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Abstract

Making a return-to-sport (RTS) decision is often challenging, as the rehabilitation process is complex,
and the decision affects the health and performance of the athlete. Clinicians have been harnessing the
advantages of sports technology to capture and leverage data in the hope of securing competitive
advantages in professional sports. With the extensive application of technologies and wearable sensors,
increasingly more data are collected continuously during training and rehabilitation sessions. This has
spurred a drive for clinicians to process, aggregate and interpret different metrics. However, humans
have a limited capacity for information processing and are prone to biases and influences that may affect
decision making. Given the data collected in sports settings are increasingly complex and the
interactions are of nonlinear nature, clinicians seek to improve their decision quality in RTS by
combining their clinical expertise with scientific data. This thesis addresses this gap, using a complex
systems approach to underpin the study methodology. The first study discusses how to evaluate a RTS
decision from a decision analysis perspective and proposes a framework to improve decision-making
quality. Then, the second study discusses the characteristics of complex systems and provides examples
of this approach in decision making. Two case studies in football (soccer) are used to investigate how
advanced analytics may assist clinicians in decision making. Specifically, this thesis addresses the
practicability, feasibility and interpretability of two analytical techniques: change point and association
rule methods. Collectively, the findings from these studies may assist clinicians in improving decision

making practically.
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1 Chapter One: Introduction, Aims and Objectives

Chapter overview

This chapter offers an introduction to return to sport (Section 1.1), outlines the background and

objectives of the thesis (Section 1.2) and the thesis structure (Section 1.3).



1.1 Thesis background and objectives

This thesis aims to provide sports clinicians with theoretical frameworks and analytical tools that may
enhance the quality of decision making. The data are collected from the applied environment of a
professional Australian A-League football club to understand clinicians' challenges and improve the

practical utility of the research outcome.

In professional sports, RTS decisions can be challenging as the outcome pertains to the athlete’s
well-being and performance. The RTS process can vary among clinicians and sports organisations due
to various factors such as the availability of resources (e.g., time, equipment, human resources),
personal preference, and operational style. Research has indicated that clinicians take into account a
range of biopsychosocial and contextual factors, including biological healing, playing position, and
social support, in making RTS decisions (Ardern, Glasgow, et al., 2016; Shrier, 2015). Based on the
information gathered, clinicians can weigh the risk(s) and benefit(s) to make the best choice.
Nevertheless, not all RTS decisions are straightforward. For example, if RTS is delayed for a lesser
chance of re-injury, reduced players’ availability may negatively impact team performance (Eirale et
al., 2013; Hagglund et al., 2013). On the contrary, premature RTS has been suggested as a possible risk
factor for re-injury in football codes (Héagglund et al., 2016; Stares et al., 2018; Stares et al., 2019).
Thus, substantial pressure rests on the shoulders of decision makers to reach a decision that balances

the best interest of the athlete’s health and the team’s performance.

Furthermore, with advancements in sports technology, increasingly large quantities of data are
being collected routinely in training, competition and rehabilitation. For instance, off the field, wellness
scores and screening tests, such as countermovement jump, adductor isometric strength, hamstring
isometric and hamstring eccentric strength tests, are routinely undertaken in field team sports (Gallo et

al., 2016; Malone et al., 2017; Thorpe et al., 2016). On the field, voluminous data on physical output



(e.g., running distance), physiological measures and skilled actions (e.g., passing frequency and

accuracy) are also available readily (Browne et al., 2022; Mcintosh et al., 2018; Teune et al., 2021).

Similarly, modern technology facilitates the capture of rehabilitation and training data within
daily operations. However, the real challenge is to comprehend, extract, process, and interpret pertinent
data that underpin their clinical judgments. Specifically, clinicians have to identify the clinical tests that
can track the athlete’s rehabilitation process, collect the data that can inform clinical decisions, and
select the methodologies that can analyse data effectively. Simultaneously, clinicians are susceptible to
decision-making errors and bias (Croskerry, 2009a). Coping with an abundance of data, clinicians might
resort to procrastination and a perpetual quest for more refined information, often known as decision
paralysis (Sarma, 1994). As such, there is value in using frameworks to guide clinicians in making

good decisions consistently.

Additionally, a theoretical framework may provide a foundation and rationale for appropriately
and systematically structuring the decision-making process. One of the appropriate theoretical
frameworks is the complex systems approach (Bittencourt et al., 2016). Complex systems are open
systems consisting of many factors that can interact among themselves and the environment
(Bertalanffy, 1969; Bittencourt et al., 2016; Philippe & Mansi, 1998). As a result of the interactions
between factors, new behaviours and patterns constantly emerge and create a dynamic system that may
be difficult for people to predict. These characteristics have been recognised to align well with most
sporting environments, including sports performance, game analysis and sports injury (Bittencourt et
al., 2016; Dalton-Barron et al., 2020; Hulme & Finch, 2015). Specifically, the complex systems
approach suggests that injuries result from the interaction between the individual and the environment
(Hulme et al., 2019). Similarly, sports rehabilitation is also complex, and multiple factors can influence
the outcome concurrently. Scope exists to show how clinicians can use the complex systems approach

to represent the rehabilitation environment (Bittencourt et al., 2016). Specifically, adopting the complex



systems approach would require clinicians to move from analysing isolated risk factors to pattern

recognition (Bittencourt et al., 2016).

Given the sporting environment's complexity and high data volume, clinicians may require
advanced analytical tools, such as machine learning, to support the decision-making process. These
analytical techniques can handle large complex datasets and discover meaningful relationships between
interacting factors that are otherwise not readily observable to the human practitioner (Ruddy et al.,
2018; Teune et al., 2022b). Consequently, these analytical techniques may be viable tools to support

clinical decisions.

1.2 Objectives

This thesis aims to investigate how to improve RTS decisions and adopt supporting analytical tools.

Four studies are conducted to achieve these objectives, as outlined in Figure 1.1.

Decizion making
framework
Study 1
{Chapter 3)
Complex systems approach Data analysis and interpretation
Study 2 _— Study 3 and 4
(Chapter 4) {Chapter 5 and &)

Improve decision making in RTS

Figure 1.1 The sequencer of research and how each study relates to complex systems and decision-

making framework, with the overarching goal of improving RTS decisions.



1.3 Thesis outline

Following this introductory chapter which introduces the background and objectives of the thesis, there
are two sections that can be read independently. Following the two sections is a grand discussion of the
concepts and implications arising from the preceding chapters, and a conclusion summarising this

thesis's key points.

Two main parts for the studies:
Part 1. Frameworks
Synthesis of decision-making and complex systems frameworks to aid decision quality.
Part 2. Practical applications

Methodological studies of analytical techniques that may complement the theoretical

framework.
Part 1 — Frameworks

This part includes Chapters Three and Four, which consist of two published works that provide a
detailed evaluation of decision-making and complex systems frameworks that may improve decision
quality. Chapter Three synthesises available literature in the RTS decision-making framework to
provide an overview of the topic and propose a framework for improving decision quality. Chapter Four
discusses the hallmark features of complex systems and their relevance to RTS decision making and

daily practice.
Part 2 — Practical application

Part 2 builds on Part 1 and adopts tools that may support complex systems thinking in practice. This
part includes Chapters Five and Six, which consist of two original studies that adopt two different

analytical methods. Adopting complex systems approach in decision making is challenging because,



practically, it may be near impossible for clinicians to integrate multiple data types and consolidate
them within a timely manner due to their limited short-term memory and cognitive processing power.
Part 2 complements the frameworks in Part 1 by adopting two analytical methods that can help
clinicians 1) integrate multiple data types, 2) consolidate a high volume of data, and 3) accommodate

the characteristics of the complex systems, such as non-linearity and emergence.

Diverse analysing methods exist for examining issues using a complex systems approach, with
many of these methods demanding proficiency in statistics and data science. This thesis provides an
overview of the terminology used in complex systems, with by a brief introduction to the relevant
analytical methodologies. This information can assist clinicians in effectively communicating with
statisticians and data science experts and fostering collaborations in future research projects. While the
in-depth details of the analytical methods lie beyond the scope of this thesis, the thesis directs clinicians

to additional resources that may aid them in delving extensively into the methodology.

Overview of the Chapters:

e Chapter Two reviews the relevant literature in RTS, decision making and analytical techniques.
e Chapter Three synthesises available literature in the RTS decision-making framework to
provide an overview of the topic and propose a framework for improving decision quality.

o Chapter Four explains the hallmark features of complex systems and their relevance to RTS

decision making and daily practice.

e Chapter Five investigates how continuous time-series analysis can inform meaningful change
points in one or multiple variables in rehabilitation. A change point method is used in a case of
football injury to exemplify the approach.

e Chapter Six uses the association rule approach to assist clinicians in integrating multiple data
types and consolidating complex data into interpretable information that can be directly acted
upon for training and return to sports decisions. The association rule method is applied to a case

of football injury to exemplify the approach.



o Chapter Seven summarises the preceding chapters and discusses the applications and

implications for clinicians. It also outlines directions for future work in the area.



2 Chapter two: Review of literature

Chapter overview

Chapter Two summarises the literature related to the research contained in this thesis. This chapter
contains sections outlining literature from RTS (Section 2.1), decision making in RTS (Section 2.2) and
analytical techniques (Section 2.3). This chapter does not include materials in the first two review
studies in Chapters Three and Four. These include decision-making theories, methodological concerns
in information gathering (Chapter Three) and complex systems theory and its characteristics (Chapter

Four).



2.1 Return-to-sport in football

2.1.1 Impact of injury

Injury is common in football and is the primary factor affecting a player’s availability for team selection
and training (Parry & Drust, 2006). In a large-scale injury surveillance study, the injury incidence for a
player is 12 to 23.8 per 1000 game-hours and 3.4 per 1000 training-hours (Ekstrand et al., 2021). The
injury burden is 60.5 days /1000 hours during training and 504 days/1000 hours during match (Ekstrand
et al., 2021). Injuries lead to players' unavailability, which is often associated with poor team
performance (Chamari & Bahr, 2016; Eirale et al., 2013; Hagglund et al., 2013; Lu et al., 2021). Besides
the negative impact on sports performance, injuries also have financial implications for sports
organisations directly (e.g., salaries paid to injured players) and indirectly (e.g., team’s
underachievement due to injured players) (Eliakim et al., 2020; Gouttebarge, Hughes Schwab, et al.,
2016; Hickey et al., 2014; Lu et al., 2021; Mather et al., 2013). For example, an average English Premier
League team lost approximately £45 million (AUD$76 million) per season due to injury (Eliakim et al.,
2020) [team underachievement due to injured players £36 million (AUD$ 61 million); direct calculation
of salaries paid to players £9 million (AUD$ 15 million)]. In the Australian professional football A-
League, the player-salary cost of injury per team per season averages AUD$0.25 million (Lu et al.,

2021).

To minimise the impact of injury to the athlete and the team, sports organisations may
investigate injury prevention program and return-to-sport (RTS) protocol. While extensive research has
been done on football injury prevention (Crossley et al., 2020; Thorborg et al., 2017), there is relatively
less research on improving RTS decision quality. However, RTS decision is an important topic. Often,
the first question asked by an injured athlete is: ‘When can | play again?’. While the question may sound
simple, the answer to this is rarely straightforward. As with most medical decisions, there are many
factors that a clinician needs to consider and — as a result - there is scope for applied research to

investigate how to improve RTS decision quality.



2.1.2 Theoretical frameworks in return to sport

RTS can be viewed as a continuum that consists of recovery and rehabilitation (Ardern, Glasgow,
et al., 2016), with an objective to bring the athlete back to their pre-injury performance level in the
shortest time possible and minimise the risk of re-injury (Zambaldi et al., 2017). In general, it

consists of three critical stages, including:

1) Return to participation: The athlete may be participating in rehabilitation, training, or in
sport, but at a level lower than the RTS goal.

2) Return to sport: The athlete has returned to the sport, but not performing at the desired
performance level.

3) Return to performance: The athlete has returned to the sport and performing at or above
pre-injury level.

With the development of research in RTS, more details have been added to the above

framework to address the specific need of the sports. For example, in football, the following phases

have been included to reflect the critical milestones in football rehabilitation (Dunlop et al., 2019):

1) Return to high-speed running (RTRun): The player is being cleared to run on-field and
progress to high-speed running.
2) Return to train (RTTrain): The player is allowed to return to on-field unrestricted training.
3) Return to play (RTPlay): The player is cleared to return to competitive match-play with the
team, regardless selected or not.
4) Return to performance (RTPerf): The player returned to pre-injury levels of performance or
higher.
The above four stages have highlighted the key stages for a football player to return to
performance. Between the stages RT Train and RTPerf, a four-stage functional recovery process was
introduced (Buckthorpe et al., 2019). The four-stage functional recovery process was proposed to

highlight the transition from rehabilitation to performance. The functional recovery process starts
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with on-field rehabilitation (OFR), progressing to return to training (RTT), return to competition
(RTC) and lastly, return to performance (RTPerf). The above theoretical RTS frameworks have been

summarised and shown in Figure 2.1

Return to Return to
Rehabilitation high speed participation/ e LU
t o sport performance
running training

Rehabilitation

phase On-field Return to

rehabilitation - Return to
fraining Return to

competition
performance

Figure 2.1 Summary of RTS frameworks

The above continuum broadly defines sports rehabilitation stages, which move from high
control to high chaos (Taberner et al., 2019). Based on the Figure 2.1, clinicians can structure
rehabilitation plans accordingly and use the framework to facilitate communication and manage the
expectations between stakeholders, such as the technical coach, strength coach and athletes. It is
important to note that each phase overlaps with the other because RTS is a dynamic process that
requires careful balancing of the benefits and risks to progress to the next phase (McCall et al.,
2017). For this thesis's clarity, RTS decisions refer to 1) granting medical clearance to players for
competition and 2) deciding when a player may progress or regress along the RTS continuum. (Ardern,
Glasgow, et al., 2016; Buckthorpe et al., 2019; Gordon O Matheson et al., 2011).

The first formal RTS framework, a 3-step decision-based model, was proposed by Creighton
et al. in 2010 (Creighton et al., 2010). The framework was designed to guide clinicians on when to
clear an athlete for full participation in sport without restriction. In 2015, minor revisions were made
to the 3-step framework, and it was renamed the Strategic Assessment of Risk and Risk Tolerance
(StARRT) (Shrier, 2015). The StARRT has helped make the decision-making process transparent

by guiding the key variables that the clinician could consider (Shrier, 2015). However, the industry
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still lacks a decision framework that can guide clinicians on the decision-making process. A decision
framework is worthwhile in competitive sports because the sporting environment is often chaotic,
fast-paced, dynamic and stressful. In this environment, decision makers may be more susceptible to
emotional interference, impulses and other biases (Croskerry, 2003; Lazarus, 2000). An improved
understanding of decision theories may help clinicians to 1) conceptualise the decision-making process,
2) investigate the workflow further, and 3) eventually establish a methodology to make a better RTS

decision.

2.2 Decision making in RTS

2.2.1 Complexity and volume in data

In the context of RTS, where time is usually not a limiting factor, clinicians may gather more
information regarding athletes' physical and mental conditions to make decisions. Technological
advancement has made gathering clinical and physical performance data easier than before. For
instance, more types of data collection are now made possible with the availability of different sensors
and equipment at affordable costs (e.g., wearables, heart rate monitors, shoe insoles and motion
capturing systems) (Sikka et al., 2019). Accordingly, clinicians may gather more information to reduce
uncertainty, making them more confident in identifying a likely successful decision (Drews et al., 2015;
Gould, 1974; Raiffa, 1968). Nevertheless, collecting more data from multiple sources may pose new
challenges in handling, cleaning and interpreting the data. Furthermore, in professional sports, it is
indisputable that the increasing amount of data will - or has already - exceeded human processing

capacity, thus challenging clinicians’ ability to make an informed decision.

Accordingly, the amount of information humans can process is limited by the working memory
storage capacity (Saaty & Ozdemir, 2003; Simon, 1957). Working memory capacity is vital for decision
making because a human can only complete cognitive tasks when the brain can retain information

(Cowan, 2010). Research has suggested that the human’s working memory can hold approximately four
12



(Cowan, 2001) to seven pieces of information (Saaty & Ozdemir, 2003). Providing more information
than the upper limit may exhaust the decision maker’s cognitive information processing capacity,
potentially leading to information overload and compromised decision making (Cowan, 2001). Further,
the additional information obtained may no longer improve the decision maker's ability to identify a
likely successful decision (Gléckner et al., 2012). A possible reason is that the inconsistency between
the information produced by additional items is too small for a human mind to identify, which leads to
confusion (Gigerenzer, 1999). On the contrary, when fewer items are available, the inconsistencies
between the information brought by additional items are significant enough for a human mind to identify
which item(s) cause the most remarkable inconsistency (Gigerenzer, 1999). Further, different search
strategies exist as a result of age, for example, younger adults request more information than older adults

in medical decision tasks (Meyer et al., 1995).

Currently, there are no guidelines regarding the optimal amount of information that should be
included when making a RTS decision. The complexity of a RTS decision can be illustrated by a sports-
related concussion (SRC) case. In SRC, an athlete’s recovery rate varies based on the injury's severity
(McCrea et al.,, 2003) and the athlete’s pre-existing psychological factors (Trinh et al., 2020).
Consequently, clinicians need to consider the athlete’s recovery rate individually. The clinician may
also consider other medical, social and legal factors (Maroon et al., 2000) (See Table 2.1 RTS factors
for sports-related concussion injury). Collectively, in a complex SRC case, a clinician may need to
consider more than seven pieces of information to assess the RTS readiness of an athlete (Dayton et al.,
2020; Dessy et al., 2017; McCrory et al., 2017). It may be challenging for clinicians to analyse and
process all the available information within a limited timeframe. Given the complexity of RTS
decisions, there is scope to investigate a decision-making framework and methodology that can help

clinicians to streamline the RTS workflow process.
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Table 2.1 RTS factors for sports-related concussion injury

RTS factors for sports-related concussion injury

Clinical assessment

1 The Balance Error Scoring System balance test (McCrory et al., 2017)

2 Vestibular (Alsalaheen et al., 2010) / vision assessment (Akhand et al., 2019)

3 Rivermead Post-Concussive Symptom Questionnaire (Eyres et al., 2005)

4 Physical examination of cervical spine (Cheever et al., 2016)

5 Standard Concussion Assessment Tool 5 (SCAT 5) (Echemendia et al., 2017)

Diagnostic testing

6 Imaging (Herring et al., 2011)

7 Neuropsychological Testing (Herring et al., 2011; McCrory et al., 2017)

8 Blood biomarkers (McCrory et al., 2017)

Others

9 Social and legal factors

22,2 Decision-making theories

Theories are important for clinicians to link concepts and understand phenomena. Clinicians may
harness decision-making theories to develop relevant conceptual frameworks and methodologies to
enhance the RTS workflow process. Two fundamental approaches to reasoning, intuitive and analytical,
have been established in the literature, which is now widely recognised as the dual process theory (DPT)
(Croskerry, 2009c; Evans, 2008; Sloman, 1996; Stanovich, 2004). The DPT encompasses both intuitive
and analytical processes, referred to as System 1 and System 2, respectively. System 1 involves
heuristic, intuitive decisions, while System 2 involves systematic, analytical decision making (Table

2.2).
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Table 2.2 Comparison of System 1 and System 2 approaches in decision making. W indicates the

feature has a lower prevalence than the other system, while

indicates a higher prevalence.

Characteristics

System 1 (intuitive)

System 2 (analytic)

Intuitive Analytical
Cognitive style

Heuristic Normative
Operation Associative Deductive
Processing Parallel Serial
Conscious control \”
Automaticity \/
Reliability \”
Error Normative distribution Few but significant
Effort \”
Emotional valence \7
Detail on judgement \”
Reliability WV Variable Consistent
Importance of context \”

The subsequent subsections cover details of the DPT. Other schools of thought are also covered

in this thesis, including cognitive continuum (Section 2.3), normative models and descriptive models

(Bell et al., 1988) (Chapter 4). Normative models have theoretical value and concerns about how to

make the best possible decision when a person is fully rational and informed (Bell et al., 1988). In

contrast, descriptive models are psychological theories that explain how people make judgements and

decisions (Baron, 2012).
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2.2.3 System 1 intuitive approach

In the DPT, System 1 decision making is characterised by an intuitive approach based on a rapid
selection of options without systematic evaluation (Doubravsky & Dohnal, 2015; Gigerenzer &
Gaissmaier, 2011). This approach utilises the decision maker’s prior experience and intuition to
recognise patterns in the information and make quick judgments. Heuristics, or cognitive shortcuts, are

often employed in this type of decision making (Tversky & Kahneman, 1974).

Heuristics are viewed as the human mind’s ‘adaptive toolbox’ that allows a person to associate
new information with existing patterns or thoughts (Gigerenzer & Gaissmaier, 2011; Regehr & Norman,
1996; Schmidt et al., 1990). Decision makers may use a range of heuristics (Tversky & Kahneman,
1974), depending on the context and the individual’s social and learning process (Rieskamp & Otto,
2006). The use of heuristics has been studied in diverse domains, such as psychology (Gigerenzer,
1999), law (Gigerenzer & Engel, 2006), sports (Pachur & Biele, 2007; Raab, 2012), medicine
(Marewski & Gigerenzer, 2012; Wegwarth et al., 2009), finance (Ortmann et al., 2008), and political
science (Gaissmaier & Marewski, 2011). In medicine, using heuristics can help clinicians make
accurate, transparent and quick decisions (Croskerry, 2002; Marewski and Gigerenzer, 2012), yet only

limited research is available in the field of RTS (Muir, 2022).

Although heuristics are a shortcut to an automatic brain, this does not imply that heuristics are
inferior to other decision-making strategies (Gigerenzer, 1999; Hoffrage & Reimer, 2004; Raab &
Gigerenzer, 2005, 2015). In certain circumstances, a simple decision strategy with less information
input may outperform deliberate reasoning via detailed analyses (Glockner et al., 2012; Klein, 2003;
Raab & Johnson, 2007; Wilson & Schooler, 1991). However, heuristics may also result in stereotypes,
false associations, and a disregard for causality (Croskerry et al., 2013a; Tversky & Kahneman, 1974).
As heuristics are adaptive in nature, they are neither good nor bad per se if applied appropriately in
situations where they have been adopted. The following are several examples of heuristics and their

relevance to RTS.
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Availability

The availability heuristic is the mental shortcut that relies on the most readily available data that comes
to the person’s mind when evaluating a decision, topic or event. This is because people have a tendency
to place greater weight on information that can be easily remembered and quickly retrieved (Tversky
& Kahneman, 1973). For instance, an athlete with a syndesmosis injury may estimate their recovery
time based on a teammate’s recent experience with the same injury. However, the accuracy of this
heuristic can be influenced by the recentness and vividness of memories (Hunink et al., 2014a). It may
lead to availability bias if the decision maker disregards data that does not support the belief.
Accordingly, the availability heuristic may negatively impact the diagnostics accuracy in medical
residents, but the residents can improve their judgement by reflective reasoning (Mamede et al., 2010;

Saposnik et al., 2016).

Representative

The representative heuristic refers to when decision makers categorise an object or incident based on
similarity with the existing one in their minds (Tversky & Kahneman, 1974). The representative
heuristic has been found to influence decision-making in triage station nurses (Brannon & Carson,
2003). However, the representative heuristic has not been studied in sports medicine and rehabilitation.
Clinicians may possibly use a representative heuristic to determine an athlete's injury risk. For instance,
if an athlete displays a valgus knee while landing and scores low on movement screening tests, the
clinician may associate these factors with the likelihood of ACL injury due to their prior knowledge.
However, recent research suggests that poor movement quality is only associated with but not

necessarily predictive of injury (Bahr, 2016; Hughes et al., 2020).

Anchoring-adjustment
Anchoring-adjustment is when decision makers are “anchored” on the initial values and later update
their perception with better information (Hunink et al., 2014a). For example, internal medicine residents

use anchoring-adjustment when they estimate the probability of a disease by using a high or low anchor
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for the target conditioning (Phang et al., 2015). In the context of RTS, a clinician’s decision on medical
clearance may be anchored on existing knowledge of the athlete, familiarity with the injury and the

initial diagnosis and plan.

Take-the-best

Take-the-best refers to a situation where decision makers search through the alternatives in order of
validity and base the choice on the “best” option (Gigerenzer & Gaissmaier, 2011). In the context of
RTS, a clinician may evaluate an athlete’s fitness for return to play by considering the best available

indicators such as running speed, strength, and mental preparedness.

Elimination by aspects

Elimination by aspects is when decision makers reduce the number of alternatives by eliminating those
that do not meet the aspiration level of a specific attribute (Tversky, 1972). For example, when a
clinician prescribes exercise for an athlete with a tibia stress fracture, the clinician will first compare a

selection of exercises on the lower limb and eliminate the weight-bearing ones.

Fast and frugal trees

A fast-and-frugal tree is similar to a decision tree, where decision makers classify and decide quickly
with a few attributes (Gigerenzer & Gaissmaier, 2011). There has been a range of applications in
different fields. For example, physicians to determine if a patient with severe chest pain has a heart
attack or not (Green & Mehr, 1997), and London magistrates to make bail decisions in court (Gigerenzer
& Engel, 2006). In sports medicine, clinicians can use the Ottawa ankle rules to decide whether an
injured ankle requires X-ray to rule out a fracture (Stiell et al., 1994). Ottawa ankle rules have
successfully been implemented in applied settings and reduced unnecessary radiographs by 30-40%
(Bachmann et al., 2003). In the context of RTS, clinicians may use a fast-and-frugal tree to decide
whether an athlete may walk without crutches after an anterior cruciate ligament (ACL) reconstruction

surgery (Figure 2.2).
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Figure 2.2 Fast and frugal tree to decide if the athlete can walk without crutches after ACL injury.

2.2.4 System 2 analytical approach

Contrary to System 1, System 2 is a deliberate, conscious and controlled process characterised by
rational thinking (Bate et al., 2012). System 2, also known as explicit cognition, involves logical
judgement and mental search for additional information (Croskerry, 2009b). System 2 may be engaged
when clinicians need to analyse information to support clinical decisions. For example, when a clinician
diagnoses a sports injury with atypical signs and symptoms, System 2 may be required. System 2 is
analytical and follows explicit computation rules, such as adhering to the rationality criteria of expected
utility theory, or where a clinician decides based on a set of defined criteria (known as rule-based theory)
(Grindem et al., 2016; Kyritsis et al., 2016). The rules may be applied on a binary scale (i.e., pass or
fail). In RTS, one of the passing criteria for a knee injury may be a single-leg hop test to achieve 90%
of the uninjured side (Kyritsis et al., 2016). In contrast, the expected utility theory is a decision-making
model that considers the expected value of different options and the probability of each outcome
(Connolly et al., 1999; Edwards, 1977). It illustrates how one decides in uncertain conditions based on

the outcomes of different options and the probability of each outcome (Connolly et al., 1999; Edwards,
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1977). It presumes that a decision maker will make a rational choice based on evaluating the costs and
benefits associated with each option. (Ashby & Smith, 2000; Reyna & Rivers, 2008). In this theory, a
clinician’s decision is determined by the subjective value assigned to each potential outcome and the
estimated likelihood of each outcome (Connolly et al., 1999; Edwards, 1977). According to this model,
System 2 assumes decisions are made by fully rational individuals who have access to complete
information about the probabilities and consequences of each option in terms of time, resources, and
knowledge (Shrier, 2015). Expected utility theory and other normative theories are covered in Section

3.4.2.

2.2.5 Interaction between the systems

System 2, although known for being more reliable and rational, can also be time-consuming and requires
significant cognitive resources. As a result, it may not always be feasible for sports medicine
professionals to engage in extensive cognitive analysis for every clinical decision they make.
Consequently, clinicians may naturally opt for System 1, which is quicker and less demanding on the
mind. (Croskerry, 2009c). In some clinical conditions, clinicians may start making diagnoses using
System 1 based on pattern recognition (Norman, 2006). However, when clinicians cannot recognise the
pattern, they may switch to System 2, deliberate and conscious thought processes (Croskerry, 2009a).
In the context of RTS, clinicians may switch to System 2 in complex conditions, such as when an athlete

is eager to participate in an important game despite not being fully healed from an injury.
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Figure 2.3 Schematic model for RTS decision-making. Based on Croskerry (2009a), adapted for

RTS context.

There are also several ways in which the two systems interact with each other, as indicated by
the orange dashed lines in Figure 2.3. System 2’s analytical approach, when used repeatedly, can
eventually become automatic, much like the intuitive approach of System 1 (Croskerry & Norman,
2008; Norman, 2006; Norman & Brooks, 1997). This is analogous to building up sports taping skills,
where after considerable practice, the clinician can tape an ankle with little conscious effort. This shows
the importance of building up experience and familiarity with clinical practice. In addition, System 2
can rationalise and override the intuitive output of System 1 (rational override) (Croskerry, 2009c). This
overriding function requires deliberate mental effort, and its ability to perform can be negatively
impacted by distraction, sleep deprivation and fatigue (Landrigan et al., 2004). System 1 can also
override System 2, in which the decision maker overrides a rational judgement based on intuitive

feeling, known as dysrationalia (Stanovich, 1993). Various reasons, such as habitual practice, emotions
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and context, may contribute to dysrationalia. An example of when System 1 overrides System 2 is when
clinicians ignore well-developed clinical decision guidelines (McGlynn et al., 2003) and persist with

clinical practice with little solid evidence (Croskerry & Norman, 2008).

In short, the DPT allows clinicians to scrutinise the underlying decision-making process and
realise the systems’ vulnerable aspects. Despite most errors occurring in System 1 (Tversky &
Kahneman, 1974), there is still a value of using System 1 in some contexts, such as where there is
limited time and resources. Both systems are essential for clinicians to function in the applied sports
environment. One of the keys to an improved decision-making process is a well-calibrated balance

between the two.

2.2.6 Cognitive continuum for RTS

Beyond the DPT, which has distinct intuition and analysis, there is another theoretical decision-making
orientation framework known as the cognitive continuum theory (CCT) (Hamm, 1988; Hammond,
1978). CCT models human judgement and decision making with six modes of inquiry based on the task
and cognition (Figure 2.4). They are positioned along the continuum based on the degree of cognitive
activity they are predicted to induce, such as task structure, cognitive control, and time required (Hamm,
1988). Similar to DPT, CCT may assist clinicians and interdisciplinary teams in understanding the
decision-making process (Parker-Tomlin et al., 2017). Specifically, clinicians can use CCT to 1)
recognise the kind of cognition used and potential cognitive pitfalls, 2) adjust and select the appropriate
cognition strategy based on the task, and 3) improve decisions’ transparency for multidisciplined

professionals (Cader et al., 2005; Hamm, 1988).
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Figure 2.4 Cognitive continuum theory adapted to the context of RTS, based on Hamm (1988);

Hammond (1978).

Here are examples to illustrate how CCT can be applied in the context of RTS.

1. Managing an on-field fracture injury (intuitive judgement)
When an apparent fracture injury (e.g., a tibia and fibula fracture) occurs on-field during a
football game, the immediate response of a clinician is to remove the player from the field and
send the player to the hospital. This is an intuitive judgement because the clinician is unlikely
to allow the injured player to return to the game with a fracture injury due to safety reasons.

The time available for decision is short, and the degree of cognitive manipulation is low.
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2. RTS from a concussion (intuitive analytical)
In case of a suspected concussion during a football game, a clinician will remove the player
from the field and assess the player for any subtle change in response, such as facial expression
and emotional changes (Ryan & Warden, 2003). Clinicians may also use decision aid (e.g.,
SCATDS) to evaluate the concussion at the sideline (Echemendia et al., 2017). In this case, the
time available for the decision is longer than the previous condition (e.g., 5-10 minutes), and
the degree of cognitive manipulation is higher. There is also some degree of intuition (e.g., to
observe subtle changes in the player’s response) and analytic involvement (e.g., to assess the
condition with SCAT5).

3. RTS for a Grade 1 Hamstrings injury (analytical intuitive)
For a player who sustained a grade one hamstring injury two days before the final, a clinician
can take the time to assess the player physically, functionally and mentally. The clinicians can
decide on RTS based on the assessments. Given the limited time frame to the final, some
uncertainty may exist around rehabilitation, so a small degree of intuition may be required when
making the judgement.

4. RTS for an ACL reconstruction surgery (analytical systematic)
In the case of ACL rehabilitation, there is more time for clinicians to assess and decide on RTS
(e.g., in terms of weeks). Clinicians can perform relevant RTS tests and analyse the results
systematically. There is a high degree of cognitive manipulation, and the reliance on intuition

may be minimal.

CCT is a simplified general framework that explains the cogitation strategy used and its
relationship between the task features and progress. Understanding the methods and relationships may

increase the transparency of the decision-making process (Cader et al., 2005).
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2.2.7 Bias in decision making

Occasionally, humans may present with cognitive deficiencies when making decisions (Thaler, 2009).
Accordingly, one obstacle to making good clinical decisions is the potential distortions and biases in
how information is gathered and assimilated (Croskerry, 2002). Decision makers who rely on intuition
may be quick in making the decision, but they may be subject to errors that can only be recognised upon
reflection (Tversky & Kahneman, 1974). Knowing how decisions are made and how they may be biased

is vital to improve decision quality.

There are over 30 known cognitive biases, many of which influence decision making as an
“illusion” (Croskerry, 2002, 2003). Some biases may be inevitable, but some biases may be avoided by
implementing strategies, such as increasing awareness of their existence and using decision aid

(Croskerry, 2003). Below are some common cognitive biases with relevance to RTS:

2.2.7.1 Anchoring bias
Anchoring bias occurs when the decision maker relies heavily on the initial piece of information

(anchor) offered to make a judgement (Croskerry, 2000). Accordingly, decision makers tend to fixate
on the first impression of a clinical case, such as some specific clinical features early on in the diagnostic
process (anchor) (Croskerry, 2002). Following the initial piece of information, interpretations are made
around the anchor. This may be an effective strategy in clinical reasoning, yet clinicians may fail to
adjust the hypothesis sufficiently in light of subsequent information. For example, a lacrosse player is
hit on the ribs with a lacrosse stick, with signs of bruising. The player was able to continue playing
afterwards. A clinician may anchor on the initial piece of information (a contact bruise injury) and
neglect the subsequent information that there was significant localised swelling. In this case, the

clinician may have missed a rib fracture injury.

