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Abstract: The main focus of this paper is the study of the Selberg operator. It aims to establish
appropriate bounds for the norm and numerical radius of the product of three bounded operators,
with one of them being a Selberg operator. Moreover, it offers several bounds involving the summa-
tion of operators, notably the Selberg operator. Through the examination of these properties and
relationships, this study contributes to a better understanding of the Selberg operator and its influence
on operator compositions. The paper also highlights the significance of symmetry in mathematics
and its potential implications across various mathematical domains.
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1. Introduction

We let (H, 〈·, ·〉) be an inner product space (over the real or complex number field). In
this manuscript, B(H) denotes the C∗-algebra of bounded, linear operators defined onH
and I the identity operator. For each operator T ∈ K(H), where K(H) denotes the algebra
of all compact operators, we denote by {sj(T )} the sequence of singular values of T , i.e.,

the eigenvalues λj(|T |), with |T | = (T ∗T )
1
2 , in a decreasing order and repeated according

to multiplicity. If rank(T ) = n, we set sk(T ) = 0 for each k > n.
We consider the wide class of unitarily invariant norms ||| · ||| characterized by the

invariance property |||UTV ||| = |||T ||| for arbitrary unitary operators U ,V ∈ B(H). The
usual operator norm, Schatten p-norms for 1 ≤ p < ∞ and the Ky Fan norms defined by
‖T‖(k) = ∑k

j=1 sj(T ) with 1 ≤ k < ∞ are special examples of such norms. Every unitarily
invariant norm, denoted as ||| · |||, defines a two-sided ideal, denoted as C|||·|||, that is, a
subset of K(H). The Ky Fan dominance Theorem states that given a unitarily invariant
norm ||| · |||, |||T ||| ≤ |||S||| if and only if ‖T‖(k) ≤ ‖S‖(k) for any k ∈ N. The reader is
referred to [1] for a detailed study of unitarily invariant norms.

For each T ∈ B(H), we let ω(T ) be the numerical radius of T , where

ω(T ) = {|〈Tz, z〉| : z ∈ H, ‖z‖ = 1}.
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It is obvious that ω(·) defines a norm on B(H), equivalent to the operator norm ‖ · ‖ and,
in fact, for any T ∈ B(H),

1
2
‖T‖ ≤ ω(T ) ≤ ‖T‖. (1)

Moreover, the numerical radius of a normal operator T is the same as its typical operator
norm. Understanding inequalities related to the norm and the numerical radius is crucial
in mathematical analysis. This helps us gain valuable insights into how operators behave
and how well they approximate. More details can be found in recent papers such as [2,3]
and the sources cited in those papers.

As usual, for T ,S ∈ B(H), T ≥ 0 means that T satisfies 〈Tz, z〉 ≥ 0 for any z ∈ H.
The notion of positivity induces the order T ≥ S for self-adjoint operators if and only if
T − S ≥ 0.

A. Selberg determined the following inequality [4] for given nonzero vectors
Z = {zi : i = 1, · · · ,n} ⊆ H,

n

∑
i=1

|〈x, zi〉|2

∑n
j=1 |〈zi, zj〉|

≤ ‖x‖2, (2)

which holds for all x ∈ H. This inequality is called the Selberg inequality and we denote
it by (SI). The equality in (2) holds if and only if x = ∑n

i=1 aizi for some complex scalars
a1, · · · , an such that for any i 6= j, 〈zi, zj〉 = 0 or |ai| = |aj | with 〈aizi, ajzj〉 ≥ 0 (see
Theorem 1 in [5]). It might be useful to observe that, from (2), one can derive other
well-known inequalities, for example,

1. The Cauchy–Bunyakowsky–Schwarz inequality (CBSI),

|〈x, y〉| ≤ ‖x‖‖y‖,

for any x, y ∈ H.
2. The Buzano inequality (BuI)

|〈x, z〉〈z, y〉| ≤ 1
2
(|〈x, y〉|+ ‖x‖‖y‖)‖z‖2,

for any x, y, z elements inH.
3. The Bessel inequality (BeI),

If E = {ei : i = 1, · · · ,n} are orthonormal in H, i.e., 〈ei, ej〉 = δij for all i, j ∈
{1, · · · ,n} where δij is the Kronecker delta, then

n

∑
i=1
|〈x, ei〉|2 ≤ ‖x‖2,

for any x ∈ H (see [4]).
4. The Bombieri inequality ([6])

n

∑
i=1
|〈x, zi〉|2 ≤ ‖x‖2 max

1≤i≤n

n

∑
j=1
|〈zi, zj〉|.

In our earlier work [7], we established the interrelation and derivability between (CBSI),
(SI), and (BeI).

Given Z = {zi : i = 1, · · · ,n} ⊂ H, we consider the Selberg operator associated to Z
as follows:

SZ =
n

∑
i=1

zi ⊗ zi
∑n
j=1 |〈zi, zj〉|

∈ B(H),



Symmetry 2023, 15, 1860 3 of 17

where T = x⊗ y denotes the rank one operator defined by T (z) = 〈z, y〉x with x, y, z ∈ H.
Using such an operator, we can express (SI) in the following way:

0 ≤ 〈SZx,x〉 =
n

∑
i=1

|〈x, zi〉|2

∑n
j=1 |〈zi, zj〉|

≤ 〈x,x〉,

for any x ∈ H. Then, the (SI) establishes 0 ≤ SZ ≤ I , i.e., SZ is a positive contraction.
Moreover, we deduce from the previous operator inequality that 0 ≤ I − SZ ≤ I , since

0 = ‖x‖2 − ‖x‖2 ≤ 〈SZx,x〉 ⇒ 0 ≤ ‖x‖2 − 〈SZx,x〉 ≤ ‖x‖2,

for any x ∈ H, and in particular that ω(I − SZ ) = ‖I − SZ‖ ≤ 1.
In [8], the Selberg inequality is refined as follows: if 〈z, zi〉 = 0 for any zi ∈ Z , then

|〈x, z〉|2 +
n

∑
i=1

|〈x, zi〉|2

∑n
j=1 |〈zi, zj〉|

‖z‖2 ≤ ‖x‖2‖z‖2.

