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�-Dependent Model Reduction for Uncertain Discrete-Time

Switched Linear Systems with Average Dwell Time

Lixian Zhang�y, El-Kebir Boukasy, Peng Shiz

Abstract

In this paper, the model reduction problem for a class of discrete-time polytopic uncertain switched

linear systems with average dwell time switching is investigated. The stability criterion for general discrete-

time switched systems is �rst explored, and a �-dependent approach is then introduced for the considered

systems to the model reduction solution. A reduced-order model is constructed and its corresponding

existence conditions are derived via LMI formulation. The admissible switching signals and the desired

reduced model matrices are accordingly obtained from such conditions such that the resulting model error

system is robustly exponentially stable and has an exponential H1 performance. A numerical example

is presented to demonstrate the potential and e¤ectiveness of the developed theoretical results.

Keywords: average dwell time, linear matrix inequalities, model reduction, switched linear systems

1 Introduction

Switched systems have been widely studied in the past decades and many issues have been tackled, see for

example, [4, 7, 8, 14, 17]. For a switched system, switching signals are crucial to determine system behavior,

which might depend on either time or system state, or both, or other supervisory decision procedures

[2, 10, 12, 16, 19]. Usually, the switching in systems or control are classi�ed into autonomous and controlled

ones, which result respectively from system itself and the designers�intervention [10, 12].

For the autonomous switched systems, one of the basic problems is to �nd out less conservative stability

conditions, especially considering the switching signals are arbitrary. On this issue, the multiple Lyapunov

functions (MLF) approach has been well deemed less conservative in contrast with the global Lyapunov

function (GLF) [1]. Although the general MLF idea describes how the stability of switched system is ensured,

it is still hard to derive the numerically checkable stability criteria. The switched Lyapunov function (SLF)

approach [2], as a special kind of MLF, attracts the poly-quadratic stability idea such that some issues such

as stability, control and �ltering, etc., are solved for a class of discrete-time nominal or uncertain switched

linear systems under arbitrary switching [21, 22, 23].

For controlled switched systems, on the other hand, stability analysis usually needs to specify dwell

(or average dwell) time of the switching signal, which thereby can be also viewed as a design problem
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of switching laws and are frequently encountered in the switching control practice [9, 18]. Some special

switching signals have been studied in this context such as dwell (average dwell) time switching, hysteresis

switching, etc. [12], and nowadays, the average dwell time switching has been recognized to be more �exible

and e¢ cient in system stability analysis [6, 10]. Often, the switched systems with dwell (or average dwell)

time are also viewed slowly switched system in the literature, and many useful results on stability analysis

and control synthesis for the systems have been available within the continuous-time context including both

linear case and nonlinear case, see for example, [6, 13, 15]. However, to the best of the authors�knowledge,

the relevant problems on model reduction for high-order switched systems with dwell (or average dwell) time

switching have not been investigated, with or without uncertainties. Note that with the switching feature,

the model reduction results for switched systems can not be simply obtained by means of the existing model

simpli�cation theories of general dynamic systems. Note also that both the approaches GLF and SLF will be

not quite suitable to analyze the slowly switched systems due to the stricter requirements on the Lyapunov

function values at the switching instants.

In this paper, we are interested in the model reduction for a class of polytopic uncertain switched linear

discrete-time systems under average dwell time switching. The discrete-time counterpart of the stability

result of general switched systems is �rstly presented. Then, a reduced-order model for the underlying system

is constructed and the corresponding existence conditions are derived via LMI formulation. The obtained

conditions are dependent on �; which is the increasing degree of the Lyapunov-like functions associated to

the di¤erent subsystem at switching instants. The admissible switching signals and the desired reduced

model matrices can be obtained from such conditions for a given decay degree such that the resulting model

error system is robustly exponentially stable and achieves an exponential H1 performance.

The remainder of the paper is organized as follows. The problem of model reduction for discrete-time

uncertain switched linear system with average dwell time switching is formulated in Section 2. In Section 3,

the stability result for general discrete-time switched systems, the exponential H1 performance analysis for

the underlying systems and the corresponding H1 reduced-order model solution are developed as the main

results of the paper. Section 4 provides an illustrative example and Section 5 concludes the paper.