2.2.7.2 Availability bias

Availability bias is the cognitive bias associated with availability heuristics, in which a human tends to

rely on immediate examples that readily come to mind (Tversky & Kahneman, 1973). Accordingly,
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decision makers perceive the most readily available evidence to be the most relevant and important
(Tversky & Kahneman, 1973). Thus, if a clinician sees an athlete with muscle soreness due to recent
overtraining, there is a greater chance that the clinician believes the next athlete coming in with muscle
soreness has a similar issue. However, that athlete may be suffering from a low-grade muscle strain
injury. Inexperienced clinicians may tend to be driven by availability bias as they are more likely to
bring common prototypes to mind, whereas experienced clinicians are more likely to suspect atypical

cases (Kovacs & Croskerry, 1999).

2.2.7.3 Confirmation bias
Humans tend to search for, interpret, favour, and recall information that validates their pre-existing

beliefs or hypotheses. Important data that weaken an illusory correlation would be neglected or
discarded (Nickerson, 1998). This may also reinforce groupthink, where group members minimise
conflict and reach a consensus without critically evaluating the idea. As a result, systematic errors and
poor decisions may be generated (Williams, 2010). Confirmation bias may occur in a medical meeting,
where attending staff may agree with the physician’s suggestion on the RTS plan without critically

assessing the context.

2.2.7.4  Framing bias

Humans may be susceptible to how others frame the options, known as the ‘framing effect’ (Tversky
& Kahneman, 1986). Different phrasing ways can change a neutral message to an implicit
recommendation and affect one’s decision, such as treatment selections (Gigerenzer, 2014). For
example, patients are more inclined to consider surgery when the clinician uses a survival frame rather
than a mortality one, although they are logically equivalent (Moxey et al., 2003). The framing effect
may vary with the type of scenario and the responder’s characteristics. As such, how a clinician frames
the chance of re-injury may affect the athlete’s perception of when to RTS. Fortunately, the framing
effect tends to disappear when complete information is provided and expressed in more than one way

(Gigerenzer, 2014; Moxey et al., 2003).
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2.2.1.5 Sutton’s Law and Sutton’s Slip
Sutton’s Law in clinical reasoning refers to the tendency of a clinician to go for the most apparent

diagnosis, which helps to speed up clinical reasoning in some cases. However, clinicians may also avoid
tests that are unlikely to be diagnostic and pursue tests thought to be of the highest diagnostic value
(Watanuki et al., 2015). Due to Sutton’s Law, clinicians may give insufficient consideration to other
alternatives, known as the Sutton’s Slip. For example, a clinician may mistreat an orthopaedic oncologic
condition as a sports injury due to an overlap of clinical presentations and a lack of further investigation

(Ayvaz et al., 2015).

2.2.7.6 Search Satisficing
Search satisficing is when someone might stop searching for information once a satisfactory result has

been obtained (Simon, 1979). Accordingly, some clinicians may tend to cease diagnostic investigations
once a presumed cause for a patient’s symptoms has been found (Croskerry et al., 2013a). Due to search
satisfaction, medical comorbidities, such as other fractures, may be overlooked (Berbaum et al., 1994).
For example, a clinician treating a lateral ankle sprain may fixate torn ankle ligaments as the source of

pain and overlook possible trauma to other foot structures, such as the Lisfranc joint complex.

2.2.7.7 Emotion

Decision quality may be affected when emotion, ego and motives are prioritised over objective
information (Hunink et al., 2014b; Zeelenberg et al., 2008). These motives and emotions may be
intertwined in the decision-making process unintentionally and unconsciously and shape the clinician’s
decision (Croskerry, 2005). For example, a person feeling anxious about a potential outcome of a risky
choice may choose a safer option rather than a risky but potentially lucrative option (Lerner etal., 2015).
The effect of emotional states may also render decision makers to avoid negative feelings (e.g., guilt
and regret) or increase positive feelings (e.g., pride and happiness) (Lerner et al., 2015). To minimise
the magnitude of the emotional effect on the decision process, decision makers can adopt strategies

such as time delay, suppression and reappraisal (Lerner et al., 2015).
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2.2.7.8 Blind spot bias
Generally, humans are assumed to be rational and prefer making objective decisions (Simon, 1979). At

the same time, humans are also aware that factors, such as limited information, emotions and self-
interest, may bias their decisions (Pronin et al., 2002). When evaluating their decision-making process,
people tend to think they are smarter and less susceptible to cognitive biases than others (Pronin et al.,
2002). In a study by Irene Scopelliti and colleagues, only one person out of 661 people said they were
more biased than average (Scopelliti et al., 2015). As a result of blind spot bias, many clinicians may
be overly confident (Mele, 1997). And unfortunately, people with a large blind spot bias are least likely

to use strategies to improve their decision quality (Scopelliti et al., 2015).

2.2.8 Strategies for de-biasing

Mitigating decision-making biases can play a critical role in enhancing decision quality for clinicians.
While some biases may be unavoidable, others may be mitigated through techniques such as increasing

awareness and utilising decision aids, referred to as de-biasing (Croskerry, 2003).

There are three steps that may help clinicians to mitigate decision-making bias. First, they can
build awareness of what may increase their susceptibility to cognitive biases, such as distractions,
fatigue, and sleep deprivation (Croskerry et al., 2013a). Second, they can recognise strategies to
overcome biases and when necessary. Third, clinicians are suggested to constantly reflect on their
thought process before deciding and have the cognitive capacity to decouple from the bias (Stanovich
& West, 2008). This can be achieved by switching from the intuitive processing of System 1 to the
analytical processing of System 2, allowing for a more thorough examination and verification of the
initial intuition (Croskerry, 2000). A range of strategies that may facilitate switching from System 1 to
System 2 are presented in Table 2.3 (Croskerry et al., 2013b). Fourth, clinicians may consider obtaining

external appraisals from experts to review their methods and approaches in making decisions.
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Table 2.3 Strategies and examples for de-biasing

Strategy

Explanation

Examples

Structured data

Deliberate data acquisition procedures to

Use a differential diagnosis checklist tool to

assist clinical reasoning.

acquisition ensure adequate information are
acquired and minimise blind spots.
i Establish  routine consideration of | Seek evidence that may support a RTS
Consider

alternatives

alternative options.

decision opposite to the initial impression to

force consider other examples.

Group decision
strategy

Seek others’ opinions and apply crowd

wisdom.

Schedule with  other

practitioners and design a rehabilitation plan

team  meetings

together.

Use of external
aid

Improve judgement accuracy by using

clinical  practice  guidelines and

algorithms to reduce reliance on
memory. Clinicians may also consider
the use of clinical decision rules and aids
that minimise uncertainty and cognitive
such as

load, implementing

computerised clinical decision support

Visually display a list of clinical tests in the
treatment room that clinicians must perform

when deciding when an athlete can RTS.

Minimise time

pressure

Allow adequate time for thought

processes.

Allow enough time for making a diagnosis

and planning for RTS.

Supportive

environment

Create a supportive environment that

encourages  high-quality  decision

making.

Readily availability = of rehabilitation

protocols, clinical guidelines, RTS criteria to
reduce variance.

Well-organised working schedule to avoid
cognitive  overload, and

fatigue sleep

deprivation (Croskerry et al., 2013a).
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2.3 Analysis techniques

Given the challenges in decision making, it may be beneficial to improve data analysis to enhance
decision quality. Specifically, clinicians may harness nonlinear analytical methods to address the chaos
and complexity inherent in sports. In particular, machine learning techniques have attracted attention
for their strength in transforming a large amount of data into practical knowledge and identifying
nonlinear patterns (Edouard et al., 2020; Witten et al., 2011). In the context of RTS, the application of

machine learning has been growing but is still limited (Albano et al., 2020).

2.3.1 Machine learning

Machine learning is a subfield of artificial intelligence (Al), where the computer system learns from
data without being explicitly programmed to do so (Mohammed, 2017; Tibshirani, 2013). Machine
learning could recognise correlations, patterns and trends in large datasets (SoleimanianGharehchopogh
et al., 2012). Users can also input relevant data into the machine learning model to refine the algorithm
and improve the outcome (Mohammed, 2017). Machine learning can be used for predictive and
descriptive purposes (Han, 2012). Specifically, clinicians can use predictive modelling for injury
diagnosis, prognosis and rehabilitation planning. On the contrary, clinicians can use descriptive

modelling to characterise injury profiles and identify the association between the relevant factors.

Machine learning is categorised into supervised, unsupervised, and reinforcement learning
(Jain et al., 1999; Mohammed, 2017). Four main analytical techniques are available within the machine
learning umbrella: association, classification, clustering and relationship modelling. Machine learning
techniques can search large databases to recognise nonlinear patterns or build models to describe
associations and predict outcomes. The use of machine learning has gained momentum in sports injury
research, and they have been applied to assess injury risk, analyse movement and predict sports
performance (Claudino et al., 2019; Cust et al., 2019; Faltstrom, Kvist, et al., 2021; Rossi et al., 2019;

J. Ruddy et al., 2018).
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In supervised machine learning, labelled data is used to train the algorithm. Labelled data refers
to a dataset of predictor variables marked with resultant output (Kotsiantis et al., 2006). This training
allows the algorithm to learn trends, model relationships and classify groups between inputs and
variables (Maymin, 2017). Common relationship-modelling machine learning techniques are
regressions and neural networks. In contrast, decision trees and random forests are popular algorithms
for classification. The above techniques can be used for continuous and categorical datasets and have
been applied in a range of sports domains, for example, in talent identification (Den Hartigh et al., 2018;
Maymin, 2017), match outcome prediction (Bunker & Thabtah, 2019; Robertson et al., 2016),
movement recognition (Cust et al., 2019), skill analysis (Weigelt et al., 2011) and injury prediction

(Rossi et al., 2019).

Contrary to supervised learning, unsupervised learning is trained with unlabelled data. The
algorithm finds hidden patterns within the data without prior knowledge of the correct outcomes
(Mohammed, 2017). Examples of unsupervised learning techniques are clustering (Jain et al., 1999)
and association rule (Agrawal et al., 1993). These techniques have been applied in areas such as player
movement analysis (Weigelt et al., 2011), technique analysis (Ball & Best, 2007) and match analysis

(Sampaio et al., 2015).

Supervised and unsupervised learning represent most machine learning techniques. Techniques
that fall between the two classes may be classified as semi-supervised. Another branch of machine
learning is reinforcement, where the algorithm is trained through trial and error (Richard & Andrew,
1998). Reinforcement learning so far has limited application in sports (Ding et al., 2022; Liu & Schulte,

2018).

Limited by human resources, time, bias, uncertainty and complexity, it may be challenging for
clinicians to make effective and objective decisions. To this end, clinicians may consider using machine
learning to support data analysis and inform decisions. Machine learning is a promising candidate for

analysing clinical datasets because of its ability to analyse nonlinear interactions and recognise patterns
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in large and complex datasets (Dutt-Mazumder et al., 2011). The following subsections outline the two
common machine learning techniques (association rule and classification), and which association rule
approach is adopted in Chapter Six. Section 4.4.1 also provides examples of how clinicians can frame

RTS questions and analyse them with the major machine learning approaches.

2.3.2 Association rule

The association rule is a type of unsupervised learning capable of identifying meaningful patterns
between variables in a large dataset (Agrawal & Srikant, 1994). It originated in market-basket analysis,
where vendors are interested in the habit of customers, for example, what items customers typically
purchase together in a single transaction (e.g., milk, bread and eggs) (Agrawal et al., 1993; Carifiena,
2014). Based on the rules identified, vendors can place frequently co-purchased items on adjacent
shelves to increase sales or cross-marketing (e.g., suggest recommended products in online shopping).
The output can be expressed in the IF-THEN format. That is, IF condition; and condition; and ... and
condition,, THEN decision (Daud & Corne, 2009). For example, if (the athlete single-leg hops five
times without pain) and if (the calf strength of the injured leg is 90% of the uninjured side), THEN (the
athlete could start running). These rules may be generated using association rule mining techniques to
conduct large-scale searches within their sports organisation’s rehabilitation dataset. Clinicians can then
use the rules to guide progression in rehabilitation and minimise maladaptation in training, such as
overreaching or excessive muscle soreness. Such approach may fit in clinical settings because of the

transparency of the algorithm (Bullock et al., 2022; Muyeba et al., 2013).

Based on the research question, there are a few variations of the association rule approach that
clinicians may leverage to increase data resolution. First, users may include temporal attributes in the
data mining process to identify an ordered correlation between events (Carifiena, 2014; Pei et al., 2004).
As such, the antecedent and consequent rules can exist at different time points. For example, if
customers buy pasta this week, they are more likely to buy rice next week (Carifiena, 2014). In the

context of RTS, an increase in training workload today may be related to a decrease in running capacity
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one day later. Second, cyclic association mining can identify rules that exist at regular particular time
periods of a dataset (Carifiena, 2014; Ozden et al., 1998). In the case of market basket analysis, users
can analyse how festive seasons such as Boxing Day sales may observe a higher volume of sales. In
sports, researchers may potentially use temporal association mining to explore the association between

ACL injury and women’s menstruation cycle (Slauterbeck et al., 2002).

The association rule is more suitable for categorical data. When the data set includes continuous
data, the data need to be first discretised and presented in interval values, such as “high” and “low”
(Stanczyk et al., 2020). Discretising value across a broad spectrum of categories may reduce processing
time and increase usability. However, the use of discretisation may introduce sharp boundaries. One of
the solutions is to use a fuzzy set (Delgado et al., 2005; Hong & Lee, 2008). Fuzzy sets create soft
boundaries boundary to soften the transition between consecutive intervals. For example, a 30-year-old
athlete is considered to be “old”, but a 29-year-old athlete is considered “old with a lower degree”. As
a result, the transition between being young and old is not sharp, but with a gradual transition. Fuzzy
sets may be incorporated in the modelling of quantitative temporal and non-temporal attributes in the

event.

In sports performance, the association approach has been used to identify constraints in skill
training for kicking training (Browne, Sweeting, et al., 2019; Robertson et al., 2019), talent
identification (Robertson et al., 2015) and tactics analysis (Browne, Morgan, et al., 2019). Clinically,
the association rule have been used for understanding illness and musculoskeletal disorders (Kanimozhi

et al., 2019; Muyeba et al., 2013), but application in RTS is scarce

2.3.3 Classification

Classification is a type of supervised learning, and the most common technique is decision trees (Loh,

2014). Decision trees are nonlinear machine learning techniques that can predict a single outcome using
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several predictor variables (De'ath & Fabricius, 2000). Decision trees can make predictions based on

categorical and continuous data (Loh, 2011), which gives them an advantage over the association rule.

A decision tree algorithm is flow-chart-like, learning from the observation of an item to
conclude the item's target class or value. Decision trees work by recursively partitioning the dataset,
one variable at a time, into homogenous and mutually exclusive groups (Loh, 2011). In the decision
tree, each node denotes a test for each attribute for a particular instance, and each branch represents the
test outcome (Figure 2.5). Accordingly, the branches are grown continuously until the predictive power
of further splits no longer improves the model (Morgan et al., 2013). A random forest is similar to a
decision tree, except that it randomly creates multiple decision trees. Each node in the decision tree
works on a random subset of features to calculate the output (Breiman, 2001). The random forest then

combines the output of individual decision trees to generate the final output (Breiman, 2001).

Root node

Leafnode

Figure 2.5 Graphical presentation of a standard decision tree

In the design of machine learning models, the choice of attributes is important. Including a
small set of relevant and highly predictive attributes in the model-building process can result in a good
performance model (Hall & Holmes, 2003). Attribute selection typically involves a combination of

search and attribute utility estimation and evaluation concerning the specific learning goal (Hall &
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Holmes, 2003). Similar to the association machine learning approach, decision trees are likely to fit in
clinical settings because clinicians can assess the output with established evidence and explain the result
practically and intuitively (Bullock et al., 2022; Muyeba et al., 2013). For example, if the output from
the decision tree suggests an athlete is not ready for RTS, practitioners may backtrack the model and
identify the rationale behind it. Users may also refer to the visual output to aid interpretation (Figure

2.5) (Morgan et al., 2013).

Decision trees have been applied in a range of sports settings, for example, to analyse movement
(Cust et al., 2019), predict player ratings (Mclntosh et al., 2019) and predict shot outcome (Browne et
al., 2022). In the field of sports medicine, decision trees have been used to diagnose and predict sports
injury (Claudino et al., 2019; Girard et al., 2020; Jauhiainen et al., 2022; Martin et al., 2021; Rossi et
al., 2019; J. D. Ruddy et al., 2018), classify knee injury status (Girard et al., 2020) and identify key
factors for a better outcome in ACL RTS (Palmieri-Smith et al., 2022). Decision trees may be used to
support RTS decisions, however, their application in supporting RTS decisions has been limited

(Albano et al., 2020).

Machine learning may be a viable tool for supporting RTS decisions based on its strength in
handling complex and nonlinear multivariate data. It may be desirable to research a data-informed
system powered by machine learning to analyse high-dimensional datasets. Clinicians may harness

data-informed systems and artificial intelligence to increase productivity and accuracy of decisions.

2.3.4 Decision support system

A decision support system (DSS) is a computer technology solution that provides objective evidence to
support complex decision making and problem solving (Schelling & Robertson, 2020). These systems
typically utilise historical data to assess and analyse current information to form user recommendations
(Robertson, Bartlett, et al., 2017). The development and use of DSS have been evolving, from

supporting organisational decisions (Shim et al., 2002), to improving sports performance decisions
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(Schelling et al., 2021; Schelling & Robertson, 2020; Zeleznikow et al., 2009) and clinical decisions

(Hunt et al., 1998; Sutton et al., 2020).

Clinical DSS may aid clinical decision making by matching the patients’ characteristics to
computerised knowledge. Based on the knowledge base, the DSS can provide individualised
assessments or recommendations to clinicians for their consideration (Osheroff et al., 2007). Clinicians
may also use DSS to synthesise and integrate information from multiple sources and perform complex
evaluations (Garg et al., 2005). In addition, the use of computerised analytics may accommodate the
features of the complex systems and assist clinicians in considering the problem holistically (Schelling
& Robertson, 2020). Clinically, DSS can be used for various purposes, ranging from improving medical
quality, safety and efficiency; and across a range of domains such as screening, diagnosis and treatment

(Garg et al., 2005).

Despite clinical DSS having shown great promise in reducing medical error and improving
patient care (Hunt et al., 1998), there are limited applications in sports medicine settings. Research has
suggested that DSS are more likely to be implemented if the decision makers are willing to make
changes and judgements based on the findings from the system (Hunt et al., 1998; MclIntosh et al., 2019;
Robertson, Bartlett, et al., 2017). Specifically, the following three characteristics have been

recommended:

1) The DSS should fit into the workflow of the clinicians (Kawamoto et al., 2005) and
optimise the time, cost and burden of using the system (Fernandez, 2019; Robertson,
Bartlett, et al., 2017).

2) The DSS provides clinicians with actionable recommendations rather than just
assessment (Kawamoto et al., 2005). Ideally, the DSS should also allow evaluation and
simulation of the decision as a system feedback mechanism (Schelling & Robertson,

2020).
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3) The DSS provides timely information to clinicians to provide the most impact
(Kawamoto et al., 2005).

4) The output of the DSS should be interpretable by clinicians (Kawamoto et al., 2005).
Given that most clinicians may not have formal training in data analytics and

interpretation, the display of the clinical DSS output should also be considered.

2.3.5 Visualisation

Output from analytics tools and clinical DSS is only applicable if the results are accessible and
interpretable by clinicians. Naturally, users are not motivated to use a DSS if the reporting methods are
not interpretable or practical (Green, 1998; S. Liu et al., 2017; Schelling & Robertson, 2020; Thornton
et al., 2019). To assist clinicians’ interpretation of the findings, the design and style of reporting are

critical (Silver, 1991; Thornton et al., 2019).

Appropriate visualisation can translate complex outcomes into interpretable findings and thus
reduce the cognitive work and time required to digest the information (Kale et al., 2018). This may aid
the uptake of information and encourage users to engage with pleasure (Pinker, 1990). This is especially
important to clinicians as they are less likely to have formal analytics training and thus may have
difficulty understanding the output from complex analytics. To this end, clinicians can harness
visualisations, which require less cognitive load in interpreting than tables and numbers (Green, 1998;
Kale et al., 2018). The visualisation may help translate numbers into a more straightforward medium

and allows users to effectively gain insight from complex information (Zacks & Tversky, 1999).

In displaying proportional data, the layout and design of graphs are crucial to convey the
message (Jordan & Schiano, 1986; Schiano & Tversky, 1992; Tversky & Schiano, 1989). For example,
pie charts are not recommended as users judge an area's size less accurately than the length of a line in
a bar graph (Spence & Lewandowsky, 1991). Further, the effectiveness of the graph may decrease when

the number of components displayed in a bar chart increases (Hollands & Spence, 1998).
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2.4 Section summary

RTS decisions are commonly encountered in sports, and clinicians are required to make complex
decisions that balance the risks and benefits of athletes and sports organisations. Fortunately, clinicians
can utilise the data routinely collected in sports organizations to support their decisions. Clinicians can
also use existing theoretical and strategic assessment frameworks to guide the rehabilitation process
and consider the relevant factors. However, much is unknown about integrating different data types to

make quality decisions.

Within decision making in RTS, there is scope to improve the data quality, data analysis and
interpretation to improve efficiency when providing information to clinicians. To appropriately guide
the RTS decision-making process, clinicians may evaluate the decision quality (Chapter Three) and
view rehabilitation through the lens of the complex systems theory (Chapter Four). Practically, the use
of complex systems approach in making decisions remains limited, possibly due to 1) clinicians being
unlikely to have formal decision-making training, and 2) the complexity and volume of data available
nowadays are more than ever. Clinicians may harness advanced analytical techniques, such as machine
learning algorithms, to support RTS decisions with a complex systems approach (Chapters Five and

Six).
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Part | Frameworks

This section includes Chapters Three and Four, which consist of two peer-reviewed published
manuscripts that provide a detailed evaluation of decision-making frameworks and complex systems
theory that may improve decision quality. Chapter Three synthesises the available literature in the RTS
decision-making framework to provide an overview of the topic and propose a framework for improving
decision quality. Chapter Four discusses the hallmark features of complex systems and their relevance

to RTS decision making and daily practice.
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3 Chapter Three: Study |

Chapter overview

Chapter Three is the first of the four studies contained in this thesis. This study is a narrative review
that explores the current decision-making theories and proposes a decision-making framework that may

improve the quality of RTS decisions.

The content of this chapter is an accepted manuscript of an article published by Springer Open

in Sports Medicine — Open on 13" April, 2022, available at: https:/sportsmedicine-

open.springeropen.com/articles/10.1186/s40798-022-00440-z

Clinical relevance

With advancements in sports technology and the development of more testing kits and wearables,
clinicians nowadays may be overwhelmed with voluminous data. Excessive information may cause
clinicians difficulty in consolidating and integrating data collected from different sources and at
different time points. As such, there are times when clinicians may “guesstimate”, a combination of
guess and estimation, to make a decision. Given that decision-making training is not typically included
in a clinician’s education, this narrative review addresses three questions: 1) How to make better
decisions? 2) What are the decision-making theories relevant to clinicians’ practice? 3) What are the

potential pitfalls that clinicians have to look out for when making decisions?

40


https://sportsmedicine-open.springeropen.com/articles/10.1186/s40798-022-00440-z
https://sportsmedicine-open.springeropen.com/articles/10.1186/s40798-022-00440-z

Yung et al Sports Medicine - Open (2022) 8:52
https://doi.org/10.1186/s40798-022-00440-z

Sports Medicine - Open

REVIEW ARTICLE Open Access

m

A Framework for Clinicians to Improve Bt

the Decision-Making Process in Return to Sport

Kate K, Yung""®, Clare L. Ardern®**®, Fabio R, Serpiello’® and Sam Robertson'@

Abstract

Return-to-sport (RTS) decisions are critical to clinical sports medicine and are often characterised by uncertainties,
such as re-injury risk, time pressure induced by competition schedule and social stress from coaches, families and
supporters, RTS decisions have implications not only for the health and performance of an athlete, but also the sports
organisation, RTS decision-making is a complex process, which relies on evaluating multiple biopsychosocial factors,
and is influenced by contextual factors, In this narrative review, we outline how RTS decision-making of clinicians
could be evaluated from a decision analysis perspective, To begin with, the RTS decision could be explained as a
sequence of steps, with a decision basis as the core component. We first elucidate the methodological considerations
in gathering information from RTS tests. Second, we identify how decision-making frameworks have evolved and
adapt decision-making theories to the RTS context. Third, we discuss the preferences and perspectives of the athlete,
performance coach and manager. We conclude by proposing a frasework for clinicians to improve the quality of RTS

decisions and make recommendations for daily practice and research,
Keywords: Decision-making, Decision, Return to play, Decision analysis, Rehabilitation, RTS, RTP

Key Points

+ RTS decisions are complex, nonlinear and multifac-
torial and thus require external tools to assist practi-
tioners

+ To improve the quality of decisions in sports settings,
decision-makers could evaluate the following three
domains: (1) assess the methodological soundness
of the tests chosen, (2) identify potential deviations
from normative decision models and (3) implement
shared decision-making.

Introduction

Decision-making is a process of weighing the risk(s)
and benefit(s) among options to make a choice [1]. In
clinical practice, return-to-sport (RTS) decisions can
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@ Springer Open

be challenging as they are directly linked to the athlete’s
well-being and performance. RTS refers to the recov-
ery and rehabilitation continuum: return to participa-
tion, return to sport and return to performance [2]. This
review focuses on how the quality of RTS decisions could
improve.

Premature RTS may risk re-injury [3-5] and sub-
sequently harm the athlete’s playing performance [6],
financial income [7] and mental health [8, 9]. Yet, if RTS
is delayed for a lesser chance of reinjury, it will inevi-
tably reduce a team’s player availability. Lower player
availability is undesirable as players’ match availabil-
ity is associated with team performance across various
sports [10-16]. Consequently, substantial pressure rests
on the shoulders of decision-makers to reach a decision
that balances the best interest of the athlete’s health and
performance.

When the context is predictable and routine, for exam-
ple when managing a tibia fracture on the field, decision-
making could be straightforward and relegated to an
automated level (ie., remove from play immediately).

©The Author(s) 2022, Open Access This article is licensed under a Creative Commeons Attribution 4.0 International License, which
permits use, sharing, ada ptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a linkto the Creative Commons licence, and indicate if changes were made. The images or

otherthird party material in this arficle are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is nat included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to abtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommeons.org/licenses/by 4.0/,
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However, when there is a high level of uncertainty and
complexity in the context (e.g., to decide whether an ath-
lete at 95% of recovery should play in the grand final),
the ability to make high-quality decisions is less clear, yet
potentially even more crucial.

The challenge of complexity and the multifactorial
nature of RTS decision-making has been acknowledged
for over two decades [17]. A 1998 review by Putukian [17]
discussed the concerns and struggles that clinicians have
when making RTS decisions, which could be attributed
to the multifactorial nature and clinical uncertainty pre-
sented in medicine [18, 19]. The majority of the research
focus since then has been mostly on developing decision-
making frameworks and clinical criteria for RTS. One
of the most recognised decision-making frameworks
is the Strategic Assessment of Risk and Risk Tolerance
(StAART) [20]. The framework, together with the RTS
criteria, helps to guide a clinicians’ practice. For example,
in the management of anterior cruciate ligament (ACL)
injury, clinicians may refer to the established RTS criteria
[21, 22] and consensus statements [23, 24].

In contrast to the vast literature on RTS criteria, there
is less on how clinicians make RTS decisions and how to
improve the quality of the decision. This may be because
this topic spans at least two distinct fields: sports medi-
cine and decision-making science. We aim to help cli-
nicians conceptualise the decision-making process,
increase the thoughtfulness of a decision, identify poten-
tial deviations from normative decision models and even-
tually establish a framework to improve the quality of
decision-making.

Disentangling Decisions and Outcomes

The term decision refers to the action taken to reach a
decision, and this is different from the outcome of the
decision [25, 26]. A high-quality decision refers to a deci-
sion that is logical and made based on the uncertain-
ties, values and preferences of the decision-maker [27].
A good outcome is an outcome that the decision-maker
would wish to have happened and is of high value to
them [27].

A high-quality decision does not necessarily warrant
a good outcome due to uncertainties. There are mul-
tiple sources of uncertainties, and the two major cat-
egories prominent in the medical field are aleatoric
uncertainty and epistemic uncertainty [28]. Aleatoric
uncertainty is intrinsic to the problem, for example, ran-
dom variations that arise from observers or instruments.
Epistemic uncertainty is extrinsic and comes from limita-
tions in knowledge, such as individual bias [28].

Distinguishing between decision and outcome allows
clinicians to separate action from the consequence, so
they can focus on improving the quality of the action.
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Occasionally, clinicians may be disappointed by a bad
outcome of a good RTS decision, such as an athlete suf-
fering from a re-injury despite careful medical evalua-
tion. Yet, in the pursuit of a good outcome, there may not
be a better way than striving for a high-quality decision.
Therefore, in this paper, we focus on evaluating the deci-
sion, and not on the outcome.

Evaluating a Decision

There are various ways to evaluate a decision. The first
approach is related to the outcome of the decision, such
as clinical health outcomes (e.g., pain, quality of life), or
how regretful or satisfied the patient is with the decision
[29-31]. However, there is no consensus on the opti-
mal measurement tool(s) for this purpose. The second
approach relates to the expected value of the outcome
(i.e., expected utility), where probabilistic information
about the risk and benefits of personal preferences and
values is considered [32]. The third approach is to con-
sider the decision quality, which is measured by knowl-
edge of the options and outcomes, realistic perceptions of
outcome probabilities, and agreement between patients’
values and choices [29].

It may be challenging to measure the quality of a deci-
sion with the first two approaches (i.e., outcome and
expected utility) due to the complexity of a RTS question.
Nevertheless, it may be possible to evaluate the decision
with the third approach—decision quality.

Decision analysis is a formal procedure for analysing
decision problems by balancing the factors that could
influence a decision [27]. To evaluate the decision quality,
the decision process could be made transparent by first
breaking it down into a sequence of clear steps. We have
adapted a decision analysis model from Howard [33] for
RTS to systematically evaluate a decision (Fig. 1).

The essence of decision analysis is eliciting the four
bases for the decision [33]:

1. The alternatives relates to the options that a decision-
maker has. In the context of RTS after an injury, it
could be whether the athlete could return to full
training/competition, modified training or basic
rehabilitation training.

2. The information refers to knowledge that may be
important to formulate the outcome. For example,
what information do RTS tests provide to the deci-
sion-makers?

3. The decision models include models that describe
how the decision could be made. That is, on what
basis can the decision be made?

4. The preferences of a decision-maker could be of mul-
tiple dimensions. These include the value (e.g., how
much does RTS mean to the athlete or the team?),

42



Yung et al. Sports Medicine -Open (2022) 8:52

Page 3 of 16

RTS @

Question w ‘

Synthesis

—Decision basisi‘v\
P

Alternatives

N ——

P

Information

——

" RTS
Decision

—)

Decision Analysis =¥

models

.

\ Preferences j

~—

Fig.1 Steps for evaluating a RTS decision

time preference (e.g., how important is it to play in
the upcoming game?) and risk preference (e.g., how
much re-injury risk can the team tolerate?).

Among the four key bases for a decision (alternatives,
information, decision models and preferences), the alter-
natives are highly specific to the context and would be
difficult to discuss from a broader perspective. There-
fore, we have structured this review around the other
three bases for a RTS decision: (1) information, (2) deci-
sion models and (3) preferences. We first zoom in to the
methodological issues of obtaining information in the
medical room. Second, we zoom out to identify the deci-
sion models relevant to RTS. Third, we discuss how pref-
erenices can be addressed with shared decision-making.
Finally, we propose a framework to improve RTS deci-
sion-making in practice.

To increase the practicability of the framework and to
help readers navigate the three bases for the RTS deci-
sion, a case scenario describing an ACL injury is used.
We use ACL injury because it is a serious injury in sports
that may threaten the career of athletes [6, 34]. Multiple
clinical and performance tests have been developed to
evaluate the readiness of the RTS [35], yet the re-injury
risk of ACL remains high [36, 37] and some athletes do
not return to sports following the injury [38].

Part 1: Methodological Concerns in Information
Gathering

A football player, in her early career, has under-
gone an ACL reconstruction surgery six months ago
and is eager to return to play. She wants to play as
soon as possible to gain a contract extension but is
also worried about getting reinjured. In the medi-

cal room, you sit with the player and decide on what
kind of test to perform on-field and off-field.

At the operational level, there are methodological con-
siderations when gathering information for the decision.
Below we discuss some of the underlying assumptions
and methods concerns.

Number of Criteria Used in RTS

In general, criteria-based RTS (e.g., muscle strength,
functional and dynamic stability, and range of motion)
have been suggested over a time-frame approach, which
is to decide solely based on the athlete’s time spent in
rehabilitation [39-43]. The ideal number of tests to use
for this purpose may vary between cases. There are con-
cerns that an insufficient number of tests may jeopard-
ise the clinician’s ability to see the complete profile of an
injured athlete. However, too many tests may increase the
inherent error (e.g., athlete exhibiting reduced perfor-
mance due to fatigue or reduced motivation) and exhaust
more resources (e.g., staff, time, equipment). Currently,
there is no recommendation for the ideal combination
and number of tests to provide the most insight into the
athlete’s readiness for RTS.

Baseline Setting in RTS

Returning to pre-injury levels of health and fitness is
often seen as the goal of RTS [2]. Therefore, setting an
appropriate baseline provides an ideal foundation for
clinicians to monitor progress by comparing the current
functional and physical capacity of the athlete with pre-
vious preinjury data. However, it is challenging to set a
baseline that is objective, replicable and suitable for the
setting. For example, currently, there is no guideline on
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the timing and frequency for performing baseline tests.
Adding more complexity to the problem, physiologi-
cal and performance profiles often fluctuate daily due to
periodisation in training and competition schedule (e.g.,
heart rate variability [44], musculoskeletal screening
scores [45], hip strength and flexibility [46] and power (as
in countermovement jump) [44].)

Here we used the limb symmetry index (LSI) as an
example to illustrate the concerns with baseline set-
ting. LSI is often included in the RTS protocol for ACL
injury [22, 47-50]. LSI compares the performance of
the involved limb with the uninvolved limb [51]. Often,
a 90% side-to-side difference threshold is used as a pass-
ing score for RTS [47-50]. However, there is little scien-
tific evidence on the optimal threshold. Even when limb
symmetry is achieved, it does not necessarily indicate the
athlete has reached a level sufficient for safe sports par-
ticipation and performance [50, 52]. It is also question-
able whether the uninvolved side could be used as the
benchmark when pre-injury data are not available. After
ACL reconstruction surgery, patients have reduced sin-
gle-leg hop performance of both the involved and unin-
volved sides [52, 53] and for up to 2 years after surgery
[54]. This could be attributed to a combination of factors,
such as deconditioning, fear or lack of motivation [54].
Consequently, defining the baseline measure for com-
parison remains a challenge and a suite of RTS tests have
been recommended [2].

