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Abstract 

Making a return-to-sport (RTS) decision is often challenging, as the rehabilitation process is complex, 

and the decision affects the health and performance of the athlete. Clinicians have been harnessing the 

advantages of sports technology to capture and leverage data in the hope of securing competitive 

advantages in professional sports. With the extensive application of technologies and wearable sensors, 

increasingly more data are collected continuously during training and rehabilitation sessions. This has 

spurred a drive for clinicians to process, aggregate and interpret different metrics. However, humans 

have a limited capacity for information processing and are prone to biases and influences that may affect 

decision making. Given the data collected in sports settings are increasingly complex and the 

interactions are of nonlinear nature, clinicians seek to improve their decision quality in RTS by 

combining their clinical expertise with scientific data. This thesis addresses this gap, using a complex 

systems approach to underpin the study methodology. The first study discusses how to evaluate a RTS 

decision from a decision analysis perspective and proposes a framework to improve decision-making 

quality. Then, the second study discusses the characteristics of complex systems and provides examples 

of this approach in decision making. Two case studies in football (soccer) are used to investigate how 

advanced analytics may assist clinicians in decision making. Specifically, this thesis addresses the 

practicability, feasibility and interpretability of two analytical techniques: change point and association 

rule methods. Collectively, the findings from these studies may assist clinicians in improving decision 

making practically. 
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1 Chapter One: Introduction, Aims and Objectives 

Chapter overview 

This chapter offers an introduction to return to sport (Section 1.1), outlines the background and 

objectives of the thesis (Section 1.2) and the thesis structure (Section 1.3). 
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1.1 Thesis background and objectives 

This thesis aims to provide sports clinicians with theoretical frameworks and analytical tools that may 

enhance the quality of decision making. The data are collected from the applied environment of a 

professional Australian A-League football club to understand clinicians' challenges and improve the 

practical utility of the research outcome.   

In professional sports, RTS decisions can be challenging as the outcome pertains to the athlete’s 

well-being and performance. The RTS process can vary among clinicians and sports organisations due 

to various factors such as the availability of resources (e.g., time, equipment, human resources), 

personal preference, and operational style. Research has indicated that clinicians take into account a 

range of biopsychosocial and contextual factors, including biological healing, playing position, and 

social support, in making RTS decisions (Ardern, Glasgow, et al., 2016; Shrier, 2015). Based on the 

information gathered, clinicians can weigh the risk(s) and benefit(s) to make the best choice. 

Nevertheless, not all RTS decisions are straightforward. For example, if RTS is delayed for a lesser 

chance of re-injury, reduced players’ availability may negatively impact team performance (Eirale et 

al., 2013; Hägglund et al., 2013). On the contrary, premature RTS has been suggested as a possible risk 

factor for re-injury in football codes (Hägglund et al., 2016; Stares et al., 2018; Stares et al., 2019). 

Thus, substantial pressure rests on the shoulders of decision makers to reach a decision that balances 

the best interest of the athlete’s health and the team’s performance.  

Furthermore, with advancements in sports technology, increasingly large quantities of data are 

being collected routinely in training, competition and rehabilitation. For instance, off the field, wellness 

scores and screening tests, such as countermovement jump, adductor isometric strength, hamstring 

isometric and hamstring eccentric strength tests, are routinely undertaken in field team sports (Gallo et 

al., 2016; Malone et al., 2017; Thorpe et al., 2016). On the field, voluminous data on physical output 
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(e.g., running distance), physiological measures and skilled actions (e.g., passing frequency and 

accuracy) are also available readily (Browne et al., 2022; McIntosh et al., 2018; Teune et al., 2021). 

Similarly, modern technology facilitates the capture of rehabilitation and training data within 

daily operations. However, the real challenge is to comprehend, extract, process, and interpret pertinent 

data that underpin their clinical judgments. Specifically, clinicians have to identify the clinical tests that 

can track the athlete’s rehabilitation process, collect the data that can inform clinical decisions, and 

select the methodologies that can analyse data effectively. Simultaneously, clinicians are susceptible to 

decision-making errors and bias (Croskerry, 2009a). Coping with an abundance of data, clinicians might 

resort to procrastination and a perpetual quest for more refined information, often known as decision 

paralysis  (Sarma, 1994). As such, there is value in using frameworks to guide clinicians in making 

good decisions consistently. 

Additionally, a theoretical framework may provide a foundation and rationale for appropriately 

and systematically structuring the decision-making process. One of the appropriate theoretical 

frameworks is the complex systems approach (Bittencourt et al., 2016). Complex systems are open 

systems consisting of many factors that can interact among themselves and the environment 

(Bertalanffy, 1969; Bittencourt et al., 2016; Philippe & Mansi, 1998). As a result of the interactions 

between factors, new behaviours and patterns constantly emerge and create a dynamic system that may 

be difficult for people to predict. These characteristics have been recognised to align well with most 

sporting environments, including sports performance, game analysis and sports injury (Bittencourt et 

al., 2016; Dalton-Barron et al., 2020; Hulme & Finch, 2015). Specifically, the complex systems 

approach suggests that injuries result from the interaction between the individual and the environment 

(Hulme et al., 2019). Similarly, sports rehabilitation is also complex, and multiple factors can influence 

the outcome concurrently. Scope exists to show how clinicians can use the complex systems approach 

to represent the rehabilitation environment (Bittencourt et al., 2016). Specifically, adopting the complex 
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systems approach would require clinicians to move from analysing isolated risk factors to pattern 

recognition (Bittencourt et al., 2016). 

Given the sporting environment's complexity and high data volume, clinicians may require 

advanced analytical tools, such as machine learning, to support the decision-making process. These 

analytical techniques can handle large complex datasets and discover meaningful relationships between 

interacting factors that are otherwise not readily observable to the human practitioner (Ruddy et al., 

2018; Teune et al., 2022b). Consequently, these analytical techniques may be viable tools to support 

clinical decisions.  

1.2 Objectives 

This thesis aims to investigate how to improve RTS decisions and adopt supporting analytical tools. 

Four studies are conducted to achieve these objectives, as outlined in Figure 1.1.  

 

Figure 1.1 The sequencer of research and how each study relates to complex systems and decision-

making framework, with the overarching goal of improving RTS decisions. 
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1.3 Thesis outline 

Following this introductory chapter which introduces the background and objectives of the thesis, there 

are two sections that can be read independently. Following the two sections is a grand discussion of the 

concepts and implications arising from the preceding chapters, and a conclusion summarising this 

thesis's key points.  

Two main parts for the studies: 

Part 1. Frameworks 

Synthesis of decision-making and complex systems frameworks to aid decision quality. 

Part 2. Practical applications 

Methodological studies of analytical techniques that may complement the theoretical 

framework. 

Part 1 – Frameworks 

This part includes Chapters Three and Four, which consist of two published works that provide a 

detailed evaluation of decision-making and complex systems frameworks that may improve decision 

quality. Chapter Three synthesises available literature in the RTS decision-making framework to 

provide an overview of the topic and propose a framework for improving decision quality. Chapter Four 

discusses the hallmark features of complex systems and their relevance to RTS decision making and 

daily practice. 

Part 2 – Practical application 

Part 2 builds on Part 1 and adopts tools that may support complex systems thinking in practice. This 

part includes Chapters Five and Six, which consist of two original studies that adopt two different 

analytical methods. Adopting complex systems approach in decision making is challenging because, 
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practically, it may be near impossible for clinicians to integrate multiple data types and consolidate 

them within a timely manner due to their limited short-term memory and cognitive processing power. 

Part 2 complements the frameworks in Part 1 by adopting two analytical methods that can help 

clinicians 1) integrate multiple data types, 2) consolidate a high volume of data, and 3) accommodate 

the characteristics of the complex systems, such as non-linearity and emergence.  

Diverse analysing methods exist for examining issues using a complex systems approach, with 

many of these methods demanding proficiency in statistics and data science. This thesis provides an 

overview of the terminology used in complex systems, with by a brief introduction to the relevant 

analytical methodologies. This information can assist clinicians in effectively communicating with 

statisticians and data science experts and fostering collaborations in future research projects. While the 

in-depth details of the analytical methods lie beyond the scope of this thesis, the thesis directs clinicians 

to additional resources that may aid them in delving extensively into the methodology. 

Overview of the Chapters: 

 Chapter Two reviews the relevant literature in RTS, decision making and analytical techniques. 

 Chapter Three synthesises available literature in the RTS decision-making framework to 

provide an overview of the topic and propose a framework for improving decision quality. 

 Chapter Four explains the hallmark features of complex systems and their relevance to RTS 

decision making and daily practice. 

 Chapter Five investigates how continuous time-series analysis can inform meaningful change 

points in one or multiple variables in rehabilitation. A change point method is used in a case of 

football injury to exemplify the approach.  

 Chapter Six uses the association rule approach to assist clinicians in integrating multiple data 

types and consolidating complex data into interpretable information that can be directly acted 

upon for training and return to sports decisions. The association rule method is applied to a case 

of football injury to exemplify the approach. 
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 Chapter Seven summarises the preceding chapters and discusses the applications and 

implications for clinicians. It also outlines directions for future work in the area.  
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2 Chapter two: Review of literature 

Chapter overview 

Chapter Two summarises the literature related to the research contained in this thesis. This chapter 

contains sections outlining literature from RTS (Section 2.1), decision making in RTS (Section 2.2) and 

analytical techniques (Section 2.3). This chapter does not include materials in the first two review 

studies in Chapters Three and Four. These include decision-making theories, methodological concerns 

in information gathering (Chapter Three) and complex systems theory and its characteristics (Chapter 

Four). 
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2.1 Return-to-sport in football 

 Impact of injury 

Injury is common in football and is the primary factor affecting a player’s availability for team selection 

and training (Parry & Drust, 2006). In a large-scale injury surveillance study, the injury incidence for a 

player is 12 to 23.8 per 1000 game-hours and 3.4 per 1000 training-hours (Ekstrand et al., 2021). The 

injury burden is 60.5 days /1000 hours during training and 504 days/1000 hours during match (Ekstrand 

et al., 2021). Injuries lead to players' unavailability, which is often associated with poor team 

performance (Chamari & Bahr, 2016; Eirale et al., 2013; Hägglund et al., 2013; Lu et al., 2021). Besides 

the negative impact on sports performance, injuries also have financial implications for sports 

organisations directly (e.g., salaries paid to injured players) and indirectly (e.g., team’s 

underachievement due to injured players) (Eliakim et al., 2020; Gouttebarge, Hughes Schwab, et al., 

2016; Hickey et al., 2014; Lu et al., 2021; Mather et al., 2013). For example, an average English Premier 

League team lost approximately £45 million (AUD$76 million) per season due to injury (Eliakim et al., 

2020) [team underachievement due to injured players £36 million (AUD$ 61 million); direct calculation 

of salaries paid to players £9 million (AUD$ 15 million)]. In the Australian professional football A-

League, the player-salary cost of injury per team per season averages AUD$0.25 million (Lu et al., 

2021).  

To minimise the impact of injury to the athlete and the team, sports organisations may 

investigate injury prevention program and return-to-sport (RTS) protocol. While extensive research has 

been done on football injury prevention (Crossley et al., 2020; Thorborg et al., 2017), there is relatively 

less research on improving RTS decision quality. However, RTS decision is an important topic. Often, 

the first question asked by an injured athlete is: ‘When can I play again?’. While the question may sound 

simple, the answer to this is rarely straightforward. As with most medical decisions, there are many 

factors that a clinician needs to consider and – as a result - there is scope for applied research to 

investigate how to improve RTS decision quality.  
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 Theoretical frameworks in return to sport 

RTS can be viewed as a continuum that consists of recovery and rehabilitation (Ardern, Glasgow, 

et al., 2016), with an objective to bring the athlete back to their pre-injury performance level in the 

shortest time possible and minimise the risk of re-injury (Zambaldi et al., 2017). In general, it 

consists of three critical stages, including: 

1) Return to participation: The athlete may be participating in rehabilitation, training, or in 

sport, but at a level lower than the RTS goal. 

2) Return to sport: The athlete has returned to the sport, but not performing at the desired 

performance level. 

3) Return to performance: The athlete has returned to the sport and performing at or above 

pre-injury level. 

With the development of research in RTS, more details have been added to the above 

framework to address the specific need of the sports. For example, in football, the following phases 

have been included to reflect the critical milestones in football rehabilitation (Dunlop et al., 2019): 

1) Return to high-speed running (RTRun): The player is being cleared to run on-field and 

progress to high-speed running. 

2) Return to train (RTTrain): The player is allowed to return to on-field unrestricted training. 

3) Return to play (RTPlay): The player is cleared to return to competitive match-play with the 

team, regardless selected or not.  

4) Return to performance (RTPerf): The player returned to pre-injury levels of performance or 

higher. 

The above four stages have highlighted the key stages for a football player to return to 

performance. Between the stages RTTrain and RTPerf, a four-stage functional recovery process was 

introduced (Buckthorpe et al., 2019). The four-stage functional recovery process was proposed to 

highlight the transition from rehabilitation to performance. The functional recovery process starts 
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with on-field rehabilitation (OFR), progressing to return to training (RTT), return to competition 

(RTC) and lastly, return to performance (RTPerf). The above theoretical RTS frameworks have been 

summarised and shown in Figure 2.1 

 

Figure 2.1 Summary of RTS frameworks 

The above continuum broadly defines sports rehabilitation stages, which move from high 

control to high chaos (Taberner et al., 2019). Based on the Figure 2.1, clinicians can structure 

rehabilitation plans accordingly and use the framework to facilitate communication and manage the 

expectations between stakeholders, such as the technical coach, strength coach and athletes. It is 

important to note that each phase overlaps with the other because RTS is a dynamic process that 

requires careful balancing of the benefits and risks to progress to the next phase (McCall et al., 

2017). For this thesis's clarity, RTS decisions refer to 1) granting medical clearance to players for 

competition and 2) deciding when a player may progress or regress along the RTS continuum. (Ardern, 

Glasgow, et al., 2016; Buckthorpe et al., 2019; Gordon O Matheson et al., 2011). 

The first formal RTS framework, a 3-step decision-based model, was proposed by Creighton 

et al. in 2010 (Creighton et al., 2010). The framework was designed to guide clinicians on when to 

clear an athlete for full participation in sport without restriction. In 2015, minor revisions were made 

to the 3-step framework, and it was renamed the Strategic Assessment of Risk and Risk Tolerance 

(StARRT) (Shrier, 2015). The StARRT has helped make the decision-making process transparent 

by guiding the key variables that the clinician could consider (Shrier, 2015). However, the industry 
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still lacks a decision framework that can guide clinicians on the decision-making process. A decision 

framework is worthwhile in competitive sports because the sporting environment is often chaotic, 

fast-paced, dynamic and stressful. In this environment, decision makers may be more susceptible to 

emotional interference, impulses and other biases (Croskerry, 2003; Lazarus, 2000). An improved 

understanding of decision theories may help clinicians to 1) conceptualise the decision-making process, 

2) investigate the workflow further, and 3) eventually establish a methodology to make a better RTS 

decision. 

2.2 Decision making in RTS 

 Complexity and volume in data 

In the context of RTS, where time is usually not a limiting factor, clinicians may gather more 

information regarding athletes' physical and mental conditions to make decisions. Technological 

advancement has made gathering clinical and physical performance data easier than before. For 

instance, more types of data collection are now made possible with the availability of different sensors 

and equipment at affordable costs (e.g., wearables, heart rate monitors, shoe insoles and motion 

capturing systems) (Sikka et al., 2019). Accordingly, clinicians may gather more information to reduce 

uncertainty, making them more confident in identifying a likely successful decision (Drews et al., 2015; 

Gould, 1974; Raiffa, 1968). Nevertheless, collecting more data from multiple sources may pose new 

challenges in handling, cleaning and interpreting the data. Furthermore, in professional sports, it is 

indisputable that the increasing amount of data will - or has already - exceeded human processing 

capacity, thus challenging clinicians’ ability to make an informed decision. 

Accordingly, the amount of information humans can process is limited by the working memory 

storage capacity (Saaty & Ozdemir, 2003; Simon, 1957). Working memory capacity is vital for decision 

making because a human can only complete cognitive tasks when the brain can retain information 

(Cowan, 2010). Research has suggested that the human’s working memory can hold approximately four 
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(Cowan, 2001) to seven pieces of information (Saaty & Ozdemir, 2003). Providing more information 

than the upper limit may exhaust the decision maker’s cognitive information processing capacity, 

potentially leading to information overload and compromised decision making (Cowan, 2001). Further, 

the additional information obtained may no longer improve the decision maker's ability to identify a 

likely successful decision (Glöckner et al., 2012). A possible reason is that the inconsistency between 

the information produced by additional items is too small for a human mind to identify, which leads to 

confusion (Gigerenzer, 1999). On the contrary, when fewer items are available, the inconsistencies 

between the information brought by additional items are significant enough for a human mind to identify 

which item(s) cause the most remarkable inconsistency (Gigerenzer, 1999). Further, different search 

strategies exist as a result of age, for example, younger adults request more information than older adults 

in medical decision tasks (Meyer et al., 1995).  

Currently, there are no guidelines regarding the optimal amount of information that should be 

included when making a RTS decision. The complexity of a RTS decision can be illustrated by a sports-

related concussion (SRC) case. In SRC, an athlete’s recovery rate varies based on the injury's severity 

(McCrea et al., 2003) and the athlete’s pre-existing psychological factors (Trinh et al., 2020). 

Consequently, clinicians need to consider the athlete’s recovery rate individually. The clinician may 

also consider other medical, social and legal factors (Maroon et al., 2000) (See Table 2.1 RTS factors 

for sports-related concussion injury). Collectively, in a complex SRC case, a clinician may need to 

consider more than seven pieces of information to assess the RTS readiness of an athlete (Dayton et al., 

2020; Dessy et al., 2017; McCrory et al., 2017). It may be challenging for clinicians to analyse and 

process all the available information within a limited timeframe. Given the complexity of RTS 

decisions, there is scope to investigate a decision-making framework and methodology that can help 

clinicians to streamline the RTS workflow process. 
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 Table 2.1 RTS factors for sports-related concussion injury 

 

 Decision-making theories 

Theories are important for clinicians to link concepts and understand phenomena. Clinicians may 

harness decision-making theories to develop relevant conceptual frameworks and methodologies to 

enhance the RTS workflow process. Two fundamental approaches to reasoning, intuitive and analytical, 

have been established in the literature, which is now widely recognised as the dual process theory (DPT) 

(Croskerry, 2009c; Evans, 2008; Sloman, 1996; Stanovich, 2004). The  DPT encompasses both intuitive 

and analytical processes, referred to as System 1 and System 2, respectively. System 1 involves 

heuristic, intuitive decisions, while System 2 involves systematic, analytical decision making (Table 

2.2). 

RTS factors for sports-related concussion injury 

Clinical assessment 

1 The Balance Error Scoring System balance test (McCrory et al., 2017) 

2 Vestibular (Alsalaheen et al., 2010) / vision assessment (Akhand et al., 2019) 

3 Rivermead Post-Concussive Symptom Questionnaire (Eyres et al., 2005) 

4 Physical examination of cervical spine (Cheever et al., 2016) 

5 Standard Concussion Assessment Tool 5 (SCAT 5) (Echemendia et al., 2017) 

Diagnostic testing 

6 Imaging (Herring et al., 2011) 

7 Neuropsychological Testing (Herring et al., 2011; McCrory et al., 2017) 

8 Blood biomarkers (McCrory et al., 2017) 

Others 

9 Social and legal factors 
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Table 2.2 Comparison of System 1 and System 2 approaches in decision making.  indicates the 

feature has a lower prevalence than the other system, while  indicates a higher prevalence. 

Characteristics System 1 (intuitive) System 2 (analytic) 

Cognitive style 

Intuitive 

Heuristic 

Analytical 

Normative 

Operation Associative Deductive 

Processing Parallel Serial 

Conscious control   

Automaticity   

Reliability   

Error Normative distribution Few but significant 

Effort   

Emotional valence   

Detail on judgement   

Reliability  Variable  Consistent 

Importance of context   

 

The subsequent subsections cover details of the DPT. Other schools of thought are also covered 

in this thesis, including cognitive continuum (Section 2.3), normative models and descriptive models 

(Bell et al., 1988) (Chapter 4). Normative models have theoretical value and concerns about how to 

make the best possible decision when a person is fully rational and informed (Bell et al., 1988). In 

contrast, descriptive models are psychological theories that explain how people make judgements and 

decisions (Baron, 2012).  
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 System 1 intuitive approach 

In the DPT, System 1 decision making is characterised by an intuitive approach based on a rapid 

selection of options without systematic evaluation (Doubravsky & Dohnal, 2015; Gigerenzer & 

Gaissmaier, 2011). This approach utilises the decision maker’s prior experience and intuition to 

recognise patterns in the information and make quick judgments. Heuristics, or cognitive shortcuts, are 

often employed in this type of decision making (Tversky & Kahneman, 1974). 

Heuristics are viewed as the human mind’s ‘adaptive toolbox’ that allows a person to associate 

new information with existing patterns or thoughts (Gigerenzer & Gaissmaier, 2011; Regehr & Norman, 

1996; Schmidt et al., 1990). Decision makers may use a range of heuristics (Tversky & Kahneman, 

1974), depending on the context and the individual’s social and learning process (Rieskamp & Otto, 

2006). The use of heuristics has been studied in diverse domains, such as psychology (Gigerenzer, 

1999), law (Gigerenzer & Engel, 2006), sports (Pachur & Biele, 2007; Raab, 2012), medicine 

(Marewski & Gigerenzer, 2012; Wegwarth et al., 2009), finance (Ortmann et al., 2008), and political 

science (Gaissmaier & Marewski, 2011). In medicine, using heuristics can help clinicians make 

accurate, transparent and quick decisions (Croskerry, 2002; Marewski and Gigerenzer, 2012), yet only 

limited research is available in the field of RTS (Muir, 2022). 

Although heuristics are a shortcut to an automatic brain, this does not imply that heuristics are 

inferior to other decision-making strategies (Gigerenzer, 1999; Hoffrage & Reimer, 2004; Raab & 

Gigerenzer, 2005, 2015). In certain circumstances, a simple decision strategy with less information 

input may outperform deliberate reasoning via detailed analyses (Glöckner et al., 2012; Klein, 2003; 

Raab & Johnson, 2007; Wilson & Schooler, 1991). However, heuristics may also result in stereotypes, 

false associations, and a disregard for causality (Croskerry et al., 2013a; Tversky & Kahneman, 1974). 

As heuristics are adaptive in nature, they are neither good nor bad per se if applied appropriately in 

situations where they have been adopted. The following are several examples of heuristics and their 

relevance to RTS. 
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Availability 

The availability heuristic is the mental shortcut that relies on the most readily available data that comes 

to the person’s mind when evaluating a decision, topic or event.  This is because people have a tendency 

to place greater weight on information that can be easily remembered and quickly retrieved (Tversky 

& Kahneman, 1973). For instance, an athlete with a syndesmosis injury may estimate their recovery 

time based on a teammate’s recent experience with the same injury. However, the accuracy of this 

heuristic can be influenced by the recentness and vividness of memories (Hunink et al., 2014a). It may 

lead to availability bias if the decision maker disregards data that does not support the belief. 

Accordingly, the availability heuristic may negatively impact the diagnostics accuracy in medical 

residents, but the residents can improve their judgement by reflective reasoning (Mamede et al., 2010; 

Saposnik et al., 2016). 

Representative 

The representative heuristic refers to when decision makers categorise an object or incident based on 

similarity with the existing one in their minds (Tversky & Kahneman, 1974). The representative 

heuristic has been found to influence decision-making in triage station nurses (Brannon & Carson, 

2003). However, the representative heuristic has not been studied in sports medicine and rehabilitation. 

Clinicians may possibly use a representative heuristic to determine an athlete's injury risk. For instance, 

if an athlete displays a valgus knee while landing and scores low on movement screening tests, the 

clinician may associate these factors with the likelihood of ACL injury due to their prior knowledge. 

However, recent research suggests that poor movement quality is only associated with but not 

necessarily predictive of injury (Bahr, 2016; Hughes et al., 2020).   

Anchoring-adjustment 

Anchoring-adjustment is when decision makers are “anchored” on the initial values and later update 

their perception with better information (Hunink et al., 2014a). For example, internal medicine residents 

use anchoring-adjustment when they estimate the probability of a disease by using a high or low anchor 



18 

 

 

 

for the target conditioning (Phang et al., 2015).  In the context of RTS, a clinician’s decision on medical 

clearance may be anchored on existing knowledge of the athlete, familiarity with the injury and the 

initial diagnosis and plan.   

Take-the-best 

Take-the-best refers to a situation where decision makers search through the alternatives in order of 

validity and base the choice on the “best” option (Gigerenzer & Gaissmaier, 2011). In the context of 

RTS, a clinician may evaluate an athlete’s fitness for return to play by considering the best available 

indicators such as running speed, strength, and mental preparedness.  

Elimination by aspects 

Elimination by aspects is when decision makers reduce the number of alternatives by eliminating those 

that do not meet the aspiration level of a specific attribute (Tversky, 1972). For example, when a 

clinician prescribes exercise for an athlete with a tibia stress fracture, the clinician will first compare a 

selection of exercises on the lower limb and eliminate the weight-bearing ones.  

Fast and frugal trees 

A fast-and-frugal tree is similar to a decision tree, where decision makers classify and decide quickly 

with a few attributes (Gigerenzer & Gaissmaier, 2011). There has been a range of applications in 

different fields. For example, physicians to determine if a patient with severe chest pain has a heart 

attack or not (Green & Mehr, 1997), and London magistrates to make bail decisions in court (Gigerenzer 

& Engel, 2006). In sports medicine, clinicians can use the Ottawa ankle rules to decide whether an 

injured ankle requires X-ray to rule out a fracture (Stiell et al., 1994). Ottawa ankle rules have 

successfully been implemented in applied settings and reduced unnecessary radiographs by 30-40% 

(Bachmann et al., 2003). In the context of RTS, clinicians may use a fast-and-frugal tree to decide 

whether an athlete may walk without crutches after an anterior cruciate ligament (ACL) reconstruction 

surgery (Figure 2.2).  
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Figure 2.2 Fast and frugal tree to decide if the athlete can walk without crutches after ACL injury. 