Notation: The notation used in this paper is fairly standard. The superscript �T� stands for matrix

transposition, Rn denotes the n dimensional Euclidean space and N represents the set of nonnegative integers,
the notation k k refers to the Euclidean vector norm. l2[0;1) is the space of square summable in�nite
sequence and for u = fu(k)g 2 l2[0;1); its norm is given by kuk2 =

qX1

k=0
ju(k)j2: C1 denotes the space

of continuously di¤erentiable functions, and a function � : [0;1) ! [0;1) is said to be of class K1 if it is

continuous, strictly increasing, unbounded, and �(0) = 0: In addition, in symmetric block matrices or long

matrix expressions, we use * as an ellipsis for the terms that are introduced by symmetry and diagf� � � g
stands for a block-diagonal matrix. Matrices, if their dimensions are not explicitly stated, are assumed to

be compatible for algebraic operations. The notation P > 0 (� 0) means P is real symmetric and positive

(semi-positive) de�nite. I and 0 represent respectively, identity matrix and zero matrix.

2 Problem Formulation and Preliminaries

Consider a class of uncertain discrete-time switched linear systems given by

x(k + 1) = A�(k)(�)x(k) +B�(k)(�)u(k)

y(k) = C�(k)(�)x(k) +D�(k)(�)u(k) (1)
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where x(k) 2 Rn is the state vector, u(k) 2 Rl is the input vector which belongs to l2[0;1); y(k) 2 Rm

is the measurement output vector. �(k) is a piecewise constant function of time, called a switching signal,

which takes its values in the �nite set I = f1; : : : ; Ng ; N > 1 is the number of subsystems. At an arbitrary

discrete time k, �(k), denoted by � for simplicity, is dependent on k or x(k), or both, or other switching

rules. As in [2], we assume that the sequence of subsystems in switching signal � is unknown a priori, but its

instantaneous value is available in real time. Meanwhile, for the switching times sequence k0 < k1 < k2 < :::

of switching signal �, the holding time between [kl; kl+1] is called the dwell time of the currently engaged

subsystem, where l 2 N. In addition, when �(k) = i 2 I; the matrices (Ai(�); Bi(�); Ci(�); Di(�))
denote the ith subsystem and � is a varying uncertain parameter. It is assumed that (Ai(�); Bi(�); Ci(�);

Di(�)) 2 <i, where <i is a given convex bounded polyhedral domain described by s vertices in the ith
subsystem.

<i , f[Ai(�); Bi(�); Ci(�); Di(�)]
=

Xs

m=1
�m[Ai;m; Bi;m; Ci;m; Di;m];

Xs

m=1
�m = 1; �m � 0; i 2 I:

o
(2)

Remark 1 The parameters and structure of the uncertainties in practice are usually the same throughout
either the multi-models or switched control systems [3, 11], thus we assume both the number of vertices and

uncertain parameter �m in each subsystem to be equal here (not �i;m) without loss of generality.

For switching signal �(k); we revisit the average dwell time property in the following de�nition.

De�nition 1 [6] For switching signal and any kv > ks > k0; let N�(k)(ks; kv) be the switching numbers of
�(k) over the interval [ks; kv]: If for any given N0 > 0, �a > 0; we have N�(k)(ks; kv) � N0 + (kv � ks)=�a;
then �a and N0 are called average dwell time and the chatter bound, respectively.

Remark 2 By average dwell time switching, we mean a class of switching signals satisfying that the average
time interval between consecutive switchings is at least �a: Then, in the analysis and synthesis for such

systems, a basic problem is to specify the admissible �a and herewith the admissible switching signals.

To present the main objective of this paper more clearly, we also introduce the following de�nitions of

the uncertain switched linear systems (1), which will be essential for the later development.

De�nition 2 The equilibrium x = 0 of system (1) is robustly exponentially stable under switching signal

�(k) if for all admissible �, there exist constants K > 0; 0 < � < 1 such that the solution x(k) of the system

satis�es jjx(k)jj � K�(k�k0)jjx(k0)jj;8k � k0:

Remark 3 For switched systems under the dwell (or average dwell) time switching, the Lyapunov function
values at switching instants are often considered to increase � times (� > 1) to reduce the conservatism

in system analysis and synthesis, which will lead to the normal input attenuation performance is hard to

compute or check, even in linear setting. Therefore, we adopt the following exponential H1 performance

criterion, which can be referred to [5] and [19] for more details, to evaluate the underlying system while

obtaining the expected exponential stability.