Validity of RTS Tests

Content Validity

Content validity refers to how well a test protocol reflects
what it intends to measure [55, 56]. Selecting meas-
urement tools is important as unnecessary noise may
dampen the accuracy of the decision model. If the tests
selected are prone to false positives, clinicians may be
unnecessarily delaying the rehabilitation process of the
athlete [47].

Traditionally, in RTS decisions, clinicians would con-
sider internal athlete data (e.g., physical fitness, strength,
well-being, periodic health-screening, body-mass,
anthropometric, internal load responses) and external
factors such as training loads (e.g., running performance,
training and match exposure), the timing in the season,
and the importance of the game or training. However,
there seems to be a bias towards assessing variables that
are easily measured, and missing measures that may
be important, but more difficult to measure [57]. For
example, in the rehabilitation of an ACL injury, a clini-
cian may assess the hip, knee and ankle joint alignment
in jump and land testing to identify the extent of valgus
or varus movement. The assessment may provide valu-
able information regarding movement strategies and
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physical capabilities of the athlete; however, it may not
provide sufficient information regarding the performance
in competition. In competition, an athlete may encoun-
ter different chaotic and unpredictable scenarios, such
as unplanned movement tasks and under high opponent
pressure and cognitive load. Despite the best intentions
to design testing to be sports specific, the overall physi-
cal, psychological and emotional demands of a com-
petitive match could be hard to replicate. Consequently,
decision-makers may need to identify the content validity
of the test and decide to interpret the test result.

Predictive Validity

Predictive validity is how well a test predicts performance
on a criterion that is administered at a later date, such as
RTS outcome [56, 58]. Predictive validity is only available
for some of the tests such as hop tests [47, 59], single-leg
bridge test [60] and psychological readiness test [61]. For
most RTS tests, clinicians may not know whether pass-
ing the test means the athlete could achieve a satisfac-
tory RTS outcome or not. In a recent study, there was no
association between the predetermined functional per-
formance test cut-offs and the risk of a new ACL injury
[62]. Similar, the Landing Error Scoring System may not
predict the ACL injury risk in a cohort of high school and
college athletes [63].

Responsiveness of RTS Test

Responsiveness, or sensitivity, refers to how well a test
can detect meaningful changes in skill and functional
assessment [55]. While it is important to track progress,
recent evidence suggested that some common clinical
tests cannot accurately track meaningful gains in bio-
logical and functional recovery after injury [64—66]. The
time to normalise also differs. For example, in lower-limb
injury assessment, 6-m timed hop test returned to nor-
mal earlier than the other three single-leg hop tests (sin-
gle hop for distance, triple hop for distance and crossover
hop for distance) [47]. Similarly, in hamstrings strain
rehabilitation, straight leg raise returned to full at an early
stage as compared to maximum hip flexion with active
knee extension [64]. Limited literature is available to
inform what tests are most suitable for informing treat-
ment progression and rehabilitation progression [64].

Meaningful Change in RTS Test Result

One of the purposes of conducting RTS tests is to assess
the progression made in rehabilitation and to inform the
RTS decision [2]. Statistical tests could identify whether
the observed change in a particular RTS is due to true dif-
ference or the result of chance. The statistical tests, how-
ever, in isolation cannot indicate whether the change was
clinically meaningful or could be reliably distinguished
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from random error in the measurement [67]. As such,
there is a concept of “clinical significance” to describe
whether the change is both noticeable and meaningful
to the injured athlete. The clinically important differ-
ence refers to the difference in an outcome measure that
is clinically meaningful [68]. For example, the smallest
change required to detect a meaningful change beyond
typical error for 6-m timed hop test is 12.96% [69]. For
RTS tests where the data for meaningful change are una-
vailable, longitudinal tracking may help to identify a tra-
jectory for an informed decision [47].

Unknown Interaction Between Variables

In decision-making, there may be some pieces of infor-
mation missing, whether known or unknown. For
example, little is known about the linearity of soft tis-
sue healing [70] or how compensation movement makes
up quantitative symmetry (e.g., reaction and response
time). There are also variables that a clinician may have
not measured (e.g., knee movement in the worst chaotic
scenario) or could not be measured (e.g., knee move-
ment in an unplanned body contact or under extreme
fatigue). The lack of measurement of cognitive load and
sports-specific stimulus in rehabilitation may also expose
a potential flaw in RTS decision-making [57].

Part 2: Zoom Out to Identify the Decision-Making
Framework and Theories

You have gathered the information required and are
deciding your stance on whether the athlete is suitable to
return to play.

After gathering the information, here we zoom out to a
broader perspective on decision-making models relevant
to RTS. We first discuss a conventional RTS decision-
making framework, then introduce the normative and
descriptive decision models (Fig. 2). This allows clini-
cians an opportunity to see how a fully rational person
may decide (normative models) and to explain when the
decision could deviate from the norm (i.e., descriptive
models).

Decision making
frameworks

Normative

Decision making
theories

Descriptive

Fig.2 Overview of decision frameworks and theories
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RTS Decision-Making Frameworks

In 2010, Clover and Wall [71] introduced a guideline for
RTS decision-making. They proposed considerations for
clinical factors and functional athletic ability. Intangible
factors for RTS are also included, such as motivation of
the athlete, social support, psychological readiness, fear
of reinjury, insurance coverage and availability of reha-
bilitation team [71].

The first formal RTS decision-making guiding frame-
work, a 3-step decision-based model, was proposed
by Creighton et al. in 2010 [72]. The framework was
designed to guide decisions on when to clear an athlete
for full participation in sport without restriction. In 2015,
minor revisions were made to the 3-step framework and
it was renamed the Strategic Assessment of Risk and Risk
Tolerance (StARRT) [20].

The StARRT has been used to clarify the components
within and the sequence of decision-making and could
help to explain the hidden assumptions that clinicians
make in different clinical vignettes.

The process has three steps [72]:

Step 1 Evaluating health status. The health status of
the athlete is evaluated through medical factors, such
as symptoms, medical history, clinical objective tests
and severity of the injury.

Step 2 Evaluating participation risk. The risk of par-
ticipation is evaluated through the sport risk modi-
fiers, such as the type of injury or illness, age, types
of sports, level of play, the significance of upcoming
competition, social factors and financial cost.

Step 3 Risk tolerance modifiers. The final step to RTS
decision is a risk—benefit assessment by assessing the
risk tolerance modifiers. These modifiers can exist at
multiple levels (e.g., individual, interpersonal, organi-
sational, community and policy levels) and may shift
the decision-makers’ priorities and preferences. As a
result, RTS decision-making could be more compli-
cated than just a medical case.

The framework has helped make the decision-making
process transparent by guiding the key variables that the
clinician could consider [73]. However, the StARRT does
not intend to define or guide a high-quality decision-
making process. In the next section, various decision-
making theories are introduced in an attempt to explain
the decision-making process. Examples are provided to
illustrate some of the methods by which a RTS decision
could be reached.

Decision-Making Theories
In decision-making, normative models and descriptive
models form the two fundamental branches of decision
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theory [74]. Normative models are the system of rules
and standards for decision-making (i.e., how one should
make decisions). They have theoretical value and con-
cerns about how to make the best possible decision when
a person is fully rational and informed [74].

In contrast, descriptive models are psychological the-
ory that explains how people actually make judgements
and decisions [75]. Due to human behaviour, conflict
occurs between how we would like to reason (norma-
tive) and our temptation (descriptive) of taking a faster
or easier route in cognitive thinking. Descriptive mod-
els attempt to understand and explain the deviations
from normative models. Here we use an example to
illustrate the difference between normative and descrip-
tive approaches: an athlete with an injury may know
that alcohol could dampen recovery (a normative model
explains what the athlete should do). Despite this, the
athlete may still choose to drink at a party due to vari-
ous reasons (a descriptive model explains why the athlete
behaviour deviated from the normative model).

By comparing descriptive models to normative mod-
els, decision-makers may identify the potential deviations
from normative models and correct the deviations if nec-
essary. The section starts with normative models and is
followed by descriptive models.

Normative Models
Common normative models include rule-based theory
and explicit utility theory.

Rule-Based Theory The rule-based approach is where a
clinician decides based on a set of defined criteria [21, 22].
The assessment could be done on a binary scale (i.e., pass
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or fail). Table 1 illustrates a hypothetical example using
established criteria for ACL injury [22]. Here we assume
the relative importance and value assigned for all attrib-
utes are the same. The set of criteria includes seven tests,
incorporating both function and subjective outcomes to
reflect the overall knee performance. The passing crite-
rion for RTS is to score > 90% on the seven tests [22].

Example Inscenario 1, the athlete scored above 90% on
all tests below and is cleared to RTS. In scenario 2, not all
tests are passed and the athlete is not cleared to RTS (see
Table 1).

Expected Utility Theory ~Expected utility theory is a deci-
sion model that illustrates how one decides in uncertain
conditions, based onthe outcomes of different options and
the probability of each outcome [76, 77]. It assumes the
decision made is rational as it is based on an assessment of
the cost and benefit surrounding choices [78, 79]. Under
this theory, a clinician makes a decision based on the util-
ity (a subjective value assigned by the decision-makers)
of the outcomes of different options and the probability
(estimated likelihood) of each outcome [76, 77]. As with
other normative models, expected utility theory assumes
that decision-makers are fully rational in decision-making
and have access to complete information about probabili-
ties and consequences, in terms of time, resources and
knowledge [20]. Table 2 shows a hypothetical calculation
of weight utility value according to the same ACL RTS
guideline as above [22].

Example In Table 2, importance reflects how much the
clinician values a specific test, and this is represented

Table 1 Hypothetical example of RTS criteria assessment, with criteria based on Grindem et al. [22] A tick suggests that the athlete has

scored>90% on that test, while a cross represents < 90%

Tt Scenario 1 Scenario 2
>90% on all tests >90% on some tests only
Knee Outcome Survey—Activities of Daily Living Scale v v
Global Rating Scale of Function v v
Quadriceps Strength v v
Single Hop for Distance v v
Crossover Hop for Distance v
Triple Hop for Distance v
Decision outcome RTS
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Table 2 Hypothetical calculation using arbitrary units and utility value in ACL RTS, with criteria based on Grindem et al. [22], Limb

symmetry index (LSI)

Scenario 1 Scenario 2
>90% on all tests >90% on some tests only
Impo Weighted Weighted
Test (numerical ity o ity
u tl.llty (e ul
weight) Utility value (A
gh) A0 value (AU) value
(V) (7%
+10 +8
Knee Outcome Survey— . )
Achieved 0.90 Achieved 0.80
Activities of Daily Living 3 3*10=30 3*8=24
- (i.e., 90% of full (i.e, 80% of full
score) score)}
Global Rating Scale of 5 +10 +9 o
Function Achieved 0.90 Achieved 0.90
+10 +8
Quadriceps Strength 5 Achieved 0.90 LSI Achieved 0.80 LSI 40
(i.e., 90% of LSD (i.e., 90% of LSI)
+10 +8
Single Hop for Distance 4 32
Achieved 0.90 LSI Achieved 0.80 LSI
Crossover Hop for 5 +10 +7 35
Distance Achieved 0.90 LSI Achieved 0.70LSI |
Triple Hop for Distan 5 - 35
1] r L1 5
ot R Achieved 0.90 LSI
+10 +10
6-m Timed Hop 2 20
Achieved 0.90 LSI Achieved 0.90 LSI
Total 270 213

by a numerical weight. Utility value is based on the per-
formance of the test, with 10 the highest score possible
and O the lowest. In this case, achieving the goal of 90%
LSI would correspond to a score of 10. The weight utility
value is calculated by multiplying importance (numerical
weight) by utility value (AU). For example, an importance
of 3 and a utility value of 10 AU will give a weighted util-
ity value of 30 AU (3 x 10AU =30 AU). The highest pos-
sible weighted utility value in this example is 270AU and
the decision is made based on the sum of the weighted
utility value [80].

In scenario 1, the athlete achieved 90% on all the
tests (indicated as “achieved 0.90”) and the sum of the
weighted utility value is 270AU. The decision is RTS. In
scenario 2, some of the tests have not passed the 90%
threshold and the sum of the weighted utility value is
213AU. The weighted utility value has not reached the
requirement set by the clinician, and the athlete was not
cleared to RTS in scenario 2.
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Descriptive Models

Because humans are unlikely to be perfectly rational at
all times, decisions made could deviate from a normative
model. Systematic deviations from normative models are
known as biases [75]. By applying normative models to
the decisions made, decision-makers could look for pos-
sible biases and understand the nature of those biases
with descriptive models. Examples of descriptive models
include prospect theory, heuristics and bounded ration-
ality [74]. With a better understanding of the biases,
decision-makers could develop approaches to correct
them (de-bias) and improve the quality of the decisions.
The following section describes the common descriptive
theories and how a decision may stray from the previous
normative models.

Prospect Theory Prospect theory suggested that peo-
ple consider expected utility relative to a reference point
rather than the absolute outcome. It also suggested that
future gains and losses are asymmetrical, with losses hav-
ing a greater emotional impact than gains (i.e., humans
dislike losses more than potential gains).

Example In Table 2, the prospect theory would suggest
that the decision-maker does not necessarily make deci-
sions based on the absolute weight utility (ie., 270AU).
Instead, they would look at how far the expected utility
is relative to a reference point (which is unknown here).
If we adopt prospect theory in the context of RTS, a re-
injury (loss) may bring a more negative emotional impact
than winning (gain). While this may not be true in all
cases, it may be worth noting the potential deviations in
decision-making due to emotional distress.

Bounded Rationality Bounded rationality describes
how humans take reasoning shortcuts and make decisions
within the bounds imposed by the environment, ability,
information and goal [81]. The decision is rational; how-
ever, it is within the limits of information available to the
decision-maker. That is, due to the limitation in accessing
information, people tend to make sufficient judgements,
rather than optimal ones [82, 83]. (For more details, see
Gigerenzer and Goldstein [81] and Robertson and Joyce
[83].) In RTS, not all meaningful data are collected due
to various reasons, such as high cost, a lack of feasibility
and time. Therefore, the best outcome for a decision made
with unknown factors is not the same as decisions made
in the context of transparency [84].

Example  In the rehabilitation of an ACL injury, some
information will always be unknown due to factors such
as limitations in resources. This includes how we can
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accurately assess the degree of healing of the ACL graft
after a reconstruction surgery or measure the loading
capacity of the ACL. Consequently, the decision made
by the clinician in the vignette is only based on the infor-
mation available in Tables 1 and 2 and is limited by the
cognitive capacity, and the knowledge and choices of the
decision-maker.

Heuristic  Also known as a cognitive short cut, a heuris-
tic is a decision-making strategy to act more quickly or
frugally by ignoring parts of the information [85]. Heu-
ristics allow people to make a rapid, efficient judgement
without consuming a substantial amount of time, process-
ing capacity, or when information is incomplete.

Logically, a clinician’s decision for RTS would be
grounded in a more rational choice as described in nor-
mative models due to availability of time and opportu-
nity to gather additional information from test or other
staff members (e.g., doctors, coaches, fitness coach).
However, RTS decision-making can also be based on
heuristic decision-making, as seen when athletes make
decisions regarding RTS [86].

There are many types of heuristics that are used in
daily life [87]. Tversky and Kahneman [88] proposed
three classes of heuristics which people may rely on to
assess the probabilities of an uncertain event: availabil-
ity heuristic, representativeness heuristic and anchor-
ing and adjustment heuristic. In Table 3, we have
suggested examples of heuristics that may be of rel-
evance in RTS decisions. Heuristics sometimes may be
useful in reducing the complexity of a task in assessing
probabilities; however, it may also lead to systematic
errors [88].

Part 3: Preferences of the Decision-Makers

You have consolidated the information and have
weighed the risk and benefits of the medical clear-
ance. Understanding that you are bounded by the
information and knowledge available, you have
used the rule-based theory described in Table 1 as
the basis for decision-making. Based on scenario 1,
where the player has passed all of the tests, you have
decided that the player is clinically fit to return to
Sfull training. Using the StARRT framework as a ref-
erence, you would like to discuss your rationale and
other contextual factors with the athlete, coach and
manager, to reach a shared decision.

The StARRT framework helps clinicians make RTS
decisions based on whether the risk assessment outcome
exceeds the decision-maker’s risk tolerance[20]. That is, if
the risk assessment is lower than the risk tolerance after
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all factors are considered, the athlete may be cleared to
RTS. However, a low risk decision may not be synony-
mous with a high-quality decision.

In general medicine, it is recommended that the deci-
sion made by the clinician reflects the preferences of a
well-informed patient, with consideration of factual and
probabilistic health information [32, 90, 91]. There are
multiple dimensions to address, including characteris-
tics of the decision, knowledge and expectations of the
situation and treatment options and outcomes, personal
values and preferences, support and resources needed,
personal characteristics and clinical characteristics [29,
91-93].

Practically, there is no optimal measurement tool that
can measure the quality of the RTS decision based on the
performance outcome or the expected utility of the deci-
sion-makers. However, a clinician can improve the deci-
sion quality by ensuring the decisions are well-informed
and grounded in a shared decision-making approach.

Improving Decision Quality by Shared Decision-Making
Shared decision-making has been a best practice for
decision-making in the field of medicine [2, 94, 95]. It
respects multiple perspectives and also aims to minimise
disagreement due to conflicting interests.

Two phases characterise shared decision-making: 1)
deliberation (pre-decisional, the process leading to a
decision) and 2) determination (the act of decision) [96].
Deliberation is where knowledge is searched for, gained
and appraised. To improve the quality of the shared deci-
sion, both the deliberation and determination could be
evaluated [96]. An accurate judgment requires stakehold-
ers to first collaborate to decide on the definition of suc-
cess [2, 97]. Then decide on which pieces of information
to pay attention to, nominate weighting and integrate the
information [98]. This information may include the alter-
natives available, the advantages and disadvantages of the

A

Athlete Clinician

Deliberation

N { Determination

II"" (decision|
A A

Relevant Coach
staff
member

Fig.3 Shared decision model in sports, Adapted to RTS context from

Elwyn et al.[94]

Page 10 0f 16

alternatives, the nature of the decision, the associated
outcome and its likelihood [94, 96].

The second phase, determination, is to choose one
of the options [96]. The actual decision may occur in a
‘black box; where one combines the available information
in their own way without transparency or accountability
[99]. The lens decides how one interprets the “real” prob-
abilities, which could be obscured by one’s cognitive and
emotional influence. For example, how an athlete weighs
the importance of his or her sports career may affect how
the information is processed (Fig. 3).

Understanding the decision-making theories may allow
decision-makers to realise the normative approach and
thus engage in a high-quality and rational discussion dur-
ing deliberation.

The Perspectives of Decision-Makers

The keys to high-quality decision-making include
accounting for individual preferences, social and contex-
tual factors (e.g., the type of injury or illness, age, types
of sports, level of play, the significance of upcoming
competition and social factors and financial cost) [2, 32,
100, 101]. Social and contextual factors also impose con-
straints at multiple levels and influence the RTS decision,
including at individual, interpersonal, organisational,
community and policy levels [72, 73, 102]. The factors
may shift the athlete’s and decision-makers’ priorities and
preferences, which make decision-making more compli-
cated [20, 72].

Traditionally, clinicians are the gatekeeper of the RTS
decision [71, 103—107]. The clinician has skills in assess-
ing the injury-related criteria in RTS, including assessing
the state of healing, risk of re-injury and risk of short- or
long-term problems [96, 104, 108, 109]. Clinicians also
have an overriding duty of care to patients and a legal and
ethical obligation to act in a manner that is necessary and
appropriate to protect the health of an athlete.

However, with the addition of trainers, rehabilita-
tion coaches and performance coaches, clinicians are
no longer the only staff contributing to rehabilitation
and RTS decisions. It is questionable whether clinicians
should still be the main advisor for RTS decisions, given
the numerous non-medical factors to consider [97, 100,
103, 108, 110-113]. In a sports setting, a clinician may
even have dual allegiances, as the clinician does not work
exclusively for the patient, but also on behalf of the club
or organisation. They may experience pressure from
their employer (i.e., the sports organisation) to minimise
lay-off time and to clear an athlete as soon as possible.
As such, an inherent conflict of interest may present in a
professional sports team setting [114, 115].
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The following section discusses the general concerns
and considerations of the athlete and coaches to improve
communication transparency and to minimise conflicts.

Athlete

There are internal and external factors influencing how
an athlete may view the quality of the decision and lis-
tening to their opinions may be beneficial to inform the
final decision [101]. Internal factors include perception of
body, self-resentment [116, 117] and their emotional tie
to their sport [117]. External factors include sociocultural
influences, such as financial concerns, expectations from
family and friends and their given sport’s culture of risk
[118, 119]. Some athletes may face social pressure to per-
form [118]. Social pressure could be the pressure to meet
the expectations of peers, fans and coaches [116, 117,
120-122]. Shame and alienation from the team due to
injury may lead to low self-esteem and depression [120,
122,123].

There is limited evidence on how athletes approach
decisions about RTS, especially in a complex and risky
scenario. ‘Playing hurt’ is a common phenomenon across
different sports, age groups and performance levels [117—
119, 124, 125]. However, it is unclear how and when an
athlete would choose to play hurt.

In a recent study that investigated how athletes decide
on RTS [86], athletes would consider the relevance of the
competition (e.g., the importance of the competition),
potential sporting consequences (e.g., loss of the start-
ing position) and whether the risk of playing hurt could
be offset by some means (e.g., availability of protective
gear or possibility of being removed from play if pain
increases). If the medically safe alternative (e.g., with-
drawal from competition) does not have severe sporting
consequences (e.g., loss of starting position), the athlete
may opt for it. In contrast, if playing hurt may produce a
sporting consequence that the athlete cannot afford but
the risk of playing could be subjectively reduced, they
may choose to play hurt. Clinicians and coaches can be
influential in the athlete’s decision-making as clinicians
and coaches are likely to know about the sporting conse-
quences and the possibility of risk reduction.

As opposed to the risk analysis suggested in the nor-
mative StARRT framework [20], not all athletes attempt
to obtain information actively and comprehensively [86].
Therefore, it may be helpful for clinicians and coaches to
guide athletes through the information seeking process
and provide a full picture of the situation and the sport-
ing consequence.

Performance Coach and Manager
In some settings, coaches and managers could be the
decision-makers for RTS, and thus, it is important to
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have their perspective as well. Coaches and managers are
competent in assessing the non-injury-related RTS crite-
ria, such as the athlete’s desire to compete, psychological
impact, financial consideration and loss of competitive
standing [108].

Based on existing literature, some coaches believe they
have a responsibility to push the athlete to their limits,
mentally and physically to achieve excellence in perfor-
mance [126]. While some coaches act according to the
training restriction implemented to reduce injury risk
[122], some perceive prolonged or delayed RTS as harm-
ful to the overall and long-term performance of the ath-
lete [122]. Some coaches also believe clinicians are overly
cautious and delay RTS of athletes unnecessarily [122].
However, research is scarce and based on small sample
size, thus limiting generalisability.

To facilitate rehabilitation, coaches and managers may
help to remove the barriers arising from the social and
environmental context [127]. For example, they can
ensure that athletes have sufficient resources to access
adequate supervised rehabilitation. Coaches and manag-
ers can also ensure all relevant personnel are provided
with information regarding the injury and the rehabili-
tation progression. These actions may increase trans-
parency in communication and facilitate the decision to
include or exclude from the main training group [127].

There are times when clinicians might miss something
important without realising it. Shared decision-making
may help to minimise the blind spots by filling the miss-
ing gaps and broadening the perspectives.

Practical Implication

Based on a decision analysis model, we have outlined a
framework to help clinicians make systematic and objec-
tive RTS decisions. The first step is to choose appropriate
RTS tests and to synthesise the information in a mean-
ingful way. The second step is to understand the deci-
sion-making theories and identify possible deviations
from normative models. The third step is using shared
decision-making to improve decision quality by elimi-
nating the contextual ‘blind spots; such as an individual's
expectation, preference and value. We propose a frame-
work that clinicians could refer to when they decide on
RTS in a sports organisation (Fig. 4).

Future Research

Currently, there is limited evidence or expert knowledge
on how clinical decisions in sports are made, especially
for upper-limb injuries. While in principle, the decision-
making process of other sports injuries would be similar,
future research could also investigate upper-limb injuries,
for example, a shoulder dislocation injury. Similarly, there
is little attention paid to how heuristics may be present in
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e Zoom in: Review the methodological traps when deciding on the
quantity of tests to do and which tests to do. Acknowledge there are
some unknown factors and the limitations.

What do
others think?

Fig. 4 Three steps to making a high-quality RTS decision

* Zoom out: Identify the cognitive process of the decision making and be
aware of the potential deviations from a rational and objective decision.

» Perspectives: Involve other staff to make decisions together. Have an
understanding about their perspective first to better align priority and
values in the decision making.

sports medicine practice. Research is needed to identify
the heuristics used in clinical practice as limited work has
been done in the field. Strategies for better judgment and
decisions, such as reducing bias, are also required.

Another concern is the increasing number of data types
with the growth of sports technology. There is a certain
point where additional information no longer improves
a human’s ability to make better decisions [128]. The
human mind has an upper limit for information process-
ing capacity and is sufficiency sensitive to large incon-
sistencies, but not small ones [129, 130]. Providing more
information than the upper limit would only exhaust
one’s cognitive information capacity in decision-making,
potentially leading to overload, poor decision-making,
and dysfunctional performance [131]. Consequently,
there is an urge to identify tools that aid human brains in
making decisions.

Examples of these decision-making tools could be
statistics, mathematical modelling and artificial intel-
ligence (AlI) algorithms. In particular, machine learn-
ing techniques, a subfield of Al attracted attention for
their strength to transform a large amount of data into
useful knowledge and identify nonlinear patterns [132—
134]. In many cases, these external aids may comple-
ment or be superior to human performance [135-137].
Currently, the application of the above tools mostly
remains on the theoretical level. Future research may
explore how these tools may be applied on a practical
level.

Conclusion

The purpose of this review was to provide an overview
of RTS decision frameworks and what constitutes high-
quality decision-making. There is a lack of empirical
knowledge in RTS decision-making and the potential
adaptations within its process; most research focuses
on biological and medical factors. One of the strengths
of the review is to lay out the decision basis and hence
the transparency of a decision. Understanding deci-
sion-making theories in the context of RTS and poten-
tial deviations from normative decisions may improve
the work process and quality of decision-making. More
research is required to understand how decisions are
made and how to use computation tools to support and
improve decision quality.

Abbreviations

Al Artificial intelligence; ACL: Anterior cruciate ligament; LSI: Limb symmetry
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Tolerance.
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3.1 A framework for clinicians to improve decision making

process in return to sport.

3.1.1 Key points

e RTS decisions are complex, nonlinear and multifactorial and thus require external tools to assist

practitioners
e To improve the quality of decisions in sports settings, decision makers could evaluate the
following three domains: 1) assess the methodological soundness of the tests chosen, 2) identify

potential deviations from normative decision models and 3) implement shared decision making.

Keywords: decision making, decision, return to play, decision analysis, rehabilitation, RTS, RTP
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3.1.2 Abstract

Return-to-sport (RTS) decisions are critical to clinical sports medicine and are often characterised by
uncertainties, such as re-injury risk, time pressure induced by competition schedule and social stress
from coaches, families and supporters. RTS decisions have implications not only for the health and
performance of an athlete, but also the sports organisation. RTS decision making is a complex process,
which relies on evaluating multiple biopsychosocial factors, and is influenced by contextual factors. In
this narrative review, we outline how RTS decision making of clinicians could be evaluated from a
decision analysis perspective. To begin with, the RTS decision could be explained as a sequence of
steps, with a decision basis as the core component. We first elucidate the methodological considerations
in gathering information from RTS tests. Second, we identify how decision-making frameworks have
evolved and adapt decision making theories to the RTS context. Third, we discuss the preferences and
perspectives of the athlete, performance coach and manager. We conclude by proposing a framework
for clinicians to improve the quality of RTS decisions and make recommendations for daily practice

and research.

3.2 Introduction

Decision making is a process of weighing the risk(s) and benefit(s) among options to make a choice
(Burton et al., 2009, p. 301). In clinical practice, return-to-sport (RTS) decisions can be challenging as
they are directly linked to the athlete’s well-being and performance. RTS refers to the recovery and
rehabilitation continuum: return to participation, return to sport and return to performance (Ardern,

Glasgow, et al., 2016). This review focuses on how the quality of RTS decisions could improve.

Premature RTS may risk re-injury (Hagglund et al., 2016; Stares et al., 2018; Stares et al.,
2019), and subsequently harm the athlete’s playing performance (Walden et al., 2016), financial income
(Secrist et al., 2016) and mental health (Gouttebarge, Aoki, et al., 2016; Ruddock-Hudson et al., 2012).

Yet, if RTS is delayed for a lesser chance of reinjury, it will inevitably reduce a team’s player
60



availability. Reduced player availability is undesirable as players’ match availability is associated with
team performance across various sports (Arnason et al., 2004; Drew et al., 2017; Emery et al., 2011,
Héagglund et al., 2013; Hoffman et al., 2019; L. Podlog et al., 2015; Waldén et al., 2007). Consequently,
substantial pressure rests on the shoulders of decision makers to reach a decision that balances the best

interest of the athlete’s health and team performance.

When the context is predictable and routine, for example, when managing a tibia fracture on
the field, decision making could be straightforward and relegated to an automated level (i.e., remove
from play immediately). However, when there is a high level of uncertainty and complexity in the
context (e.g., to decide whether an athlete at 95% of recovery should play in the grand final), the ability

to make high-quality decisions is less clear, yet potentially even more crucial.

The challenge of complexity and the multifactorial nature of RTS decision making has been
acknowledged for over two decades (Putukian, 1998). A 1998 review by Putukian (1998) discussed
the concerns and struggles that clinicians have when making RTS decisions, which could be attributed
to the multifactorial nature and clinical uncertainty presented in medicine (Malcolm, 2009; Shrier et al.,
2010). The majority of the research focus since then has been mostly on developing decision-making
frameworks and clinical criteria for RTS. One of the most recognised decision-making frameworks is
the Strategic Assessment of Risk and Risk Tolerance (StAART) (Shrier, 2015). The framework,
together with the RTS criteria, help to guide the clinician’s practice. For example, in the management
of anterior cruciate ligament (ACL) injury, clinicians may refer to the established RTS criteria (Grindem
et al., 2016; Kyritsis et al., 2016) and consensus statements (Meredith et al., 2020; Rothrauff et al.,

2020).

In contrast to the vast literature on RTS criteria, there is less on how clinicians make RTS
decisions and how to improve the quality of the decision. This may be because this topic spans at least
two distinct fields: sports medicine and decision-making science. We aim to help clinicians

conceptualise the decision-making process, increase the thoughtfulness of a decision, identify potential
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deviations from normative decision models, and eventually establish a framework to improve the

quality of decision making.

3.2.1 Disentangling decisions and outcomes

The term decision refers to the action taken to reach a decision, and this is different from the
outcome of the decision (Gass, 1983; Vlek, 1984). A high-quality decision refers to a decision that is
logical and made based on the uncertainties, values and preferences of the decision maker (Howard,
2007). A good outcome is an outcome that the decision maker would wish to have happened and is of

high value to them (Howard, 2007).

A high-quality decision does not necessarily warrant a good outcome due to uncertainties. There
are multiple sources of uncertainties, and the two major categories prominent in the medical field are
aleatoric uncertainty and epistemic uncertainty (Indrayan, 2020). Aleatoric uncertainty is intrinsic to
the problem, for example, random variations that arise from observers or instruments. Epistemic
uncertainty is extrinsic and comes from limitations in knowledge, such as individual bias (Indrayan,
2020).

Distinguishing between decision and outcome allows clinicians to separate action from the
consequence, so they can focus on improving the quality of the action. Occasionally, clinicians may be
disappointed by a bad outcome in a good RTS decision, such as an athlete suffering from a re-injury
despite careful medical evaluation. Yet, in the pursuit of a good outcome, there may not be a better way
than striving for a high-quality decision. Therefore, in this paper, we focus on evaluating the decision,

and not on the outcome.

3.2.2 Evaluating a decision

There are various ways to evaluate a decision. The first approach is related to the outcome of
the decision, such as clinical health outcomes (e.g., pain, quality of life), or how regretful or satisfied

the patient is with the decision (Holmes-Rovner et al., 2007; Sepucha et al., 2013; Stacey et al., 2017).
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However, there is no consensus on the optimal measurement tool(s) for this purpose. The second
approach relates to the expected value of the outcome (i.e., expected utility), where probabilistic
information about the risk and benefits of personal preferences and values are considered (Hamilton et
al., 2017). The third approach is to consider the decision quality, which is measured by knowledge of
the options and outcomes, realistic perceptions of outcome probabilities, and agreement between
patients’ values and choices (Stacey et al., 2017). It may be challenging to measure the quality of a
decision with the first two approaches (i.e., outcome and expected utility) due to the complexity of a
RTS question. Nevertheless, evaluating the decision with the third approach — decision quality- may be

possible.

Decision analysis is a formal procedure for analysing decision problems by balancing the
factors that could influence a decision (Howard, 2007). To evaluate the decision quality, the decision
process could be made transparent by first breaking it down into a sequence of clear steps. We have
adapted a decision analysis model from Howard (Howard, 1988) to RTS to systematically evaluate a

decision (Figure 3.1).
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Figure 3.1 Steps for evaluating a RTS decision

The essence of decision analysis is eliciting the four bases for the decision (Howard, 1988):
1) The alternatives: relates to the options that a decision maker has. In the context of RTS after
an injury, it could be whether the athlete could return to full training/competition, modified
training or basic rehabilitation training.
2) The information: refers to knowledge that may be important to formulate the outcome. For
example, what information do RTS tests provide to the decision makers?
3) The decision models: includes models that describe how the decision could be made. That
is, on what basis can the decision be made?
4) The preferences: preferences of a decision maker could be of multiple dimensions. These
include the value (e.g., how much does RTS mean to the athlete or the team?), time preference
(e.g., how important is it to play in the upcoming game?) and risk preference (e.g., how much

re-injury risk can the team tolerate?).
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Among the four key bases for a decision (alternatives, information, decision models and
preferences), the alternatives are highly specific to the context and would be difficult to discuss from a
broader perspective. Therefore, we have structured this review around the other three bases for a RTS
decision: 1) information, 2) decision models and 3) preferences. We first zoom in on the methodological
issues of obtaining information in the medical room. Second, we zoom out to identify the decision
models relevant to RTS. Third, we discuss how preferences can be addressed with shared decision-

making. Finally, we propose a framework to improve RTS decision making in practice.

