐴∗𝛽∗ = 𝑑∗   (5.2.27) 

where 

𝐴∗ =

[
 
 
 
 
 
 
 
 
−3

ℎ
0

3

ℎ
… 0

1 4 1 0 … 0
0 1 4 1 0 … 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 … 0 1 4 1 0
0 … 0 1 4 1

0 …
−3

ℎ
0

3

ℎ]
 
 
 
 
 
 
 
 

, 
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𝛽∗ = (𝛽−1,0, 𝛽0,0, … , 𝛽𝑛+1,0)
𝑡
, and 𝑑∗ = (

𝑑𝜏1

𝑑𝑥
(𝑥0), 𝜏1(𝑥0), 𝜏1(𝑥1)… , 𝜏1(𝑥𝑛),

𝑑𝜏1

𝑑𝑥
(𝑥𝑛))

𝑡

 

and 

 𝐶∗𝛼∗ = 𝑤∗   (5.2.28) 

where 

  𝐶∗ =

[
 
 
 
 
 
 
 
 
−3

ℎ
0

3

ℎ
… 0

1 4 1 0 … 0
0 1 4 1 0 … 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 … 0 1 4 1 0
0 … 0 1 4 1

0 …
−3

ℎ
0

3

ℎ]
 
 
 
 
 
 
 
 

, 

 𝛼∗ = (𝛼−1,0, 𝛼0,0, … , 𝛼𝑛+1,0)
𝑡
, 

and 

𝑤∗ = (
𝑑𝜎1
𝑑𝑥

(𝑥0), 𝜎(𝑥0), 𝜎1(𝑥1)… , 𝜎1(𝑥𝑛),
𝑑𝜎1
𝑑𝑥

(𝑥𝑛))

𝑡

. 

However, the values for 𝑗 = 1, which are needed in (5.2.23) and (5.2.24) to compute 

(𝛽−1,2, 𝛽0,2, … , 𝛽𝑛+1,2)
𝑡
 and (𝛼−1,2, 𝛼0,2, … , 𝛼𝑛+1,2)

𝑡
 must be obtained from the 

second parts of (5.2.7) and (5.2.8): 

𝜕𝑈

𝜕𝑡
(𝑥𝑖 , 0) = 𝜏2(𝑥𝑖), 𝑖 = 0,1, … , 𝑛, 

𝜕𝑉

𝜕𝑡
(𝑥𝑖, 0) = 𝜎2(𝑥𝑖), 𝑖 = 0,1,… , 𝑛. 

By using a second Maclaurin polynomial in 𝑡 for 𝑈:: 

𝑈(𝑥𝑖 , 𝑡1) ≅ 𝑈(𝑥𝑖, 0) + 𝑘
𝜕𝑈

𝜕𝑡
(𝑥𝑖, 0) +

𝑘2

2

𝜕2𝑈

∂t2
(𝑥𝑖, 0) = 

𝜏1(𝑥𝑖) + 𝑘𝜏2(𝑥𝑖) +  
𝑘2

2

𝜕2𝑈

∂t2
(𝑥𝑖 , 0), 
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and Eq. (5.2.3) calculated at 𝑡 = 0; that is, 

𝜕2𝑈

𝜕𝑡2
(𝑥𝑖, 0) = −

𝜕2𝑈

𝜕𝑥2
(𝑥𝑖, 0) − 𝑉(𝑥𝑖 , 0) 𝑈(𝑥𝑖, 0) + 𝑓(𝑥𝑖 , 0) 

= −
𝑑2𝜏1
𝑑𝑥2

(𝑥𝑖) − 𝜎1(𝑥𝑖)𝜏1(𝑥𝑖) + 𝑓𝑖,0, 

we obtain the following system 

𝑈(𝑥𝑖 , 𝑡1) = 𝜏1(𝑥𝑖) + 𝑘𝜏2(𝑥𝑖) +
𝑘2

2
(−

𝑑2𝜏1
𝑑𝑥2

(𝑥𝑖) − 𝜎1(𝑥𝑖)𝜏1(𝑥𝑖) + 𝑓𝑖,0, ), 

for each 𝑖 = 0,1, … , 𝑛. After using the values in Table 2.2.4.1 this equation gives the 

system 

𝛽𝑖−1,1 + 4𝛽𝑖,1 + 𝛽𝑖+1,1 = 𝜏1(𝑥𝑖) + 𝑘𝜏2(𝑥𝑖) +
𝑘2

2
(−

𝑑2𝜏1
𝑑𝑥2

(𝑥𝑖) − 𝜎1(𝑥𝑖)𝜏1(𝑥𝑖) + 𝑓𝑖,0, ), 

    (5.2.29) 

for each 𝑖 = 0,1, … , 𝑛. System (5.2.29) consists of n+1 equations and n+3 unknowns 

(𝛽−1,1, 𝛽0,1, … , 𝛽𝑛+1,1)
𝑡
. Solving the last system requires two additional equations: 

𝜕2𝑈

𝜕𝑥𝜕𝑡
(𝑥0, 0) =

𝑑𝜏2

𝑑𝑥
(𝑥0), 

𝜕2𝑈

𝜕𝑥𝜕𝑡
(𝑥𝑛, 0) =

𝑑𝜏2

𝑑𝑥
(𝑥𝑛). 

Table 5.2.1 enables us to rewrite the last two equations in the forms 

−3

ℎ

𝑑𝛽−1
𝑑𝑡

(0) +
3

ℎ

𝑑𝛽1
𝑑𝑡

(0) =
𝑑𝜏2
𝑑𝑥

(𝑥0), 

−3

ℎ

𝑑𝛽𝑛−1
𝑑𝑡

(0) +
3

ℎ

𝑑𝛽𝑛+1
𝑑𝑡

(0) =
𝑑𝜏2
𝑑𝑥

(𝑥𝑛). 

The use of the forward-difference formula, 

𝑑𝛽𝑖

𝑑𝑡
(0) =

𝛽𝑖,1−𝛽𝑖,0

𝑘
, 
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in the last two equations results in the equations 

−3

ℎ
𝛽−1,1 +

3

ℎ
𝛽1,1 =

−3

ℎ
𝛽−1,0 +

3

ℎ
𝛽1,0 + 𝑘

𝑑𝜏2

𝑑𝑥
(𝑥0), (5.2.30) 

 
−3

ℎ
𝛽𝑛−1,1 +

3

ℎ
𝛽𝑛+1,1 =

−3

ℎ
𝛽𝑛−1,0 +

3

ℎ
𝛽𝑛+1,0 + 𝑘

𝑑𝜏2

𝑑𝑥
(𝑥𝑛).  (5.2.31) 

Eqs. (5.2.30), (5.2.31) and (5.2.29) can be written in matrix form: 

 𝐴∗∗𝛽∗∗ = 𝑑∗∗   (5.2.32)  

where 

𝐴∗∗ =

[
 
 
 
 
 
 
 
 
−3

ℎ
0

3

ℎ
… 0

1 4 1 0 … 0
0 1 4 1 0 … 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 … 0 1 4 1 0
0 … 0 1 4 1

0 …
−3

ℎ
0

3

ℎ]
 
 
 
 
 
 
 
 

, 

𝛽∗∗ = (𝛽−1,1, 𝛽0,1, … , 𝛽𝑛+1,1)
𝑡
, and 𝑑∗∗ = (𝑑−1, 𝑑0, … , 𝑑𝑛, 𝑑𝑛+1)

𝑡, 

 𝑑𝑖
∗∗ = 𝜏1(𝑥𝑖) + 𝑘𝜏2(𝑥𝑖) +

𝑘2

2
(−

𝑑2𝜏1
𝑑𝑥2

(𝑥𝑖) − 𝜎1(𝑥𝑖)𝜏1(𝑥𝑖) + 𝑓𝑖,0, ) , for 𝑖 = 0,1,… , 𝑛, 

𝑑−1
∗∗ =

−3

ℎ
𝛽−1,0 +

3

ℎ
𝛽1,0 + 𝑘

𝑑𝜏2

𝑑𝑥
(𝑥0), 𝑑𝑛+1

∗∗ =
−3

ℎ
𝛽𝑛−1,0 +

3

ℎ
𝛽𝑛+1,0 + 𝑘

𝑑𝜏2

𝑑𝑥
(𝑥𝑛). 

A similar system can be developed for computing (𝛼−1,1, 𝛼0,1, … , 𝛼𝑛+1,1)
𝑡
: 

 𝐶∗∗𝛼∗∗ = 𝑤∗∗ (5.2.33) 

where 
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𝐶∗∗ =

[
 
 
 
 
 
 
 
 
−3

ℎ
0

3

ℎ
… 0

1 4 1 0 … 0
0 1 4 1 0 … 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 … 0 1 4 1 0
0 … 0 1 4 1

0 …
−3

ℎ
0

3

ℎ]
 
 
 
 
 
 
 
 

, 

 𝛼∗∗ = (𝛼−1,1, 𝛼0,1, … , 𝛼𝑛+1,1)
𝑡
, and 𝑤∗∗ = (𝑤−1, 𝑤0, … , 𝑤𝑛, 𝑤𝑛+1)

𝑡 , 

𝑤𝑖
∗∗ = 𝜎1(𝑥𝑖) + 𝑘𝜎2(𝑥𝑖) +

𝑘2

2
(−

𝑑2𝜎1
𝑑𝑥2

(𝑥𝑖) − 𝜏1(𝑥𝑖)𝜎1(𝑥𝑖) + 𝑔𝑖,0, ) , for 𝑖 = 0,1,… , 𝑛, 

𝑤−1
∗∗ =

−3

ℎ
𝛼−1,0 +

3

ℎ
𝛼1,0 + 𝑘

𝑑𝜎2
𝑑𝑥

(𝑥0),𝑤𝑛+1
∗∗ =

−3

ℎ
𝛼𝑛−1,0 +

3

ℎ
𝛼𝑛+1,0 + 𝑘

𝑑𝜎2
𝑑𝑥

(𝑥𝑛). 

Since matrices 𝐴∗, 𝐶∗, 𝐴∗∗ and 𝐶∗∗ are strictly diagonally dominant, it follows from 

Gershgorin’s theorem that 𝐴∗, 𝐶∗, 𝐴∗∗ and 𝐶∗∗ are nonsingular. Hence, systems 

(5.2.27), (5.2.28), (5.2.32) and (5.2.33) have unique solutions. 

5.3 Stability Analysis 

For stability analysis, I use the Von Neumann technique. To do this, I must linearise 

the nonlinear term 𝑣(𝑥, 𝑡)𝑢(𝑥, 𝑡) in Eq. (5.1.1) by making 𝑣(𝑥, 𝑡) locally constant, 

which is equivalent to assuming that the corresponding value 𝑉𝑖,𝑗 is equal to a local 

constant 𝑉∗ in system (5.2.15). According to the Von Neumann technique, 

 𝛽𝑖,𝑗 = 𝜉
𝑗𝑒𝑥𝑝(𝑞𝜑ℎ𝑖),  (5.3.1) 

where 𝑞2 = −1,𝜑 is the mode number, ℎ is the element size, and 𝜉 is the 

amplification factor. Inserting the last expression for 𝛽𝑖,𝑗 into system (5.2.15) gives 

the following characteristic equation:  

 𝐴𝑖,𝑗 𝛽𝑖−1,𝑗+1 +  𝐵𝑖,𝑗  𝛽𝑖,𝑗+1 +  𝐴𝑖,𝑗 𝛽𝑖+1,𝑗+1 =
2

𝑘2
( 𝛽𝑖−1,𝑗 + 4 𝛽𝑖,𝑗 +  𝛽𝑖+1,𝑗) 

− 𝐴𝑖,𝑗( 𝛽𝑖−1,𝑗−1 +  𝛽𝑖+1,𝑗−1) −  𝐵𝑖,𝑗  𝛽𝑖,𝑗−1 +  𝑓𝑖,𝑗, 
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 𝐴𝑖,𝑗𝜉
𝑗+1𝑒𝑥𝑝(𝑞𝜑ℎ(𝑖 − 1)) +  𝐵𝑖,𝑗 𝜉

𝑗+1𝑒𝑥𝑝(𝑞𝜑ℎ𝑖) +  𝐴𝑖,𝑗𝜉
𝑗+1𝑒𝑥𝑝(𝑞𝜑ℎ(𝑖 + 1)) 

=
2

𝑘2
(𝜉𝑗𝑒𝑥𝑝(𝑞𝜑ℎ(𝑖 − 1)) + 4𝜉𝑗𝑒𝑥𝑝(𝑞𝜑ℎ𝑖) + 𝜉𝑗𝑒𝑥𝑝(𝑞𝜑ℎ(𝑖 + 1))) 

− 𝐴𝑖,𝑗 (𝜉
𝑗−1𝑒𝑥𝑝(𝑞𝜑ℎ(𝑖 − 1)) + 𝜉𝑗−1𝑒𝑥𝑝(𝑞𝜑ℎ(𝑖 + 1))) −  𝐵𝑖,𝑗 𝜉

𝑗−1𝑒𝑥𝑝(𝑞𝜑ℎ𝑖), 

𝜉𝑗+1{ 𝐴𝑖,𝑗{𝑒𝑥𝑝(𝑞𝜑ℎ(𝑖 − 1)) + 𝑒𝑥𝑝(𝑞𝜑ℎ(𝑖 + 1))} +  𝐵𝑖,𝑗𝑒𝑥𝑝(𝑞𝜑ℎ𝑖)}

=  
2

𝑘2
𝜉𝑗{{𝑒𝑥𝑝(𝑞𝜑ℎ(𝑖 − 1)) + 𝑒𝑥𝑝(𝑞𝜑ℎ(𝑖 + 1))} + 4𝑒𝑥𝑝(𝑞𝜑ℎ𝑖)}

−   𝜉𝑗−1{ 𝐴𝑖,𝑗{𝑒𝑥𝑝(𝑞𝜑ℎ(𝑖 − 1)) + 𝑒𝑥𝑝(𝑞𝜑ℎ(𝑖 + 1))} +  𝐵𝑖,𝑗𝑒𝑥𝑝(𝑞𝜑ℎ𝑖)}, 

where 

𝐴𝑖,𝑗 =
3

ℎ2
+
1

𝑘2
+ 0.5𝑉∗, 𝐵𝑖,𝑗 =

−6

ℎ2
+
4

𝑘2
+ 2𝑉∗. 

After dividing by 𝜉𝑗−1𝑒𝑥𝑝(𝑞𝜑ℎ𝑖), this equation becomes 

𝜉2{ 𝐴𝑖,𝑗{𝑒𝑥𝑝(−𝑞𝜑ℎ) + 𝑒𝑥𝑝(𝑞𝜑ℎ)} +  𝐵𝑖,𝑗} = 

2

𝑘2
𝜉{{𝑒𝑥𝑝(−𝑞𝜑ℎ) + 𝑒𝑥𝑝(𝑞𝜑ℎ)} + 4} − { 𝐴𝑖,𝑗{𝑒𝑥𝑝(−𝑞𝜑ℎ) + 𝑒𝑥𝑝(𝑞𝜑ℎ)} +  𝐵𝑖,𝑗}. 

After dividing by {𝐴𝑖,𝑗{𝑒𝑥𝑝(−𝑞𝜑ℎ) + 𝑒𝑥𝑝(𝑞𝜑ℎ)} +  𝐵𝑖,𝑗}, this equation becomes 

𝜉2 =
2𝜉

𝑘2
{{𝑒𝑥𝑝(−𝑞𝜑ℎ) + 𝑒𝑥𝑝(𝑞𝜑ℎ)} + 4}

{ 𝐴𝑖,𝑗{𝑒𝑥𝑝(−𝑞𝜑ℎ) + 𝑒𝑥𝑝(𝑞𝜑ℎ)} +  𝐵𝑖,𝑗}
− 1 

𝜉2 =
2𝜉

𝑘2
cos(𝜑ℎ) − 𝑞𝑠𝑖𝑛(𝜑ℎ) + 𝑐𝑜𝑠(𝜑ℎ) + 𝑞𝑠𝑖𝑛(𝜑ℎ) + 4

{ 𝐴𝑖,𝑗 cos(𝜑ℎ) −  𝐴𝑖,𝑗𝑞𝑠𝑖𝑛(𝜑ℎ) +  𝐴𝑖,𝑗𝑐𝑜𝑠(𝜑ℎ) +  𝐴𝑖,𝑗𝑞𝑠𝑖𝑛(𝜑ℎ) +  𝐵𝑖,𝑗}
− 1 

𝜉2 =
2𝜉

𝑘2
2 cos(𝜑ℎ) + 4

{ 2𝐴𝑖,𝑗 cos(𝜑ℎ) +  𝐵𝑖,𝑗}
− 1 

𝜉2 −
2𝜉

𝑘2
2 cos(𝜑ℎ) + 4

{ 2𝐴𝑖,𝑗 cos(𝜑ℎ) +  𝐵𝑖,𝑗}
+ 1 = 0 

Simple calculations enable us to write 

 𝜉2 + 2𝜇𝜉 + 1 = 0,  (5.3.2) 
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where 

𝜇 =
−(4+2𝑐𝑜𝑠𝜙)

𝑘2( 𝐵𝑖,𝑗+2 𝐴𝑖,𝑗𝑐𝑜𝑠𝜙)
, 

the two roots of the characteristic Eq. (5.3.2) are 

𝜉± =
−2𝜇±√(2𝜇)2−4

2
= −𝜇 ± √𝜇2 − 1. 

