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A B S T R A C T   

In the animal kingdom, a mutually-beneficial ecosystemic coexistence and partnership in predation between 
wolves and ravens, known as the wolf-bird relationship, is observed in various cultures. The Wolf-Bird Optimizer 
(WBO), a novel metaheuristic algorithm inspired by this natural zoological relationship, is proposed. This 
method is developed based on the foraging behaviors of ravens and wolves, wherein the intelligence of ravens in 
finding prey and sending signals to wolves for assistance in hunting is considered. Furthermore, a framework for 
resource tradeoffs in project scheduling using metaheuristic algorithms and the Building Information Modeling 
(BIM) approach is established in this research. For statistical analysis, the algorithms are independently run 30 
times with a preset stopping condition, enabling the calculation of descriptive statistical metrics such as mean, 
standard deviation (SD), and the required number of objective function evaluations. To ensure the statistical 
significance of the results, several inferential statistical methods, including the Kolmogorov-Smirnov, Wilcoxon, 
Mann-Whitney, and Kruskal-Wallis tests, are employed. Additionally, the capability of the proposed algorithm in 
solving resource tradeoff problems in four construction projects is assessed. The performance of the WBO al
gorithm is also evaluated in two benchmark construction projects, with the results indicating the algorithm’s 
ability to produce competitive and exceptional outcomes regarding tradeoffs.   

1. Introduction 

Optimization is selecting the optimal solution from a collection of 
feasible alternatives under specified criteria. It is used to make decisions 
in various fields, including engineering, management, economics, and 
finance. Generally, real-world problems are classified as discrete, 
continuous, constrained, or unconstrained problems. However, it is 
often challenging to solve specific problems using traditional mathe
matical programming techniques such as the fast steepest descent, 
sequential quadratic programming, conjugate gradient, and quasi- 
Newton methods. In other words, although classical methods guar
antee the optimal solution, they remain efficient only for small-scale 
problems, demanding significant computing work for larger-scale 
ones. Hence, in recent years, metaheuristic optimization algorithms 

have gained much popularity in different fields of science and engi
neering because they can produce optimal solutions to complex real- 
world problems more efficiently [1–3]. 

1.1. Category of metaheuristic algorithm 

Glover suggested the term metaheuristic for the first time in 1986, 
which consists of a core word, i.e., heuristic, and a prefix, i.e., meta, both 
of which have Greek roots. The term ’heuristic’ is derived from the 
Greek word "heuriskein," which means " to find, " and ’meta’ implies 
"beyond the usual or natural limitations of anything." However, the 
advantages of metaheuristic algorithms are four folds: (i) they can avoid 
local optimums; (ii) they are generally based on relatively simple con
cepts and have straightforward implementations; (iii) they do not 
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require gradient information; and (iv) they may be used to solve a wide 
range of problems across many fields. In addition, because meta
heuristics are computer-based, progressive increases in the processing 
capacity of modern computers have hastened their development [1–4]. 

Generally speaking, metaheuristics can be categorized into two pri
mary groups: (i) single-solution-based methods (e.g., the Tabu Search 
[5] and micro-canonical annealing [6]), in which the search process 
begins with a single solution candidate, which is then improved 
throughout iterations; and (ii) population-based methods, which carry 
out the optimization procedure utilizing a set of possible solutions 
(population), in which the search process begins with a random initial 
population (many solutions), thereby ameliorating the population over 
iterations. In other words, single-solution-based algorithms are consid
ered useful in local search, while population-based algorithms are more 
exploration-oriented [7–9]. The latter category could be divided into 
four main classes:  

• Evolutionary Algorithms (EAs): They simultaneously conduct the 
search process utilizing numerous initial points. They are well-suited 
for problems with stochastic features, uncertainty, or fitness under 
noise conditions [10]. The genetic algorithm (GA) based on the 
Darwinian theory of evolution is one of the renowned 
population-based metaheuristic algorithms introduced by Holland 
[11], in which the critical operators of GA are selection, crossover, 
and mutation [12]. The Differential Evolution (DE) algorithm is 
another prominent stochastic population-based algorithm for global 
optimization [13,14]. Furthermore, as a novel sub-area of EAs, ge
netic programming has gained substantial popularity over the past 
few decades, proposed for automatic programming and machine 
learning [15].  

• Swarm Intelligence (SI): Swarm-based algorithms draw inspiration 
from the communal behaviors observed in various species, such as 
ants, bees, birds, fish, and termites. Two notable algorithms in this 
category are Particle Swarm Optimization (PSO) [16] and Ant Col
ony Optimization (ACO) [17]. PSO mirrors the flocking behavior of 
birds, while ACO simulates the foraging patterns of ant colonies [18]. 
The term "swarm intelligence" was first coined by Beni and Wang 
[19] in 1993, describing the emergent collective wisdom of simple 
agent groupings [20]. Other algorithms in this realm include the 
Border Collie Optimization (BCO) [21], Artificial Bee Colony (ABC) 
[22,23], Monarch Butterfly Optimization (MBO) [24], Fire Hawk 
Optimizer (FHO) [25,26], Stochastic Diffusion Search (SDS) [27], 
Black Widow Optimization Algorithm (BWO) [28], Flower Pollina
tion Algorithm (FPA) [29], Glowworm Swarm Optimization (GSO) 
[30], and Moth Search Algorithm (MSA) [31].  