 System 2 analytical approach 

Contrary to System 1, System 2 is a deliberate, conscious and controlled process characterised by 

rational thinking (Bate et al., 2012). System 2, also known as explicit cognition, involves logical 

judgement and mental search for additional information (Croskerry, 2009b). System 2 may be engaged 

when clinicians need to analyse information to support clinical decisions. For example, when a clinician 

diagnoses a sports injury with atypical signs and symptoms, System 2 may be required. System 2 is 

analytical and follows explicit computation rules, such as adhering to the rationality criteria of expected 

utility theory, or where a clinician decides based on a set of defined criteria (known as rule-based theory) 

(Grindem et al., 2016; Kyritsis et al., 2016). The rules may be applied on a binary scale (i.e., pass or 

fail). In RTS, one of the passing criteria for a knee injury may be a single-leg hop test to achieve 90% 

of the uninjured side (Kyritsis et al., 2016). In contrast, the expected utility theory is a decision-making 

model that considers the expected value of different options and the probability of each outcome 

(Connolly et al., 1999; Edwards, 1977). It illustrates how one decides in uncertain conditions based on 

the outcomes of different options and the probability of each outcome (Connolly et al., 1999; Edwards, 
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1977). It presumes that a decision maker will make a rational choice based on evaluating the costs and 

benefits associated with each option. (Ashby & Smith, 2000; Reyna & Rivers, 2008). In this theory, a 

clinician’s decision is determined by the subjective value assigned to each potential outcome and the 

estimated likelihood of each outcome (Connolly et al., 1999; Edwards, 1977). According to this model, 

System 2 assumes decisions are made by fully rational individuals who have access to complete 

information about the probabilities and consequences of each option in terms of time, resources, and 

knowledge (Shrier, 2015).  Expected utility theory and other normative theories are covered in Section 

3.4.2.  

 Interaction between the systems 

System 2, although known for being more reliable and rational, can also be time-consuming and requires 

significant cognitive resources. As a result, it may not always be feasible for sports medicine 

professionals to engage in extensive cognitive analysis for every clinical decision they make. 

Consequently, clinicians may naturally opt for System 1, which is quicker and less demanding on the 

mind. (Croskerry, 2009c). In some clinical conditions, clinicians may start making diagnoses using 

System 1 based on pattern recognition (Norman, 2006). However, when clinicians cannot recognise the 

pattern, they may switch to System 2, deliberate and conscious thought processes (Croskerry, 2009a). 

In the context of RTS, clinicians may switch to System 2 in complex conditions, such as when an athlete 

is eager to participate in an important game despite not being fully healed from an injury.  
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Figure 2.3 Schematic model for RTS decision-making. Based on Croskerry (2009a), adapted for 

RTS context.  

 There are also several ways in which the two systems interact with each other, as indicated by 

the orange dashed lines in Figure 2.3. System 2’s analytical approach, when used repeatedly, can 

eventually become automatic, much like the intuitive approach of System 1 (Croskerry & Norman, 

2008; Norman, 2006; Norman & Brooks, 1997). This is analogous to building up sports taping skills, 

where after considerable practice, the clinician can tape an ankle with little conscious effort. This shows 

the importance of building up experience and familiarity with clinical practice. In addition, System 2 

can rationalise and override the intuitive output of System 1 (rational override) (Croskerry, 2009c). This 

overriding function requires deliberate mental effort, and its ability to perform can be negatively 

impacted by distraction, sleep deprivation and fatigue (Landrigan et al., 2004). System 1 can also 

override System 2, in which the decision maker overrides a rational judgement based on intuitive 

feeling, known as dysrationalia (Stanovich, 1993). Various reasons, such as habitual practice, emotions 
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and context, may contribute to dysrationalia. An example of when System 1 overrides System 2 is when 

clinicians ignore well-developed clinical decision guidelines (McGlynn et al., 2003) and persist with 

clinical practice with little solid evidence (Croskerry & Norman, 2008).  

 In short, the DPT allows clinicians to scrutinise the underlying decision-making process and 

realise the systems’ vulnerable aspects. Despite most errors occurring in System 1 (Tversky & 

Kahneman, 1974), there is still a value of using System 1 in some contexts, such as where there is 

limited time and resources. Both systems are essential for clinicians to function in the applied sports 

environment. One of the keys to an improved decision-making process is a well-calibrated balance 

between the two. 

 Cognitive continuum for RTS 

Beyond the DPT, which has distinct intuition and analysis, there is another theoretical decision-making 

orientation framework known as the cognitive continuum theory (CCT) (Hamm, 1988; Hammond, 

1978). CCT models human judgement and decision making with six modes of inquiry based on the task 

and cognition (Figure 2.4). They are positioned along the continuum based on the degree of cognitive 

activity they are predicted to induce, such as task structure, cognitive control, and time required (Hamm, 

1988). Similar to DPT, CCT may assist clinicians and interdisciplinary teams in understanding the 

decision-making process (Parker-Tomlin et al., 2017). Specifically, clinicians can use CCT to 1) 

recognise the kind of cognition used and potential cognitive pitfalls, 2) adjust and select the appropriate 

cognition strategy based on the task, and 3) improve decisions’ transparency for multidisciplined 

professionals (Cader et al., 2005; Hamm, 1988).  
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Figure 2.4 Cognitive continuum theory adapted to the context of RTS, based on Hamm (1988); 

Hammond (1978). 

Here are examples to illustrate how CCT can be applied in the context of RTS. 

1. Managing an on-field fracture injury (intuitive judgement) 

When an apparent fracture injury (e.g., a tibia and fibula fracture) occurs on-field during a 

football game, the immediate response of a clinician is to remove the player from the field and 

send the player to the hospital. This is an intuitive judgement because the clinician is unlikely 

to allow the injured player to return to the game with a fracture injury due to safety reasons. 

The time available for decision is short, and the degree of cognitive manipulation is low. 
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2. RTS from a concussion (intuitive analytical) 

In case of a suspected concussion during a football game, a clinician will remove the player 

from the field and assess the player for any subtle change in response, such as facial expression 

and emotional changes (Ryan & Warden, 2003). Clinicians may also use decision aid (e.g., 

SCAT5) to evaluate the concussion at the sideline (Echemendia et al., 2017).  In this case, the 

time available for the decision is longer than the previous condition (e.g., 5-10 minutes), and 

the degree of cognitive manipulation is higher. There is also some degree of intuition (e.g., to 

observe subtle changes in the player’s response) and analytic involvement (e.g., to assess the 

condition with SCAT5). 

3. RTS for a Grade 1 Hamstrings injury (analytical intuitive) 

For a player who sustained a grade one hamstring injury two days before the final, a clinician 

can take the time to assess the player physically, functionally and mentally. The clinicians can 

decide on RTS based on the assessments. Given the limited time frame to the final, some 

uncertainty may exist around rehabilitation, so a small degree of intuition may be required when 

making the judgement. 

4. RTS for an ACL reconstruction surgery (analytical systematic) 

In the case of ACL rehabilitation, there is more time for clinicians to assess and decide on RTS 

(e.g., in terms of weeks). Clinicians can perform relevant RTS tests and analyse the results 

systematically. There is a high degree of cognitive manipulation, and the reliance on intuition 

may be minimal. 

CCT is a simplified general framework that explains the cogitation strategy used and its 

relationship between the task features and progress. Understanding the methods and relationships may 

increase the transparency of the decision-making process (Cader et al., 2005). 
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 Bias in decision making  

Occasionally, humans may present with cognitive deficiencies when making decisions (Thaler, 2009). 

Accordingly, one obstacle to making good clinical decisions is the potential distortions and biases in 

how information is gathered and assimilated (Croskerry, 2002). Decision makers who rely on intuition 

may be quick in making the decision, but they may be subject to errors that can only be recognised upon 

reflection (Tversky & Kahneman, 1974). Knowing how decisions are made and how they may be biased 

is vital to improve decision quality. 

There are over 30 known cognitive biases, many of which influence decision making as an 

“illusion” (Croskerry, 2002, 2003). Some biases may be inevitable, but some biases may be avoided by 

implementing strategies, such as increasing awareness of their existence and using decision aid 

(Croskerry, 2003). Below are some common cognitive biases with relevance to RTS: 

2.2.7.1 Anchoring bias 

Anchoring bias occurs when the decision maker relies heavily on the initial piece of information 

(anchor) offered to make a judgement (Croskerry, 2000). Accordingly, decision makers tend to fixate 

on the first impression of a clinical case, such as some specific clinical features early on in the diagnostic 

process (anchor) (Croskerry, 2002). Following the initial piece of information, interpretations are made 

around the anchor. This may be an effective strategy in clinical reasoning, yet clinicians may fail to 

adjust the hypothesis sufficiently in light of subsequent information. For example, a lacrosse player is 

hit on the ribs with a lacrosse stick, with signs of bruising. The player was able to continue playing 

afterwards. A clinician may anchor on the initial piece of information (a contact bruise injury) and 

neglect the subsequent information that there was significant localised swelling. In this case, the 

clinician may have missed a rib fracture injury. 

2.2.7.2 Availability bias 

Availability bias is the cognitive bias associated with availability heuristics, in which a human tends to 

rely on immediate examples that readily come to mind (Tversky & Kahneman, 1973). Accordingly, 
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decision makers perceive the most readily available evidence to be the most relevant and important  

(Tversky & Kahneman, 1973). Thus, if a clinician sees an athlete with muscle soreness due to recent 

overtraining, there is a greater chance that the clinician believes the next athlete coming in with muscle 

soreness has a similar issue. However, that athlete may be suffering from a low-grade muscle strain 

injury. Inexperienced clinicians may tend to be driven by availability bias as they are more likely to 

bring common prototypes to mind, whereas experienced clinicians are more likely to suspect atypical 

cases (Kovacs & Croskerry, 1999). 

2.2.7.3 Confirmation bias 

Humans tend to search for, interpret, favour, and recall information that validates their pre-existing 

beliefs or hypotheses. Important data that weaken an illusory correlation would be neglected or 

discarded (Nickerson, 1998). This may also reinforce groupthink, where group members minimise 

conflict and reach a consensus without critically evaluating the idea. As a result, systematic errors and 

poor decisions may be generated (Williams, 2010). Confirmation bias may occur in a medical meeting, 

where attending staff may agree with the physician’s suggestion on the RTS plan without critically 

assessing the context. 

2.2.7.4 Framing bias 

Humans may be susceptible to how others frame the options, known as the ‘framing effect’ (Tversky 

& Kahneman, 1986). Different phrasing ways can change a neutral message to an implicit 

recommendation and affect one’s decision, such as treatment selections (Gigerenzer, 2014). For 

example, patients are more inclined to consider surgery when the clinician uses a survival frame rather 

than a mortality one, although they are logically equivalent (Moxey et al., 2003). The framing effect 

may vary with the type of scenario and the responder’s characteristics. As such, how a clinician frames 

the chance of re-injury may affect the athlete’s perception of when to RTS. Fortunately, the framing 

effect tends to disappear when complete information is provided and expressed in more than one way 

(Gigerenzer, 2014; Moxey et al., 2003). 
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2.2.7.5 Sutton’s Law and Sutton’s Slip 

Sutton’s Law in clinical reasoning refers to the tendency of a clinician to go for the most apparent 

diagnosis, which helps to speed up clinical reasoning in some cases. However, clinicians may also avoid 

tests that are unlikely to be diagnostic and pursue tests thought to be of the highest diagnostic value 

(Watanuki et al., 2015).  Due to Sutton’s Law, clinicians may give insufficient consideration to other 

alternatives, known as the Sutton’s Slip. For example, a clinician may mistreat an orthopaedic oncologic 

condition as a sports injury due to an overlap of clinical presentations and a lack of further investigation 

(Ayvaz et al., 2015). 

2.2.7.6 Search Satisficing 

Search satisficing is when someone might stop searching for information once a satisfactory result has 

been obtained (Simon, 1979). Accordingly, some clinicians may tend to cease diagnostic investigations 

once a presumed cause for a patient’s symptoms has been found (Croskerry et al., 2013a). Due to search 

satisfaction, medical comorbidities, such as other fractures, may be overlooked (Berbaum et al., 1994). 

For example, a clinician treating a lateral ankle sprain may fixate torn ankle ligaments as the source of 

pain and overlook possible trauma to other foot structures, such as the Lisfranc joint complex. 

2.2.7.7 Emotion 

Decision quality may be affected when emotion, ego and motives are prioritised over objective 

information (Hunink et al., 2014b; Zeelenberg et al., 2008). These motives and emotions may be 

intertwined in the decision-making process unintentionally and unconsciously and shape the clinician’s 

decision (Croskerry, 2005). For example, a person feeling anxious about a potential outcome of a risky 

choice may choose a safer option rather than a risky but potentially lucrative option (Lerner et al., 2015). 

The effect of emotional states may also render decision makers to avoid negative feelings (e.g., guilt 

and regret) or increase positive feelings (e.g., pride and happiness) (Lerner et al., 2015). To minimise 

the magnitude of the emotional effect on the decision process, decision makers can adopt strategies 

such as time delay, suppression and reappraisal (Lerner et al., 2015).  
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2.2.7.8 Blind spot bias 

Generally, humans are assumed to be rational and prefer making objective decisions (Simon, 1979). At 

the same time, humans are also aware that factors, such as limited information, emotions and self-

interest, may bias their decisions (Pronin et al., 2002).  When evaluating their decision-making process, 

people tend to think they are smarter and less susceptible to cognitive biases than others (Pronin et al., 

2002). In a study by Irene Scopelliti and colleagues, only one person out of 661 people said they were 

more biased than average (Scopelliti et al., 2015). As a result of blind spot bias, many clinicians may 

be overly confident (Mele, 1997). And unfortunately, people with a large blind spot bias are least likely 

to use strategies to improve their decision quality (Scopelliti et al., 2015).   

 Strategies for de-biasing 

Mitigating decision-making biases can play a critical role in enhancing decision quality for clinicians. 

While some biases may be unavoidable, others may be mitigated through techniques such as increasing 

awareness and utilising decision aids, referred to as de-biasing (Croskerry, 2003).  

 There are three steps that may help clinicians to mitigate decision-making bias. First, they can 

build awareness of what may increase their susceptibility to cognitive biases, such as distractions, 

fatigue, and sleep deprivation (Croskerry et al., 2013a). Second, they can recognise strategies to 

overcome biases and when necessary. Third, clinicians are suggested to constantly reflect on their 

thought process before deciding and have the cognitive capacity to decouple from the bias (Stanovich 

& West, 2008). This can be achieved by switching from the intuitive processing of System 1 to the 

analytical processing of System 2, allowing for a more thorough examination and verification of the 

initial intuition (Croskerry, 2000). A range of strategies that may facilitate switching from System 1 to 

System 2 are presented in Table 2.3 (Croskerry et al., 2013b). Fourth, clinicians may consider obtaining 

external appraisals from experts to review their methods and approaches in making decisions. 
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Table 2.3 Strategies and examples for de-biasing 

Strategy Explanation Examples 

Structured data 

acquisition 

Deliberate data acquisition procedures to 

ensure adequate information are 

acquired and minimise blind spots. 

 

Use a differential diagnosis checklist tool to 

assist clinical reasoning. 

Consider 

alternatives 

Establish routine consideration of 

alternative options. 

Seek evidence that may support a RTS 

decision opposite to the initial impression to 

force consider other examples. 

Group decision 

strategy 

Seek others’ opinions and apply crowd 

wisdom. 

Schedule team meetings with other 

practitioners and design a rehabilitation plan 

together. 

Use of external 

aid 

Improve judgement accuracy by using 

clinical practice guidelines and 

algorithms to reduce reliance on 

memory. Clinicians may also consider 

the use of clinical decision rules and aids 

that minimise uncertainty and cognitive 

load, such as implementing 

computerised clinical decision support 

 

Visually display a list of clinical tests in the 

treatment room that clinicians must perform 

when deciding when an athlete can RTS.  

Minimise time 

pressure 

Allow adequate time for thought 

processes. 

Allow enough time for making a diagnosis 

and planning for RTS. 

Supportive 

environment 

Create a supportive environment that 

encourages high-quality decision 

making. 

Readily availability of rehabilitation 

protocols, clinical guidelines, RTS criteria to 

reduce variance.  

Well-organised working schedule to avoid 

cognitive overload, fatigue and sleep 

deprivation (Croskerry et al., 2013a). 
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2.3 Analysis techniques 

Given the challenges in decision making, it may be beneficial to improve data analysis to enhance 

decision quality. Specifically, clinicians may harness nonlinear analytical methods to address the chaos 

and complexity inherent in sports. In particular, machine learning techniques have attracted attention 

for their strength in transforming a large amount of data into practical knowledge and identifying 

nonlinear patterns (Edouard et al., 2020; Witten et al., 2011). In the context of RTS, the application of 

machine learning has been growing but is still limited (Albano et al., 2020). 

 Machine learning 

Machine learning is a subfield of artificial intelligence (AI), where the computer system learns from 

data without being explicitly programmed to do so (Mohammed, 2017; Tibshirani, 2013). Machine 

learning could recognise correlations, patterns and trends in large datasets (SoleimanianGharehchopogh 

et al., 2012). Users can also input relevant data into the machine learning model to refine the algorithm 

and improve the outcome (Mohammed, 2017). Machine learning can be used for predictive and 

descriptive purposes (Han, 2012). Specifically, clinicians can use predictive modelling for injury 

diagnosis, prognosis and rehabilitation planning. On the contrary, clinicians can use descriptive 

modelling to characterise injury profiles and identify the association between the relevant factors.  

Machine learning is categorised into supervised, unsupervised, and reinforcement learning 

(Jain et al., 1999; Mohammed, 2017). Four main analytical techniques are available within the machine 

learning umbrella: association, classification, clustering and relationship modelling. Machine learning 

techniques can search large databases to recognise nonlinear patterns or build models to describe 

associations and predict outcomes. The use of machine learning has gained momentum in sports injury 

research, and they have been applied to assess injury risk, analyse movement and predict sports 

performance (Claudino et al., 2019; Cust et al., 2019; Fältström, Kvist, et al., 2021; Rossi et al., 2019; 

J. Ruddy et al., 2018). 
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In supervised machine learning, labelled data is used to train the algorithm. Labelled data refers 

to a dataset of predictor variables marked with resultant output (Kotsiantis et al., 2006). This training 

allows the algorithm to learn trends, model relationships and classify groups between inputs and 

variables (Maymin, 2017). Common relationship-modelling machine learning techniques are 

regressions and neural networks. In contrast, decision trees and random forests are popular algorithms 

for classification. The above techniques can be used for continuous and categorical datasets and have 

been applied in a range of sports domains, for example, in talent identification (Den Hartigh et al., 2018; 

Maymin, 2017), match outcome prediction (Bunker & Thabtah, 2019; Robertson et al., 2016), 

movement recognition (Cust et al., 2019), skill analysis (Weigelt et al., 2011) and injury prediction 

(Rossi et al., 2019). 

Contrary to supervised learning, unsupervised learning is trained with unlabelled data. The 

algorithm finds hidden patterns within the data without prior knowledge of the correct outcomes 

(Mohammed, 2017). Examples of unsupervised learning techniques are clustering (Jain et al., 1999) 

and association rule (Agrawal et al., 1993). These techniques have been applied in areas such as player 

movement analysis (Weigelt et al., 2011), technique analysis (Ball & Best, 2007) and match analysis 

(Sampaio et al., 2015). 

Supervised and unsupervised learning represent most machine learning techniques. Techniques 

that fall between the two classes may be classified as semi-supervised. Another branch of machine 

learning is reinforcement, where the algorithm is trained through trial and error (Richard & Andrew, 

1998). Reinforcement learning so far has limited application in sports (Ding et al., 2022; Liu & Schulte, 

2018).  

Limited by human resources, time, bias, uncertainty and complexity, it may be challenging for 

clinicians to make effective and objective decisions. To this end, clinicians may consider using machine 

learning to support data analysis and inform decisions. Machine learning is a promising candidate for 

analysing clinical datasets because of its ability to analyse nonlinear interactions and recognise patterns 
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in large and complex datasets (Dutt-Mazumder et al., 2011). The following subsections outline the two 

common machine learning techniques (association rule and classification), and which association rule 

approach is adopted in Chapter Six. Section 4.4.1 also provides examples of how clinicians can frame 

RTS questions and analyse them with the major machine learning approaches. 

 Association rule  

The association rule is a type of unsupervised learning capable of identifying meaningful patterns 

between variables in a large dataset (Agrawal & Srikant, 1994). It originated in market-basket analysis, 

where vendors are interested in the habit of customers, for example, what items customers typically 

purchase together in a single transaction (e.g., milk, bread and eggs) (Agrawal et al., 1993; Cariñena, 

2014). Based on the rules identified, vendors can place frequently co-purchased items on adjacent 

shelves to increase sales or cross-marketing (e.g., suggest recommended products in online shopping). 

The output can be expressed in the IF-THEN format. That is, IF condition1 and condition2 and … and 

conditionn, THEN decision (Daud & Corne, 2009).  For example, if (the athlete single-leg hops five 

times without pain) and if (the calf strength of the injured leg is 90% of the uninjured side), THEN (the 

athlete could start running). These rules may be generated using association rule mining techniques to 

conduct large-scale searches within their sports organisation’s rehabilitation dataset. Clinicians can then 

use the rules to guide progression in rehabilitation and minimise maladaptation in training, such as 

overreaching or excessive muscle soreness. Such approach may fit in clinical settings because of the 

transparency of the algorithm (Bullock et al., 2022; Muyeba et al., 2013). 

 Based on the research question, there are a few variations of the association rule approach that 

clinicians may leverage to increase data resolution. First, users may include temporal attributes in the 

data mining process to identify an ordered correlation between events (Cariñena, 2014; Pei et al., 2004). 

As such, the antecedent and consequent rules can exist at different time points. For example, if 

customers buy pasta this week, they are more likely to buy rice next week (Cariñena, 2014). In the 

context of RTS, an increase in training workload today may be related to a decrease in running capacity 
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one day later. Second, cyclic association mining can identify rules that exist at regular particular time 

periods of a dataset (Cariñena, 2014; Özden et al., 1998). In the case of market basket analysis, users 

can analyse how festive seasons such as Boxing Day sales may observe a higher volume of sales. In 

sports, researchers may potentially use temporal association mining to explore the association between 

ACL injury and women’s menstruation cycle (Slauterbeck et al., 2002).  

The association rule is more suitable for categorical data. When the data set includes continuous 

data, the data need to be first discretised and presented in interval values, such as “high” and “low” 

(Stańczyk et al., 2020). Discretising value across a broad spectrum of categories may reduce processing 

time and increase usability. However, the use of discretisation may introduce sharp boundaries. One of 

the solutions is to use a fuzzy set (Delgado et al., 2005; Hong & Lee, 2008). Fuzzy sets create soft 

boundaries boundary to soften the transition between consecutive intervals. For example, a 30-year-old 

athlete is considered to be “old”, but a 29-year-old athlete is considered “old with a lower degree”. As 

a result, the transition between being young and old is not sharp, but with a gradual transition. Fuzzy 

sets may be incorporated in the modelling of quantitative temporal and non-temporal attributes in the 

event. 

In sports performance, the association approach has been used to identify constraints in skill 

training for kicking training (Browne, Sweeting, et al., 2019; Robertson et al., 2019), talent 

identification (Robertson et al., 2015) and tactics analysis (Browne, Morgan, et al., 2019). Clinically, 

the association rule have been used for understanding illness and musculoskeletal disorders (Kanimozhi 

et al., 2019; Muyeba et al., 2013), but application in RTS is scarce 

 Classification 

Classification is a type of supervised learning, and the most common technique is decision trees (Loh, 

2014). Decision trees are nonlinear machine learning techniques that can predict a single outcome using 
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several predictor variables (De'ath & Fabricius, 2000). Decision trees can make predictions based on 

categorical and continuous data (Loh, 2011), which gives them an advantage over the association rule. 

A decision tree algorithm is flow-chart-like, learning from the observation of an item to 

conclude the item's target class or value. Decision trees work by recursively partitioning the dataset, 

one variable at a time, into homogenous and mutually exclusive groups (Loh, 2011). In the decision 

tree, each node denotes a test for each attribute for a particular instance, and each branch represents the 

test outcome (Figure 2.5). Accordingly, the branches are grown continuously until the predictive power 

of further splits no longer improves the model (Morgan et al., 2013). A random forest is similar to a 

decision tree, except that it randomly creates multiple decision trees. Each node in the decision tree 

works on a random subset of features to calculate the output (Breiman, 2001). The random forest then 

combines the output of individual decision trees to generate the final output (Breiman, 2001).  

 

Figure 2.5 Graphical presentation of a standard decision tree 

In the design of machine learning models, the choice of attributes is important. Including a 

small set of relevant and highly predictive attributes in the model-building process can result in a good 

performance model (Hall & Holmes, 2003). Attribute selection typically involves a combination of 

search and attribute utility estimation and evaluation concerning the specific learning goal (Hall & 
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Holmes, 2003).  Similar to the association machine learning approach, decision trees are likely to fit in 

clinical settings because clinicians can assess the output with established evidence and explain the result 

practically and intuitively (Bullock et al., 2022; Muyeba et al., 2013). For example, if the output from 

the decision tree suggests an athlete is not ready for RTS, practitioners may backtrack the model and 

identify the rationale behind it. Users may also refer to the visual output to aid interpretation (Figure 

2.5) (Morgan et al., 2013). 

Decision trees have been applied in a range of sports settings, for example, to analyse movement 

(Cust et al., 2019), predict player ratings (McIntosh et al., 2019) and predict shot outcome (Browne et 

al., 2022). In the field of sports medicine, decision trees have been used to diagnose and predict sports 

injury (Claudino et al., 2019; Girard et al., 2020; Jauhiainen et al., 2022; Martin et al., 2021; Rossi et 

al., 2019; J. D. Ruddy et al., 2018), classify knee injury status (Girard et al., 2020) and identify key 

factors for a better outcome in ACL RTS (Palmieri-Smith et al., 2022). Decision trees may be used to 

support RTS decisions, however, their application in supporting RTS decisions has been limited 

(Albano et al., 2020). 

Machine learning may be a viable tool for supporting RTS decisions based on its strength in 

handling complex and nonlinear multivariate data. It may be desirable to research a data-informed 

system powered by machine learning to analyse high-dimensional datasets. Clinicians may harness 

data-informed systems and artificial intelligence to increase productivity and accuracy of decisions.  

 Decision support system 

A decision support system (DSS) is a computer technology solution that provides objective evidence to 

support complex decision making and problem solving (Schelling & Robertson, 2020). These systems 

typically utilise historical data to assess and analyse current information to form user recommendations 

(Robertson, Bartlett, et al., 2017). The development and use of DSS have been evolving, from 

supporting organisational decisions (Shim et al., 2002), to improving sports performance decisions 
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(Schelling et al., 2021; Schelling & Robertson, 2020; Zeleznikow et al., 2009) and clinical decisions 

(Hunt et al., 1998; Sutton et al., 2020).  

 Clinical DSS may aid clinical decision making by matching the patients’ characteristics to 

computerised knowledge. Based on the knowledge base, the DSS can provide individualised 

assessments or recommendations to clinicians for their consideration (Osheroff et al., 2007). Clinicians 

may also use DSS to synthesise and integrate information from multiple sources and perform complex 

evaluations (Garg et al., 2005). In addition, the use of computerised analytics may accommodate the 

features of the complex systems and assist clinicians in considering the problem holistically (Schelling 

& Robertson, 2020). Clinically, DSS can be used for various purposes, ranging from improving medical 

quality, safety and efficiency; and across a range of domains such as screening, diagnosis and treatment 

(Garg et al., 2005). 