The necessary and sufficient condition for stability is|𝜉±| ≤ 1. If 𝜇2 − 1 ≤ 0, it is 

easy to verify that |𝜉±| ≤ 1, and if 𝜇2 − 1 > 0 then either 𝜉− or 𝜉+ do not satisfy 

the condition |𝜉±| ≤ 1. 

Hence, the necessary and sufficient condition for stability is 

  𝜇2 − 1 ≤ 0. 

In other words, we must have 

−1 ≤ 𝜇 ≤ 1 

−1 ≤
(4 + 2𝑐𝑜𝑠𝜙)

𝑘2( 𝐵𝑖,𝑗 + 2 𝐴𝑖,𝑗𝑐𝑜𝑠𝜙)
≤ 1 

−1 ≤
(4 + 2𝑐𝑜𝑠𝜙)

𝑘2 (
−6

ℎ2
+

4

𝑘2
+ 2𝑉∗ + 2(

3

ℎ2
+

1

𝑘2
+
1

2
𝑉∗)𝑐𝑜𝑠𝜙)

≤ 1 

−1 ≤
(4 + 2𝑐𝑜𝑠𝜙)

−6

ℎ2
𝑘2 + 4 + 2𝑘2𝑉∗ +

6𝑘2

ℎ2
𝑐𝑜𝑠𝜙 + 2𝑐𝑜𝑠𝜙 + 𝑘2𝑉∗𝑐𝑜𝑠𝜙

≤ 1, 

which implies that 

−1 ≤
(4 + 2𝑐𝑜𝑠𝜙)

(4 + 2𝑐𝑜𝑠𝜙) + 𝑘2 {(
−6

ℎ2
+ 2𝑉∗) + (

6

ℎ2
+ 𝑉∗) 𝑐𝑜𝑠𝜙}

≤ 1 

When 𝑘 is sufficiently small, such that 𝑘2 → 0, this inequality is satisfied. Thus, 

stability analysis of system (5.2.16) can be developed. 
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5.4 Numerical Results 

Consider the coupled NPDE: 

𝜕2𝑢

𝜕𝑥2
(𝑥, 𝑡) +

𝜕2𝑢

𝜕𝑡2
(𝑥, 𝑡) + 𝑣(𝑥, 𝑡)𝑢(𝑥, 𝑡) = −(𝜋2 + 1)𝑠𝑖𝑛𝜋𝑥 𝑐𝑜𝑠𝑡 + sin2 𝜋𝑥 cos2 𝑡, 

𝜕2𝑣

𝜕𝑥2
(𝑥, 𝑡) +

𝜕2𝑣

𝜕𝑡2
(𝑥, 𝑡) + 𝑢(𝑥, 𝑡)𝑣(𝑥, 𝑡) = −(𝜋2 + 1)𝑠𝑖𝑛𝜋𝑥 𝑐𝑜𝑠𝑡 +sin2 𝜋𝑥 cos2 𝑡, 

    (5.4.1) 

for 0 ≤ 𝑥 ≤ 1 and 𝑡 ≥ 0, subject to the conditions 

 𝑢(0, 𝑡) = 0, 𝑢(1, 𝑡) = 0, 𝑣(0, 𝑡) = 0, 𝑣(1, 𝑡) = 0,  (5.4.2) 

 𝑢(𝑥, 0) = 𝑠𝑖𝑛𝜋𝑥,
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 0, 𝑣(𝑥, 0) = 𝑠𝑖𝑛𝜋𝑥,

𝜕𝑣

𝜕𝑡
(𝑥, 0) = 0.  (5.4.3) 

The exact solution of system (5.4.1) is 

𝑢(𝑥, 𝑡) = 𝑠𝑖𝑛𝜋𝑥 𝑐𝑜𝑠𝑡, 

 𝑣(𝑥, 𝑡) = 𝑠𝑖𝑛𝜋𝑥 𝑐𝑜𝑠𝑡.  (5.4.4) 

The results are presented in Tables 5.4.1–5.4.6. Tables 5.4.1–5.4.4 list the maximum 

absolute errors with 𝑘 = 0.0005 and ℎ = 0.1 and with 𝑘 = 0.00005 and ℎ = 0.01. 

Tables 5.4.5–5.4.6 list numerical solutions 𝑉𝑖,𝑗 = 𝛼𝑖−1,𝑗 + 4𝛼𝑖,𝑗 + 𝛼𝑖+1,𝑗 and 𝑈𝑖,𝑗 =

𝛽𝑖−1,𝑗 + 4𝛽𝑖,𝑗 + 𝛽𝑖+1,𝑗 and exact solutions 𝑢𝑖,𝑗 and 𝑣𝑖,𝑗with 𝑘 = 0.0005 𝑎𝑛𝑑 ℎ = 0.1. 
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Table 5.4.1 Maximum absolute error 𝒌 = ∆𝒕 = 𝟎. 𝟎𝟎𝟎𝟓 𝐚𝐧𝐝 𝒉 = ∆𝒙 = 𝟎. 𝟏. 

Time 0.1 0.3 0.4 0.5 

Max|𝑼𝒊,𝒋 −𝒖𝒊,𝒋| 4.0749×10-4 3.8535×10-3 7.1709×10-3 1.3249×10-2 

 

Table 5.4.2 Maximum absolute error 𝒌 = ∆𝒕 = 𝟎. 𝟎𝟎𝟎𝟓 𝐚𝐧𝐝 𝒉 = ∆𝒙 = 𝟎. 𝟏. 

Time 0.1 0.3 0.4 0.5 

Max|𝑽𝒊,𝒋 −𝒗𝒊,𝒋| 4.0749×10-4 3.8535×10-3 7.1709×10-3 1.3249×10-2 

 

Table 5.4.3 Maximum absolute error 𝒌 = ∆𝒕 = 𝟎. 𝟎𝟎𝟎𝟎𝟓 𝐚𝐧𝐝 𝒉 = ∆𝒙 = 𝟎. 𝟎𝟏. 

Time 0.0005 0.005 0.054 

Max|𝑼𝒊,𝒋 −𝒖𝒊,𝒋| 9.1326×10-11 1.0047×10-8 1.4709×10-6 

 

Table 5.4.4 Maximum absolute error 𝒌 = ∆𝒕 = 𝟎. 𝟎𝟎𝟎𝟎𝟓 𝐚𝐧𝐝 𝒉 = ∆𝒙 = 𝟎. 𝟎𝟏. 

Time 0.0005 0.005 0.054 

Max|𝑽𝒊,𝒋 −𝒗𝒊,𝒋| 9.1326×10-11 1.0047×10-8 1.4709×10-6 

 

Table 5.4.5 𝒖𝒊,𝒋 and  𝑼𝒊,𝒋 with 𝒕 = 𝟎. 𝟑, 𝒌 = ∆𝒕 = 𝟎. 𝟎𝟎𝟎𝟓 𝐚𝐧𝐝 𝒉 = ∆𝒙 = 𝟎. 𝟏. 

  𝑼𝒊,𝒋   𝒖𝒊,𝒋 x   

0.563810889237005 0.5615326992848998 0.2   

0.9122450638802360 0.90857899323744 0.4   

0.9122450638156732 0.90857899323744 0.6   

0.5638108891169986 0.5615326992848999 0.8   

 



116 

Table 5.4.6  𝒗𝒊,𝒋 and 𝑽𝒊,𝒋 with 𝒕 = 𝟎. 𝟑, 𝒌 = ∆𝒕 = 𝟎. 𝟎𝟎𝟎𝟓 𝐚𝐧𝐝 𝒉 = ∆𝒙 = 𝟎. 𝟏. 

  𝑽𝒊,𝒋   𝒗𝒊,𝒋 x 

0.563810889237005 0.5615326992848998 0.2 

0.9122450638802360 0.90857899323744 0.4 

0.9122450638156732 0.90857899323744 0.6 

0.5638108891169986 0.5615326992848999 0.8 

 

 

 

 

Figure 5.4.1 Graphs of approximate solutions at ∆𝒕 = 𝟎. 𝟎𝟎𝟎𝟓 𝒂𝒏𝒅 𝒉 =

𝟎. 𝟎𝟏 for 𝑼(𝒙, 𝒕) part (a) and 𝑽(𝒙, 𝒕) part (b). 

 

 

 

Figure 5.4.2 Graphs of approximate solutions at ∆𝒕 = 𝟎. 𝟎𝟎𝟎𝟎𝟓 𝒂𝒏𝒅 𝒉 =

𝟎. 𝟎𝟏 for 𝑼(𝒙, 𝒕) part (a) and 𝑽(𝒙, 𝒕) part (b).  
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Figure 5.4.3 Graphs of exact and approximate solutions at ∆𝒕 =

𝟎. 𝟎𝟎𝟎𝟓 𝒂𝒏𝒅 𝒉 = 𝟎. 𝟏 for 𝑼(𝒙, 𝒕) part (a) and 𝑽(𝒙, 𝒕) part (b).  

 

  

Figure 5.4.4 Graphs of exact and approximate solutions at ∆𝒕 =

𝟎. 𝟎𝟎𝟎𝟎𝟓 𝒂𝒏𝒅 𝒉 = 𝟎. 𝟏 for 𝑼(𝒙, 𝒕) part (a) and 𝑽(𝒙, 𝒕) part (b).  

5.5 Conclusion 

In this chapter, systematic use of the collocation analysis method was successful in 

identifying approximate solutions for coupled nonlinear non-homogeneous Klein–

Gordon PDEs. I applied the Von Neumann stability method and found that the 

proposed method is conditionally stable. The basic approach employed here can be 

widely utilised to solve other strongly nonlinear evolution problems. I provided a 

numerical example to examine the accuracy and efficiency of the proposed method. 

It is evident from the example that the approximate solution is very close to the exact 

solution. The observed errors are summarised in tables to verify the stability of the 
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presented scheme. Its accuracy was demonstrated by calculating L∞ error norms. The 

obtained numerical results show that the present method is a remarkably successful 

numerical technique for solving coupled nonlinear non-homogeneous Klein–Gordon 

equations, which makes it useful for a wide range of applications. 
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Chapter 6: Computational Analysis for Solving the Linear 

Space-fractional Telegraph Equation 

6.1 Introduction 

During the 1980s, fractional calculus attracted the attention of many researchers and 

explicit applications began to appear in several fields, including physics, chemical 

and industrial mathematics, processing and control theory, fluid mechanics quantum 

evolution of complex systems, and viscoelastic mechanics [124]. In our global 

society, communication systems play a vital role. This, it is essential to investigate 

the fractional telegraph equation (FTE), which, as a typical fractional diffusion-wave 

equation, is applied in signal analysis for transmission, propagation of electrical 

signals, modelling of the reaction diffusion, random walk of suspension flows and so 

on [125–126].  

Many researchers have recently investigated telegraph equations of fractional order. 

In 2008, Odibat and Momani developed a new generalisation of the 2D differential 

transform method (DTM), thus extending the application of the method to linear 

PDEs with space- and time-fractional derivatives [127]. Garg et al. (2011) applied 

the generalised DTM to solve a space–time FTE [128]. A year later, Zhao et al. (2012) 

used the fractional difference method in the temporal direction and the FEM in the 

spatial direction to numerically solve the time–space-fractional order telegraph 

equation [129]. Later, Aguilar and Baleanu, in their 2014 research, considered the 

fractional differential equation for a transmission line without losses in terms of the 

CFD [130]. In 2015, Varaki et al. used the homotropy analysis method (HAM) to 

obtain approximate solutions for space–time FTEs [131]. In the same year, 

Lopushanska and Rapita established unique solvability in an inverse problem for a 

semi-linear FTE with regularised fractional derivatives, with respect to time on a 

bounded cylindrical domain [132]. Research by Khan et al. (2018) established a new 

and efficient analytical scheme for a space FTE, by means of a fractional Sumudu 

decomposition method [133]. In the same year, Kamran et al. proposed a local 

meshless method, coupled with the Laplace transform, for a time FTE [134].  
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In 2018, L. Wei et al. introduced and analysed a flexible numerical method for the 

time FTE. The solution was discretised with a new finite difference scheme in time 

and a local discontinuous Galerkin method in space [135]. A year later, 

Mohammadian et al. (2019) developed the so-called generalised DTM to derive a 

semi-analytical solution for fractional PDEs, which involves the Riesz space-

fractional derivative [136]. In the same year, Akram et al. presented and discussed a 

finite difference scheme based on a combination of the extended cubic B-spline 

method and the CFD for numerical solution of a time FTE [137]. In 2019, Kumar et 

al. presented a finite difference scheme for the generalised time-FTE, which was 

defined using generalised fractional derivative terms [138].  

In 2019, research conducted by Ali et al. involved development of a new iterative 

method for solving the 2D hyperbolic telegraph fractional differential equation, 

which is central to the mathematical modelling of transmission lines satisfying a 

certain relationship between voltage and current waves in specific distance and time 

[139]. Hosseininia and Heydari in 2019 investigated a novel version of the nonlinear 

2D telegraph equation involving variable-order time-fractional derivatives in the 

Atangana–Baleanu–Caputo sense, with a Mittag–Leffler nonsingular kernel [140]. 

Bouaouid et al. (2019) used the cosine family of linear operators to prove the 

existence, uniqueness and stability of an integral solution to a nonlocal telegraph 

equation in terms of the conformable time-fractional derivative. Moreover, they 

provided an implicit fundamental solution in terms of the classical trigonometric 

functions [141]. In 2020, Mohammadian et al. used the fractional reduced DTM to 

derive a semi-analytical solution for fractional PDEs that involve Riesz space-

fractional derivatives [142]. In research by Wu and Yang (2020), a class of pure 

alternating segment explicit–implicit and implicit–explicit parallel difference 

methods were constructed for time FTEs [143]. In the same year, Hamada introduced 

a new model of fractional telegraph point reactor kinetics to approximate the time-

dependent Boltzmann transport equation, considering new terms including the time 

derivative of the reactivity and fractional integral of the neutron density [144].  

Recently, in 2021, Devi and Jakhar used a modified decomposition method, namely 

the Sumudu–Adomian decomposition method, to find exact and approximate 
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solutions for fractional order telegraph equations [145]. Hamza et al. (2021) discussed 

accurate and convergent numerical solutions for linear space–time matching 

telegraph fractional equations by means of a double Sumudu matching transformation 

method [146]. Azhar et al. (2021) studied fractional order telegraph equations via the 

natural transform decomposition method with nonsingular kernel derivatives. They 

applied natural transformation on FTEs followed by inverse natural transformation 

to achieve a solution to the equation [147]. Ibrahim and Bijiga (2021) presented a 

time FTE as an optimisation problem, with a neural network method, to solve a time 

FTE [148]. Vieira et al. (2021) considered the Cauchy problem for a time FTE of 

distributed order in Rn × R+. Employing the Fourier, Laplace and Mellin transforms, 

a representation of the fundamental solution to this equation in terms of convolutions 

involving the Fox H-function was obtained [149]. Khater et al. (2021) investigated 

numerical solutions to the fractional nonlinear telegraph equation by employing five 

numerical techniques—ADM, El Kalla, CBS, extended CBS and exponential CBS 

schemes—to explain the match between analytical and approximate solutions [150]. 

Nikan et al. (2021) focused on the numerical solution to the nonlinear time FTE, 

which was formulated in the Caputo sense. This model is a useful description of the 

neutron transport process inside the core of a nuclear reactor [151]. 