To increase the practicability of the framework and to help readers navigate the three bases for
the RTS decision, a case scenario describing an ACL injury is used. We use ACL injury because it is a
serious injury in sports that may threaten the career of athletes (Ekstrand, 2019; Walden et al., 2016).
Multiple clinical and performance tests have been developed to evaluate the readiness of the RTS
(Webster & Hewett, 2022), yet the re-injury risk of ACL remains high (Della Villa et al., 2021; Paterno

et al., 2014) and some athletes do not return to sports following the injury (Lai et al., 2018).

3.3 Part 1: Methodological concerns in information gathering

A football player, in her early career, has undergone an ACL reconstruction surgery six months ago
and is eager to return to play. She wants to play as soon as possible to gain a contract extension but is
also worried about getting reinjured. In the medical room, you sit with the player and decide on what

kind of test to perform on-field and off-field.

At the operational level, there are methodological considerations when gathering information for the

decision. Below we discuss some of the underlying assumptions and methods concerns.

3.3.1 Number of criteria used in RTS

In general, criteria-based RTS (e.g., muscle strength, functional and dynamic stability, and range of

motion) have been suggested over a time-frame approach, which is to decide solely based on the
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athlete’s time spent in rehabilitation (Hickey et al., 2017; Serner et al., 2020; Tassignon et al., 2019;
van der Horst et al., 2016; Zambaldi et al., 2017). The ideal number of tests to use for this purpose may
vary between cases. There are concerns that an insufficient number of tests may jeopardise the
clinician’s ability to see the complete profile of an injured athlete. However, too many tests may
increase the inherent error (e.g., athlete exhibiting reduced performance due to fatigue or reduced
motivation) and exhaust more resources (e.g., staff, time, equipment). Currently, there is no
recommendation for the ideal combination and number of tests to provide the most insight into the

athlete’s readiness for RTS.

3.3.2 Baseline setting in RTS

Returning to pre-injury levels of health and fitness is often seen as the goal of RTS (Ardern, Glasgow,
et al., 2016). Therefore, setting an appropriate baseline provides an ideal foundation for clinicians to
monitor progress by comparing the athlete's current functional and physical capacity with previous
preinjury data. However, it is challenging to set an objective, replicable and suitable baseline for the
setting. For example, currently, there is no guideline on the timing and frequency for performing
baseline tests. Adding more complexity to the problem, physiological and performance profiles often
fluctuate daily due to periodisation in training and competition schedule (e.g., heart rate variability
(Thorpe et al., 2015), musculoskeletal screening scores (Esmaeili, 2018), hip strength and flexibility

(Paul et al., 2014) and power (as in countermovement jump) (Thorpe et al., 2015).)

Here we used the limb symmetry index (LSI) as an example to illustrate the concerns with
baseline setting. LSI is often included in the RTS protocol for ACL injury (Davies et al., 2019;
Fitzgerald et al., 2000; Grindem et al., 2016; Munro & Herrington, 2011; Wellsandt et al., 2017). LSI
compares the performance of the involved limb with the uninvolved limb (Petschnig et al., 1998). Often,
a 90% side-to-side difference threshold is used as a passing score for RTS (Davies et al., 2019;
Fitzgerald et al., 2000; Munro & Herrington, 2011; Wellsandt et al., 2017). However, there is little

scientific evidence on the optimal threshold. Even when limb symmetry is achieved, it does not
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necessarily indicate the athlete has reached a level sufficient for safe sports participation and
performance (Wellsandt et al., 2017; Wren et al., 2018). It is also questionable whether the
uninvolved side could be used as the benchmark when pre-injury data are unavailable. After ACL
reconstruction surgery, patients have reduced single-leg hop performance of both the involved and
uninvolved side (Gokeler et al., 2017; Wren et al., 2018) and for up to 2 years after surgery (Chung
et al., 2015). This could be attributed to a combination of factors, such as deconditioning, fear or lack
of motivation (Chung et al., 2015). Consequently, defining the baseline measure for comparison
remains challenging and a suite of RTS tests have been recommended (Ardern, Glasgow, et al.,

2016).

3.3.3 Validity of RTS tests

3.3.3.1 Content validity

Content validity refers to how well a test protocol reflects what it intends to measure (Robertson,
Kremer, et al., 2017; Robertson et al., 2014). Selecting measurement tools is important as unnecessary
noise may dampen the accuracy of the decision model. If the selected tests are prone to false positives,

clinicians may unnecessarily delay the athlete's rehabilitation process (Davies et al., 2019).

Traditionally, in RTS decisions, clinicians would consider internal athlete data (e.g., physical
fitness, strength, well-being, periodic health screening, body mass, anthropometric, internal load
responses) and external factors such as training loads (e.g., running performance, training and match
exposure), the timing in the season, the importance of the game or training. However, there seems to be
a bias towards assessing variables that are easily measured, and missing measures that may be important
but more difficult to measure (Paul, 2020). For example, in rehabilitating an ACL injury, a clinician
may assess the hip, knee and ankle joint alignment in jump and land testing to identify the extent of
valgus or varus movement. The assessment may provide valuable information regarding the athlete's

movement strategies and physical capabilities; however, it may not provide sufficient information
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regarding the performance in competition. In competition, an athlete may encounter different chaotic
and unpredictable scenarios, such as unplanned movement tasks and under high opponent pressure and
cognitive load. Despite the best intentions to design sports-specific tests, the overall physical,
psychological and emotional demands of a competitive match could be hard to replicate. Consequently,
decision makers may need to identify the content validity of the test and decide to interpret the test

result.

3.3.3.2 Predictive validity

Predictive validity is how well a test predicts performance on a criterion that is administered at a later
date, such as RTS outcome (Ardern et al., 2013; Robertson, Kremer, et al., 2017). Predictive validity
is only available for some of the tests, such as hop tests (Davies et al., 2019; Paterno et al., 2017),
single leg bridge test (Freckleton et al., 2014) and psychological readiness test (Webster & Feller,
2018). For most RTS tests, clinicians may not know whether passing the test means the athlete could
achieve a satisfactory RTS outcome or not. A recent study found no association between the
predetermined functional performance test cut-offs and the risk of a new ACL injury (Faltstrom,
Hégglund, et al.). Similarly, the Landing Error Scoring System may not predict the ACL injury risk

in a cohort of high school and college athletes (Smith et al., 2011).

3.3.4 Responsiveness of RTS test

Responsiveness, or sensitivity, refers to how well a test can detect meaningful changes in skill and
functional assessment (Robertson et al., 2014). While it is important to track progress, recent evidence
suggested that some common clinical tests cannot accurately track meaningful gains in biological and
functional recovery after injury (Hegedus, McDonough, Bleakley, Cook, et al., 2015; Hegedus,
McDonough, Bleakley, Baxter, et al., 2015; Whiteley et al., 2018). The time to normalise also differs.
For example, in the lower limb injury assessment, the 6-m timed hop test returned to normal earlier than

the other three single-leg hop tests (single-hop for distance, triple hop for distance and cross-over hop
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for distance) (Davies et al., 2019). Similarly, in hamstrings strain rehabilitation, straight leg raise
returned to normal much earlier than the maximum hip flexion with active knee extension (Whiteley et
al., 2018). Limited literature is available to inform what tests are most suitable for reporting treatment

progression and rehabilitation progression (Whiteley et al., 2018).

3.3.5 Meaningful change in RTS test result

One of the purposes of conducting RTS tests is to assess the progression made in rehabilitation and to
inform the RTS decision (Ardern, Glasgow, et al., 2016). Statistical tests could identify whether the
observed change in a particular RTS is due to a true difference or the result of chance. The statistical
tests, however, in isolation cannot indicate whether the change was clinically meaningful or could be
reliably distinguished from random error in the measurement (Mann et al., 2012). As such, there is a
“clinical significance” concept to describe whether the change is noticeable and meaningful to the
injured athlete. The clinical significance refers to the difference in an outcome measure that is clinically
meaningful (Katz et al., 2015). For example, the smallest change required to detect a meaningful change
beyond typical error for 6-m timed hop test is 12.96% (Noyes et al., 1991). For RTS tests where the
data for meaningful change are unavailable, longitudinal tracking may help to identify a trajectory for

an informed decision (Davies et al., 2019).

3.3.6 Unknown interaction between variables

In decision making, some pieces of information may be missing, whether known or unknown. For
example, little is known about the linearity of soft tissue healing (Jarvinen et al., 2014) or how
compensation movement makes up quantitative symmetry (e.g., reaction and response time). There
are also variables that a clinician may not have measured (e.g., knee movement in the worst chaotic
scenario) or could not be measured (e.g., knee movement in an unplanned body contact or under extreme
fatigue). The lack of measurement of cognitive load and sports-specific stimulus in rehabilitation may

also expose a potential flaw in RTS decision making (Paul, 2020).
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3.4 Part 2: Zoom out to identify the decision-making framework

and theories

You have gathered the information required and are deciding your stance on whether the athlete is

ready to return to play.

After gathering the information, we zoom out to a broader perspective on decision-making
models relevant to RTS. We first discuss a conventional RTS decision-making framework, then
introduce the normative and descriptive decision models (Figure 3.2). This allows clinicians to see how
a fully rational person may decide (normative models) and to explain when the decision could deviate

from the norm (i.e., descriptive models).
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Figure 3.2 Overview of decision frameworks and theories

3.4.1 RTS Decision-making frameworks
In 2010, Clover and Wall (2010) introduced a guideline for RTS decision making. They proposed
considerations for clinical factors and functional athletic ability. Intangible factors for RTS are also

included, such as the athlete's motivation, social support, psychological readiness, fear of reinjury,
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insurance coverage and availability of rehabilitation staff members (Clover & Wall, 2010).

The first formal RTS decision-making guiding framework, a 3-step decision-based model,
was proposed by Creighton et al. in 2010 (Creighton et al., 2010). The framework was designed to
guide decisions on when to clear an athlete for full participation in sport without restriction. In 2015,
minor revisions were made to the 3-step framework and it was renamed the Strategic Assessment of
Risk and Risk Tolerance (StARRT) (Shrier, 2015). The StARRT has been used to clarify the
components within and the sequence of decision making, and could help to explain the hidden
assumptions that clinicians make in different clinical vignettes.

The process has three steps (Creighton et al., 2010):

Step 1: Evaluating health status. The athlete's health status is evaluated through medical factors,
such as symptoms, medical history, clinical tests and injury severity.

Step 2: Evaluating participation risk. The risk of participation is evaluated through the sport risk
modifiers, such as the type of injury or illness, age, types of sports, level of play, the significance of
upcoming competition, social factors and financial cost.

Step 3: Risk tolerance modifiers. The final step to RTS decision is a risk-benefit assessment by
assessing the risk tolerance modifiers. These modifiers can exist at multiple levels (e.g., individual,
interpersonal, organisational, community and policy levels) and may shift the decision makers’
priorities and preferences. As a result, RTS decision making could be more complicated than just a
medical case.

The framework has helped make the decision-making process transparent by guiding the key
variables that the clinician could consider (Shrier et al., 2015). However, the StARRT does not
intend to define or guide a high-quality decision-making process. In the next section, various
decision-making theories are introduced in an attempt to explain the decision-making process.

Examples are provided to illustrate some of the methods to reach a RTS decision.
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3.4.2 Decision-making theories

In decision making, normative models and descriptive models form the two fundamental branches of
decision theory (Bell et al., 1988). Normative models are the system of rules and standards for decision-
making (i.e., how one should make decisions). They have theoretical value and concerns about how to

make the best possible decision when a person is fully rational and informed (Bell et al., 1988).

In contrast, descriptive models are psychological theories explaining how people make judgements and
decisions (Baron, 2012). Due to human behaviour, conflict occurs between how we would like to reason
(normative) and our temptation (descriptive) to take a faster or easier route in cognitive thinking.
Descriptive models attempt to understand and explain the deviations from normative models. Here we
use an example to illustrate the difference between the normative and descriptive approaches: an athlete
with an injury may know that alcohol could dampen recovery (a normative model explains what the
athlete should do). Despite this, the athlete may still choose to drink at a party due to various reasons (a
descriptive model explains why the athlete's behaviour deviates from the normative model). By
comparing descriptive models to normative models, decision makers may identify the potential
deviations from normative models and correct the deviations if necessary. The section starts with
normative models and is followed by descriptive models. Common normative models include rule-

based theory and explicit utility theory.

3.4.2.1 Rule-based theory

The rule-based approach is where a clinician decides based on a set of defined criteria (Grindem
et al., 2016; Kyritsis et al., 2016). The assessment could be done on a binary scale (i.e., pass or fail).
Table 3.1 illustrates a hypothetical example using established criteria for ACL injury (Grindem et al.,

2016).
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Table 3.1 Hypothetical example of RTS criteria assessment, with criteria based on Grindem et al.

(2016). A tick suggests that the athlete has scored >90% on that test, while a cross represents

<90%.
Scenario 1 Scenario 2
Test
>90% on all tests >90% on some tests only
Knee Outcome Survey—Activities of Daily Living Scale v 4
Global Rating Scale of Function v 4
Quadriceps Strength v 4
Single Hop for Distance v 4
Crossover Hop for Distance v
Triple Hop for Distance v
6-m Timed Hop v
Decision outcome RTS

Here we assume the relative importance and value assigned for all attributes are the same. The
set of criteria includes seven tests, incorporating both function and subjective outcomes to reflect the
overall knee performance. The passing criterion for RTS is to score >90% on the seven tests (Grindem

etal., 2016).

Example: Based on the rule-based theory, in scenario 1, the athlete scored above 90% on all
tests below and is cleared to RTS. In scenario 2, not all tests are passed and the athlete is not cleared to

RTS (See Table 3.1).
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3.4.2.2 Expected utility theory

Expected utility theory is a decision model that illustrates how one decides in uncertain
conditions, based on the outcomes of different options and the probability of each outcome (Connolly
et al., 1999; Edwards, 1977). It assumes the decision made is rational as it is based on an assessment of
the cost and benefit surrounding choices (Ashby & Smith, 2000; Reyna & Rivers, 2008). Under this
theory, a clinician makes a decision based on the utility (a subjective value assigned by the decision
makers) of the outcomes of different options and the probability (estimated likelihood) of each outcome
(Connolly et al., 1999; Edwards, 1977). As with other normative models, expected utility theory
assumes that decision makers are fully rational in decision making and have access to complete
information about probabilities and consequences (Shrier, 2015). Table 3.2 shows a hypothetical
calculation of weight utility value according to the same ACL RTS guideline as above (Grindem et al.,

2016).

Table 3.2 Hypothetical calculation using arbitrary units and utility value in ACL RTS, with

criteria based on Grindem et al. (2016). Limb symmetry index (LSI).

Scenario 1 Scenario 2
>90% on all tests >90% on some tests only
Importance
Weighted Weighted
Test (numerical
utility Utility value utility
weight) Utility value (AU)
value (AU) value
(AU) (AV)
Knee Outcome +8
+10
Survey— Achieved 0.80
3 Achieved 0.90 3*10=30 3*8=24
Activities of Daily (i.e., 80% of full
(i.e., 90% of full score)
Living Scale score)
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Global Rating
3
Scale of Function
Quadriceps
5
Strength
Single Hop for
4
Distance
Crossover Hop for
5
Distance
Triple Hop for
5
Distance
6-m Timed Hop

Decision outcome

Example: In Table 3.2, importance reflects how much the clinician values a specific test, and

this is represented by a numerical weight. Utility value is based on the performance of the test, with 10
the highest score possible and O the lowest. In this case, achieving the goal of 90% LSI would
correspond to a score of 10. The weight utility value is calculated by multiplying importance (numerical
weight) by utility value . For example, an importance of 3 and a utility value of 10 will give a weighted
utility value of 30 arbitrary unit (AU) (3 x 10AU = 30 AU). The highest possible weighted utility value
in this example is 270AU (scenario 1) and the decision is made based on the sum of the weighted utility

value (Barber-Westin & Noyes, 2011).
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In scenario 1, the athlete achieved 90% on all the tests (indicated as “achieved 0.90”) and the
sum of the weighted utility value is 270AU. The decision is for the athlete to RTS. In scenario 2, some
of the tests have not passed the 90% threshold and the sum of the weighted utility value is 213AU. The
weighted utility value has not reached the requirement set by the clinician, and the athlete was not

cleared to RTS in scenario 2.

3.4.2.3 Descriptive models

Because humans are unlikely to be perfectly rational at all times, decisions made could deviate from a
normative model. Systematic deviations from normative models are known as biases (Baron, 2012). By
applying normative models to the decisions made, decision makers could look for possible biases and
understand the nature of those biases with descriptive models. Examples of descriptive models include
prospect theory, heuristics and bounded rationality (Bell et al., 1988). With a better understanding of
the biases, decision makers could develop approaches to correct them (de-bias) and improve the quality
of the decisions. The following section describes the common descriptive theories and how a decision

may stray from the previous normative models.

3.4.2.4 Prospect theory
Prospect theory suggests that people consider expected utility relative to a reference point rather than
the absolute outcome. It also suggests future gains and losses are asymmetrical, with losses having a

greater emotional impact than gains (i.e., humans dislike losses more than potential gains).

Example

In Table 3.2, the Prospect theory would suggest that the decision maker does not necessarily make
decisions based on the absolute weight utility (i.e., 270AU). Instead, they would look at how far the
expected utility is relative to a reference point (which is unknown here). In the context of RTS, a re-
injury (loss) may bring a more negative emotional impact than winning (gain). While this may not be

true in all cases, it may be worth noting how emotional distress affects decision making.
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3.4.2.5 Bounded rationality

Bounded rationality describes how humans take reasoning shortcuts and make decisions within the
bounds imposed by the environment, ability, information and goal (Gigerenzer & Goldstein, 1996). The
decision is rational, however, it is within the limits of information available to the decision maker. That
is, due to the limitation in accessing information and resources, people tend to make sufficient
judgements, rather than optimal ones (Robertson & Joyce, 2019; Simon, 1955). (For more details, see
Gigerenzer and Goldstein (1996) and Robertson and Joyce (2019)). In RTS, not all meaningful data are
collected due to various reasons, such as high cost, a lack of feasibility and time. Therefore, the best
outcome for a decision made with unknown factors is not the same as decisions made in the context of

transparency (Gigerenzer, 1999).

Example

In the rehabilitation of an ACL injury, some information will always be unknown due to factors such
as limitations in knowledge and resources. This includes how we can accurately assess the degree of
healing of the ACL graft after a reconstruction surgery or measure the loading capacity of the ACL.
Consequently, the decision made by the clinician in the above vignette is only based on the information
available in Table 3.1 and Table 3.2, and is limited by the decision maker’s cognitive capacity,

knowledge and preference.

3.4.2.6 Heuristic

Also known as a cognitive short-cut, a heuristic is a decision making strategy to act more quickly or
frugally by ignoring parts of the information (Gigerenzer et al., 2011). Heuristics allow people to make
a rapid, efficient judgement without consuming a substantial amount of time, processing capacity, and
when information is incomplete. Logically, a clinician’s decision for RTS would be grounded in a more
rational choice as described in normative models due to the availability of time and opportunity to

gather additional information from tests or other staff members (e.g., doctors, coaches, fitness coach).
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However, RTS decision making can also be based on heuristic decision making, as seen when athletes

make decisions regarding RTS (Mayer et al., 2020).

There are many types of heuristics that are used in daily life (Gigerenzer & Gaissmaier, 2011).

Tversky and Kahneman (Tversky & Kahneman, 1974) proposed three classes of heuristics that people

may rely on to assess the probabilities of an uncertain event: availability heuristic, representativeness

heuristic and anchoring and adjustment heuristic. In Table 3.3, we have suggested examples of

heuristics that may be of relevance in RTS decisions. Heuristics may sometimes be useful in reducing

the complexity of a task in assessing probabilities, however, it may also lead to systematic errors

(Tversky & Kahneman, 1974).

Table 3.3 Definitions and examples of heuristics in RTS.

Heuristics

Definition

Example

Possible deviations from the

normative model

Availability

People infer the
probability of an based
on how readily it comes
to mind (Tversky &

Kahneman, 1974)

A clinician assesses the
risk of injury of an
athlete by recalling the
recent

occurrences

within the team.

- Depending on whether the
clinician is familiar with the
injury and when it last
occurred, there may be recall
bias.

- The subjective injury risk may
rise temporarily when the
clinician sees there are multiple

players on the injured list.

Representativeness

People categorise by
matching the similarity

of an object or incident to

A clinician has an
impression that a female

athlete  demonstrating

- Evidence for screening tests
in predicting injury is limited

(Nilstad et al., 2021). The
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an existing one that has
already existed in our
minds  (Tversky &

Kahneman, 1974).

knee valgus movement
on a jump and land task
would suffer from lower

limb injury.

clinician's judgement may be
insensitive to the reliability and

predictability of the test.

Anchoring-

adjustment

People estimate based on
an initial value
(anchoring) and adjust to
yield the final answer

(adjustment) (Tversky &

Kahneman, 1974).

A clinician prioritises
information that
supports his or her
initial judgement of the
estimated time to RTS
and makes adjustments
based on the initial

value.

- A clinician may stick to the
initial hypothesis of the days
required for RTS even if new
evidence suggests conflicting
information.

- Even if the clinician decides
to adjust the estimation, it
would be biased toward the

initial value.

3.5 Part 3: Preferences of the decision makers

You have consolidated the information and weighed the risk and benefits of the medical clearance.

Understanding that you are bounded by the information and knowledge available, you have used the

rule-based theory described in Table 3.1 as the basis for decision making. Based on scenario 1, where

the player has passed all of the tests, you have decided that the player is clinically fit to return to full

training. Using the StARRT framework as a reference, you would like to discuss your rationale and

other contextual factors with the athlete, coach and manager, to reach a shared decision.

The StARRT framework helps clinicians make RTS decisions based on whether the risk

assessment outcome exceeds the decision maker’s risk tolerance (Shrier, 2015). That is, if the risk

assessment is lower than the risk tolerance after all factors are considered, the athlete may be cleared
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to RTS. However, a low risk decision may not be synonymous with a high-quality decision.

In general medicine, it is recommended that the decision made by the clinician reflects the
preferences of a well-informed patient, with consideration of factual and probabilistic health
information (Hamilton et al., 2017; Marteau et al., 2001; Sepucha et al., 2007). There are multiple
dimensions to address, including characteristics of the decision, knowledge and expectations of the
situation and treatment options and outcomes, personal values and preferences, support and resources
needed, personal characteristics and clinical characteristics (Jaffray & Wakker, 1993; Marteau et al.,

2001; O'Connor et al., 1998; Stacey et al., 2017).

Practically, no optimal measurement tool can measure the quality of the RTS decision based on
the performance outcome or the expected utility of the decision makers. However, a clinician can
improve the decision quality by ensuring the decisions are well-informed and grounded in a shared

decision-making approach.

3.5.1 Improving decision quality by shared decision making

Shared decision-making has been a best practice for decision making in the field of medicine (Ardern,
Glasgow, et al., 2016; Barry & Edgman-Levitan, 2012; Elwyn et al., 2012). It respects multiple

perspectives and also aims to minimise disagreement due to conflicting interests.

There are two phases in shared decision-making: 1) deliberation (pre-decisional, the process
leading to a decision) and 2) determination (the act of decision) (Elwyn & Miron-Shatz, 2010) (see
Figure 3.3). Deliberation is where knowledge is searched, gained, and appraised. To improve the shared
decision’s quality, deliberation and determination could be evaluated (Elwyn & Miron-Shatz, 2010). An
accurate judgment requires stakeholders to first collaborate to decide on the definition of success
(Ardern, Glasgow, et al., 2016; Dijkstra et al., 2017). Then, they can decide on which pieces of
information to pay attention to, nominate weighting and integrate the information (Montazemi et al.,

1996). This information may include the alternatives available, the advantage and disadvantages of the
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alternatives, the nature of the decision, the associated outcome and its likelihood (Elwyn et al., 2012;

Elwyn & Miron-Shatz, 2010).

The second phase, determination, is to choose one of the options (Elwyn & Miron-Shatz, 2010).
The actual decision may occur in a ‘black box’, where one combines the available information in their
own way without transparency or accountability (2014a). The lens decides how one interprets the “real”
probabilities, which could be obscured by one’s cognitive and emotional influence. For example, how
an athlete weighs the importance of his or her sports career may affect how the information is processed.
Understanding the decision-making theories may allow decision makers to realise the normative

approach and thus engage in a high-quality and rational discussion during deliberation.

A A

Athlete Clinician

""-\.\

Deliberation

Determination

S e e
A

Relevant Coach
staff
member

Figure 3.3 Shared decision model in sports. Adapted to RTS context from Elwyn et al. (2012).

81



3.5.2 The perspectives of decision makers

The keys to high-quality decision making include accounting for individual preferences, social and
contextual factors (e.g., the type of injury or illness, age, types of sports, level of play, the significance
of upcoming competition and social factors and financial cost) (Ardern, Glasgow, et al., 2016; Bolling
et al., 2018; Hamilton et al., 2017; McCall et al., 2017). Social and contextual factors also impose
constraints at multiple levels and influence the RTS decision, including at individual, interpersonal,
organisational, community and policy levels (Creighton et al., 2010; Gruskin et al., 2013; Shrier et al.,
2015). The factors may shift the athlete’s and decision makers’ priorities and preferences, which make

decision making more complicated (Creighton et al., 2010; Shrier, 2015).

Traditionally, clinicians are the gatekeeper of the RTS decision (Clover & Wall, 2010; Ekstrand
et al., 2019; Gabbett & Whiteley, 2017; Herring et al., 2012; Gordon O Matheson et al., 2011; McCall
et al., 2016). The clinician has skills in assessing the injury-related criteria in RTS, including assessing
the state of healing, risk of re-injury and risk of short- or long-term problems (Elwyn & Miron-Shatz,
2010; Herring et al., 2012; Shrier et al., 2014; Shultz et al., 2013). Clinicians also have an overriding
duty of care to patients and a legal and ethical obligation to act in a manner that is necessary and

appropriate to protect the health of an athlete.

However, with the addition of trainers, rehabilitation coaches, and performance coaches,
clinicians are no longer the only staff contributing to rehabilitation and RTS decisions. It is questionable
whether clinicians should still be the main advisor for RTS decisions, given the numerous non-medical
factors to consider (Ardern, Bizzini, et al., 2016; Creighton et al., 2012; Dijkstra et al., 2017; Dunlop et
al., 2019; Gordon O Matheson et al., 2011; Gordon O. Matheson et al., 2011; McCall et al., 2017; Shrier
et al., 2014). In a sports setting, a clinician may even have dual allegiances, as the clinician does not
work exclusively for the injured athlete, but also on behalf of the club or organisation. They may

experience pressure from their employer (i.e., the sports organisation) to minimise lay-off time and to
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clear an athlete as soon as possible. As such, an inherent conflict of interest may present in a professional

sports team setting (Stovitz & Satin, 2006; Testoni et al., 2013).

The following section discusses the general concerns and considerations of the athlete and

coaches to improve communication transparency and minimise conflicts.

35.2.1 Athlete

Internal and external factors influence how an athlete may view the quality of the decision, and
listening to their opinions may be beneficial to inform the final decision (Bolling et al., 2018). Internal
factors include perception of the body, self-resentment (Podlog & Eklund, 2006; Young et al., 1994)
and their emotional tie to their sport (Podlog & Eklund, 2006). External factors include sociocultural
influences, such as financial concerns, expectations from family and friends and their given sport’s
culture of risk (Mayer et al., 2018; Mayer & Thiel, 2018). Some athletes may face social pressure to
perform (Mayer & Thiel, 2018). Social pressure could be the pressure to meet the expectations of peers,
fans and coaches (Podlog & Eklund, 2006; Podlog & Eklund, 2007; Leslie Podlog et al., 2015; Wiese-
bjornstal et al., 1998; Young et al., 1994). Shame and alienation from the team due to injury may lead

to low self-esteem and depression (Nixon, 1993; Podlog & Eklund, 2007; Wiese-bjornstal et al., 1998).

There is limited evidence on how athletes approach decisions about RTS, especially in a
complex and risky scenario. ‘Playing hurt” is a common phenomenon across different sports, age groups
and performance levels (Mayer et al., 2018; Mayer & Thiel, 2018; Podlog & Eklund, 2006; Roderick
et al., 2000; Schubring & Thiel, 2014). In a recent study that investigated how athletes decide on RTS
(Mayer et al., 2020), athletes would consider the relevance of the competition (e.g., the importance of
the competition), potential sporting consequences (e.g., loss of the starting position) and whether the
risk of playing hurt could be offset by some means (e.g., availability of protective gears or possibility
to be removed from play if pain increases). If the medically safe alternative (e.g., withdrawal from
competition) does not have severe sporting consequences (e.g., loss of starting position), the athlete

may opt for it. In contrast, if playing hurt may produce a sporting consequence that the athlete cannot
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afford, but the risk of playing could be subjectively reduced, they may choose to play hurt. Clinicians
and coaches can influence the athlete’s decision making as clinicians and coaches are likely to know

about the sporting consequences and the possibility of risk reduction.

As opposed to the risk analysis suggested in the normative StARRT framework (Shrier, 2015),
not all athletes attempt to obtain information actively and comprehensively (Mayer et al., 2020).
Therefore, it may be helpful for clinicians and coaches to guide athletes through the information-seeking

process and provide a full picture of the situation and the sporting consequence.

3.5.2.2 Performance coach and manager

In some settings, coaches and managers could be the decision makers for RTS and thus it is
important to have their perspective as well. Coaches and managers are competent in assessing the non-
injury related RTS criteria, such as athlete’s desire to compete, psychological impact, financial

consideration and loss of competitive standing (Shrier et al., 2014).

Based on existing literature, some coaches believe they are responsible for pushing the athlete
to their limits, mentally and physically, to achieve excellence in performance (Nixon, 1994). While
some coaches act according to the training restriction implemented to reduce injury risk (Podlog &
Eklund, 2007), some perceive prolonged or delayed RTS as harmful to the athlete's overall and long-
term performance (Podlog & Eklund, 2007). Some coaches also believe clinicians are overly cautious
and delay RTS of athletes unnecessarily (Podlog & Eklund, 2007). However, research is scarce and

based on a small sample size, thus limiting generalisability.

To facilitate rehabilitation, coaches and managers may help to remove the barriers arising from
the social and environmental context (Walker et al., 2020). For example, ensuring athletes have
sufficient resources to access adequate supervised rehabilitation. Coaches and managers can also ensure
all relevant personnel are provided with information regarding the injury and the rehabilitation

progression. These may increase transparency in communication and facilitate the decision to include
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or exclude from the main training group (Walker et al., 2020). There are times when clinicians might
miss something important without realising it. Shared decision-making may help to minimise the blind

spots by filling the missing gaps and broadening the perspectives.

3.6 Practical implication

Based on a decision analysis model, we have outlined a framework to help clinicians make systematic
and objective RTS decisions. The first step is to choose appropriate RTS tests and to synthesise the
information in a meaningful way. The second step is to understand the decision-making theories and
identify possible deviations from normative models. The third step is using shared decision-making to
improve decision quality by eliminating the contextual ‘blind spots’, such as individual’s expectations,
preferences and values. We propose a framework that clinicians could refer to when they decide on

RTS in a sports organisation (Figure 3.4).

85



* Zoom in: Review the methodological traps when deciding on the
quantity of tests to do and which tests to do. Acknowledge there are
What to test?  sO0me unknown factors and the limitations.

+ Zoom out: Identify the cognitive process of the decision making and be
aware of the potential deviations from a rational and objective decision.

How to
think?
+ Perspectives: Involve other staff to make decisions together. Have an
understanding about their perspective first to better align priority and
What do values in the decision making.
others think?

Figure 3.4 Three steps to making a high-quality RTS decision

3.6.1 Future research

Currently, there is limited evidence or expert knowledge on how clinical decisions in sports are
made, especially for upper limb injuries. While in principle, the decision-making process of other sports
injuries would be similar, future research could also investigate upper limb injuries, for example, a
shoulder dislocation injury. Similarly, there is little attention paid to how heuristics may be present in
sports medicine practice. Research is needed to identify the heuristics used in clinical practice, as limited
work has been done in the field. Strategies for better judgment and decisions, such as reducing bias are

also required.

Another concern is the increasing number of data types with the growth of sports technology.
At a certain point, additional information no longer improves a human’s ability to make better decisions

(Gldckner et al., 2012). The human mind has an upper limit for information processing capacity and is
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sufficiently sensitive to large inconsistencies, but not small ones (Saaty & Ozdemir, 2003; Simon,
1957). Providing more information than the upper limit would only exhaust one’s cognitive information
capacity in decision-making, potentially leading to overload, poor decision-making, and dysfunctional
performance (Cowan, 2001). Consequently, there is an urge to identify tools that aid human brains in

making decisions.

These decision-making tools include statistics, mathematical modelling and artificial
intelligence (Al) algorithms. In particular, machine learning techniques, a subfield of Al, attracted
attention for their strength in transforming a large amount of data into useful knowledge and identifying
nonlinear patterns (Bittencourt et al., 2016; Edouard et al., 2020; Witten et al., 2011). In many cases,
these external aids may complement or be superior to human performance (Bate et al., 2012; Grove et
al., 2000; Maymin, 2017). Currently, applying the above tools mostly remains on the theoretical level.

Future research may explore how these tools may be applied on a practical level.

3.7 Conclusion

The purpose of this review was to provide an overview of RTS decision frameworks and what
constitutes high-quality decision making. There is a lack of empirical knowledge in RTS decision
making and the potential adaptations within its process; most research focuses on biological and medical
factors. One of the strengths of the review is to lay out the decision basis and hence the transparency of
a decision. Understanding decision-making theories in the context of RTS and potential deviations from
normative decisions may improve the work process and quality of decision making. More research is
required to understand how decisions are made and how to use computation tools to support and

improve decision quality.
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4 Chapter Four: Study 11

Chapter overview
Chapter Four is the second of the four studies contained in this thesis. This study is a narrative review
that provides an overview of the hallmark features of complex systems and their relevance to RTS

research and daily practice.

The content of this chapter is an accepted manuscript of an article published by Springer Open

in Sports Medicine — Open on 22" February, 2022, available at: https:/sportsmedicine-

open.springeropen.com/articles/10.1186/s40798-021-00405-8.