De�nition 3 Given scalars 
 > 0 and 0 < � < 1, system (1) is said to be robustly exponentially stable

with an exponential H1 performance 
 if it is robustly exponentially stable and under zero initial condition,P1
k=k0

(1� �)kyT (k)y(k) �
P1
k=k0


2uT (k)u(k) for all nonzero u(k) 2 l2[0;1).
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Remark 4 The concept exponential H1 performance used here means the noise attenuation performance

is di¤erent when the decay degree of the system is di¤erent. Note that the scalar � symbolizes the decreasing

rate of the Lyapunov-like functions within each subsystem. If � ! 0; the evaluated performance index will

approach the normal H1 performance for the whole time domain.

Here, we are interested in constructing a reduced-order switched system with the following form

x̂(k + 1) = Âi(�)x̂(k) + B̂i(�)u(k)

ŷ(k) = Ĉi(�)x̂(k) + D̂i(�)u(k) (3)

where x̂(k) 2 Rv is the state vector of the reduced-order system with v < n, and (Âi(�); B̂i(�); Ĉi(�); D̂i(�); i 2
I) are matrices with compatible dimensions to be determined, and belong to a convex polytope with the
same structure as described in (2), namely,

[Âi(�); B̂i(�); Ĉi(�); D̂i(�)] =

sX
m=1

�m[Âi;m; B̂i;m; Ĉi;m; D̂i;m] (4)

In addition, the reduced-order model with the above structure will be switched homogeneously by the

switching signal � in system (1). Then, augmenting the model of system (1) to include the states of system

(3), we can obtain the following error system

�(k + 1) = �Ai(�)�(k) + �Bi(�)u(k)

e(k) = �Ci(�)�(k) + �Di(�)u(k) (5)

where e(k) = y(k)� ŷ(k) and

�(k) =

"
x(k)

x̂(k)

#
; �Ai(�) =

"
Ai(�) 0

0 Âi(�)

#
; �Bi(�) =

"
Bi(�)

B̂i(�)

#
;

�Ci(�) =
h
Ci(�) �Ĉi(�)

i
; �Di(�) = Di(�)� D̂i(�)

Our objective in this paper is to design a reduced-order system model of form (3) and �nd admissi-

ble switching signals such that the resulting model error system (5) is robustly exponentially stable and

guarantees an exponential H1 performance index.

Remark 5 It is worth mentioning that if we assume [Âi;m; B̂i;m; Ĉi;m; D̂i;m] , [Âi;l; B̂i;l; Ĉi;l; D̂i;l] , ::: ,
[Âi;n; B̂i;n; Ĉi;n; D̂i;n] (where 1 � l;m; n � s, i.e. the number of vertices is decreased) or select [Âi;m; B̂i;m;
Ĉi;m; D̂i;m] , [Âi; B̂i; Ĉi; D̂i]; or further select [Âi; B̂i; Ĉi; D̂i] , [Â; B̂; Ĉ; D̂] in (4); then we will obtain the
corresponding reduced-order models as di¤erent special cases of our desired result.

Before ending this section, we present the following lemmas which will play an important role in our

further derivation.

Lemma 1 [20] Consider the discrete-time switched system xk+1 = f�(k)(xk); �(k) 2 I and let 0 < � <

1; � > 1 be given constants. Suppose that there exists C1 functions V�(k) : Rn ! R; �(k) 2 I, and two class
K1 functions �1 and �2 such that 8�(k) = i 2 I,

�1(jxj) � Vi(x) � �2(jxj) (6)

�Vi(x) � ��Vi(x) (7)
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and 8(�(kl) = i; �(kl � 1) = j) 2 I � I , i 6= j;

Vi(xkl) � �Vj(xkl) (8)

then the system is globally asymptotically stable for any switching signals with the average dwell time

�a � ��a = �
ln�

ln(1� �) : (9)

Remark 6 The proof of Lemma 1 can be obtained following the similar lines in section 3.2 of [10]. Note
that it can be seen from Lemma 1 that when we increase the value of �; the existence likelihood of the

multiple Lyapunov function for the system stability will be increased, which means the stability of system

can be ensured at the expense of increasing �: In other words, for a given �; the the system stability will be

directly dependent on �.