In this context, this chapter proposes a quadratic-polynomial spline-based method to 

obtain the numerical solution to a time–space-fractional order telegraph equation in 

the form 

 
𝜕𝛼𝑢

𝜕𝑥𝛼
=

𝜕2𝑢

𝜕𝑡2
+
𝜕𝑢

𝜕𝑡
 + 𝑢  𝑥 > 0,    1 < 𝛼 ≤ 2,  (6.1.1) 

subject to boundary conditions 

 𝑢(𝑎, 𝑡) = 𝛽1(𝑡),   𝑢(𝑏, 𝑡) = 𝛽2(𝑡),    𝑡 > 0 .  (6.1.2) 

and initial conditions 

 𝑢(𝑥, 0) = 𝑓1(𝑥),  
𝜕𝑢(𝑥,0)

𝜕𝑡
= 𝑓2(𝑥),    𝑎 ≤ 𝑥 ≤  𝑏.     (6.1.3) 

The space-fractional partial derivative of order   in Eq. (6.1.1) is considered in the 

Caputo sense, defined by [128–129] 



124 

 
𝜕𝛼

𝜕𝑥𝛼
𝑢(𝑥, 𝑡𝑗) =

1

𝛤(𝑛−𝛼)
∫

𝜕𝑛𝑢(𝑠,𝑡𝑗)

𝜕𝑥𝑛
 𝑥

 𝑔
(𝑥 − 𝑠)𝑛−𝛼−1𝑑𝑠,   𝑛 − 1  < 𝛼 ≤ 𝑛.  (6.1.4) 

6.2 Derivation of the Method 

To set up the quadratic-polynomial spline method, we select an integer 𝑁 > 0 and 

time step size 𝑘 > 0. With ℎ =
𝑏−𝑎

𝑁
, then mesh points (𝑥𝑖 , 𝑡𝑗) are 𝑥𝑖 = 𝑎 + 𝑖ℎ, for 

each 𝑖 = 0,1, … ,𝑁 and 𝑡𝑗 = 𝑗𝑘,   𝑘 = 𝛥𝑡 for each 𝑗 = 0,1, … 

Let 𝑍𝑖
𝑗 be an approximation to 𝑢(𝑥𝑖, 𝑡𝑗) obtained by the segment 𝑃𝑖(𝑥, 𝑡𝑗) of the 

spline function passing through the points (𝑥𝑖, 𝑍𝑖
𝑗
) and (𝑥𝑖+1, 𝑍𝑖+1

𝑗
). Each segment 

has the form [40] 

 𝑃𝑖(𝑥, 𝑡𝑗) = 𝑎𝑖(𝑡𝑗) (𝑥 − 𝑥𝑖)
2 + 𝑏𝑖(𝑡𝑗) (𝑥 − 𝑥𝑖) + 𝑐𝑖(𝑡𝑗).  (6.2.1) 

for each 𝑖 = 0,1, … ,𝑁 − 1. To obtain expressions for the coefficients of Eq. (6.2.1) 

in terms of 𝑍𝑖+1/2
𝑗, 𝐷𝑖

𝑗, and 𝑆𝑖+1/2
𝑗

, we first define 

𝑃𝑖 (𝑥𝑖+1
2

, 𝑡𝑗) = 𝑎𝑖(𝑡𝑗) (𝑥𝑖+1
2

− 𝑥𝑖)
2 + 𝑏𝑖(𝑡𝑗) (𝑥𝑖+1

2

− 𝑥𝑖) + 𝑐𝑖(𝑡𝑗) 

= 𝑎𝑖(𝑡𝑗) (𝑥1
2

)2 + 𝑏𝑖(𝑡𝑗) (𝑥1
2

) + 𝑐𝑖(𝑡𝑗) 

= 𝑎𝑖(𝑡𝑗) (
1

2
ℎ)2 + 𝑏𝑖(𝑡𝑗) (

1

2
ℎ) + 𝑐𝑖(𝑡𝑗) 

= 
ℎ2

4
𝑎𝑖 +

ℎ

2
𝑏𝑖 + 𝑐𝑖 = 𝑍𝑖+1/2

𝑗
, 

 𝑃𝑖(𝑥𝑖+1/2, 𝑡𝑗) = 𝑍𝑖+1/2
𝑗

   (6.2.2) 

𝑃𝑖
(1)(𝑥, 𝑡𝑗) = 2 𝑎𝑖(𝑡𝑗) (𝑥 − 𝑥𝑖) + 𝑏𝑖(𝑡𝑗) , 

𝑃𝑖
(1)
(𝑥𝑖, 𝑡𝑗) = 2 𝑎𝑖(𝑡𝑗) (𝑥𝑖 − 𝑥𝑖) + 𝑏𝑖(𝑡𝑗)  

= 𝑏𝑖,  

   𝑃𝑖
(1)
(𝑥𝑖, 𝑡𝑗) = 𝐷𝑖

𝑗
    (6.2.3) 
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𝑃𝑖
(𝛼)
(𝑥𝑖+1/2, 𝑡𝑗) =

𝜕𝛼

𝜕𝑥𝛼
𝑃𝑖(𝑥𝑖+1/2, 𝑡𝑗) = 𝑆𝑖+1/2

𝑗
,   1 < 𝛼 ≤ 2,   𝑥𝑖 < 𝑥𝑖+1/2 ≤ 𝑥𝑖+1. (6.2.4) 

where 𝑎𝑖 ≡ 𝑎𝑖(𝑡𝑗), 𝑏𝑖 ≡ 𝑏𝑖(𝑡𝑗), 𝑐𝑖 ≡ 𝑐𝑖(𝑡𝑗), 𝑑𝑖 ≡ 𝑑𝑖(𝑡𝑗) and 𝜃 = 𝜔ℎ. Eqs. (6.2.1), 

(6.2.2) and (6.2.3), give 

 
ℎ2

4
𝑎𝑖 +

ℎ

2
𝑏𝑖 + 𝑐𝑖 = 𝑍𝑖+1/2

𝑗
.  (6.2.5) 

 𝑏𝑖 = 𝐷𝑖
𝑗
.  (6.2.6) 

Using Eqs. (6.1.4), (6.2.1) and (6.2.4), we obtain 

𝜕𝛼

𝜕𝑥𝛼
𝑢(𝑥𝑖+1/2, 𝑡𝑗) =

1

𝛤(2−𝛼)
∫

𝜕2𝑃𝑖(𝑠,𝑡𝑗)

𝜕𝑥2
 𝑥𝑖+1/2
 𝑥𝑖

(𝑥𝑖+1/2 − 𝑠)
1−𝛼

𝑑𝑠 = 𝑆𝑖+1/2
𝑗

. 

This equation can be simplified as 

∂𝑃𝑖(𝑥, 𝑡𝑗)

∂𝑥
= 2𝑎𝑖(𝑥 − 𝑥𝑖), 

22𝑃𝑖(𝑥, 𝑡𝑗)

∂𝑥2
= 2𝑎𝑖 , 𝑡ℎ𝑒𝑛 

1

Γ(2 − 𝛼)
∫
𝑥𝑖

𝑥
𝑖+
1
2  (2𝑎𝑖) (𝑥𝑖+1

2

− 𝑠)
1−𝛼

𝑑𝑠 

=
−2𝑎𝑖

Γ(2 − 𝛼)

[
 
 
 (𝑥

𝑖+
1

2

− 𝑠)
2−𝛼

2 − 𝛼

]
 
 
 

𝑥𝑖

𝑥𝑖+
1

2

 

=
−2𝑎𝑖

Γ(2 − 𝛼)
 

[
 
 
 

− 
(𝑥

𝑖+
1

2

− 𝑥𝑖)
2−𝛼

2 − 𝛼

]
 
 
 

 

=
2𝑎𝑖

Γ(2 − 𝛼)
⋅
(ℎ)2−𝛼

2 − 𝛼
 

=
2

Γ(3 − 𝛼)
(ℎ)2−𝛼(𝑎𝑖), 
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𝑤ℎ𝑒𝑟𝑒 Γ(3 − 𝛼) = (2 − 𝛼)Γ(2 − 𝛼) 

 𝜇 𝑎𝑖 = 𝑆𝑖+1/2
𝑗

   (6.2.7) 

where 𝜇 =
2

𝛤(3−𝛼)
(
ℎ

2
)
2−𝛼

. By solving Eqs. (6.2.5), (6.2.6) and (6.2.7), we obtain the 

following expressions: 

𝑎𝑖 =
𝛤(3−𝛼)

2
(
ℎ

2
)
𝛼−2

𝑆𝑖+1/2
𝑗

, 

𝑏𝑖 = 𝐷𝑖
𝑗
, 

𝑐𝑖  = 𝑧
𝑖+

1

2

𝑗
−
ℎ2

4
𝑎𝑖 −

ℎ

2
𝑏𝑖 

= −
ℎ2

4
(
Γ(3 − 𝛼)

2
ℎ(2−𝛼)𝑠

𝑖+
1

2

) −
ℎ

2
𝐷𝑖
𝑗
+ 𝑍

𝑖+
1

2

𝑗
 

= 𝑍
𝑖+

1

2

𝑗
− 
ℎ

2
𝐷𝑖
𝑗
−
1

2
 Γ(3 − 𝛼) (

ℎ

2
)
𝛼

 𝑠
𝑖+

1

2

 

Then, 

 𝑐𝑖 = −
1

2
𝛤(3 − 𝛼) (

ℎ

2
)
𝛼
𝑆𝑖+1/2
𝑗

−
ℎ

2
𝐷𝑖
𝑗
+ 𝑍𝑖+1/2

𝑗
.   (6.2.8) 

6.3 Spline Relationships 

I use the following continuity conditions at 𝑥 = 𝑥𝑖: 

 𝑃𝑖(𝑥𝑖 , 𝑡𝑗) = 𝑃𝑖−1(𝑥𝑖, 𝑡𝑗) ⇒ 𝑐𝑖 = ℎ
2𝑎𝑖−1 + ℎ𝑏𝑖−1 + 𝑐𝑖−1.  (6.3.1)  

 𝑃𝑖
(1)
(𝑥𝑖, 𝑡𝑗) = 𝑃𝑖−1

(1)
(𝑥𝑖, 𝑡𝑗) ⇒ 𝑏𝑖 = 2ℎ𝑎𝑖−1 + 𝑏𝑖−1   (6.3.2) 

Using the expressions in Eq. (6.2.8), Eqs. (6.3.1) and (6.3.2) become 

𝑍
𝑖+

1

2

𝑗
− 
ℎ

2
𝐷𝑖
𝑗
−
1

2
 Γ(3 − 𝛼) (

ℎ

2
)
𝛼

 𝑠
𝑖+

1

2

= 
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ℎ2  
𝛤(3 − 𝛼)

2
(
ℎ

2
)
𝛼−2

𝑆
𝑖−

1

2

𝑗
+ ℎ 𝐷𝑖−1

𝑗
− 
1

2
𝛤(3 − 𝛼) (

ℎ

2
)
𝛼

𝑆
𝑖−

1

2

𝑗
− 
ℎ

2
𝐷𝑖−1
𝑗
+ 𝑍

𝑖−
1

2

𝑗
 

 𝑍
𝑖+

1

2

𝑗
− 𝑍

𝑖−
1

2

𝑗
−
1

2
 Γ(3 − 𝛼) (

ℎ

2
)
𝛼
 𝑠
𝑖+

1

2

+ 
1

2
𝛤(3 − 𝛼) (

ℎ

2
)
𝛼
𝑆
𝑖−

1

2

𝑗
 −  

ℎ

2
𝐷𝑖
𝑗
+ 

ℎ

2
𝐷𝑖−1
𝑗

= 

ℎ2  
𝛤(3 − 𝛼)

2
(
ℎ

2
)
𝛼−2

𝑆
𝑖−

1

2

𝑗
+ ℎ 𝐷𝑖−1

𝑗
 

𝑍
𝑖+

1

2

𝑗
− 𝑍

𝑖−
1

2

𝑗
−
1

2
 Γ(3 − 𝛼) (

ℎ

2
)
𝛼

 (𝑠
𝑖+

1

2

− 𝑠
𝑖−

1

2

) − 
ℎ

2
(𝐷𝑖

𝑗
− 𝐷𝑖−1

𝑗
) = 

(
ℎ

2
)
2

(2)2
𝛤(3 − 𝛼)

2
(
ℎ

2
)
𝛼−2

𝑆
𝑖−

1

2

𝑗
+ ℎ 𝐷𝑖−1

𝑗
 

Then, 

𝑍𝑖+1/2
𝑗

− 𝑍𝑖−1/2
𝑗

−
𝛤(3 − 𝛼)

2
(
ℎ

2
)
𝛼

(𝑆𝑖+1/2
𝑗

− 𝑆𝑖−1/2
𝑗

) −
ℎ

2
(𝐷𝑖

𝑗
− 𝐷𝑖−1

𝑗
) =  

  
4𝛤(3−𝛼)

2
(
ℎ

2
)
𝛼
𝑆𝑖−1/2
𝑗

+ ℎ𝐷𝑖−1
𝑗

 (6.3.3) 

 𝐷𝑖
𝑗
− 𝐷𝑖−1

𝑗
=

4𝛤(3−𝛼)

2
(
ℎ

2
)
𝛼−1

𝑆𝑖−1/2
𝑗

 (6.3.4) 

Solving for 𝐷𝑖−1
𝑗

 results in 

 ℎ𝐷𝑖−1
𝑗

= (𝑍𝑖+1/2
𝑗

− 𝑍𝑖−1/2
𝑗

) −
𝛤(3−𝛼)

2
(
ℎ

2
)
𝛼
𝑆
𝑖+

1

2

𝑗
−
7𝛤(3−𝛼)

2
(
ℎ

2
)
𝛼
𝑆
𝑖−

1

2

𝑗
. 

  (6.3.5) 

Similarly, 

 ℎ𝐷𝑖
𝑗
= (𝑍𝑖+3/2

𝑗
− 𝑍𝑖+1/2

𝑗
) −

𝛤(3−𝛼)

2
(
ℎ

2
)
𝛼
𝑆𝑖+3/2
𝑗

−
7𝛤(3−𝛼)

2
(
ℎ

2
)
𝛼
𝑆𝑖+1/2.
𝑗

  (6.3.6) 

Using expressions in Eqs. (6.3.5) and (6.3.6), Eq. (6.3.4) becomes 

 𝑍𝑖+3/2
𝑗

− 2𝑍
𝑖+

1

2

𝑗
+ 𝑍

𝑖−
1

2

𝑗
= 𝛿(𝑆

𝑖+
3

2

𝑗
+ 6𝑆

𝑖+
1

2

𝑗
+ 𝑆

𝑖−
1

2

𝑗
),    𝑖 = 1,2,… , 𝑁 − 2,  

  (6.3.7) 
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where 

𝛿 =
𝛤(3−𝛼)

2
(
ℎ

2
)
𝛼

. 

As 𝛼 → 2, system (6.3.7) reduces to 

𝑍𝑖+3/2
𝑗

− 2𝑍𝑖+1/2
𝑗

+ 𝑍𝑖−1/2
𝑗

=
ℎ2

8
(𝑆𝑖+3/2

𝑗
+ 6𝑆𝑖+1/2

𝑗
+ 𝑆𝑖−1/2

𝑗
),    𝑖 =

1,2,… ,𝑁 − 2.   (6.3.8) 

Remark: 

The truncation error for Eq. (6.3.7); that is, 

𝑇∗𝑖
𝑗
= (𝑢𝑖−1/2

𝑗
+ 𝑢𝑖+3/2

𝑗
) − 2𝑢𝑖+1/2

𝑗
− 𝛿 (𝐷𝑥

2𝑢𝑖−1/2
𝑗

+ 𝐷𝑥
2𝑢𝑖+3/2

𝑗
) − 6𝛿𝐷𝑥

2𝑢𝑖+1/2
𝑗

 

can be obtained by expanding this equation in a Taylor series in terms of 

),( 2/1 ji txu +  and its derivatives as follows: 

𝑇∗𝑖
𝑗
= (ℎ2 − 8𝛿)𝐷𝑥

2𝑢𝑖+1/2
𝑗

+ (
ℎ4

12
− 𝛿ℎ2)𝐷𝑥

4𝑢𝑖+1/2
𝑗

+ (
ℎ6

360
−
𝛿ℎ4

12
)𝐷𝑥

6𝑢𝑖+1/2
𝑗

+⋯. 