Despite clinical DSS having shown great promise in reducing medical error and improving 

patient care (Hunt et al., 1998), there are limited applications in sports medicine settings. Research has 

suggested that DSS are more likely to be implemented if the decision makers are willing to make 

changes and judgements based on the findings from the system (Hunt et al., 1998; McIntosh et al., 2019; 

Robertson, Bartlett, et al., 2017). Specifically, the following three characteristics have been 

recommended:  

1) The DSS should fit into the workflow of the clinicians (Kawamoto et al., 2005) and 

optimise the time, cost and burden of using the system (Fernández, 2019; Robertson, 

Bartlett, et al., 2017). 

2) The DSS provides clinicians with actionable recommendations rather than just 

assessment (Kawamoto et al., 2005). Ideally, the DSS should also allow evaluation and 

simulation of the decision as a system feedback mechanism (Schelling & Robertson, 

2020).  
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3) The DSS provides timely information to clinicians to provide the most impact 

(Kawamoto et al., 2005).  

4) The output of the DSS should be interpretable by clinicians (Kawamoto et al., 2005). 

Given that most clinicians may not have formal training in data analytics and 

interpretation, the display of the clinical DSS output should also be considered. 

 Visualisation 

Output from analytics tools and clinical DSS is only applicable if the results are accessible and 

interpretable by clinicians. Naturally, users are not motivated to use a DSS if the reporting methods are 

not interpretable or practical (Green, 1998; S. Liu et al., 2017; Schelling & Robertson, 2020; Thornton 

et al., 2019). To assist clinicians’ interpretation of the findings, the design and style of reporting are 

critical (Silver, 1991; Thornton et al., 2019).  

Appropriate visualisation can translate complex outcomes into interpretable findings and thus 

reduce the cognitive work and time required to digest the information (Kale et al., 2018). This may aid 

the uptake of information and encourage users to engage with pleasure (Pinker, 1990). This is especially 

important to clinicians as they are less likely to have formal analytics training and thus may have 

difficulty understanding the output from complex analytics. To this end, clinicians can harness 

visualisations, which require less cognitive load in interpreting than tables and numbers (Green, 1998; 

Kale et al., 2018). The visualisation may help translate numbers into a more straightforward medium 

and allows users to effectively gain insight from complex information (Zacks & Tversky, 1999).  

In displaying proportional data, the layout and design of graphs are crucial to convey the 

message (Jordan & Schiano, 1986; Schiano & Tversky, 1992; Tversky & Schiano, 1989). For example, 

pie charts are not recommended as users judge an area's size less accurately than the length of a line in 

a bar graph (Spence & Lewandowsky, 1991). Further, the effectiveness of the graph may decrease when 

the number of components displayed in a bar chart increases (Hollands & Spence, 1998).  
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2.4 Section summary 

RTS decisions are commonly encountered in sports, and clinicians are required to make complex 

decisions that balance the risks and benefits of athletes and sports organisations. Fortunately, clinicians 

can utilise the data routinely collected in sports organizations to support their decisions. Clinicians can 

also use existing theoretical and strategic assessment frameworks to guide the rehabilitation process 

and consider the relevant factors. However, much is unknown about integrating different data types to 

make quality decisions. 

 Within decision making in RTS, there is scope to improve the data quality, data analysis and 

interpretation to improve efficiency when providing information to clinicians. To appropriately guide 

the RTS decision-making process, clinicians may evaluate the decision quality (Chapter Three) and 

view rehabilitation through the lens of the complex systems theory (Chapter Four). Practically, the use 

of complex systems approach in making decisions remains limited, possibly due to 1) clinicians being 

unlikely to have formal decision-making training, and 2) the complexity and volume of data available 

nowadays are more than ever. Clinicians may harness advanced analytical techniques, such as machine 

learning algorithms, to support RTS decisions with a complex systems approach (Chapters Five and 

Six). 
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Part I Frameworks 

This section includes Chapters Three and Four, which consist of two peer-reviewed published 

manuscripts that provide a detailed evaluation of decision-making frameworks and complex systems 

theory that may improve decision quality. Chapter Three synthesises the available literature in the RTS 

decision-making framework to provide an overview of the topic and propose a framework for improving 

decision quality. Chapter Four discusses the hallmark features of complex systems and their relevance 

to RTS decision making and daily practice. 
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3 Chapter Three: Study I 

Chapter overview 

Chapter Three is the first of the four studies contained in this thesis. This study is a narrative review 

that explores the current decision-making theories and proposes a decision-making framework that may 

improve the quality of RTS decisions. 

The content of this chapter is an accepted manuscript of an article published by Springer Open 

in Sports Medicine – Open on 13th April, 2022, available at: https://sportsmedicine-

open.springeropen.com/articles/10.1186/s40798-022-00440-z 

 

Clinical relevance 

With advancements in sports technology and the development of more testing kits and wearables, 

clinicians nowadays may be overwhelmed with voluminous data. Excessive information may cause 

clinicians difficulty in consolidating and integrating data collected from different sources and at 

different time points. As such, there are times when clinicians may “guesstimate”, a combination of 

guess and estimation, to make a decision. Given that decision-making training is not typically included 

in a clinician’s education, this narrative review addresses three questions: 1) How to make better 

decisions? 2) What are the decision-making theories relevant to clinicians’ practice? 3) What are the 

potential pitfalls that clinicians have to look out for when making decisions? 

https://sportsmedicine-open.springeropen.com/articles/10.1186/s40798-022-00440-z
https://sportsmedicine-open.springeropen.com/articles/10.1186/s40798-022-00440-z
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3.1 A framework for clinicians to improve decision making 

process in return to sport.  

 

 Key points 

 RTS decisions are complex, nonlinear and multifactorial and thus require external tools to assist 

practitioners 

 To improve the quality of decisions in sports settings, decision makers could evaluate the 

following three domains: 1) assess the methodological soundness of the tests chosen, 2) identify 

potential deviations from normative decision models and 3) implement shared decision making. 

Keywords: decision making, decision, return to play, decision analysis, rehabilitation, RTS, RTP 
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 Abstract 

Return-to-sport (RTS) decisions are critical to clinical sports medicine and are often characterised by 

uncertainties, such as re-injury risk, time pressure induced by competition schedule and social stress 

from coaches, families and supporters. RTS decisions have implications not only for the health and 

performance of an athlete, but also the sports organisation. RTS decision making is a complex process, 

which relies on evaluating multiple biopsychosocial factors, and is influenced by contextual factors. In 

this narrative review, we outline how RTS decision making of clinicians could be evaluated from a 

decision analysis perspective. To begin with, the RTS decision could be explained as a sequence of 

steps, with a decision basis as the core component. We first elucidate the methodological considerations 

in gathering information from RTS tests. Second, we identify how decision-making frameworks have 

evolved and adapt decision making theories to the RTS context. Third, we discuss the preferences and 

perspectives of the athlete, performance coach and manager. We conclude by proposing a framework 

for clinicians to improve the quality of RTS decisions and make recommendations for daily practice 

and research.  

3.2 Introduction 

Decision making is a process of weighing the risk(s) and benefit(s) among options to make a choice 

(Burton et al., 2009, p. 301). In clinical practice, return-to-sport (RTS) decisions can be challenging as 

they are directly linked to the athlete’s well-being and performance. RTS refers to the recovery and 

rehabilitation continuum: return to participation, return to sport and return to performance (Ardern, 

Glasgow, et al., 2016). This review focuses on how the quality of RTS decisions could improve. 

Premature RTS may risk re-injury (Hägglund et al., 2016; Stares et al., 2018; Stares et al., 

2019), and subsequently harm the athlete’s playing performance (Walden et al., 2016), financial income 

(Secrist et al., 2016) and mental health (Gouttebarge, Aoki, et al., 2016; Ruddock-Hudson et al., 2012). 

Yet, if RTS is delayed for a lesser chance of reinjury, it will inevitably reduce a team’s player 



61 

 

 

 

availability. Reduced player availability is undesirable as players’ match availability is associated with 

team performance across various sports (Arnason et al., 2004; Drew et al., 2017; Emery et al., 2011; 

Hägglund et al., 2013; Hoffman et al., 2019; L. Podlog et al., 2015; Waldén et al., 2007). Consequently, 

substantial pressure rests on the shoulders of decision makers to reach a decision that balances the best 

interest of the athlete’s health and team performance.  

When the context is predictable and routine, for example, when managing a tibia fracture on 

the field, decision making could be straightforward and relegated to an automated level (i.e., remove 

from play immediately). However, when there is a high level of uncertainty and complexity in the 

context (e.g., to decide whether an athlete at 95% of recovery should play in the grand final), the ability 

to make high-quality decisions is less clear, yet potentially even more crucial. 

The challenge of complexity and the multifactorial nature of RTS decision making has been 

acknowledged for over two decades (Putukian, 1998).  A 1998 review by Putukian (1998) discussed 

the concerns and struggles that clinicians have when making RTS decisions, which could be attributed 

to the multifactorial nature and clinical uncertainty presented in medicine (Malcolm, 2009; Shrier et al., 

2010). The majority of the research focus since then has been mostly on developing decision-making 

frameworks and clinical criteria for RTS. One of the most recognised decision-making frameworks is 

the Strategic Assessment of Risk and Risk Tolerance (StAART) (Shrier, 2015). The framework, 

together with the RTS criteria, help to guide the clinician’s practice. For example, in the management 

of anterior cruciate ligament (ACL) injury, clinicians may refer to the established RTS criteria (Grindem 

et al., 2016; Kyritsis et al., 2016) and consensus statements (Meredith et al., 2020; Rothrauff et al., 

2020).  

In contrast to the vast literature on RTS criteria, there is less on how clinicians make RTS 

decisions and how to improve the quality of the decision. This may be because this topic spans at least 

two distinct fields: sports medicine and decision-making science. We aim to help clinicians 

conceptualise the decision-making process, increase the thoughtfulness of a decision, identify potential 
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deviations from normative decision models, and eventually establish a framework to improve the 

quality of decision making.  

 Disentangling decisions and outcomes 

The term decision refers to the action taken to reach a decision, and this is different from the 

outcome of the decision (Gass, 1983; Vlek, 1984). A high-quality decision refers to a decision that is 

logical and made based on the uncertainties, values and preferences of the decision maker (Howard, 

2007). A good outcome is an outcome that the decision maker would wish to have happened and is of 

high value to them (Howard, 2007).   

A high-quality decision does not necessarily warrant a good outcome due to uncertainties. There 

are multiple sources of uncertainties, and the two major categories prominent in the medical field are 

aleatoric uncertainty and epistemic uncertainty (Indrayan, 2020). Aleatoric uncertainty is intrinsic to 

the problem, for example, random variations that arise from observers or instruments. Epistemic 

uncertainty is extrinsic and comes from limitations in knowledge, such as individual bias (Indrayan, 

2020).  

Distinguishing between decision and outcome allows clinicians to separate action from the 

consequence, so they can focus on improving the quality of the action. Occasionally, clinicians may be 

disappointed by a bad outcome in a good RTS decision, such as an athlete suffering from a re-injury 

despite careful medical evaluation. Yet, in the pursuit of a good outcome, there may not be a better way 

than striving for a high-quality decision. Therefore, in this paper, we focus on evaluating the decision, 

and not on the outcome.   

 Evaluating a decision 

There are various ways to evaluate a decision. The first approach is related to the outcome of 

the decision, such as clinical health outcomes (e.g., pain, quality of life), or how regretful or satisfied 

the patient is with the decision (Holmes-Rovner et al., 2007; Sepucha et al., 2013; Stacey et al., 2017). 
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However, there is no consensus on the optimal measurement tool(s) for this purpose. The second 

approach relates to the expected value of the outcome (i.e., expected utility), where probabilistic 

information about the risk and benefits of personal preferences and values are considered (Hamilton et 

al., 2017). The third approach is to consider the decision quality, which is measured by knowledge of 

the options and outcomes, realistic perceptions of outcome probabilities, and agreement between 

patients’ values and choices (Stacey et al., 2017). It may be challenging to measure the quality of a 

decision with the first two approaches (i.e., outcome and expected utility) due to the complexity of a 

RTS question. Nevertheless, evaluating the decision with the third approach – decision quality- may be 

possible. 

Decision analysis is a formal procedure for analysing decision problems by balancing the 

factors that could influence a decision (Howard, 2007). To evaluate the decision quality, the decision 

process could be made transparent by first breaking it down into a sequence of clear steps. We have 

adapted a decision analysis model from Howard (Howard, 1988) to RTS to systematically evaluate a 

decision (Figure 3.1).  
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Figure 3.1 Steps for evaluating a RTS decision 

The essence of decision analysis is eliciting the four bases for the decision (Howard, 1988): 

1) The alternatives: relates to the options that a decision maker has. In the context of RTS after 

an injury, it could be whether the athlete could return to full training/competition, modified 

training or basic rehabilitation training. 

2) The information: refers to knowledge that may be important to formulate the outcome. For 

example, what information do RTS tests provide to the decision makers? 

3) The decision models: includes models that describe how the decision could be made. That 

is, on what basis can the decision be made?  

4) The preferences: preferences of a decision maker could be of multiple dimensions. These 

include the value (e.g., how much does RTS mean to the athlete or the team?), time preference 

(e.g., how important is it to play in the upcoming game?) and risk preference (e.g., how much 

re-injury risk can the team tolerate?). 
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Among the four key bases for a decision (alternatives, information, decision models and 

preferences), the alternatives are highly specific to the context and would be difficult to discuss from a 

broader perspective. Therefore, we have structured this review around the other three bases for a RTS 

decision: 1) information, 2) decision models and 3) preferences. We first zoom in on the methodological 

issues of obtaining information in the medical room. Second, we zoom out to identify the decision 

models relevant to RTS. Third, we discuss how preferences can be addressed with shared decision-

making. Finally, we propose a framework to improve RTS decision making in practice.  

To increase the practicability of the framework and to help readers navigate the three bases for 

the RTS decision, a case scenario describing an ACL injury is used. We use ACL injury because it is a 

serious injury in sports that may threaten the career of athletes (Ekstrand, 2019; Walden et al., 2016). 

Multiple clinical and performance tests have been developed to evaluate the readiness of the RTS 

(Webster & Hewett, 2022), yet the re-injury risk of ACL remains high (Della Villa et al., 2021; Paterno 

et al., 2014) and some athletes do not return to sports following the injury (Lai et al., 2018).  

3.3 Part 1: Methodological concerns in information gathering 

A football player, in her early career, has undergone an ACL reconstruction surgery six months ago 

and is eager to return to play. She wants to play as soon as possible to gain a contract extension but is 

also worried about getting reinjured. In the medical room, you sit with the player and decide on what 

kind of test to perform on-field and off-field. 

At the operational level, there are methodological considerations when gathering information for the 

decision. Below we discuss some of the underlying assumptions and methods concerns. 

 Number of criteria used in RTS 

In general, criteria-based RTS (e.g., muscle strength, functional and dynamic stability, and range of 

motion) have been suggested over a time-frame approach, which is to decide solely based on the 
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athlete’s time spent in rehabilitation (Hickey et al., 2017; Serner et al., 2020; Tassignon et al., 2019; 

van der Horst et al., 2016; Zambaldi et al., 2017). The ideal number of tests to use for this purpose may 

vary between cases. There are concerns that an insufficient number of tests may jeopardise the 

clinician’s ability to see the complete profile of an injured athlete. However, too many tests may 

increase the inherent error (e.g., athlete exhibiting reduced performance due to fatigue or reduced 

motivation) and exhaust more resources (e.g., staff, time, equipment). Currently, there is no 

recommendation for the ideal combination and number of tests to provide the most insight into the 

athlete’s readiness for RTS. 

 Baseline setting in RTS 

Returning to pre-injury levels of health and fitness is often seen as the goal of RTS (Ardern, Glasgow, 

et al., 2016). Therefore, setting an appropriate baseline provides an ideal foundation for clinicians to 

monitor progress by comparing the athlete's current functional and physical capacity with previous 

preinjury data. However, it is challenging to set an objective, replicable and suitable baseline for the 

setting. For example, currently, there is no guideline on the timing and frequency for performing 

baseline tests. Adding more complexity to the problem, physiological and performance profiles often 

fluctuate daily due to periodisation in training and competition schedule (e.g., heart rate variability 

(Thorpe et al., 2015), musculoskeletal screening scores (Esmaeili, 2018), hip strength and flexibility 

(Paul et al., 2014) and power (as in countermovement jump) (Thorpe et al., 2015).)  

Here we used the limb symmetry index (LSI) as an example to illustrate the concerns with 

baseline setting. LSI is often included in the RTS protocol for ACL injury (Davies et al., 2019; 

Fitzgerald et al., 2000; Grindem et al., 2016; Munro & Herrington, 2011; Wellsandt et al., 2017). LSI 

compares the performance of the involved limb with the uninvolved limb (Petschnig et al., 1998). Often, 

a 90% side-to-side difference threshold is used as a passing score for RTS (Davies et al., 2019; 

Fitzgerald et al., 2000; Munro & Herrington, 2011; Wellsandt et al., 2017). However, there is little 

scientific evidence on the optimal threshold. Even when limb symmetry is achieved, it does not 
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necessarily indicate the athlete has reached a level sufficient for safe sports participation and 

performance (Wellsandt et al., 2017; Wren et al., 2018). It is also questionable whether the 

uninvolved side could be used as the benchmark when pre-injury data are unavailable. After ACL 

reconstruction surgery, patients have reduced single-leg hop performance of both the involved and 

uninvolved side (Gokeler et al., 2017; Wren et al., 2018) and for up to 2 years after surgery (Chung 

et al., 2015). This could be attributed to a combination of factors, such as deconditioning, fear or lack 

of motivation (Chung et al., 2015). Consequently, defining the baseline measure for comparison 

remains challenging and a suite of RTS tests have been recommended (Ardern, Glasgow, et al., 

2016). 

 Validity of RTS tests 

3.3.3.1 Content validity 

Content validity refers to how well a test protocol reflects what it intends to measure (Robertson, 

Kremer, et al., 2017; Robertson et al., 2014). Selecting measurement tools is important as unnecessary 

noise may dampen the accuracy of the decision model. If the selected tests are prone to false positives, 

clinicians may unnecessarily delay the athlete's rehabilitation process (Davies et al., 2019). 

Traditionally, in RTS decisions, clinicians would consider internal athlete data (e.g., physical 

fitness, strength, well-being, periodic health screening, body mass, anthropometric, internal load 

responses) and external factors such as training loads (e.g., running performance, training and match 

exposure), the timing in the season, the importance of the game or training. However, there seems to be 

a bias towards assessing variables that are easily measured, and missing measures that may be important 

but more difficult to measure (Paul, 2020). For example, in rehabilitating an ACL injury, a clinician 

may assess the hip, knee and ankle joint alignment in jump and land testing to identify the extent of 

valgus or varus movement. The assessment may provide valuable information regarding the athlete's 

movement strategies and physical capabilities; however, it may not provide sufficient information 
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regarding the performance in competition. In competition, an athlete may encounter different chaotic 

and unpredictable scenarios, such as unplanned movement tasks and under high opponent pressure and 

cognitive load. Despite the best intentions to design sports-specific tests, the overall physical, 

psychological and emotional demands of a competitive match could be hard to replicate. Consequently, 

decision makers may need to identify the content validity of the test and decide to interpret the test 

result. 

3.3.3.2 Predictive validity 

Predictive validity is how well a test predicts performance on a criterion that is administered at a later 

date, such as RTS outcome (Ardern et al., 2013; Robertson, Kremer, et al., 2017). Predictive validity 

is only available for some of the tests, such as hop tests (Davies et al., 2019; Paterno et al., 2017), 

single leg bridge test (Freckleton et al., 2014) and psychological readiness test (Webster & Feller, 

2018). For most RTS tests, clinicians may not know whether passing the test means the athlete could 

achieve a satisfactory RTS outcome or not. A recent study found no association between the 

predetermined functional performance test cut-offs and the risk of a new ACL injury (Fältström, 

Hägglund, et al.). Similarly, the Landing Error Scoring System may not predict the ACL injury risk 

in a cohort of high school and college athletes (Smith et al., 2011). 

 Responsiveness of RTS test 

Responsiveness, or sensitivity, refers to how well a test can detect meaningful changes in skill and 

functional assessment (Robertson et al., 2014). While it is important to track progress, recent evidence 

suggested that some common clinical tests cannot accurately track meaningful gains in biological and 

functional recovery after injury (Hegedus, McDonough, Bleakley, Cook, et al., 2015; Hegedus, 

McDonough, Bleakley, Baxter, et al., 2015; Whiteley et al., 2018). The time to normalise also differs. 

For example, in the lower limb injury assessment, the 6-m timed hop test returned to normal earlier than 

the other three single-leg hop tests (single-hop for distance, triple hop for distance and cross-over hop 
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for distance) (Davies et al., 2019). Similarly, in hamstrings strain rehabilitation, straight leg raise 

returned to normal much earlier than the maximum hip flexion with active knee extension (Whiteley et 

al., 2018). Limited literature is available to inform what tests are most suitable for reporting treatment 

progression and rehabilitation progression (Whiteley et al., 2018). 

 Meaningful change in RTS test result  

One of the purposes of conducting RTS tests is to assess the progression made in rehabilitation and to 

inform the RTS decision (Ardern, Glasgow, et al., 2016). Statistical tests could identify whether the 

observed change in a particular RTS is due to a true difference or the result of chance. The statistical 

tests, however, in isolation cannot indicate whether the change was clinically meaningful or could be 

reliably distinguished from random error in the measurement (Mann et al., 2012). As such, there is a 

“clinical significance” concept to describe whether the change is noticeable and meaningful to the 

injured athlete. The clinical significance refers to the difference in an outcome measure that is clinically 

meaningful (Katz et al., 2015). For example, the smallest change required to detect a meaningful change 

beyond typical error for 6-m timed hop test is 12.96% (Noyes et al., 1991). For RTS tests where the 

data for meaningful change are unavailable, longitudinal tracking may help to identify a trajectory for 

an informed decision (Davies et al., 2019). 

 Unknown interaction between variables 

In decision making, some pieces of information may be missing, whether known or unknown. For 

example, little is known about the linearity of soft tissue healing (Järvinen et al., 2014) or how 

compensation movement makes up quantitative symmetry (e.g., reaction and response time). There 

are also variables that a clinician may not have measured (e.g., knee movement in the worst chaotic 

scenario) or could not be measured (e.g., knee movement in an unplanned body contact or under extreme 

fatigue). The lack of measurement of cognitive load and sports-specific stimulus in rehabilitation may 

also expose a potential flaw in RTS decision making (Paul, 2020).  
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3.4 Part 2: Zoom out to identify the decision-making framework 

and theories 

You have gathered the information required and are deciding your stance on whether the athlete is 

ready to return to play. 

After gathering the information, we zoom out to a broader perspective on decision-making 

models relevant to RTS. We first discuss a conventional RTS decision-making framework, then 

introduce the normative and descriptive decision models (Figure 3.2). This allows clinicians to see how 

a fully rational person may decide (normative models) and to explain when the decision could deviate 

from the norm (i.e., descriptive models). 

 RTS Decision-making frameworks 

In 2010, Clover and Wall (2010) introduced a guideline for RTS decision making. They proposed 

considerations for clinical factors and functional athletic ability. Intangible factors for RTS are also 

included, such as the athlete's motivation, social support, psychological readiness, fear of reinjury, 

Figure 3.2 Overview of decision frameworks and theories 
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insurance coverage and availability of rehabilitation staff members (Clover & Wall, 2010).  

The first formal RTS decision-making guiding framework, a 3-step decision-based model, 

was proposed by Creighton et al. in 2010 (Creighton et al., 2010). The framework was designed to 

guide decisions on when to clear an athlete for full participation in sport without restriction. In 2015, 

minor revisions were made to the 3-step framework and it was renamed the Strategic Assessment of 

Risk and Risk Tolerance (StARRT) (Shrier, 2015). The StARRT has been used to clarify the 

components within and the sequence of decision making, and could help to explain the hidden 

assumptions that clinicians make in different clinical vignettes.  

The process has three steps (Creighton et al., 2010):  

Step 1: Evaluating health status. The athlete's health status is evaluated through medical factors, 

such as symptoms, medical history, clinical tests and injury severity. 

Step 2: Evaluating participation risk. The risk of participation is evaluated through the sport risk 

modifiers, such as the type of injury or illness, age, types of sports, level of play, the significance of 

upcoming competition, social factors and financial cost. 

Step 3: Risk tolerance modifiers. The final step to RTS decision is a risk-benefit assessment by 

assessing the risk tolerance modifiers. These modifiers can exist at multiple levels (e.g., individual, 

interpersonal, organisational, community and policy levels) and may shift the decision makers’ 

priorities and preferences. As a result, RTS decision making could be more complicated than just a 

medical case. 

The framework has helped make the decision-making process transparent by guiding the key 

variables that the clinician could consider (Shrier et al., 2015). However, the StARRT does not 

intend to define or guide a high-quality decision-making process. In the next section, various 

decision-making theories are introduced in an attempt to explain the decision-making process. 

Examples are provided to illustrate some of the methods to reach a RTS decision. 
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 Decision-making theories 

In decision making, normative models and descriptive models form the two fundamental branches of 

decision theory (Bell et al., 1988). Normative models are the system of rules and standards for decision-

making (i.e., how one should make decisions). They have theoretical value and concerns about how to 

make the best possible decision when a person is fully rational and informed (Bell et al., 1988).  

In contrast, descriptive models are psychological theories explaining how people make judgements and 

decisions (Baron, 2012). Due to human behaviour, conflict occurs between how we would like to reason 

(normative) and our temptation (descriptive) to take a faster or easier route in cognitive thinking. 

Descriptive models attempt to understand and explain the deviations from normative models. Here we 

use an example to illustrate the difference between the normative and descriptive approaches: an athlete 

with an injury may know that alcohol could dampen recovery (a normative model explains what the 

athlete should do). Despite this, the athlete may still choose to drink at a party due to various reasons (a 

descriptive model explains why the athlete's behaviour deviates from the normative model). By 

comparing descriptive models to normative models, decision makers may identify the potential 

deviations from normative models and correct the deviations if necessary. The section starts with 

normative models and is followed by descriptive models. Common normative models include rule-

based theory and explicit utility theory. 

3.4.2.1 Rule-based theory 

The rule-based approach is where a clinician decides based on a set of defined criteria (Grindem 

et al., 2016; Kyritsis et al., 2016). The assessment could be done on a binary scale (i.e., pass or fail). 

Table 3.1 illustrates a hypothetical example using established criteria for ACL injury (Grindem et al., 

2016).  
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Table 3.1 Hypothetical example of RTS criteria assessment, with criteria based on Grindem et al. 