• Physics-based algorithms: Drawing inspiration from the principles 
of physics, including heat transfer, gravitational force, particle dy
namics, and wave propagation, various algorithms have been 
developed. Among these, the Simulated Annealing (SA) algorithm 
stands out; it’s modeled after the statistical mechanics of annealing 
in solids and has garnered significant attention in the field [32]. 
Another prominent physics-based algorithm is the Big-Bang Big-
Crunch (BBBC), which is grounded in theories concerning the uni
verse’s inception and progression [33]. Furthermore, some of the 
recently proposed algorithms in this category are the Weighted 
Vertices Optimizer (WVO) [34], Chaotic Stochastic Paint Optimizer 
(CSPO) [35], Atomic Orbital Search (AOS) [36,37], Energy valley 
optimizer [38], Material Generation Algorithm (MGA) [39–41], 
Cyber-physical Systems (CPS) [42], Archimedes Optimization Algo
rithm (AOA) [43], Charged System Search (CSS) [44–46], Equilib
rium Optimizer (EO) [47], Lichtenberg Algorithm (LA) [48], 
Thermal Exchange Optimization algorithm (TEOA) [49], Lévy Flight 

Distribution (LFD) [50], Vibrating Particles System (VPS) [51,52], 
and some other algorithms [53–57].  

• Human and animal behavior-based algorithms: They are inspired 
by some specific behaviors of individuals in society; examples 
include Human Behavior-Based Optimization (HBBO) [58], Squid 
Game Optimizer (SGO) [59], Soccer League Competition (SLC) [60], 
Waterwheel Plant Technique (WWPA) [61], Teach
ing–Learning-Based Optimization (TLBO) [62], Spider Wasp Opti
mization (SWO) [63], Mountain Gazelle Optimizer (MGO) [64], 
Harmony Search (HS) [65], Imperialist Competitive Algorithm (ICA) 
[66], Colliding Bodies Optimization (CBO) [67], and Interior Search 
Algorithm (ISA) [68]. 

However, multi-objective metaheuristics are sophisticated algo
rithms designed to tackle optimization problems involving multiple, 
often conflicting, objectives [69,70]. Unlike single-objective optimiza
tion, which seeks to find the best solution according to a singular cri
terion, multi-objective optimization acknowledges the complexity of 
real-world scenarios where trade-offs must be made between different 
goals. These algorithms aim to find a set of Pareto optimal solutions, 
each of which represents a different trade-off among the objectives. In 
these solutions, no objective can be improved without worsening at least 
one other, embodying the principle of non-dominance. This approach is 
crucial in fields like engineering, economics, and environmental plan
ning, where decisions often involve balancing competing interests 
[71–73]. 

The development of multi-objective metaheuristics involves inte
grating mechanisms to simultaneously handle multiple objectives and 
maintain a diverse set of solutions. These algorithms typically include 
specialized operators to ensure diversity and convergence towards the 
Pareto front. Key challenges in multi-objective metaheuristics include 
maintaining a balance between exploration (searching new areas of the 
solution space) and exploitation (refining existing solutions), as well as 
effectively managing the increased computational complexity. Popular 
examples include algorithms like NSGA-II, MOMGA [74], MOAVOA 
[75], MOAOS [76], MOTEO [77], MOSPO [78], MOCryStAl [53], and 
MOEA/D, each employing unique strategies to address the intricacies of 
multi-objective optimization. The effectiveness of these algorithms is 
assessed based on their ability to approximate the true Pareto front and 
maintain diversity among the solutions. 

Given an initial random population, metaheuristics can effectively 
and efficiently explore the optimization search space by avoiding locally 
optimal solutions while converging to a better solution [79,80]. The 
search process should be sufficiently intelligent to properly assess 
different regions of the search space and expand into previously unex
plored regions with high-quality solutions. Exploration and exploitation 
are terms used to describe these processes. Exploration refers to finding 
new regions in the search space to find new solutions. On the other hand, 
exploitation concerns the enhancement process of existing solutions to 
achieve better candidates around the existing ones [81–84]. 
Population-based metaheuristic algorithms can balance the exploitation 
and exploration phases of the search space to achieve high efficiency. 
The exploration phase allows the algorithm to check several possible 
regions of the search space and generate new solutions to avoid the local 
optima dilemma [85–87]. Exploration refers to introducing a series of 
random adjustments through multi-armed bandit schemes before 
returning to the original recipe, while exploitation refers to following a 
recipe until it ceases to be successful [88–91]. A proper balance of these 
two phases may guarantee that the global optimum is achieved. 