Since 𝛿 =
𝛤(3−𝛼)

2
(
ℎ

2
)
𝛼

, the last expression can be simplified as 

𝑇∗𝑖
𝑗
= ℎ𝛼(ℎ2−𝛼 − 8𝜃)𝐷𝑥

2𝑢𝑖+1/2
𝑗

+ ℎ2+𝛼 (
ℎ2−𝛼

12
− 𝜃)𝐷𝑥

4𝑢𝑖+1/2
𝑗

+ 

ℎ4+𝛼 (
ℎ2−𝛼

360
−

𝜃

12
)𝐷𝑥

6𝑢𝑖+1/2
𝑗

+⋯, 

where 𝜃 =
𝛤(3−𝛼)

2𝛼+1
. From this expression of the local truncation error, our scheme is 

𝑂(ℎ𝛼),  1 < 𝛼 ≤ 2 

 𝑆𝑖
𝑗
=

𝜕𝛼𝑍𝑖
𝑗

𝜕𝑥𝛼
=

𝜕2𝑍𝑖
𝑗

𝜕𝑡2
+
𝜕𝑍𝑖

𝑗

𝜕𝑡
+ 𝑍𝑖

𝑗
   (6.3.9) 

 𝑆𝑖
𝑗
=

𝜕𝛼𝑍𝑖
𝑗

𝜕𝑥𝛼
≈

𝑍𝑖
𝑗+1

−2𝑍𝑖
𝑗
+𝑍𝑖

𝑗−1

𝑘2
+
𝑍𝑖
𝑗+1

−𝑍𝑖
𝑗−1

2𝑘
+ 𝑍𝑖

𝑗
,   (6.3.10) 

which can be discretised as follows: 
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𝑆𝑖−1/2
𝑗

=
𝜕𝛼𝑍𝑖−1/2

𝑗

𝜕𝑥𝛼
≈
𝑍𝑖−1/2
𝑗+1

− 2𝑍𝑖−1/2
𝑗

+ 𝑍𝑖−1/2
𝑗−1

𝑘2
+
𝑍𝑖−1/2
𝑗+1

− 𝑍𝑖−1/2
𝑗−1

2𝑘
+ 𝑍𝑖−1/2

𝑗
 

𝑆𝑖+1/2
𝑗

=
𝜕𝛼𝑍𝑖+1/2

𝑗

𝜕𝑥𝛼
≈

𝑍𝑖+1/2
𝑗+1

−2𝑍𝑖+1/2
𝑗

+𝑍𝑖+1/2
𝑗−1

𝑘2
+
𝑍𝑖+1/2
𝑗+1

−𝑍𝑖+1/2
𝑗−1

2𝑘
+ 𝑍𝑖+1/2

𝑗
  (6.3.11) 

𝑆𝑖+3/2
𝑗

=
𝜕𝛼𝑍𝑖+3/2

𝑗

𝜕𝑥𝛼
≈
𝑍𝑖+3/2
𝑗+1

− 2𝑍𝑖+3/2
𝑗

+ 𝑍𝑖+3/2
𝑗−1

𝑘2
+
𝑍𝑖+3/2
𝑗+1

− 𝑍𝑖+3/2
𝑗−1

2𝑘
+ 𝑍𝑖+3/2

𝑗
 

Using the formulae in (6.3.11) in (6.3.7) gives the following useful systems: 

 𝐴 𝑍
𝑖−

1

2

𝑗+1
+𝐵 𝑍

𝑖+
1

2

𝑗+1
+ 𝐴 𝑍

𝑖+
3

2

𝑗+1
= 𝐴∗𝑍

𝑖−
1

2

𝑗
+ 

        𝐵∗𝑍𝑖+1/2
𝑗

+ 𝐴∗𝑍𝑖+3/2
𝑗

+ �̑� 𝑍𝑖−1/2
𝑗−1

 + �̑� 𝑍𝑖+1/2
𝑗−1

+ �̑� 𝑍𝑖+3/2,
𝑗−1

   (6.3.12) 

where 

𝐴 =
𝛿

𝑘2
+
𝛿

2𝑘
, 𝐴∗ = 1 +

2𝛿

𝑘2
− 𝛿, �̑� =

−𝛿

𝑘2
+
𝛿

2𝑘
, 

 𝐵 =
6𝛿

𝑘2
+
3𝛿

𝑘
, 𝐵∗ = −2+

12𝛿

𝑘2
− 6𝛿  and �̑� =

−6𝛿

𝑘2
+
3𝛿

𝑘
.  (6.3.13) 

System (6.3.12) consists of N−2 equations in N unknowns. To obtain a solution to 

this system, we need two additional equations. Using the boundary conditions (6.1.2), 

that are 𝑍0
𝑗
= 𝛽1(𝑡), 𝑍𝑁+1

𝑗
= 𝛽2(𝑡), we obtain the following equation, supposing that 

𝑍1/2
𝑗

 is linearly interpolated between 𝑍0
𝑗
 and 𝑍3/2

𝑗
: 

 −3𝑍1/2
𝑗
+ 𝑍3/2

𝑗
= −2𝑍0

𝑗
= −2𝛽1,    𝑗 ≥ 0.  (6.3.14) 

In a similar manner. 

 𝑍𝑁−3/2
𝑗

− 3𝑍𝑁−1/2
𝑗

= −2𝑍𝑁
𝑗
= −2𝛽2,    𝑗 ≥ 0.  (6.3.15) 

Eq. (6.3.12) implies that the (j+1)st time step requires values from the (j)st and (j-

1)st time steps. This produces a minor starting problem, since values for j=0 are given 

by the first part in Eq. (6.1.3): 

 𝑍𝑖
0 = 𝑢(𝑥𝑖, 0) = 𝑓1(𝑥𝑖),     𝑖 = 1, . . . , 𝑁.  (6.3.16) 
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but values for j=0, which are needed in Eq. (6.3.13) to compute 𝑍𝑖
1, must be obtained 

from the first part in (6.1.3): 

𝜕𝑍𝑖
0

𝜕𝑡
= 𝑢𝑡(𝑥𝑖, 0) = 𝑓2(𝑥𝑖),   𝑖 = 1, . . . , 𝑁. 

One approach is to replace 
𝜕𝑍𝑖

0

𝜕𝑡
 by a forward-difference approximation: 

 𝑓2(𝑥𝑖) =
𝜕𝑍𝑖

0

𝜕𝑡
=

𝑍𝑖
1−𝑍𝑖

0

𝑘
+ 𝑜(𝑘),   (6.3.17) 

which gives 

 𝑍𝑖
1 = 𝑍𝑖

0 + 𝑘𝑓2(𝑥𝑖),      𝑖 = 1, . . . . , 𝑁.  (6.3.18) 

6.4 Stability Analysis 

The Von Neumann technique is used to investigate the stability of systems (6.3.11) 

and (6.3.12). Key to the Von Neumann analysis is the assumption of a solution in the 

following form: 

 𝑍𝑖
𝑗
= 𝜁𝑗𝑒

(𝑞∅ℎ),   (6.4.1) 

Where 𝜙 is the wave number, 𝑞 = √−1, h  is the element size and 𝜁 is the 

amplification factor of the scheme. The use of Eqs. (6.4.1) and (6.3.12) provides a 

characteristic equation in the form 

𝜁𝑗+1{ 𝐴 𝑒((𝑖−1)𝑞𝜙ℎ)+𝐵  𝑒(𝑖𝑞𝜙ℎ)+𝐴𝑒((𝑖+1)𝑞∅ℎ)} = 

𝜁𝑗{𝐴∗ 𝑒((𝑖−1)𝑞𝜙ℎ)+𝐵∗ 𝑒(𝑖𝑞𝜙ℎ)+𝐴∗𝑒((𝑖+1)𝑞∅ℎ)} + 

  𝜁𝑗−1{�̑� 𝑒((𝑖−1)𝑞𝜙ℎ)+�̑� 𝑒(𝑖𝑞𝜙ℎ)+ �̑� 𝑒((𝑖+1)𝑞∅ℎ)}.  (6.4.2) 

By dividing both sides of the last equation by 𝑒(𝑖𝑞∅ℎ) and cancelling the common 

term, which is𝜁𝑗−1, Eq. (6.4.2) becomes 

𝜁2{ 𝐴 𝑒(−𝑞𝜙ℎ)+𝐵  + 𝐴 𝑒(𝑞∅ℎ)} − 
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𝜁{𝐴∗ 𝑒(−𝑞𝜙ℎ)+𝐵∗ + 𝐴∗ 𝑒(𝑞∅ℎ)} − 

 {�̑� 𝑒(−𝑞𝜙ℎ)+ �̑�  + �̑�  𝑒(𝑞∅ℎ)} = 0,  (6.4.3) 

where 

𝐴 =
𝛿

𝑘2
+

𝛿

2𝑘
, 𝐴∗ = 1 +

2𝛿

𝑘2
− 𝛿, �̑� =

−𝛿

𝑘2
+

𝛿

2𝑘
 

𝐵 =
6𝛿

𝑘2
+
3𝛿

𝑘
, 𝐵∗ = −2 +

12𝛿

𝑘2
− 6𝛿, and �̑� =

−6𝛿

𝑘2
+
3𝛿

𝑘
. 

This equation can be rewritten in the simple form 

    𝑎𝜁2    + 𝑏𝜁 + 𝑐 = 0  (6.4.4) 

where 

𝑎 = (𝐴 𝑒(−𝑞𝜙ℎ)+𝐵  + 𝐴 𝑒(𝑞𝜙ℎ)),  𝑏 = −(𝐴∗ 𝑒(−𝑞𝜙ℎ)+𝐵∗ + 𝐴∗𝑒(𝑞𝜙ℎ)), 

𝑎𝑛𝑑 𝑐 = −(�̑� 𝑒(−𝑞𝜙ℎ)+ �̑� + �̑� 𝑒(𝑞𝜙ℎ)) 

or 

𝑎 = 𝐵 + 2𝐴 𝑐𝑜𝑠 𝜑 , 𝑏 = −𝐵∗ − 2𝐴∗ 𝑐𝑜𝑠 𝜑  , 𝑐 = −�̑� − 2�̑� 𝑐𝑜𝑠 𝜑 , 𝜑 = ℎ𝜙 

or 

𝑎 =
𝛿

𝑘
(3 + 𝑐𝑜𝑠 𝜑) (

2

𝑘
+ 1) , 𝑏 = 2(1 − 𝑐𝑜𝑠 𝜑) − 2𝛿(3 + 𝑐𝑜𝑠 𝜑) (

2

𝑘2
− 1) , 

𝑐 =
𝛿

𝑘
(3 + 𝑐𝑜𝑠 𝜑) (

2

𝑘
− 1) 

Eq. (6.4.4) is a quadratic in 𝜁 and thus it will have two roots; that is: 

𝜍± =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

𝜍± = √
𝑐

𝑎
(−𝜓 ± √𝜓2 − 1) , 𝜓 =

𝑏

2√𝑎𝑐
 

Stability requires that |𝜁±| ≤ 1. So, we have three cases. 
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Case 1: The discriminant of the quadratic Eq. (6.4.4) is zero; that is, 𝜓2 − 1 = 0, in 

which case 

𝜍± = ±√
𝑐

𝑎
= ±√

2−𝑘

2+𝑘
, 0 < 𝑘 < 1 

and the stability condition,|𝜁±| ≤ 1, is satisfied. 

Case 2: The discriminant is less than zero; that is 𝜓2 − 1 < 0, in which case 

𝜍± = √
𝑐

𝑎
(−𝜓 ± 𝑞√1 − 𝜓2) = √

2 − 𝑘

2 + 𝑘
(−𝜓 ± 𝑞√1 − 𝜓2) ⇒ 

the stability condition,|𝜁±| ≤ 1, is satisfied. 

Case 3: The discriminant is greater than zero. This means that either 𝜁+ or 𝜁− does 

not satisfy the stability condition. Thus, for stability we must have 𝜓2 − 1 ≤ 0: 

 1 ≤ 𝜓 ≤ 1  (6.4.5) 

1 ≤
𝑏

2√𝑎𝑐
≤ 1 

Since √𝑎𝑐 > 0 ⇒ −2√𝑎𝑐 ≤ 𝑏 ≤ 2√𝑎𝑐, 

−
2𝛿

𝑘2
(3 + 𝑐𝑜𝑠 𝜑)√4 − 𝑘2 ≤ 2(1 − 𝑐𝑜𝑠 𝜑) − 2𝛿(3 + 𝑐𝑜𝑠 𝜑) (

2

𝑘2
− 1) ≤ 

2𝛿

𝑘2
(3 + 𝑐𝑜𝑠 𝜑)√4 − 𝑘2. 

The right side in the above inequality takes the form 

2(1 − 𝑐𝑜𝑠 𝜑) ≤
2𝛿

𝑘2
(3 + 𝑐𝑜𝑠 𝜑) (√4 − 𝑘2 + 2 − 𝑘2), 

which is satisfied for k<< where h is small enough. 

However, the left side of the above inequality takes the form 

−2(1 − 𝑐𝑜𝑠 𝜑) ≤
2𝛿

𝑘2
(3 + 𝑐𝑜𝑠 𝜑)(√4 − 𝑘2 − 2 + 𝑘2), 
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which is satisfied for k<< where h is small enough, and the method is thus 

conditionally stable. 

6.5 Numerical Example 

In this section, a numerical example is included to illustrate the practical 

implementation of the proposed method. Consider the following linear space FTE 

[127]: 

 
𝜕1.5𝑢

𝜕 𝑥1.5
= 

𝜕2𝑢

𝜕 𝑡2
+ 

𝜕 𝑢

𝜕 𝑡
+ 𝑢,𝑥 > 0.  (6.5.1) 

subject to the initial condition 

 𝑢(𝑥, 0) = 0,  (6.5.2) 

boundary conditions 

 𝑢(0.0125, 𝑡) ≈ 𝑒𝑥𝑝(−𝑡) (1 + 0.0125) +
0.01251.5

𝛤(5/2)
+
0.01252.5

𝛤(7/2)
+
0.01253

𝛤(4)
+
0.01254

𝛤(5)
+. ..  

    (6.5.3) 

and 

𝑢(1.0125, 𝑡) ≈ 𝑒𝑥𝑝(−𝑡) (1 + 1.0125) +
1.01251.5

𝛤(5/2)
+
1.01252.5

𝛤(7/2)
+
1.01253

𝛤(4)

+
1.01254

𝛤(5)
+. . . . 

    (6.5.4) 

The exact solution is 

 𝑢(𝑥, 𝑡) ≈ 𝑒𝑥𝑝(−𝑡) (1 + 𝑥 +
𝑥1.5

𝛤(5/2)
+

𝑥2.5

𝛤(7/2)
+

𝑥3

𝛤(4)
+

𝑥4

𝛤(5)
+. . . ).  (6.5.5) 

Tables 6.5.1–6.5.3 illustrate the comparison between the proposed method, 

developed in Section 6.4 and existing methods [127] and [145] with 𝑘 =

0.00005, ℎ = 0.025, 𝑡 = 0.05,0.1,0.15 and 𝛼 = 1.5. 
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Tables 6.5.4–6.5.5 compare the method developed in Section 6.4, with existing 

methods [127] and [145] with 𝑘 = 0.00005, ℎ = 0.025, 𝑡 = 0.05,0.1, and 𝛼 = 1.75. 

Table 6.5.1 Comparison between the proposed numerical method and methods 

[127] and [145] when t=0.05, k=0.000005, and h=0.025 and 𝜶 = 𝟏. 𝟓. 

𝒙 Proposed Method Methods [127] and [145] 

0.1 1.0689295078552934 1.0700487208006241 

0.2 1.2105809555003169 1.2119422776213813 

0.3 1.3713891366890514 1.3729692926753612 

0.4 1.5513544745941052 1.5531657691651113 

0.5 1.7514676554067925 1.7535302292267538 

0.6 1.9732140327892282 1.9755523719324375 

0.7 2.2184148686049125 2.2210569535598963 

0.8 2.4891614801652615 2.4921386344095513 

0.9 2.7877830486712691 2.7911317256723061 

1.0 3.1196537361432172 3.1205956925765412 

 

 

Figure 6.5.1 Comparison between the proposed method and method [127] and 

[145] when t=0.05, k=0.000005, and h=0.025 and 𝜶 = 𝟏. 𝟓. 
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Table 6.5.2 Comparison between the proposed numerical method and methods 

[127] and [145] when t=0.1, k=0.000005, and h=0.025 and 𝜶 = 𝟏. 𝟓. 

𝒙 Proposed Method Methods [127] and [145] 

0.1  1.0139125288963764 1.0178618288749026 

0.2  1.1480559941970572 1.1528351552698712 

0.3  1.3004476445553682 1.3060087901287358 

0.4  1.4710342588062175 1.4774169807571376 

0.5  1.6607354930479643 1.6680095507919713 

0.6  1.8709521529921287 1.8792035458243128 

0.7  2.1034072173406435 2.1127347277180891 

0.8  2.3600811054248516 2.3705955989853926 

0.9  2.6431880681647740 2.6550066251169517 

1.0 2.9649893224621964 2.9684024447489910 

 

  

Figure 6.5.2 Comparison between the proposed method and method [127] and 

[145] when t=0.1, k=0.000005, and h=0.025 and 𝜶 = 𝟏. 𝟓. 
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Table 6.5.3 Comparison between the proposed numerical method and methods 

[127] and [145] when t=0.15, k=0.000005, and h=0.025 and 𝜶 = 𝟏. 𝟓. 

𝒙 Proposed Method Methods [127] and [145] 

0.1 0.9596371905024942 0.9682201217019183 

0.2 1.0862170007301811 1.0966107212915508 

0.3 1.2302168726205736 1.2423139898270312 

0.4 1.3914776194134673 1.4053625043531945 

0.5 1.5708357143835627 1.5866597650615402 

0.6 1.7696035239597443 1.7875537074141623 

0.7 1.9894042815310826 2.0096954391699512 

0.8 2.2321069494266474 2.2549802873468003 

0.9 2.4998194340024652 2.5255204240555812 

1.0 2.8167740246016137 2.8236317492050944 

 

 

Figure 6.5.3 Comparison between the proposed method and methods [127] and 

[145] when t=0.15, k=0.000005, and h=0.025 and 𝜶 = 𝟏. 𝟓. 
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Table 6.5.4 Comparison between the proposed numerical method and methods 

[127] and [145] when t=0.05, k=0.00005, and h=0.025, 𝜶 = 𝟏. 𝟕𝟓. 

𝒙 Proposed Method Methods [127] and [145] 

0.1 0.9591480315753628 1.0572785260392232 

0.2 1.0867445813092063 1.1797304399209085 

0.3 1.2307489176630863 1.3176660343983828 

0.4 1.3920372585030207 1.4716641084951654 

0.5 1.5714366396546564 1.6428130928171421 

0.6 1.7702550524339082 1.8325254529378252 

0.7 1.9901139102638157 2.0424754500651385 

0.8 2.2328814918984262 2.2745763567746264 

0.9 2.5005404809568174 2.5309742073637795 

1.0 2.8087858338014686 2.8140496901826731 

 

 

Figure 6.5.4 Comparison between the proposed numerical method and 

methods [127] and [145] when t=0.05, k=0.00005, and h=0.025, 𝜶 = 𝟏. 𝟕𝟓. 
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Table 6.5.5 Comparison between the proposed numerical method and methods 

[127] and [145] when t=0.1, k=0.00005, and h=0.025, 𝜶 = 𝟏. 𝟕𝟓. 