For a thorough understanding of CBSI and its associated inequalities, see [7] and the cited
sources within that reference.

The paper is structured into two main sections. In Section 2, we focus on establishing
appropriate bounds for the norm and numerical radius of the product of three bounded
operators, one of them being a Selberg operator.

Moving on to Section 3, we shift our attention to the study of bounds involving the
summation of operators, with special attention to the Selberg operator. We provide a com-
prehensive overview of the summation of operators and its importance in mathematical
contexts. Building upon this foundation, we introduce and discuss several bounds involv-
ing the Selberg operator within the framework of operator summation. These bounds
provide valuable insights and contribute to a deeper understanding of the role of the
Selberg operator in operator compositions.

2. Some Norm and Numerical Radius Inequalities

In this section, we derive upper bounds for both the norm and the numerical radius of
the product of three operators, one of which is the Selberg operator. This analysis applies
to any subset Z within the Hilbert spaceH. To prove the results presented in this section,
we rely on the following lemma found in [7].

Lemma 1. For any x, y ∈ H, the following inequalities hold:

|〈SZx, y〉| ≤
∣∣∣∣〈SZx, y〉 − 1

2
〈x, y〉

∣∣∣∣+ 1
2
|〈x, y〉| ≤ 1

2
(|〈x, y〉|+ ‖x‖‖y‖)

and ∣∣∣∣〈(SZ − 1
2
I

)
x, y
〉∣∣∣∣ ≤ 1

2
‖x‖‖y‖.

The first inequality in Lemma 1 validates the Buzano inequality for any Selberg
operator.

Theorem 1. We assume that SZ is the Selberg operator defined above and A,B ∈ B(H); then, we
have norm inequalities

‖BSZA‖ ≤
1
2
(‖BA‖+ ‖A‖‖B‖) (3)

and ∥∥∥∥B(SZ − 1
2
I

)
A

∥∥∥∥ ≤ 1
2
‖A‖‖B‖. (4)
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Also, we have the following numerical radius inequalities

ω(BSZA) ≤
1
2

[
ω(BA) +

1
2

∥∥∥|A|2 + |B∗|2∥∥∥] (5)

and

ω

(
B

(
SZ −

1
2
I

)
A

)
≤ 1

4

∥∥∥|A|2 + |B∗|2∥∥∥. (6)

Proof. From Lemma 1, we have the following inequalities for Selberg operators:

∣∣〈SZx, y
〉∣∣ ≤ 1

2
(∣∣〈x, y

〉∣∣+ ‖x‖‖y‖)
and ∣∣∣∣〈(SZ − 1

2
I

)
x, y
〉∣∣∣∣ ≤ 1

2
‖x‖‖y‖

for all x, y ∈ H.
If we replace x by Ax and y by B∗y, we obtain

∣∣〈BSZAx, y
〉∣∣ ≤ 1

2
(∣∣〈BAx, y

〉∣∣+ ‖Ax‖‖B∗y‖) (7)

and ∣∣∣∣〈B(SZ − 1
2
I

)
Ax, y

〉∣∣∣∣ ≤ 1
2
‖Ax‖‖B∗y‖ (8)

for all x, y ∈ H.
Therefore, by taking the supremum over all x and y of norm one, we obtain

‖BSZA‖ = sup
‖x‖=‖y‖=1

∣∣〈BSZAx, y
〉∣∣

≤ 1
2

sup
‖x‖=‖y‖=1

(∣∣〈BAx, y
〉∣∣+ ‖Ax‖‖B∗y‖)

≤ 1
2

(
sup

‖x‖=‖y‖=1

∣∣〈BAx, y
〉∣∣+ sup

‖x‖=‖y‖=1
(‖Ax‖‖B∗y‖)

)

=
1
2
(‖BA‖+ ‖A‖‖B‖)

and ∥∥∥∥B(SZ − 1
2
I

)
A

∥∥∥∥ = sup
‖x‖=‖y‖=1

∣∣∣∣〈B(SZ − 1
2
I

)
Ax, y

〉∣∣∣∣
≤ 1

2
sup

‖x‖=‖y‖=1
(‖Ax‖‖B∗y‖) = 1

2
‖A‖‖B‖,

which prove (3) and (4).
From (7), for y = x, we obtain that
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∣∣〈BSZAx,x
〉∣∣ ≤ 1

2
(∣∣〈BAx,x

〉∣∣+ ‖Ax‖‖B∗x‖)
≤ 1

2

(∣∣〈BAx,x
〉∣∣+ 1

2

(
‖Ax‖2 + ‖B∗x‖2

))
=

1
2

(∣∣〈BAx,x
〉∣∣+ 1

2
(〈
Ax,Ax

〉
+
〈
B∗x,B∗x

〉))
=

1
2

(∣∣〈BAx,x
〉∣∣+ 1

2
(〈
A∗Ax,x

〉
+
〈
BB∗x,x

〉))
=

1
2

(∣∣〈BAx,x
〉∣∣+ 1

2

(〈
|A|2x,x

〉
+
〈
|B∗|2x,x

〉))
for all x ∈ H. This implies that

∣∣〈BSZAx,x
〉∣∣ ≤ 1

2

(∣∣〈BAx,x
〉∣∣+ 1

2
〈(
|A|2 + |B∗|2

)
x,x
〉)

(9)

for all x ∈ H.
By taking the supremum over all x of norm one, we obtain

ω(BSZA) = sup
‖x‖=1

∣∣〈BSZAx,x
〉∣∣

≤ 1
2

sup
‖x‖=1

(∣∣〈BAx,x
〉∣∣+ 〈1

2

(
|A|2 + |B∗|2

)
x,x
〉)

≤ 1
2

(
sup
‖x‖=1

∣∣〈BAx,x
〉∣∣+ 1

2
sup
‖x‖=1

〈(
|A|2 + |B∗|2

)
x,x
〉)

=
1
2

[
ω(BA) +

1
2

∥∥∥|A|2 + |B∗|2∥∥∥]
and Inequality (5) is proven.