(2016). A tick suggests that the athlete has scored >90% on that test, while a cross represents 

<90%. 

Test 

Scenario 1 

>90% on all tests 

Scenario 2 

>90% on some tests only 

Knee Outcome Survey—Activities of Daily Living Scale   

Global Rating Scale of Function   

Quadriceps Strength   

Single Hop for Distance   

Crossover Hop for Distance   

Triple Hop for Distance   

6-m Timed Hop   

Decision outcome RTS Not yet RTS 

 

Here we assume the relative importance and value assigned for all attributes are the same. The 

set of criteria includes seven tests, incorporating both function and subjective outcomes to reflect the 

overall knee performance. The passing criterion for RTS is to score >90% on the seven tests (Grindem 

et al., 2016).  

Example: Based on the rule-based theory, in scenario 1, the athlete scored above 90% on all 

tests below and is cleared to RTS. In scenario 2, not all tests are passed and the athlete is not cleared to 

RTS (See Table 3.1). 
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3.4.2.2 Expected utility theory 

Expected utility theory is a decision model that illustrates how one decides in uncertain 

conditions, based on the outcomes of different options and the probability of each outcome (Connolly 

et al., 1999; Edwards, 1977). It assumes the decision made is rational as it is based on an assessment of 

the cost and benefit surrounding choices (Ashby & Smith, 2000; Reyna & Rivers, 2008). Under this 

theory, a clinician makes a decision based on the utility (a subjective value assigned by the decision 

makers) of the outcomes of different options and the probability (estimated likelihood) of each outcome 

(Connolly et al., 1999; Edwards, 1977). As with other normative models, expected utility theory 

assumes that decision makers are fully rational in decision making and have access to complete 

information about probabilities and consequences (Shrier, 2015). Table 3.2 shows a hypothetical 

calculation of weight utility value according to the same ACL RTS guideline as above (Grindem et al., 

2016).  

Table 3.2 Hypothetical calculation using arbitrary units and utility value in ACL RTS, with 

criteria based on Grindem et al. (2016). Limb symmetry index (LSI).  

Test 

Importance 

(numerical 

weight) 

Scenario 1 

>90% on all tests 

Scenario 2 

>90% on some tests only 

Utility value (AU) 

Weighted 

utility 

value 

(AU) 

Utility value 

(AU) 

Weighted 

utility 

value 

(AU) 

Knee Outcome 

Survey—

Activities of Daily 

Living Scale 

3 

+10 

Achieved 0.90 

(i.e., 90% of full score) 

3 * 10 =30 

+8 

Achieved 0.80 

(i.e., 80% of full 

score) 

3 * 8 =24 
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Global Rating 

Scale of Function 
3 

+10 

Achieved 0.90 

30 

+9 

Achieved 0.90 

27 

Quadriceps 

Strength 
5 

+10 

Achieved 0.90 LSI 

(i.e., 90% of LSI) 

50 

+8 

Achieved 0.80 LSI 

(i.e., 90% of LSI) 

40 

Single Hop for 

Distance 
4 

+10 

Achieved 0.90 LSI 

40 

+8 

Achieved 0.80 LSI 

32 

Crossover Hop for 

Distance 
5 

+10 

Achieved 0.90 LSI 

50 

+7 

Achieved 0.70 LSI 

35 

Triple Hop for 

Distance 
5 

+10 

Achieved 0.90 LSI 

50 

+7 

Achieved 0.70 LSI 

35 

6-m Timed Hop 2 

+10 

Achieved 0.90 LSI 

20 

+10 

Achieved 0.90 LSI 

20 

Total 270  213 

Decision outcome RTS Not yet RTS 

 

Example: In Table 3.2, importance reflects how much the clinician values a specific test, and 

this is represented by a numerical weight. Utility value is based on the performance of the test, with 10 

the highest score possible and 0 the lowest. In this case, achieving the goal of 90% LSI would 

correspond to a score of 10. The weight utility value is calculated by multiplying importance (numerical 

weight) by utility value . For example, an importance of 3 and a utility value of 10 will give a weighted 

utility value of 30 arbitrary unit (AU) (3 x 10AU = 30 AU). The highest possible weighted utility value 

in this example is 270AU (scenario 1) and the decision is made based on the sum of the weighted utility 

value (Barber-Westin & Noyes, 2011).  
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In scenario 1, the athlete achieved 90% on all the tests (indicated as “achieved 0.90”) and the 

sum of the weighted utility value is 270AU. The decision is for the athlete to RTS. In scenario 2, some 

of the tests have not passed the 90% threshold and the sum of the weighted utility value is 213AU. The 

weighted utility value has not reached the requirement set by the clinician, and the athlete was not 

cleared to RTS in scenario 2.  

3.4.2.3 Descriptive models  

Because humans are unlikely to be perfectly rational at all times, decisions made could deviate from a 

normative model. Systematic deviations from normative models are known as biases (Baron, 2012). By 

applying normative models to the decisions made, decision makers could look for possible biases and 

understand the nature of those biases with descriptive models. Examples of descriptive models include 

prospect theory, heuristics and bounded rationality (Bell et al., 1988). With a better understanding of 

the biases, decision makers could develop approaches to correct them (de-bias) and improve the quality 

of the decisions. The following section describes the common descriptive theories and how a decision 

may stray from the previous normative models. 

3.4.2.4 Prospect theory  

Prospect theory suggests that people consider expected utility relative to a reference point rather than 

the absolute outcome. It also suggests future gains and losses are asymmetrical, with losses having a 

greater emotional impact than gains (i.e., humans dislike losses more than potential gains).  

Example 

In Table 3.2, the Prospect theory would suggest that the decision maker does not necessarily make 

decisions based on the absolute weight utility (i.e., 270AU). Instead, they would look at how far the 

expected utility is relative to a reference point (which is unknown here). In the context of RTS, a re-

injury (loss) may bring a more negative emotional impact than winning (gain). While this may not be 

true in all cases, it may be worth noting how emotional distress affects decision making. 
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3.4.2.5 Bounded rationality  

Bounded rationality describes how humans take reasoning shortcuts and make decisions within the 

bounds imposed by the environment, ability, information and goal (Gigerenzer & Goldstein, 1996). The 

decision is rational, however, it is within the limits of information available to the decision maker. That 

is, due to the limitation in accessing information and resources, people tend to make sufficient 

judgements, rather than optimal ones (Robertson & Joyce, 2019; Simon, 1955). (For more details, see 

Gigerenzer and Goldstein (1996) and Robertson and Joyce (2019)). In RTS, not all meaningful data are 

collected due to various reasons, such as high cost, a lack of feasibility and time. Therefore, the best 

outcome for a decision made with unknown factors is not the same as decisions made in the context of 

transparency (Gigerenzer, 1999). 

Example 

In the rehabilitation of an ACL injury, some information will always be unknown due to factors such 

as limitations in knowledge and resources. This includes how we can accurately assess the degree of 

healing of the ACL graft after a reconstruction surgery or measure the loading capacity of the ACL. 

Consequently, the decision made by the clinician in the above vignette is only based on the information 

available in Table 3.1 and Table 3.2, and is limited by the decision maker’s cognitive capacity, 

knowledge and preference.  

3.4.2.6 Heuristic 

Also known as a cognitive short-cut, a heuristic is a decision making strategy to act more quickly or 

frugally by ignoring parts of the information (Gigerenzer et al., 2011). Heuristics allow people to make 

a rapid, efficient judgement without consuming a substantial amount of time, processing capacity, and  

when information is incomplete. Logically, a clinician’s decision for RTS would be grounded in a more 

rational choice as described in normative models due to the availability of time and opportunity to 

gather additional information from tests or other staff members (e.g., doctors, coaches, fitness coach). 
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However, RTS decision making can also be based on heuristic decision making, as seen when athletes 

make decisions regarding RTS (Mayer et al., 2020). 

There are many types of heuristics that are used in daily life (Gigerenzer & Gaissmaier, 2011). 

Tversky and Kahneman (Tversky & Kahneman, 1974) proposed three classes of heuristics that people 

may rely on to assess the probabilities of an uncertain event: availability heuristic, representativeness 

heuristic and anchoring and adjustment heuristic. In Table 3.3, we have suggested examples of 

heuristics that may be of relevance in RTS decisions. Heuristics may sometimes be useful in reducing 

the complexity of a task in assessing probabilities, however, it may also lead to systematic errors 

(Tversky & Kahneman, 1974). 

Table 3.3 Definitions and examples of heuristics in RTS. 

Heuristics Definition Example 

Possible deviations from the 

normative model 

Availability People infer the 

probability of an based 

on how readily it comes 

to mind (Tversky & 

Kahneman, 1974) 

A clinician assesses the 

risk of injury of an 

athlete by recalling the 

recent occurrences 

within the team. 

 

- Depending on whether the 

clinician is familiar with the 

injury and when it last 

occurred, there may be recall 

bias.  

- The subjective injury risk may 

rise temporarily when the 

clinician sees there are multiple 

players on the injured list. 

Representativeness People categorise by 

matching the similarity 

of an object or incident to 

A clinician has an 

impression that a female 

athlete demonstrating 

- Evidence for screening tests 

in predicting injury is limited 

(Nilstad et al., 2021). The 
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an existing one that has 

already existed in our 

minds (Tversky & 

Kahneman, 1974). 

knee valgus movement 

on a jump and land task 

would suffer from lower 

limb injury.  

clinician's judgement may be 

insensitive to the reliability and 

predictability of the test. 

Anchoring-

adjustment 

People estimate based on 

an initial value 

(anchoring) and adjust to 

yield the final answer 

(adjustment) (Tversky & 

Kahneman, 1974). 

A clinician prioritises 

information that 

supports his or her 

initial judgement of the 

estimated time to RTS 

and makes adjustments 

based on the initial 

value. 

- A clinician may stick to the 

initial hypothesis of the days 

required for RTS even if new 

evidence suggests conflicting 

information.  

- Even if the clinician decides 

to adjust the estimation, it 

would be biased toward the 

initial value.   

 

3.5 Part 3: Preferences of the decision makers 

You have consolidated the information and weighed the risk and benefits of the medical clearance.  

Understanding that you are bounded by the information and knowledge available, you have used the 

rule-based theory described in Table 3.1 as the basis for decision making. Based on scenario 1, where 

the player has passed all of the tests, you have decided that the player is clinically fit to return to full 

training. Using the StARRT framework as a reference, you would like to discuss your rationale and 

other contextual factors with the athlete, coach and manager, to reach a shared decision.  

The StARRT framework helps clinicians make RTS decisions based on whether the risk 

assessment outcome exceeds the decision maker’s risk tolerance (Shrier, 2015). That is, if the risk 

assessment is lower than the risk tolerance after all factors are considered, the athlete may be cleared 
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to RTS.  However, a low risk decision may not be synonymous with a high-quality decision. 

In general medicine, it is recommended that the decision made by the clinician reflects the 

preferences of a well-informed patient, with consideration of factual and probabilistic health 

information (Hamilton et al., 2017; Marteau et al., 2001; Sepucha et al., 2007). There are multiple 

dimensions to address, including characteristics of the decision, knowledge and expectations of the 

situation and treatment options and outcomes, personal values and preferences, support and resources 

needed, personal characteristics and clinical characteristics (Jaffray & Wakker, 1993; Marteau et al., 

2001; O'Connor et al., 1998; Stacey et al., 2017). 

Practically, no optimal measurement tool can measure the quality of the RTS decision based on 

the performance outcome or the expected utility of the decision makers. However, a clinician can 

improve the decision quality by ensuring the decisions are well-informed and grounded in a shared 

decision-making approach. 

 Improving decision quality by shared decision making 

Shared decision-making has been a best practice for decision making in the field of medicine (Ardern, 

Glasgow, et al., 2016; Barry & Edgman-Levitan, 2012; Elwyn et al., 2012). It respects multiple 

perspectives and also aims to minimise disagreement due to conflicting interests. 

There are two phases in shared decision-making: 1) deliberation (pre-decisional, the process 

leading to a decision) and 2) determination (the act of decision) (Elwyn & Miron-Shatz, 2010) (see 

Figure 3.3).  Deliberation is where knowledge is searched, gained, and appraised. To improve the shared 

decision's quality, deliberation and determination could be evaluated (Elwyn & Miron-Shatz, 2010). An 

accurate judgment requires stakeholders to first collaborate to decide on the definition of success 

(Ardern, Glasgow, et al., 2016; Dijkstra et al., 2017). Then, they can decide on which pieces of 

information to pay attention to, nominate weighting and integrate the information (Montazemi et al., 

1996). This information may include the alternatives available, the advantage and disadvantages of the 
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alternatives, the nature of the decision, the associated outcome and its likelihood (Elwyn et al., 2012; 

Elwyn & Miron-Shatz, 2010). 

The second phase, determination, is to choose one of the options (Elwyn & Miron-Shatz, 2010). 

The actual decision may occur in a  ‘black box’, where one combines the available information in their 

own way without transparency or accountability (2014a). The lens decides how one interprets the “real” 

probabilities, which could be obscured by one’s cognitive and emotional influence. For example, how 

an athlete weighs the importance of his or her sports career may affect how the information is processed. 

Understanding the decision-making theories may allow decision makers to realise the normative 

approach and thus engage in a high-quality and rational discussion during deliberation. 

 

Figure 3.3 Shared decision model in sports. Adapted to RTS context from Elwyn et al. (2012). 
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 The perspectives of decision makers 

The keys to high-quality decision making include accounting for individual preferences, social and 

contextual factors  (e.g., the type of injury or illness, age, types of sports, level of play, the significance 

of upcoming competition and social factors and financial cost) (Ardern, Glasgow, et al., 2016; Bolling 

et al., 2018; Hamilton et al., 2017; McCall et al., 2017). Social and contextual factors also impose 

constraints at multiple levels and influence the RTS decision, including at individual, interpersonal, 

organisational, community and policy levels (Creighton et al., 2010; Gruskin et al., 2013; Shrier et al., 

2015). The factors may shift the athlete’s and decision makers’ priorities and preferences, which make 

decision making more complicated (Creighton et al., 2010; Shrier, 2015).  

Traditionally, clinicians are the gatekeeper of the RTS decision (Clover & Wall, 2010; Ekstrand 

et al., 2019; Gabbett & Whiteley, 2017; Herring et al., 2012; Gordon O Matheson et al., 2011; McCall 

et al., 2016). The clinician has skills in assessing the injury-related criteria in RTS, including assessing 

the state of healing, risk of re-injury and risk of short- or long-term problems (Elwyn & Miron-Shatz, 

2010; Herring et al., 2012; Shrier et al., 2014; Shultz et al., 2013). Clinicians also have an overriding 

duty of care to patients and a legal and ethical obligation to act in a manner that is necessary and 

appropriate to protect the health of an athlete.  

However, with the addition of trainers, rehabilitation coaches, and performance coaches, 

clinicians are no longer the only staff contributing to rehabilitation and RTS decisions. It is questionable 

whether clinicians should still be the main advisor for RTS decisions, given the numerous non-medical 

factors to consider (Ardern, Bizzini, et al., 2016; Creighton et al., 2012; Dijkstra et al., 2017; Dunlop et 

al., 2019; Gordon O Matheson et al., 2011; Gordon O. Matheson et al., 2011; McCall et al., 2017; Shrier 

et al., 2014). In a sports setting, a clinician may even have dual allegiances, as the clinician does not 

work exclusively for the injured athlete, but also on behalf of the club or organisation. They may 

experience pressure from their employer (i.e., the sports organisation) to minimise lay-off time and to 
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clear an athlete as soon as possible. As such, an inherent conflict of interest may present in a professional 

sports team setting (Stovitz & Satin, 2006; Testoni et al., 2013). 

The following section discusses the general concerns and considerations of the athlete and 

coaches to improve communication transparency and minimise conflicts. 

3.5.2.1 Athlete  

Internal and external factors influence how an athlete may view the quality of the decision, and 

listening to their opinions may be beneficial to inform the final decision (Bolling et al., 2018). Internal 

factors include perception of the body, self-resentment (Podlog & Eklund, 2006; Young et al., 1994) 

and their emotional tie to their sport (Podlog & Eklund, 2006). External factors include sociocultural 

influences, such as financial concerns, expectations from family and friends and their given sport’s 

culture of risk (Mayer et al., 2018; Mayer & Thiel, 2018). Some athletes may face social pressure to 

perform (Mayer & Thiel, 2018). Social pressure could be the pressure to meet the expectations of peers, 

fans and coaches (Podlog & Eklund, 2006; Podlog & Eklund, 2007; Leslie Podlog et al., 2015; Wiese-

bjornstal et al., 1998; Young et al., 1994). Shame and alienation from the team due to injury may lead 

to low self-esteem and depression (Nixon, 1993; Podlog & Eklund, 2007; Wiese-bjornstal et al., 1998).  

There is limited evidence on how athletes approach decisions about RTS, especially in a 

complex and risky scenario. ‘Playing hurt’ is a common phenomenon across different sports, age groups 

and performance levels (Mayer et al., 2018; Mayer & Thiel, 2018; Podlog & Eklund, 2006; Roderick 

et al., 2000; Schubring & Thiel, 2014). In a recent study that investigated how athletes decide on RTS 

(Mayer et al., 2020), athletes would consider the relevance of the competition (e.g., the importance of 

the competition), potential sporting consequences (e.g., loss of the starting position) and whether the 

risk of playing hurt could be offset by some means (e.g., availability of protective gears or possibility 

to be removed from play if pain increases). If the medically safe alternative (e.g., withdrawal from 

competition) does not have severe sporting consequences (e.g., loss of starting position), the athlete 

may opt for it. In contrast, if playing hurt may produce a sporting consequence that the athlete cannot 
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afford, but the risk of playing could be subjectively reduced, they may choose to play hurt. Clinicians 

and coaches can influence the athlete’s decision making as clinicians and coaches are likely to know 

about the sporting consequences and the possibility of risk reduction. 

As opposed to the risk analysis suggested in the normative StARRT framework (Shrier, 2015), 

not all athletes attempt to obtain information actively and comprehensively (Mayer et al., 2020). 

Therefore, it may be helpful for clinicians and coaches to guide athletes through the information-seeking 

process and provide a full picture of the situation and the sporting consequence. 

3.5.2.2 Performance coach and manager  

In some settings, coaches and managers could be the decision makers for RTS and thus it is 

important to have their perspective as well. Coaches and managers are competent in assessing the non-

injury related RTS criteria, such as athlete’s desire to compete, psychological impact, financial 

consideration and loss of competitive standing (Shrier et al., 2014).  

Based on existing literature, some coaches believe they are responsible for pushing the athlete 

to their limits, mentally and physically, to achieve excellence in performance (Nixon, 1994). While 

some coaches act according to the training restriction implemented to reduce injury risk (Podlog & 

Eklund, 2007), some perceive prolonged or delayed RTS as harmful to the athlete's overall and long-

term performance (Podlog & Eklund, 2007). Some coaches also believe clinicians are overly cautious 

and delay RTS of athletes unnecessarily (Podlog & Eklund, 2007). However, research is scarce and 

based on a small sample size, thus limiting generalisability. 

To facilitate rehabilitation, coaches and managers may help to remove the barriers arising from 

the social and environmental context (Walker et al., 2020). For example, ensuring athletes have 

sufficient resources to access adequate supervised rehabilitation. Coaches and managers can also ensure 

all relevant personnel are provided with information regarding the injury and the rehabilitation 

progression. These may increase transparency in communication and facilitate the decision to include 
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or exclude from the main training group (Walker et al., 2020). There are times when clinicians might 

miss something important without realising it. Shared decision-making may help to minimise the blind 

spots by filling the missing gaps and broadening the perspectives. 

3.6 Practical implication 

Based on a decision analysis model, we have outlined a framework to help clinicians make systematic 

and objective RTS decisions. The first step is to choose appropriate RTS tests and to synthesise the 

information in a meaningful way. The second step is to understand the decision-making theories and 

identify possible deviations from normative models. The third step is using shared decision-making to 

improve decision quality by eliminating the contextual ‘blind spots’, such as individual’s expectations, 

preferences and values. We propose a framework that clinicians could refer to when they decide on 

RTS in a sports organisation (Figure 3.4). 
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Figure 3.4 Three steps to making a high-quality RTS decision 

 Future research 

Currently, there is limited evidence or expert knowledge on how clinical decisions in sports are 

made, especially for upper limb injuries. While in principle, the decision-making process of other sports 

injuries would be similar, future research could also investigate upper limb injuries, for example, a 

shoulder dislocation injury. Similarly, there is little attention paid to how heuristics may be present in 

sports medicine practice. Research is needed to identify the heuristics used in clinical practice, as limited 

work has been done in the field. Strategies for better judgment and decisions, such as reducing bias are 

also required.  

Another concern is the increasing number of data types with the growth of sports technology. 

At a certain point, additional information no longer improves a human’s ability to make better decisions 

(Glöckner et al., 2012). The human mind has an upper limit for information processing capacity and is 
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sufficiently sensitive to large inconsistencies, but not small ones (Saaty & Ozdemir, 2003; Simon, 

1957). Providing more information than the upper limit would only exhaust one’s cognitive information 

capacity in decision-making, potentially leading to overload, poor decision-making, and dysfunctional 

performance (Cowan, 2001). Consequently, there is an urge to identify tools that aid human brains in 

making decisions. 

These decision-making tools include statistics, mathematical modelling and artificial 

intelligence (AI) algorithms. In particular, machine learning techniques, a subfield of AI, attracted 

attention for their strength in transforming a large amount of data into useful knowledge and identifying 

nonlinear patterns (Bittencourt et al., 2016; Edouard et al., 2020; Witten et al., 2011). In many cases, 

these external aids may complement or be superior to human performance (Bate et al., 2012; Grove et 

al., 2000; Maymin, 2017). Currently, applying the above tools mostly remains on the theoretical level. 

Future research may explore how these tools may be applied on a practical level.  

3.7 Conclusion 

The purpose of this review was to provide an overview of RTS decision frameworks and what 

constitutes high-quality decision making. There is a lack of empirical knowledge in RTS decision 

making and the potential adaptations within its process; most research focuses on biological and medical 

factors. One of the strengths of the review is to lay out the decision basis and hence the transparency of 

a decision. Understanding decision-making theories in the context of RTS and potential deviations from 

normative decisions may improve the work process and quality of decision making. More research is 

required to understand how decisions are made and how to use computation tools to support and 

improve decision quality.  
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4 Chapter Four: Study II 

Chapter overview 

Chapter Four is the second of the four studies contained in this thesis. This study is a narrative review 

that provides an overview of the hallmark features of complex systems and their relevance to RTS 

research and daily practice. 

 The content of this chapter is an accepted manuscript of an article published by Springer Open 

in Sports Medicine – Open on 22nd February, 2022, available at: https://sportsmedicine-

open.springeropen.com/articles/10.1186/s40798-021-00405-8. 

 

Clinical relevance 

There is a growing recognition that most sporting environments are complex adaptive systems and this 

acknowledgement extends to sports injury, rehabilitation and RTS decisions. Through the complex 

systems lens, clinicians may have a broader perspective of the overall picture and acknowledge the 

potential linear and nonlinear interaction between the variables. The increased awareness of complex 

systems and its relevance to RTS may help clinicians improve decision quality 

 

 

  

https://sportsmedicine-open.springeropen.com/articles/10.1186/s40798-021-00405-8
https://sportsmedicine-open.springeropen.com/articles/10.1186/s40798-021-00405-8
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4.1 Characteristics of complex systems in sports injury 

rehabilitation: examples and implications for practice. 

 Key Points 

 Complex systems have distinct properties, such as nonlinearity, emergence and adaptation. 16 

features of complex systems have been identified in sports injury rehabilitation. 

 Rehabilitation practitioners may connect the complex systems theory with their operations in 

the sports setting. 
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 Abstract 

Complex systems are open systems consisting of many components that can interact among 

themselves and the environment. As a result, new forms of behaviours and patterns often emerge. There 

is a growing recognition that most sporting environments are complex adaptive systems and this 

acknowledgement extends to sports injury. Consequently, practitioners involved in return-to-sport 

decision making are encouraged to view the decisions through the complex systems lens to improve 

decision quality in rehabilitation. This review builds on previous literature by providing an overview of 

the hallmark features of complex systems and their relevance to RTS research and daily practice. An 

example of how characteristics of complex systems are exhibited is provided through a case of anterior 

cruciate ligament (ACL) injury rehabilitation. Alternative forms of scientific inquiry, such as the use of 

computational and simulation-based techniques, are also discussed—to move the complex systems 

approach from the theoretical to the practical level. 
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4.2 Challenges in return to sport decision making 

Return-to-sport (RTS) decisions can be challenging for health professionals, coaches (i.e., practitioners) 

and athletes. In competitive sports, where marginal gains in performance are sought, athletes and 

practitioners often weigh risks and benefits when making the RTS decisions. In a team sports setting, 

full availability of players allows greater flexibility in tactical planning, such as deciding the best team 

formation based on the opponent’s playing style. Player availability is linked to performance (Drew et 

al., 2017; Hägglund et al., 2013; Williams et al., 2016)  and could reduce the financial burden on the 

team (Hickey et al., 2014; Mather et al., 2013).  

Research on RTS decision making largely focuses on identifying a criteria list based on 

biological factors and on whether the athlete has returned to baseline performance level (e.g., Grindem 

et al. (Grindem et al., 2016), Stares et al. (Stares et al., 2018), and Kyritsis et al. (Kyritsis et al., 2016)). 

This approach has assisted practitioners in being transparent in the decision process, for instance, 

granting a medical clearance to RTS. However, underlying complexity and the high degree of interlinks, 

independencies, and temporal components also need consideration. For example, the same criteria may 

not apply to athletes of a different mental state, age group or playing level.  Furthermore, non-linearity 

is commonly seen in the context of sports. For example, most football fans would know that a team 

composed of the best-skilled players does not necessarily produce the best performance. Instead, the 

outcome depends on the interplay of tactical, physiological, social and even emotional factors. 

Similarly, viewing RTS more than simply addressing a set of predefined RTS criteria or achieving an 

arbitrary numerical change in a performance test may be beneficial.  

We propose an approach using the complex systems theory to address these limitations and 

objectives. Recent work from Bittencourt et al. (Bittencourt et al., 2016) has raised awareness of the 

theory. More could be done to clarify the characteristics of complex systems and increase the practical 

utility of the complex systems approach. Consequently, this paper builds on the work of Bittencourt et 

al. (Bittencourt et al., 2016) and aims to 1) clarify the terminologies in the complex systems approach 
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and adapt them for sports, 2) provide examples relevant to rehabilitation and 3) introduce tools that can 

model the complexity and increase practical utility in applied settings.     

4.3 What is a complex systems approach? 

 A Complex systems approach to decision making in sports medicine 

The complex systems theory, with more than 50 years of history (Bertalanffy, 1969), 

acknowledges the multifaceted nature of sports and seeks to understand the interactions among 

different factors and the outcomes of the systems (Bittencourt et al., 2016; Philippe & Mansi, 1998). 