Lemma 2 [20] Consider the uncertain switched linear system (5) and let � > 0, 
 > 0 and � > 1 be given

constants. If there exist matrix functions Pi(�) > 0; 8i 2 I such that266664
�Pi(�) 0 Pi(�) �Ai(�) Pi(�) �Bi(�)

� �I �Ci(�) �Di(�)

� � �(1� �)Pi(�) 0

� � � �
2I

377775 < 0 (10)

Pi(�)� �Pj(�) � 0 (11)

then the model error system (5) is robustly exponentially stable and has an exponential H1 performance for

all admissible uncertainties satisfying (2) and any switching signals with the average dwell time satisfying

(9).

Remark 7 Lemmas 2 gives the exponential H1 performance criterion for the uncertain switched linear

system in discrete-time context. Its proof can be readily obtained by Lemma 1 and constructing a parameter

dependent multiple Lyapunov function. It is easily seen that the performance index 
 will depend on �;

the increasing degree of the Lyapunov-like functions at switching instants. In what follows, we will give the

�-dependent reduced model solution for the underlying systems.

3 Exponential H1 Model Reduction

The following Theorem presents su¢ cient conditions for the existence of an exponential H1 reduced-order

model in the form of (3).

Theorem 1 Consider the uncertain switched linear system (1) and let � > 0, 
 > 0 and � > 1 be given

constants. If there exist matrices �P1i;m > 0; �P3i;m > 0 and matrices �P2i;m; Ri;m; Si;m; Ti; �Ai;m; �Bi;m; �Ci;m;
�Di;m; 8i 2 I; 1 � m � s such that

�im;n + �
i
n;m < 0; (1 � m � n � s) (12)266664

�P1i;m � �RTi;m � �Ri;m �P2i;m � �Si;m � �ETi RTi;m ETj

� �P3i;m � �T Ti � �Ti STi;m Tj

� � ���1 �P1j;m ���1 �P2j;m
� � � ���1 �P3j;m

377775 � 0; i 6= j (13)
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where,

�im;n ,

26666666664

�i11;m �i12;m 0 RTi;mAi;n E �Ai;m RTi;mBi;n + E
�Bi;m

� �i22;m 0 STi;mAi;n
�Ai;m STi;mBi;n +

�Bi;m

� � I Ci;m � �Ci;m Di;m � �Di;m

� � � �(1� �) �P1i;m �(1� �) �P2i;m 0

� � � � �(1� �) �P3i;m 0

� � � � � �
2I

37777777775
�i11;m , �P1i;m �RTi;m �Ri;m; �i12;m , �P2i;m � Si;m � ETi;

�i22;m , �P3i;m � T Ti � Ti; E ,
h
I 0

iT
; I 2 Rv

then, there exist a reduced-order model system such that the corresponding model error system (5) is robustly

exponentially stable with an exponential H1 performance for all admissible uncertainties satisfying (2) and

any switching signals with the average dwell time satisfying (9). Moreover, if the LMIs (12)-(13) have a

feasible solution, then an admissible reduced-order model in the form (3) can be given by"
Âi;m B̂i;m

Ĉi;m D̂i;m

#
,
"
T�1i 0

0 I

#"
�Ai;m �Bi;m
�Ci;m �Di;m

#
(14)

Proof. By Lemma 2, system (5) is robustly exponentially stable with a prescribed exponential H1
noise-attenuation level bound 
 if the following inequalities hold266664

�Pi(�) 0 Pi(�) �Ai(�) Pi(�) �Bi(�)

� �I �Ci(�) �Di(�)

� � �(1� �)Pi(�) 0

� � � �
2I

377775 < 0 (15)

Pi(�)� �Pj(�) � 0 (16)

where, �Ai(�); �Bi(�); �Ci(�); �Di(�) are described in (5).