𝒙 Proposed Method Methods [127] and [145] 

0.1 0.9597673920033094 1.0057144438612532 

0.2 1.0867461330050554 1.1221943074319412 

0.3 1.2307489144320851 1.2534027035849116 

0.4 1.3920372584910621 1.3998902029822125 

0.5 1.5714366396549502 1.5626921528426882 

0.6 1.7702550524472353 1.7431521319809578 

0.7 1.9901139126215512 1.9428627469222985 

0.8 2.2328811392604192 2.1636439588376586 

0.9 2.4997581380145126 2.4075371386967985 

1.0 2.6931301646725034 2.6768068673088763 

 

 

Figure 6.5.5 The 3D behaviour of the numerical solutions from t=0.0005 to 

t=0.05, k=0.0005, and h=0.025, 𝜶 = 𝟏. 𝟕𝟓. 

Tables 6.5.1–6.5.5 and Figures 6.5.1–6.5.5 demonstrate that the obtained 

approximate numerical solutions are in good agreement with the approximate 

solutions obtained using methods [127] and [145] for all values of x and t. 
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6.6 Conclusion 

In this chapter, a numerical treatment was proposed for a linear space FTE using 

quadratic-polynomial splines. Through application of the Von Neumann stability 

analysis, the developed method was shown to be conditionally stable. The numerical 

example worked well and confirmed the theoretical analysis, which demonstrates that 

the numerical scheme is effective and reliable for the time–space-fractional order 

telegraph equation. The approximate numerical solutions obtained are in good 

agreement with the approximate solutions obtained using method [127] and [145] for 

all values of x and t. The proposed scheme for local truncation error is of 𝑂(ℎ𝛼), 1 <

𝛼 ≤ 2, and it can be concluded that this technique is both very powerful and efficient 

for finding the approximate solutions for a large class of linear PDEs of fractional 

order. 
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Chapter 7: Adaptive Boundary Control for the Dynamics 

of the Generalised Burgers–Huxley Equation 

7.1 Introduction 

NPDEs have been widely studied by researchers over the years and have since 

become ubiquitous in nature [152]. Exact solutions rarely exist for NPDEs; thus, there 

has been much attention devoted recently to the search for better and more efficient 

methods for determining a solution—approximate or exact, analytical or numerical—

to nonlinear models  [153]. Of the plethora of NPDEs, the Burgers–Huxley equation 

is finding an increasing number of useful applications in different fields. The 

Burgers–Huxley equation is a well-known NPDE that simulates nonlinear wave 

phenomena in physics, biology, economics and ecology [154]. It finds application in 

many fields such as biology, nonlinear acoustics, metallurgy, chemistry, combustion, 

mathematics and engineering, as per Satsuma et al. [155]. It is a special type of 

nonlinear advection-diffusion reaction problem that is of importance in applications 

in mechanical engineering, material sciences and neurophysiology. Examples include 

particle transport, wall motion in liquid crystals [156], dynamics of ferroelectric 

materials [157] and action potential propagation in nerve fibres [158]. Further, some 

of these reaction processes involve fascinating phenomena such as busting 

oscillation, population genetics and bifurcation [159–164]. 

The GBHE model has application in relation to propagating signals in the nervous 

system, elasticity, gas dynamics and heat conduction [165]. The Burgers–Huxley 

equation was first introduced to describe turbulence in one space dimension, and has 

been used in several other physical contexts; for instance sound waves in viscous 

media [166]. 

Many methods have been developed to solve the Burgers–Huxley equation, including 

the ADM [167–169]. El-Danaf discussed some analytic properties of the GBHE such 

as the translation property and the steady state solution of the equation [170]. Using 

the first integral method, Xijun Deng studied travelling wave solutions to the GBHE 

in 2008 [171]. A year later, the HAM was applied to obtain approximate analytical 
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solutions for the GBHE and the Huxley equation, by Sami Bataineh et al. [172]. In 

2010, Smaoui et al. designed three adaptive control laws for the forced generalised 

Korteweg–de Vries–Burgers (GKdVB) equation when either the kinematic viscosity, 

dynamic viscosity or both were unknown [173]. In the same year, Biazar and 

Mohammadi applied the DTM to the GBHE and some special cases of the equation 

such as the Huxley and Fitzhugh–Nagoma equations [174]. Bratsos, in his 2011 

research, proposed an implicit finite difference scheme based on fourth-order rational 

approximants to the matrix exponential term for the numerical solution of the 

Burgers–Huxley equation [175]. Macías-Díaz et al. (2011) developed a non-standard 

finite difference scheme to approximate the solution of the GBHE from fluid 

dynamics [176]. In 2013, El-Kady et al. introduced treatments for the GBHE that 

were dependent on cardinal Chebyshev and Legendre basis functions with the 

Galerkin method [177]. In the same year, Ray and Gupta solved the GBHE and 

Huxley equations using the Haar wavelet method [178]. Liu et al. (2013) used the 

double exp-function method to obtain a two-soliton solution for the GBHE [179]. A 

year later, Emad applied a relatively new semi-analytic technique, the reduced DTM 

to solve the GBHE and some special cases [180]. In 2015, Ervin et al. published a 

paper outlining a finite element scheme capable of preserving the non-negative and 

bounded solutions of the GBHE [181]. Inan (2016) applied an implicit exponential 

finite difference method to compute the numerical solutions of the nonlinear 

generalised Huxley equation [182]. Kumar and Singh proposed a numerical scheme 

for solution of the GBHE using an improved nodal integral method in 2016 [183]. In 

the same year, Machado et al. introduced an algorithm based on adopting the 

approximate analytical solution of the Cauchy problem for the Burgers–Huxley 

equation [184]. In 2017, Inan presented an explicit exponential finite difference 

method to solve the generalised forms of the Huxley and Burgers–Huxley equations 

[185]. In 2018, Wasim et al. introduced a new numerical technique for solving 

nonlinear generalised Burgers–Fisher and Burgers–Huxley equations using the 

hybrid B-spline collocation method [186]. Appadu et al. (2019) obtained numerical 

solutions to the Burgers–Huxley equation with specified initial and boundary 

conditions using two novel non-standard finite difference schemes and two 

exponential finite difference schemes [187]. In the same year, Fu discussed the 
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persistence of travelling wavefronts in a GBHE with long-range diffusion [188]. A 

year later, Sun and Zhu developed a kind of CBS quasi-interpolation, which was used 

to solve Burgers–Huxley equations [189]. In 2020, Khan et al. demonstrated how to 

use the new auxiliary method for solitary wave solutions of the GBHE [190]. Kumar 

and Mohan in 2020 introduced an analytical global solvability as well as asymptotic 

analysis of the stochastic GBHE perturbed by space–time white noise in a bounded 

interval of R [191]. Kushner (2020) constructed similar dynamics for the classical 

Burgers–Huxley equation and then used them to construct new exact solutions [192]. 

More recently, Ebiwareme (2021) proposed the tanh–coth and Banach contraction 

methods to solve the Burgers–Huxley and Kuramoto–Sivashinsky (KS) equations 

[193]. In the same year, Mohan and Khan considered the forced GBHE and 

established the existence an uniqueness of a global weak solution using a Faedo–

Galerkin approximation method [194]. 

Many researchers have worked on the control problems for the Burgers, KS, KdV 

and KdVB equations (see [195]–[198]). In [199]–[201], the authors obtained a 

nonlinear robust boundary control for the KS equation and a nonlinear robust 

stabilisation for the GKdVB using the boundary control. In [202] and [203], Smaoui 

et al. obtained a nonlinear boundary control for the generalised Burgers and GKdVB 

equations. In [204] and [205], Smaoui et al. controlled the dynamics of the Burgers 

and GKdVB equations using an adaptive boundary control. In [206], Smaoui and El-

Gamil produced a paper dealing with the adaptive control of the unforced GKdVB 

equation using three adaptive control laws. 

The GBHE takes the form 

 
∂𝑢

∂𝑡
+ 𝛼𝑢𝛿

∂𝑢

∂𝑥
−
∂2𝑢

∂𝑥2
= 𝛽𝑢(1 − 𝑢𝛿)(𝑢𝛿 − 𝛾), 0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0,  (7.1.1) 

where 𝛼, 𝛽, 𝛾 and 𝛿 are parameters and where 𝛽 ≥ 0, 𝛿 > 0, 𝛾 ∈ (0,1). 

In population dynamics, 𝑢(𝑥, 𝑡) represent the population density, 𝛾 is the species 

carrying capacity, 𝛼 stands for the speed of advection and 𝛽 is a parameter that 

describes a nonlinear source. When a certain condition is imposed on the parameter, 

the GBHE is reduced to many parabolic evolution equations of physical insight. 
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These equations describe different phenomena in mathematical physics, 

biomathematics, chemistry and mechanics [207]. Eq. (7.1.1) models the interaction 

between reaction mechanisms, convection effects and diffusion transports [208,209]. 

The Burgers equation is a very interesting model because of the nonlinear advection 

𝑢𝛿𝑢𝑥 term, dissipation 𝑢𝑥𝑥 term, and the shock wave behaviour when the Reynolds 

number is very large [210]. 

In this chapter, an adaptive boundary control is developed for the GBHE (7.1.1) 

with high-order nonlinearity: 

𝑢𝑡+∝ 𝑢
𝛿𝑢𝑥 − 𝜈𝑢𝑥𝑥 = 𝛽𝑢(1 − 𝑢

𝛿)(𝑢𝛿 − 𝛾), 0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0 

with the initial condition 𝑢(𝑥, 0) =  𝑓0(𝑥) 

and boundary conditions 

𝑎𝑢(0, 𝑡) +  𝑏𝑢𝑥 (0, 𝑡) =  𝜔1(𝑡), 

   𝑐𝑢(1, 𝑡) + 𝑑𝑢𝑥(1, 𝑡) = 𝜔2(𝑡).  (7.1.2) 

7.2 Preliminaries 

In this section, I present some basic propositions and lemmas that become useful in 

the next sections. 

Proposition: (Gronwall–Bellman Inequality) [211] 

Let 𝛾(𝑡) ∶  [𝑎, 𝑏] → ℝ and 𝛼(𝑡) ∶  [𝑎, 𝑏] →ℝ be two continuous functions and let 

𝛽(𝑡)  ≥ 0 be a non-negative integrable function on the same interval. If 𝛾(𝑡) satisfies 

 𝛾(𝑡) ≤  𝛼(𝑡) + ∫ 𝛽(𝑠)𝛾(𝑠)𝑑𝑠
𝑡

𝑎
, 𝑎 ≤  𝑡 ≤  𝑏.  (7.2.1) 

and if the function 𝛼(𝑡) is non-decreasing, then 

 𝛾(𝑡) ≤ 𝛼(𝑡) exp (∫ β(τ )dτ 
𝑡

𝑎
), for 𝑎 ≤  𝑡 ≤  𝑏.  (7.2.2) 

Lemma 1: [212] 
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Let 𝛽 <  0. 𝐼𝑓 𝑢(𝑥, 𝑡) ∈ 𝐿2(0,∞); then 

 ∫ 𝑒𝑥𝑝(𝛽(𝑡 −  𝜏 ))𝑢2 (1, 𝜏 )𝑑𝜏 →  0.
𝑡

0
   (7.2.3) 

Lemma 2: [212] 

𝐿𝑒𝑡 𝛽 <  0, if 𝑢(𝑥, 𝑡) ∈  𝐿2∝+2(0,∞); then 

 ∫ 𝑒𝑥𝑝(𝛽(𝑡 −  𝜏 ))𝑢2∝+2 (1, 𝜏 )𝑑𝜏 →  0
𝑡

0
  as 𝑡 →  ∞.  (7.2.4) 

7.3 Global Exponential Stability of the Generalised Burgers–Huxley 

Equation With Zero Dirichlet Conditions 

In this section, I state and prove a theorem to show these types of equations are 

globally exponential stable in L2[0,1] under zero Dirichlet boundary conditions. 

Theorem 1: 

Let 𝛿 be a positive integer, 𝜈 >  0 and 𝛾 ≤ 1; then the GBHE with zero Dirichlet 

boundary conditions is globally exponential stable in L2(0, 1). 

Proof: 

Multiplying both sides of Eq. (7.1.1) by 2𝑢(𝑥, 𝑡) results in 

 2𝑢𝑢𝑡 + 2 ∝ 𝑢
𝛿+1𝑢𝑥 − 2𝒱𝑢𝑢𝑥𝑥 = −2𝛽𝑢

2(𝑢𝛿 − 1)(𝑢𝛿 − 𝛾), 0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0. 

  (7.3.1) 

By integrating Eq. (7.3.1) from 0 to 1, 

𝑑

𝑑𝑡
∫ 𝑢2𝑑𝑥 + 2𝛼 ∫ 𝑢𝛿+1𝑢𝑥𝑑𝑥 − 2𝜈 ∫ 𝑢𝑢𝑥𝑥𝑑𝑥 = −2𝛽 ∫ 𝑢2(𝑢𝛿 − 1)(𝑢𝛿 − 𝛾)𝑑𝑥,

1

0

1

0

1

0

1

0
 (7.3.2) 

𝑑

𝑑𝑡
║𝑢║

2
+

2𝛼

𝛿 + 2
[𝑢𝛿+2(1, 𝑡) − 𝑢𝛿+2(0, 𝑡)] − 2𝜈[𝑢(1, 𝑡)𝑢𝑥(1, 𝑡) − 𝑢(0, 𝑡)𝑢𝑥(0, 𝑡)]

+ 2𝜈║𝑢𝑥║
2
 

 = −2𝛽 ∫ (𝑢2𝛿+2 − (𝛾 + 1)𝑢𝛿+2 + 𝛾𝑢2)𝑑𝑥.
1

0
  (7.3.3) 
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Using the Dirichlet boundary condition 𝑢(0, 𝑡)  =  𝑢(1, 𝑡)  =  0 on Eq. (7.3.3), we 

have 

 
𝑑

𝑑𝑡
║𝑢║

2
+ 2𝜈║𝑢𝑥║

2
= −2𝛽 ∫ (𝑢2𝛿+2 − (𝛾 + 1)𝑢𝛿+2 + 𝛾𝑢2)𝑑𝑥.

1

0
   (7.3.4) 

 
𝑑

𝑑𝑡
║𝑢║

2
+ 2𝜈║𝑢𝑥║

2
= −2𝛽𝛾║𝑢║

2
+ 2𝛽(𝛾 + 1) ∫ 𝑢𝑢𝛿+1𝑑𝑥 − 2𝛽║𝑢𝛿+1║

21

0
  

  (7.3.5) 

Using the Cauchy Shwartz and Young inequalities, we have 

  2𝛽(𝛾 +  1) ∫ 𝑢𝑢𝛿+1𝑑𝑥 ≤ 𝛽(𝛾 + 1)(║𝑢║
2
+ ║𝑢𝛿+1║

21

0
)  (7.3.6) 

From Eq. (7.3.1) and inequality (7.3.6), we have 

𝑑

𝑑𝑡
║𝑢║

2
+ 2𝜈║𝑢𝑥║

2
= −2𝛽𝛾║𝑢║

2
+ 2𝛽(𝛾 + 1)∫ 𝑢𝑢𝛿+1𝑑𝑥 − 2𝛽║𝑢𝛿+1║

2
1

0

 

≤ −2𝛽𝛾║𝑢║
2
+ 𝛽(𝛾 + 1)║𝑢║

2
+║𝑢𝛿+1║

2
−  2𝛽║𝑢𝛿+1║

2
 

= (−𝛽𝛾 + 𝛽)║𝑢║
2
+ ║𝑢𝛿+1║

2
−  2𝛽║𝑢𝛿+1║

2
 

 
𝑑

𝑑𝑡
║𝑢║

2
+ 2𝜈║𝑢𝑥║

2
≤ (−𝛽𝛾 + 𝛽)║𝑢║

2
+ (𝛽𝛾 − 𝛽)║𝑢𝛿+1║

2
  (7.3.7) 

Since ║𝑢𝛿+1║
2
≤ ║𝑢𝛿║

2
║𝑢║

2
,║𝑢𝛿║

2
≤ ║𝑢║

2𝛿
, we have: 

 ║𝑢𝛿+1║
2
≤ ║𝑢║

2𝛿+2
,  (7.3.8) 

which gives 

𝑑

𝑑𝑡
║𝑢║

2
≤ (−𝛽𝛾 + 𝛽)║𝑢║

2
+ (𝛽𝛾 − 𝛽)║𝑢𝛿+1║

2
− 2𝜈║𝑢𝑥║

2
 

= −𝛽𝛾║𝑢║
2
+ 𝛽║𝑢║

2
+ 𝛽𝛾║𝑢𝛿+1║

2
− 𝛽║𝑢𝛿+1║

2
− 2𝜈║𝑢𝑥║

2
 

≤ −𝛽𝛾║𝑢║
2
+ 𝛽║𝑢║

2
+ 𝛽𝛾║𝑢║

2𝛿+2
− 𝛽║𝑢║

2𝛿+2
− 2𝜈║𝑢𝑥║

2
 

= (𝛽 − 𝛽𝛾)║𝑢║
2
+ (𝛽𝛾 − 𝛽)║𝑢║

2𝛿+2
− 2𝜈║𝑢𝑥║

2
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= 𝛽(1 − 𝛾)[║𝑢║
2
+ ║𝑢║

2𝛿+2
] − 2𝜈║𝑢𝑥║

2
 

 
𝑑

𝑑𝑡
║𝑢║

2
≤ −2𝜈║𝑢𝑥║

2
+ 𝛽(1 − 𝛾) [║𝑢║

2
+ ║𝑢║

2𝛿+2
]  (7.3.9) 

Since ║𝑢║
2𝛿+2

≥ ║𝑢║
2
, then 

 
𝑑

𝑑𝑡
║𝑢║

2
≤ −2𝜈║𝑢𝑥║

2
  (7.3.10) 

Using the Poincare inequality [213], we obtain 

 −2𝜈║𝑢𝑥║
2
≤

−𝜐

2
║𝑢║

2
.  (7.3.11) 

By the basic comparison of inequality (7.3.11) with first-order differential 

inequalities, we have 

 ║𝑢║
2
≤ ║𝑢0║

2
exp(−2νt).  (7.3.12) 

Therefore, ║𝑢(𝑥, 𝑡)║converges to zero exponentially when 𝑡 → ∞. 