Even though there are several metaheuristic algorithms, new ones 
are continually required. According to the No Free Lunch (NFL) hy
pothesis, no one approach exists for finding an optimal solution to all 
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optimization problems. As a result, developing new metaheuristic 
optimization algorithms is still a work in progress [92–95]. The scien
tific community is benefiting from developing new metaheuristics, 
which may enhance the accuracy or efficiency of the optimization pro
cess for a range of problems. Consequently, this statement motivates our 
efforts to propose a novel metaheuristic algorithm inspired by coexis
tence and partnership in the predation of wolves and ravens in nature. 

Motivated by this practical need, we propose a novel population- 
based metaheuristic optimization algorithm named the Wolf-bird Opti
mizer (WBO), inspired by the mutually-beneficial ecosystemic coexis
tence and partnership in the predation of wolves and ravens in nature. 
The proposed algorithm finds the optimal solution from a population of 
candidate solutions modeled in three steps as follows: (1) a group of 
ravens in nature is attempting to find some prey in their neighborhood; 
(2) ravens send intelligent signals to wolves to inform them of the 
location of the prey; and (3) the group of wolves conforms the signals to 
reach the prey. This inspirational concept is used for the first time in this 
research to develop a new metaheuristic algorithm. Furthermore, the 
complexity levels of the test functions utilized in this study are also 
evaluated for the first time. 

1.2. Resource trade-off problems 

Highways, housing developments, high-rise structures, tunnel net
works, and housing projects are all popular places to see repetitive 
construction projects. They are defined by repeated activities made by 
each unit [96]. For the majority of construction operations, such as 
equipment sizes, construction techniques, the number of employees, 
overtime, and the kind of materials, there are various construction 
choices accessible during the planning phase of a project. Consequently, 
numerous resources may be employed to perform project activities in 
difficulty with project planning. We are faced a discrete decision-making 
issue in which the resource allocations determine the choice of projects. 
The number of resources devoted to the activity will affect the project’s 
total cost and execution time [97,98]. Hence, Time-Cost Trade-off (TCT) 
problems are one of the prominent and challenging problems among 
project managers. In other words, construction projects’ time and 
profitability are critical criteria that often determine project success or 
failure. Project managers and planners should examine and optimize 
resource usage choices and options to achieve these two crucial goals 
[99]. 

Construction managers cannot do an automated analysis of the al
ternatives using popular project planning tools like Primavera P6 or 
Microsoft Project. As a result, while planning a schedule, construction 
managers have just one option for each activity [100]. Eshtehardian, 
Afshar [101] proposed an approach for TCT problems using GA and 
fuzzy logic theory; the authors concluded that the mentioned method 
could accelerate the decision-making process in construction projects. 
Eshtehardian, Afshar [102] presented a novel approach to TCT problems 
in an uncertain environment considering fuzzy logic theory. Kalhor, 
Khanzadi [103] used a non-dominated sorting version of ACO (NAACO) 
in solving the TCT problems. 

However, in recent contracts, performance quality has been consid
ered alongside time and cost. Time cost quality tradeoff (TCQT) prob
lems arise in routine building projects, and they aim to find a schedule 
that strikes a good balance between the project’s competing priorities of 
effectiveness, cost, and quality [104]. For this purpose, researchers have 
developed and proposed a plethora of methods to solve the TCT prob
lems, such as neural networks [105], dynamic programming [106,107], 
linear programming [108], and fuzzy logic [109]. However, in recent 
years, metaheuristic algorithms have gained much popularity among 
academics for dealing with tradeoff problems in the construction 

industry. Since they have fewer control parameters, only two common 
control parameters (population size and the maximum number of 
function evaluations) must be modified for metaheuristic algorithms. 
Wood [110] solved a TCQT problem in a gas and oil project employing a 
fuzzy memetic optimization algorithm. Kosztyán and Szalkai [111] 
proposed a matrix-based TCQT model supporting the hybrid project 
management (HPM) technique. Wang, Abdallah [100] analyzed the 
TCQT problem in projects considering 20 activities and using 
Non-Dominated Sorting Genetic Algorithms. The authors claimed that 
the proposed model could find the shortest execution time, cost, and 
maximum quality. El-Rayes and Kandil [112] proposed a multi-objective 
optimization algorithm to solve the TCQT problems in highway con
struction projects. Adebayo [113] employs the Wavelet Local Multiple 
Correlation (WLMC) to analyze the interplay between China’s economic 
growth, coal usage, natural resource consumption, and CO2 emissions 
from 1970 to 2020, revealing that each of these elements consistently 
boosts CO2 emissions, exacerbating environmental harm. Ghasemi, 
Mousavi [114] presents a new mathematical model for production 
scheduling in uncertain environments, incorporating decision-making 
methods, multiple execution modes, and trade-offs between cost, time, 
and quality, with enhanced activity quality achievable through 
reworking. Son and Khoi [115] introduced the adaptive selection slime 
mold algorithm (ASSMA) for managing repetitive projects, merging 
tournament selection and the slime mold algorithm, and demonstrates 
its efficacy in a rural water pipeline project, outperforming the previous 
data envelopment analysis (DEA) method, providing project managers 
with a superior optimization tool. Furthermore, Yılmaz and Dede [116] 
integrated the non-dominant sorting method into Rao-1 and Rao-2 al
gorithms for addressing the time-cost trade-off problem in construction 
planning, with findings showing the NDS-Rao-2 algorithm outperforms 
previous models and offers multiple optimal solutions, making it a 
promising option for such combinatorial problems. 