Then, consider an arbitrary matrix function Gi(�); 8i 2 I with compatible dimension, we have the fact

(Pi(�)�Gi(�))TP�1i (�)(Pi(�)�Gi(�) � 0

(Pj(�)�Gi(�))TP�1j (�)(Pj(�)�Gi(�) � 0

thus we have

Pi(�)�Gi(�)�GTi (�) � �GTi (�)P�1i (�)Gi(�)

Pj(�)�Gi(�)�GTi (�) � �GTi (�)P�1j (�)Gi(�)

therefore, if the following inequalities hold266664
Pi(�)�Gi(�)�GTi (�) 0 GTi (�)

�Ai(�) GTi (�)
�Bi(�)

� �I �Ci(�) �Di(�)

� � �(1� �)Pi(�) 0

� � � �
2I

377775 < 0 (17)

Pi(�)� �
h
Gi(�) +G

T
i (�)�GTi (�)P�1j (�)Gi(�)

i
� 0 (18)
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then (18) implies (16). Also, from (17), we can obtain266664
�GTi (�)P�1i (�)Gi(�) 0 GTi (�)

�Ai(�) GTi (�)
�Bi(�)

� �I �Ci(�) �Di(�)

� � �(1� �)Pi(�) 0

� � � �
2I

377775 < 0
Performing a congruence transformation to above formula via diagfG�1i (�)Pi(�); I; I; Ig yields (15) (note
that Gi(�) will be invertible if it satis�es (17)). In addition, by Schur complement, (18) is equivalent to"

Pj(�)� �Gi(�)� �GTi (�) GTi (�)

� ���1Pj(�)

#
� 0 (19)

Now, let us show that conditions (12) and (13) ensure respectively that (17) and (19) are satis�ed. Firstly,

if (13) holds, we have266664
�P1i(�)� �RTi (�)� �Ri(�) �P2i(�)� �Si(�)� �ETi RTi (�) ETj

� �P3i(�)� �T Ti � �Ti STi (�) Tj

� � ���1 �P1j(�) ���1 �P2j(�)
� � � ���1 �P3j(�)

377775 � 0 (20)

Also, if (12) hold, we have

�i(�) =
Xs

m=1

Xs

n=1
�m�n�

i
m;n =

Xs

m=1
�2m�

i
m;m +

Xs�1

m=1

Xs

n=m+1
�m�n(�

i
m;n + �

i
n;m) < 0

i.e. 26666666664

�i11(�) �i12(�) 0 RTi (�)Ai(�) E �Ai(�) RTi (�)Bi(�) + E
�Bi(�)

� �i22(�) 0 STi (�)Ai(�)
�Ai(�) STi (�)Bi(�) +

�Bi(�)

� � I Ci(�) � �Ci(�) Di(�)� �Di(�)

� � � �(1� �) �P1i(�) �(1� �) �P2i(�) 0

� � � � �(1� �) �P3i(�) 0

� � � � � �
2I

37777777775
< 0 (21)

where,

�i11(�) , �Pi(�)�RTi (�)�Ri(�); �i12(�) , �P2i(�)� Si(�)� ETi; �i22(�) , �P3i(�)� T Ti � Ti

Note that from (21), we also know that

�P3i(�)� T Ti � Ti < 0

thus we can infer that T Ti + Ti > 0; which implies Ti is nonsingular. Then, one can always �nd nonsingular

matrices G3i and G4 satisfying Ti = GT4G
�1
3i G4;8i 2 I: Now, introduce the following matrix variables related

to G3i and G4:

Vi ,
"
I 0

0 G�13i G4

#
; Gi(�) ,

"
Ri(�) Si(�)G

�1
4 G3i

G4E
T G3i

#
Then, by further performing a congruence transformation to (21) and (20) via diagfV �1i ; I; V �1i ; Ig and
diagfV �1i ; V �1j g, respectively, and setting matrix functions

Pi(�) , V �Ti
�Pi(�)V

�1
i = V �Ti

"
�P1i(�) �P2i(�)

� �P3i(�)

#
V �1i"

Âi(�) B̂i(�)

Ĉi(�) D̂i(�)