Complex systems are dynamic, open systems (Von Bertalanffy, 1950). They are characterised by non-

linearity due to feedback loops and interaction among the factors. This means that outputs are not always 

proportional to the inputs, and a small adjustment may lead to a large change in the systems and vice 

versa (Philippe et al., 2004).  

In complex systems, factors that interact with each other to form the systems are known as units 

(Von Bertalanffy, 1950). In the context of RTS, these units could include age, wellness, biological 

healing of injured tissue, stress, external pressure and injury history. The units interact and define the 

space and dimension of the systems (Rickles et al., 2007). Consequently, different systems within 

systems emerge. These systems may be categorised based on their nature, for example, biomechanical, 

physiological and psychological. They may also be hierarchical and of multiple levels, namely 

individual, organisational and environmental (see Figure 1). The individual level represents factors 

related to the individual athlete, from tissue healing to personal traits. The organisational level 

represents external factors related to the sporting club, organisation and support team, e.g., the coaching 

and medical team. The environmental level covers factors beyond the organisational level, such as the 

weather, playing schedule and competition level.  



110 

 

 

Figure 4.1 A multilevel system map with factors related to return to sport decision in anterior 

cruciate ligament injury. 

In recent years, the complex systems approach has gained momentum and has been used to 

understand sports injury occurrence (Bittencourt et al., 2016; Hulme et al., 2017) and behaviour in 

sports performance (Dalton-Barron et al., 2020; Duarte et al., 2013; Mclean et al., 2019; Salmon & 

McLean, 2019). However, the terminologies used in complex systems are often less familiar to 

practitioners and could be easily confused with merely complicated or multifactorial. Most studies 

recognise the importance of considering multiple factors in determining readiness for RTS or in the 

context of injury recognition (Barber-Westin & Noyes, 2011; Bittencourt et al., 2016; Creighton et al., 

2010; Grindem et al., 2016; Hartigan et al., 2010; Kyritsis et al., 2016; Logerstedt et al., 2014; Lynch 

et al., 2015; Gordon O Matheson et al., 2011; Shrier, 2015), but more work is required to raise awareness 

and explain why practitioners should adopt the lens of complex systems approach in rehabilitation.  

 Applying a complex systems model for ACL  

This paper provides examples based on the 16 common features of complex systems recently illustrated 

by Boehnert et al. (Joanna et al., 2018). They are adapted for the context of sports in Table 4.1, with 

examples illustrated mainly from an anterior cruciate ligament (ACL) injury. 



111 

 

An ACL injury is used here as the case illustration as it is a serious injury that may threaten an 

athlete's career (Ekstrand, 2019; Walden et al., 2016). The estimated annual medical cost associated 

with ACL reconstruction surgery in Australia was over AUD$75 million per year (Janssen et al., 2012). 

Currently, there is no consensus regarding the optimal functional rehabilitation criteria (Lynch et al., 

2015) and objective physiological RTS criteria (van Melick et al., 2016). Despite ACL injuries being 

one of the most researched topics in the sports medicine literature (Anderson et al., 2016), the re-injury 

risk of ACL remains high (Della Villa et al., 2021; Paterno et al., 2014). The complexity within ACL 

RTS may be explained at the individual, organisational and environmental levels.
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 Table 4.1 The 16 common features of complex systems adapted for return-to-sport 

Characteristics  Definition   Example 

1. Feedback 

 

Units in a complex system are mutually interacting 

and output is fed back and becomes a new input 

(Davids et al., 2014). The feedback could be 

positive or negative. For example, positive 

feedback increases the rate of change while 

negative feedback works by reversing the direction 

of change.  

 

 

Rehabilitation training leads to tissue adaptations, which improves physical 

fitness and performance (positive feedback). However, maladaptation can 

occur (e.g., alteration in neuromuscular control and muscle damage), 

leading to suboptimal response, which may delay progress (e.g., delayed 

onset of muscle soreness). This acts as negative feedback for the systems, 

signalling the training intensity was too high. 

2. Emergence 

 

 

Emergent properties arise from the interactions of 

its units. The units serve as the building blocks for 

patterns to arise at higher levels (Holland, 2014). 

 

 

 

After an ACL injury, injured athletes often train separately from the squad 

and have a different training regime. During this time of relative isolation 

and hardship, the athletes may build up a high level of resilience. 

 

3. Self-

organisation 

Systems may order themselves spontaneously to 

form patterns and achieve an optimal or stable state 

(Rickles et al., 2007). 

 

ACL is a key sensorimotor system for postural control, which helps to 

maintain and control upright posture (Grooms et al., 2016).  Following an 

ACL injury, the brain activation profile will be affected and shift toward a 

visual-motor strategy, as opposed to a sensory-motor strategy. Instead of 
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relying on movement and spatial awareness, people with ACL deficiency 

may rely more on the visual system, especially under challenging dynamic 

task constraints (Davids et al., 1999). This is an example of how the 

sensorimotor system self-organises to compensate for the loss of ACL. 

4. Levers and 

hubs 

 

Lever and hubs are key structures in the systems 

that play a crucial role in how the systems will 

behave. Identifying them could intervene in the 

systems effectively (Joanna et al., 2018). 

 

There are exceptional factors that are influential in the RTS process and 

altering them may lead to rapid gain. In ACL rehabilitation, intense 

rehabilitation and patient motivation are established lever and hubs that may 

underpin a positive outcome following ACL rehabilitation (Grindem et al., 

2015). 

5. Non-linearity 

 

Outputs are not always proportional to the inputs. 

Small changes may lead to a large change in the 

systems and vice versa (Rickles et al., 2007). 

 

 

The same training stimulus can create a large recovery response (e.g., 

delayed onset of muscle soreness) on the first training session, but not 

subsequent training. This is because the body can non-linearly adjust to the 

training stimulus after the first session. The response exhibits a non-linear 

behaviour where the outcome (i.e., training response) is not proportional to 

the input (i.e., training stimulus).  

6. Domains of 

stability 

 

Many systems are dynamic however may 

eventually converge to a stable state. This stability 

will be maintained unless there is a significant 

perturbation (Davids et al., 2014). 

 

 

Balance and proprioceptive training are often included in the ACL 

rehabilitation protocol. However, balance and technique training may not 

be effective in changing an athlete’s knee joint kinematics or decreasing 

external knee moments during pre-planned and unplanned side-stepping 

(Donnelly et al., 2012).  Similarly, gait mechanics are difficult to modify 

even after rehabilitation training and restoring muscle strength (Arhos et al., 

2021). This may be because the systems have achieved a domain of stability 

and the parts of the systems are well-entrenched, making it very difficult or 
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near impossible to change. Once the systems have achieved a state of 

stability, they can only be altered when the stimulus is strong enough to 

push them through the tipping point (Davids et al., 2014). 

7. Adaptation 

 

Components or actors within the systems can learn 

and evolve in response to the changes in the 

environment (Davids et al., 2014). 

 

 

Some people with ACL deficiency may exhibit increased knee flexion at 

early stance and reduced extension in the mid to late stance (Roberts et al., 

1999). This is an adaptation that allows hamstrings to be efficient synergists 

to ACL in walking (Li et al., 1999; Pandy & Shelburne, 1997) and to reduce 

the anterior translation force of the tibia (Roberts et al., 1999). This 

represents how the body adapts to ACL deficiency by bringing changes 

within the systems. The adaptation appears to happen autonomously, 

unconsciously, and without explicit programming.  

 

8. Path 

dependency 

 

Events and actions that occurred previously 

influence future states and decisions (Joanna et al., 

2018).  

 

ACL rehabilitation usually follows a path and one can only progress to the 

next stage by meeting a set of criteria. For example, in the early 

rehabilitation phase, progressive weight-bearing allows the knee joints to 

acclimate to increased load and assist in developing a normal gait pattern 

(Bousquet et al., 2018; Cavanaugh & Powers, 2017).  Plyometric training is 

only incorporated if a full range of motion (ROM), sufficient strength base, 

and flexibility are demonstrated. For on-pitch rehabilitation, activities 

should begin with simple drills and advance to more complex exercises 

(Cavanaugh & Powers, 2017). A control-chaos continuum could be 

followed on-field, where rehabilitation training constraints progress from 

high control to high chaos (Taberner et al., 2020). 



115 

 

9. Tipping point 

 

If the perturbation of a system goes beyond a 

certain threshold, there will be a phase transition in 

the system's behaviour which may not be reversible 

(Davids et al., 2014). 

 

 

In ACL rehabilitation, one of the early goals is to strengthen lower limb 

muscles to minimise muscle atrophy (Gokeler et al., 2014). Squat exercise 

may be used as a training stimulus (perturbation) and may cause micro-tears 

and inflammation of the muscle fibres (the system deviates from the stable 

state). The neuromuscular system will repair and adapt (the system returns 

to a stable state), leading to muscle hypertrophy (Kraemer & Ratamess, 

2005). However, if the intensity and volume exceed the capacity of the soft 

tissue, there will be a loss in stability (e.g., quadriceps muscle strain) and it 

could not relax back to the previous stable state automatically. There will 

be a change in system behaviour (i.e., re-injury (Kibler et al., 1992)). 

10. Change over 

time 

 

Systems are dynamic and can evolve over time. 

This is because they constantly interact and 

negotiate with the environment, leading to 

continuous change (Davids et al., 2014).  

 

The psychological characteristics of athletes can change during the ACL 

rehabilitation process and affect how they cope with RTS and future injury 

(Langford et al., 2009). 

In the physical performance aspect, training capacity evolves and generally 

declines with age (Faulkner et al., 2008). For example, the heart rate 

maximum during exercise declines with age (Gellish et al., 2007); maximal 

oxygen consumption is inversely and strongly related to age for active and 

endurance-trained populations (Wilson & Tanaka, 2000).  

11. Open system 

 

Complex systems are considered open, as it is 

difficult to define their boundary. The systems 

interact with the environment and are continuously 

influenced by the environment. In contrast, closed 

systems are systems where the influence of the 

The size of the systems could hardly be defined, as things in the 

environment that are seemingly small may also influence them. For 

example, wet training ground affects athletes' ground reaction force and 

movement strategy during running (Dowling et al., 2010). Shoe designs and 

types of playing surfaces are related to ACL injury risk due to shoe-surface 
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environment on it is negligible (Rickles et al., 

2007). 

 

 

friction (Thomson et al., 2015). Playing music during rehabilitation training 

may reduce the perception of physical effort during training and improve 

physical performance by delaying fatigue or increasing work capacity 

(Gabana et al., 2015; Karageorghis et al., 2013).  

 

12. Unpredict-

ability 

 

Due to non-linearity and emergence properties, it is 

difficult to predict how the systems will evolve 

(Bittencourt et al., 2016). 

 

Precise forecasting when an athlete can RTS is challenging. It is difficult to 

predict the estimated time for recovery as there is unpredictability in how 

the systems evolve. For example, how will the motivation of an athlete 

change throughout rehabilitation? How will the change in a personal 

relationship affect the athlete's performance? In some cases, gathering, 

storing, and using all of the information about the state of complex systems 

at one point to predict the outcome is impossible. 

 

13. Unknowns 

 

There are always units that influence the systems 

which are either unknown or could not be observed 

or measured. Therefore, it may seem that the 

systems evolved unpredictably (Bittencourt et al., 

2016). 

 

 

  

There are factors that decisions makers may not be aware of during the ACL 

rehabilitation due to different reasons, for example, limited knowledge (e.g., 

how genetic variant is associated with ACL rehabilitation and injury risk?), 

technology constraints (e.g., how reliable are the measurement tools?), 

insufficient resources (e.g., is it possible to measure everything?), bias and 

issues that stakeholders have been unaware of.   
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14. Distributed 

control 

 

Control of a system is distributed across different 

parties and no one has complete control over the 

systems (Bittencourt et al., 2016).  There is no top-

down control approach as a single factor does not 

control the process at a superior level. 

 

The success of  ACL rehabilitation is determined by all interacting units, 

from biological graft healing at the microscopic level to intra-personal 

factors (clinical assessment, functional test, and biopsychosocial factor) and 

inter-personal factors at the macroscopic level. No single factor in isolation 

could determine the success of the outcome. 

15. Nested system 

 

There are nested hierarchies within the complex 

systems, forming systems within systems (Joanna 

et al., 2018). 

 

  

ACL rehabilitation itself exhibits nest hierarchies in the following order: 

Cell> muscle> brain> inter-personal> family and friends> organization> 

environment 

At the cell level, shortly after graft implantation, fibrous scar tissue will be 

formed between the graft and host bone (Kawamura et al., 2005), followed 

by ligamentisation (Arnoczky et al., 1982). At the muscular system level, 

quadriceps muscle atrophy and dysfunction are commonly observed after 

ACL reconstruction and is often associated with altered movement pattern 

(Ithurburn et al., 2015; Lewek et al., 2002), possibly due to alterations in 

the brain (motor cortex) level and neurophysiological changes in muscles 

(Kuenze et al., 2015; Lepley et al., 2015; Luc-Harkey et al., 2017; Zarzycki 

et al., 2018). At the intrapersonal level, physiological cardiac adaptation 

(Steding-Ehrenborg et al., 2013), and aerobic fitness (Almeida et al., 2018) 

are all substantially reduced after an ACL injury. At the interpersonal level, 

social support plays a key role in regaining confidence and eradicating the 

fear of re-injury throughout rehabilitation (Carson & Polman, 2008; Magyar 

& Duda, 2000; Podlog & Eklund, 2006).   
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16. Multiple 

scales and 

levels 

 

Multiple perspectives are required when viewing 

complex systems. The systems are three-

dimensional and interactions within the systems 

often occur at different scales and levels (Joanna et 

al., 2018). 

Rehabilitation can be considered on biological, psychosocial, or 

performance levels. There is more than one domain involved, and the 

systems must be understood from multiple perspectives. 
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4.4 Implications for practice and future research 

By illustrating the features of complex systems with a common sports injury, we highlight its practical 

utility in RTS. The complex systems approach provides a theoretical framework for interpreting the 

patterns that emerged from biopsychosocial and other external factors. In ACL rehabilitation, 

conducting independent clinical tests and functional assessments may provide useful information 

regarding the athletes’ physical and mental status. However, a complex systems approach facilitates a 

more complete picture of the problem and an increased awareness of how different factors may interact.  

 There are two challenges to using the complex systems approach: 1) The high degree of 

complexity may deter practitioners who do not have formal training in handling large and complex 

datasets from using this approach, 2) Unlike studying in a controlled laboratory environment, it is near 

impossible to isolate a portion of the larger systems (i.e., isolation of the biological healing process 

from broader biopsychosocial factors).  Fortunately, many computer-based decision support systems 

can now incorporate features of complex systems in their design and utility. For example, to 

operationalise one of the above features, “change over time”, the working model can allow flexibility 

in updating the baseline and encourage repeated testing at multiple time points during the rehabilitation. 

We believe practitioners who understand complex systems will be well-positioned to efficiently 

articulate their needs with analysts and ultimately develop decision support systems that inform best 

practices (e.g., RTS decision making).  

Computer simulation (e.g., agent-based modelling), machine learning and Bayesian network 

(BN) analyses are all potential tools for analysing both non-complex or complex systems (Peterson & 

Evans, 2019). These methods can consider the dynamic interaction at multiple levels simultaneously, 

consequently viewing RTS more completely and supporting decision making. These analytical tools 

may help to achieve the following: 1) Allow practitioners to study and compare the potential outcome 

(e.g., the likelihood of reinjury) of different decisions that are otherwise almost impossible to test safely 

in real life, 2) Increase the decision efficiency by learning from previous experience and streamlining 

data from multiple sources and formats, 3) Identify patterns in data that may cause a certain outcome.  
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These techniques can be used to construct clinical decision support systems, which may 

complement or be superior to human decisions. In a review of seventy studies, a decision support 

system improved clinical practice in 68% of trials (Kawamoto et al., 2005). These decision support 

systems have also provided more accurate diagnoses than human experts in some medical fields 

(Kunhimangalam et al., 2014; Martinez-Franco et al., 2018). Yet, applying these approaches in RTS 

is still scarce in the literature. As such, we have provided a vignette here to outline how machine 

learning and Bayesian network could be applied to support RTS decision making:  

A 30-year-old professional female football player tore her hamstring ten days ago during the 

season and a grade II hamstring strain was diagnosed. There is an important match in two weeks’ time. 

The practitioners and the coach would like to ask six relevant questions, as covered in the below 

sections. Ultimately, the coach would like to know as early as possible about the availability of the 

player such that they could plan for the player’s list and hence the game strategy. 

 Machine learning techniques 

As a subfield of artificial intelligence (AI), machine learning focuses on the use of data to train 

algorithms that can make classifications or predictions (Mohammed, 2017; Tibshirani, 2013). That is, 

it could recognise new meaningful correlations, patterns and trends in a large amount of data 

(SoleimanianGharehchopogh et al., 2012). Machine learning techniques are suitable for non-complex 

analysis and can also accommodate multi-dimensional analysis in sport (Edouard et al., 2020; Witten 

et al., 2011). New data could also be input into the model for it to learn and improve the task, leading 

to the refinement of skills (Mohammed, 2017).  

The goals of machine learning techniques in sports medicine settings can be divided into 

predictive and descriptive modelling (Han, 2012). Specifically, predictive modelling can be used for 

injury prognosis, diagnosis, and rehabilitation planning. Descriptive modelling can be used to 

characterise the general property of an injury, such as its severity, as well as include hypotheses of 

causality. However, as with traditional statistical approaches, machine learning techniques are simply 

a data analysis method, providing a prescriptive or descriptive output. Appropriate study designs are 
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required to understand and estimate causal relationships, such as randomised controlled trials. Machine 

learning is often characterised by five major approaches (i.e., association, classification, clustering, 

relationship modelling and reinforcement learning), each having already been applied for injury risk 

assessment and/or performance prediction in sports (Claudino et al., 2019; Cust et al., 2019; Fältström, 

Kvist, et al., 2021; Rossi et al., 2019; J. Ruddy et al., 2018).  Each of these approaches could serve as a 

method to answer questions relevant to RTS. 

Question 1: Should the athlete progress to full training? 

Scenario: The athlete has completed ten days of rehabilitation training. The practitioners 

would like to assess whether the athlete is ready to progress to full training. An association approach 

could be used here, using the rule-based system. 

Table 4.2 The association rule approach to determine should the athlete progress to full 

training. 

Approach Association rule 

Task Supervised or Unsupervised 

Technique Association rule (arules) 

Output type Categorical 

Examples: Ready for full training, not ready for full training, continue 

rehabilitation. 

Application 

example 

Rule 1 

Range of 

motion full 

Rule 2 

Limb 

asymmetry 

index 100%  

Rule 3 

Training load 

>100% match 

requirement  

Rule …. Decision 

 

    Ready for full 

training. 

 progress 
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     Not Ready for 

full training 

    - Continue 

current 

rehabilitation 

 

Association rules are used to uncover hidden patterns or relationships (Agrawal & Srikant, 1994). Often 

less identifiable by the clinicians, the rules identified may help them formulate optimal rehabilitation 

program. This is typically done using data mining techniques, where large amounts of data are analysed 

to identify interesting patterns and relationships. One popular algorithm for generating association rules 

is the Apriori algorithm. This algorithm works by first identifying frequent itemsets (i.e., sets of items 

that occur together frequently), and then generating association rules based on these itemsets. Agrawal 

et al. (1993) provides additional information on the underlying methodology. 

In the above hypothetical example, a multivariate analysis of rules associated with a 

rehabilitation outcome is conducted. The model was set to only produce three categories of rules that 

contained the rehabilitation outcome as a result (i.e., ready for full training, not yet ready and 

unchanged). These could be the three rules most strongly associated with the rehabilitation outcome. A 

tick represents the presence of the context within the rule. The system could identify the number of 

rules required based on previous rehabilitation experience and implement the rules when the complexity 

of the content are beyond human brain capacity. An increased number of rules may better represent 

complexity, however, it may potentially make the solution more difficult to operationalise practically.  

Question 2: What is the likelihood that the athlete could return to the pre-injury level, given the 

current level of training?  

Scenario: There are only two weeks until an important match. The coach would like to know 

the likelihood that the athlete could return to pre-injury level by then. Given the volume of high-speed 
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running training that the athlete has completed, a classification method could be used to identify the 

likelihood. 

 

Table 4.3 The classification approach to identify the likelihood for an athlete to RTS. 

Approach Classification 

Task Supervised 

Technique Decision tree and Random forest 

Output type Categorical or Continuous 

Examples: Ready to compete, not yet ready to compete. 

Application 

example 

 

 

Classification is a type of supervised learning in machine learning that involves predicting a 

categorical label or class for a given input. In classification, a machine learning algorithm is trained on 
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a labelled dataset, where each data point is associated with a specific class or label. The goal of the 

algorithm is to learn a mapping between the input features and the corresponding output label, so that 

it can accurately classify new, unseen data. Some common classification algorithms include decision 

trees, logistic regression, support vector machines (SVM), k-nearest neighbours (KNN), and naive 

Bayes. These algorithms use different mathematical techniques and assumptions to learn the mapping 

between input features and output labels, and they have different strengths and weaknesses depending 

on the specific task and dataset. Table 4.3 shows a graphical representation of the decision tree that used 

a classification algorithm to identify the probability of RTS from a hamstring injury. A decision tree 

uses dichotomous divisions to create the classification algorithm and can be used to develop a clinical 

decision algorithm for RTS (Albano et al., 2020; Fältström, Kvist, et al., 2021). Each node denotes a 

test on an attribute value and each branch represents an outcome of the test, with the leaves representing 

the class. In Table 4.3, each node is associated with a rule condition, which branches off to the child 

node. In this example, the outcome of RTS is likely a nonlinear relationship with the training volume 

and mental readiness, which is a characteristic of the complex systems approach (see Table 4.1, example 

5). Using the classification approach may help to include non-linearity in analyses and readers who are 

unfamiliar with the methodology can refer to a comprehensive review chapter (Kotsiantis et al., 2007). 

Question 3: When is the athlete expected to return to sport?  

Scenario: The coach would like to know when the athlete is expected to RTS based on the 

experience of the clinician and also accounting for the athlete’s age. A clustering technique could be 

used to analyse the past data. 

Table 4.4 The clustering approach to identify when the athlete may return to sport. 

Approach Clustering 

Task Unsupervised 

Technique K-nearest neighbours 

Output type Categorical 
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Examples: RTS Grade, days to RTS. 

Application 

example 

 

Clustering is a machine learning technique that involves grouping similar data points into 

groups based on their features (Jain & Dubes, 1988). The goal of clustering is to partition a dataset into 

subsets, or clusters, in such a way that data points within the same cluster are more similar to each other 

than to those in other clusters. Clustering is an unsupervised learning method, meaning it does not 

require labelled data or predefined categories. The main objectives include data exploration, data 

segmentation, anomaly detection, customer segmentation, image and object recognition and document 

classification. In sports, this may be useful in allocating multiple athletes to training groups. This could 

be done for clinical presentation, playing position, demographics, or inter-and intra-personal factors. 

Jain et al. (1999) provide more in-depth knowledge of clustering methodology. 

Table 4.4 visualises one of the multiple approaches to which injured athletes could be clustered. 

Each dot represents an injured athlete and is coloured based on their severity. Size represents a measure 

of each athlete’s age, with a larger size representing older age.  They are further grouped into three 

different clusters, representing the severity and time to RTS. In this hypothetical example, the model 

output is the predicted days to RTS. However, it could also be designed to produce categorical outputs 

such as being ready to train or not yet ready to train.   
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Question 4: The athlete has a high level of mental readiness. Would that change the confidence 

level of the athlete’s readiness to play an important game? 

Scenario: From the clustering approach, the coach has considered that the athlete may require 

at least two weeks to return to competition at pre-injury level. However, the coach noticed that the 

athlete had a high level of mental readiness, as reflected by relevant measures (e.g., the Injury-

Psychological Readiness to Return to Sport scale (Glazer, 2009)). The coach would like to know how 

this new information, combined with the previous knowledge, may change the practitioner’s judgement. 

A relationship modelling approach described below is used. 

Table 4.5 The relationship modelling approach to identify the effect of mental readiness. 

Approach Relationship modelling 

Task Supervised 

Technique Regression 

Output type Continuous 

Application 

example 

 

Relationship modelling is a statistical technique that relates a dependent variable to one or more 

independent (explanatory) variables. They can show whether changes observed in the dependent 
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variable are associated with changes in one or more of the explanatory variables. Relationship modelling 

involves estimating relationships between a dependent variable and one or more independent variables. 

Regression analysis, commonly used in the analysis, is also a type of relationship modelling technique 

and could be used with the complex systems approach. For example, it could be used for modelling the 

relationship between outcomes, such as match results (Robertson et al., 2016) and injury incidence 

(Ruddy et al., 2018). There are various types of regression models, depending on the nature of the data 

and the relationship between the variable, such as multiple linear regression, logistic regression and 

Bayesian time series regression model. Readers interested in the details of the methodology refer to 

Vittinghoff et al. (1999). 

Table 4.5 shows a hypothetical example of how the confidence to RTS (y-axis) may be 

associated with the volume of high-speed running done (x-axis) and the mental-readiness score (size of 

the bubble). The size of the bubble denotes the level of mental readiness. A higher level of mental 

readiness is indicated with a larger size bubble and is in green colour. A lower level is indicated with a 

smaller size and is in red. The association could be multi-dimensional and could be constructed based 

on the number of inputs available, e.g., running speed, load accumulation, and psychological readiness. 

Question 5: What is the optimal sequence of rehabilitation in a case of hamstring injury 

rehabilitation? 

Scenario: After reviewing the dataset, the coach and the clinician would like to explore how to 

leverage the available data further and identify adaptive, personalised treatment plans in the future. 

Reinforcement learning may help optimise the decisions that favour a long-term outcome. 

Reinforcement learning is described below. 

Table 4.6 Use of reinforcement learning to optimise the sequence of rehabilitation. 

Approach Reinforcement learning 

Task Not applicable 

Technique Markov decision process                                                                                 
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Output type No output variable 

Application 

example 

 

Reinforcement learning is a type of machine learning where an agent learns to make decisions 

by interacting with an environment to maximise a cumulative reward. Unlike supervised or 

unsupervised learning, reinforcement learning trains itself through trial and error to explore behaviours 

in the system that could maximise the expected cumulative reward over time. (Richard & Andrew, 

1998). The agent uses this learned policy to decide what actions to take in various states of the 

environment. This feature made it suitable for solving sequential decision problems. In this clinical 

vignette (Table 4.6), reinforcement learning could help to identify a personalized rehabilitation pathway 

for maximising the reward (i.e., managing the injury or reaching the rehabilitation goal). A recent 

review is available for readers unfamiliar with the background and use (Gottesman et al., 2019). 