Clinical relevance

There is a growing recognition that most sporting environments are complex adaptive systems and this
acknowledgement extends to sports injury, rehabilitation and RTS decisions. Through the complex
systems lens, clinicians may have a broader perspective of the overall picture and acknowledge the
potential linear and nonlinear interaction between the variables. The increased awareness of complex

systems and its relevance to RTS may help clinicians improve decision quality

88


https://sportsmedicine-open.springeropen.com/articles/10.1186/s40798-021-00405-8
https://sportsmedicine-open.springeropen.com/articles/10.1186/s40798-021-00405-8

Yung et af Sports Medicine - Open (2022) 8:24
https://doi.org/10.1186/s40798-021-00405-8

Sports Medicine - Open

REVIEW ARTICLE Open Access

o : ®
Characteristics of Complex Systems in Sports ==
Injury Rehabilitation: Examples and Implications

for Practice

Kate K. Yung'"®, Clare L. Ardern®>*@®, Fabio R. Serpiellc’® and Sam Robertson'

Abstract

Complex systerns are open systems consisting of many components that can interact among themselves and the
environment New forms of behaviours and patterns often emerge as a result, There is a growing recognition that
most sporting environments are complex adaptive systems. This acknowledgerment extends to sports injury and is
reflected in the individual responses of athletes to both injury and rehabilitation protocols, Consequently, practition-
ers involved in return to sport decision making (RTS) are encouraged to view return to sport decisions through the
complex systems lens to improve decision-rmaking in rehabilitation. It is important to clarify the characteristics of this
theoretical framework and provide concrete examples to which practitioners can easily relate, This review builds on
previous literature by providing an overview of the hallmark features of complex systems and their relevance to RTS
research and daily practice, An example of how characteristics of complex systerns are exhibited is provided through
a case of anterior cruciate ligament injury rehabilitation, Alternative forms of scientific inguiry, such as the use of com-
putational and simulation-based techniques, are also discussed—to move the complex systems approach from the

theoretical to the practical level,

Keywords: Cornplexity, Return to sport, Return to play, Decision making, Machine learning, Bayesian network

Key Points

+ Complex systems have distinct properties, such as
nonlinearity, emergence and adaptation. Sixteen
features of complex systems have been identified in
sports injury rehabilitation.

+ Rehabilitation practitioners may connect complex
systems theory with their operations in the sports
setting.

*Correspondence: kalyung@liveyu.edu.au
Tinstitute for Health and Sport, Victoria University, Melbourne, Australia
Fulllist of author information is available at the end of the article

A Springer Open

Challenges in Return to Sport Decision Making
Return-to-sport (RTS) can challenge health professionals,
coaches (i.e., practitioners) and athletes. In competitive
sports, where marginal gains in performance are sought,
athletes and practitioners often weigh risks and benefits
when making the RTS decisions. In a team sports setting,
full availability of players allows greater flexibility in tac-
tical planning, such as deciding the best team formation
based on the opponent’s playing style. Player availabil-
ity is linked to performance [1-3] and could reduce the
financial burden on the team [4, 5].

Research on RTS decision making largely focuses on
identifying a criteria list based on biological factors and
on whether the athlete has returned to baseline per-
formance level (e.g., Grindem et al. [6], Stares et al. [7],
and Kyritsis et al. [8]). This approach has assisted prac-
titioners in being transparent in the decision process,
for instance, to grant a medical clearance. However,
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permits use, sharing, ada ptation, distribution and reproduction in any mediumn or format, as long as you give apprapriate credit to the
original author(s) and the saurce, provide a linkto the Creative Cornmons licence, and indicate if changes were made. The images or

otherthird party material in this article are included in the article’s Creative Cornmons licence, unless indicated otherwise in a credit line
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Fig.1 A multilevel system map with factors related to return to sport decision in anterior cruciate ligament injury
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underlying complexity and the high degree of interlinks,
independencies, and temporal components also need
consideration. For example, the same criteria may not
apply to athletes of a different mental state, age group or
playing level. Furthermore, non-linearity is commonly
seen in the context of sports. As an example, most foot-
ball fans would know that a team composed of the best-
skilled players, does not necessarily produce the best
performance. Instead, the outcome is highly dependent
on the interplay of tactical, physiological, social and even
emotional factors. Similarly, it may be beneficial to view
RTS more than simply addressing a set of predefined RTS
criteria, or achieving an arbitrary numerical change in a
performance test.

To address these limitations and objectives, we propose
an approach using the complex systems theory. Recent
work from Bittencourt et al. [9] has raised awareness of
the theory and more could be done to clarify the charac-
teristics of complex systems and to increase the practical
utility of the complex systems approach. Consequently,
this paper builds on the work of Bittencourt et al. [9] and
aims to (1) clarify the terminologies in the complex sys-
tems approach and adapt them for sports, (2) provide
examples relevant to rehabilitation and (3) introduce
tools that can model the complexity and increase practi-
cal utility in applied settings.

What is a Complex Systems Approach?

A Complex Systems Approach to Decision Making in Sports
Medicine

The complex systems theory, with more than 50 years
of history [10], acknowledges the multifaceted nature of
sports and seeks to understand the interactions among
different factors and the outcomes of the systems [9, 11].
Complex systems are dynamic, open systems [12]. They
are characterised by non-linearity due to feedback loops
and interaction among the factors. This means that out-
puts are not always proportional to the inputs, and a
small adjustment may lead to a large change in the sys-
tems and vice versa [13].

In complex systems, factors that interact with each
other to form the systems are known as units [12]. In
the context of RTS, these units could include age, well-
ness, biological healing of injured tissue, stress, external
pressure and injury history. The units interact and define
the space and dimension of the systems [14]. Conse-
quently, different systems within systems emerge. These
systems may be categorised based on their nature, for
example, biomechanical, physiological and psychologi-
cal. They may also be hierarchical and of multiple levels,
namely individual, organisational and environmental (see
Fig. 1). The individual level represents factors related to
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the individual athlete, from tissue healing to personal
traits. The organisational level represents external factors
related to the sporting club, organisation and support
team, e.g., the coaching and medical team. The environ-
mental level covers factors beyond the organisational
level, such as the weather, playing schedule and competi-
tion level.

In recent years, the complex systems approach has
gained momentum and has been used to understand
sports injury occurrence [9, 15] and behaviour in sports
performance [16-19]. However, the terminologies used
in complex systems are often less familiar to practitioners
and could be easily confused with merely complicated or
mudtifactorial. Most studies recognize the importance of
considering multiple factors in determining readiness for
RTS or in the context of injury recognition [6, 8, 9, 20—
26], but more work is required to raise awareness on why
the lens of complex systems approach should be adopted
by practitioners in rehabilitation.

Applying a Complex Systems Model for ACL rehabilitation
This paper provides examples based on the 16 common
features of complex systems recently illustrated by Boeh-
nert et al. [27]. They are adapted for the context of sports
in Table 1, with examples illustrated mainly from an ante-
rior cruciate ligament (ACL) injury.

An ACL injury is used here as the case illustration as
it is a serious injury that may threaten the career of an
athlete [28, 29]. The estimated annual medical cost asso-
ciated with ACL reconstruction surgery in Australia was
over A$75 million per year [30]. Currently, there is no
consensus regarding the optimal functional rehabilitation
criteria [20] and objective physiological RTS criteria [31].
Despite ACL injuries being one of the most researched
topics in the sports medicine literature [32], the re-injury
risk of ACL remains high [33, 34]. The complexity within
ACL RTS may be explained at the individual, organisa-
tional and environmental levels.

Implications for Practice and Future Research

By illustrating the features of complex systems with a
common sports injury, we highlight their practical util-
ity in RTS. The complex systems approach provides a
theoretical framework for interpreting the patterns that
emerge from biopsychosocial and other external fac-
tors. In ACL rehabilitation, conducting independent
clinical tests and functional assessments may provide
useful information regarding the athletes” physical and
mental status. However, a complex systems approach
facilitates a more complete picture of the problem and
an increased awareness of how different factors may
interact.

Page 3of 15

There are two challenges on using the complex systems
approach: (1) the high degree of complexity may deter
practitioners who do not have formal training in handling
large and complex datasets from using this approach, (2)
Unlike studying in a controlled laboratory environment,
it is near impossible to isolate a portion of the larger
systems (i.e., isolation of the biological healing process
from broader biopsychosocial factors). Fortunately, many
computer-based decision support systems now have the
capability of incorporating features of complex systems
in their design and utility. For example, to operationalise
one of the above features, “change over time’, the working
model can allow flexibility in updating the baseline and
encourage repeated testing at multiple time points during
the rehabilitation. We believe practitioners who develop
an understanding of complex systems will be well-posi-
tioned to efficiently articulate their needs with analysts
and ultimately develop decision support systems that
inform best practices (e.g., RTS decision making).

Computer simulation (e.g., agent-based modelling),
machine learning and Bayesian network (BN) analyses
are all potential tools for analysing both non-complex or
complex systems [35]. These methods can consider the
dynamic interaction at multiple levels simultaneously,
consequently viewing RTS more completely and sup-
porting decision making. These analytical tools may help
to achieve the following: (1) allow practitioners to study
and compare the potential outcome (e.g., likelihood of
reinjury) of different decisions that are otherwise almost
impossible to test safely in real life, (2) increase the deci-
sion efficiency by learning from previous experience and
streamlining data from multiple sources and formats,
(3) identify patterns in data that may cause a certain
outcome.

These techniques can be used to construct clinical
decision support systems, which may complement or
be superior to human decisions. In a review of seventy
studies, a decision support system improved clinical
practice in 68% of trials [36]. These decision support sys-
tems have also provided more accurate diagnoses than
human experts in some medical fields [37, 38]. Yet, the
application of these approaches in RTS is still scarce in
the literature. As such, we have provided a vignette here
to outline how machine learning techniques and Bayes-
ian networks could be applied to support RTS decision
making: a 30-year-old professional female football player
tore her hamstring 10 days ago during the season and
a grade Il hamstring strain was diagnosed. There is an
important match in 2 weeks and there are six relevant
questions, as covered in the below sections, which the
practitioners and the coach would like to ask. Ultimately,
the coach would like to know as early as possible about
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the availability of the player so that they could plan the
players’ list and hence the game strategy.

Machine Learning Techniques

As a subfield of artificial intelligence (Al), machine learn-
ing focuses on the use of data to train algorithms that
can make classifications or predictions [39, 40]. That is,
it could recognise new meaningful correlations, patterns
and trends in a large amount of data [41]. Not only are
machine learning techniques suitable for non-complex
analysis, but they can also accommodate multi-dimen-
sional analysis in sport [42, 43]. New data could also be
input into the model for it to learn and improve the task,
leading to refinement of skills [40].

The goals of machine learning techniques in sports
medicine setting can be divided into predictive and
descriptive modelling [44]. Specifically, predictive model-
ling can be used for injury prognosis, diagnosis, and reha-
bilitation planning. Descriptive modelling can be used to
characterize the general property of an injury, such as its
severity, as well as include hypotheses of causality. How-
ever, as with traditional statistical approaches, machine
learning techniques are simply a method for analysing
the data, providing a prescriptive or descriptive output.
Tor understanding and estimating causal relationships,
appropriate study designs are required, for example,
randomised controlled trials. Machine learning is often
characterised by five major approaches (i.e., association,
classification, clustering, relationship modelling and rein-
forcement learning), each having already been applied for
injury risk assessment and/or performance prediction in
sports [45-49]. Each of these approaches could serve as
the methods to answer questions relevant to RTS.

Question 1: Should the Athlete Progress to Full Training?
Scenario The athlete has completed 10 days of reha-
bilitation training. The practitioners would like to assess
whether the athlete is ready to progress to full training.
An association approach could be used here, using the
rule-based system (Table 2).

Rule-based approaches identify meaningful and fre-
quent patterns between variables in a large dataset [50].
Often less identifiable by the practitioner, the rules may
help them identify patterns that indicate optimal rehabil-
itation combinations of variables by flagging both com-
monly occurring and meaningful patterns in data.

In the above hypothetical example, a multivariate anal-
ysis of rules associated with a rehabilitation outcome is
conducted. The model was set to only produce 3 catego-
ries of rules that contained the rehabilitation outcome
as a result (ie., ready for full training, not yet ready and
unchanged). These could be the three rules most strongly

Page 7 of 15

associated with the rehabilitation outcome. A tick rep-
resents the presence of the context within the rule. The
system could identify the number of rules required based
on previous rehabilitation experience and to implement
the rules when the complexity of the content is beyond
human brain capacity. An increased number of rules
may better represent complexity; however, it may poten-
tially make the solution more difficult to operationalize
practically.

Question 2: What is the Likelihood that the Athlete Could
Return to the Pre-injury Level Given the Current Level

of Training?

Scenario There are only 2 weeks until an important
match. The coach would like to know the likelihood that
the athlete could return to pre-injury level by then. Given
the volume of high-speed running training that the ath-
lete has completed, a classification method could be used
to identify the likelihood (Table 3).

A decision tree uses dichotomous divisions to create
the classification algorithm. Representing the rules, the
decision tree could be used to develop a clinical decision
algorithm for RTS [49, 51]. Each node denotes a test on
an attribute value and each branch represents an out-
come of the test, with the leaves representing the class,

The above is a graphical representation of the decision
tree that used a classification algorithm to identify the
probability of RTS from a hamstring injury. Each node
is associated with a rule condition, which branches off
to the child node. In this example, the outcome of RTS
is likely a non-linear relationship with the training vol-
ume and mental readiness, which is a characteristic of
the complex systems approach (see Table 1, example 5).
Using the classification approach may help to include
non-linearity into analyses.

Question 3: When is the Athlete Expected to Return to Sport?
Scenario The coach would like to know when the athlete
is expected to RTS based on the experience of the clini-
cian and also accounting for the athlete’s age. Clustering
technique could be used to analyse the past data.

Clustering allocates data points into groups that share
similar or dissimilar features [52]. In RTS, this may be
useful in the allocation of multiple athletes to training
groups. This could be done for clinical presentation, play-
ing position, demographics, or inter-and intra-personal
factors.

Table 4 visualizes one of the multiple approaches to
which injured athletes could be clustered. Each dot rep-
resents an injured athlete and is coloured based on their
severity. Size represents a measure of each athlete’s age,
with a larger size representing older age. They are further
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Table 2 The association approach to determine should the athlete progress to full training

Rule 1 Rule 2 Rule 3 Rule... Decision

Range of motion full Limb asymmetry index 100% Training load >100% match

requirement

v v x - Continue current

rehabilitation

Table 3 The classification approach to identify the likelihood for an athlete to RTS

Approach Classification

Task Supervised

Technique Decision tree and random forest
Qutput type Categorical or continuous

Examples: ready to compete, not yet ready to compete
Application example

RTS at preinjury level:
40%
Non RTS: 60%

RTS at preinjury level:
80%

Nen RTS: 20%

[ sss% | [ sss% |

RTS at preinjury

level: 65%
Non RTS: 55%

grouped into three different clusters, representing the  Question 4: The Athlete has a High Level of Mental

severity and time to RTS. In this hypothetical example,  Readiness. Would that Change the Level of Confidence About

the model output is the predicted days to RTS. However,  the Athlete’s Readiness to Play in an important Game?

it could also be designed to produce categorical outputs  Scemario From the clustering approach, the coach has

such as being ready to train or not yet ready to train. considered that the athlete may require at least 2 weeks
to return to competition at pre-injury level. However, the
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Table 4 The clustering approach to identify when the athlete may return to sport

Approach Clustering

Task Unsupervised
Technique K-nearest neighbours
Qutput type Categorical

Examples: RTS grade, days to RTS

Application exarmple

RTS7-14 days

RTS 1-7 days O O
@
O Grade | RTS 14-28 days

O Grade Il
© craden

coach noticed that the athlete had a high level of mental
readiness, as reflected by relevant measures {(e.g., Injury-
Psychological Readiness to Return to Sport scale [53]).
The coach would like to know how this new informa-
tion, combined with the previous knowledge, may change
the practitioner’s judgement. A relalationship modelling
approach described below is used.

Relationship modelling involves estimating relation-
ships between a dependent variable and one or more
independent variables. Regression analysis, commonly
used in the analysis, is also a type of relationship mod-
elling technique and could be used with the complex
systems approach. For example, it could be used for mod-
elling the relationship between outcomes, such as match
results [54] and injury incidence [45].

Table 5 shows a hypothetical example of how the confi-
dence to RTS (y-axis) may be associated with the volume
of high-speed running done (x-axis) and the mental-
readiness score (size of the bubble). The level of mental
readiness is denoted by the size of the bubble. A higher
level of mental readiness is indicated with a larger size
bubble and is in green colour. A lower level is indicated
with a smaller size and is in red. The association could
be multi-dimensional and could be constructed based on
the number of inputs available, e.g., running speed, load
accumulation, psychological readiness.

Question 5: What is the Optimal Sequence of Rehabilitation
in aCase of Hamstring Injury Rehabilitation?

Scenario After reviewing the dataset, the coach and the
clinician would like to explore how to further leverage the
available data and identify adaptive personalized treat-
ment plans in the future. Reinforcement learning may
help to optimize the sequence of decisions that favour a
long-term outcome. Reinforcement learning is described
below.

Unlike supervised or unsupervised learning, reinforce-
ment learning trains itself through trial and error to
explore behaviours in the system that could maximize
the reward [55]. This feature makes it suitable for solv-
ing sequential decision problems. In this clinical vignette,
reinforcement learning could help to identify a personal-
ized rehabilitation pathway for maximizing the reward
(i.e., managing the injury or reaching the rehabilitation
goal).

In the context of a hamstring injury (see Table 6), a
practitioner has to decide when to initiate and adjust
rehabilitation training, such as jogging, eccentric ham-
string exercise, and high-speed running. Each decision
affects the athlete’s rehabilitation outcome at the end of
the program and the total days of absence. The rewards
require practitioners’ input, such as comparing the inten-
sity and volume of high-speed running to the pre-injury.
The reliability of the treatment-quality estimate depends
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Table 5 The relationship modelling approach to identify the effect of mental readiness

Approach Relationship modelling
Task Supervised
Technique Regression and neural networks
Qutput type Continuous
Application example 100

g

5

8 ®

®go0
0 ®
o ®

Mental readiness score (%}
@ Low030%
Moderate >30-75%

High >75-100%

High-speed running volume

100

relative to previous level (%)

Table 6 Use of reinforcement leaming to optimise the sequence

of rehabilitation

Approach Reinforcement learning
Task Not applicable
Technique Markov dedision process
Qutput type No output variable
Application example .

Jogging?

Eccentric .
. High speed
hamstring !
. running?
exercise?

==

heavily on the amount of data that were used to train the
algorithm used in the reinforced learning, and the extent
to which the proposed and observed treatment policies
agree.

Bayesian Network

Besides the machine learning approach, Bayesian meth-
ods are becoming increasingly popular in the study of
sports [56] and may contribute to RTS. Various forms
of BN have been applied across different sectors, includ-
ing medical [57-61], ecology [62—64] and transportation
[65].

BN uses Bayesian inference for probability computa-
tions and can be visually presented using directed acyclic
graphs. Arrows on the BN, known as directed arcs, indi-
cate the direction of the influence [66]. These show how

various discrete or continuous factors in RTS influence
one another and the outcome in a graphical presenta-
tion [66]. BN allows calculation of the conditional prob-
abilities of the outcome of a decision when the value of
some of the factors has been observed. As new evidence
is revealed, changes are brought to the conditional prob-
ability of the decision outcome [67].

Question 6: How Would the Sex of the Athlete Affect

the Perceived ACL Injury Risk?

Scenario The athlete has now recovered from the ham-
string injury but is worried about the potential ACL
injury risk. The coach wants to know how the sex of the
athlete (prior) [as female] would affect how one perceives
the ACL injury risk {outcome) [higher risk of ACL injury]
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Sex Nature of Sports
Female 50% Y | Contact_sports s50% [ |
Male 50% Non_contact_sports 50%

ACL injury

High_risk45% I |

Low_risk 55%

a The Bayesian network with no prior.

Sex

Female 100%
Male 0%

Nature of Sports

Contact sports  100% [ |

Non_contact_sports 0%

ACL injury

Low_risk 20%

High._is k0% Y|

prediction (ACL injury risk) has changed as a result

b The Bayesian network after it has been updated with prior.
Fig. 2 lllustration of a Bayesian network before (a) and after it has been updated with a prior (sex or/and nature of sport) (b). The outcome of the

(Fig. 2) [68], and how it may inform the potential conse-
quence of a RTS decision.

Only one prior is used here to explain the application
for easier understanding. However, a BN can account for
multiple variables to increase the accuracy of the model
and to acknowledge the complex systems approach, as
seen from a hypothetical example here in Tig. 3.

A BN could be operated in both directions, perform-
ing both predictive and diagnostic inference. As an
example, a BN may provide the following information to
support RTS decisions: (1) given the observation of the
athlete’s rehabilitation markers, what is the likelihood for
the athlete to perform at pre-injury level upon RTS? (2)
to increase the likelihood to achieve certain outcomes
of RTS, what is the combination of test results and/or
observations required?

Logically, BN seems to fit into the requirement of RTS
decisions, as often multiple unknown factors are involved
in the process (e.g., how wellness may be associated with
the injury risk). Although these unknown parameters
are uncertain, they could be described by a probability

distribution table, with information supplied by a domain
expert or relevant literature.

Establishing a BN requires data and could be comple-
mented by expert knowledge [66]. Expert knowledge
allows the model to specify the decision options available
and the utilities that the user is after. For example, deci-
sion-makers may decide if the utility (degree of satisfac-
tion) of the RTS outcome is based on either maximising
the team performance, minimising the risk of subsequent
injury, or equilibrium between the two. However, this
also implies that the quality of the model output would
rely on the quality of the existing evidence and expert’s
knowledge, which may be flawed or biased.

Future Research

A shift towards a complex systems approach may help to
view RTS more realistically. Future research should be
mindful of the following issues:

(1) The complex systems approach and the machine
learning techniques cannot necessarily elucidate the
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Fig.3 A hypothetical example of a Bayesian network with multiple priors for ACL injury risk

causal mechanism. Based on Table 1, the character-
istics of complex systems do not permit cause and
effect relationships to be determined. However, that
does not imply they are inappropriate for understand-
ing a problem nor they are of low practical utility.

(2) The accuracy of the computation relies heavily on
the quality of the dataset and previous knowledge.
For example, what is the association between differ-
ent variables (e.g., age, playing style, previous injury
history, culture, and lifestyle)? What is the potential
effect of external factors (e.g., stress, financial pres-
sure, lack of social support) on RTS progress and
decision making? Currently, there is insufficient
evidence on these aspects. High quality randomized
controlled trials and longitudinal research that
acknowledges the complex systems approach are
required to observe regularities that are antecedent
to the success of a rehabilitation program.

(3) The RTS systems that researchers could construct
would consist of what is available and known,
rather than what is important. Some factors may be
difficult to measure due to the availability of time,
resources and their non-deterministic or qualitative
nature [69]. For example, motivation for RTS during
rehabilitation is important but often not measured
due to difficulty obtaining accurate feedback. How-
ever, this is inevitable, as unknowns and unpredict-
ability are characteristics of complex systems. Nev-
ertheless, if possible, real data should be applied to

prove the concept and provide useful output for
practitioners, as the ultimate goal of embracing
complex systems approaches in RTS is to produce
findings closer to the real world.

Conclusion

The complex systems approach has been applied to
understand different aspects of sports science and medi-
cine. This review has highlighted the characteristics and
terminologies of complex systems, as exhibited by a case
of ACL rehabilitation. When assessing the test result for
clinical and functional tests, practitioners should also be
aware of the dynamic systems evolving around the injury
rehabilitation (refer to the examples in Table 1) and
endeavour to understand the full picture. Future research
may make use of computational modelling and machine
learning techniques to identify the regularities of the
pattern that emerges as a whole. A paradigm shift that
results in the application of complex systems approach
to understanding the RTS process and decision making
should be encouraged.
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4.1 Characteristics of complex systems in sports injury

rehabilitation: examples and implications for practice.

4.1.1 Key Points

o Complex systems have distinct properties, such as nonlinearity, emergence and adaptation. 16
features of complex systems have been identified in sports injury rehabilitation.
¢ Rehabilitation practitioners may connect the complex systems theory with their operations in

the sports setting.
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4.1.2 Abstract

Complex systems are open systems consisting of many components that can interact among
themselves and the environment. As a result, new forms of behaviours and patterns often emerge. There
IS a growing recognition that most sporting environments are complex adaptive systems and this
acknowledgement extends to sports injury. Consequently, practitioners involved in return-to-sport
decision making are encouraged to view the decisions through the complex systems lens to improve
decision quality in rehabilitation. This review builds on previous literature by providing an overview of
the hallmark features of complex systems and their relevance to RTS research and daily practice. An
example of how characteristics of complex systems are exhibited is provided through a case of anterior
cruciate ligament (ACL) injury rehabilitation. Alternative forms of scientific inquiry, such as the use of
computational and simulation-based techniques, are also discussed—to move the complex systems

approach from the theoretical to the practical level.
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4.2 Challenges in return to sport decision making

Return-to-sport (RTS) decisions can be challenging for health professionals, coaches (i.e., practitioners)
and athletes. In competitive sports, where marginal gains in performance are sought, athletes and
practitioners often weigh risks and benefits when making the RTS decisions. In a team sports setting,
full availability of players allows greater flexibility in tactical planning, such as deciding the best team
formation based on the opponent’s playing style. Player availability is linked to performance (Drew et
al., 2017; Hagglund et al., 2013; Williams et al., 2016) and could reduce the financial burden on the

team (Hickey et al., 2014; Mather et al., 2013).

Research on RTS decision making largely focuses on identifying a criteria list based on
biological factors and on whether the athlete has returned to baseline performance level (e.g., Grindem
et al. (Grindem et al., 2016), Stares et al. (Stares et al., 2018), and Kyritsis et al. (Kyritsis et al., 2016)).
This approach has assisted practitioners in being transparent in the decision process, for instance,
granting a medical clearance to RTS. However, underlying complexity and the high degree of interlinks,
independencies, and temporal components also need consideration. For example, the same criteria may
not apply to athletes of a different mental state, age group or playing level. Furthermore, non-linearity
is commonly seen in the context of sports. For example, most football fans would know that a team
composed of the best-skilled players does not necessarily produce the best performance. Instead, the
outcome depends on the interplay of tactical, physiological, social and even emotional factors.
Similarly, viewing RTS more than simply addressing a set of predefined RTS criteria or achieving an

arbitrary numerical change in a performance test may be beneficial.

We propose an approach using the complex systems theory to address these limitations and
objectives. Recent work from Bittencourt et al. (Bittencourt et al., 2016) has raised awareness of the
theory. More could be done to clarify the characteristics of complex systems and increase the practical
utility of the complex systems approach. Consequently, this paper builds on the work of Bittencourt et

al. (Bittencourt et al., 2016) and aims to 1) clarify the terminologies in the complex systems approach
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and adapt them for sports, 2) provide examples relevant to rehabilitation and 3) introduce tools that can

model the complexity and increase practical utility in applied settings.

4.3 What is a complex systems approach?

4.3.1 A Complex systems approach to decision making in sports medicine

The complex systems theory, with more than 50 years of history (Bertalanffy, 1969),
acknowledges the multifaceted nature of sports and seeks to understand the interactions among
different factors and the outcomes of the systems (Bittencourt et al., 2016; Philippe & Mansi, 1998).
Complex systems are dynamic, open systems (VVon Bertalanffy, 1950). They are characterised by non-
linearity due to feedback loops and interaction among the factors. This means that outputs are not always
proportional to the inputs, and a small adjustment may lead to a large change in the systems and vice

versa (Philippe et al., 2004).

In complex systems, factors that interact with each other to form the systems are known as units
(Von Bertalanffy, 1950). In the context of RTS, these units could include age, wellness, biological
healing of injured tissue, stress, external pressure and injury history. The units interact and define the
space and dimension of the systems (Rickles et al., 2007). Consequently, different systems within
systems emerge. These systems may be categorised based on their nature, for example, biomechanical,
physiological and psychological. They may also be hierarchical and of multiple levels, namely
individual, organisational and environmental (see Figure 1). The individual level represents factors
related to the individual athlete, from tissue healing to personal traits. The organisational level
represents external factors related to the sporting club, organisation and support team, e.g., the coaching
and medical team. The environmental level covers factors beyond the organisational level, such as the

weather, playing schedule and competition level.
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Figure 4.1 A multilevel system map with factors related to return to sport decision in anterior

cruciate ligament injury.

In recent years, the complex systems approach has gained momentum and has been used to
understand sports injury occurrence (Bittencourt et al., 2016; Hulme et al., 2017) and behaviour in
sports performance (Dalton-Barron et al., 2020; Duarte et al., 2013; Mclean et al., 2019; Salmon &
McLean, 2019). However, the terminologies used in complex systems are often less familiar to
practitioners and could be easily confused with merely complicated or multifactorial. Most studies
recognise the importance of considering multiple factors in determining readiness for RTS or in the
context of injury recognition (Barber-Westin & Noyes, 2011; Bittencourt et al., 2016; Creighton et al.,
2010; Grindem et al., 2016; Hartigan et al., 2010; Kyritsis et al., 2016; Logerstedt et al., 2014; Lynch
etal., 2015; Gordon O Matheson et al., 2011; Shrier, 2015), but more work is required to raise awareness

and explain why practitioners should adopt the lens of complex systems approach in rehabilitation.

4.3.2 Applying a complex systems model for ACL
This paper provides examples based on the 16 common features of complex systems recently illustrated
by Boehnert et al. (Joanna et al., 2018). They are adapted for the context of sports in Table 4.1, with

examples illustrated mainly from an anterior cruciate ligament (ACL) injury.
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An ACL injury is used here as the case illustration as it is a serious injury that may threaten an
athlete's career (Ekstrand, 2019; Walden et al., 2016). The estimated annual medical cost associated
with ACL reconstruction surgery in Australia was over AUD$75 million per year (Janssen et al., 2012).
Currently, there is no consensus regarding the optimal functional rehabilitation criteria (Lynch et al.,
2015) and objective physiological RTS criteria (van Melick et al., 2016). Despite ACL injuries being
one of the most researched topics in the sports medicine literature (Anderson et al., 2016), the re-injury
risk of ACL remains high (Della Villa et al., 2021; Paterno et al., 2014). The complexity within ACL

RTS may be explained at the individual, organisational and environmental levels.
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Table 4.1 The 16 common features of complex systems adapted for return-to-sport

Characteristics

Definition

Example

1. Feedback

Units in a complex system are mutually interacting
and output is fed back and becomes a new input
(Davids et al., 2014). The feedback could be
positive or negative. For example, positive
feedback increases the rate of change while
negative feedback works by reversing the direction

of change.

Rehabilitation training leads to tissue adaptations, which improves physical
fitness and performance (positive feedback). However, maladaptation can
occur (e.g., alteration in neuromuscular control and muscle damage),
leading to suboptimal response, which may delay progress (e.g., delayed
onset of muscle soreness). This acts as negative feedback for the systems,

signalling the training intensity was too high.

2. Emergence

Emergent properties arise from the interactions of
its units. The units serve as the building blocks for

patterns to arise at higher levels (Holland, 2014).

After an ACL injury, injured athletes often train separately from the squad
and have a different training regime. During this time of relative isolation

and hardship, the athletes may build up a high level of resilience.

3. Self-

organisation

Systems may order themselves spontaneously to
form patterns and achieve an optimal or stable state
(Rickles et al., 2007).

ACL is a key sensorimotor system for postural control, which helps to
maintain and control upright posture (Grooms et al., 2016). Following an
ACL injury, the brain activation profile will be affected and shift toward a

visual-motor strategy, as opposed to a sensory-motor strategy. Instead of
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relying on movement and spatial awareness, people with ACL deficiency
may rely more on the visual system, especially under challenging dynamic
task constraints (Davids et al., 1999). This is an example of how the

sensorimotor system self-organises to compensate for the loss of ACL.

Levers and
hubs

Lever and hubs are key structures in the systems
that play a crucial role in how the systems will
behave. Identifying them could intervene in the
systems effectively (Joanna et al., 2018).

There are exceptional factors that are influential in the RTS process and
altering them may lead to rapid gain. In ACL rehabilitation, intense
rehabilitation and patient motivation are established lever and hubs that may
underpin a positive outcome following ACL rehabilitation (Grindem et al.,
2015).

Non-linearity

Outputs are not always proportional to the inputs.
Small changes may lead to a large change in the

systems and vice versa (Rickles et al., 2007).

The same training stimulus can create a large recovery response (e.g.,
delayed onset of muscle soreness) on the first training session, but not
subsequent training. This is because the body can non-linearly adjust to the
training stimulus after the first session. The response exhibits a non-linear
behaviour where the outcome (i.e., training response) is not proportional to

the input (i.e., training stimulus).

Domains of

stability

Many systems are dynamic however may
eventually converge to a stable state. This stability
will be maintained unless there is a significant

perturbation (Davids et al., 2014).

Balance and proprioceptive training are often included in the ACL
rehabilitation protocol. However, balance and technigue training may not
be effective in changing an athlete’s knee joint kinematics or decreasing
external knee moments during pre-planned and unplanned side-stepping
(Donnelly et al., 2012). Similarly, gait mechanics are difficult to modify
even after rehabilitation training and restoring muscle strength (Arhos et al.,
2021). This may be because the systems have achieved a domain of stability

and the parts of the systems are well-entrenched, making it very difficult or
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near impossible to change. Once the systems have achieved a state of
stability, they can only be altered when the stimulus is strong enough to

push them through the tipping point (Davids et al., 2014).

7. Adaptation

Components or actors within the systems can learn
and evolve in response to the changes in the
environment (Davids et al., 2014).

Some people with ACL deficiency may exhibit increased knee flexion at
early stance and reduced extension in the mid to late stance (Roberts et al.,
1999). This is an adaptation that allows hamstrings to be efficient synergists
to ACL in walking (Li et al., 1999; Pandy & Shelburne, 1997) and to reduce
the anterior translation force of the tibia (Roberts et al., 1999). This
represents how the body adapts to ACL deficiency by bringing changes
within the systems. The adaptation appears to happen autonomously,

unconsciously, and without explicit programming.

8. Path
dependency

Events and actions that occurred previously
influence future states and decisions (Joanna et al.,
2018).