7.4 Construction of the Adaptive Boundary Control for the 

Generalised Burgers–Huxley Equation  

In this section, I build an adaptive boundary control for Eq. (7.1.1) as follows. 

Theorem 2: 

Let 𝛿 >  0, 𝛾 ≤ 1; then the solution 𝑢(𝑥, 𝑡) of Eq. (7.1.1) with initial condition 

𝑓0(𝑥) ∈ 𝐻
3(0, 1), which satisfies the boundary conditions (7.1.2) such that a, b, c, d 

are arbitrary constants with the property║𝑢(. , 𝑡)║ →  0 𝑎𝑠 𝑡 →  ∞. 

Proof: 

If 𝑢(0, 𝑡). 𝑢(1, 𝑡) are locally existing in 𝐿2∝+2(0,1) and the control functions 

𝜔1(𝑡), 𝜔2(𝑡) are given by 

 𝜔1 (𝑡)  =  𝑘1 (𝑡)𝑢
2𝛿+1 (0, 𝑡)  + 𝑘2 (𝑡)𝑢

𝛿+1 (0, 𝑡)  + 𝑘3 (𝑡)𝑢(0, 𝑡),  (7.4.1) 
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 𝜔2 (𝑡)  =  𝑘4 (𝑡)𝑢
2𝛿+1 (1, 𝑡)  + 𝑘5 (𝑡)𝑢

𝛿+1 (1, 𝑡)  + 𝑘6 (𝑡)𝑢(1, 𝑡),  (7.4.2) 

such that 𝑘𝑛(𝑡), 𝑛 =  1, 2, . . . , 6 are bounded for any 𝑡 ≥ 0. 

First, note that the following are true: 

  𝑘′1 (𝑡)  =  𝑟1𝑢
2𝛿+2 (0, 𝑡), 𝑘′2 (𝑡)  =  𝑟2𝑢

𝛿+2 (0, 𝑡),   𝑘′3 (𝑡)  =  𝑟3𝑢
2𝛿+2 (0, 𝑡), 

  𝑘′4(𝑡) =  −𝑟4𝑢
2𝛿+2(1, 𝑡), 𝑘′5(𝑡) =  −𝑟5𝑢

𝛿+2 (1, 𝑡),  𝑘′6 (𝑡)  =  −𝑟6 𝑢(1, 𝑡), 

such that 𝑟𝑛 >  0, 𝑛 =  1, 2, . . . , 6,  

Now, I proceed with proving the theorem. 

Consider the following Lyapunov function candidate [214]: 

 𝑉 (𝑡)  = ∫ 𝑢2(𝑥, 𝑡)𝑑𝑥
1

0
  (7.4.3) 

Operating on Eq. (7.4.3) with a differential operator with respect to t and using Eq. 

(7.1.1) gives 

 𝑉′(𝑡) = ∫ 𝑢(𝑥, 𝑡)𝑢𝑡(𝑥, 𝑡)𝑑𝑥
1

0
= ∫ 𝑢 (−∝ 𝑢𝛿𝑢𝑥 + 𝜐𝑢𝑥𝑥 + 𝛽𝑢(𝑢

𝛿 − 1)(𝑢𝛿 − 𝛾))𝑑𝑥.
1

0
  

  (7.4.4) 

Thus, 

  𝑉′(𝑡) = −𝛼∫ 𝑢𝛿+1𝑢𝑥𝑑𝑥 + 𝜐
1

0

∫ 𝑢𝑢𝑥𝑥𝑑𝑥 + 𝛽 

1

0 𝑢2(𝑢𝛿 − 1)(𝑢𝛿 − 𝛾)𝑑𝑥
1

0

 

=
−𝛼

𝛿+2
[𝑢𝛿+2(1, 𝑡) − 𝑢𝛿+2(0, 𝑡)] + 𝜐[𝑢(1, 𝑡)𝑢𝑥(1, 𝑡) − 𝑢(0, 𝑡)𝑢𝑥(0, 𝑡)] − 𝜐║𝑢𝑥║

2
 

 = +𝛽∫ ((𝑢𝛿+1)
2
− (𝛾 + 1)𝑢𝑢𝛿+1 + 𝛾𝑢2)𝑑𝑥.

1

0
   (7.4.5) 

Now, using the Cauchy Shwartz and Young inequalities, we have 

 𝛽(𝛾 + 1)∫ 𝑢𝑢𝛿+1𝑑𝑥 ≤
𝛽(𝛾+1)

2
(║𝑢║

2
+║𝑢𝛿+1║

2
) ,

1

0
  (7.4.6) 
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From the Poincare inequality, we obtain 

 −𝜐║𝑢𝑥║
2
≤

−𝜐

4
║𝑢║

2
+
𝜐

2
𝑢2(0, 𝑡)  (7.4.7) 

𝑉′(𝑡) ≤
−𝛼

𝛿 + 2
[𝑢𝛿+2(1, 𝑡) − 𝑢𝛿+2(0, 𝑡)] + 𝜐[𝑢(1, 𝑡)𝑢𝑥(1, 𝑡) − 𝑢(0, 𝑡)𝑢𝑥(0, 𝑡)]

+
𝜐

2
𝑢2(0, 𝑡) 

−
𝜐

4
║𝑢║

2
+ 𝛽∫ ((𝑢𝛿+1)

2
− (𝛾 + 1)𝑢𝑢𝛿+1 + 𝛾𝑢2)𝑑𝑥.

1

0

 

From Eq. (7.3.4), 

𝑑

𝑑𝑡
║𝑢║

2
+ 2𝜈║𝑢𝑥║

2
= −2𝛽∫ (𝑢2𝛿+2 − (𝛾 + 1)𝑢𝛿+2 + 𝛾𝑢2)𝑑𝑥.

1

0

 

Then, we get 

−
𝜐

4
║𝑢║

2
−
1

2

𝑑

𝑑𝑡
║𝑢║

2
− 𝜈║𝑢𝑥║

2
 

From Eq. (7.3.9), 

𝑑

𝑑𝑡
║𝑢║

2
≤ −2𝜈║𝑢𝑥║

2
+ 𝛽(1 − 𝛾) [║𝑢║

2
− ║𝑢║

2𝛿+2
] 

Then, we get 

−
𝜐

4
║𝑢║

2
−
1

2
(−2𝜈║𝑢𝑥║

2
+ 𝛽(1 − 𝛾) [║𝑢║

2
− ║𝑢║

2𝛿+2
]) − 𝜈║𝑢𝑥║

2
 

−
𝜐

4
║𝑢║

2
+ 𝜈║𝑢𝑥║

2
−
1

2
𝛽(1 − 𝛾) [║𝑢║

2
−║𝑢║

2𝛿+2
]) − 𝜈║𝑢𝑥║

2
 

−
𝜐

4
║𝑢║

2
−
1

2
𝛽(1 − 𝛾)║𝑢║

2
+
1

2
𝛽(1 − 𝛾)║𝑢║

2𝛿+2
 

 𝛽 (1 −
𝛾+1

2
)║𝑢𝛿+1║

2
+ (−𝛽𝛾 −

𝜐

4
−
𝛽𝛾

2
+
𝛽

2
)║𝑢║

2
   (7.4.8) 

Then, at 𝛾 ≤ 1, we have 
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 𝑉′(𝑡) ≤
−𝛼

𝛿+2
[𝑢𝛿+2(1, 𝑡) − 𝑢𝛿+2(0, 𝑡)] + 𝜐[𝑢(1, 𝑡)𝑢𝑥(1, 𝑡) − 𝑢(0, 𝑡)𝑢𝑥(0, 𝑡)] +

𝜐

2
𝑢2(0, 𝑡) + (−

𝜐

4
)║𝑢║

2
.   (7.4.9) 

Using Eq. (7.1.2), we have 

 𝑢𝑥(0, 𝑡) =
1

𝑎
(𝜔1(𝑡) − 𝑏𝑢(0, 𝑡)),  (7.4.10)  

 𝑢𝑥(1, 𝑡) =
1

𝑐
(𝜔2(𝑡) − 𝑑𝑢(1, 𝑡)),  (7.4.11) 

Using inequality (7.4.9) and Eqs. (7.4.10) and (7.4.11), we have 

𝑉′(𝑡) ≤ (−
𝜐

4
)║𝑢║

2
+
𝜐

2
𝑢2(0, 𝑡) −

−𝛼

𝛿+2
[𝑢𝛿+2(1, 𝑡) − 𝑢𝛿+2(0, 𝑡)] + 𝜐 [𝑢(1, 𝑡)(

1

𝑐
(𝜔2(𝑡) −

 𝑑𝑢(1, 𝑡))) − 𝑢(0, 𝑡)(
1

𝑎
(𝜔1(𝑡) − 𝑏𝑢(0, 𝑡)))].  (7.4.12) 

Substituting by the suggested values of 𝜔1(𝑡),𝜔2(𝑡), we get 

 𝑉′(𝑡) ≤ (−
𝜐

4
)║𝑢║

2
+
𝜐

2
𝑢2(0, 𝑡) −

−𝛼

𝛿+2
[𝑢𝛿+2(1, 𝑡) − 𝑢𝛿+2(0, 𝑡)] +

 𝜐𝑢(1, 𝑡) [(
1

𝑐
((𝑘4(𝑡)𝑢

2𝛿+2(1, 𝑡) + 𝑘5(𝑡)𝑢
𝛿+2(1, 𝑡) + 𝑘6(𝑡)𝑢(1, 𝑡))) −

𝑑

𝑐
𝑢(1, 𝑡)] −

 𝜐𝑢(0, 𝑡) [(
1

𝑐
((𝑘1(𝑡)𝑢

2𝛿+2(0, 𝑡) + 𝑘2(𝑡)𝑢
𝛿+2(0, 𝑡) + 𝑘3(𝑡)𝑢(0, 𝑡))) − 

𝑏

𝑎
𝑢(0, 𝑡))].  

  (7.4.13) 

We introduce the non-negative energy function 𝐸(𝑡), as follows: 

  𝐸(𝑡) = 𝑉(𝑡) +
𝜐

2𝑎𝑟1
(𝑘1(𝑡))

2 +
𝑎

2𝜐𝑟2
(
𝜐

𝑎
𝑘2(𝑡) −

𝛼

𝛿+2
)
2
+

𝑎

2𝜐𝑟3
(
𝜐

𝑎
𝑘3(𝑡) −

𝜐𝑏

𝑎
−
𝜐

2
)
2
+

𝜐

2𝑐𝑟4
(𝑘4(𝑡))

2 + 
𝑐

2𝜐𝑟5
(
𝜐

𝑐
𝑘5(𝑡) −

𝛼

𝛿+2
)
2
+

𝑐

2𝜐𝑟6
(
𝜐

𝑐
𝑘6(𝑡) −

𝜐𝑑

𝑐
)
2
   (7.4.14) 

Evaluating the time derivative of 𝐸(𝑡) and substituting 𝑉′ (𝑡) from inequality 

(7.4.13) and 𝑘′𝑛 (𝑡) into Eq. (7.4.14), we have 

 𝐸′(𝑡) ≤
−𝜐

4
║𝑢║

2
,  (7.4.15) 

This implies that 𝐸(𝑡)  ≤  𝐸(0). Since 𝑢(0, 𝑡) and 𝑢(1, 𝑡)  ∈ 𝐿2∝+2(0,∞), it follows 

that 𝑘𝑗(𝑡) can be defined as continuous functions on (0,∞). Then, Eq.(7.4.14) and 

inequality (7.4.15) imply that 𝑘𝑗(𝑡), 𝑗 =  1, … ,6 are bounded, which implies that 
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𝑢(𝑖, 𝑡) ∈  𝐿2(0,∞) ∩ 𝐿2∝+2(0,∞), 𝑖 =  0, 1 

I also show the global asymptotic stability of Eqs. (7.1.1) and (7.1.2). Using the 

Gronwall inequality on inequality (7.2.1), we have 

𝑉(𝑡) ≤ 𝑉(0) exp (
−𝜐

4
𝑡)

+ 𝜐∫ [
−𝑘1(𝜏)

𝑎
𝑢2𝛿+2(0, 𝜏) + (

𝛼

(𝛿 + 2)𝜐
−
𝑘2(𝜏)

𝑎
)𝑢𝛿+2(0, 𝜏) + (

1

2
+
𝑏

𝑎

𝑡

0

−
𝑘3(𝜏)

𝑎
)𝑢2(0, 𝜏)] exp (

−𝜐

4
(𝑡 − 𝜏))𝑑𝜏

+ 𝜐∫ [
𝑘4(𝜏)

𝑐
𝑢2𝛿+2(1, 𝜏) + (

−𝛼

(𝛿 + 2)𝜐
+
𝑘5(𝜏)

𝑐
)𝑢𝛿+2(1, 𝜏) + (

−𝑑

𝑐

𝑡

0

−
𝑘6(𝜏)

𝑐
)𝑢2(1, 𝜏)] exp (

−𝜐

4
(𝑡 − 𝜏))𝑑𝜏. 

Next, using Lemma 1 and Lemma 2, we predict that║𝑢(. , 𝑡)║ → 0 𝑎𝑠 𝑡 → ∞. 

7.5 Adomian Decomposition Method for the Initial Boundary Value 

Problem [215] 

Consider the nonlinear initial boundary value problem of PDE in the following 

general operator form: 

 𝐿𝑢(𝑥, 𝑡) = 𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡) + 𝑔𝑢(𝑥, 𝑡), 0 < 𝛼 ≤ 1,  (7.5.1) 

with initial condition 𝑢(𝑥, 0) =  𝑓0(𝑥), and boundary conditions 𝑢(0, 𝑡) =

 𝑝(𝑡) and 𝑢(1, 𝑡) =  𝑞(𝑡), where 𝐿 =
𝜕

𝜕𝑡
,, is the highest partial derivative with respect 

to 𝑡, 𝑅 is a linear operator, 𝑁(𝑢) is the nonlinear term and 𝑔(𝑥, 𝑡) is the source 

function. Operating on both sides of Eq. (7.5.1) with the inverse operator 𝐿−1 gives 

 𝑢(𝑥, 𝑡) = 𝜙 + 𝐿−1(𝑔(𝑥, 𝑡)) + 𝐿−1(𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡))   (7.5.2) 

where the first part from the right-hand side of Eq. (7.5.2) is obtained from the 

solution to the homogenous differential equation 𝐿𝜙 =  0. 

The ADM defines the solution 𝑢(𝑥, 𝑡) as an infinite series in the form 
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 𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡)
∞
𝑛=0   (7.5.3) 

where the components 𝑢𝑛(𝑥, 𝑡) can be obtained in recursive form. The nonlinear term 

𝑁(𝑢) can be decomposed by an infinite series of polynomials given by  

 𝑁(𝑢) = ∑ 𝐴𝑛,
∞
𝑛=0   (7.5.4) 

The formula for Adomian polynomials is 

 𝐴𝑛 =
1

𝑛!
[
𝑑𝑛

𝑑𝜆𝑛
𝑁(∑ 𝜆𝑖𝑢𝑖

∞
𝑖=0 )]

𝜆=0
, 𝑛 = 0,1,2,….  (7.5.5) 

Substituting from Eqs. (7.5.3) and (7.5.4) into Eq. (7.5.3) gives 

 ∑ 𝑢𝑛(𝑥, 𝑡)
∞
𝑛=0 = 𝜑 + 𝐿−1(𝑔(𝑥, 𝑡)) + 𝐿−1(∑ 𝑢𝑛 + ∑ 𝐴𝑛

∞
𝑛=0

∞
𝑛=0 ).  (7.5.6) 

Substituting the initial conditions, we obtain the components 𝑢𝑛(𝑥, 𝑡) of the solution 

using the following formula 

𝑢0(𝑥, 𝑡) = 𝑓0(𝑥) + 𝜙 + 𝐿
−1(𝑔(𝑥, 𝑡)), 

 𝑢𝑛+1(𝑥, 𝑡) = 𝐿
−1(𝑅𝑢𝑛 + 𝐴𝑛), 𝑛 ≥ 0.  (7.5.7) 

The initial solution can be written as 

   𝑢0(𝑥, 𝑡) = 𝑓0(𝑥),  (7.5.8) 

I construct a new successive approximate solution 𝑢𝑛
∗ (𝑥, 𝑡) as follows: 

 𝑢𝑛
∗ (𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) + (1 − 𝑥)[𝑝(𝑡) − 𝑢𝑛(0, 𝑡)] + 𝑥[𝑞(𝑡) − 𝑢𝑛(1, 𝑡)], 𝑛 = 0,1,2,… 

    (7.5.9) 

 𝑢𝑛+1
∗ (𝑥, 𝑡) = 𝐿−1(𝑅𝑢𝑛

∗ + 𝐴𝑛
∗ ),  (7.5.10) 

such that 

𝐴𝑛
∗ =

1

𝑛!
[
𝑑𝑛

𝑑𝜆𝑛
𝑁(∑𝜆𝑖𝑢𝑖

∗

∞

𝑖=0

)]

𝜆=0

, 𝑛 = 0,1,2,…. 