In the context of a hamstring injury (see Table 4.6), a practitioner has to decide when to initiate 

and adjust rehabilitation training, such as jogging, eccentric hamstring exercise, and high-speed 

running. Each decision affects the athlete’s rehabilitation outcome at the end of the program and the 

total days of absence. The rewards require practitioners’ input, such as comparing the intensity and 

volume of high-speed running to the pre-injury. The reliability of the model’s outcome depends heavily 

on the data used to train the algorithm used in the reinforced learning, and the extent to which the 

proposed and observed treatment policies agree.  

 Bayesian network 

Besides the machine learning approach, Bayesian methods are becoming increasingly popular in 

the study of sports (Santos-Fernández et al., 2019) and may contribute to RTS. Various forms of 

Bayesian network (BN) have been applied across different sectors, including medical (Fenton et al., 

2020; McLachlan et al., 2020; Seixas et al., 2014; Yet et al., 2013; Yet et al., 2017), ecology (Johnson 

et al., 2010; Wu et al., 2018; Wu et al., 2017) and transportation (Wu et al., 2014).  
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BN uses Bayesian inference for probability computations and can be visually presented using 

directed acyclic graphs. Arrows on the BN, known as directed arcs, indicate the direction of the 

influence (Constantinou & Fenton, 2018). These show how various discrete or continuous factors in 

RTS influence one another and the outcome through a graphical presentation (Constantinou & Fenton, 

2018). BN calculates the conditional probabilities of the outcome of a decision when the value of some 

of the factors has been observed. As new evidence is revealed, changes are brought to the conditional 

probability of the decision outcome (Eugene, 1991).  

Question 6: How would the sex of the athlete affect the perceived ACL injury risk? 

Scenario: The athlete has now recovered from the hamstring injury but is worried about the 

potential ACL injury risk. The coach wants to know how the sex of the athlete (prior) [as female] would 

affect the ACL injury risk (outcome) [higher risk of ACL injury] (Fig.4.2) (Montalvo et al., 2019), and 

how it may inform the potential consequence of a RTS decision.  
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Figure 4.2  Illustration of a Bayesian network before (top) and after it has been updated with a 

prior (sex or/and nature of sport) (bottom). The outcome of the prediction (ACL injury risk) 

has changed as a result. 

Only one prior is used here to explain the application for easier understanding. However, a BN 

can account for multiple variables to increase the model's accuracy and acknowledge the complex 

systems approach, as seen from a hypothetical example in Figure 4.3. 

 

Figure 4.3 A hypothetical example of a Bayesian network with multiple priors for ACL injury 

risk. 

A BN could be operated in both directions, performing both predictive and diagnostic inference. 

As an example, a BN may provide the following information to support RTS decisions: 1) Given the 

observation of the athlete’s rehabilitation markers, what is the likelihood for the athlete to perform at 

pre-injury level upon RTS? 2) To increase the likelihood of achieving certain outcomes of RTS, what 

is the combination of test results and/or observations required? 

Logically, BN seems to fit into the requirement of RTS decisions, as often multiple unknown 

factors are involved in the process (e.g., how wellness may be associated with the injury risk). Although 
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these unknown parameters are uncertain, they could be described by a probability distribution table, 

with information supplied by a domain expert or relevant literature. 

Establishing a BN requires data and could be complemented by expert knowledge (Constantinou 

& Fenton, 2018). Expert knowledge allows the model to specify the available decision options and the 

utilities the user is after. For example, decision makers may decide if the utility (degree of satisfaction) 

of the RTS outcome is based on either maximising the team performance, minimising the risk of 

subsequent injury, or equilibrium between the two. However, this also implies that the quality of the 

model output would rely on the quality of the existing evidence and expert knowledge, which may be 

flawed or biased.  

4.5 Future research 

A shift towards a complex systems approach may help to view RTS more realistically. Future research 

should be mindful of the following issues:  

1) The complex systems approach and machine learning techniques cannot necessarily 

elucidate the causal mechanism. Based on Table 4.1, the characteristics of the complex systems do not 

permit the ability for cause-and-effect relationships to be determined. However, that does not imply 

they are inappropriate for understanding a problem nor are they of low practical utility. 

2) The computation accuracy relies heavily on the dataset's quality and previous knowledge. 

For example, what is the association between different variables (e.g., age, playing style, previous injury 

history, culture, and lifestyle)? What is the potential effect of external factors (e.g., stress, financial 

pressure, lack of social support) on RTS progress and decision making? Currently, there is insufficient 

evidence on these aspects. High-quality randomised controlled trials and longitudinal research that 

acknowledges the complex systems approach is required to observe regularities that are antecedent to 

the success of a rehabilitation program. 

3) The RTS systems that researchers could construct consist of what is available and known, 

rather than what is important. Some factors may be difficult to measure due to the availability of time, 
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and resources and its non-deterministic or qualitative nature (Bourne et al., 2003). For example, 

motivation for RTS during rehabilitation is important but often not measured due to difficulty in 

obtaining accurate feedback. However, this is inevitable, as unknowns and unpredictability are 

characteristics of complex systems. Nevertheless, real data should be applied if possible to prove the 

concept and provide useful output for practitioners. The ultimate goal of embracing complex systems 

approaches in RTS research is to resemble findings closer to the real world. 

4.6 Conclusion 

The complex systems approach has been applied to understand different aspects of sports science and 

medicine. This review has highlighted the characteristics and terminologies of complex systems, as 

exhibited by a case of ACL rehabilitation. When assessing the test result for clinical and functional 

tests, practitioners should also be aware of the dynamic systems evolving around the injury 

rehabilitation (refer to the examples in Table 4.1) and endeavour to understand the full picture. Future 

research may make use of computational modelling and machine learning techniques to identify the 

regularities of the pattern that emerged as a whole. A paradigm shift that results in applying a complex 

systems approach to understanding the RTS process and decision making should be encouraged.  
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Part 2 Practical applications 

This section includes Chapters Five and Six, which consist of two original studies that adopt two 

different analytical methods. Part 2 builds on Part 1 and adopts techniques that are congruent with a 

complex systems approach. Making decisions with a complex systems approach is challenging because 

it may be nearly impossible for clinicians to integrate multiple data types and consolidate them quickly 

due to their limited short-term memory and cognitive processing power. To complement the 

frameworks in Part 1, Chapters Five and Six adopt two analytical methods that allow clinicians to 1) 

integrate multiple data types, 2) consolidate a high volume of data and 3) accommodate the 

characteristics of the complex systems, such as non-linearity and emergence. 
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5 Chapter Five: Study III 

Chapter overview 

Chapter Five is the third of the four studies contained in this thesis. It consists of an original case study 

that uses a change point approach to identify meaningful changes in the RTS continuum. Clinicians can 

apply the change point analysis to any other injuries to identify meaningful changes in RTS progression 

and make informed decisions. 

The content of this chapter was submitted to the Science and Medicine in Football (Taylor and 

Francis) on 12th September, 2022. It is currently in resubmission stage, and the first revision was 

submitted on 10th January, 2023.  

 

Clinical relevance 

Clinicians often collect multiple rehabilitation data at regular time points during the entire RTS period 

to monitor the RTS process. While these longitudinal datasets may help clinicians evaluate the 

rehabilitation progress, there are challenges for clinicians to 1) integrate the multiple data types, 2) 

analyse the overall change and 3) accommodate the characteristics of complex systems. To support 

clinicians in evaluating their past practice and improving future decision quality, Chapter Five adopts 

an analytical method (change point method) to overcome the above challenges.  
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5.1 A change point method to detect meaningful changes in 

return to sport progression in athletes. 

 Key points 

 Univariate change point analysis can determine the change point of a single measurement and 

provide information specific to each performance metric, which informs the rehabilitation 

progress based on a single metric. 

 Multivariate change point analysis identifies a common change point across multiple sets of 

longitudinal data, giving an overall impression of the progression of the rehabilitation. 

 Clinicians may further explore analytics tools to handle large complex datasets in rehabilitation. 
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 Abstract 

Return-to-sport (RTS) decision making is often challenging, as rehabilitation is complex and non-linear. 

With improvements to sports technology, clinicians are collecting more data and at more regular time 

points during rehabilitation to gauge the progression in their RTS. Analytical methods, such as change 

point detection, may leverage complex longitudinal data to detect when meaningful changes (change 

points) have occurred. To explore how the change point approach may be used in RTS, we present a 

single case study of a professional football player who sustained a lower-limb muscle injury during 

training. Four wellness metrics and five running performance metrics were collected over 124 days. In 

the univariate analysis, the change points for stress, sleep, mood and soreness were located on days 30, 

47, 50 and 50, respectively. The change points for total distance, acceleration, maximum speed, 

deceleration and high-speed running were located on days 32, 34, 37, 41 and 41, respectively. The 

multivariate analysis resulted in a single change point for the wellness metrics and running performance 

metrics, on days 50 and 67, respectively. Clinicians can use similar techniques to integrate data from 

multiple sources, identify meaningful change points and evaluate athletes’ progression along the RTS 

continuum.   
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5.2 Introduction 

In competitive sports, clinicians often track rehabilitation progression to estimate when an 

athlete could return to full training and competitions. RTS decisions can be challenging as they are often 

characterised by uncertainties, such as re-injury risk, time pressure induced by competition schedule 

and social stress from coaches, families and supporters. In addition, the outcome of the RTS decisions 

pertains to the athletes’ well-being (Leslie Podlog et al., 2015) and team performance (Hägglund et al., 

2013). 

In football, on-field rehabilitation typically comprises four stages (Dunlop et al., 2019): 1) 

return-to-running (clearance to train on-field), 2) return-to-modified training (clearance to train with 

the team in a modified capacity), 3) return-to-play (clearance to be selected for competition) and 4) 

return-to-performance (returns to pre-injury performance level). Clinicians typically decide when 

injured athletes can progress to the next phase by consolidating information from clinical and functional 

assessments and comparing the results to pre-injury level and/or different time points of rehabilitation. 

For example, in hamstring injury rehabilitation, clinicians may measure palpation pain, flexibility and 

outer range strength daily to inform rehabilitation progression (Whiteley et al., 2018). The test results, 

complemented by the clinician’s experience, are sometimes used as a proxy to gauge the readiness of 

an athlete to progress in rehabilitation (Whiteley et al., 2018).  

Much of RTS research has focused on establishing criteria for clearing the athlete to return to 

unrestricted sports (Ardern, Glasgow, et al., 2016). However, these criteria are outcome-oriented and 

intended to help clinicians determine the endpoint of rehabilitation. There is value in exploring 

methodology that can leverage longitudinal data and evaluate the progression along the RTS continuum.  

Developing a methodology to inform the rate of progression requires consideration of 

rehabilitation as a dynamic, complex process — an environment constantly changing due to the 

interaction of multiple factors (Yung et al., 2022a). The constantly changing environment leads to the 

emergence of non-linear behaviours, which means that the outcome is not always proportional to the 

input. For example, the same rehabilitation training program will not always produce the same training 
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response because the body adapts to the stimulus after the first few sessions (Yung et al., 2022a). New 

behaviours may also emerge as a result of individual rehabilitation, such as an athlete exhibiting an 

increased level of stamina and resilience. This may subsequently change the athlete’s perception 

towards the level of training intensity. As a result, clinicians may have difficulty forming the whole 

picture of the rehabilitation progress by tracking the rehabilitation metrics separately and then 

combining the partial results (Yung et al., 2022a). Furthermore, due to the characteristics of complex 

systems, merely tracking the change in one (or multiple) metrics is unlikely to reflect the overall shift 

within the systems.  

It is impossible for clinicians to keep direct track of all the changes within the systems because 

humans have limited cognitive power in analysing and consolidating complex information (Miller, 

1956; Yung et al., 2022b). When the information becomes too complex to understand, humans may be 

reluctant to make important decisions, and resort to actions such as procrastination and endless pursuit 

of better information (Sarma, 1994). Fortunately, clinicians can leverage machine learning techniques 

to handle large and complex datasets systematically (Yung et al., 2022a). Machine learning can analyse 

both data from non-complex and complex systems (Peterson & Evans, 2019) and could be potentially 

used to describe the complexity inherent in sports environments (Yung et al., 2022a). In sports medicine, 

analytics and machine learning techniques have been used in the area of injury prevention and prediction 

(de Leeuw et al., 2022; Karnuta et al., 2020; Rommers et al., 2020; Van Eetvelde et al., 2021) but have 

been rarely used to evaluate progression in RTS. 

To evaluate the progression of training, clinicians can use a range of data types to quantify the 

internal (e.g., via subjective wellness scores (Impellizzeri et al., 2004)) and external workload (e.g., via 

global navigation satellite systems (GNSS) (Cummins et al., 2013)). In particular, GNSS devices are 

common in football and other field-based sports to measure the volume and intensity of on-field 

rehabilitation running performance (Stares et al., 2018; Taberner & Cohen, 2018). Based on the metrics 

derived from GNSS devices, clinicians can plan progressive loading and management throughout the 

stages of rehabilitation, for example, a gradual increment in total distance, high-speed running distance, 

acceleration and deceleration (Buckthorpe, 2019; Taberner & Cohen, 2018). In addition, clinicians may 
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monitor athletes’ wellness regarding their mental health and their subjective feeling towards the training 

intensity (Gastin et al., 2013; Taylor et al., 2012; Thorpe et al., 2017; Thorpe et al., 2015). With 

technological improvements, many of the above aspects can now be feasibly, conveniently, and 

routinely measured in many sports organisations. However, the complex dataset presents a new 

challenge: how can clinicians integrate, understand and visualise multiple data types simultaneously? 

To explore methods that may support clinicians in decision making, this study aimed to explore 

an analytical approach known as the change point method. The change point method may help clinicians 

analyse longitudinal data collected during RTS and retrospectively evaluate the progression along the 

RTS continuum.  

5.3  Methods 

 Design 

We have registered this protocol in the Open Science Framework (OSF.IO/4P76B). This design is a 

prospective single case observational study of an athlete in a professional football club. Such study 

design may direct focus on the features and the methodology of the change point method.  Ethics 

approval was obtained from the Victoria University Human Research Ethics Committee (HRE22-071). 

 Participant 

The case was a football player who sustained an acute lower limb muscle injury during high-speed 

running in football training and returned to play at the pre-injury level as determined by the club’s 

coaching staff. There was no interruption (e.g., COVID-19 isolation, personal leave) during the 

rehabilitation period. The rehabilitation program was entirely completed in the football club under the 

supervision of the club’s medical team.  
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 Data Collection 

Data were prospectively collected during training sessions and competitions of the 2021/2022 

Australian A-League season. The data consisted of two parts: 1) the pre-injury period, starting from the 

beginning of preseason to the day before the injury, and 2) the rehabilitation period, starting from the 

day of injury to the day when the athlete returned to play at the pre-injury level, as determined by 

coaching staff. The day when the injury occurred and the player was removed from training is denoted 

as day 0.  

The four key stages of the RTS continuum in this study are defined as: 

1. Straight-line running: The day when the athlete began basic running drills in a straight 

line. Training sessions were completed individually with the rehabilitation trainer. 

2. Change of direction running: The day when the athlete began curve running, change of 

direction and agility training. The training may involve some ball work. Training 

sessions were completed individually with the trainer. 

3. Modified training: The day when the athlete integrated with the main squad training 

for some training drills in a modified capacity. There were still some restrictions 

regarding the training intensity, movement and volume.  

4. Full training: The day when the athlete was medically cleared to train with the main 

squad with no restrictions. 

To determine the running performance in rehabilitation, the athlete wore a 10 Hz GNSS device 

(Apex Pro Series, STATSports, Newry, Ireland) placed on the back between the scapulae. Each unit 

included a 100-Hz accelerometer, magnetometer, gyroscope and 10 Hz GPS. The GNSS, which is 

certified by FIFA for use both in training and matches (FIFA, 2023), is validated to quantify running 

activities. The reliability and validity of these units have been previously reported. They display a high 

level of validity in total distance and maximal velocity team sport settings (Beato et al., 2018), as well 

as excellent inter and intra-unit reliability (Beato & Keijzer 2019). The device used has good inter-

device reliability for the measurement of total distance and maximal velocity (Beato et al., 2018). These 
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devices also possess suitable reliability and consistency for threshold-based accelerations and 

accelerations (Crang et al., 2021; Comier et al., 2023). The athlete wore the same device during all 

activities to reduce inter-unit error (Beato et al., 2018; Cummins et al., 2013) and no additional analysis 

was used to account for the variations within the data. Upon completion of each training session, all 

tracking data were downloaded using the proprietary software (Sonra 3.0, STATSports, Newry, 

Ireland). Among the metrics derived from the GNSS system, five metrics were selected after consulting 

the club’s high-performance staff: 

1. Total distance (m): Total distance covered in the session. 

2. Maximum speed (km.h-1): Maximum running speed attained in the session. 

3. High-speed running (m): Distance covered above 5.5 m.s-1 

4. Accelerations: number of accelerations between 3.0 and 10 m.s-2 with a minimum 

duration of 0.5 s. 

5. Decelerations: number of decelerations between -3.0 and -10 m.s-2 with a minimum 

duration of 0.5 s. 

As part of the pre-training routine of the football club, the athlete also reported daily wellness 

scores on the mornings of the training days. The athlete rated sleep quality, mood, stress and overall 

soreness using a mobile phone application, on a scale 0-10 (10 being the best). 

 Change point analysis 

Change point analysis is an analytical method to identify change points that segment a set of 

longitudinal data (e.g., the rehabilitation process) based on statistical features, such as the mean 

(Aminikhanghahi & Cook, 2017). As such, the behaviour of the subsequent segment is inherently 

different to the segment before the change point (Cho & Fryzlewicz, 2015). Univariate change point 

indicates when a meaningful change has occurred in a sequence value, implying a marked improvement 

or deterioration in a metric. In a multivariate change point analysis approach, a common change point 

is detected across multiple metrics (Bardwell et al., 2019). Change point analysis has been previously 

applied in medicine (Hall et al., 2000) and sports science (Corbett et al., 2019; Teune et al., 2022b) to 
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detect the onset of illness or overall change in sports performance. In the context of RTS, clinicians can 

use it to detect meaningful changes in various clinical markers and determine when an athlete can 

progress in rehabilitation. 

 Statistical Analysis 

The athlete’s identifiers were removed before proceeding to statistical analysis. All data analysis was 

completed in RStudio software (version 1.3.1093) (R Core Team, 2019), using the R (version 4.03) 

programming language. The cpt.mean() function from the changepoint package was used to identify 

the time point during the rehabilitation period where there was a meaningful change in the sequence 

mean (Killick & Eckley, 2014). In applying a univariate change point analysis with one change point, 

each of the nine metrics in physical performance and wellness was analysed separately. To find one 

change point, the parameters set were AMOC (at most one change), which limited the algorithm to only 

search for a maximum of one change point in a segment. The minimum segment length was set to seven 

days, which means the shortest duration between the change points must be at least seven days. This 

parameter was set based on the practice at the club, where high-performance staff consider seven days 

as a training block. Setting the above parameters based on our research question and the context may 

minimise the inherent noise from the data and identify change points that may be practical and coherent. 

The metrics recorded in the pre-injury period formed a baseline for pre- and post-injury comparison.  

To match the four phases of the RTS continuum, we identified three change points to compare 

with the three transitional points, that is, 1) return to change of direction running, 2) return to modified 

training and 3) return to full training. Similarly, cpt.mean() function was used. The method was set to 

binary segmentation to search for a maximum of three change points to align with the three transition 

points. Similar to one change point, we set the minimum segment length to seven days for the same 

reason outlined above. 

 A multivariate change point analysis was performed to determine a common change point 

across multiple metrics during rehabilitation (Bardwell et al., 2019). The mrc function from the Change 

point.mv package (Killick & Eckley, 2014) was applied across the four wellness metrics and the five 
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performance metrics. This function identified a common and most recent change point across the groups 

of time series data (Bardwell et al., 2019). The parameters of the functions were set to search for a 

maximum of one change point and a penalty value of 100 was arbitrarily applied. 

5.4 Results 

A total of 124 days were included in the analysis. The pre-injury period consisted of 33 days, including 

17 training sessions; the rehabilitation period consisted of 97 days, including 60 training sessions and 3 

competitions. The means and standard deviations recorded in the pre-injury period and used as the 

baseline are as follows: For the wellness scores, sleep was 8.5 ± 0.7, mood was 9.1 ± 0.4, stress was 8.5 

± 1.0, and soreness was 8.0 ± 0.5. For pre-injury performance metrics, total distance was 7057 ± 1694 

m, high-speed running was 588 ± 387 m, maximum speed was 28.1 ± 3.3 km.h-1, the number of 

accelerations was 101 ± 36.1, and the number of decelerations was 72 ± 31.5.  

 Univariate analysis change point locations 

Univariate analysis with one change point is shown in Figure 5.1 and the distribution of values within 

each segment is shown in Figure 5.2. The change points for stress, sleep, mood and soreness were 

located on days 30, 47, 50 and 50, respectively. The change points for total distance, accelerations, 

maximum speed, decelerations and high-speed running were located on days 32, 34, 37, 41 and 41, 

respectively. 

In applying univariate change point analysis with a maximum of three change points, the result 

is reported in Figure 5.4. Across all metrics, three change points were identified, except for mood, where 

the change point algorithm could detect only two change points. The change points were located 

between days 27-54 (Figure 5.4). The distribution of values within each segment is shown in Figure 5.3. 
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 Multivariate analysis change point locations 

The multivariate analysis identified a single change point for wellness metrics and running performance 

metrics on days 50 and 67, respectively (Figure 5.5). The metric distribution before and after the change 

point was reported in Figure 5.6. 
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Figure 5.1 A univariate change point analysis of each metric, with one change 

point each. Data normalised to the percentage of pre-injury level. COD: Change 

of direction. Acc: number of acceleration; Dec: number of deceleration; HSR: 

high-speed running; Max Speed: maximum running speed; Tot. Distance: total 

distance. 

Figure 5.2 Distribution of the metrics in each segment of univariate analysis, 

before and after the change point. Acc (#): Number of accelerations; Dec (#): 

number of decelerations; HSR (m): High-speed running (m); Max. Speed 

(km/h): maximum running speed (km•h-1) 
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Figure 5.4 A univariate change point analysis of each metric, with three change points 

each (only two change points for Mood). Data normalised to the percentage of pre-injury 

level. COD: Change of direction. Acc: number of acceleration; Dec: number of 

deceleration; HSR: high-speed running; Max Speed: maximum running speed; Tot. 

Distance: total distance. 

Figure 5.3 Distribution of the metrics in each segments of univariate analysis, 

before and after the multiple change points. Acc (#): Number of accelerations; 

Dec (#): number of decelerations; HSR (m): High-speed running (m); Max. 

Speed (km/h): maximum running speed (km•h-1) 
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Figure 5.5 A multivariate change point analysis for wellness and running performance 

metrics. Data normalised to the percentage of pre-injury level. COD: Change of direction. 

Acc: number of acceleration; Dec: number of deceleration; HSR: high-speed running; Max 

Speed: maximum running speed; Tot. Distance: total distance. 

Figure 5.6 Distribution of the metrics in each segments of multivariate analysis, 

before and after the common change point. Acc (#): Number of accelerations; Dec 

(#): number of decelerations; HSR (m): High-speed running (m); Max. Speed 

(km/h): maximum running speed (km•h-1) 
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5.5 Discussion 

This is a single case study to highlight the methodology and the features of the change point method. 

To exemplify the change point method, we present the univariate and multivariate approaches to 

determine the change points during the rehabilitation of a lower limb muscle injury in football. The 

specific practical implications of each approach are discussed below. 

 Practical implications for one change point  

The change points indicate to users when a meaningful change occurs for each metric. In Figure 5.1, 

the change points for total distance occurred first (day 32), followed by acceleration (day 34), 

deceleration (day 37), high-speed running (day 41) and maximum speed (day 41). The clinician can 

identify when meaningful changes occur and evaluate if this sequence aligns with the intended 

rehabilitation protocol. In particular, the change point for high-speed running occurred during the 

change of direction running phase. This change point could be used as a proxy of the phase of the 

rehabilitation (i.e., the phase where meaningful change is expected for high-speed running) and could 

be used to manage the expectation of the athletes and coaches regarding the progression of rehabilitation 

along the RTS continuum. 

Another practical example is knowing that the sleep quality takes longer than stress to reach 

the change points (days 47 vs 30), clinicians may choose to monitor the athlete’s sleep quality closely 

during the early rehabilitation phases and work with the athlete to remove any potential barriers to sleep. 

This may be beneficial to the overall rehabilitation because sleep quality is vital for athletic wellness, 

performance and recovery (Halson, 2008).  

 Practical implications of three change points 

In Figure 5.4, we segmented the RTS with a maximum of three change points to compare with the three 

major planned transitions before return to full training (i.e., 1) return to straight-line running, 2) change 

of direction running, and 3) modified training). Our results indicated that the change points detected did 
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not align closely with individual rehabilitation stages. However, the last change points of all metrics 

occurred during the modified training phase, which indicated all meaningful changes occurred before 

proceeding to full training. This pattern may be used as a proxy to support the decision for athlete to 

return to full training.  

 The disadvantage of the current approach is the detection of two to three change points 

for each of the nine metrics resulting in 26 change points. This amount of information is beyond what 

most adults could only store in short-term memory (4-7 items) (Cowan, 2001; Saaty & Ozdemir, 2003) 

and therefore can overload clinicians’ cognitive processing capacity. For that reason, the multivariate 

approach may be more appropriate for monitoring the changes in the metrics.  

 Practical implication for multivariate analysis  

When clinicians want to use more than one metric to determine the RTS progression, the multivariate 

approach can aggregate the change points of multiple metrics and simplify them into a common change 

point. For example, to know when there were overall changes in the four wellness metrics and the five 

running performance metrics, clinicians can simply refer to two common change points: day 50 for 

wellness and day 67 for running performance (Figure 5.5). Here, the multivariate analysis identified the 

time when the data sequence levelled out together, which may imply the metrics have stabilised and 

reached a steady state. It may appear intuitive when there are nine metrics to monitor. However, with 

technological development and the use of a complex systems approach, clinicians may want to include 

more data in their analysis, such as isometric strength, resting heart rate and heart rate variability. Due 

to the rich amount of information and the inherent complexity of rehabilitation, closely monitoring all 

the RTS data would be nearly impossible. While the clinicians first have to determine and select which 

metrics should be included in the analysis, the multivariate analysis aids clinicians by consolidating the 

information and presenting an overall result. Having these change point models in place may help 

clinicians avoid over-emphasising the importance of metrics that are easily available or interpretable 

while neglecting the others. 
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 Advantages of change point analysis 

Methods that can capture and analyse multiple metrics simultaneously and efficiently are much needed 

in sports medicine (Yung et al., 2022a). By using change point analysis, clinicians can simultaneously 

identify the meaningful change(s) in one or multiple metrics. Clinicians can also visualise the data 

together even though the data come from different sources and formats. Our model’s capacity to 

integrate multiple types of data may increase the usability of the analytical method (Silver, 1991) and 

bring benefits to the decision analysis (Yung et al., 2022b). The exploration of the change point 

approach attempts to shift toward complex systems approach when analysing complex data. 