Furthermore, some researchers have considered other factors in TCT 
problems, such as risk, carbon dioxide emission, energy, etc. Tran and 
Long [117] proposed adaptive multiple objective DE algorithms to solve 
time, cost, and risk tradeoff (TCRT) problems. The authors claimed that 
the proposed algorithm could reduce the risks in projects. Liu, Tao [118] 
proposed a particle swarm optimization model to help project managers 
solve the cost and CO2 emission tradeoff problems in projects. To solve 
the time–cost–environmental impact tradeoff (TCET) problems, Cheng 
and Tran [119] suggested the opposition-based multiple-objective dif
ferential evolution (OMODE). 

1.3. Building Information Modeling (BIM) 

How buildings are conceptualized, built, constructed, and operated, 
has been drastically altered as a result of Building Information Modeling 
(BIM), a cutting-edge and highly successful technology and technique 
[120]. BIM’s recent growth has opened up new possibilities for 
enhancing the construction process and using emerging technology 
across the board, from planning to design to construction to mainte
nance, in both buildings and infrastructure [121,122]. BIM is described 
as a systematic approach to managing and distributing information 
generated throughout a project’s design and operational phases [123]. 
At its core, BIM facilitates the exchange, understanding, and utilization 
of metadata associated with computer-aided design (CAD) models. This 
aids various stakeholders involved in both the construction and opera
tional processes [124]. Incorporating BIM during the initial design 
stages of a project offers a unique advantage in project management 
[125]. Unlike traditional CAD drawings, BIM serves as a comprehensive 
digital repository, capturing multidisciplinary construction details and 
graphical attributes of building models. BIM streamlines the 
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data-sharing process for project teams, minimizing the need to rebuild 
models and expediting the design process with added iterations [126]. 
Essentially, BIM elevates design and construction quality, reduces 
project time and costs, and presents a more efficient and profitable 
approach to construction management [127]. 

When formulating a novel metaheuristic algorithm, it’s imperative to 
rigorously evaluate its efficacy by juxtaposing it against a gamut of well- 
established algorithms under consistent experimental conditions, 
particularly across an array of homogenous problems. From a statistical 
vantage point, a sample size of 30 independent optimization runs is 
deemed appropriate to derive crucial statistical metrics. These metrics 
encompass the mean, standard deviation, and the indispensable count of 
objective function evaluations. An established stopping criterion, 
grounded on 150,000 objective function evaluations coupled with a 
stringent tolerance threshold of 1 × 10− 12 for the globally optimal 
values of the assessed problems, has been integrated into the evaluation 
framework. For a more nuanced comparative analysis, various recog
nized statistical methods, such as the Wilcoxon, Kolmogorov-Smirnov, 
Kruskal-Wallis, and Mann-Whitney tests, are employed. Notably, the 
WBO algorithm is distinguished by its rapid convergence dynamics, 
minimized objective function evaluations, and robust performance 
across a spectrum of problems. Nonetheless, it is essential to highlight 
the intrinsic limitations of the WBO. Unlike deterministic algorithms, 
the WBO, in alignment with its metaheuristic counterparts, is funda
mentally an approximation-based method, rendering it incapable of 
producing exact solutions. 

A new, nature-inspired algorithm has been introduced in this 
research. Three different construction projects, including homes and 
infrastructure, have been evaluated using it. It has been demonstrated 
that various project challenges can be effectively addressed by the WBO 
algorithm, representing another significant contribution of this study. 
The fundamental contributions of this research work are as follows:  

• The coexistence behavior and partnership of wolves and ravens in 
nature are examined and analyzed to develop an appropriate math
ematical model for a novel optimization algorithm.  

• Based on this model, a unique nature-inspired algorithm, namely the 
Wolf-Bird Optimizer (WBO), is developed, in which the process of 
solution updating depends on the intelligent acts of ravens in nature.  

• The performance of WBO is extensively evaluated against resource 
tradeoff problems in some real construction projects.  

• The findings are compared to several established metaheuristic 
algorithms. 