Using Eqs. (7.5.8)–(.5.10), we obtain the approximate solution, 
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 𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡)
∞
𝑛=0 .  (7.5.11) 

7.6 Numerical Example 

Using the ADM algorithm presented here in Eq. (7.1.1), when 𝛼 =  𝛽 =  1, 𝛾 =

0.001 and 𝛿 = 2, I solve the GBHE without control as outlined in Tables 7.6.1–7.6.7, 

with time t=0, 0.5,1,2,3,4 and 5. Table 7.6.8 presents the absolute errors for the GBHE 

using the ADM when 𝑡 = 0 to t = 1, 𝛾 = 0.001; 𝛿 = 2; 𝛼 =  1;  𝛽 = 1; 

Table 7.6.1 Comparison between the numerical and exact solutions for the 

GBHE when 𝒕 = 𝟎, 𝜸 = 𝟎. 𝟎𝟎𝟏; 𝜹 = 𝟐;𝜶 =  𝟏;  𝜷 = 𝟏. 

x Numerical Solution Exact Solution 

0 0.0005 0.0005 

0.1 0.000521699 0.000521699 

0.2 0.000543317 0.000543317 

0.3 0.000564773 0.000564773 

0.4 0.000585989 0.000585989 

0.5 0.00060689 0.00060689 

0.6 0.000627407 0.000627407 

0.7 0.000647476 0.000647476 

0.8 0.000667037 0.000667037 

0.9 0.000686039 0.000686039 

1.0 0.000704437 0.000704437 

Table 7.6.2 Comparison between the numerical and exact solutions for the 

GBHE when 𝒕 = 𝟎. 𝟓, 𝜸 = 𝟎. 𝟎𝟎𝟏; 𝜹 = 𝟐;𝜶 =  𝟏;  𝜷 = 𝟏. 

x Numerical Solution Exact Solution 

0 0.000500415 0.000637703 

0.1 0.000519779 0.00065752 

0.2 0.000539102 0.000676802 

0.3 0.000558343 0.000695501 

0.4 0.000577459 0.000713576 

0.5 0.000596404 0.000730993 

0.6 0.000615127 0.000747726 
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0.7 0.000633579 0.000763754 

0.8 0.000651706 0.000779064 

0.9 0.000669457 0.000793651 

1.0 0.000686782 0.000807512 

 

Table 7.6.3 Comparison between the numerical and exact solutions for the 

GBHE when 𝒕 = 𝟏, 𝜸 = 𝟎. 𝟎𝟎𝟏; 𝜹 = 𝟐;𝜶 =  𝟏;  𝜷 = 𝟏. 

x Numerical Solution Exact Solution 

0 0.000500772 0.00075599 

0.1 0.00051801 0.000771653 

0.2 0.000535386 0.000786595 

0.3 0.000553023 0.000800811 

0.4 0.000571005 0.000814304 

0.5 0.000589367 0.00082708 

0.6 0.00060809 0.000839151 

0.7 0.000627102 0.000850532 

0.8 0.000646283 0.00086124 

0.9 0.000665479 0.000871298 

1.0 0.000684512 0.000880727 

 

Table 7.6.4 Comparison between the numerical and exact solutions for the 

GBHE when 𝒕 = 𝟐, 𝜸 = 𝟎. 𝟎𝟎𝟏; 𝜹 = 𝟐;𝜶 =  𝟏;  𝜷 = 𝟏. 

x Numerical Solution Exact Solution 

0 0.000501326 0.000905649 

0.1 0.000495311 0.000912814 

0.2 0.00049128 0.000919482 

0.3 0.000491024 0.000925683 

0.4 0.000495977 0.000931441 

0.5 0.000507089 0.000936784 

0.6 0.000524761 0.000941736 
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0.7 0.000548837 0.000946323 

0.8 0.000578658 0.000950567 

0.9 0.000613156 0.000954492 

1.0 0.000650983 0.000958119 

 

Table 7.6.5 Comparison between the numerical and exact solutions for the 

GBHE when 𝒕 = 𝟑, 𝜸 = 𝟎. 𝟎𝟎𝟏; 𝜹 = 𝟐;𝜶 =  𝟏;  𝜷 = 𝟏. 

x Numerical Solution Exact Solution 

0 0.000501689 0.000967468 

0.1 0.000414376 0.000970093 

0.2 0.000334647 0.000972513 

0.3 0.000269394 0.000974741 

0.4 0.000224215 0.000976794 

0.5 0.000202957 0.000978683 

0.6 0.000207464 0.000980422 

0.7 0.00023755 0.000982021 

0.8 0.000291162 0.000983492 

0.9 0.000364719 0.000984844 

1.0 0.00045356 0.000986088 

 

Table 7.6.6 Comparison between the numerical and exact solutions for the 

GBHE when 𝒕 = 𝟒, 𝜸 = 𝟎. 𝟎𝟎𝟏; 𝜹 = 𝟐;𝜶 =  𝟏;  𝜷 = 𝟏. 

x Numerical Solution Exact Solution 

0 0.000501889 0.000989263 

0.1 0.000235977 0.000990147 

0.2 −0.0000108612 0.00099096 

0.3 −0.000221241 0.000991705 

0.4 −0.000380963 0.00099239 

0.5 −0.000480123 0.000993019 

0.6 −0.000513747 0.000993596 
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0.7 −0.00048188 0.000994125 

0.8 −0.00038919 0.000994611 

0.9 −0.000244166 0.000995058 

1.0 −0.0000580347 0.000995467 

 

Table 7.6.7 Comparison between the numerical and exact solutions for the 

GBHE when 𝒕 = 𝟓, 𝜸 = 𝟎. 𝟎𝟎𝟏; 𝜹 = 𝟐;𝜶 =  𝟏;  𝜷 = 𝟏. 

x Numerical Solution Exact Solution 

0 0.000501954 0.000996509 

0.1 −0.0000791146 0.000996799 

0.2 −0.000621592 0.000997064 

0.3 −0.00109026 0.000997308 

0.4 −0.00145624 0.000997531 

0.5 −0.00169924 0.000997736 

0.6 −0.00180881 0.000997924 

0.7 −0.00178456 0.000998096 

0.8 −0.00163537 0.000998254 

0.9 −0.00137782 0.000998399 

1.0 −0.00103406 0.000998532 

 

Table 7.6.8 Comparison between the numerical and exact solutions for the 

GBHE when 𝒕 = 𝟎 𝐭𝐨 𝐭 = 𝟏, 𝜸 = 𝟎. 𝟎𝟎𝟏; 𝜹 = 𝟐;𝜶 =  𝟏;  𝜷 = 𝟏. 

t Absolute Error 

0 0. 

0.1 0.0000401684 

0.2 0.0000785384 

0.3 0.000115102 

0.4 0.00014986 

0.5 0.000182822 

0.6 0.00021401 
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0.7 0.00024346 

0.8 0.000271219 

0.9 0.000297349 

1.0 0.000321925 

 

To illustrate the behaviour of the numerical and exact solutions for the GBHE at 

various times, I present 2D figures in Figures 7.6.1–7.6.7, when 𝑡 =

0, 0.5,1,2,3,4 and 5. 3D figures are presented in Figures 7.6.8–7.6.12. Figure 7.6.13 

compares the numerical and exact solutions with control for the GBHE when 𝛾 =

0.001; 𝛿 = 2; 𝛼 =  1;  𝛽 = 1 from 𝑡 = 0 to 𝑡 = 6. 

 

 

Figure 7.6.1 Comparison between the numerical and exact solutions for the 

GBHE when 𝒕 = 𝟎, 𝜸 = 𝟎. 𝟎𝟎𝟏; 𝜹 = 𝟐;𝜶 =  𝟏;  𝜷 = 𝟏. 
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Figure 7.6.2 Comparison between the numerical and exact solutions for the 

GBHE when 𝒕 = 𝟎. 𝟓, 𝜸 = 𝟎. 𝟎𝟎𝟏; 𝜹 = 𝟐;𝜶 =  𝟏;  𝜷 = 𝟏. 

 

 

Figure 7.6.3 Comparison between the numerical and exact solutions for the 

GBHE when 𝒕 = 𝟏, 𝜸 = 𝟎. 𝟎𝟎𝟏; 𝜹 = 𝟐;𝜶 =  𝟏;  𝜷 = 𝟏. 
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Figure 7.6.4 Comparison between the numerical and exact solutions for the 

GBHE when 𝒕 = 𝟐, 𝜸 = 𝟎. 𝟎𝟎𝟏; 𝜹 = 𝟐;𝜶 =  𝟏;  𝜷 = 𝟏. 

 

 

Figure 7.6.5 Comparison between the numerical and exact solutions for the 

GBHE when 𝒕 = 𝟑, 𝜸 = 𝟎. 𝟎𝟎𝟏; 𝜹 = 𝟐;𝜶 =  𝟏;  𝜷 = 𝟏. 
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Figure 7.6.6 Comparison between the numerical and exact solutions for the 

GBHE when 𝒕 = 𝟒, 𝜸 = 𝟎. 𝟎𝟎𝟏; 𝜹 = 𝟐;𝜶 =  𝟏;  𝜷 = 𝟏. 

 

 

Figure 7.6.7 Comparison between the numerical and exact solutions for the 

GBHE when 𝒕 = 𝟓, 𝜸 = 𝟎. 𝟎𝟎𝟏; 𝜹 = 𝟐;𝜶 =  𝟏;  𝜷 = 𝟏. 
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Figure 7.6.8 3D representation of the behaviour of the numerical solutions for 

the GBHE when 𝒕 = 𝟎 𝐭𝐨 𝐭 = 𝟐, 𝜸 = 𝟎. 𝟎𝟎𝟏; 𝜹 = 𝟐;𝜶 =  𝟏;  𝜷 = 𝟏. 

 

 

Figure 7.6.9 3D representation of the behaviour of the numerical solutions for 

the GBHE when 𝒕 = 𝟎 𝐭𝐨 𝐭 = 𝟒, 𝜸 = 𝟎. 𝟎𝟎𝟏; 𝜹 = 𝟐;𝜶 =  𝟏;  𝜷 = 𝟏. 
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Figure 7.6.10 3D representation of the behaviour of the numerical solutions for 

the GBHE when 𝒕 = 𝟎 𝐭𝐨 𝐭 = 𝟔, 𝜸 = 𝟎. 𝟎𝟎𝟏; 𝜹 = 𝟐;𝜶 =  𝟏;  𝜷 = 𝟏. 

 

 

Figure 7.6.11 3D representation of the behaviour of the numerical solutions for 

the GBHE when 𝒕 = 𝟎 𝐭𝐨 𝐭 = 𝟖, 𝜸 = 𝟎. 𝟎𝟎𝟏; 𝜹 = 𝟐;𝜶 =  𝟏;  𝜷 = 𝟏. 
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Figure 7.6.12 3D representation of the behaviour of the numerical solutions for 

the GBHE when 𝒕 = 𝟎 𝐭𝐨 𝐭 = 𝟏𝟎, 𝜸 = 𝟎. 𝟎𝟎𝟏; 𝜹 = 𝟐;𝜶 =  𝟏;  𝜷 = 𝟏. 

 

 

Figure 7.6.13 The ADM truncated solution 𝒖(𝒙, 𝒕) using the suggested 

boundary control, for the numerical and exact solution for the GBHE when 

𝒕 = 𝟎 𝐭𝐨 𝐭 = 𝟔, 𝜸 = 𝟎. 𝟎𝟎𝟏; 𝜹 = 𝟐;𝜶 =  𝟏;  𝜷 = 𝟏. 

7.7 Conclusion 

In this chapter, I introduced adaptive boundary control for the GBHE with high-order 

nonlinearity terms. I proved that this type of GBHE is globally exponential stable in 
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L2[0,1], under zero Dirichlet boundary conditions. I developed an adaptive boundary 

control for the GBHE, finding the solution 𝑢(𝑥, 𝑡) to the GBHE using initial solution 

𝑓0(𝑥) ∈ 𝐻
3(0, 1) and some boundary conditions having the property║𝑢(. , 𝑡)║ →

 0 𝑎𝑠 𝑡 →  ∞. Finally, the ADM was used to illustrate the performance of the 

controller applied to the GBHE. 
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Chapter 8: Conclusions and Future Work 

8.1 Introduction 

This final chapter of the thesis presents the overall conclusions based on the 

approximate solutions for the PDEs presented in previous chapters. It also outlines 

the significant practical contributions of treatment for some PDEs through numerical 

analysis, which is a useful tool that can be used to identify better methods. This 

chapter also shares some recommendations for future research. 

8.2 Conclusion 

This chapter discusses the general conclusions relating to the numerical treatment of 

PDEs and recommends further avenues for research. 

Chapter 1 provides a general overview of the topic of analysis, motivation for the 

study, research questions, contributions, objectives, methodology and thesis 

structure. 

Chapter 2 consists of four sections. The first discusses the selected PDEs and 

provides the key definitions and concepts related to their analysis. Sections 2.2, 2.3 

and 2.4 use various numerical methods—the B-spline, fractional calculus and 

ADM—to solve the selected PDEs. 

Chapter 3’s objective is to discuss the use of the CBS polynomial method to identify 

the approximate solutions to the nonlinear dispersive wave equation. The CBS 

method for solving the dissipative wave equation involves four steps: 

1. Analysis of the method 

The approximate solution to the dissipative wave equation is considered as 

𝑈𝑁(𝑥, 𝑡) =  ∑ 𝑤𝑖(𝑡𝑗) ф𝑖(𝑥𝑗)
𝑛
𝑖=0 , 

where ф𝑖(𝑥𝑗) are the spline functions and 𝑤𝑖(𝑡𝑗) are the unknowns to be 

determined. The dissipative wave equation is reduced to one system of ODE. 
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The boundary conditions are used to obtain N+3 equations in N+3 unknowns. 

The initial conditions are applied to obtain the independent variables: 

(𝜔−1
0 , 𝜔0

0, . . , 𝜔𝑁
0 , 𝜔𝑁+1

0 )𝑇 

2. The initial state 

After deriving the following system of algebraic equations, 

𝐴𝜔𝑛+1 = −𝐵𝜔𝑛 − 𝐶𝜔𝑛−1 + 𝑘2𝜂𝑖
𝑛(𝑥, 𝑡) 

two initial conditions are applied to obtain the following system: 

𝜔𝑖−1
0 + 4𝜔𝑖

0 +𝜔𝑖+1
0 = 𝑢(𝑥𝑗, 0), 

𝑗 = 0,1,2, . . . , 𝑁. 

Adding the following two initial conditions completes the system of 

equations: 

−3𝜔−1
0 + 3𝜔1

0 = ℎ𝑢𝑥(𝑎, 0), 

−3𝜔𝑁−1
0 + 3𝜔𝑁+1

0 = ℎ𝑢𝑥(𝑏, 0). 

3. The stability analysis 

The Von Neumann stability analysis for system 

𝐴𝜔𝑛+1 = −𝐵𝜔𝑛 − 𝐶𝜔𝑛−1 + 𝑘2𝜂𝑖
𝑛(𝑥, 𝑡), 

takes effect after linearising the nonlinear terms, 

𝑧𝑖−1 = 𝑑 + 4𝑑 + 𝑑 = (6𝑑), 𝑚 = 6𝑑, 

which take the form 

𝜔𝑗
𝑛 = 𝜀𝑛 𝑒𝑥𝑝( 𝑞𝜎𝑗ℎ), 𝑞 = √−1 

I obtain the characteristic equation 

𝜀2 + 2𝛽𝜀 + 1 = 0, 

if h is small enough; thus the method is conditionally stable. 

The stability analysis investigation shows that the method is conditionally 

stable. In addition, the performance and accuracy of the present method are 

evidenced by calculating and comparing the L∞ error norms for a greater 

time, at 10, 20,..., up to 50. I have not identified any studies that compute 

values for large numbers; they are usually only computed up to a value of 5.0. 