Change point analysis is intuitive and likely to be understood by clinicians with little or no 

experience in analytics. This feature is crucial because analysis techniques are more likely to be 

implemented in applied sports settings if their efficiency, interpretability and functionality fit with the 

operational framework of a sports organisation (Schelling & Robertson, 2020). In our study, Figures 

5.1, 5.3 and 5.5 allow clinicians to visualise the process and summarise the location of the change points 

in the context of the rehabilitation continuum intuitively. Specifically, we present the the graphs using 

a percentage of pre-injury level so clinicians can visualise the overall rehabilitation outcome 

compared to the baseline. This is also particularly helpful when comparing data from multiple 

athletes. The density plots (Figures 5.2, 5.4 and 5.6) are presented using raw values to inform 

clinicians of the actual metrics. We aim to produce visualisations that require less cognitive work to 

understand and allow clinicians to digest the information effectively (Dadzie & Rowe, 2011; Kale et 

al., 2018).  

 Limitations and future applications 

There are at least four limitations of the change point approach. First, change points are detected based 

on the duration of the longitudinal data. Therefore, at this stage, it is more suitable for evaluating past 

practices and is not intended for live monitoring and making instant decisions. However, as technology 

and analysis in sports rehabilitation advances, future work may implement live change point analysis, 

where clinicians can receive up-to-date information to inform their decision making. Second, the 
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changepoint.mv package only permits detection of one change point for the multivariate change point 

analysis. As such, we did not perform a multivariate change point analysis with three change points. 

Future work may look to implement this function as it becomes available. Third, as with most analytics 

systems, there is some inherent bias relevant to the algorithm. The current approach is limited by the 

information available within the elite sports setting, i.e., metrics derived from the GNSS devices and 

wellness scores. Beyond these two data types, there may be other data types relevant to RTS 

progression. Fourth, clinicians need to adjust the parameters of the change point algorithm based on the 

context and the purpose. The number and the location of change points discovered depend highly on 

the parameters of 1) the maximum number of change points and 2) the minimum length of the segment. 

A future application of the change point approach is to establish a change point profile for 

different injuries. Each type of injury has unique considerations in the RTS progression (Taberner et 

al., 2019). For example, the load planning sequence for hamstring injuries is running speed, and 

acceleration/deceleration magnitudes. In contrast, the load planning sequence for adductor injuries is 

the change of direction, and technical actions such as passing, crossing and shooting (Taberner et al., 

2019). Clinicians may use the change point profiles to evaluate RTS progression objectively. 

Furthermore, this procedure can be part of the reflective observation in transforming the clinician’s 

experience to conceptualise the rehabilitation lesson learnt. Actively reflecting on previous experience 

is paramount for learning (Kolb & Kolb, 2018) and improving decision making in complex systems 

(Bennet & Bennet, 2008)  

5.6 Conclusion 

We have outlined a change point approach to identify meaningful changes in the RTS continuum. The 

univariate approach provided information regarding the sequence and time point of the change points. 

The multivariate approach provided a common change point for multiple metrics, information that 

would benefit clinicians to have a broad overview of the changes in the rehabilitation process. Clinicians 

can apply the change point analysis to any other injuries to identify meaningful changes in RTS 

progression and make informed decisions. 
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6 Chapter Six: Study IV 

 

Chapter overview 

Chapter Six is the final study in this thesis. This original case study uses an association rule approach 

to develop IF-THEN rules to represent the relationship between rehabilitation and physiological 

adaptions (muscle soreness post-training). These findings may inform decisions in rehabilitation 

training and design. Clinicians can adopt these methods to conduct large-scale searches for seemingly 

random, yet important and frequently occurring patterns to discover rules that may support their 

rehabilitation training design and recovery planning.  

The content of this chapter has been submitted to the Journal of Sports Sciences (Taylor and 

Francis) on 29th January, 2023. It is currently under review. 

 

Clinical relevance 

Understanding the interactions between variables through a complex systems approach may help 

clinicians better address the dynamic nature of rehabilitation and improve decision quality. To identify 

the interactions within the complex systems, clinicians may explore the regularities of the emerging 

behaviour through pattern recognition. However, hidden patterns and unexpected patterns within large 

complex datasets are often not obvious to human eyes. There is a need to explore analytical methods 

that may assist clinicians in revealing patterns within a large RTS dataset and help improve future RTS 

decisions.  
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6.1 Application of association rule to rehabilitation training 

design: a football exemplar. 

 Key points 

 This study used an association rule approach to discover combinations of variables frequently 

associated with a low score of muscle soreness on the next day or two days after training. 

 The rules can condense a large volume of data and translate it into interpretable rules for 

clinicians to act on. 

 The method may reduce a large dataset's complexity without comprising the non-linearity 

structure. 
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 Abstract 

The sheer volume of data derived from sports technologies and clinical tools may challenge clinicians’ 

information processing capacity and hinder them from making effective decisions. Machine learning 

approaches, such as the association rule method, can evaluate the nonlinear relationship between 

voluminous wellness and physical performance data. This study uses an association rule method to 

discover rules that can classify the level of muscle soreness the next day (T+1) and two days after 

training (T+2). To exemplify the approach, six wellness metrics and eight physical performance metrics 

were collected over one season from a professional football player who sustained a lower-limb muscle 

injury. The Apriori algorithm was implemented. A total of 3356 and 1876 rules were discovered for 

T+1 and T+2, respectively. An exemplar rule with three explanatory variables is that when metre per 

minute = high, decelerations = medium and sleep = low, the player is likely to give a low score for 

muscle soreness on T+1. The results may inform clinicians how to manipulate the rehabilitation 

program design to achieve the desired level of training adaptations. Clinicians can also adapt similar 

methods to conduct large-scale searches for frequent patterns and rules that may support their training 

design and recovery planning.  
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6.2 Introduction 

To inform training and return-to-sport (RTS) decisions, clinicians first need to determine which tests 

to perform and the metrics to be tracked. For instance, clinicians can quantify the physical output of 

an athlete and compare the result with a benchmark, such as the pre-injury level or competition level 

(e.g., 5 km represents 80% of the pre-injury game load). Clinicians may also refer to the internal load 

to understand the physiological and psychological stress imposed by a given external load on the injured 

athlete, for example, heart rate, subjective perception of the effort and subjective wellness (Foster et al., 

2001; Halson, 2014; Taylor et al., 2012). In particular, wellness questionnaires (sleep, energy, stress 

and muscle soreness) have been widely adopted to quantify an athlete’s subjective response to exercise 

stress on the training day (T) (Gallo et al., 2016; Taylor et al., 2012; Thornton et al., 2016; Thorpe et 

al., 2017; Thorpe et al., 2015). 

Integrating data from multiple sources into structured decision-making processes can be 

challenging for multiple reasons. First, depending on the number of tests required, the volume and 

complexity of data may exceed human information processing capacity (Yung et al., 2022b). When 

clinicians have access to a high volume of data, they may not be able to process or consider it all, 

potentially leading to slow or compromised decision-making (Cowan, 2001). Second, a challenge for 

decision makers are the linear, and often nonlinear, relationships between variables required to 

predict future states (Yung et al., 2022a). Identifying such relationships without the use of external 

aids, such as computing, is extremely difficult (Bache-Mathiesen et al., 2021).  

This study adopts an association rule methodology to assist clinicians in integrating multiple 

data types and consolidating complex data into interpretable information. The association rule method 

is a classic method that finds relationships among a large set of variables (Agrawal & Srikant, 1994). 

The output can be expressed in the IF-THEN format: IF condition1 and condition2 and … and 

conditionn, THEN decision (Daud & Corne, 2009). The association rule methodology has been 

employed in sports analysis (Browne, Morgan, et al., 2019; Browne, Sweeting, et al., 2019; Robertson 

et al., 2019) and talent identification (Robertson et al., 2015). Specifically, in identifying talents in the 
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Australian Football League, three simple rules formed based on physical performance and 

anthropometric attributes may discriminate players who are more likely to be drafted (Robertson et al., 

2015). For example, IF 20m sprint ≤ 2.99s, THEN Australian Football League drafted (Robertson et 

al., 2015). Using simple heuristic rules helps retain some complexity while reducing the number of 

variables that practitioners need to focus on. Similarly, the association rule method may also fit into 

RTS, helping clinicians to integrate physical performance and wellness data and estimate the post-

training muscle soreness level. 

The primary aim of this study was to discover rules for classifying the level of muscle soreness 

post-training and their accuracy (confidence). Muscle soreness was selected as the exemplary target 

outcome (consequent) because it reflects the intensity of the training program and the adaptations of the 

athletes. The rules discovered may help clinicians to manipulate the rehabilitation program to achieve 

the desired level of post-training muscle soreness, such as creating a higher level of stimulus for positive 

adaptations or a lower level for recovery. The secondary aim was to evaluate the relationship between 

the number of variables included in the model and the confidence of the rules.  

6.3 Methods 

 Design 

This was a prospective observational case study of one professional athlete from an Australian A-

League football club. Ethical approval to conduct the study was obtained from the Victoria University 

Human Research Ethics Committee (HRE22-071). 

 Participant 

The participant sustained an acute lower limb muscle injury during high-speed running in football 

training. The athlete returned to play at the pre-injury level, as determined by the coach. The 

rehabilitation program was completed in the football club under the supervision of the club’s medical 

team.  
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 Data collection 

Data were collected during training sessions and competitions of the 2021/2022 Australian A-

League season, from pre-season training until the end of the season. To determine the running 

performance in rehabilitation, the athlete wore a 10 Hz GNSS device (Apex Pro Series, STATSports, 

Newry, Ireland) placed on the back between the scapulae. Each unit included a 100-Hz accelerometer, 

magnetometer, gyroscope and 10 Hz GPS. The GNSS, which is certified by FIFA for use both in 

training and matches (FIFA, 2021), is validated to quantify running activities. The reliability and 

validity of these units have been previously reported. They display a high level of validity in total 

distance and maximal velocity team sport settings (Beato et al., 2018), as well as excellent inter and 

intra-unit reliability (Beato & Keijzer 2019). The device used has good inter-device reliability for the 

measurement of total distance and maximal velocity (Beato et al., 2018). These devices also possess 

suitable reliability and consistency for threshold-based accelerations and accelerations (Crang et al., 

2021; Comier et al., 2023). The athlete wore the same device during all activities to reduce inter-unit 

error (Beato et al., 2018; Cummins et al., 2013) and no additional analysis was used to account for the 

variations within the data. 

  Upon completion of each training session, all tracking data were downloaded using the 

proprietary software (Sonra 3.0, STATSports, Newry, Ireland). Among the metrics derived from the 

GNSS system, eight physical performance metrics were selected after consulting the club’s high-

performance staff: 

1. Total distance (TD) (m): Total distance covered in the session. 

2. Metre per min (m.min-1): Total distance covered in a minute. 

3. Maximum speed (km.h-1): Maximum running speed attained in the session. 

4. High-speed running (HSR) (m): Distance covered above 5.5 m.s-1 

5. Zone 5 (Z5) distance: Distance covered in speed zone 5.5-7 m.s-1. 

6. Zone 6 (Z6) distance: Distance covered in speed zone 7-11 m.s-1. 

7. Accelerations (Acc): number of accelerations between 3.0 and 10 m.s-2 with a 

minimum duration of 0.5 s. 
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8. Decelerations (Dec): number of decelerations between -3.0 and -10 m.s-2 with a 

minimum duration of 0.5 s. 

On the morning of the training days, the athlete rated sleep quality, mood, stress, energy, diet 

and overall muscle soreness on a scale 0-10 (0 – worst, 10 – better) using a mobile phone application.  

 Association rule  

The association rule method is used to discover knowledge and present them in the form A=> B, where 

A and B represent itemsets. The implication symbol (=>) denotes that if a transaction in the database 

contains A, it also satisfies the conditions in B. As such, A is referred to as the antecedent and B the 

consequent. Each transaction includes a set of variables (items) that occurred together.  

In the context of rehabilitation, each training day represents a transaction. As an example, the 

rule { ℎ𝑖𝑔ℎ − 𝑠𝑝𝑒𝑒𝑑 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 > 500𝑚, 𝑝𝑜𝑜𝑟 𝑠𝑙𝑒𝑒𝑝 𝑞𝑢𝑎𝑙𝑖𝑡𝑦} ⇒ { ℎ𝑖𝑔ℎ 𝑠𝑜𝑟𝑒𝑛𝑒𝑠𝑠}  would indicate 

that when the high-speed running performed is more than 500m and the sleep quality in the previous 

night was poor (antecedents (A)), the soreness after training would be high (consequent (B)).  

To further evaluate the validity of the rules, we can refer to two measurements: Confidence 

(Eq.1) and Support (Eq. 2). Confidence measures how often the rule is true and can be expressed as: 

 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (𝐴 → 𝐵) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝐴 𝑎𝑛𝑑 𝐵

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝐴
 

Eq.1 

 

Support refers to how frequently an association rule occurs in the entire set of transactions and 

is defined as: 

 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴 → 𝐵) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝐴 𝑎𝑛𝑑 𝐵

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑁)
 

Eq.2 
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 Statistical Analysis 

The athlete’s identifiers were removed before proceeding to statistical analysis. All analysis was 

completed in RStudio software (version 1.3.1093) (R Core Team, 2019), using the R (version 4.03) 

programming language. Mean and standard deviation were calculated for soreness scores and each of 

the eight training metrics. 

To apply the association rule algorithm, each variable was first discretised based on frequency. 

Discretising the data based on frequency allowed each bin to contain a similar amount of data, which 

may better reflect the underlying distribution and the common practice in applied settings which some 

clinicians routinely discretise continuous variables to aid decision making. Performance running metrics 

(except Z6 distance) were discretised into three bins (low, medium and high). The distribution of 

wellness and Z6 variables were narrower and would not permit frequency discretisation into three bins, 

hence two were used.  

The Apriori algorithm from the arules package was used to explore frequent combinations of 

variables co-occurring in the dataset (Agrawal & Srikant, 1994). In the general form of the association 

rule methodology, there is no restriction on whether a variable appears as the antecedent and 

consequent. However, to discover rules relevant for clinicians, the consequent was restricted to one 

variable. In our example, a lower score in muscle soreness reported on the next day (T+1) and two days 

after (T+2), respectively, were used as the consequents of the two models. A lower score indicates more 

muscle soreness. 

Muscle soreness was selected as the consequent, while all other variables were used as 

antecedents to characterise the training sessions. The parameters set for the Apriori algorithm were a 

minimum support of 0.06, a minimum confidence set of 0.2, a minimum and maximum rule length of 

3 and 11 variables, respectively. These parameters captured a wide range of rules for the purpose of the 

example and were applied to the Apriori algorithm to T+1 and T+2 transactions to search for rules 

resulting in a lower score for muscle soreness.  
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6.4  Results 

A total of 115 training sessions with complete data were included in the analysis. The distribution of 

each variable is displayed in Figure 6.1. The mean and standard deviation of the items and the resulting 

cut-off value of discretisation are shown in Table 6.1.  

Figure 6.1 Histogram for included variables. m/min: metre per minute; Max speed (km/h): 

maximum running speed (kilometre per hour). 
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Table 6.1 Mean (SD) and cuff-off values used to discretise each variable. 

Variable Mean (SD) Low Med High 

Total distance (m) 5217 ± 2079 ≤ 4420 4421 - 5630 ≥ 5631 

Metre per min (m.min-1) 91.2 ± 22.9 ≤ 81.9 82 - 96.5 ≥ 96.6 

Maximum speed (km.h-1) 26.9 ± 3.9 ≤ 25.1 25.2 - 29.3 ≥ 29.4 

High-speed running (m) 390 ± 335 ≤ 226 227-429 ≥ 430 

Z5 distance (m) 338 ± 271 ≤ 208 209 - 404 ≥ 405 

Accelerations 75 ± 37 ≤ 65 66 - 88 ≥ 89 

Decelerations 58 ± 32 ≤ 50 51 - 73 ≥ 74 

Muscle Soreness 8 ± 1 ≤ 7 8 ≥ 9 

  Low High  

Z6 distance (m) 53 ± 85 ≤ 19 ≥ 20  

Sleep quality 8 ± 1 ≤ 8 ≥ 9  

Mood 9 ± 1 ≤ 9 10  

Stress  8 ± 1 ≤ 8 ≥ 9  

Energy 8 ± 1 ≤ 8 ≥ 9  

Diet 8 ± 1 ≤ 8 ≥ 10  
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Figure 6.2 Six exemplary rules with three, five and eight explanatory variables are displayed. The 

rules are associated with a low score in muscle soreness on the next day after training (T+1), and 

are ordered by confidence. Each discretised variable is colour coded according to its category for 

visual interpretability.  
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Figure 6.3 Six exemplary rules with three, five and eight explanatory variables are displayed. The 

rules are associated with a low score in muscle soreness on two days after training (T+2) and are 

ordered by confidence. Each discretised variable is colour coded according to its category for 

visual interpretability. 
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Figure 6.4 Level of rules' confidence based on the number of explanatory variables included in 

the T+1 and T+2 models.  

 

Figure 6.5 The quantity of rules according to the number of explanatory variables included in the 

T+1 association rule model. Labels indicate the proportion of rules where confidence = 1.  
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6.5 Discussion 

This study aimed to evaluate the use of association rule among a complex dataset relating to a 

professional footballer’s rehabilitation. As an exemplar, we generated rules that may help clinicians 

manipulate the rehabilitation program to achieve the desired level of post-training muscle soreness. The 

target consequent is a lower score of muscle soreness (i.e., more muscle soreness) on the day after 

training (T+1) and two days after (T+2).  

First, multiple combinations of variables led to the target consequent. As an example from the 

T+1 model (Figure 6.2), rule #1 indicate high metre per minute, medium decelerations, low sleep led to 

a lower score of muscle scores (consequent). Other rules with high accuracy (confidence) are displayed 

in Figure 6.2 and Figure 6.3 as examples. Next, we investigated the relationships between the number 

of variables included in the model and the accuracy of the rules to discuss the trade-off between data 

input and models’ accuracy. The methodology used here may help clinicians establish simple, intuitive 

rules to guide their decisions in manipulating the level of post-training muscle soreness. From a broader 

methodological perspective, clinicians may use the association rule method to integrate multiple data 

types and condense complex information into simple rules to support other decisions. For example, to 

identify the relationships between wellness, training load, mood states (antecedents) and player 

availability (consequent). 

Accuracy, efficiency and interpretability are important considerations when using machine 

learning models in applied settings, as with most modelling approaches (H. Liu et al., 2017). In terms 

of accuracy, with the same dataset, more complex models usually have lower accuracy than simpler 

models (Halilaj et al., 2018). As shown in Figure 6.4, the rule’s confidence level increased when more 

variables were added to the T+1 model. However, this is more likely to apply when the variables are 

valid and relevant to the model. For example, adding more variables to the T+2 model did not improve 

the model’s performance as apparent as the T+1 model (Figure 6.4). It is possible that the level of 

muscle soreness on T+2 was not closely associated with variables included in the T+2 model. Other 
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factors, such as events occurring on T+1, may have a considerable effect on the muscle soreness on 

T+2.  

Although models with more variables generally have higher accuracy, there is a trade-off 

between accuracy, efficiency and interpretability. First, a complex model with more variables requires 

clinicians to spend more resources (e.g., staffing, time and equipment) to collect and clean the required 

data. This may generally couple with a longer computation processing time. Second, complex models 

are usually less interpretable and readable, as humans have limited information processing capacity 

(Miller, 1956). Often, users may prefer extracting the rules from the model to see any relationships 

between the inputs and the outputs (H. Liu et al., 2017). Therefore, a complex model with complicated 

rules may be difficult and cumbersome to follow. In contrast, rules containing fewer variables are easier 

to read and interpret. For example, in Figure 6.2, some clinicians may find models with three 

explanatory variables (rules #1 and #2) easier to read and interpret than eight (rules #5 and #6). Third, 

rules with higher confidence often come with a lower support value, meaning the model has less 

extrapolation ability in other unseen data. This is commonly known as over-fitting (Daud & Corne, 

2009). Since the utility of the model depends highly on the user’s preference, available resources and 

working style, there may not be a one-size-fits-all approach. 

To choose a model that balances accuracy, efficiency and interpretability, clinicians may 

consider the principle of parsimony, which suggests that models with fewer variables are preferred if 

they do not meaningfully deteriorate accuracy (Stubbe et al., 2005). A parsimonious model achieves 

the desired level of goodness of fit using the minimum number of explanatory variables. In our analysis, 

six variables gave the highest number of rules with a confidence of 1.0 (n = 42) in the T+1 model, 

accounting for 7.9% of all the rules discovered with six variables (Figure 6.5). The percentage of rules 

having a confidence = 1.0 increases nonlinearly with the number of variables (Figure 6.5). With 

supporting information from Figure 6.4 and Figure 6.5, clinicians can choose their preferred number of 

explanatory variables based on their available resources, operation style, personal preference and the 

level of confidence they are willing to accept. Ultimately, the decisions on the number of variables in 

the model should be aimed at improving the clinicians’ ease of use and increasing the speed of their 
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decision making, which again, may vary among users. For example, given the confidence of the models 

and the data input required for this case, some clinicians may find six variables appropriate. However, 

when using the association rule approach for investigating other research questions, such as the 

relationship between an injury diagnosis and the expected time to RTS, more variables may be required 

to capture the details of the injury. While more variables may capture more information and lead to a 

more accurate model, users may expect a diminishing return on accuracy.  For example, the accuracy 

of T+1 model levels out when six variables are included (Figure 6.4). To strike a balance between the 

accuracy, efficiency and interpretability of the model, clinicians may also consider controlling the 

model complexity such that the generated model will not be very complex. Model complexity can be 

controlled by using different methods, such as feature extraction (e.g., Principal Component Analysis) 

(Jolliffe, 2002). The aim is to transform the dataset to a lower dimensional space by combining existing 

attributes and thus reduce model complexity. 

When analysing large datasets relating to apparently complex phenomena, a nonlinear analysis 

may provide greater insight into the characteristics of the behaviour compared to a linear approach 

(Robertson et al., 2015). The association rule algorithm utilised here integrated data from physical 

performance and wellness to highlight combinations of variables that may lead to a lower score of 

muscle soreness on T+1 (Figure 6.2) and T+2 (Figure 6.3). For example, when considering five 

explanatory variables in the T+1 model (Figure 6.2), rule #3 indicates that if the player has completed 

a training session with high metres per minute, medium decelerations, and subjectively-rated low for 

the sleep, stress and diet score, the player is likely to have a low score for muscle soreness on T+1. Not 

only might the association rule methodology help reduce clinicians’ time and mental burden in 

eyeballing or analysing datasets from different sources (e.g., wellness questionnaire and GNSS 

database) within a limited timeframe, it may also uncover nuanced patterns that are not easily perceived 

by humans. 

As required by the association rule approach, the continuous values in this study are discretised 

into two or three categories (bins) based on frequency. The bins are then presented in linguistic terms, 

such as low, medium and high, for simplicity and to fit into applied settings. The categories, however, 
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can also be set using other rationales, such as data distribution or practical requirements of the sports 

organisation. For example, a sports organisation may set their metres per minute categories based on 

the performance goal of the organisation. The ideal model for a sports organisation may require trial 

and error and be determined based on model performance. 

 Clinicians can acquire knowledge from books, orally transmitted learning, practical experience 

and common sense. However, clinicians may be subjected to biases due to various reasons. For example, 

bias may be introduced during clinician training (e.g., a heavy emphasis on specific musculoskeletal 

factors only) or by practice (e.g., clinicians accustomed to a particular routine). As such, the knowledge 

acquired could also be constrained by social context and sometimes biased towards conventional 

practice. In contrast, a machine learning system can gain knowledge by performing exhaustive searches 

through large data sets and through statistical analysis. It may find rules that are consciously or 

unconsciously implemented by clinicians and help systematically structure the knowledge. Clinicians 

can integrate and complement their knowledge with that elicited from the association rule (Webb, 

1996). 

However, as promising as machine learning is in analysing data and driving informed decision 

making, it can also be susceptible to unintended biases (Mehrabi et al., 2021). For example, the machine 

learning system learns to make decisions based on historical (training) data, which can include biased 

human decisions. To address potential machine learning bias, clinicians may first need to honestly and 

openly question if best evidence practice is used in the current workflow, and actively hunt for biases 

that may manifest themselves in data. Furthermore, due diligence, such as externally validating the 

model in the target population for which they are intended, is also recommended prior to using any 

model in a clinical setting (Bullock et al., 2022). Ultimately, at the current development stage, machine 

learning models are not intended to replace human decisions. Instead, they are tools that may 

supplement subjective assessment and allow a deeper understanding of complex human behaviour, and 

hence improving decision quality (Gamble et al., 2020). 

This example model has several limitations. First, the data only included supervised training 

conducted at the club. Activities conducted outside formal sessions were not included in our analysis 
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but may contribute to the reported subjective wellness, for example, walking the dog longer than usual. 

Second, the initial off-feet rehabilitation training was not included in our analysis because we could not 

capture the external workload of the upper body during this period. Third, the reliability of the self-

reported wellness information depends on different factors, such as the athlete’s honesty and familiarity 

with the questionnaire. Fourth, in our model, muscle soreness was the proxy for training intensity and 

the athlete’s response. However, muscle soreness may be biased towards gym-based eccentric exercises 

(Cheung et al., 2003; Cleak & Eston, 1992). Fifth, although discretising data can condense the data and 

keep broader categories (Stańczyk et al., 2020), it introduces sharp boundaries and may lead to data loss 

(Hong & Lee, 2008). 

6.6 Conclusion 

This study used an association rule methodology to explore and discover combinations of variables 

frequently associated with a low score of muscle soreness on the next day or two days after a training 

session. The rules can condense a large volume of data and translate them into interpretable rules for 

clinicians to act on. This approach may reduce the complexity of large datasets without comprising the 

nonlinearity structure. 
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7 Chapter seven: General discussion and conclusion 

Chapter Overview 

This chapter consolidates the key findings and implications of this thesis and discusses how these can 

be implemented in the applied setting. This chapter contains a general discussion, industry 

implementations, future directions and conclusions.  
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7.1 General discussion 

This thesis aimed to provide tools to support clinicians in RTS decision making by adopting the complex 

systems theory as its major theoretical framework. Collectively, the four studies discussed frameworks 

(Part 1) and their practical applications (Part 2) to improve RTS decisions by using a complex systems 

approach and advanced analytical tools1.  