From (8), we derive∣∣∣∣〈B(SZ − 1
2
I

)
Ax,x

〉∣∣∣∣ ≤ 1
2
‖Ax‖‖B∗x‖ ≤ 1

4

(
‖Ax‖2 + ‖B∗x‖2

)
.

Hence, ∣∣∣∣〈B(SZ − 1
2
I

)
Ax,x

〉∣∣∣∣ ≤ 1
4
〈(
|A|2 + |B∗|2

)
x,x
〉
. (10)

By taking the supremum over all x of norm one, we obtain the required Inequality (6).

On the basis of Theorem 1, we can establish the following corollaries as direct applications:

Corollary 1. We assume that SZ is the Selberg operator defined above and A,B ∈ B(H); then,
we have

ω(BSZA) ≤
1
2

[
ω(BA) +

1
2

∥∥∥∥‖B‖‖A‖ |A|2 + ‖A‖‖B‖ |B∗|2
∥∥∥∥]

≤ 1
2

∥∥∥∥‖B‖‖A‖ |A|2 + ‖A‖‖B‖ |B∗|2
∥∥∥∥

≤ 1
2
(‖BA‖+ ‖A‖‖B‖). (11)

Proof. Replacing A by A
‖A‖ and B by B

‖B‖ in (5), respectively, we obtain the first inequality.
On the other hand, as a consequence of a previous statement obtained in [9], we have
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ω(BA) ≤ 1
2

∥∥∥∥‖B‖‖A‖ |A|2 + ‖A‖‖B‖ |B∗|2
∥∥∥∥.

Thus,

1
2

[
ω(BA) +

1
2

∥∥∥∥‖B‖‖A‖ |A|2 + ‖A‖‖B‖ |B∗|2
∥∥∥∥] ≤ 1

2

∥∥∥∥‖B‖‖A‖ |A|2 + ‖A‖‖B‖ |B∗|2
∥∥∥∥. (12)

Since ‖B‖‖A‖ |A|
2 and ‖A‖‖B‖ |B

∗|2 are positive operators, using the norm inequality for sums of
two positive operators obtained in [10], we conclude that

1
2

∥∥∥∥‖B‖‖A‖ |A|2 + ‖A‖‖B‖ |B∗|2
∥∥∥∥ ≤ 1

2
(‖BA‖+ ‖A‖‖B‖). (13)

Finally, if we combine Inequalities (12) and (13), we obtain the desired result.

We note that Inequality (11) is a refinement of Lemma 1.2 in [11] in the particular case
that X is a Selberg operator. Furthermore, from Corollary 1, we have

ω(BSZA) ≤ min
{

1
2

[
ω(BA) +

1
2

∥∥∥∥‖B‖‖A‖ |A|2 + ‖A‖‖B‖ |B∗|2
∥∥∥∥], ‖BSZA‖

}
,

for any A,B ∈ B(H) and Selberg operator SZ .
Applying Theorem 1 with the special case where A = B, we arrive at the following

specific statement.

Corollary 2. We assume that SZ is the Selberg operator defined above and A ∈ B(H); then, we
have norm inequalities

‖ASZA‖ ≤
1
2

(∥∥∥A2
∥∥∥+ ‖A‖2

)
(14)

and ∥∥∥∥A(SZ − 1
2
I

)
A

∥∥∥∥ ≤ 1
2
‖A‖2.

Also, we have the following numerical radius inequalities

ω(ASZA) ≤
1
2

[
ω
(
A2
)
+

1
2

∥∥∥|A|2 + |A∗|2∥∥∥] (15)

and

ω

(
A

(
SZ −

1
2
I

)
A

)
≤ 1

4

∥∥∥|A|2 + |A∗|2∥∥∥.

Remark 1. From Inequalities (1) and (14), we conclude that

ω(ASZA) ≤
1
2

(∥∥∥A2
∥∥∥+ ‖A‖2

)
,

with the Selberg operator associated to Z and A ∈ B(H). Otherwise, (15) provides a refinement of
the previously inequality, since

1
2

[
ω
(
A2
)
+

1
2

∥∥∥|A|2 + |A∗|2∥∥∥] ≤ 1
2
‖A2‖+ 1

4

∥∥∥|A|2 + |A∗|2∥∥∥
≤ 1

2
‖A2‖+ 1

4

(∥∥∥|A|2∥∥∥+ ∥∥∥|A∗|2∥∥∥)
≤ 1

2
‖A2‖+ 1

2
‖A‖2.
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Proposition 1. We assume that A ∈ B(H) and Z are a finite subset contained inH, then

max{ω2(A),ω(ASZA)} ≤
1
2
ω
(
A2
)
+

1
4

∥∥∥|A|2 + |A∗|2∥∥∥.

Proof. In [12], Abu-Omar and Kittaneh obtained the following inequality:

ω2(A) ≤ 1
2
ω
(
A2
)
+

1
4

∥∥∥|A|2 + |A∗|2∥∥∥. (16)

By combining Inequalities (15) and (16), we infer that

max{ω2(A),ω(ASZA)} ≤
1
2
ω
(
A2
)
+

1
4

∥∥∥|A|2 + |A∗|2∥∥∥.

We proceed to generalize Inequalities (5) and (6) presented in Theorem 1.

Theorem 2. We assume that SZ is the Selberg operator defined above with r ≥ 1 and A,B ∈
B(H); then, for p, q > 1 with 1

p +
1
q = 1,

ω(BSZA) ≤
1

2
1
r

(
ωr(BA) +

∥∥∥∥1
p
|A|rp + 1

q
|B∗|rq

∥∥∥∥) 1
r

, (17)

provided that rp ≥ 2, rq ≥ 2; and for s > 0,

ω

(
B

(
SZ −

1
2
I

)
A

)
≤ 1

2

∥∥∥∥1
p
|A|sp + 1

q
|B∗|sq

∥∥∥∥ 1
s

(18)

for sp ≥ 2 and sq ≥ 2.