#
,

"
G�T4 0

� I

#"
�Ai(�) �Bi(�)
�Ci(�) �Di(�)

#"
G�14 G3i 0

� I

#
(22)
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we can obtain that (17) and (19).

Meanwhile, from (22) we know an admissible reduced-order model for the underlying system can be given

by

Âi;m = G
�T
4
�Ai;mG

�1
4 G3i; B̂i;m = G

�T
4
�Bi;m; Ĉi;m = �Ci;mG

�1
4 G3i; D̂i;m =

�Di;m (23)

Now, denote the reduced-order model transfer function from u(k) to e(k) by

T (z) = CFi(zI �AFi)�1BFi +DFi

By substituting the matrices (Âi;m; B̂i;m; Ĉi;m; D̂i;m) in (23) and considering Ti = GT4G
�1
3i G4, we have

T (z) = Ĉi;mG
�1
4 G3i(zI �G

�T
4 Âi;mG

�1
4 G3i)

�1G�T4 B̂i;m + D̂i;m

= Ĉi;m(zI � T�1i Âi;m)
�1T�1i B̂i;m + D̂i;m

which implies that an admissible reduced-order model can be given by (14), this completes the proof. �

Remark 8 Note that the matrices of the desired reduced-order model can be solved from the LMIs in (12)-

(14), as well as the switching signals can be found from (9), (12)-(13). Then, the original system and the

obtained reduced- order model will be switched by the switching signals satisfying (9).

Remark 9 From (12)-(14), it can be obviously seen that the reduced model matrices will be indirectly depen-
dent on �; which resembles, to some extent, the delay-dependent issues in time-delay system to determine

delay-dependent controller or �lter, etc. Therefore, a new concept �-dependent approach for the underlying
system is introduced here, and the results developed with this concept will present less conservatism compared

to the existing results that one can refer to as "�-independent", such as those based on the GLF or the
SLF approaches (the switching signal is arbitrary therein).

Remark 10 In addition, conditions (12)-(13) are formulated in terms of a set of LMIs, which are not only
over the matrix variables but also the scalar 
2: Therefore, the scalar 
 can be optimized by a �-dependent
convex optimization problem for a �xed system decay degree as follows.

Problem 1:

Min � subject to (12)-(13);8i 2 I, 1 � m � s with � = 
2

over Ri;m; Si;m; Ti; �Ai;m; �Bi;m; �Ci;m; �Di;m; �P1i;m; �P2i;m; �P3i;m:

The minimum exponential noise attenuation level bound is then obtained by setting 
 =
p
��;where ��

is the optimal value of �, and the corresponding reduced system matrices are given by (14).
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4 Numerical Example

Consider the following uncertain discrete-time switched linear systems consisting of two uncertain subsys-

tems, where there are two vertices in subsystem 1:

A11 =

266664
0:195 0:33 �0:195 0:120

0:075 �0:045 0:285 �0:090
�0:105 �0:075 �0:06 �0:180
�0:255 0:315 0:045 0:420

377775 ; B11 =
266664

0:285

�0:270
0:240

�0:120

377775 ;
C11 =

h
1:800 0:750 0:195 0:091

i
; D11 = 0:120

A12 =

266664
�0:195 0:33 �0:195 0:120

0:075 �0:045 0:285 �0:090
�0:105 �0:075 �0:06 �0:180
�0:255 0:315 0:045 �0:420

377775 ; B12 =
266664

0:285

0:270

�0:240
0:120

377775 ;
C12 =

h
1:800 �0:750 0:195 �0:091

i
; D12 = 0:135

and the two vertices in the subsystem 2:

A21 =

266664
0:165 0:330 �0:195 0:120

0:075 �0:045 0:225 �0:090
�0:105 �0:045 �0:06 �0:180
�0:255 0:315 0:045 0:300

377775 ; B21 =
266664

0:345

�0:195
0:240

�0:060

377775 ;
C21 =

h
1:800 0:750 0:195 �0:061

i
; D21 = �0:105

A22 =

266664
�0:165 0:330 �0:195 0:120

0:075 �0:045 0:225 �0:090
�0:105 �0:045 �0:06 �0:180
�0:255 0:315 0:045 �0:300

377775 ; B22 =
266664

0:345

0:195

�0:240
0:060

377775 ;
C22 =

h
1:800 �0:750 0:195 0:061

i
; D22 = �0:135

Our purpose is to �nd a reduced-order model in the form of (5) and the admissible switching signals for

the above uncertain switched system such that the resulted model error system is robustly exponentially

stable with a �-dependent exponential H1 performance, for a given decay degree �: By solving Problem 1,

we can obtain the di¤erent optimal 
� for di¤erent � as shown in Table 1.