2. Wolf-Bird Optimizer (WBO) 

2.1. Inspiration 

Regarding the elementary ecology texts, organisms interact in three 
primary ways: competition, predation, and mutualism [128]. Mutual
isms are becoming more widely acknowledged as essential to ecological 
system patterns and processes. Mutualisms occur in various ecosystems 
across the globe, and ecologists today recognize that practically every 
species on the planet is engaged in one or more mutualisms, either 
directly or indirectly. For example, animal-mediated pollination and 
seed dispersion are common in tropical forests; the plants profit from the 
pollen and seeds carried by animals, while the animals are typically 
drawn to and rewarded by food [129]. 

Ravens, Corvus corax, belong to the corvid family and are known for 
their long-term monogamy, with partners staying together all year, 
which may be found across the Northern Hemisphere. Despite being 
categorized as a territorial species, mating couples are not socially 

separated and may be pretty social before becoming territorial [130]. 
When ravens are hungry or find food they cannot reach, they yell loudly. 
When their parents return after foraging, juvenile ravens yell; subadult 
and adult nonbreeders yell while faced with food protected by dominant 
species, and adult pair-bonded females yell when begging for food from 
their partners [131]. On the other hand, the raven has adapted to a 
specific eating niche. Its social connections as a carcass expert often 
involve predators. In northern climes, where a carcass may linger 
months rather than days, as in southern climates, the raven may 
confront predators and other ravens frequently and for extended pe
riods. It is reasonable to assume that to survive with others and get food 
from them, and one has developed an inherent sense of caution and the 
ability to predict their responses. Despite the raven’s reputation for 
being clever and intellectual, no studies of its psychological character
istics existed until 1943, when Koehler released a paper claiming that his 
10-year-old pet raven Jakob could count to seven [132]. "You know, 
raven does not seek its food," a Koyukon elder explains. He sluggishly 
obtains his food just by looking for anything already dead [133]. 
Food-associated sounds have been observed chiefly in primates and 
birds and may be used to attract competition, attract possible mates, or 
indicate status. On the other hand, signals may contain information 
about the sender’s motivational state, behavior, or identity and infor
mation about stimuli or events in the environment, such as the location, 
quality, or amount of food [131]. 

However, among different species worldwide, ravens and wolves 
have a remarkable mutualism called "wolf-birds." The most evident 
beneficiaries of the wolf-raven partnership are ravens. According to 
studies, ravens are observed at 100% of wolf carcasses, taking approx
imately two-thirds of the carcass. Predator-scavenger interspecific 
kleptoparasitism, or a relationship between two distinct species in which 
the scavenger benefits from the predator by taking a part of their food, is 
the official title for their interaction. The ravens stay close together, 
detect a wolf’s hunting call, and fly above the hunt. Ravens cannot open 
a carcass on their own; thus, the eyeballs are the only component of the 
carcass that a raven can eat without the aid of the wolves. In this case, 
the raven is the predator the wolf uses [134]. According to anecdotal 
evidence, ravens track wolf packs by following them directly, tracking 
their footprints in the snow, or reacting to vocalizations to identify their 
location [135]. In other words, Ravens are afraid of the carcasses of 
animals they want to eat when they are alone. Is it a genuine fear, or is 
the notion that the raven is useless? Ravens also have difficulty getting 
their hands on meat that has not been prepared. They can only forage on 
the eyeballs or possibly an exposed tongue in an open mouth as far as 
they can go. They will shout "glug-glug-glug" in the vicinity of an un
opened carcass, naturally attracting wolves, who will investigate and do 
whatever the raven wants to get into it. It is advantageous to both of 
them [136]. Raven vocalizations also notify wolves of nearby prey, and 
wolves respond to raven vocalizations. Wolves have also been observed 
following ravens as they fly. If a carcass is too difficult for ravens to peck 
their way through on their own, they will more or less gift it to wolves by 
discovering and bringing them to it is a fantastic example of 
give-and-take. 

2.2. Mathematical model 

This sub-section delves into a comprehensive mathematical depic
tion of the WBO as an optimization algorithm, building upon the stra
tegies elaborated in earlier sub-sections. Initially, the process begins 
with the initialization, wherein the search space is viewed as a specific 
region of the earth. Here, the solution candidates (Xi) are conceptualized 
as ravens and wolves situated within that earthly region. 
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where n indicates the total number of ravens and wolves (solution 
candidates) on a place in the earth (search space); d is the considered 
problem’s dimension; xj

i is the jth decision variable for determining the 
initial position of the ith candidate; xj

i,min and xj
i,max are the lower and 

upper bounds of the jth variable in the ith candidate; rand is a random 
number with a uniform distribution in the range [0,1]. 

Then, the function evaluation is conducted for all of the solution 
candidates in the search space, which demonstrates the Hunger Level 
(HL) of the ravens and wolves as follows: 
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where HLi is the objective function values of ith solution candidate in 
the search space. n indicates the total number of ravens and wolves 
(solution candidates) on a place on the earth (search space). 