Proof. If we take the power r ≥ 1 in (9), we obtain, by the convexity of power functions,
that

∣∣〈BSZAx,x
〉∣∣r ≤ (∣∣〈BAx,x

〉∣∣+ ‖Ax‖‖B∗x‖
2

)r
,

for all x ∈ H. Therefore, we infer that

∣∣〈BSZAx,x
〉∣∣r ≤ ∣∣〈BAx,x

〉∣∣r + ‖Ax‖r‖B∗x‖r
2

(19)

for every x ∈ H.
From Young’s inequality

ab ≤ 1
p
ap +

1
q
bq , a, b ≥ 0, p, q > 1 with

1
p
+

1
q
= 1,

we have

‖Ax‖r‖B∗x‖r ≤ 1
p
‖Ax‖rp + 1

q
‖B∗x‖rq

=
1
p
‖Ax‖2 rp

2 +
1
q
‖B∗x‖2 rq

2

=
1
p

〈
|A|2x,x

〉 rp
2 +

1
q

〈
|B∗|2x,x

〉 rq
2

for all x ∈ H.
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By McCarthy’s inequality [13],〈
Ax,x

〉s ≤ 〈Asx,x
〉
, s ≥ 1

for x ∈ H, ‖x‖ = 1, and since rp ≥ 2, rq ≥ 2, then

1
p

〈
|A|2x,x

〉 rp
2 +

1
q

〈
|B∗|2x,x

〉 rq
2 ≤ 1

p

〈
|A|rpx,x

〉
+

1
q

〈
|B∗|rqx,x

〉
for x ∈ H, ‖x‖ = 1. Thus, we deduce that

1
p

〈
|A|2x,x

〉 rp
2 +

1
q

〈
|B∗|2x,x

〉 rq
2 ≤

〈(1
p
|A|rp + 1

q
|B∗|rq

)
x,x
〉

(20)

for every x ∈ H with ‖x‖ = 1.
By utilizing (19) and (20), we obtain

∣∣〈BSZAx,x
〉∣∣r ≤ 1

2

[∣∣〈BAx,x
〉∣∣r + 〈(1

p
|A|rp + 1

q
|B∗|rq

)
x,x
〉]

for x ∈ H, ‖x‖ = 1, and by taking the supremum over all x of norm one, we obtain

ωr(BSZA) ≤
1
2

[
ωr(BA) +

∥∥∥∥1
p
|A|rp + 1

q
|B∗|rq

∥∥∥∥]
which is equivalent to (17).

From (10), by taking the power s > 0, we get∣∣∣∣〈B(SZ − 1
2
I

)
Ax,x

〉∣∣∣∣s ≤ 1
2s
‖Ax‖s‖B∗x‖s (21)

for x ∈ H.
By Young’s inequality and McCarthy’s for sp

2 ≥ 1, sq2 ≥ 1 we also have

‖Ax‖s‖B∗x‖s ≤ 1
p
‖Ax‖sp + 1

q
‖B∗x‖sq

=
1
p
‖Ax‖2 sp

2 +
1
q
‖B∗x‖2 sq

2

=
1
p

〈
|A|2x,x

〉 sp
2 +

1
q

〈
|B∗|2x,x

〉 sq
2

≤ 1
p

〈
|A|spx,x

〉
+

1
q

〈
|B∗|sqx,x

〉
,

for x ∈ H, ‖x‖ = 1. Therefore, we obtain

‖Ax‖s‖B∗x‖s ≤
〈(1

p
|A|sp + 1

q
|B∗|sq

)
x,x
〉

(22)

for x ∈ H, ‖x‖ = 1.
By making use of (21) and (22), we obtain∣∣∣∣〈B(SZ − 1

2
I

)
Ax,x

〉∣∣∣∣s ≤ 1
2s
〈(1

p
|A|sp + 1

q
|B∗|sq

)
x,x
〉
,

for x ∈ H, ‖x‖ = 1, and by taking the supremum over all x of norm one, we obtain (18).

Corollary 3. If r ≥ 1 and A ∈ B(H), then, for p, q > 1 with 1
p +

1
q = 1,
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ω(ASZA) ≤
1

2
1
r

(
ωr
(
A2
)
+

∥∥∥∥1
p
|A|rp + 1

q
|A∗|rq

∥∥∥∥) 1
r

,

provided that rp ≥ 2, rq ≥ 2; and for s > 0,

ω

(
A

(
SZ −

1
2
I

)
A

)
≤ 1

2

∥∥∥∥1
p
|A|sp + 1

q
|A∗|sq

∥∥∥∥ 1
s

,

provided that sp ≥ 2, sq ≥ 2.

Remark 2. If we take p = q = 2 in (17) and (18), we obtain

ω(BSZA) ≤
1

2
1
r

(
ωr(BA) +

1
2

∥∥∥|A|2r + |B∗|2r∥∥∥) 1
r

,

for r ≥ 1, and for s ≥ 1,

ω

(
B

(
SZ −

1
2
I

)
A

)
≤ 1

21+1/s

∥∥∥|A|2s + |B∗|2s∥∥∥ 1
s .

In these inequalities, when we take B = A, we obtain

ω(ASZA) ≤
1

2
1
r

(
ωr
(
A2
)
+

1
2

∥∥∥|A|2r + |A∗|2r∥∥∥) 1
r

,

for r ≥ 1, and

ω

(
A

(
SZ −

1
2
I

)
A

)
≤ 1

21+1/s

∥∥∥|A|2s + |A∗|2s∥∥∥ 1
s

for s ≥ 1.
Further, if we take r = 2 in (17), we obtain

ω(BSZA) ≤
√

2
2

(
ω2(BA) +

∥∥∥∥1
p
|A|2p + 1

q
|B∗|2q

∥∥∥∥) 1
2
,

for p, q > 1 with 1
p +

1
q = 1. The case p = q = 2 also offers

ω(BSZA) ≤
√

2
2

(
ω2(BA) +

1
2

∥∥∥|A|4 + |B∗|4∥∥∥) 1
2
.