ACL rehabilitation usually follows a path and one can only progress to the
next stage by meeting a set of criteria. For example, in the early
rehabilitation phase, progressive weight-bearing allows the knee joints to
acclimate to increased load and assist in developing a normal gait pattern
(Bousquet et al., 2018; Cavanaugh & Powers, 2017). Plyometric training is
only incorporated if a full range of motion (ROM), sufficient strength base,
and flexibility are demonstrated. For on-pitch rehabilitation, activities
should begin with simple drills and advance to more complex exercises
(Cavanaugh & Powers, 2017). A control-chaos continuum could be
followed on-field, where rehabilitation training constraints progress from
high control to high chaos (Taberner et al., 2020).
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9. Tipping point

If the perturbation of a system goes beyond a
certain threshold, there will be a phase transition in
the system's behaviour which may not be reversible
(Davids et al., 2014).

In ACL rehabilitation, one of the early goals is to strengthen lower limb
muscles to minimise muscle atrophy (Gokeler et al., 2014). Squat exercise
may be used as a training stimulus (perturbation) and may cause micro-tears
and inflammation of the muscle fibres (the system deviates from the stable
state). The neuromuscular system will repair and adapt (the system returns
to a stable state), leading to muscle hypertrophy (Kraemer & Ratamess,
2005). However, if the intensity and volume exceed the capacity of the soft
tissue, there will be a loss in stability (e.g., quadriceps muscle strain) and it
could not relax back to the previous stable state automatically. There will
be a change in system behaviour (i.e., re-injury (Kibler et al., 1992)).

10. Change over

time

Systems are dynamic and can evolve over time.
This is because they constantly interact and
negotiate with the environment, leading to

continuous change (Davids et al., 2014).

The psychological characteristics of athletes can change during the ACL
rehabilitation process and affect how they cope with RTS and future injury
(Langford et al., 2009).

In the physical performance aspect, training capacity evolves and generally
declines with age (Faulkner et al., 2008). For example, the heart rate
maximum during exercise declines with age (Gellish et al., 2007); maximal
oxygen consumption is inversely and strongly related to age for active and

endurance-trained populations (Wilson & Tanaka, 2000).

11. Open system

Complex systems are considered open, as it is
difficult to define their boundary. The systems
interact with the environment and are continuously
influenced by the environment. In contrast, closed

systems are systems where the influence of the

The size of the systems could hardly be defined, as things in the
environment that are seemingly small may also influence them. For
example, wet training ground affects athletes' ground reaction force and
movement strategy during running (Dowling et al., 2010). Shoe designs and

types of playing surfaces are related to ACL injury risk due to shoe-surface
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environment on it is negligible (Rickles et al.,
2007).

friction (Thomson et al., 2015). Playing music during rehabilitation training
may reduce the perception of physical effort during training and improve
physical performance by delaying fatigue or increasing work capacity
(Gabana et al., 2015; Karageorghis et al., 2013).

12. Unpredict-
ability

Due to non-linearity and emergence properties, it is
difficult to predict how the systems will evolve
(Bittencourt et al., 2016).

Precise forecasting when an athlete can RTS is challenging. It is difficult to
predict the estimated time for recovery as there is unpredictability in how
the systems evolve. For example, how will the motivation of an athlete
change throughout rehabilitation? How will the change in a personal
relationship affect the athlete's performance? In some cases, gathering,
storing, and using all of the information about the state of complex systems

at one point to predict the outcome is impossible.

13. Unknowns

There are always units that influence the systems
which are either unknown or could not be observed
or measured. Therefore, it may seem that the
systems evolved unpredictably (Bittencourt et al.,
2016).

There are factors that decisions makers may not be aware of during the ACL
rehabilitation due to different reasons, for example, limited knowledge (e.g.,
how genetic variant is associated with ACL rehabilitation and injury risk?),
technology constraints (e.g., how reliable are the measurement tools?),
insufficient resources (e.g., is it possible to measure everything?), bias and

issues that stakeholders have been unaware of.
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14. Distributed

control

Control of a system is distributed across different
parties and no one has complete control over the
systems (Bittencourt et al., 2016). There is no top-
down control approach as a single factor does not
control the process at a superior level.

The success of ACL rehabilitation is determined by all interacting units,
from biological graft healing at the microscopic level to intra-personal
factors (clinical assessment, functional test, and biopsychosocial factor) and
inter-personal factors at the macroscopic level. No single factor in isolation
could determine the success of the outcome.

15. Nested system

There are nested hierarchies within the complex
systems, forming systems within systems (Joanna
etal., 2018).

ACL rehabilitation itself exhibits nest hierarchies in the following order:
Cell> muscle> brain> inter-personal> family and friends> organization>
environment

At the cell level, shortly after graft implantation, fibrous scar tissue will be
formed between the graft and host bone (Kawamura et al., 2005), followed
by ligamentisation (Arnoczky et al., 1982). At the muscular system level,
quadriceps muscle atrophy and dysfunction are commonly observed after
ACL reconstruction and is often associated with altered movement pattern
(Ithurburn et al., 2015; Lewek et al., 2002), possibly due to alterations in
the brain (motor cortex) level and neurophysiological changes in muscles
(Kuenze et al., 2015; Lepley et al., 2015; Luc-Harkey et al., 2017; Zarzycki
et al., 2018). At the intrapersonal level, physiological cardiac adaptation
(Steding-Ehrenborg et al., 2013), and aerobic fitness (Almeida et al., 2018)
are all substantially reduced after an ACL injury. At the interpersonal level,
social support plays a key role in regaining confidence and eradicating the
fear of re-injury throughout rehabilitation (Carson & Polman, 2008; Magyar
& Duda, 2000; Podlog & Eklund, 2006).
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16. Multiple
scales and

levels

Multiple perspectives are required when viewing
complex systems. The systems are three-
dimensional and interactions within the systems
often occur at different scales and levels (Joanna et
al., 2018).

Rehabilitation can be considered on biological,

psychosocial,

or

performance levels. There is more than one domain involved, and the

systems must be understood from multiple perspectives.
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4.4 Implications for practice and future research

By illustrating the features of complex systems with a common sports injury, we highlight its practical
utility in RTS. The complex systems approach provides a theoretical framework for interpreting the
patterns that emerged from biopsychosocial and other external factors. In ACL rehabilitation,
conducting independent clinical tests and functional assessments may provide useful information
regarding the athletes’ physical and mental status. However, a complex systems approach facilitates a

more complete picture of the problem and an increased awareness of how different factors may interact.

There are two challenges to using the complex systems approach: 1) The high degree of
complexity may deter practitioners who do not have formal training in handling large and complex
datasets from using this approach, 2) Unlike studying in a controlled laboratory environment, it is near
impossible to isolate a portion of the larger systems (i.e., isolation of the biological healing process
from broader biopsychosocial factors). Fortunately, many computer-based decision support systems
can now incorporate features of complex systems in their design and utility. For example, to
operationalise one of the above features, “change over time”, the working model can allow flexibility
in updating the baseline and encourage repeated testing at multiple time points during the rehabilitation.
We believe practitioners who understand complex systems will be well-positioned to efficiently
articulate their needs with analysts and ultimately develop decision support systems that inform best
practices (e.g., RTS decision making).

Computer simulation (e.g., agent-based modelling), machine learning and Bayesian network
(BN) analyses are all potential tools for analysing both non-complex or complex systems (Peterson &
Evans, 2019). These methods can consider the dynamic interaction at multiple levels simultaneously,
consequently viewing RTS more completely and supporting decision making. These analytical tools
may help to achieve the following: 1) Allow practitioners to study and compare the potential outcome
(e.g., the likelihood of reinjury) of different decisions that are otherwise almost impossible to test safely
in real life, 2) Increase the decision efficiency by learning from previous experience and streamlining

data from multiple sources and formats, 3) Identify patterns in data that may cause a certain outcome.
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These techniques can be used to construct clinical decision support systems, which may
complement or be superior to human decisions. In a review of seventy studies, a decision support
system improved clinical practice in 68% of trials (Kawamoto et al., 2005). These decision support
systems have also provided more accurate diagnoses than human experts in some medical fields
(Kunhimangalam et al., 2014; Martinez-Franco et al., 2018). Yet, applying these approaches in RTS
is still scarce in the literature. As such, we have provided a vignette here to outline how machine

learning and Bayesian network could be applied to support RTS decision making:

A 30-year-old professional female football player tore her hamstring ten days ago during the
season and a grade Il hamstring strain was diagnosed. There is an important mazch in two weeks’ time.
The practitioners and the coach would like to ask six relevant questions, as covered in the below
sections. Ultimately, the coach would like to know as early as possible about the availability of the

player such that they could plan for the player’s list and hence the game strategy.

4.4.1 Machine learning techniques

As a subfield of artificial intelligence (Al), machine learning focuses on the use of data to train
algorithms that can make classifications or predictions (Mohammed, 2017; Tibshirani, 2013). That is,
it could recognise new meaningful correlations, patterns and trends in a large amount of data
(SoleimanianGharehchopogh et al., 2012). Machine learning techniques are suitable for non-complex
analysis and can also accommodate multi-dimensional analysis in sport (Edouard et al., 2020; Witten
et al., 2011). New data could also be input into the model for it to learn and improve the task, leading

to the refinement of skills (Mohammed, 2017).

The goals of machine learning techniques in sports medicine settings can be divided into
predictive and descriptive modelling (Han, 2012). Specifically, predictive modelling can be used for
injury prognosis, diagnosis, and rehabilitation planning. Descriptive modelling can be used to
characterise the general property of an injury, such as its severity, as well as include hypotheses of
causality. However, as with traditional statistical approaches, machine learning techniques are simply

a data analysis method, providing a prescriptive or descriptive output. Appropriate study designs are
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required to understand and estimate causal relationships, such as randomised controlled trials. Machine
learning is often characterised by five major approaches (i.e., association, classification, clustering,
relationship modelling and reinforcement learning), each having already been applied for injury risk
assessment and/or performance prediction in sports (Claudino et al., 2019; Cust et al., 2019; Faltstrom,
Kuvist, et al., 2021; Rossi et al., 2019; J. Ruddy et al., 2018). Each of these approaches could serve as a

method to answer questions relevant to RTS.

Question 1: Should the athlete progress to full training?

Scenario: The athlete has completed ten days of rehabilitation training. The practitioners
would like to assess whether the athlete is ready to progress to full training. An association approach

could be used here, using the rule-based system.

Table 4.2 The association rule approach to determine should the athlete progress to full

training.
Approach Association rule
Task Supervised or Unsupervised
Technique Association rule (arules)

Output type Categorical
Examples: Ready for full training, not ready for full training, continue

rehabilitation.

Application Rule 1 Rule 2 Rule 3 Rule .... | Decision
example Range of Limb Training load
motion full asymmetry | >100% match

index 100% | requirement

4 v v v Ready for full

training.

progress
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4 x x X Not Ready for

full training

v v x - Continue

current

rehabilitation

Association rules are used to uncover hidden patterns or relationships (Agrawal & Srikant, 1994). Often
less identifiable by the clinicians, the rules identified may help them formulate optimal rehabilitation
program. This is typically done using data mining techniques, where large amounts of data are analysed
to identify interesting patterns and relationships. One popular algorithm for generating association rules
is the Apriori algorithm. This algorithm works by first identifying frequent itemsets (i.e., sets of items
that occur together frequently), and then generating association rules based on these itemsets. Agrawal

et al. (1993) provides additional information on the underlying methodology.

In the above hypothetical example, a multivariate analysis of rules associated with a
rehabilitation outcome is conducted. The model was set to only produce three categories of rules that
contained the rehabilitation outcome as a result (i.e., ready for full training, not yet ready and
unchanged). These could be the three rules most strongly associated with the rehabilitation outcome. A
tick represents the presence of the context within the rule. The system could identify the number of
rules required based on previous rehabilitation experience and implement the rules when the complexity
of the content are beyond human brain capacity. An increased number of rules may better represent

complexity, however, it may potentially make the solution more difficult to operationalise practically.

Question 2: What is the likelihood that the athlete could return to the pre-injury level, given the

current level of training?

Scenario: There are only two weeks until an important match. The coach would like to know

the likelihood that the athlete could return to pre-injury level by then. Given the volume of high-speed
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running training that the athlete has completed, a classification method could be used to identify the

likelihood.

Table 4.3 The classification approach to identify the likelihood for an athlete to RTS.

Approach Classification
Task Supervised
Technique Decision tree and Random forest
Output type Categorical or Continuous
Examples: Ready to compete, not yet ready to compete.
Application (1) High speed
running volume
example (% pre-injury)

<70% =>T70%

RTS at preinjury
level: 40%
Non RTS: 60%

RTS at preinjury
level: 80%
Non RTS: 20%

(2)Mental readiness
score (%)

[

=85% >85%

(3)Mental
readiness score (%)

[ ]

=85% >85%

RTS at preinjury
level: 45%
Non RTS: 55%

RTS at preinjury
level: 55%
Non RTS: 45%

RTS at preinjury
level: 65%
Non RTS: 55%

RTS at preinjury
level: 95%
Non RTS: 5%

Classification is a type of supervised learning in machine learning that involves predicting a

categorical label or class for a given input. In classification, a machine learning algorithm is trained on
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a labelled dataset, where each data point is associated with a specific class or label. The goal of the
algorithm is to learn a mapping between the input features and the corresponding output label, so that
it can accurately classify new, unseen data. Some common classification algorithms include decision
trees, logistic regression, support vector machines (SVM), k-nearest neighbours (KNN), and naive
Bayes. These algorithms use different mathematical techniques and assumptions to learn the mapping
between input features and output labels, and they have different strengths and weaknesses depending
on the specific task and dataset. Table 4.3 shows a graphical representation of the decision tree that used
a classification algorithm to identify the probability of RTS from a hamstring injury. A decision tree
uses dichotomous divisions to create the classification algorithm and can be used to develop a clinical
decision algorithm for RTS (Albano et al., 2020; Féaltstrém, Kvist, et al., 2021). Each node denotes a
test on an attribute value and each branch represents an outcome of the test, with the leaves representing
the class. In Table 4.3, each node is associated with a rule condition, which branches off to the child
node. In this example, the outcome of RTS is likely a nonlinear relationship with the training volume
and mental readiness, which is a characteristic of the complex systems approach (see Table 4.1, example
5). Using the classification approach may help to include non-linearity in analyses and readers who are

unfamiliar with the methodology can refer to a comprehensive review chapter (Kotsiantis et al., 2007).

Question 3: When is the athlete expected to return to sport?

Scenario: The coach would like to know when the athlete is expected to RTS based on the
experience of the clinician and also accounting for the athlete’s age. A clustering technique could be

used to analyse the past data.

Table 4.4 The clustering approach to identify when the athlete may return to sport.

Approach Clustering
Task Unsupervised
Technique K-nearest neighbours

Output type Categorical
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Examples: RTS Grade, days to RTS.

Application
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RTS 7-14 davs

RTS 1-7 days

e |

© Gradel RTS 14-28 days

® Grade 11
Grade 111

Clustering is a machine learning technique that involves grouping similar data points into
groups based on their features (Jain & Dubes, 1988). The goal of clustering is to partition a dataset into
subsets, or clusters, in such a way that data points within the same cluster are more similar to each other
than to those in other clusters. Clustering is an unsupervised learning method, meaning it does not
require labelled data or predefined categories. The main objectives include data exploration, data
segmentation, anomaly detection, customer segmentation, image and object recognition and document
classification. In sports, this may be useful in allocating multiple athletes to training groups. This could
be done for clinical presentation, playing position, demographics, or inter-and intra-personal factors.

Jain et al. (1999) provide more in-depth knowledge of clustering methodology.

Table 4.4 visualises one of the multiple approaches to which injured athletes could be clustered.
Each dot represents an injured athlete and is coloured based on their severity. Size represents a measure
of each athlete’s age, with a larger size representing older age. They are further grouped into three
different clusters, representing the severity and time to RTS. In this hypothetical example, the model
output is the predicted days to RTS. However, it could also be designed to produce categorical outputs

such as being ready to train or not yet ready to train.
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Question 4: The athlete has a high level of mental readiness. Would that change the confidence

level of the athlete’s readiness to play an important game?

Scenario: From the clustering approach, the coach has considered that the athlete may require

at least two weeks to return to competition at pre-injury level. However, the coach noticed that the

athlete had a high level of mental readiness, as reflected by relevant measures (e.g., the Injury-

Psychological Readiness to Return to Sport scale (Glazer, 2009)). The coach would like to know how

this new information, combined with the previous knowledge, may change the practitioner’s judgement.

A relationship modelling approach described below is used.

Table 4.5 The relationship modelling approach to identify the effect of mental readiness.

Approach Relationship modelling

Task Supervised

Technique Regression

Output type | Continuous

Application 100 .

example .

. @°
®r0 -
Mental readiness score (%)
Q9 .. ® [ ow0-30%
. . Moderate >30-75%

High >75-100%

Confidence level (%)

0 . .
High-speed running volume 100

relative to previous level (%)

Relationship modelling is a statistical technique that relates a dependent variable to one or more

independent (explanatory) variables. They can show whether changes observed in the dependent
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variable are associated with changes in one or more of the explanatory variables. Relationship modelling
involves estimating relationships between a dependent variable and one or more independent variables.
Regression analysis, commonly used in the analysis, is also a type of relationship modelling technique
and could be used with the complex systems approach. For example, it could be used for modelling the
relationship between outcomes, such as match results (Robertson et al., 2016) and injury incidence
(Ruddy et al., 2018). There are various types of regression models, depending on the nature of the data
and the relationship between the variable, such as multiple linear regression, logistic regression and
Bayesian time series regression model. Readers interested in the details of the methodology refer to

Vittinghoff et al. (1999).

Table 4.5 shows a hypothetical example of how the confidence to RTS (y-axis) may be
associated with the volume of high-speed running done (x-axis) and the mental-readiness score (size of
the bubble). The size of the bubble denotes the level of mental readiness. A higher level of mental
readiness is indicated with a larger size bubble and is in green colour. A lower level is indicated with a
smaller size and is in red. The association could be multi-dimensional and could be constructed based

on the number of inputs available, e.g., running speed, load accumulation, and psychological readiness.

Question 5: What is the optimal sequence of rehabilitation in a case of hamstring injury

rehabilitation?

Scenario: After reviewing the dataset, the coach and the clinician would like to explore how to
leverage the available data further and identify adaptive, personalised treatment plans in the future.
Reinforcement learning may help optimise the decisions that favour a long-term outcome.

Reinforcement learning is described below.

Table 4.6 Use of reinforcement learning to optimise the sequence of rehabilitation.

Approach Reinforcement learning
Task Not applicable
Technique Markov decision process
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Output type | No output variable

Application . .
example Eceentris High speed
Jogging? hamstring R
exercise? R0 .

Reinforcement learning is a type of machine learning where an agent learns to make decisions

by interacting with an environment to maximise a cumulative reward. Unlike supervised or
unsupervised learning, reinforcement learning trains itself through trial and error to explore behaviours
in the system that could maximise the expected cumulative reward over time. (Richard & Andrew,
1998). The agent uses this learned policy to decide what actions to take in various states of the
environment. This feature made it suitable for solving sequential decision problems. In this clinical
vignette (Table 4.6), reinforcement learning could help to identify a personalized rehabilitation pathway
for maximising the reward (i.e., managing the injury or reaching the rehabilitation goal). A recent

review is available for readers unfamiliar with the background and use (Gottesman et al., 2019).

In the context of a hamstring injury (see Table 4.6), a practitioner has to decide when to initiate
and adjust rehabilitation training, such as jogging, eccentric hamstring exercise, and high-speed
running. Each decision affects the athlete’s rehabilitation outcome at the end of the program and the
total days of absence. The rewards require practitioners’ input, such as comparing the intensity and
volume of high-speed running to the pre-injury. The reliability of the model’s outcome depends heavily
on the data used to train the algorithm used in the reinforced learning, and the extent to which the

proposed and observed treatment policies agree.

4.4.2 Bayesian network

Besides the machine learning approach, Bayesian methods are becoming increasingly popular in
the study of sports (Santos-Fernandez et al., 2019) and may contribute to RTS. Various forms of
Bayesian network (BN) have been applied across different sectors, including medical (Fenton et al.,
2020; McLachlan et al., 2020; Seixas et al., 2014; Yet et al., 2013; Yet et al., 2017), ecology (Johnson

etal., 2010; Wu et al., 2018; Wu et al., 2017) and transportation (Wu et al., 2014).
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BN uses Bayesian inference for probability computations and can be visually presented using
directed acyclic graphs. Arrows on the BN, known as directed arcs, indicate the direction of the
influence (Constantinou & Fenton, 2018). These show how various discrete or continuous factors in
RTS influence one another and the outcome through a graphical presentation (Constantinou & Fenton,
2018). BN calculates the conditional probabilities of the outcome of a decision when the value of some
of the factors has been observed. As new evidence is revealed, changes are brought to the conditional

probability of the decision outcome (Eugene, 1991).

Question 6: How would the sex of the athlete affect the perceived ACL injury risk?

Scenario: The athlete has now recovered from the hamstring injury but is worried about the
potential ACL injury risk. The coach wants to know how the sex of the athlete (prior) [as female] would
affect the ACL injury risk (outcome) [higher risk of ACL injury] (Fig.4.2) (Montalvo et al., 2019), and

how it may inform the potential consequence of a RTS decision.

Gender Nature of Sports

Female 50% ([l | Contact_sports ~ 50%
Male 50%, Non_contact_sports 50%

ACL injury

[High_risk45%
Low_risk 55%

Sex Nature of Sports
[Female 100% [ . | (Contact sports  100% | Y|
Male D% Non_contact_sports 0%

N

ACL injury

IFigh_iske0° ]

Low_risk 20%
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Figure 4.2 Illustration of a Bayesian network before (top) and after it has been updated with a

prior (sex or/and nature of sport) (bottom). The outcome of the prediction (ACL injury risk)

has changed as a result.

Only one prior is used here to explain the application for easier understanding. However, a BN

can account for multiple variables to increase the model's accuracy and acknowledge the complex

systems approach, as seen from a hypothetical example in Figure 4.3.

Quadricep strength symmetry
Core Control
Dynamic knee valgus |« Symetrical 100% || Stong 0%
| Asymmetrical 0% o
strong 100% [ | —wilVeak 100%
Weak 0% ‘ P
4 o e
ﬂf; - X —
/ Psychological Readiness to RTS
Hip Strength Good 100% Playing surface
Strong 0% Poor 0% pry o0 I |
—
-~ |

\Weak 100%

Nature of Sports

Contact sports  100% (T |

Non_contact_sports 0%

Eemale 100% |
Male 0% |

y
ACL injury /""*""\
Figh_isk 707 I e )
Low_risk 30% -

Figure 4.3 A hypothetical example of a Bayesian network with multiple priors for ACL injury
risk.

A BN could be operated in both directions, performing both predictive and diagnostic inference.
As an example, a BN may provide the following information to support RTS decisions: 1) Given the
observation of the athlete’s rehabilitation markers, what is the likelihood for the athlete to perform at

pre-injury level upon RTS? 2) To increase the likelihood of achieving certain outcomes of RTS, what
is the combination of test results and/or observations required?

Logically, BN seems to fit into the requirement of RTS decisions, as often multiple unknown

factors are involved in the process (e.g., how wellness may be associated with the injury risk). Although
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these unknown parameters are uncertain, they could be described by a probability distribution table,

with information supplied by a domain expert or relevant literature.

Establishing a BN requires data and could be complemented by expert knowledge (Constantinou
& Fenton, 2018). Expert knowledge allows the model to specify the available decision options and the
utilities the user is after. For example, decision makers may decide if the utility (degree of satisfaction)
of the RTS outcome is based on either maximising the team performance, minimising the risk of
subsequent injury, or equilibrium between the two. However, this also implies that the quality of the
model output would rely on the quality of the existing evidence and expert knowledge, which may be

flawed or biased.

4.5 Future research

A shift towards a complex systems approach may help to view RTS more realistically. Future research

should be mindful of the following issues:

1) The complex systems approach and machine learning techniques cannot necessarily
elucidate the causal mechanism. Based on Table 4.1, the characteristics of the complex systems do not
permit the ability for cause-and-effect relationships to be determined. However, that does not imply

they are inappropriate for understanding a problem nor are they of low practical utility.

2) The computation accuracy relies heavily on the dataset's quality and previous knowledge.
For example, what is the association between different variables (e.g., age, playing style, previous injury
history, culture, and lifestyle)? What is the potential effect of external factors (e.g., stress, financial
pressure, lack of social support) on RTS progress and decision making? Currently, there is insufficient
evidence on these aspects. High-quality randomised controlled trials and longitudinal research that
acknowledges the complex systems approach is required to observe regularities that are antecedent to

the success of a rehabilitation program.

3) The RTS systems that researchers could construct consist of what is available and known,

rather than what is important. Some factors may be difficult to measure due to the availability of time,
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and resources and its non-deterministic or qualitative nature (Bourne et al., 2003). For example,
motivation for RTS during rehabilitation is important but often not measured due to difficulty in
obtaining accurate feedback. However, this is inevitable, as unknowns and unpredictability are
characteristics of complex systems. Nevertheless, real data should be applied if possible to prove the
concept and provide useful output for practitioners. The ultimate goal of embracing complex systems

approaches in RTS research is to resemble findings closer to the real world.

4.6 Conclusion

The complex systems approach has been applied to understand different aspects of sports science and
medicine. This review has highlighted the characteristics and terminologies of complex systems, as
exhibited by a case of ACL rehabilitation. When assessing the test result for clinical and functional
tests, practitioners should also be aware of the dynamic systems evolving around the injury
rehabilitation (refer to the examples in Table 4.1) and endeavour to understand the full picture. Future
research may make use of computational modelling and machine learning techniques to identify the
regularities of the pattern that emerged as a whole. A paradigm shift that results in applying a complex

systems approach to understanding the RTS process and decision making should be encouraged.
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Part 2 Practical applications

This section includes Chapters Five and Six, which consist of two original studies that adopt two
different analytical methods. Part 2 builds on Part 1 and adopts techniques that are congruent with a
complex systems approach. Making decisions with a complex systems approach is challenging because
it may be nearly impossible for clinicians to integrate multiple data types and consolidate them quickly
due to their limited short-term memory and cognitive processing power. To complement the
frameworks in Part 1, Chapters Five and Six adopt two analytical methods that allow clinicians to 1)
integrate multiple data types, 2) consolidate a high volume of data and 3) accommodate the

characteristics of the complex systems, such as non-linearity and emergence.
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5 Chapter Five: Study |11

Chapter overview

Chapter Five is the third of the four studies contained in this thesis. It consists of an original case study
that uses a change point approach to identify meaningful changes in the RTS continuum. Clinicians can
apply the change point analysis to any other injuries to identify meaningful changes in RTS progression

and make informed decisions.

The content of this chapter was submitted to the Science and Medicine in Football (Taylor and
Francis) on 12" September, 2022. It is currently in resubmission stage, and the first revision was

submitted on 10" January, 2023.

Clinical relevance

Clinicians often collect multiple rehabilitation data at regular time points during the entire RTS period
to monitor the RTS process. While these longitudinal datasets may help clinicians evaluate the
rehabilitation progress, there are challenges for clinicians to 1) integrate the multiple data types, 2)
analyse the overall change and 3) accommodate the characteristics of complex systems. To support
clinicians in evaluating their past practice and improving future decision quality, Chapter Five adopts

an analytical method (change point method) to overcome the above challenges.
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5.1 A change point method to detect meaningful changes in

return to sport progression in athletes.

5.1.1 Key points

e Univariate change point analysis can determine the change point of a single measurement and
provide information specific to each performance metric, which informs the rehabilitation
progress based on a single metric.

e Multivariate change point analysis identifies a common change point across multiple sets of
longitudinal data, giving an overall impression of the progression of the rehabilitation.

¢ Clinicians may further explore analytics tools to handle large complex datasets in rehabilitation.
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5.1.2 Abstract

Return-to-sport (RTS) decision making is often challenging, as rehabilitation is complex and non-linear.
With improvements to sports technology, clinicians are collecting more data and at more regular time
points during rehabilitation to gauge the progression in their RTS. Analytical methods, such as change
point detection, may leverage complex longitudinal data to detect when meaningful changes (change
points) have occurred. To explore how the change point approach may be used in RTS, we present a
single case study of a professional football player who sustained a lower-limb muscle injury during
training. Four wellness metrics and five running performance metrics were collected over 124 days. In
the univariate analysis, the change points for stress, sleep, mood and soreness were located on days 30,
47, 50 and 50, respectively. The change points for total distance, acceleration, maximum speed,
deceleration and high-speed running were located on days 32, 34, 37, 41 and 41, respectively. The
multivariate analysis resulted in a single change point for the wellness metrics and running performance
metrics, on days 50 and 67, respectively. Clinicians can use similar techniques to integrate data from
multiple sources, identify meaningful change points and evaluate athletes’ progression along the RTS

continuum.
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5.2 Introduction

In competitive sports, clinicians often track rehabilitation progression to estimate when an
athlete could return to full training and competitions. RTS decisions can be challenging as they are often
characterised by uncertainties, such as re-injury risk, time pressure induced by competition schedule
and social stress from coaches, families and supporters. In addition, the outcome of the RTS decisions
pertains to the athletes’ well-being (Leslie Podlog et al., 2015) and team performance (H&gglund et al.,

2013).

In football, on-field rehabilitation typically comprises four stages (Dunlop et al., 2019): 1)
return-to-running (clearance to train on-field), 2) return-to-modified training (clearance to train with
the team in a modified capacity), 3) return-to-play (clearance to be selected for competition) and 4)
return-to-performance (returns to pre-injury performance level). Clinicians typically decide when
injured athletes can progress to the next phase by consolidating information from clinical and functional
assessments and comparing the results to pre-injury level and/or different time points of rehabilitation.
For example, in hamstring injury rehabilitation, clinicians may measure palpation pain, flexibility and
outer range strength daily to inform rehabilitation progression (Whiteley et al., 2018). The test results,
complemented by the clinician’s experience, are sometimes used as a proxy to gauge the readiness of
an athlete to progress in rehabilitation (Whiteley et al., 2018).

Much of RTS research has focused on establishing criteria for clearing the athlete to return to
unrestricted sports (Ardern, Glasgow, et al., 2016). However, these criteria are outcome-oriented and
intended to help clinicians determine the endpoint of rehabilitation. There is value in exploring

methodology that can leverage longitudinal data and evaluate the progression along the RTS continuum.

Developing a methodology to inform the rate of progression requires consideration of
rehabilitation as a dynamic, complex process — an environment constantly changing due to the
interaction of multiple factors (Yung et al., 2022a). The constantly changing environment leads to the
emergence of non-linear behaviours, which means that the outcome is not always proportional to the

input. For example, the same rehabilitation training program will not always produce the same training
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response because the body adapts to the stimulus after the first few sessions (Yung et al., 2022a). New
behaviours may also emerge as a result of individual rehabilitation, such as an athlete exhibiting an
increased level of stamina and resilience. This may subsequently change the athlete’s perception
towards the level of training intensity. As a result, clinicians may have difficulty forming the whole
picture of the rehabilitation progress by tracking the rehabilitation metrics separately and then
combining the partial results (Yung et al., 2022a). Furthermore, due to the characteristics of complex
systems, merely tracking the change in one (or multiple) metrics is unlikely to reflect the overall shift

within the systems.

It is impossible for clinicians to keep direct track of all the changes within the systems because
humans have limited cognitive power in analysing and consolidating complex information (Miller,
1956; Yung et al., 2022b). When the information becomes too complex to understand, humans may be
reluctant to make important decisions, and resort to actions such as procrastination and endless pursuit
of better information (Sarma, 1994). Fortunately, clinicians can leverage machine learning techniques
to handle large and complex datasets systematically (Yung et al., 2022a). Machine learning can analyse
both data from non-complex and complex systems (Peterson & Evans, 2019) and could be potentially
used to describe the complexity inherent in sports environments (Yung et al., 2022a). In sports medicine,
analytics and machine learning techniques have been used in the area of injury prevention and prediction
(de Leeuw et al., 2022; Karnuta et al., 2020; Rommers et al., 2020; Van Eetvelde et al., 2021) but have

been rarely used to evaluate progression in RTS.

To evaluate the progression of training, clinicians can use a range of data types to quantify the
internal (e.g., via subjective wellness scores (Impellizzeri et al., 2004)) and external workload (e.g., via
global navigation satellite systems (GNSS) (Cummins et al., 2013)). In particular, GNSS devices are
common in football and other field-based sports to measure the volume and intensity of on-field
rehabilitation running performance (Stares et al., 2018; Taberner & Cohen, 2018). Based on the metrics
derived from GNSS devices, clinicians can plan progressive loading and management throughout the
stages of rehabilitation, for example, a gradual increment in total distance, high-speed running distance,

acceleration and deceleration (Buckthorpe, 2019; Taberner & Cohen, 2018). In addition, clinicians may
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monitor athletes’ wellness regarding their mental health and their subjective feeling towards the training
intensity (Gastin et al., 2013; Taylor et al., 2012; Thorpe et al., 2017; Thorpe et al., 2015). With
technological improvements, many of the above aspects can now be feasibly, conveniently, and
routinely measured in many sports organisations. However, the complex dataset presents a new

challenge: how can clinicians integrate, understand and visualise multiple data types simultaneously?

To explore methods that may support clinicians in decision making, this study aimed to explore
an analytical approach known as the change point method. The change point method may help clinicians
analyse longitudinal data collected during RTS and retrospectively evaluate the progression along the

RTS continuum.

5.3 Methods

5.3.1 Design

We have registered this protocol in the Open Science Framework (OSF.10/4P76B). This design is a
prospective single case observational study of an athlete in a professional football club. Such study
design may direct focus on the features and the methodology of the change point method. Ethics

approval was obtained from the Victoria University Human Research Ethics Committee (HRE22-071).

5.3.2 Participant

The case was a football player who sustained an acute lower limb muscle injury during high-speed
running in football training and returned to play at the pre-injury level as determined by the club’s
coaching staff. There was no interruption (e.g., COVID-19 isolation, personal leave) during the
rehabilitation period. The rehabilitation program was entirely completed in the football club under the

supervision of the club’s medical team.
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5.3.3 Data Collection

Data were prospectively collected during training sessions and competitions of the 2021/2022
Australian A-League season. The data consisted of two parts: 1) the pre-injury period, starting from the
beginning of preseason to the day before the injury, and 2) the rehabilitation period, starting from the
day of injury to the day when the athlete returned to play at the pre-injury level, as determined by
coaching staff. The day when the injury occurred and the player was removed from training is denoted

as day 0.

The four key stages of the RTS continuum in this study are defined as:

1. Straight-line running: The day when the athlete began basic running drills in a straight
line. Training sessions were completed individually with the rehabilitation trainer.

2. Change of direction running: The day when the athlete began curve running, change of
direction and agility training. The training may involve some ball work. Training
sessions were completed individually with the trainer.