First, Chapter Three discussed how clinicians can evaluate a decision based on a decision 

analysis perspective and what factors constitute a good decision. Making RTS decisions is challenging 

because injury cases are often complex and unique. Due to the linearity and emergence behaviour, it is 

also hard to predict the outcome from a few clinical tests alone. As such, the decision-making 

framework in Chapter Three outlined critical considerations for clinicians to observe, evaluate and 

interpret the RTS question. This also formed the basis of the thesis, including defining a good decision. 

To improve decision quality, clinicians may view rehabilitation from multiple perspectives and harness 

the complex systems theory.   

The complex systems theory, a well-recognised approach to conceptualising sports injury and 

rehabilitation, can be used as the theoretical framework to understand sports injury and rehabilitation 

(Bittencourt et al., 2016). Complex systems theory guides clinicians in defining and interpreting systems 

from multiple perspectives, thus providing them with a better opportunity to understand and explain 

complex decisions. Chapter Four explained the concepts of the complex systems theory and 

complemented them with clinically relevant examples. Complex systems have distinctive 

characteristics, for instance, emergence, feedback loops and dynamics shaped by nonlinear interaction. 

Complex systems, however, may be challenging to apply in practice because it requires clinicians to 

                                                      
1 In the beginning of this doctoral investigation, I initially proposed to collect data across multiple 

seasons. However, when professional sports were highly disrupted by COVID-19 pandemic, it was difficult to 

conduct large scale studies. As a result, this thesis included two review studies and two case studies that compared 

the analytical techniques using data from the same player.  



172 

 

move from finding “causes” to finding “relationships” within the system (Bittencourt et al., 2016). 

Clinicians are also often presented with a high volume of complex data, which may overwhelm their 

information processing capacity. With the digitisation of health care and the development of sports 

technology, there are opportunities to harness and capitalise on the information being captured to 

improve RTS decisions with the use of analytical methods and through a complex systems approach.  

In Part 2, Chapters Five and Six adopted analytical methods that can accommodate the 

characteristics of the complex systems and potentially improve RTS decisions in applied settings. In 

planning a rehabilitation program, depending on the number and types of tests and/or monitoring 

required, clinicians can be challenged by 1) a large volume of data and 2) multiple data types and 

formats (e.g., longitudinal and discrete datasets). Meanwhile, clinicians only have limited time and 

mental capacity to analyse, consolidate, interpret and report the findings. To develop methodologies 

that may improve clinicians’ decision quality and accommodate the characteristics of complex systems, 

Part 2 adopted analytical methods that may fit into applied settings. Specifically, Part 2 contributed to 

resolving two common types of data problems in applied clinical settings:  

1) Clinicians often collect multiple data types during the RTS process at regular time 

points. Specifically, longitudinal data are commonly found in clinical settings as 

clinicians track the rehabilitation progression. How can clinicians integrate and analyse 

the longitudinal data? 

2) What are the hidden and unexpected patterns in a large rehabilitation dataset? How to 

exploit them and structure the knowledge? 

For question 1, Chapter Five adopted the change point method. The change point method was 

selected for its advantage in finding meaningful change(s) in a longitudinal dataset. In particular, an 

important practical aspect of the change point method is that it accepts various continuous metric 

representations, such as physical performance data from GNSS devices or wellness monitoring data. 

This increases versatility in the rehabilitation environment, where multiple data types are often 

presented. For example, clinicians may want to continuously track the hamstring isometric strength and 

high-speed running distance after a hamstring injury. In addition, clinicians can compare the location 
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and sequence of the change points with their clinical judgement and past practice. For example, what is 

the preferred sequence of change points after a groin injury? In addition, univariate and multivariate 

approaches were also investigated to explore how the change point method can integrate and visualise 

multiple longitudinal data types.  

For Question 2, Chapter Six adopted the association rule method. The association rule method 

was selected because it can integrate multiple data types and condense complex information into simple 

and intuitive rules. Consequently, clinicians can use the rules to identify the interaction between 

multiple variables and guide their decisions in clinical practice. In Chapter Six, clinicians can find rules 

that were associated with the level of post-training adaptations. Using the same method, clinicians may 

discover frequently occurring patterns in different aspects, for example, the combination of variables 

that may maximise the RTS outcome, or minimise injury risk. Furthermore, both the change point and 

association rule methods provide simple visualisations whereby clinicians can track the rehabilitation 

process (change point method) and identify the associations between aspects of athlete behaviours 

(association rule method). 

While this thesis only explored the change point and association rule methods, other machine 

learning methods, such as classification (e.g., decision tree), may also fit into the clinical setting. Similar 

to the association rule method, the classification approach may explain the reasoning behind the output 

and is intuitive. In contrast with the association rule, the classification approach could be advantageous 

by enabling data to be modelled in its original format (e.g., continuous) and not needing data to be 

discretised. Discretising data may improve clinicians’ ease of use and increase the speed of interpreting 

data, but it may also reduce the explanatory power of continuous variables. However, this thesis has not 

included classification in the studies because change point and association rule methods are relatively 

more intuitive and easier for clinicians to understand and apply. This may increase the work's 

applicability in sports medicine and encourage clinicians to explore and uptake analytics in their 

practice. However, it is still worthwhile to investigate classification and other analytics methods in the 

future and compare them regarding their functions, applicability and feasibility in applied settings. 
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Both change point and association rule methods are post-hoc analyses and intend to evaluate 

past practice. These methods may help clinicians systematically structure existing knowledge and 

complement it with empirical evidence and clinical experience. Clinicians’ experiences, despite their 

importance, are sometimes poorly articulated and may create challenges in structuring the knowledge. 

The methodologies proposed in Part 2 may help to structure the knowledge and help develop 

consistency in clinical practice and decision quality within a sports club or an organisation. For example, 

sometimes clinicians may find it hard to articulate their experience, such as when they think an athlete 

is safe to RTS. In this case, clinicians can elicit knowledge from the rehabilitation dataset using the 

association rule method, consolidate their clinical experience into rules and use the rules to support their 

decision making. The rules may also help the less experienced staff make decisions and align the sports 

organisation’s practice. Overall, structuring knowledge with analytical methods may also help 

clinicians consistently apply the best possible knowledge, reduce unwanted variability, and ultimately 

improve decision quality.  

The results from Chapters Five and Six demonstrated the strength of using descriptive and 

associative analysis in complex systems. Specifically, Chapter Five analysed longitudinal data trends 

and identified when meaningful changes occured. Chapter Six delved into the discovery of rules that 

are associated with increased levels of muscle soreness post-training. The rules may serve as beacons 

for clinicians, aiding them to foresee scenarios that may predict athletes' responses after training. In 

practice, the patterns and trends identified can aid clinicians in manipulating rehabilitation programs 

and influencing outcomes. Descriptive and associative analyses, with their expediency and practicality, 

may operate harmoniously with the complex systems approach. In complex systems, causes and effects 

often interlace in complex choreography, rendering the task of unpacking the latent forces guiding 

system behavior profoundly challenging and time-consuming. To this end, descriptive and associative 

analyses provide insights and actionable information to clinicians with efficacy and without the need 

for an exhaustive understanding of the complex causal relationships within.  

While this thesis encourages clinicians to adopt a complex systems approach for decision-

making, there are associated pitfalls when employing this approach to data analysis: 1) Complex 
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systems analysis often involves integrating and analysing multiple types of data; however, it is not 

merely about indiscriminately incorporating all data into models without filtering for relevance. The 

initial thought process should encompass clinical reasoning, such as selecting the relevant metrics, 

choosing the most appropriate tests and determining the frequency of data collection. Furthermore, the 

quality of data is as important as the quantity.  Inadequate or poor-quality data can lead to misleading 

patterns and therefore inaccurate conclusions. 2) While complex or advanced modelling might be 

imperative for analysing complex systems, excessively complex models can prove challenging for 

clinicians to interpret. In addition, they might not consistently outperform simpler models, despite their 

complexity. Striking a balance between model complexity and interpretability is crucial. 3) It is 

challenging to determine the causality within complex systems due to the intricate interdependencies 

and feedback loops, as mentioned earlier. However, relying solely on correlations, such as descriptive 

and associative analyses, may not adequately aid clinicians in comprehending the underlying 

mechanisms behind a clinical presentation. Within a sports organisation, researchers and clinicians can 

perform descriptive, associative and causative analyses coherently: Descriptive and associative analyses 

provide the operational foresight, while causal analysis probes deeper to unravel the root causes. This 

helps clinicians navigate the complexities of sports rehabilitation with a comprehensive perspective, 

while bridging timely interventions and foundational understanding. 4) Validating complex systems 

models can be difficult due to the unique and dynamic nature of the phenomena involved. However, 

expert knowledge may enhance the robustness of complex systems analyses by refining and validating 

the model against real-world observations. To navigate the above features and pitfalls of the complex 

systems, a multidisciplinary approach that combines expertise in statistics, data science and domain 

knowledge, are strongly encouraged.  

Both Chapters Five and Six used a single case study design to exemplify the analytical 

methodologies. Case study research has sometimes been criticised for lacking scientific rigour and 

having limited generalisability to other subjects (Yin, 2009). While there are limitations to a single case 

study design, such an approach is advantageous when exploring a complex issue in-depth in applied 

settings (Crowe et al., 2011). The current single case design may direct readers’ focus to the analytical 
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methodologies and how the exemplars used them to integrate, analyse and visualise multiple data types 

simultaneously. Furthermore, the context and dynamics of most sports injuries and RTS processes are 

different and seldom repeat. For example, a similar hamstring injury may occur at various stages of the 

tournament; the mentality and personality of athletes differ. Clinicians may apply the methods in 

Chapters Five and Six to evaluate the RTS decisions on a case-by-case basis and structure the 

knowledge based on clinical experience. To systematically structure the knowledge to inform practice, 

it is also possible to consolidate the results of multiple case reports within the same sports organisation. 

For example, clinicians can try to discover rules that may produce the desired RTS outcome after a 

specific injury. While aggregating the results of case reports do not replace meta-analysis nor provide 

a statistically significant cross-section view of rehabilitation, they may provide crucial insight into the 

rehabilitation trajectory and identify if any common patterns are arising throughout RTS.  

7.2 Implications for the sports industry  

Effective rehabilitation program design, implementation and evaluation require consideration of the 

whole rehabilitation system. To this end, using a complex systems approach has been recommended in 

sports medicine (Bittencourt et al., 2016). Specifically, studying complex systems provides compelling 

concepts for capturing useful information about the world, including rehabilitation and sports injuries 

(Bittencourt et al., 2016). 

To encourage clinicians to use the complex systems approach, Chapter Four translated the 

concepts and jargon of the complex systems theory into common languages and supplemented them 

with relevant clinical examples. Analysing data with a complex systems approach offers valuable 

insights into rehabilitation, and Chapter Four presented several key aspects to consider, such as 

emergence, non-linearity, tipping point, adaptation and feedback. Understanding these features is 

essential to predict and describe the behaviours of complex systems, which may aid decision making.  

Chapter Five then proposed a new framework for RTS decisions which suggests clinicians 1) 

zoom into the methodological traps in clinical testing, 2) zoom out to identify the cognitive process, 

and 3) gain a perspective of the rehabilitation systems and align priority with other relevant stakeholders 
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(athlete, coach, management). This framework encourages clinicians to harness the complex systems 

approach and look at the broader rehabilitation system from a “big picture” perspective (Hulme et al., 

2017). This may help clinicians re-think the array of contributory factors that impact the rehabilitation 

outcome and progress. Sometimes, reforming and enhancing systems may be more effective than 

modifying the determinants of performance at the individual (Hulme et al., 2017). As an example, in 

Chapter Five, the change point univariate method indicated that most wellness variables (mood, sleep 

and soreness) reached their change points during the modified training session, which was when the 

athlete integrated with the main squad training in a modified capacity. Based on this finding and through 

the lens of the complex systems, clinicians may investigate the factors associated with the meaningful 

change points and develop protocols at the team or organisational level to facilitate rehabilitation. For 

instance, allowing injured players to get involved with some form of main squad activities (e.g., ball or 

non-ball training and team building activities) as early as possible. 

Part 2 of this thesis aimed to improve data analysis to inform decisions. While the use of 

complex systems approach has been recognised as theoretically important to sports medicine, it remains 

challenging to implement these concepts in applied sports for multiple reasons. First, the sheer volume 

of data from different sources increased the complexity of the decision. Second, conventional analysis 

methods often assume linearity and focus on identifying one or more risk factors in isolation (van Dyk 

et al., 2016). Assuming linearity between factors and outcomes, and not accounting for the complexity 

rooted within findings may produce contradicting results (van Dyk & Witvrouw, 2020). To this end, 

the analytical methods presented in Part 2 may contribute by better capturing the multi-component 

patterns of human biopsychosocial behaviours and the dynamics of injury and rehabilitation with a 

multivariate approach.  

A multivariate approach is preferable when examining the nonlinear relationships between 

variables because it allows clinicians to consolidate multiple data from different sources. By analysing 

multiple data types simultaneously, it may help to increase work efficiency and reduce the cognitive 

workload of interpreting. As demonstrated in Chapter Five, a multivariate change point method can 

aggregate the change points of multiple metrics and simplify them into a common change point. 
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Therefore, the clinician could refer to two common change points to summarise the overall changes in 

the four wellness metrics and the five running performance metrics. 

These analytical methods are used to complement clinicians’ existing clinical knowledge. For 

example, clinicians are generally aware of the principles of progressive loading on a hamstring muscle 

after injury. However, it can be challenging for them to analyse the nonlinear relationship between 

variables without the use of analytical methods (e.g., hamstring strength, the number of accelerations 

performed during training, and subjective stress levels). To this end, the association rule method 

(Chapter Six) provided another means of aggregating multivariate information. These rules are simple, 

intuitive and human-readable, meaning that they are user-friendly to clinicians who may have less 

training in computer-based analytics. Furthermore, clinicians can modify the content and length of the 

rules to suit their operational needs and preferences. Specifically, clinicians can choose to include 

information they believe to be valuable in the rules and decide how many pieces of information they 

would like to include. For example, some clinicians may prefer excluding the wellness information, 

while others may prefer including heart rate variability as a mean to assess stress levels. In addition, 

some clinicians may choose longer rules with more comprehensive information, while some prefer 

shorter rules for better applicability.  

The exponential growth in data collected through advancements in sports technology presents 

exciting opportunities for improved analysis and understanding of complex systems in sports medicine. 

While univariate and linear approaches to data analysis may have been sufficient in the past, the 

increasing size and complexity of datasets necessitate the adoption of multivariate analytical methods, 

such as the change point and association rule methods. These techniques have the potential to uncover 

crucial combinations of variables that may impact outcomes, providing a deeper understanding of the 

system than previously possible. As demonstrated in Chapter Six, the use of analytical methods can 

reveal underlying relationships between variables that may contribute to increased muscle soreness 

post-training, offering valuable insights for the planning and design of rehabilitation programs.  

The change point and association rule methods provide versatile solutions for analysing high-

order interactions and nonlinear relationships presented in sports medicine. When using the analytical 
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methods, it is advisable for practitioners to adjust the parameters of the algorithms based on the specific 

context and research question, in order to optimise their results and ensure the validity of the analysis. 

For example, in Chapter Five, clinicians were recommended to adjust the parameters of the change 

point algorithm based on the context and the purpose. The number and the location of change points 

discovered depend highly on the parameters of 1) the maximum number of change points and 2) the 

minimum length of the segment. Similarly, for the association rule approach in Chapter Six, clinicians 

also need to adjust the parameters based on their preference for 1) minimum support, 2) minimum 

confidence, and 3) the rule length. 

Of paramount importance within this thesis is not only the theoretical understanding of the 

complex systems and machine learning techniques, but the practical “how-to” aspect of integrating the 

above knowledge into daily operations. To help clinicians consolidate the knowledge acquired and 

apply them effectively in practice, clinicians can use the Cynefin framework as a reference guide 

(Snowden & Boone, 2007). The Cynefin framework was developed to help leaders understand their 

challenges and to make decisions based on the context, which includes clear, complicated, complex, 

chaotic and a centre of confusion. Readers may refer to Snowden & Boone (2007) for further details. 

Based on the Cynefin framework, when clinicians make decisions with a complex systems approach, 

they may consider using the "probe-sense-respond" strategy: Clinicians can first probe the system by 

implementing a rehabilitation program based on the injury, RTP goals and timeline. Subsequently, 

clinicians can sense athletes’ performance progress by collecting data from clinical assessments (e.g., 

range of motion), and physical performance tests (e.g., leg strength). Moreover, clinicians can gather 

feedback from the athletes regarding their pain levels and perceived wellness. Clinicians can then 

respond to the data collected by analysing the datasets to identify patterns that are most effective in 

reducing pain and promoting recovery. Machine learning, through data analysis and descriptive and 

associative modelling, can find hidden patterns, predict recovery trajectories, and provide timely 

feedback to athletes and clinicians during rehabilitation sessions, as discussed earlier. For example, in 

Chapter Five, the change points suggested clinicians to monitor the athlete’s athlete’s sleep quality 

closely during the early rehabilitation phases because sleep quality takes longer than stress to reach the 
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change points. In Chapter Six, the association rule approach suggested that when the athlete had poor 

sleep the previous night, clinicians may manipulate the muscle soreness post-training by adjusting the 

running intensity (metre per minute) and the number of decelerations in the training session. If certain 

rehabilitation program or strategies consistently lead to better outcomes or patterns, clinicians can 

prioritise and emphasis them. The "probe-sense-respond" approach is particularly suited for complex 

systems because it encourages adaptive response based on the patterns and rules discovered. This 

methodology encourages continual adjustments, which resonate with the inherent dynamism 

characteristic of complex systems.  

7.3 Developing decision support systems 

Data-informed decision support systems may enhance the accuracy and speed of clinicians' decision-

making processes, provided that these systems can access sufficient high-quality data and employ the 

most appropriate methodology  (Robertson, 2020; Robertson, Bartlett, et al., 2017). Building on this 

notion, there are two key advantages to consider: First, objective data analysis may provide an unbiased 

evaluation of the high volume of complex data, which can help overcome human cognitive limitations, 

heuristics or biases (Schelling & Robertson, 2020). Second, data analysis techniques can determine 

complex nonlinear interactions within large datasets over a period of time. This may be attractive for 

clinicians working in professional sports because large, multivariate datasets are increasingly common 

due to the rapid development of sports technology. By leveraging these data analysis techniques, 

clinicians can not only make more informed decisions but also transcend the limitations that human 

cognition can impose (Robertson & Joyce, 2019). 

The two methods introduced in Part 2 are likely to fit in clinical settings as decision support 

aids because both approaches can explain the reasoning behind the output and are intuitive. The success 

of a decision support aid hinges on the transparency of the algorithm, that is, whether the clinician can 

understand and explain the verdict generated by the algorithm (Lipton, 2017; Watson et al., 2019). If 

the clinician does not understand the rationale behind the system’s output, they may be skeptical of the 

result and, therefore, reluctant to adopt the system in practice (Schelling & Robertson, 2020). For a 
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decision support aid to be used in a clinical setting, quality, practicability and interpretability are 

essential (Bullock et al., 2021). There is value in developing decision aids because decisions made using 

decision aid are generally more systematic and less prone to human cognitive bias (Sutton et al., 2020). 

Importantly, the key essence of this thesis is not to remove the role of humans in the decision-

making process but to be better supported and complemented by computational tools. Complex systems 

allow clinicians to view rehabilitation with a broader perspective. However, this would be extremely 

difficult to achieve without the support of computational analytical tools. This thesis emphasised the 

supporting role of analytical tools in consolidating rehabilitation data and presented clinicians with user-

friendly visualisations that may support their clinical judgement. In addition, the tools and techniques 

presented in Part 2 of this thesis carry the overarching objective of innovating and creating novel 

solutions to improve RTS decision. Sporting organisations may consider adopting these analytical 

methods to gain a performance edge over their competitors. In short, the implementation of this thesis 

is intended to call for a paradigm shift towards the complex systems approach, followed by providing 

tools that may support, but not replace, clinicians’ decisions.  

7.4 Broader applications 

Football (soccer) was used as an exemplar sport to demonstrate the applications of methods (change 

point and association rule). The framework and methodologies throughout this thesis, however, can be 

extended to other sports. Similar data capture techniques, such as GNSS tracking devices and athletes’ 

monitoring tools, are commonly used across other field sports, such as Australian Football (Teune et 

al., 2022a) and field hockey (Jennings et al., 2012). Thus, the framework and methodologies may be 

extended to these sports. Adjustments to methodologies are required when working with sports that 

involve more upper limbs, such as baseball. In this case, clinicians may measure the pitching velocity 

and the number of pitches performed instead of the running performance metrics (Dowling et al., 2020).  

Although a case of lower limb injury of a football player was used throughout Part 2, the 

methodologies described can be applied to most lower limbs and upper limbs injuries. Clinicians are 

encouraged to use their experiential knowledge to guide adaptions of the framework and methodologies 
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within this thesis. For example, when managing a shoulder injury, clinicians may perform the Athletic 

Shoulder test and monitor the change in upper body isometric strength throughout RTS (Ashworth et 

al., 2018). 

 With the development of sports technology and wearable technology, clinicians can integrate 

more data types relating to other aspects of health and performance into these analyses. For example, 

data from wearables (e.g., heart rate variability and joint kinematics) and other questionnaires (e.g., 

personality and mental health) could also be included. These data may be measured and included within 

the same models and permit a deeper understanding of the interactions between variables. For example, 

clinicians may track the athlete’s mental health throughout the RTS process and identify how it may be 

associated with performance output. This knowledge may also inform session design, such as how to 

modify the training sessions and better support the athlete when the athlete is mentally stressed. 

Furthermore, these data may provide additional contextual information when evaluating the athlete’s 

readiness for RTS. This kind of analysis may become more feasible as sports technology that facilitates 

automatic data collection continues to evolve and implement widely. 

The analytical techniques presented within this thesis allow more data types to be analysed 

together. As such, it may encourage collaboration between sports disciplines, which is advantageous in 

sports science and medicine (Browne et al., 2021; Dijkstra et al., 2014; Woods et al., 2021).  To RTPerf 

after injury, athletes need to undergo rehabilitation and develop athletic qualities, including physical, 

mental, technical and tactical skills. In this process, the close collaboration between multiple high-

performance staff is highly desirable, including but not limited to technical and tactical coaches, 

physiotherapists, sports scientists, strength and conditioning coaches, psychologists and nutritionists. 

One way to facilitate collaboration and communication is to integrate relevant data and present them 

together. Part 2 demonstrates how physical performance and wellness data can be combined and 

analysed to inform RTS decisions. Exemplar visualisations of the results may be used as a platform for 

high-performance staff to visualise data and discuss the appropriate management for RTS. In summary, 

many opportunities exist to adapt this thesis's decision-making framework and analytical techniques to 

elevate RTS decision quality. 
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Future directions 

The use of complex systems approach as the theoretical lens in RTS is still in its infancy and requires 

time to mature. This thesis has presented multiple avenues for future research. There is scope to 

investigate further how these tools and frameworks may be transferred to the applied setting and their 

effect. First, future work can compare the clinicians’ decisions with and without analytical tools to 

examine the efficacy of analytical tools. If clinicians demonstrate superior performance compared to 

decision-supporting systems, researchers need to further improve the methodology. Nevertheless, the 

call for methodological improvement is constantly required, especially in light of the continuous influx 

of higher-quality data as a result of technological development. As better and more data becomes 

available, it will become increasingly challenging for clinicians to outperform the analytical tools. A 

research design using randomised control trials may be conducted to compare the outcomes. However, 

the feasibility of this type of study may be limited in applied settings, for example, in high-performance 

sports. Consequentially, qualitative studies may also be considered. Second, future research may also 

build on current work and harness real-time information feedback to further increase the analytical 

tools’ functions. For example, real-time feedback may be included in the change point analysis in 

Chapter Five. This real-time feedback may signal to clinicians when an athlete’s rehabilitation 

behaviour is critically drifting from expectation and requires adjustment to the program. As technology 

and analysis in sports rehabilitation advance, there may be metrics (maybe other than physical 

performance and wellness) or algorithms that can support real-time decision making. 

The analytical techniques within this thesis only represented two of the many other types of 

analytics. They may serve as a catalyst to generate and support novel approaches to RTS decisions. 

However, the applicability and practicability of using other analytical techniques remain largely 

unexplored in sports medicine, such as classification, agent-based modelling, network analyses and 

dynamic systems analyses (Peterson & Evans, 2019). Researchers may continue to explore other 

innovative methods that can simultaneously analyse the dynamic interaction at multiple levels and 

among variables of different groups.  
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In preparing a sports organisation and clinicians to be comfortable making RTS decisions with 

a complex systems approach, several competencies may be helpful. For example, it may be ideal for 

clinicians to have some basic understanding of analytics, including the theoretical knowledge of 

machine learning techniques (Rein & Memmert, 2016). These skills are often not a regular part of 

professional discipline training and education, but the knowledge may support clinicians to use 

advanced tools in applied settings and be aware of the limitations (Bullock et al., 2022). However, it is 

also crucial to recognise that clinicians alone are not sufficient for conducting these analyses effectively. 

It is strongly advisable to engage experts who possess specialised knowledge in areas such as data 

science, statistics and mathematics. These experts can play a pivotal role in bridging the gap between 

various disciplines and devising innovative research methodologies, particularly through collaborative 

endeavours. To foster these advancements, I strongly encourage future research teams to adopt a robust 

multi-disciplinary approach, with clinicians, high-performance staff, and data scientists, collectively 

working in synergy to derive meaningful insights from complex datasets (Casals & Finch, 2018). 

 

7.5 Conclusions 

This thesis may provide clinicians with methodologies to improve decision-making quality and 

analysis. The specific conclusions of this thesis are: 

1. Clinicians may improve RTS decisions from two perspectives: improving decision-making process 

and data analysis. 

2. There are different decision-making frameworks, and they are associated with various potential 

biases. Based on the decision-making framework used, there are strategies to help clinicians 

mitigate biases and potentially improve decision-making process. 

3. Clinicians are recommended to view athletes with a complex systems approach, recognise the 

complex nature of rehabilitation and identify the interaction between various variables. This may 

help clinicians to understand the “big picture” of the problem. 
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4. Analytical methods congruent with a complex systems approach may help clinicians identify the 

interaction between variables and exploit unobvious patterns within a large dataset.  

5. The application of analytical methods proposed in this thesis may help clinicians aggregate multiple 

data types, accommodate complex systems and present them in intuitive visual graphs. 

6. These analytical methods can help clinicians move to multivariate nonlinear analysis, which may 

better represent the complex systems in sport and rehabilitation. 

7. Future work could focus on examining the effect of the decision-making framework and the use of 

various analytics methods in daily operations.  
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9 Appendices 

Figure 9.1 Infographics for decision-making framework 1 

 

Figure 9.2 Infographics for decision-making framework 1 (continue) 
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Figure 9.3 Study 2 featured in Football Medicine and Performance issue 38, pg 10-11 
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Figure 9.4 Infographics for Characteristics of Complex Systems in Sports Injury Rehabilitation 

 