Moreover, if we take B = A in these inequalities, we have

ω(ASZA) ≤
√

2
2

(
ω2
(
A2
)
+

∥∥∥∥1
p
|A|2p + 1

q
|A∗|2q

∥∥∥∥) 1
2
,

and

ω(ASZA) ≤
√

2
2

(
ω2
(
A2
)
+

1
2

∥∥∥|A|4 + |A∗|4∥∥∥) 1
2
.

Furthermore, for s = 2, we also have

ω

(
B

(
SZ −

1
2
I

)
A

)
≤ 1

2

∥∥∥∥1
p
|A|2p + 1

q
|B∗|2q

∥∥∥∥ 1
2
,

for p, q > 1 with 1
p +

1
q = 1. The case p = q = 2 also offers



Symmetry 2023, 15, 1860 10 of 17

ω

(
B

(
SZ −

1
2
I

)
A

)
≤
√

2
4

∥∥∥|A|4 + |B∗|4∥∥∥ 1
2 .

If we consider B = A, we obtain

ω

(
A

(
SZ −

1
2
I

)
A

)
≤ 1

2

∥∥∥∥1
p
|A|2p + 1

q
|A∗|2q

∥∥∥∥ 1
2
,

and

ω

(
A

(
SZ −

1
2
I

)
A

)
≤
√

2
4

∥∥∥|A|4 + |A∗|4∥∥∥ 1
2 .

In the subsequent theorem, we establish an upper bound for the numerical radius by
utilizing a convex combination of |A| and |B∗|.

Theorem 3. We assume that SZ is the Selberg operator defined above and A,B ∈ B(H); then, for
α ∈ [0, 1],

ω2(BSZA) ≤
1
2

(
ω2(BA) +

∥∥∥(1− α)|A|2 + α|B∗|2
∥∥∥‖A‖2α‖B‖2(1−α)

)
(23)

and

ω2
(
B

(
SZ −

1
2
I

)
A

)
≤ 1

4

∥∥∥(1− α)|A|2 + α|B∗|2
∥∥∥‖A‖2α‖B‖2(1−α). (24)

Furthermore, in specific instances, we obtain

ω2(BSZA) ≤
1
2

(
ω2(BA) +

1
2

∥∥∥|A|2 + |B∗|2∥∥∥‖A‖‖B‖)
and

ω2
(
B

(
SZ −

1
2
I

)
A

)
≤ 1

8

∥∥∥|A|2 + |B∗|2∥∥∥‖A‖‖B‖.
Proof. From (19), for r = 2, we also have∣∣〈BSZAx,x

〉∣∣2
≤ 1

2

(∣∣〈BAx,x
〉∣∣2 + ‖Ax‖2‖B∗x‖2

)
=

1
2

(∣∣〈BAx,x
〉∣∣2 + 〈|A|2x,x

〉〈
|B∗|2x,x

〉)
=

1
2

(∣∣〈BAx,x
〉∣∣+ 〈|A|2x,x

〉1−α〈|B∗|2x,x
〉α〈|A|2x,x

〉α〈|B∗|2x,x
〉1−α)

≤ 1
2

(∣∣〈BAx,x
〉∣∣+ ((1− α)〈|A|2x,x

〉
+ α

〈
|B∗|2x,x

〉)
‖Ax‖2α‖B∗x‖2(1−α)

)
=

1
2

(∣∣〈BAx,x
〉∣∣+ 〈[(1− α)|A|2 + α|B∗|2

]
x,x
〉
‖Ax‖2α‖B∗x‖2(1−α)

)
,

for all x ∈ H.
If we take the supremum over all x of norm one, we obtain

ω2(BSZA)

= sup
‖x‖=1

∣∣〈BSZAx,x
〉∣∣2

≤ 1
2

sup
‖x‖=1

(∣∣〈BAx,x
〉∣∣2 + 〈[(1− α)|A|2 + α|B∗|2

]
x,x
〉
‖Ax‖2α‖B∗x‖2(1−α)

)
.
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Hence,

ω2(BSZA) (25)

≤ 1
2

sup
‖x‖=1

∣∣〈BAx,x
〉∣∣2 + 1

2
sup
‖x‖=1

(〈[
(1− α)|A|2 + α|B∗|2

]
x,x
〉
‖Ax‖2α‖B∗x‖2(1−α)

)
and since

sup
‖x‖=1

(〈[
(1− α)|A|2 + α|B∗|2

]
x,x
〉
‖Ax‖2α‖B∗x‖2(1−α)

)
≤ sup
‖x‖=1

〈[
(1− α)|A|2 + α|B∗|2

]
x,x
〉

sup
‖x‖=1

‖Ax‖2α sup
‖x‖=1

‖B∗x‖2(1−α)

=
∥∥∥(1− α)|A|2 + α|B∗|2

∥∥∥‖A‖2α‖B‖2(1−α),

by (25), we obtain the desired result (23).
By (21), we obtain for s = 2 that∣∣∣∣〈B(SZ − 1

2
I

)
Ax,x

〉∣∣∣∣2 ≤ 1
4
‖Ax‖2‖B∗x‖2 =

1
4
〈
|A|2x,x

〉〈
|B∗|2x,x

〉
≤ 1

4
〈[
(1− α)|A|2 + α|B∗|2

]
x,x
〉
‖Ax‖2α‖B∗x‖2(1−α)

and by taking the supremum over all x of norm one, we obtain (24).

Corollary 4. If A ∈ B(H), then, for α ∈ [0, 1],

ω2(ASZA) ≤
1
2

(
ω2
(
A2
)
+
∥∥∥(1− α)|A|2 + α|A∗|2

∥∥∥‖A‖2
)

and

ω2
(
A

(
SZ −

1
2
I

)
A

)
≤ 1

4

∥∥∥(1− α)|A|2 + α|A∗|2
∥∥∥‖A‖2.