3. Modified training: The day when the athlete integrated with the main squad training
for some training drills in a modified capacity. There were still some restrictions
regarding the training intensity, movement and volume.

4. Full training: The day when the athlete was medically cleared to train with the main

squad with no restrictions.

To determine the running performance in rehabilitation, the athlete wore a 10 Hz GNSS device
(Apex Pro Series, STATSports, Newry, Ireland) placed on the back between the scapulae. Each unit
included a 100-Hz accelerometer, magnetometer, gyroscope and 10 Hz GPS. The GNSS, which is
certified by FIFA for use both in training and matches (FIFA, 2023), is validated to quantify running
activities. The reliability and validity of these units have been previously reported. They display a high
level of validity in total distance and maximal velocity team sport settings (Beato et al., 2018), as well
as excellent inter and intra-unit reliability (Beato & Keijzer 2019). The device used has good inter-

device reliability for the measurement of total distance and maximal velocity (Beato et al., 2018). These
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devices also possess suitable reliability and consistency for threshold-based accelerations and
accelerations (Crang et al., 2021; Comier et al., 2023). The athlete wore the same device during all
activities to reduce inter-unit error (Beato et al., 2018; Cummins et al., 2013) and no additional analysis
was used to account for the variations within the data. Upon completion of each training session, all
tracking data were downloaded using the proprietary software (Sonra 3.0, STATSports, Newry,
Ireland). Among the metrics derived from the GNSS system, five metrics were selected after consulting

the club’s high-performance staff:

1.  Total distance (m): Total distance covered in the session.

2. Maximum speed (km.h?): Maximum running speed attained in the session.

3. High-speed running (m): Distance covered above 5.5 m.s*

4. Accelerations: number of accelerations between 3.0 and 10 m.s? with a minimum
duration of 0.5 s.

5. Decelerations: number of decelerations between -3.0 and -10 m.s with a minimum

duration of 0.5 s.

As part of the pre-training routine of the football club, the athlete also reported daily wellness
scores on the mornings of the training days. The athlete rated sleep quality, mood, stress and overall

soreness using a mobile phone application, on a scale 0-10 (10 being the best).

5.3.4 Change point analysis

Change point analysis is an analytical method to identify change points that segment a set of
longitudinal data (e.g., the rehabilitation process) based on statistical features, such as the mean
(Aminikhanghahi & Cook, 2017). As such, the behaviour of the subsequent segment is inherently
different to the segment before the change point (Cho & Fryzlewicz, 2015). Univariate change point
indicates when a meaningful change has occurred in a sequence value, implying a marked improvement
or deterioration in a metric. In a multivariate change point analysis approach, a common change point
is detected across multiple metrics (Bardwell et al., 2019). Change point analysis has been previously

applied in medicine (Hall et al., 2000) and sports science (Corbett et al., 2019; Teune et al., 2022b) to
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detect the onset of illness or overall change in sports performance. In the context of RTS, clinicians can
use it to detect meaningful changes in various clinical markers and determine when an athlete can

progress in rehabilitation.

5.3.5 Statistical Analysis

The athlete’s identifiers were removed before proceeding to statistical analysis. All data analysis was
completed in RStudio software (version 1.3.1093) (R Core Team, 2019), using the R (version 4.03)
programming language. The cpt.mean() function from the changepoint package was used to identify
the time point during the rehabilitation period where there was a meaningful change in the sequence
mean (Killick & Eckley, 2014). In applying a univariate change point analysis with one change point,
each of the nine metrics in physical performance and wellness was analysed separately. To find one
change point, the parameters set were AMOC (at most one change), which limited the algorithm to only
search for a maximum of one change point in a segment. The minimum segment length was set to seven
days, which means the shortest duration between the change points must be at least seven days. This
parameter was set based on the practice at the club, where high-performance staff consider seven days
as a training block. Setting the above parameters based on our research question and the context may
minimise the inherent noise from the data and identify change points that may be practical and coherent.

The metrics recorded in the pre-injury period formed a baseline for pre- and post-injury comparison.

To match the four phases of the RTS continuum, we identified three change points to compare
with the three transitional points, that is, 1) return to change of direction running, 2) return to modified
training and 3) return to full training. Similarly, cpt.mean() function was used. The method was set to
binary segmentation to search for a maximum of three change points to align with the three transition
points. Similar to one change point, we set the minimum segment length to seven days for the same

reason outlined above.

A multivariate change point analysis was performed to determine a common change point
across multiple metrics during rehabilitation (Bardwell et al., 2019). The mrc function from the Change

point.mv package (Killick & Eckley, 2014) was applied across the four wellness metrics and the five
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performance metrics. This function identified a common and most recent change point across the groups
of time series data (Bardwell et al., 2019). The parameters of the functions were set to search for a

maximum of one change point and a penalty value of 100 was arbitrarily applied.

5.4 Results

A total of 124 days were included in the analysis. The pre-injury period consisted of 33 days, including
17 training sessions; the rehabilitation period consisted of 97 days, including 60 training sessions and 3
competitions. The means and standard deviations recorded in the pre-injury period and used as the
baseline are as follows: For the wellness scores, sleep was 8.5 = 0.7, mood was 9.1 + 0.4, stress was 8.5
+ 1.0, and soreness was 8.0 + 0.5. For pre-injury performance metrics, total distance was 7057 + 1694
m, high-speed running was 588 + 387 m, maximum speed was 28.1 + 3.3 km.h?, the number of

accelerations was 101 + 36.1, and the number of decelerations was 72 + 31.5.

5.4.1 Univariate analysis change point locations

Univariate analysis with one change point is shown in Figure 5.1 and the distribution of values within
each segment is shown in Figure 5.2. The change points for stress, sleep, mood and soreness were
located on days 30, 47, 50 and 50, respectively. The change points for total distance, accelerations,
maximum speed, decelerations and high-speed running were located on days 32, 34, 37, 41 and 41,

respectively.

In applying univariate change point analysis with a maximum of three change points, the result
is reported in Figure 5.4. Across all metrics, three change points were identified, except for mood, where
the change point algorithm could detect only two change points. The change points were located

between days 27-54 (Figure 5.4). The distribution of values within each segment is shown in Figure 5.3.
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5.4.2 Multivariate analysis change point locations

The multivariate analysis identified a single change point for wellness metrics and running performance
metrics on days 50 and 67, respectively (Figure 5.5). The metric distribution before and after the change

point was reported in Figure 5.6.
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5.5 Discussion

This is a single case study to highlight the methodology and the features of the change point method.
To exemplify the change point method, we present the univariate and multivariate approaches to
determine the change points during the rehabilitation of a lower limb muscle injury in football. The

specific practical implications of each approach are discussed below.

5.5.1 Practical implications for one change point

The change points indicate to users when a meaningful change occurs for each metric. In Figure 5.1,
the change points for total distance occurred first (day 32), followed by acceleration (day 34),
deceleration (day 37), high-speed running (day 41) and maximum speed (day 41). The clinician can
identify when meaningful changes occur and evaluate if this sequence aligns with the intended
rehabilitation protocol. In particular, the change point for high-speed running occurred during the
change of direction running phase. This change point could be used as a proxy of the phase of the
rehabilitation (i.e., the phase where meaningful change is expected for high-speed running) and could
be used to manage the expectation of the athletes and coaches regarding the progression of rehabilitation

along the RTS continuum.

Another practical example is knowing that the sleep quality takes longer than stress to reach
the change points (days 47 vs 30), clinicians may choose to monitor the athlete’s sleep quality closely
during the early rehabilitation phases and work with the athlete to remove any potential barriers to sleep.
This may be beneficial to the overall rehabilitation because sleep quality is vital for athletic wellness,

performance and recovery (Halson, 2008).

5.5.2  Practical implications of three change points

In Figure 5.4, we segmented the RTS with a maximum of three change points to compare with the three
major planned transitions before return to full training (i.e., 1) return to straight-line running, 2) change

of direction running, and 3) modified training). Our results indicated that the change points detected did
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not align closely with individual rehabilitation stages. However, the last change points of all metrics
occurred during the modified training phase, which indicated all meaningful changes occurred before
proceeding to full training. This pattern may be used as a proxy to support the decision for athlete to

return to full training.

The disadvantage of the current approach is the detection of two to three change points
for each of the nine metrics resulting in 26 change points. This amount of information is beyond what
most adults could only store in short-term memory (4-7 items) (Cowan, 2001; Saaty & Ozdemir, 2003)
and therefore can overload clinicians’ cognitive processing capacity. For that reason, the multivariate

approach may be more appropriate for monitoring the changes in the metrics.

5.5.3 Practical implication for multivariate analysis

When clinicians want to use more than one metric to determine the RTS progression, the multivariate
approach can aggregate the change points of multiple metrics and simplify them into a common change
point. For example, to know when there were overall changes in the four wellness metrics and the five
running performance metrics, clinicians can simply refer to two common change points: day 50 for
wellness and day 67 for running performance (Figure 5.5). Here, the multivariate analysis identified the
time when the data sequence levelled out together, which may imply the metrics have stabilised and
reached a steady state. It may appear intuitive when there are nine metrics to monitor. However, with
technological development and the use of a complex systems approach, clinicians may want to include
more data in their analysis, such as isometric strength, resting heart rate and heart rate variability. Due
to the rich amount of information and the inherent complexity of rehabilitation, closely monitoring all
the RTS data would be nearly impossible. While the clinicians first have to determine and select which
metrics should be included in the analysis, the multivariate analysis aids clinicians by consolidating the
information and presenting an overall result. Having these change point models in place may help
clinicians avoid over-emphasising the importance of metrics that are easily available or interpretable

while neglecting the others.
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5.5.4 Advantages of change point analysis

Methods that can capture and analyse multiple metrics simultaneously and efficiently are much needed
in sports medicine (Yung et al., 2022a). By using change point analysis, clinicians can simultaneously
identify the meaningful change(s) in one or multiple metrics. Clinicians can also visualise the data
together even though the data come from different sources and formats. Our model’s capacity to
integrate multiple types of data may increase the usability of the analytical method (Silver, 1991) and
bring benefits to the decision analysis (Yung et al., 2022b). The exploration of the change point

approach attempts to shift toward complex systems approach when analysing complex data.

Change point analysis is intuitive and likely to be understood by clinicians with little or no
experience in analytics. This feature is crucial because analysis techniques are more likely to be
implemented in applied sports settings if their efficiency, interpretability and functionality fit with the
operational framework of a sports organisation (Schelling & Robertson, 2020). In our study, Figures
5.1, 5.3 and 5.5 allow clinicians to visualise the process and summarise the location of the change points
in the context of the rehabilitation continuum intuitively. Specifically, we present the the graphs using
a percentage of pre-injury level so clinicians can visualise the overall rehabilitation outcome
compared to the baseline. This is also particularly helpful when comparing data from multiple
athletes. The density plots (Figures 5.2, 5.4 and 5.6) are presented using raw values to inform
clinicians of the actual metrics. We aim to produce visualisations that require less cognitive work to
understand and allow clinicians to digest the information effectively (Dadzie & Rowe, 2011; Kale et

al., 2018).

5.5.5 Limitations and future applications

There are at least four limitations of the change point approach. First, change points are detected based
on the duration of the longitudinal data. Therefore, at this stage, it is more suitable for evaluating past
practices and is not intended for live monitoring and making instant decisions. However, as technology
and analysis in sports rehabilitation advances, future work may implement live change point analysis,

where clinicians can receive up-to-date information to inform their decision making. Second, the
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changepoint.mv package only permits detection of one change point for the multivariate change point
analysis. As such, we did not perform a multivariate change point analysis with three change points.
Future work may look to implement this function as it becomes available. Third, as with most analytics
systems, there is some inherent bias relevant to the algorithm. The current approach is limited by the
information available within the elite sports setting, i.e., metrics derived from the GNSS devices and
wellness scores. Beyond these two data types, there may be other data types relevant to RTS
progression. Fourth, clinicians need to adjust the parameters of the change point algorithm based on the
context and the purpose. The number and the location of change points discovered depend highly on

the parameters of 1) the maximum number of change points and 2) the minimum length of the segment.

A future application of the change point approach is to establish a change point profile for
different injuries. Each type of injury has unique considerations in the RTS progression (Taberner et
al., 2019). For example, the load planning sequence for hamstring injuries is running speed, and
acceleration/deceleration magnitudes. In contrast, the load planning sequence for adductor injuries is
the change of direction, and technical actions such as passing, crossing and shooting (Taberner et al.,
2019). Clinicians may use the change point profiles to evaluate RTS progression objectively.
Furthermore, this procedure can be part of the reflective observation in transforming the clinician’s
experience to conceptualise the rehabilitation lesson learnt. Actively reflecting on previous experience
is paramount for learning (Kolb & Kolb, 2018) and improving decision making in complex systems

(Bennet & Bennet, 2008)

5.6 Conclusion

We have outlined a change point approach to identify meaningful changes in the RTS continuum. The
univariate approach provided information regarding the sequence and time point of the change points.
The multivariate approach provided a common change point for multiple metrics, information that
would benefit clinicians to have a broad overview of the changes in the rehabilitation process. Clinicians
can apply the change point analysis to any other injuries to identify meaningful changes in RTS

progression and make informed decisions.
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6 Chapter Six: Study IV

Chapter overview

Chapter Six is the final study in this thesis. This original case study uses an association rule approach
to develop IF-THEN rules to represent the relationship between rehabilitation and physiological
adaptions (muscle soreness post-training). These findings may inform decisions in rehabilitation
training and design. Clinicians can adopt these methods to conduct large-scale searches for seemingly
random, yet important and frequently occurring patterns to discover rules that may support their

rehabilitation training design and recovery planning.

The content of this chapter has been submitted to the Journal of Sports Sciences (Taylor and

Francis) on 29" January, 2023. It is currently under review.

Clinical relevance

Understanding the interactions between variables through a complex systems approach may help
clinicians better address the dynamic nature of rehabilitation and improve decision quality. To identify
the interactions within the complex systems, clinicians may explore the regularities of the emerging
behaviour through pattern recognition. However, hidden patterns and unexpected patterns within large
complex datasets are often not obvious to human eyes. There is a need to explore analytical methods
that may assist clinicians in revealing patterns within a large RTS dataset and help improve future RTS

decisions.
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6.1 Application of association rule to rehabilitation training

design: a football exemplar.

6.1.1 Key points

e This study used an association rule approach to discover combinations of variables frequently
associated with a low score of muscle soreness on the next day or two days after training.

e The rules can condense a large volume of data and translate it into interpretable rules for
clinicians to act on.

e The method may reduce a large dataset's complexity without comprising the non-linearity

structure.
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6.1.2 Abstract

The sheer volume of data derived from sports technologies and clinical tools may challenge clinicians’
information processing capacity and hinder them from making effective decisions. Machine learning
approaches, such as the association rule method, can evaluate the nonlinear relationship between
voluminous wellness and physical performance data. This study uses an association rule method to
discover rules that can classify the level of muscle soreness the next day (T+1) and two days after
training (T+2). To exemplify the approach, six wellness metrics and eight physical performance metrics
were collected over one season from a professional football player who sustained a lower-limb muscle
injury. The Apriori algorithm was implemented. A total of 3356 and 1876 rules were discovered for
T+1 and T+2, respectively. An exemplar rule with three explanatory variables is that when metre per
minute = high, decelerations = medium and sleep = low, the player is likely to give a low score for
muscle soreness on T+1. The results may inform clinicians how to manipulate the rehabilitation
program design to achieve the desired level of training adaptations. Clinicians can also adapt similar
methods to conduct large-scale searches for frequent patterns and rules that may support their training

design and recovery planning.
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6.2 Introduction

To inform training and return-to-sport (RTS) decisions, clinicians first need to determine which tests
to perform and the metrics to be tracked. For instance, clinicians can quantify the physical output of
an athlete and compare the result with a benchmark, such as the pre-injury level or competition level
(e.g., 5 km represents 80% of the pre-injury game load). Clinicians may also refer to the internal load
to understand the physiological and psychological stress imposed by a given external load on the injured
athlete, for example, heart rate, subjective perception of the effort and subjective wellness (Foster et al.,
2001; Halson, 2014; Taylor et al., 2012). In particular, wellness questionnaires (sleep, energy, stress
and muscle soreness) have been widely adopted to quantify an athlete’s subjective response to exercise
stress on the training day (T) (Gallo et al., 2016; Taylor et al., 2012; Thornton et al., 2016; Thorpe et

al., 2017; Thorpe et al., 2015).

Integrating data from multiple sources into structured decision-making processes can be
challenging for multiple reasons. First, depending on the number of tests required, the volume and
complexity of data may exceed human information processing capacity (Yung et al., 2022b). When
clinicians have access to a high volume of data, they may not be able to process or consider it all,
potentially leading to slow or compromised decision-making (Cowan, 2001). Second, a challenge for
decision makers are the linear, and often nonlinear, relationships between variables required to
predict future states (Yung et al., 2022a). Identifying such relationships without the use of external

aids, such as computing, is extremely difficult (Bache-Mathiesen et al., 2021).

This study adopts an association rule methodology to assist clinicians in integrating multiple
data types and consolidating complex data into interpretable information. The association rule method
is a classic method that finds relationships among a large set of variables (Agrawal & Srikant, 1994).
The output can be expressed in the IF-THEN format: IF condition; and condition, and ... and
condition,, THEN decision (Daud & Corne, 2009). The association rule methodology has been
employed in sports analysis (Browne, Morgan, et al., 2019; Browne, Sweeting, et al., 2019; Robertson

et al., 2019) and talent identification (Robertson et al., 2015). Specifically, in identifying talents in the
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Australian Football League, three simple rules formed based on physical performance and
anthropometric attributes may discriminate players who are more likely to be drafted (Robertson et al.,
2015). For example, IF 20m sprint < 2.99s, THEN Australian Football League drafted (Robertson et
al., 2015). Using simple heuristic rules helps retain some complexity while reducing the number of
variables that practitioners need to focus on. Similarly, the association rule method may also fit into
RTS, helping clinicians to integrate physical performance and wellness data and estimate the post-

training muscle soreness level.

The primary aim of this study was to discover rules for classifying the level of muscle soreness
post-training and their accuracy (confidence). Muscle soreness was selected as the exemplary target
outcome (consequent) because it reflects the intensity of the training program and the adaptations of the
athletes. The rules discovered may help clinicians to manipulate the rehabilitation program to achieve
the desired level of post-training muscle soreness, such as creating a higher level of stimulus for positive
adaptations or a lower level for recovery. The secondary aim was to evaluate the relationship between

the number of variables included in the model and the confidence of the rules.

6.3 Methods

6.3.1 Design

This was a prospective observational case study of one professional athlete from an Australian A-
League football club. Ethical approval to conduct the study was obtained from the Victoria University

Human Research Ethics Committee (HRE22-071).

6.3.2 Participant

The participant sustained an acute lower limb muscle injury during high-speed running in football
training. The athlete returned to play at the pre-injury level, as determined by the coach. The
rehabilitation program was completed in the football club under the supervision of the club’s medical

team.
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6.3.3 Data collection

Data were collected during training sessions and competitions of the 2021/2022 Australian A-
League season, from pre-season training until the end of the season. To determine the running
performance in rehabilitation, the athlete wore a 10 Hz GNSS device (Apex Pro Series, STATSports,
Newry, Ireland) placed on the back between the scapulae. Each unit included a 100-Hz accelerometer,
magnetometer, gyroscope and 10 Hz GPS. The GNSS, which is certified by FIFA for use both in
training and matches (FIFA, 2021), is validated to quantify running activities. The reliability and
validity of these units have been previously reported. They display a high level of validity in total
distance and maximal velocity team sport settings (Beato et al., 2018), as well as excellent inter and
intra-unit reliability (Beato & Keijzer 2019). The device used has good inter-device reliability for the
measurement of total distance and maximal velocity (Beato et al., 2018). These devices also possess
suitable reliability and consistency for threshold-based accelerations and accelerations (Crang et al.,
2021; Comier et al., 2023). The athlete wore the same device during all activities to reduce inter-unit
error (Beato et al., 2018; Cummins et al., 2013) and no additional analysis was used to account for the

variations within the data.

Upon completion of each training session, all tracking data were downloaded using the
proprietary software (Sonra 3.0, STATSports, Newry, Ireland). Among the metrics derived from the
GNSS system, eight physical performance metrics were selected after consulting the club’s high-

performance staff:

1.  Total distance (TD) (m): Total distance covered in the session.

2. Metre per min (m.min): Total distance covered in a minute.

3. Maximum speed (km.h*): Maximum running speed attained in the session.

4. High-speed running (HSR) (m): Distance covered above 5.5 m.s*

5. Zone 5 (Z5) distance: Distance covered in speed zone 5.5-7 m.s™.

6.  Zone 6 (Z6) distance: Distance covered in speed zone 7-11 m.s™.

7. Accelerations (Acc): number of accelerations between 3.0 and 10 m.s? with a

minimum duration of 0.5 s.
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8.  Decelerations (Dec): number of decelerations between -3.0 and -10 m.s with a

minimum duration of 0.5 s.

On the morning of the training days, the athlete rated sleep quality, mood, stress, energy, diet

and overall muscle soreness on a scale 0-10 (0 — worst, 10 — better) using a mobile phone application.

6.3.4 Association rule

The association rule method is used to discover knowledge and present them in the form A=> B, where
A and B represent itemsets. The implication symbol (=>) denotes that if a transaction in the database
contains A, it also satisfies the conditions in B. As such, A is referred to as the antecedent and B the

consequent. Each transaction includes a set of variables (items) that occurred together.

In the context of rehabilitation, each training day represents a transaction. As an example, the
rule { high — speed running > 500m, poor sleep quality} = { high soreness} would indicate
that when the high-speed running performed is more than 500m and the sleep quality in the previous

night was poor (antecedents (A)), the soreness after training would be high (consequent (B)).

To further evaluate the validity of the rules, we can refer to two measurements: Confidence

(Eq.1) and Support (Eg. 2). Confidence measures how often the rule is true and can be expressed as:

Number of transactions containing A and B Eq.1

confidence (A - B) =
f ( ) Total number of transactions containing A

Support refers to how frequently an association rule occurs in the entire set of transactions and

is defined as:

Number of transactions containing A and B Eq.2

t(A-B) =
support ( ) Total number of transactions (N)
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6.3.5 Statistical Analysis

The athlete’s identifiers were removed before proceeding to statistical analysis. All analysis was
completed in RStudio software (version 1.3.1093) (R Core Team, 2019), using the R (version 4.03)
programming language. Mean and standard deviation were calculated for soreness scores and each of

the eight training metrics.

To apply the association rule algorithm, each variable was first discretised based on frequency.
Discretising the data based on frequency allowed each bin to contain a similar amount of data, which
may better reflect the underlying distribution and the common practice in applied settings which some
clinicians routinely discretise continuous variables to aid decision making. Performance running metrics
(except Z6 distance) were discretised into three bins (low, medium and high). The distribution of
wellness and Z6 variables were narrower and would not permit frequency discretisation into three bins,

hence two were used.

The Apriori algorithm from the arules package was used to explore frequent combinations of
variables co-occurring in the dataset (Agrawal & Srikant, 1994). In the general form of the association
rule methodology, there is no restriction on whether a variable appears as the antecedent and
consequent. However, to discover rules relevant for clinicians, the consequent was restricted to one
variable. In our example, a lower score in muscle soreness reported on the next day (T+1) and two days
after (T+2), respectively, were used as the consequents of the two models. A lower score indicates more

muscle soreness.

Muscle soreness was selected as the consequent, while all other variables were used as
antecedents to characterise the training sessions. The parameters set for the Apriori algorithm were a
minimum support of 0.06, a minimum confidence set of 0.2, a minimum and maximum rule length of
3 and 11 variables, respectively. These parameters captured a wide range of rules for the purpose of the
example and were applied to the Apriori algorithm to T+1 and T+2 transactions to search for rules

resulting in a lower score for muscle soreness.
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6.4 Results

A total of 115 training sessions with complete data were included in the analysis. The distribution of
each variable is displayed in Figure 6.1. The mean and standard deviation of the items and the resulting

cut-off value of discretisation are shown in Table 6.1.

Figure 6.1 Histogram for included variables. m/min: metre per minute; Max speed (km/h):

maximum running speed (kilometre per hour).
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Table 6.1 Mean (SD) and cuff-off values used to discretise each variable.

Variable Mean (SD) Low Med High
Total distance (m) 5217 + 2079 <4420 4421 - 5630 >5631
Metre per min (m.min) 91.2+229 <81.9 82-96.5 >96.6
Maximum speed (km.h?) 26.9+3.9 <25.1 25.2-29.3 >29.4
High-speed running (m) 390 + 335 <226 227-429 >430
Z5 distance (m) 338+ 271 <208 209 - 404 > 405
Accelerations 75+ 37 <65 66 - 88 >89
Decelerations 58 + 32 <50 51-73 > 74
Muscle Soreness 8x1 <7 8 >9

Low High

Z6 distance (m) 53+ 85 <19 >20
Sleep quality 8x1 <38 >9
Mood 9+1 <9 10
Stress 8x1 <8 >9
Energy 8+1 <8 >9
Diet 8+1 <8 >10
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Figure 6.2 Six exemplary rules with three, five and eight explanatory variables are displayed. The

rules are associated with a low score in muscle soreness on the next day after training (T+1), and

are ordered by confidence. Each discretised variable is colour coded according to its category for

visual interpretability.
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Figure 6.3 Six exemplary rules with three, five and eight explanatory variables are displayed. The

rules are associated with a low score in muscle soreness on two days after training (T+2) and are

ordered by confidence. Each discretised variable is colour coded according to its category for

visual interpretability.
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Figure 6.4 Level of rules' confidence based on the number of explanatory variables included in

the T+1 and T+2 models.
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Figure 6.5 The quantity of rules according to the number of explanatory variables included in the

T+1 association rule model. Labels indicate the proportion of rules where confidence = 1.
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6.5 Discussion

This study aimed to evaluate the use of association rule among a complex dataset relating to a
professional footballer’s rehabilitation. As an exemplar, we generated rules that may help clinicians
manipulate the rehabilitation program to achieve the desired level of post-training muscle soreness. The
target consequent is a lower score of muscle soreness (i.e., more muscle soreness) on the day after

training (T+1) and two days after (T+2).

First, multiple combinations of variables led to the target consequent. As an example from the
T+1 model (Figure 6.2), rule #1 indicate high metre per minute, medium decelerations, low sleep led to
a lower score of muscle scores (consequent). Other rules with high accuracy (confidence) are displayed
in Figure 6.2 and Figure 6.3 as examples. Next, we investigated the relationships between the number
of variables included in the model and the accuracy of the rules to discuss the trade-off between data
input and models’ accuracy. The methodology used here may help clinicians establish simple, intuitive
rules to guide their decisions in manipulating the level of post-training muscle soreness. From a broader
methodological perspective, clinicians may use the association rule method to integrate multiple data
types and condense complex information into simple rules to support other decisions. For example, to
identify the relationships between wellness, training load, mood states (antecedents) and player

availability (consequent).

Accuracy, efficiency and interpretability are important considerations when using machine
learning models in applied settings, as with most modelling approaches (H. Liu et al., 2017). In terms
of accuracy, with the same dataset, more complex models usually have lower accuracy than simpler
models (Halilaj et al., 2018). As shown in Figure 6.4, the rule’s confidence level increased when more
variables were added to the T+1 model. However, this is more likely to apply when the variables are
valid and relevant to the model. For example, adding more variables to the T+2 model did not improve
the model’s performance as apparent as the T+1 model (Figure 6.4). It is possible that the level of

muscle soreness on T+2 was not closely associated with variables included in the T+2 model. Other
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factors, such as events occurring on T+1, may have a considerable effect on the muscle soreness on

T+2.

Although models with more variables generally have higher accuracy, there is a trade-off
between accuracy, efficiency and interpretability. First, a complex model with more variables requires
clinicians to spend more resources (e.g., staffing, time and equipment) to collect and clean the required
data. This may generally couple with a longer computation processing time. Second, complex models
are usually less interpretable and readable, as humans have limited information processing capacity
(Miller, 1956). Often, users may prefer extracting the rules from the model to see any relationships
between the inputs and the outputs (H. Liu et al., 2017). Therefore, a complex model with complicated
rules may be difficult and cumbersome to follow. In contrast, rules containing fewer variables are easier
to read and interpret. For example, in Figure 6.2, some clinicians may find models with three
explanatory variables (rules #1 and #2) easier to read and interpret than eight (rules #5 and #6). Third,
rules with higher confidence often come with a lower support value, meaning the model has less
extrapolation ability in other unseen data. This is commonly known as over-fitting (Daud & Corne,
2009). Since the utility of the model depends highly on the user’s preference, available resources and

working style, there may not be a one-size-fits-all approach.

To choose a model that balances accuracy, efficiency and interpretability, clinicians may
consider the principle of parsimony, which suggests that models with fewer variables are preferred if
they do not meaningfully deteriorate accuracy (Stubbe et al., 2005). A parsimonious model achieves
the desired level of goodness of fit using the minimum number of explanatory variables. In our analysis,
six variables gave the highest number of rules with a confidence of 1.0 (n = 42) in the T+1 model,
accounting for 7.9% of all the rules discovered with six variables (Figure 6.5). The percentage of rules
having a confidence = 1.0 increases nonlinearly with the number of variables (Figure 6.5). With
supporting information from Figure 6.4 and Figure 6.5, clinicians can choose their preferred number of
explanatory variables based on their available resources, operation style, personal preference and the
level of confidence they are willing to accept. Ultimately, the decisions on the number of variables in

the model should be aimed at improving the clinicians’ ease of use and increasing the speed of their
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decision making, which again, may vary among users. For example, given the confidence of the models
and the data input required for this case, some clinicians may find six variables appropriate. However,
when using the association rule approach for investigating other research questions, such as the
relationship between an injury diagnosis and the expected time to RTS, more variables may be required
to capture the details of the injury. While more variables may capture more information and lead to a
more accurate model, users may expect a diminishing return on accuracy. For example, the accuracy
of T+1 model levels out when six variables are included (Figure 6.4). To strike a balance between the
accuracy, efficiency and interpretability of the model, clinicians may also consider controlling the
model complexity such that the generated model will not be very complex. Model complexity can be
controlled by using different methods, such as feature extraction (e.g., Principal Component Analysis)
(Jolliffe, 2002). The aim is to transform the dataset to a lower dimensional space by combining existing

attributes and thus reduce model complexity.

When analysing large datasets relating to apparently complex phenomena, a nonlinear analysis
may provide greater insight into the characteristics of the behaviour compared to a linear approach
(Robertson et al., 2015). The association rule algorithm utilised here integrated data from physical
performance and wellness to highlight combinations of variables that may lead to a lower score of
muscle soreness on T+1 (Figure 6.2) and T+2 (Figure 6.3). For example, when considering five
explanatory variables in the T+1 model (Figure 6.2), rule #3 indicates that if the player has completed
a training session with high metres per minute, medium decelerations, and subjectively-rated low for
the sleep, stress and diet score, the player is likely to have a low score for muscle soreness on T+1. Not
only might the association rule methodology help reduce clinicians’ time and mental burden in
eyeballing or analysing datasets from different sources (e.g., wellness questionnaire and GNSS
database) within a limited timeframe, it may also uncover nuanced patterns that are not easily perceived

by humans.

As required by the association rule approach, the continuous values in this study are discretised
into two or three categories (bins) based on frequency. The bins are then presented in linguistic terms,

such as low, medium and high, for simplicity and to fit into applied settings. The categories, however,
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can also be set using other rationales, such as data distribution or practical requirements of the sports
organisation. For example, a sports organisation may set their metres per minute categories based on
the performance goal of the organisation. The ideal model for a sports organisation may require trial

and error and be determined based on model performance.

Clinicians can acquire knowledge from books, orally transmitted learning, practical experience
and common sense. However, clinicians may be subjected to biases due to various reasons. For example,
bias may be introduced during clinician training (e.g., a heavy emphasis on specific musculoskeletal
factors only) or by practice (e.g., clinicians accustomed to a particular routine). As such, the knowledge
acquired could also be constrained by social context and sometimes biased towards conventional
practice. In contrast, a machine learning system can gain knowledge by performing exhaustive searches
through large data sets and through statistical analysis. It may find rules that are consciously or
unconsciously implemented by clinicians and help systematically structure the knowledge. Clinicians
can integrate and complement their knowledge with that elicited from the association rule (Webb,

1996).

However, as promising as machine learning is in analysing data and driving informed decision
making, it can also be susceptible to unintended biases (Mehrabi et al., 2021). For example, the machine
learning system learns to make decisions based on historical (training) data, which can include biased
human decisions. To address potential machine learning bias, clinicians may first need to honestly and
openly question if best evidence practice is used in the current workflow, and actively hunt for biases
that may manifest themselves in data. Furthermore, due diligence, such as externally validating the
model in the target population for which they are intended, is also recommended prior to using any
model in a clinical setting (Bullock et al., 2022). Ultimately, at the current development stage, machine
learning models are not intended to replace human decisions. Instead, they are tools that may
supplement subjective assessment and allow a deeper understanding of complex human behaviour, and

hence improving decision quality (Gamble et al., 2020).

This example model has several limitations. First, the data only included supervised training

conducted at the club. Activities conducted outside formal sessions were not included in our analysis
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but may contribute to the reported subjective wellness, for example, walking the dog longer than usual.
Second, the initial off-feet rehabilitation training was not included in our analysis because we could not
capture the external workload of the upper body during this period. Third, the reliability of the self-
reported wellness information depends on different factors, such as the athlete’s honesty and familiarity
with the questionnaire. Fourth, in our model, muscle soreness was the proxy for training intensity and
the athlete’s response. However, muscle soreness may be biased towards gym-based eccentric exercises
(Cheung et al., 2003; Cleak & Eston, 1992). Fifth, although discretising data can condense the data and
keep broader categories (Stanczyk et al., 2020), it introduces sharp boundaries and may lead to data loss

(Hong & Lee, 2008).

6.6 Conclusion

This study used an association rule methodology to explore and discover combinations of variables
frequently associated with a low score of muscle soreness on the next day or two days after a training
session. The rules can condense a large volume of data and translate them into interpretable rules for
clinicians to act on. This approach may reduce the complexity of large datasets without comprising the

nonlinearity structure.
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7 Chapter seven: General discussion and conclusion

Chapter Overview

This chapter consolidates the key findings and implications of this thesis and discusses how these can
be implemented in the applied setting. This chapter contains a general discussion, industry

implementations, future directions and conclusions.
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7.1 General discussion

This thesis aimed to provide tools to support clinicians in RTS decision making by adopting the complex
systems theory as its major theoretical framework. Collectively, the four studies discussed frameworks
(Part 1) and their practical applications (Part 2) to improve RTS decisions by using a complex systems

approach and advanced analytical tools®.