In the next step, a random integer number (Nr) is generated in the 
range of [1, n], demonstrating the total number of ravens in the search 
space. Based on the wolf-bird concept in nature, ravens are the hungriest 
creatures trying to search for prey. The solution candidates with the 
lowest objective function values are assumed to be ravens in the search 
space. In other words, the first Nr solution candidates with the lowest HL 
values are considered ravens. The position vectors of the ravens are as 
follows: 

Xr =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Xr
1

Xr
2

⋮
Xr

i

⋮
Xr

Nr

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1
1 x2

1⋯xj
1⋯xd

1

x1
2 x2

2⋯xj
2⋯xd

2

⋮⋮⋮⋱⋮
x1

i x2
i ⋯xj

i⋯xd
i

⋮⋮⋮⋱⋮
x1

Nr
x2

Nr
⋯xj

Nr
⋯xd

Nr

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

{ i = 1, 2,…,Nr.

j = 1, 2,…, d.
(4)  

where Nr indicates the total number of ravens on a place on the earth; d 
is the considered problem’s dimension; xj

i is the jth decision variable of 
ith raven. 

The Hunger Level of ravens is calculated as follows, which are the 
first Nr solution candidates with the highest hunger level (lowest 
objective function values): 

HLr =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

HLr
1

HLr
2

⋮
HLr

i

⋮
HLr

Nr

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, {i = 1, 2,…, Nr (5)  

where HLr
i is the Hunger Level of ith raven, and Nr indicates the total 

number of ravens in the search space. 
Regarding the fact that a total number of Nw or n-Nr wolves also exist 

in the search space; the position vector and hunger level of the wolves 
are as follows: 

Xw =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Xw
1

Xw
2

⋮
Xw

i

⋮
Xw

Nw

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1
1 x2

1⋯xj
1⋯xd

1

x1
2 x2

2⋯xj
2⋯xd

2

⋮⋮⋮⋱⋮
x1

i x2
i ⋯xj

i⋯xd
i

⋮⋮⋮⋱⋮
x1

Nw
x2

Nw
⋯xj

Nw
⋯xd

Nw

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

{ i = 1, 2,…,Nw.

j = 1, 2,…, d.
(6)  

Fig. 1. The schematic presentation of nearby random walk by the best raven to find prey.  
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HLw =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

HLw
1

HLw
2

⋮
HLw

i

⋮
HLw

Nr

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, {i = 1, 2,…,Nw (7)  

where Nw indicates the total number of wolves in the search space; d is 
the considered problem’s dimension; xj

i is the jth decision variable of the 
ith wolf; HLw

i is the Hunger Level of the ith wolf. 
Exploration. 
Each of the ravens in the search space flies across the woods to 

perform an intelligent search of prey to transmit signals to the wolves in 
the neighborhood. In the first phase of the algorithm, the best raven, 
which is the hungriest among other ravens with the lowest objective 
function value (HLr

1), tries to fly around itself because the hungriest 
raven cannot fly around all over the search space due to its higher level 
of hungriness and tiredness (Fig. 1). For this purpose, an intelligent 
random walk is implemented in the WBO as follows: 

X(t)r
= [0, cumsum(2r(t1) − 1 ), cumsum(2r(t2) − 1 ),…, cumsum(2r(tn) − 1 ) ]

(8)  

where cumsum calculates the cumulative sum, n shows iterations’ 
maximum number, t is the step of random walk (iteration in the current 
study), and r(t) elucidates a stochastic function represented as follows: 

r(t) =
{

1if rand > 0.5
0if rand"0.5 (9)  

where t is the step of the random walk (iteration in the current paper), 
and rand shows a random number generated with uniform distribution 
in the interval of [0,1]. 

In order to mathematically model this random walk around the best 
raven, the upper and lower bound of the search space are moved around 
the considered raven to create random steps in the close neighborhood. 
Meanwhile, an intelligent ratio is defined as follows, which mimics the 
tiredness of the ravens during the optimization process regarding the 
fact that ravens cannot fly to far distances regarding their hungriness. 
The mathematical presentation of this aspect is as follows: 

I = 10w t
T

(10)  

where w is a constant determined depending on the current iteration (w 
= 2 when t > 0.1 T, w = 3 when t > 0.5 T, w = 4 when t > 0.75 T, w = 5 
when t > 0.9 T, and w = 6 when t > 0.95 T), t is the current iteration, T 
is the maximum number of iterations. The exploitation precision level is 
adjustable by the constant w. 