In particular, we have

ω2(ASZA) ≤
1
2

(
ω2
(
A2
)
+

1
2

∥∥∥|A|2 + |A∗|2∥∥∥‖A‖2
)

and

ω2
(
A

(
SZ −

1
2
I

)
A

)
≤ 1

8

∥∥∥|A|2 + |A∗|2∥∥∥‖A‖2.

It is a well-known fact that every two-sided ideal of B(H) includes K0(H), the ideal
comprising finite rank operators. Consequently, we have SZ ∈ K0(H) ⊆ C|||·|||, where
C|||·||| represents the ideal defined by a specific unitarily invariant norm ||| · |||. We conclude
this section by deriving the following inequalities applicable to such norms.

Theorem 4. We asume that SZ is the Selberg operator defined above, A,B ∈ B(H) and ||| · ||| is
a unitarily invariant norm; then, we have norm inequalities

|||ASZB||| ≤
1
2

∥∥∥∥‖B‖‖A‖ |A|2 + ‖A‖‖B‖ |B∗|2
∥∥∥∥|||SZ |||.

In particular, we conclude that
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‖ASZB‖ ≤
1
2

∥∥∥∥‖B‖‖A‖ |A|2 + ‖A‖‖B‖ |B∗|2
∥∥∥∥‖SZ‖. (26)

In addition, if A and B belong to the ideal associated to ||| · |||, then

|||ASZB||| ≤ min{µ(A,SZ ,B), ν(A,SZ ,B)}, (27)

where

µ(A,SZ ,B) =
1
2

∥∥∥∥‖B‖‖A‖ |A|2 + ‖A‖‖B‖ |B∗|2
∥∥∥∥|||SZ |||

and

ν(A,SZ ,B) =
1
2
‖SZ‖

∣∣∣∣∣∣∣∣∣∣∣∣ ‖B‖‖A‖ |A|2 + ‖A‖‖B‖ |B∗|2
∣∣∣∣∣∣∣∣∣∣∣∣.

Proof. As SZ ∈ K0(H) in consequence ASZB ∈ K0(H), then, as SZ is a positive operator,
we have, by Lemma 2.1 in [14],

sj(ASZB) ≤ 1
2
sj((A

∗A+BB∗)
1
2SZ (A

∗A+BB∗)
1
2 )

≤ 1
2

∥∥∥|A|2 + |B∗|2∥∥∥sj(SZ ). (28)

Replacing A by A
‖A‖ and B by B

‖B‖ in (28), respectively, we obtain

sj(ASZB) ≤ 1
2

∥∥∥∥‖B‖‖A‖ |A|2 + ‖A‖‖B‖ |B∗|2
∥∥∥∥sj(SZ )

for any j = 1, 2, . . . . Thus, for any k ∈ N, we obtain

1
2

∥∥∥∥‖B‖‖A‖ |A|2 + ‖A‖‖B‖ |B∗|2
∥∥∥∥ k

∑
j=1

sj(SZ ) ≥
k

∑
j=1

sj(ASZB),

or, equivalently,

1
2

∥∥∥∥‖B‖‖A‖ |A|2 + ‖A‖‖B‖ |B∗|2
∥∥∥∥‖SZ‖(k) ≥ ‖ASZB‖(k)

for any k ∈ N. Then, by the Ky Fan dominance Theorem, we conclude that

|||ASZB||| ≤
1
2

∥∥∥∥‖B‖‖A‖ |A|2 + ‖A‖‖B‖ |B∗|2
∥∥∥∥|||SZ ||| (29)

for any unitarily invariant norm ||| · |||.
On the other hand, if we assume that A and B belong to the ideal associated to ||| · |||,

then, by Theorem 2.4 in [15], we obtain

sj(ASZB) ≤ 1
2
sj

(
‖B‖
‖A‖ |A|

2 +
‖A‖
‖B‖ |B

∗|2
)
‖SZ‖.

Then,

‖ASZB‖(k) =
k

∑
j=1

sj(ASZB) ≤ 1
2
‖SZ‖

k

∑
j=1

sj

(
‖B‖
‖A‖ |A|

2 +
‖A‖
‖B‖ |B

∗|2
)

=
1
2
‖SZ‖

∥∥∥∥‖B‖‖A‖ |A|2 + ‖A‖‖B‖ |B∗|2
∥∥∥∥
(k)

,
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or, equivalently, by the Ky Fan dominance Theorem, we achieve

|||ASZB||| ≤
1
2
‖SZ‖

∣∣∣∣∣∣∣∣∣∣∣∣ ‖B‖‖A‖ |A|2 + ‖A‖‖B‖ |B∗|2
∣∣∣∣∣∣∣∣∣∣∣∣. (30)

From (29) and (30), we derive the inequality (27).

From Inequality (26), we obtain a new refinement of Lemma 1.2 in [11] for the Selberg
operator, since

ω(BSZA) ≤ ‖ASZB‖ ≤
1
2

∥∥∥∥‖B‖‖A‖ |A|2 + ‖A‖‖B‖ |B∗|2
∥∥∥∥‖SZ‖.

3. Inequalities for Summations with the Selberg Operator

In this section, we delve into studying bounds related to the summation of operators,
placing special focus on the Selberg operator.

The opening proposition in this section provides a broadened perspective of the
inequality established in Theorem 1. The inequality reads as follows:

∥∥∥∥BSZA− 1
2
BA

∥∥∥∥2
=

∥∥∥∥B(SZ − 1
2
I

)
A

∥∥∥∥2
≤ 1

4
‖A‖2‖B‖2 =

1
4

∥∥∥|A|2∥∥∥∥∥∥|B∗|2∥∥∥,

and this inequality holds for any A,B ∈ B(H).