� 1:01 1:05 1:10 1:15 1:20

��a 9:94 48:76 95:26 139:69 182:23


� 0:1961 0:1604 0:1416 0:1305 0:1228

a) � = 0:001

� 1:01 1:05 1:10 1:15 1:20

��a 1:98 9:73 19:01 27:88 36:37


� 0:1974 0:1614 0:1425 0:1313 0:1235

b) � = 0:005
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� 1:01 1:05 1:10 1:15 1:20

��a 0:1940 0:9512 1:8581 2:7248 3:5545


� 0:2126 0:1737 0:1533 0:1413 0:1330

c) � = 0:05

� 1:01 1:05 1:10 1:15 1:20

��a 0:0144 0:0704 0:1375 0:2016 0:2630


� 0:5786 0:4836 0:4288 0:3950 0:3727

d) � = 0:5

Table 1 �-dependent optimal 
� for given di¤erent �

Obviously, it can be seen from Table 1 that the obtained exponential H1 performance 
� of the error

system is dependent on � (it is straightforward from (9) that the average dwell time also depends on �).

Note that although the larger � corresponds to the smaller obtained 
�, it will be at the expense of longer

average dwell time in the system yet.

In addition, by giving � = 0:05; the corresponding �-dependent reduced-order system can also be solved

by Problem 1, e.g. for � = 1:2; the 2nd-order reduced system model for the underlying system are obtained

with the following matrices:"
Â11 B̂11

Ĉ11 D̂11

#
=

264 0:1148 0:5127 �0:2877
0:0998 �0:2377 0:2622

�1:8747 �0:6980 0:1091

375 ; " Â12 B̂12

Ĉ12 D̂12

#
=

264 �0:0919 0:4599 �0:2816
�0:0174 �0:2403 �0:2659
�1:7697 0:8644 0:1427

375
"
Â21 B̂21

Ĉ21 D̂21

#
=

264 0:1227 0:4567 �0:3450
0:1225 �0:1842 0:1998

�1:7770 �0:5105 �0:1038

375 ; " Â22 B̂22

Ĉ22 D̂22

#
=

264 �0:0715 0:4174 �0:3495
�0:0138 �0:1743 �0:1996
�1:8012 0:8707 �0:1262

375
Then, consider the input signal u(k) = 0:8 exp(�0:4k); Figure 1 and 3 show the output trajectories of the

original system and 2nd-order reduced model by randomly giving di¤erent uncertain parameters � in (2),

and Figure 2 and 4 present the output errors between original system and the reduced-order system. It can

be observed from simulation curves that the obtained reduced model approximate the original system very

well against varying parameter uncertainties under the corresponding average dwell time switching signal

(�a = 4 for both �1 and �2).

5 Conclusions

The problem of exponential H1 model reduction for a class of discrete-time uncertain switched linear system

with average dwell time switching is investigated in this paper. Firstly, the stability result for general

discrete-time switched systems is presented and a �-dependent approach is introduced for the considered

systems to the model reduction solution. Then, a reduced-order model is constructed and the corresponding

LMI-based existence conditions are derived. The admissible switching signals and reduced-order model are

consequently obtained from such conditions for a given decay degree such that the resulting model error

system is robustly exponentially stable and has an exponential H1 performance. A numerical example is

presented to demonstrate the applicability and e¤ectiveness of the developed theoretical results.
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Figure 1 Output trajectories of original system and reduced model under switching signal �1
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Figure 2 Output errors between original system and reduced model under switching signal �1
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Figure 3 Output trajectories of original system and reduced model under switching signal �2
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Figure 4 Output errors between original system and reduced model under switching signal �2
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