4. Numerical examples 

The form of the dissipative wave equation 

𝑢𝑡𝑡 −  𝑢𝑥𝑥 + 2𝑢𝑡𝑢 = 𝑔(𝑥,  𝑡), 

𝑔(𝑥,  𝑡) =  − 2𝑠𝑖𝑛2𝑥 𝑠𝑖𝑛𝑡 𝑐𝑜𝑠𝑡, 
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has the boundary and initial conditions 

𝑢𝑥𝑥 (𝑎,  𝑡) = 0, 𝑢𝑥𝑥(𝑏,  𝑡) = 0, 

𝑢(𝑥,  0) = 𝑠𝑖𝑛𝑥, 𝑢𝑡(𝑥,  0) = 0. 

The numerical results produced by the present method are quite satisfactory 

and show good agreement with the exact solutions. 

Chapter 4 identifies the numerical solution for the dispersive PDE using the non-

polynomial splines method. The non-polynomial spline method for solving the 

dispersive partial equation includes four steps: 

1. The analysis of the method 

The approximate solution to the dispersive wave equation is considered as 

𝑃𝑖(𝑥, 𝑡𝑗) = 𝑎𝑖(𝑡𝑗) 𝑐𝑜𝑠 𝜔 (𝑥 − 𝑥𝑖) + 𝑏𝑖(𝑡𝑗) 𝑠𝑖𝑛 𝜔 (𝑥 − 𝑥𝑖) + 𝑐𝑖(𝑡𝑗) (𝑥 − 𝑥𝑖)
2 + 

𝑑𝑖(𝑡𝑗)(𝑥 − 𝑥𝑖) + 𝑒𝑖(𝑡𝑗), 

where 𝑝𝑗(𝑥,  𝑡𝑛) are the non-polynomial spline functions and 𝑎𝑖(𝑡𝑗), 𝑏𝑖(𝑡𝑗), 

𝑐(𝑡𝑗), 𝑑𝑖(𝑡𝑗) and 𝑒(𝑡𝑗) are unknowns to be determined. Using the continuity 

condition of the first and second derivatives of 𝑝𝑗(𝑥,  𝑡𝑛) at (𝑥𝑗) and applying 

the boundary conditions, I obtain 

𝑄 𝑍𝑗 = 𝑄∗𝑍𝑗−1 + 𝑟𝑗 . 

2. The error analysis 

The truncation error 

𝑇𝑖
𝑗
= 𝐴𝑖𝜂𝑖−2

𝑗
+ 𝐵𝑖𝜂𝑖−1

𝑗
+ 𝐶𝑖𝜂𝑖

𝑗
+ 𝐷𝑖𝜂𝑖+1

𝑗
− 𝛼𝜂𝑖−2

𝑗−1
− 𝛽𝜂𝑖−1

𝑗−1
− 𝛽𝜂𝑖

𝑗−1
− 𝛼𝜂𝑖+1

𝑗−1
− 𝛿𝑖

𝑗
, 

Taylor series, in terms of 𝜂(𝑥𝑖, 𝑦𝑖) and its derivatives, is used to obtain 

𝛽 +  𝛼 =  
ℎ3

2
 

The local truncation error is of order 𝑜(𝑘ℎ4 + 𝑘2ℎ3) for 𝛽 +  𝛼 =  
ℎ3

2
, but for 

𝛽 +  𝛼 =  
ℎ3

2
 and 𝛼 = 0 the local truncation error is of order 𝑜(𝑘ℎ2 + 𝑘2ℎ3). 

3. The stability analysis 

Using the Von Neumann method, the stability of the method is investigated 

as 

𝑍𝑖
𝑗
= 𝜁𝑗 𝑒𝑥𝑝(𝑞𝜙𝑖ℎ), 
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where  is the wave number, ,  is the element size, and  is the 

amplification factor at time level j. I prove that the stability conditions are 

satisfied to be conditionally stable for small h and time step t. 

4. Numerical examples 

The form of the third-order dispersive equation is 

𝜕𝜇

𝜕𝑡
+  
𝜕3𝜇

𝜕𝑥3
= 𝑔(𝑥,  𝑡), 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑡 > 0, 

 𝑔(𝑥,  𝑡) =  − sin(𝜋𝑥) 𝑠𝑖𝑛𝑡 − 𝜋3 cos(𝜋𝑥) 𝑐𝑜𝑠𝑡, 

 0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0. 

with boundary and initial conditions 

𝜇(0,  𝑡) =  𝜇(1,  𝑡) =  𝜇𝑥𝑥(1,  𝑡) = 0, 𝑡 > 0, 

𝜇(𝑥,  0) = 𝑠𝑖𝑛𝜋𝑥, 0 ≤ 𝑥 ≤ 1. 

The convergence analysis of the method proves that the proposed scheme is 

third-order convergent. The method is also shown to be unconditionally 

stable. The results from a comparison of the exact and approximate solutions 

in the numerical examples show the superiority of the method compared with 

those outlined in the literature review. I also show that the L-∞ error norms 

confirm theoretical convergence. 

Chapter 5 uses the CBS method to solve coupled nonlinear non-homogeneous 

PDEs. The CBS method to solve the coupled system Klein–Gordon equation 

includes four steps: 

1. The analysis of the method 

The collocation method for approximately solving coupled nonlinear non-

homogeneous Klein–Gordon equations by approximating u(x,t) and v(x,t) 

with CBS to U(x,t) and V(x,t) is 

𝑈(𝑥, 𝑡) = ∑ ∅𝑖(𝑥)𝛽𝑖(𝑡)
𝑁+1
𝑖=−1 , 

𝑉(𝑥, 𝑡) = ∑ ∅𝑖(𝑥)𝛼𝑖(𝑡)

𝑁+1

𝑖=−1

 

The Kline–Gordan equation is reduced to two systems of ODEs. The 

boundary conditions are used to obtain N+3 equations in N+3 unknowns for 

the two systems 𝐴𝛽 = 𝑑 and 𝐶𝛼 = 𝑤. These two systems are completed by 

 1−=q h j
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using the boundary conditions to obtain two systems with N+3 unknowns in 

N+3 equations. 

2. The initial state 

The initial conditions are applied to obtain the independent variables 

(𝛽−1
0 , 𝛽0

0, . . , 𝛽𝑁
0 , 𝛽𝑁+1

0 )𝑇 and (𝛼−1
0 , 𝛼0

0, . . , 𝛼𝑁
0 , 𝛼𝑁+1

0 )𝑇 

Finally, we obtain the following two coupled systems: 

𝐴∗∗𝛽∗∗ = 𝑑∗∗ and 𝐶∗∗𝛼∗∗ = 𝑤∗∗ 

where 𝐴∗∗ and 𝐶∗∗ are nonsingular n×n matrices. 

3. The stability analysis 

For stability analysis, I use the Von Neumann technique. First, I linearise the 

nonlinear term 𝑣(𝑥, 𝑡)𝑢(𝑥, 𝑡), and then 

 𝛽𝑖,𝑗 = 𝜉
𝑗𝑒𝑥𝑝(𝑞𝜑ℎ𝑖) 

I get 

𝜉𝑗+1{ 𝐴𝑖,𝑗{𝑒𝑥𝑝(𝑞𝜑ℎ(𝑖 − 1)) + 𝑒𝑥𝑝(𝑞𝜑ℎ(𝑖 + 1))} +  𝐵𝑖,𝑗𝑒𝑥𝑝(𝑞𝜑ℎ𝑖)}

=  
2

𝑘2
𝜉𝑗{{𝑒𝑥𝑝(𝑞𝜑ℎ(𝑖 − 1)) + 𝑒𝑥𝑝(𝑞𝜑ℎ(𝑖 + 1))} + 4𝑒𝑥𝑝(𝑞𝜑ℎ𝑖)}

−   𝜉𝑗−1{ 𝐴𝑖,𝑗{𝑒𝑥𝑝(𝑞𝜑ℎ(𝑖 − 1)) + 𝑒𝑥𝑝(𝑞𝜑ℎ(𝑖 + 1))}

+  𝐵𝑖,𝑗𝑒𝑥𝑝(𝑞𝜑ℎ𝑖)}. 

After some calculations: 

𝜀2 + 2𝜇𝜀+ 1 = 0, 

where 𝑘 is sufficiently small, such that 𝑘2 → 0, and stability is satisfied. 

4. Numerical examples 

The form of the coupled nonlinear Klein–Gordon PDE: 

𝜕2𝑢

𝜕𝑥2
(𝑥, 𝑡) +

𝜕2𝑢

𝜕𝑡2
(𝑥, 𝑡) + 𝑣(𝑥, 𝑡)𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡), 

𝜕2𝑣

𝜕𝑥2
(𝑥, 𝑡) +

𝜕2𝑣

𝜕𝑡2
(𝑥, 𝑡) + 𝑢(𝑥, 𝑡)𝑣(𝑥, 𝑡) = 𝑔(𝑥, 𝑡), 

for 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑡 ≥ 0, is subject to the conditions 

𝑢(𝑎, 𝑡) = 𝜀1(𝑡), 𝑢(𝑏, 𝑡) = 𝜀2(𝑥), 

𝑣(𝑎, 𝑡) = 𝜌1(𝑡), 𝑣(𝑏, 𝑡) = 𝜌2(𝑡), 

𝑢(𝑥, 0) = 𝜏1(𝑥),
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝜏2(𝑥), 

𝑣(𝑥, 0) = 𝜎1(𝑥),
𝜕𝑣

𝜕𝑡
(𝑥, 0) = 𝜎2(𝑥). 
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I find that the proposed method is conditionally stable. The method’s accuracy 

is demonstrated by calculating L∞ error norms. The numerical results 

obtained show that the present method is a remarkably successful numerical 

technique for solving coupled nonlinear non-homogeneous Klein–Gordon 

equations, which makes it useful for a wide range of applications. 

Chapter 6 proposes a numerical solution for the time–space-fractional order 

telegraph equation through the use of a quadratic-polynomial spline-based method. 

The method to solve the FTE involves four steps: 

1. The analysis of the method 

The approximate solution of FTE is considered as 

𝑃𝑖(𝑥, 𝑡𝑗) = 𝑎𝑖(𝑡𝑗) (𝑥 − 𝑥𝑖)
2 + 𝑏𝑖(𝑡𝑗) (𝑥 − 𝑥𝑖) + 𝑐𝑖(𝑡𝑗). 

Then, 

𝑃𝑖
(𝛼)
(𝑥𝑖+1/2, 𝑡𝑗) =

𝜕𝛼

𝜕𝑥𝛼
𝑃𝑖(𝑥𝑖+1/2, 𝑡𝑗) = 𝑆𝑖+1/2

𝑗
,   1 < 𝛼 ≤ 2,   𝑥𝑖 < 𝑥𝑖+1/2 ≤ 𝑥𝑖+1. 

2. Using the continuity condition of the first and second derivatives of 𝑝𝑗(𝑥,  𝑡𝑛) 

at (𝑥𝑗) and applying the boundary conditions I obtain 

𝑍𝑖+3 2⁄
𝑗

− 2𝑍𝑖+1 2⁄
𝑗

+ 𝑍𝑖−1 2⁄
𝑗

=
ℎ2

8
(𝑆𝑖+3 2⁄

𝑗
+ 6𝑆𝑖+1 2⁄

𝑗
+ 𝑆𝑖−1 2⁄

𝑗
), 

3. The error analysis 

The truncation error is 

𝑇∗𝑖
𝑗
= ℎ𝛼(ℎ2−𝛼 − 8𝜃)𝐷𝑥

2𝑢𝑖+1/2
𝑗

+ ℎ2+𝛼 (
ℎ2−𝛼

12
− 𝜃)𝐷𝑥

4𝑢𝑖+1/2
𝑗

+ ℎ4+𝛼 (
ℎ2−𝛼

360
−
𝜃

12
)𝐷𝑥

6𝑢𝑖+1/2
𝑗

+⋯ 

where  

𝜃 =
𝛤(3−𝛼)

2𝛼+1
. 

From this expression of the local truncation error, the scheme is of order 

𝑂(ℎ𝛼),  1 < 𝛼 ≤ 2. 

4. The stability analysis 

Using the Von Neumann method, the stability of the method is investigated 

as 

𝑍𝑖
𝑗
= 𝜁𝑗 𝑒𝑥𝑝(𝑞𝜙𝑖ℎ), 
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where  is the wave number, , h is the element size, and  is the 

amplification factor at time level j. We obtain a characteristic equation 

𝑎𝜁2+b 𝜁+c=0 

with which I prove that the stability conditions are satisfied to be conditionally 

stable for small h and time step t. 

5. Numerical examples 

The form of the time–space-fractional order telegraph equation is 

𝜕𝛼𝑢

𝜕𝑥𝛼
=
𝜕2𝑢

𝜕𝑡2
+
𝜕𝑢

𝜕𝑡
 + 𝑢  𝑥 > 0,    1 < 𝛼 ≤ 2, 

subject to boundary conditions 

𝑢(𝑎, 𝑡) = 𝛽1(𝑡),   𝑢(𝑏, 𝑡) = 𝛽2(𝑡),    𝑡 > 0 . 

and initial conditions 

𝑢(𝑥, 0) = 𝑓1(𝑥),  
𝜕𝑢(𝑥, 0)

𝜕𝑡
= 𝑓2(𝑥),    𝑎 ≤ 𝑥 ≤  𝑏. 

The developed method is shown to be conditionally stable. The theoretical 

analysis demonstrates that the numerical scheme is effective and reliable for 

the time–space-fractional order telegraph equation. The approximate 

numerical solutions obtained are in good agreement with the approximate 

solutions outlined in the literature review. It can be concluded that this 

technique is both powerful and efficient in finding approximate solutions for 

a large class of linear PDEs of fractional order. 

Chapter 7 develops an adaptive boundary control for the GBHE with high-order 

nonlinearity. In addition, a solution is found for the GBHE using the ADM. Adaptive 

boundary control is developed for the GBHE using the ADM as follows: 

1. The analytical approximate solution of the GBHE is 

𝑢𝑡+∝ 𝑢
𝛿𝑢𝑥 − 𝜈𝑢𝑥𝑥 = 𝛽𝑢(1 − 𝑢

𝛿)(𝑢𝛿 − 𝛾). 

1.1 The nonlinear initial value problem of the PDE is put in the following 

general operator, with the initial condition and boundary conditions: 

𝐿𝑢(𝑥, 𝑡) = 𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡) + 𝑔𝑢(𝑥, 𝑡),  

 1−=q j
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1.2 The inverse operator is used on both sides of the GBHE: 

𝑢(𝑥, 𝑡) =  ∅ + 𝐿−1(𝑔(𝑥, 𝑡) 

+ 𝐿−1((𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡)) 

1.3 The solution is applied to the ADM using the infinite series. Then, the 

Adomian polynomials are applied: 

𝐴𝑛 =
1

𝑛!
[
𝑑𝑛

𝑑𝜆𝑛
𝑁(∑ 𝜆𝑖𝑢𝑖

∞
𝑖=0 )]

𝜆=0
, n=0,1,… 

2. The initial state and analytical solution is found using the initial condition 

𝑢(𝑥,  0) =  𝑓0(𝑥). 

Substituting the initial conditions, I obtain the components 𝑢𝑛(𝑥, 𝑡) of the 

solution using the following formula: 

𝑢0(𝑥,  𝑡) = 𝑓0(𝑥) + 𝜙 + 𝐿
−1(𝑔(𝑥, 𝑡)) 

Then, 

𝑢𝑛+1(𝑥,  𝑡) = 𝐿
−1(𝑅𝑢𝑛 + 𝐴𝑛), 𝑛 ≥ 0 

where 

𝐴𝑛 =
1

𝑛!
[
𝑑𝑛

𝑑𝜆𝑛
𝑁(∑ 𝜆𝑖𝑢𝑖

∞
𝑖=0 )]

𝜆=0
, n=0,1,… 

and 

𝐿−1(. ) =  ∫ (. )𝑑𝑡
𝑡

0

 

So, I obtain the sequences 𝐴0, 𝐴1,…. Then, I obtain 𝑢𝑛(𝑥,  𝑡), the analytical 

solution to the GBHE. 

3. Numerical example 

The GBHEs are given the form 
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𝑢𝑡+∝ 𝑢
𝛿𝑢𝑥 − 𝜈𝑢𝑥𝑥 = 𝛽𝑢(1 − 𝑢

𝛿)(𝑢𝛿 − 𝛾), 0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0 

with initial condition  

𝑢(𝑥, 0) =  𝑓0(𝑥)  

and boundary conditions 

𝑎𝑢(0, 𝑡) +  𝑏𝑢𝑥 (0, 𝑡) =  𝜔1(𝑡), 

𝑐𝑢(1, 𝑡) + 𝑑𝑢𝑥(1, 𝑡) = 𝜔2(𝑡). 

I prove that this type of GBHE is globally exponential stable in L2[0,1], under 

zero Dirichlet boundary conditions. In addition, using an adaptive nonlinear 

parametric controller, I show that the solution is convergent on the trivial 

solution and that it achieves global asymptotic stability in time. 

Finally, Chapter 8 provides a summary of this thesis and considerations for 

possible future work in these areas. 

8.3 Recommendations for Future Research 

I suggest here some ideas for related work in the future: 

1. Use of local fractional analytical methods to solve wave equations with local 

fractional derivatives, using the: 

o iterative method 

o integral iterative method 

o ADM 

o new iterative method. 

2. FEM for NPDE with quintic B-spline and septic B-spline methods 

3. numerical solutions for integro-PDEs. 
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