Theorem 5. We assume that SZ is the Selberg operator defined above, Ai,Bi ∈ B(H), i ∈
{1, . . . ,m} and pi ≥ 0, i ∈ {1, . . . ,m} with ∑m

i=1 pi = 1. Then, we have norm inequality∥∥∥∥∥ m∑
i=1

piBiSZAi −
1
2

m

∑
i=1

piBiAi

∥∥∥∥∥
2

≤ 1
4

∥∥∥∥∥ m∑
i=1

pi|Ai|2
∥∥∥∥∥
∥∥∥∥∥ m∑
i=1

pi|B∗i |
2

∥∥∥∥∥ (31)

and numerical radius inequality

ω

(
m

∑
i=1

piBiSZAi −
1
2

m

∑
i=1

piBiAi

)
≤
∥∥∥∥∥ m∑
i=1

pi
|Ai|2 + |B∗i |

2

4

∥∥∥∥∥. (32)

Proof. From (8), we obtain∣∣∣∣〈(BiSZAi − 1
2
BiAi

)
x, y
〉∣∣∣∣ ≤ 1

2
‖Aix‖‖B∗i y‖

for all i ∈ {1, . . . ,m} and x, y ∈ H.
If we multiply by pi ≥ 0, i ∈ {1, . . . ,m} and sum, we obtain

m

∑
i=1

pi

∣∣∣∣〈(BiSZAi − 1
2
BiAi

)
x, y
〉∣∣∣∣ ≤ 1

2

m

∑
i=1

pi‖Aix‖‖B∗i y‖. (33)

By the generalized triangle inequality, we have

m

∑
i=1

pi

∣∣∣∣〈(BiSZAi − 1
2
BiAi

)
x, y
〉∣∣∣∣ ≥

∣∣∣∣∣ m∑
i=1

pi
〈(
BiSZAi −

1
2
BiAi

)
x, y
〉∣∣∣∣∣

=

∣∣∣∣∣〈
(
m

∑
i=1

piBiSZAi −
1
2

m

∑
i=1

piBiAi

)
x, y
〉∣∣∣∣∣

for x, y ∈ H.
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By the Cauchy–Bunyakowsky–Schwarz inequality, we have

m

∑
i=1

pi‖Aix‖‖B∗i y‖ ≤
(
m

∑
i=1

pi‖Aix‖2

) 1
2
(
m

∑
i=1

pi‖B∗i y‖
2

) 1
2

=

(
m

∑
i=1

pi
〈
|Ai|2x,x

〉) 1
2
(
m

∑
i=1

pi
〈
|B∗i |

2y, y
〉) 1

2

for x, y ∈ H. This implies that

m

∑
i=1

pi‖Aix‖‖B∗i y‖ ≤
〈 m

∑
i=1

pi|Ai|2x,x
〉 1

2
〈 m

∑
i=1

pi|B∗i |
2y, y

〉 1
2 (34)

for all x, y ∈ H. By making use of (33) and (34), we obtain∣∣∣∣∣〈
(
m

∑
i=1

piBiSZAi −
1
2

m

∑
i=1

piBiAi

)
x, y
〉∣∣∣∣∣ ≤ 1

2
〈 m

∑
i=1

pi|Ai|2x,x
〉 1

2
〈 m

∑
i=1

pi|B∗i |
2y, y

〉 1
2 (35)

for x, y ∈ H.
If we take the supremum over all x and y of norm one, we obtain∥∥∥∥∥ m∑
i=1

piBiSZAi −
1
2

m

∑
i=1

piBiAi

∥∥∥∥∥ = sup
‖x‖=‖y‖=1

∣∣∣∣∣〈
(
m

∑
i=1

piBiSZAi −
1
2

m

∑
i=1

piBiAi

)
x, y
〉∣∣∣∣∣

≤ 1
2

sup
‖x‖=‖y‖=1

(〈 m

∑
i=1

pi|Ai|2x,x
〉 1

2
〈 m

∑
i=1

pi|B∗i |
2y, y

〉 1
2

)

=
1
2

sup
‖x‖=1

〈 m

∑
i=1

pi|Ai|2x,x
〉 1

2 sup
‖y‖=1

〈 m

∑
i=1

pi|B∗i |
2y, y

〉 1
2

=
1
2

∥∥∥∥∥ m∑
i=1

pi|Ai|2
∥∥∥∥∥

1
2
∥∥∥∥∥ m∑
i=1

pi|B∗i |
2

∥∥∥∥∥
1
2

,

which proves (31).
From (35), we derive∣∣∣∣∣〈

(
m

∑
i=1

piBiSZAi −
1
2

m

∑
i=1

piBiAi

)
x,x
〉∣∣∣∣∣

≤ 1
2
〈 m

∑
i=1

pi|Ai|2x,x
〉 1

2
〈 m

∑
i=1

pi|B∗i |
2x,x

〉 1
2

≤ 1
4

(〈 m

∑
i=1

pi|Ai|2x,x
〉
+
〈 m

∑
i=1

pi|B∗i |
2x,x

〉)

=
1
4
〈( m

∑
i=1

pi|Ai|2 +
m

∑
i=1

pi|B∗i |
2

)
x,x
〉
=
〈( m

∑
i=1

pi
|Ai|2 + |B∗i |

2

4

)
x,x
〉
,

and by taking the supremum over all x of norm one, we obtain (32).

Theorem 6. With the assumptions of Theorem 5, we have the following numerical radius inequalities:

ω2

(
m

∑
i=1

piBiSZAi −
1
2

m

∑
i=1

piBiAi

)
≤ 1

2

∥∥∥∥∥1
p

(
m

∑
i=1

pi|Ai|2
)p

+
1
q

(
m

∑
i=1

pi|B∗i |
2

)q∥∥∥∥∥ (36)

for p, q > 1 with 1
p +

1
q = 1 and
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ω2

(
m

∑
i=1

piBiSZAi −
1
2

m

∑
i=1

piBiAi

)
(37)

≤ 1
4

(
ω

(
m

∑
i=1

pi|B∗i |
2
m

∑
i=1

pi|Ai|2
)
+

∥∥∥∥∥ m∑
i=1

pi|Ai|2
∥∥∥∥∥
∥∥∥∥∥ m∑
i=1

pi|B∗i |
2

∥∥∥∥∥
)

.