First, Chapter Three discussed how clinicians can evaluate a decision based on a decision
analysis perspective and what factors constitute a good decision. Making RTS decisions is challenging
because injury cases are often complex and unique. Due to the linearity and emergence behaviour, it is
also hard to predict the outcome from a few clinical tests alone. As such, the decision-making
framework in Chapter Three outlined critical considerations for clinicians to observe, evaluate and
interpret the RTS question. This also formed the basis of the thesis, including defining a good decision.
To improve decision quality, clinicians may view rehabilitation from multiple perspectives and harness

the complex systems theory.

The complex systems theory, a well-recognised approach to conceptualising sports injury and
rehabilitation, can be used as the theoretical framework to understand sports injury and rehabilitation
(Bittencourt et al., 2016). Complex systems theory guides clinicians in defining and interpreting systems
from multiple perspectives, thus providing them with a better opportunity to understand and explain
complex decisions. Chapter Four explained the concepts of the complex systems theory and
complemented them with clinically relevant examples. Complex systems have distinctive
characteristics, for instance, emergence, feedback loops and dynamics shaped by nonlinear interaction.

Complex systems, however, may be challenging to apply in practice because it requires clinicians to

LIn the beginning of this doctoral investigation, | initially proposed to collect data across multiple
seasons. However, when professional sports were highly disrupted by COVID-19 pandemic, it was difficult to
conduct large scale studies. As a result, this thesis included two review studies and two case studies that compared

the analytical techniques using data from the same player.
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move from finding “causes” to finding “relationships” within the system (Bittencourt et al., 2016).
Clinicians are also often presented with a high volume of complex data, which may overwhelm their
information processing capacity. With the digitisation of health care and the development of sports
technology, there are opportunities to harness and capitalise on the information being captured to

improve RTS decisions with the use of analytical methods and through a complex systems approach.

In Part 2, Chapters Five and Six adopted analytical methods that can accommodate the
characteristics of the complex systems and potentially improve RTS decisions in applied settings. In
planning a rehabilitation program, depending on the number and types of tests and/or monitoring
required, clinicians can be challenged by 1) a large volume of data and 2) multiple data types and
formats (e.g., longitudinal and discrete datasets). Meanwhile, clinicians only have limited time and
mental capacity to analyse, consolidate, interpret and report the findings. To develop methodologies
that may improve clinicians’ decision quality and accommodate the characteristics of complex systems,
Part 2 adopted analytical methods that may fit into applied settings. Specifically, Part 2 contributed to

resolving two common types of data problems in applied clinical settings:

1) Clinicians often collect multiple data types during the RTS process at regular time
points. Specifically, longitudinal data are commonly found in clinical settings as
clinicians track the rehabilitation progression. How can clinicians integrate and analyse
the longitudinal data?

2) What are the hidden and unexpected patterns in a large rehabilitation dataset? How to

exploit them and structure the knowledge?

For question 1, Chapter Five adopted the change point method. The change point method was
selected for its advantage in finding meaningful change(s) in a longitudinal dataset. In particular, an
important practical aspect of the change point method is that it accepts various continuous metric
representations, such as physical performance data from GNSS devices or wellness monitoring data.
This increases versatility in the rehabilitation environment, where multiple data types are often
presented. For example, clinicians may want to continuously track the hamstring isometric strength and

high-speed running distance after a hamstring injury. In addition, clinicians can compare the location
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and sequence of the change points with their clinical judgement and past practice. For example, what is
the preferred sequence of change points after a groin injury? In addition, univariate and multivariate
approaches were also investigated to explore how the change point method can integrate and visualise

multiple longitudinal data types.

For Question 2, Chapter Six adopted the association rule method. The association rule method
was selected because it can integrate multiple data types and condense complex information into simple
and intuitive rules. Consequently, clinicians can use the rules to identify the interaction between
multiple variables and guide their decisions in clinical practice. In Chapter Six, clinicians can find rules
that were associated with the level of post-training adaptations. Using the same method, clinicians may
discover frequently occurring patterns in different aspects, for example, the combination of variables
that may maximise the RTS outcome, or minimise injury risk. Furthermore, both the change point and
association rule methods provide simple visualisations whereby clinicians can track the rehabilitation
process (change point method) and identify the associations between aspects of athlete behaviours

(association rule method).

While this thesis only explored the change point and association rule methods, other machine
learning methods, such as classification (e.g., decision tree), may also fit into the clinical setting. Similar
to the association rule method, the classification approach may explain the reasoning behind the output
and is intuitive. In contrast with the association rule, the classification approach could be advantageous
by enabling data to be modelled in its original format (e.g., continuous) and not needing data to be
discretised. Discretising data may improve clinicians’ ease of use and increase the speed of interpreting
data, but it may also reduce the explanatory power of continuous variables. However, this thesis has not
included classification in the studies because change point and association rule methods are relatively
more intuitive and easier for clinicians to understand and apply. This may increase the work’s
applicability in sports medicine and encourage clinicians to explore and uptake analytics in their
practice. However, it is still worthwhile to investigate classification and other analytics methods in the

future and compare them regarding their functions, applicability and feasibility in applied settings.
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Both change point and association rule methods are post-hoc analyses and intend to evaluate
past practice. These methods may help clinicians systematically structure existing knowledge and
complement it with empirical evidence and clinical experience. Clinicians’ experiences, despite their
importance, are sometimes poorly articulated and may create challenges in structuring the knowledge.
The methodologies proposed in Part 2 may help to structure the knowledge and help develop
consistency in clinical practice and decision quality within a sports club or an organisation. For example,
sometimes clinicians may find it hard to articulate their experience, such as when they think an athlete
is safe to RTS. In this case, clinicians can elicit knowledge from the rehabilitation dataset using the
association rule method, consolidate their clinical experience into rules and use the rules to support their
decision making. The rules may also help the less experienced staff make decisions and align the sports
organisation’s practice. Overall, structuring knowledge with analytical methods may also help
clinicians consistently apply the best possible knowledge, reduce unwanted variability, and ultimately

improve decision quality.

The results from Chapters Five and Six demonstrated the strength of using descriptive and
associative analysis in complex systems. Specifically, Chapter Five analysed longitudinal data trends
and identified when meaningful changes occured. Chapter Six delved into the discovery of rules that
are associated with increased levels of muscle soreness post-training. The rules may serve as beacons
for clinicians, aiding them to foresee scenarios that may predict athletes' responses after training. In
practice, the patterns and trends identified can aid clinicians in manipulating rehabilitation programs
and influencing outcomes. Descriptive and associative analyses, with their expediency and practicality,
may operate harmoniously with the complex systems approach. In complex systems, causes and effects
often interlace in complex choreography, rendering the task of unpacking the latent forces guiding
system behavior profoundly challenging and time-consuming. To this end, descriptive and associative
analyses provide insights and actionable information to clinicians with efficacy and without the need

for an exhaustive understanding of the complex causal relationships within.

While this thesis encourages clinicians to adopt a complex systems approach for decision-

making, there are associated pitfalls when employing this approach to data analysis: 1) Complex
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systems analysis often involves integrating and analysing multiple types of data; however, it is not
merely about indiscriminately incorporating all data into models without filtering for relevance. The
initial thought process should encompass clinical reasoning, such as selecting the relevant metrics,
choosing the most appropriate tests and determining the frequency of data collection. Furthermore, the
quality of data is as important as the quantity. Inadequate or poor-quality data can lead to misleading
patterns and therefore inaccurate conclusions. 2) While complex or advanced modelling might be
imperative for analysing complex systems, excessively complex models can prove challenging for
clinicians to interpret. In addition, they might not consistently outperform simpler models, despite their
complexity. Striking a balance between model complexity and interpretability is crucial. 3) It is
challenging to determine the causality within complex systems due to the intricate interdependencies
and feedback loops, as mentioned earlier. However, relying solely on correlations, such as descriptive
and associative analyses, may not adequately aid clinicians in comprehending the underlying
mechanisms behind a clinical presentation. Within a sports organisation, researchers and clinicians can
perform descriptive, associative and causative analyses coherently: Descriptive and associative analyses
provide the operational foresight, while causal analysis probes deeper to unravel the root causes. This
helps clinicians navigate the complexities of sports rehabilitation with a comprehensive perspective,
while bridging timely interventions and foundational understanding. 4) Validating complex systems
models can be difficult due to the unique and dynamic nature of the phenomena involved. However,
expert knowledge may enhance the robustness of complex systems analyses by refining and validating
the model against real-world observations. To navigate the above features and pitfalls of the complex
systems, a multidisciplinary approach that combines expertise in statistics, data science and domain

knowledge, are strongly encouraged.

Both Chapters Five and Six used a single case study design to exemplify the analytical
methodologies. Case study research has sometimes been criticised for lacking scientific rigour and
having limited generalisability to other subjects (Yin, 2009). While there are limitations to a single case
study design, such an approach is advantageous when exploring a complex issue in-depth in applied

settings (Crowe et al., 2011). The current single case design may direct readers’ focus to the analytical
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methodologies and how the exemplars used them to integrate, analyse and visualise multiple data types
simultaneously. Furthermore, the context and dynamics of most sports injuries and RTS processes are
different and seldom repeat. For example, a similar hamstring injury may occur at various stages of the
tournament; the mentality and personality of athletes differ. Clinicians may apply the methods in
Chapters Five and Six to evaluate the RTS decisions on a case-by-case basis and structure the
knowledge based on clinical experience. To systematically structure the knowledge to inform practice,
it is also possible to consolidate the results of multiple case reports within the same sports organisation.
For example, clinicians can try to discover rules that may produce the desired RTS outcome after a
specific injury. While aggregating the results of case reports do not replace meta-analysis nor provide
a statistically significant cross-section view of rehabilitation, they may provide crucial insight into the

rehabilitation trajectory and identify if any common patterns are arising throughout RTS.

7.2 Implications for the sports industry

Effective rehabilitation program design, implementation and evaluation require consideration of the
whole rehabilitation system. To this end, using a complex systems approach has been recommended in
sports medicine (Bittencourt et al., 2016). Specifically, studying complex systems provides compelling
concepts for capturing useful information about the world, including rehabilitation and sports injuries

(Bittencourt et al., 2016).

To encourage clinicians to use the complex systems approach, Chapter Four translated the
concepts and jargon of the complex systems theory into common languages and supplemented them
with relevant clinical examples. Analysing data with a complex systems approach offers valuable
insights into rehabilitation, and Chapter Four presented several key aspects to consider, such as
emergence, non-linearity, tipping point, adaptation and feedback. Understanding these features is

essential to predict and describe the behaviours of complex systems, which may aid decision making.

Chapter Five then proposed a new framework for RTS decisions which suggests clinicians 1)
zoom into the methodological traps in clinical testing, 2) zoom out to identify the cognitive process,

and 3) gain a perspective of the rehabilitation systems and align priority with other relevant stakeholders
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(athlete, coach, management). This framework encourages clinicians to harness the complex systems
approach and look at the broader rehabilitation system from a “big picture” perspective (Hulme et al.,
2017). This may help clinicians re-think the array of contributory factors that impact the rehabilitation
outcome and progress. Sometimes, reforming and enhancing systems may be more effective than
modifying the determinants of performance at the individual (Hulme et al., 2017). As an example, in
Chapter Five, the change point univariate method indicated that most wellness variables (mood, sleep
and soreness) reached their change points during the modified training session, which was when the
athlete integrated with the main squad training in a modified capacity. Based on this finding and through
the lens of the complex systems, clinicians may investigate the factors associated with the meaningful
change points and develop protocols at the team or organisational level to facilitate rehabilitation. For
instance, allowing injured players to get involved with some form of main squad activities (e.g., ball or

non-ball training and team building activities) as early as possible.

Part 2 of this thesis aimed to improve data analysis to inform decisions. While the use of
complex systems approach has been recognised as theoretically important to sports medicine, it remains
challenging to implement these concepts in applied sports for multiple reasons. First, the sheer volume
of data from different sources increased the complexity of the decision. Second, conventional analysis
methods often assume linearity and focus on identifying one or more risk factors in isolation (van Dyk
et al., 2016). Assuming linearity between factors and outcomes, and not accounting for the complexity
rooted within findings may produce contradicting results (van Dyk & Witvrouw, 2020). To this end,
the analytical methods presented in Part 2 may contribute by better capturing the multi-component
patterns of human biopsychosocial behaviours and the dynamics of injury and rehabilitation with a

multivariate approach.

A multivariate approach is preferable when examining the nonlinear relationships between
variables because it allows clinicians to consolidate multiple data from different sources. By analysing
multiple data types simultaneously, it may help to increase work efficiency and reduce the cognitive
workload of interpreting. As demonstrated in Chapter Five, a multivariate change point method can

aggregate the change points of multiple metrics and simplify them into a common change point.
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Therefore, the clinician could refer to two common change points to summarise the overall changes in

the four wellness metrics and the five running performance metrics.

These analytical methods are used to complement clinicians’ existing clinical knowledge. For
example, clinicians are generally aware of the principles of progressive loading on a hamstring muscle
after injury. However, it can be challenging for them to analyse the nonlinear relationship between
variables without the use of analytical methods (e.g., hamstring strength, the number of accelerations
performed during training, and subjective stress levels). To this end, the association rule method
(Chapter Six) provided another means of aggregating multivariate information. These rules are simple,
intuitive and human-readable, meaning that they are user-friendly to clinicians who may have less
training in computer-based analytics. Furthermore, clinicians can modify the content and length of the
rules to suit their operational needs and preferences. Specifically, clinicians can choose to include
information they believe to be valuable in the rules and decide how many pieces of information they
would like to include. For example, some clinicians may prefer excluding the wellness information,
while others may prefer including heart rate variability as a mean to assess stress levels. In addition,
some clinicians may choose longer rules with more comprehensive information, while some prefer

shorter rules for better applicability.

The exponential growth in data collected through advancements in sports technology presents
exciting opportunities for improved analysis and understanding of complex systems in sports medicine.
While univariate and linear approaches to data analysis may have been sufficient in the past, the
increasing size and complexity of datasets necessitate the adoption of multivariate analytical methods,
such as the change point and association rule methods. These techniques have the potential to uncover
crucial combinations of variables that may impact outcomes, providing a deeper understanding of the
system than previously possible. As demonstrated in Chapter Six, the use of analytical methods can
reveal underlying relationships between variables that may contribute to increased muscle soreness

post-training, offering valuable insights for the planning and design of rehabilitation programs.

The change point and association rule methods provide versatile solutions for analysing high-

order interactions and nonlinear relationships presented in sports medicine. When using the analytical
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methods, it is advisable for practitioners to adjust the parameters of the algorithms based on the specific
context and research question, in order to optimise their results and ensure the validity of the analysis.
For example, in Chapter Five, clinicians were recommended to adjust the parameters of the change
point algorithm based on the context and the purpose. The number and the location of change points
discovered depend highly on the parameters of 1) the maximum number of change points and 2) the
minimum length of the segment. Similarly, for the association rule approach in Chapter Six, clinicians
also need to adjust the parameters based on their preference for 1) minimum support, 2) minimum

confidence, and 3) the rule length.

Of paramount importance within this thesis is not only the theoretical understanding of the
complex systems and machine learning techniques, but the practical “how-to” aspect of integrating the
above knowledge into daily operations. To help clinicians consolidate the knowledge acquired and
apply them effectively in practice, clinicians can use the Cynefin framework as a reference guide
(Snowden & Boone, 2007). The Cynefin framework was developed to help leaders understand their
challenges and to make decisions based on the context, which includes clear, complicated, complex,
chaotic and a centre of confusion. Readers may refer to Snowden & Boone (2007) for further details.
Based on the Cynefin framework, when clinicians make decisions with a complex systems approach,
they may consider using the "probe-sense-respond” strategy: Clinicians can first probe the system by
implementing a rehabilitation program based on the injury, RTP goals and timeline. Subsequently,
clinicians can sense athletes’ performance progress by collecting data from clinical assessments (e.g.,
range of motion), and physical performance tests (e.g., leg strength). Moreover, clinicians can gather
feedback from the athletes regarding their pain levels and perceived wellness. Clinicians can then
respond to the data collected by analysing the datasets to identify patterns that are most effective in
reducing pain and promoting recovery. Machine learning, through data analysis and descriptive and
associative modelling, can find hidden patterns, predict recovery trajectories, and provide timely
feedback to athletes and clinicians during rehabilitation sessions, as discussed earlier. For example, in
Chapter Five, the change points suggested clinicians to monitor the athlete’s athlete’s sleep quality

closely during the early rehabilitation phases because sleep quality takes longer than stress to reach the
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change points. In Chapter Six, the association rule approach suggested that when the athlete had poor
sleep the previous night, clinicians may manipulate the muscle soreness post-training by adjusting the
running intensity (metre per minute) and the number of decelerations in the training session. If certain
rehabilitation program or strategies consistently lead to better outcomes or patterns, clinicians can
prioritise and emphasis them. The "probe-sense-respond" approach is particularly suited for complex
systems because it encourages adaptive response based on the patterns and rules discovered. This
methodology encourages continual adjustments, which resonate with the inherent dynamism

characteristic of complex systems.

7.3 Developing decision support systems

Data-informed decision support systems may enhance the accuracy and speed of clinicians' decision-
making processes, provided that these systems can access sufficient high-quality data and employ the
most appropriate methodology (Robertson, 2020; Robertson, Bartlett, et al., 2017). Building on this
notion, there are two key advantages to consider: First, objective data analysis may provide an unbiased
evaluation of the high volume of complex data, which can help overcome human cognitive limitations,
heuristics or biases (Schelling & Robertson, 2020). Second, data analysis techniques can determine
complex nonlinear interactions within large datasets over a period of time. This may be attractive for
clinicians working in professional sports because large, multivariate datasets are increasingly common
due to the rapid development of sports technology. By leveraging these data analysis techniques,
clinicians can not only make more informed decisions but also transcend the limitations that human

cognition can impose (Robertson & Joyce, 2019).

The two methods introduced in Part 2 are likely to fit in clinical settings as decision support
aids because both approaches can explain the reasoning behind the output and are intuitive. The success
of a decision support aid hinges on the transparency of the algorithm, that is, whether the clinician can
understand and explain the verdict generated by the algorithm (Lipton, 2017; Watson et al., 2019). If
the clinician does not understand the rationale behind the system’s output, they may be skeptical of the

result and, therefore, reluctant to adopt the system in practice (Schelling & Robertson, 2020). For a
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decision support aid to be used in a clinical setting, quality, practicability and interpretability are
essential (Bullock et al., 2021). There is value in developing decision aids because decisions made using

decision aid are generally more systematic and less prone to human cognitive bias (Sutton et al., 2020).

Importantly, the key essence of this thesis is not to remove the role of humans in the decision-
making process but to be better supported and complemented by computational tools. Complex systems
allow clinicians to view rehabilitation with a broader perspective. However, this would be extremely
difficult to achieve without the support of computational analytical tools. This thesis emphasised the
supporting role of analytical tools in consolidating rehabilitation data and presented clinicians with user-
friendly visualisations that may support their clinical judgement. In addition, the tools and techniques
presented in Part 2 of this thesis carry the overarching objective of innovating and creating novel
solutions to improve RTS decision. Sporting organisations may consider adopting these analytical
methods to gain a performance edge over their competitors. In short, the implementation of this thesis
is intended to call for a paradigm shift towards the complex systems approach, followed by providing

tools that may support, but not replace, clinicians’ decisions.

7.4 Broader applications

Football (soccer) was used as an exemplar sport to demonstrate the applications of methods (change
point and association rule). The framework and methodologies throughout this thesis, however, can be
extended to other sports. Similar data capture techniques, such as GNSS tracking devices and athletes’
monitoring tools, are commonly used across other field sports, such as Australian Football (Teune et
al., 2022a) and field hockey (Jennings et al., 2012). Thus, the framework and methodologies may be
extended to these sports. Adjustments to methodologies are required when working with sports that
involve more upper limbs, such as baseball. In this case, clinicians may measure the pitching velocity

and the number of pitches performed instead of the running performance metrics (Dowling et al., 2020).

Although a case of lower limb injury of a football player was used throughout Part 2, the
methodologies described can be applied to most lower limbs and upper limbs injuries. Clinicians are

encouraged to use their experiential knowledge to guide adaptions of the framework and methodologies
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within this thesis. For example, when managing a shoulder injury, clinicians may perform the Athletic
Shoulder test and monitor the change in upper body isometric strength throughout RTS (Ashworth et

al., 2018).

With the development of sports technology and wearable technology, clinicians can integrate
more data types relating to other aspects of health and performance into these analyses. For example,
data from wearables (e.g., heart rate variability and joint kinematics) and other questionnaires (e.g.,
personality and mental health) could also be included. These data may be measured and included within
the same models and permit a deeper understanding of the interactions between variables. For example,
clinicians may track the athlete’s mental health throughout the RTS process and identify how it may be
associated with performance output. This knowledge may also inform session design, such as how to
modify the training sessions and better support the athlete when the athlete is mentally stressed.
Furthermore, these data may provide additional contextual information when evaluating the athlete’s
readiness for RTS. This kind of analysis may become more feasible as sports technology that facilitates

automatic data collection continues to evolve and implement widely.

The analytical techniques presented within this thesis allow more data types to be analysed
together. As such, it may encourage collaboration between sports disciplines, which is advantageous in
sports science and medicine (Browne et al., 2021; Dijkstra et al., 2014; Woods et al., 2021). To RTPerf
after injury, athletes need to undergo rehabilitation and develop athletic qualities, including physical,
mental, technical and tactical skills. In this process, the close collaboration between multiple high-
performance staff is highly desirable, including but not limited to technical and tactical coaches,
physiotherapists, sports scientists, strength and conditioning coaches, psychologists and nutritionists.
One way to facilitate collaboration and communication is to integrate relevant data and present them
together. Part 2 demonstrates how physical performance and wellness data can be combined and
analysed to inform RTS decisions. Exemplar visualisations of the results may be used as a platform for
high-performance staff to visualise data and discuss the appropriate management for RTS. In summary,
many opportunities exist to adapt this thesis's decision-making framework and analytical techniques to

elevate RTS decision quality.
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Future directions

The use of complex systems approach as the theoretical lens in RTS is still in its infancy and requires
time to mature. This thesis has presented multiple avenues for future research. There is scope to
investigate further how these tools and frameworks may be transferred to the applied setting and their
effect. First, future work can compare the clinicians’ decisions with and without analytical tools to
examine the efficacy of analytical tools. If clinicians demonstrate superior performance compared to
decision-supporting systems, researchers need to further improve the methodology. Nevertheless, the
call for methodological improvement is constantly required, especially in light of the continuous influx
of higher-quality data as a result of technological development. As better and more data becomes
available, it will become increasingly challenging for clinicians to outperform the analytical tools. A
research design using randomised control trials may be conducted to compare the outcomes. However,
the feasibility of this type of study may be limited in applied settings, for example, in high-performance
sports. Consequentially, qualitative studies may also be considered. Second, future research may also
build on current work and harness real-time information feedback to further increase the analytical
tools’ functions. For example, real-time feedback may be included in the change point analysis in
Chapter Five. This real-time feedback may signal to clinicians when an athlete’s rehabilitation
behaviour is critically drifting from expectation and requires adjustment to the program. As technology
and analysis in sports rehabilitation advance, there may be metrics (maybe other than physical

performance and wellness) or algorithms that can support real-time decision making.

The analytical technigues within this thesis only represented two of the many other types of
analytics. They may serve as a catalyst to generate and support novel approaches to RTS decisions.
However, the applicability and practicability of using other analytical techniques remain largely
unexplored in sports medicine, such as classification, agent-based modelling, network analyses and
dynamic systems analyses (Peterson & Evans, 2019). Researchers may continue to explore other
innovative methods that can simultaneously analyse the dynamic interaction at multiple levels and

among variables of different groups.
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In preparing a sports organisation and clinicians to be comfortable making RTS decisions with
a complex systems approach, several competencies may be helpful. For example, it may be ideal for
clinicians to have some basic understanding of analytics, including the theoretical knowledge of
machine learning techniques (Rein & Memmert, 2016). These skills are often not a regular part of
professional discipline training and education, but the knowledge may support clinicians to use
advanced tools in applied settings and be aware of the limitations (Bullock et al., 2022). However, it is
also crucial to recognise that clinicians alone are not sufficient for conducting these analyses effectively.
It is strongly advisable to engage experts who possess specialised knowledge in areas such as data
science, statistics and mathematics. These experts can play a pivotal role in bridging the gap between
various disciplines and devising innovative research methodologies, particularly through collaborative
endeavours. To foster these advancements, | strongly encourage future research teams to adopt a robust
multi-disciplinary approach, with clinicians, high-performance staff, and data scientists, collectively

working in synergy to derive meaningful insights from complex datasets (Casals & Finch, 2018).

7.5 Conclusions

This thesis may provide clinicians with methodologies to improve decision-making quality and

analysis. The specific conclusions of this thesis are:

1. Clinicians may improve RTS decisions from two perspectives: improving decision-making process
and data analysis.

2. There are different decision-making frameworks, and they are associated with various potential
biases. Based on the decision-making framework used, there are strategies to help clinicians
mitigate biases and potentially improve decision-making process.

3. Clinicians are recommended to view athletes with a complex systems approach, recognise the
complex nature of rehabilitation and identify the interaction between various variables. This may

help clinicians to understand the “big picture” of the problem.
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Analytical methods congruent with a complex systems approach may help clinicians identify the
interaction between variables and exploit unobvious patterns within a large dataset.

The application of analytical methods proposed in this thesis may help clinicians aggregate multiple
data types, accommodate complex systems and present them in intuitive visual graphs.

These analytical methods can help clinicians move to multivariate nonlinear analysis, which may
better represent the complex systems in sport and rehabilitation.

Future work could focus on examining the effect of the decision-making framework and the use of

various analytics methods in daily operations.
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9 Appendices

Figure 9.1 Infographics for decision-making framework 1
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Figure 9.2 Infographics for decision-making framework 1 (continue)

A Framework for
Clinicians to
Improve the

Decision-Making
Process
in Return to Sport

Availability

Infer the probability of an outcome

based on how readily it comes to

mind.
PROPREEIREN
Tujarny list
1l Plager #

2 Plagen?
3 Playe @

A clinician assesses the risk of injury of I

an athlete by recalling the recent
occurrences within the team.

-———1

Analysis

~ 1) Availability
=SS 2) Representativeness

3) Anchoring-adjustment I

Decision

Designed by Ko Ypung

Definitions and examples of heuristics in return to sports.

Representativeness

I Categorise by matching the similarity
of an object or incident to an existing
one that has already existed in our

| minds.
=&

I Example
¥ A clinician has an impression that a female
athlete demonstrating knee valgus

movement on a jump and land task would
suffer from lower limb injury.

Pevigned by, Kafe

Anchoring-adjustment

Example

A clinician prioritises information that
supports his or her initial judgement
of the estimated time to RTS and
makes adjustments based on the

initial value.

e e 1, |

208



Figure 9.3 Study 2 featured in Football Medicine and Performance issue 38, pg 10-11

A FLOCK OF BIRDS AND THE COMPLEX SYSTEMS:
UNFOLDING THE CHARACTERISTICS OF COMPLEX
SYSTEMS IN SPORTS INJURY REHABILITATION

FEATURE / KATE YUNG
Introduction
Since the development of the injury Complex systems Complicated & multifactorial only.
prevention model with the complex

systems model [1], there has been
increasing interest in the complex systems
theory. Practitioners have been trying to
understand how the model is relevant

to their practice and how will it change
their practice. The article aims to explain
what the complex systems theory is and
how it is relevant to the daily practice and
operation in foatball.

What is the complex systems theory?
= The complex systems theary, with more
than 50 years of history [2], acknowledges
the multifaceted nature of sports and
seeks to understand the interactions
among different factors and the
outcomes of the systems [1, 3]

Complex systems are dynamic, open
systems [4]. They are characterised by
non-finearity due to feedback loops and Fgure 1. A flock of Dicls nd the COTP X SYSTams
interaction among the factors. This means
that outputs are not aways proportional

z : = The flock emergedwithout any lead = These systems may be categorised
::'E::t:z ;r;::‘h::g:::'ﬁnm aa bird directing each bird's action. based on their nature, for example,
andviceversa (5], Y «  Multiple perspectives are requiredwhen biom::lhapicfl. physiological and

i viewing complex systems. The systems pEyouogical,
Empb‘ 9{:{“25": 'f:;“pm ofa A are three dimeansional and interactions - Theyare also of multiple levels,
Mr'L!:hn;;:e riseou-: g::bd :3:'[:2?“ within the systems often occur at namely individual, organisational and
enake 1ip a systern that extibits novel fhffemnt scales and levels [7] These environmental. The individual level
charactesistics 4] include the ervironment. ecosystem represents factors related to the
: and hurman activity (Figura 1). individual athlete, from tissue healing
. I:the context ;;@"";“d;" SW:H(?TS)- to personal traits. The organisational
these units could include age, wellness, . R level represents external factors
biolagical healing of injured tissue, stress, c“':h‘ syt 'I" 'dm related to the sporting club,
extemal pressure and injury history. The . '-"'“;"“ systems likea °"‘,°h - organisation and support team, e.g.,
units interact and define the space and :re_a sn'cnnr}za mmsz'st the coaching and medical team. The
gimension of the systems (6] e ) l':':g environmantal level covers factors
= This means that complex systems can a"m crfnate ligament (ACL) beyond the organisational level, such
not be understood by studying their parts. h'e = l;'qur;:s:: acample..wg as the weather, playing schedule and
Instead, it may be better to be studied ofa:;_:::: wst!em:'inmouac::r:: competition level.
T I S “Characteristics of Complex Systems in
+ Examples of complex systems are Sparts Injury Rehabilitation: Examples FAQ 1: | know rehabilitation is complex
flocks of birds, ecosystems and immune and Implications for Practice”[8). and multifactorial, why do | have to
Jyetems: -« Inthecontext of RTS, the interacting bother about complex systems?
factors could inciude age, wellness, +  The complex systams approach
Complex systems explained with a biological healing of injured tissue, provides 2 thearetical framework
flock of birds stress. external pressure and injury for interpreting ?he pattems that
- Allindwidual birds follow 2 simple rule: histary. The factors will interact with emerged from biopsychosocial
maintain proximity without bumping the environment and other factors and and other external factors. Itis a
into each ather. That resultsin emergent consequently, diffarent systems within tool for analyzing a prgblem mare
behaviaur known as flacking (Figure 1). systems emerge. thoughtfully and efficiently.
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In ACL rehabilitation, conducting
independant clinical tests and
functional assessments may provide
uszaful information reganding the
athletes’ physical and mental status.
Howeawer, 2 complax systems approsch
facilitates 2 more complete picture of
the problem and increased awareness
of how different factors may interact.
Wi encourage practitioners to consider
multiple parspectivas and come up
with a solution or protocol that is broad
and may address the root cause of a
problarm.

FAQ Z If return to sport is so complex,
-imam“mdﬁ?

'When assessing the test result

for clinical and functional tests,
practitionars showld also be aware of
the dynamic systems evolving around
injury rehabilitation and endezavour ta
understand the full picture.

There ane &t least two challenges in
understanding and explaining the
behaviour of systems: 1) The high
degree of complexity and 2) it is nearly
impossible toizolate a portion of the
larger systems (i.2., isolation of the
binlogical healing process from broader
Wi may have to raly on comiputer-
basad decision suppart systems that
have the capacity of incorporating
faaturas of complex systems in thair
design and utility. For example, the
u=e of machine learning technigues
that oould acoommodate non- linearity
association.

Machine leaming is often characterised
by five major approaches (ie.,
association, classification. clustaring,
relationship modeling and
reinforcemeant learning). ezch having
already been appliad for injury risk
assessment and/or performance
prediction in sports [3-13].

Conclusion

Complex systems are dynamic, open

systemswith distinctive characteristics.

‘We encourzge a shift in paradigm to
a complex systems approachwhen
making decisions regarding retum
to play.

The use of computational modalling
and machine learming technigues

may have the capacity to identify

tha regularities of the pattern that
emeargad a5 awhaole.

Fgure 2 Mojor opprooches of moching kenming mrhmigues
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Complex sy=tems is a theory in

general stence and has been
applied in other fields aswall.
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-

and understanding the

using 2 comples systems
approach. Anahytical
technigues and maching

sy=tems that wa are Iving in.
It &= thallenging to analysis

It &= mora than complicated or
complex. It is awayaf thinking

leaming modsl may be helpful

insohving tha problems.
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Figure 9.4 Infographics for Characteristics of Complex Systems in Sports Injury Rehabilitation

Multiple scales

! and levels: i
Multiple

! perspectives ¥

v are required. '

'
restoration.

, ’ Emergence: Duringthe rehab
, training, athlete may builda
high level of resilience (or

mamama

\r -A
., Psychosocial ;

iy

\, Lever and hub: Motivation could
i be one of the crucial rolesthat

,Lmderpins a positive rehabilitation
outcome. ~—a

6 % 9

P r Unknowns and unpredlctable There
3 are information that practitioners
are not aware of and factors that we
could not measure.

Domains of stability: Gait
mechanics may be difficultto
4 ] modify even after completion of

rehabilitation trainingand

! even become a better
swmmer') _'_'_
1

Tipping point: If the training
intensity and volume exceed the
capacity of the softtissue, an
injury mayoccurandis
irreversible.

Open system: Is hard to define the
boundaries of a rehab systems.
Training ground surface, shoe wear
and fans may all influence the

rehabilitation process.

Nonlinearity:
Trainingresponse
(output) is not
proportional tothe -
rainingstimulus

(input).

Path dependency: The

rehabilitation usually

follows a pathand canonly

progress to the next one

when aset of criteriais
met.

fF 3
Feedback: Positive adaptionsand

maladaptation could occurasaresult
of rehab training.

Self organization: with the lostof ACL as a key
sensorimotor, the brain activation profile shifts
towards a visual-motor strategy.

v

Adaptation: Inthe earlyrehab stage, athlete may
exhibitincreased knee flexion at early stance for better
balance.

/

/
) Change over time: Systems are dynamic.
< g

Athlete’s psychologicalcharacteristics change
over time.

Nested systems: There are

Yung, K.K., et al., Characteristics of Complex Systems in Sports Injury
Rehabilitation: Examples and Implications for Practice. Sports Medicine -
Open, 2022. 8(1): p. 24.

nested hierarchies withinthe
complex systems, forming
systems within systems.

211