Meanwhile, a random integer is created in the range of [1, n], indi
cating the total number of intelligent random walks by the best raven in 
the search space, which demonstrates the total number of preys in the 
search space. The position vectors and the hunger level of the preys are 
as follows: 

Xp =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Xp
1

Xp
2

⋮
Xp

i

⋮
Xp

Np

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1
1 x2

1⋯xj
1⋯xd

1

x1
2 x2

2⋯xj
2⋯xd

2

⋮⋮⋮⋱⋮
x1

i x2
i ⋯xj

i⋯xd
i

⋮⋮⋮⋱⋮
x1

Np
x2

Np
⋯xj

nNp
⋯xd

Np

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

{ i = 1, 2,…,Np

j = 1, 2,…, d
(11)  

HLp =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

HLp
1

HLp
2

⋮
HLp

i

⋮
HLp

Np

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, {i = 1, 2,…,Np (12)  

where Np indicates the total number of prey found by the best raven in 
the search space; d is the considered problem’s dimension; xj

i is the jth 
decision variable of the ith prey; HLp

i is the Hunger Level of the ith 
prey. 

Due to the intelligent act of ravens in nature, they try to control the 
movements of the prey around themselves to determine the position of 

Fig. 2. The schematic presentation of wolves reaching the prey.  

Fig. 3. The schematic presentation of wolves following the ravens.  
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prey with the lowest possible movements, which demonstrates that the 
prey is hungry and is an excellent choice to be captured by wolves. In 
other words, the preys with the lowest movements are the preys with 
higher levels of hungriness, so the best raven tries to move toward the 
prey by conducting the following position-updating process: 

PCP =

∑Np

i=1
XP

i

Np
, i = 1, 2,…,Np (13)  

NewXr
1 = Xr

1 + r1 × Xp
1 − r2 × PCP (14)  

where Np is the number of preys; PCP is the preys’ center point which 
mimics the crowd of prey around the best raven; NewXr

1 shows the 
upcoming position vector of the best raven (Xr

1) as the hungriest raven; 
Xp

1 indicates the hungriest prey with the lowest objective function value; 
r1 and r2 are two random numbers in the range of [0,1]. 

In order to distinguish the behavior of wolves in the search space, the 
total distance (D) between the wolves and the new position of the 
hungriest raven (NewXr

1) is calculated as follows: 

Di =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x2 − x1)
2
+ (y2 − y1)

2
√

, {i = 1, 2,…,Nw (15)  

where Di is the total distance between the lth wolf and the new position 
of the best raven (NewXr

1); Nw is the total number of wolves in the search 
space; (x1,y1) and (x2,y2) represent the coordinates of the wolves and the 
best raven in the search space. 

Then, the wolves try to reach the best raven by paying attention to 
the guggle song of the best raven. For this purpose, the best raven tries to 
send an intelligent signal to the wolves by measuring its overall hun
griness (NewHLr

1). Regarding this intelligent act, if the new hunger level 
of the best raven is higher than its former hunger level or if the new 
objective function value is lower than the former one by considering a 
predefined tolerance of α= 1.05 (NewHLr

1 < αHLr
1), the raven’s signals 

appear to be stronger. In this situation, the wolves try to reach the best 
raven and the hungriest prey by conducting the following position- 
updating process (Fig. 2): 

NewXw
i = XW

i +
r1 ×

NewXr
1 − r2 × Xp

1

Di
i = 1, 2,…,Nw (16)  

where NewXw
i shows the upcoming position vector of the ith wolf (XW

i ); 
NewXr

1 shows the new position vector of the best raven; di is the distance 
between the ith wolf and the best raven; Xp

1 indicates the hungriest prey 
with the lowest objective function value; r1 and r2 are two random 
numbers in the range of [0,1]. 

If the new hunger level of the best raven is lower than its former 
hunger level or if the new objective function value is higher than the 
former one (NewHLr

1 ≥ αHLr
1), the raven’s signals appear to be weaker. In 

this situation, the wolves try to follow the direction of all ravens in the 
search space by conducting the following position updating process 
(Fig. 3): 

RCP =

∑Nr

i=1
Xr

i

Nr
, i = 1, 2,…,Nr (17)  

NewXw
i = XW

i +
r1 × RCP − r2 × Xr

1

Di
i = 1, 2,…,Nw (18)  

where Nr is the number of ravens; RCP is the ravens’ center point which 
mimics the crowd of ravens; NewXw

1 shows the upcoming position vector 
of the ith wolf (XW

i ); Di is the distance between the ith wolf and the best 
raven; Xr

1 shows the position vector of the best raven; r1 and r2 are two 
random numbers in the range of [0,1]. 

Exploitation 
In the second phase of the algorithm, the other ravens, which are not 

the hungriest but are also hungry enough for food search, in the same 
manner, are considered for conducting a position updating process. For 
this purpose, the ravens try to fly all over the search space to find prey 
and send signals to the wolves in the neighborhood. Regarding the fact 
that ravens are among intelligent creatures, the mentioned flight is 
mathematically modeled by using the Lévy flight concept as one of the 
newly developed random walks in which the step lengths are deter
mined by Lévy distribution as follows: 

L(s) ∼ |s|− 1− β (19)  

where 0 < β ≤ 2 is an index. The Lévy distribution should be described 
mathematically in the following Fourier transform. 