Proof. By (35) and by taking the square and y = x, we determine that∣∣∣∣∣〈
(
m

∑
i=1

piBiSZAi −
1
2

m

∑
i=1

piBiAi

)
x,x
〉∣∣∣∣∣

2

≤ 1
2
〈 m

∑
i=1

pi|Ai|2x,x
〉〈 m

∑
i=1

pi|B∗i |
2x,x

〉
(38)

for x ∈ H.
By Young’s inequality, we have

〈 m

∑
i=1

pi|Ai|2x,x
〉〈 m

∑
i=1

pi|B∗i |
2x,x

〉
≤ 1
p

〈 m

∑
i=1

pi|Ai|2x,x
〉p

+
1
q

〈 m

∑
i=1

pi|B∗i |
2x,x

〉q
for x ∈ H and p, q > 1 with 1

p +
1
q = 1.

By the McCarthy inequality, we also have

1
p

〈 m

∑
i=1

pi|Ai|2x,x
〉p

+
1
q

〈 m

∑
i=1

pi|B∗i |
2x,x

〉q
≤ 1
p

〈( m

∑
i=1

pi|Ai|2
)p
x,x
〉
+

1
q

〈( m

∑
i=1

pi|B∗i |
2

)q
x,x
〉

for x ∈ H with ‖x‖ = 1. This yields that

1
p

〈 m

∑
i=1

pi|Ai|2x,x
〉p

+
1
q

〈 m

∑
i=1

pi|B∗i |
2x,x

〉q
≤
〈[1
p

(
m

∑
i=1

pi|Ai|2
)p

+
1
q

(
m

∑
i=1

pi|B∗i |
2

)q]
x,x
〉
, (39)

for x ∈ H with ‖x‖ = 1.
Therefore, by (38) and (39), we obtain

∣∣∣∣∣〈
(
m

∑
i=1

piBiSZAi −
1
2

m

∑
i=1

piBiAi

)
x,x
〉∣∣∣∣∣

2

≤ 1
2
〈[1
p

(
m

∑
i=1

pi|Ai|2
)p

+
1
q

(
m

∑
i=1

pi|B∗i |
2

)q]
x,x
〉

for x ∈ H with ‖x‖ = 1.
Finally, if we take the supremum over all x of norm one, we deduce the desired

result (36).
If we use Buzano’s inequality

∣∣〈u, e
〉〈
e, v
〉∣∣ ≤ 1

2
(∣∣〈u, v

〉∣∣+ ‖u‖‖v‖),
where ‖e‖ = 1, we obtain
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〈 m

∑
i=1

pi|Ai|2x,x
〉〈
x,

m

∑
i=1

pi|B∗i |
2x
〉

≤ 1
2

(∣∣∣∣∣〈 m

∑
i=1

pi|Ai|2x,
m

∑
i=1

pi|B∗i |
2x
〉∣∣∣∣∣+

∥∥∥∥∥ m∑
i=1

pi|Ai|2x
∥∥∥∥∥
∥∥∥∥∥ m∑
i=1

pi|B∗i |
2x

∥∥∥∥∥
)

=
1
2

(∣∣∣∣∣〈 m

∑
i=1

pi|B∗i |
2
m

∑
i=1

pi|Ai|2x,x
〉∣∣∣∣∣+

∥∥∥∥∥ m∑
i=1

pi|Ai|2x
∥∥∥∥∥
∥∥∥∥∥ m∑
i=1

pi|B∗i |
2x

∥∥∥∥∥
)

for x ∈ H with ‖x‖ = 1.
By (38), we obtain∣∣∣∣∣〈

(
m

∑
i=1

piBiSZAi −
1
2

m

∑
i=1

piBiAi

)
x,x
〉∣∣∣∣∣

2

≤ 1
4

(∣∣∣∣∣〈 m

∑
i=1

pi|B∗i |
2
m

∑
i=1

pi|Ai|2x,x
〉∣∣∣∣∣+

∥∥∥∥∥ m∑
i=1

pi|Ai|2x
∥∥∥∥∥
∥∥∥∥∥ m∑
i=1

pi|B∗i |
2x

∥∥∥∥∥
)

for x ∈ H with ‖x‖ = 1.
By taking the supremum over all x of norm one, we obtain the desired result (37).

4. Conclusions

In conclusion, this paper delves into the study of the Selberg operator, exploring its
properties and relationships with other bounded operators. By establishing bounds for the
norm and numerical radius of the product of three operators, with one of them being a
Selberg operator, valuable insights are gained into the behavior of operator compositions
involving the Selberg operator. Additionally, the paper presents various bounds for the
summation of operators, particularly the Selberg operator. In this study, it is important to
note that we employ a unitarily invariant norm, denoted as ||| · |||, throughout our analysis.

This work serves as a starting point for future research in the field and lays the
foundation for exploring more complex aspects of the Selberg operator and its implica-
tions in different areas of math. By emphasizing the importance of symmetry in math,
this study opens up opportunities for further investigation and potential applications in
related studies.

A fascinating open problem is to find the best possible limits for the size of the Selberg
operator in various situations. It would be valuable to explore whether we can discover
tighter bounds or more general limits that apply to a wider range of operator combinations.
By determining the optimal norm bounds, we can gain a deeper understanding of how the
Selberg operator behaves and its limitations in different contexts.

Additionally, another interesting area for further exploration is studying the Selberg
operator within the framework of operator algebras. This involves examining its properties
and behavior in relation to mathematical structures called C∗-algebras or von Neumann
algebras. By investigating the Selberg operator in these algebraic settings, we can uncover
deeper insights into its structural properties and its connections with other operators. This
line of research can provide a more comprehensive understanding of the Selberg operator
and its role in the broader context of operator theory.
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