F(k) = exp
[
− α|k|β

]
, 0 < β ≤ 2 (20)  

where α is a scale parameter, except in a few specific instances, the in
verse of this integral is complex since it lacks analytical form. The case 
β = 2 corresponds to a Gaussian distribution, while β = 1 leads to a 
Cauchy distribution. For the general case, the inverse integral: 

L(s) =
1
π

∫ ∞

0
cos(ks)exp

[
− α|k|β

]
dk (21) 

It can be estimated only when s is large. We have 

Fig. 4. The schematic presentation of nearby Levy flight by the other ravens to find prey.  
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Fig. 5. Flowchart of Wolf-Bird Optimizer.  
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L(s)→
αβτ(β)sin(πβ

2 )

π|s|1+β , s→∞. (22)  

where τ(z) is the Gamma function. 

τ(z) =
∫ ∞

0
tz− 1e− tdt (23) 

In the case when z = n is an integer, we have τ(z) = (n − 1)!.. 
In exploring unknown, large-scale search space, Lévy flights are 

more efficient than Brownian random walks. Some factors contribute to 
this efficiency, including the variation in Lévy flights. 

σ2(t) ∼ t3− β, 1 ≤ β ≤ 2 (24) 

Brownian random walks have a linear relationship (i.e., σ2(t) ∼ t) 
that rises far quicker than the exponential relationship. It is worth noting 
that a power-law distribution is often associated with scale-free prop
erties, and Lévy flights may therefore exhibit self-similarity and fractal 
behavior. 

For computational purposes, a random integer is created in the range 
of [1, n], indicating the total number of intelligent Levy flights by each of 
the other ravens in the search space, demonstrating the total number of 
preys in the search space (Fig. 4). The position vectors and the hunger 
level of the preys are as follows: 

Xp =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Xp
1

Xp
2

⋮
Xp

i

⋮
Xp

Np

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1
1 x2

1⋯xj
1⋯xd

1

x1
2 x2

2⋯xj
2⋯xd

2

⋮⋮⋮⋱⋮
x1

i x2
i ⋯xj

i⋯xd
i

⋮⋮⋮⋱⋮
x1

Np
x2

Np
⋯xj

nNp
⋯xd

Np

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

{ i = 1, 2,…,Np.

j = 1, 2,…, d.
(25)  

HLp =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

HLp
1

HLp
2

⋮
HLp

i

⋮
HLp

Np

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, {i = 1, 2,…,Np (26)  

where Np indicates the total number of preys found by each of the other 

ravens (solution candidates) on a place in the earth (search space); d is 
the considered problem’s dimension; xj

i is the jth decision variable of the 
ith prey; HLp

i is the Hunger Level of the ith prey. 
Regarding the fact that the preys with the lowest movements are the 

preys with higher levels of hungriness, so each of the other ravens tries 
to move toward the prey by conducting the following position-updating 
process: 

PCP =

∑Np

i=1
XP

i

Np
, i = 1, 2,…,Np (27)  

NewXr
k = Xr

k + r1 × Xp
1 − r2 × PCP k = 2,…,Nr (28)  

where Np is the number of preys; PCP is the preys center point which 
mimics the crowd of prey around the kth raven; NewXr

k shows the up
coming position vector of the kth raven (Xr

k) as one of the other hungry 
ravens; Xp

1 indicates the hungriest prey with the lowest objective func
tion value; r1 and r2 are two random numbers in the range of [0,1]. 

Like the previous stage of the algorithm, the distances of wolves (Di) 
from the other ravens (NewXr

k) in the search space are determined as 
follows: 

Di =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x2 − x1)
2
+ (y2 − y1)

2
√

, {i = 1, 2,…,Nw. (29)  

where Di is the total distance between the lth wolf and the new position 
of the kth raven (NewXr

k); Nw is the total number of wolves in the search 
space, and (x1, y1) and (x2, y2) represent the coordinates of the wolves 
and the ith raven in the search space. 

Finally, the wolves try to reach the other ravens in the search space 
by conducting the following position updating process while a tolerance 
of Beta (1.05) is utilized for this purpose. If NewHLr

k < βHLr
k, the ravens’ 

signals appear to be stronger, so in this situation, the wolves try to reach 
the best raven and the hungriest prey by conducting the following po
sition updating process (Fig. 3): 

NewXw
i = XW

i +
r1 ×

NewXr
k − r2 × Xp

1

Di

{
i = 1, 2,…,Nw
k = 2,…,Nr

(30)  

where NewXw
i shows the upcoming position vector of the ith wolf (XW

i ); 
NewXr

k shows the new position vector of the ravens; Di is the distance 
between the ith wolf and the raven; Xp

1 indicates the hungriest prey with 
the lowest objective function value; r1 and r2 are two random numbers in 
the range of [0,1]. 

If the new hunger level of the raven is higher than the former hun
griest level of the raven by considering the tolerance of Beta 
(NewHLr

k ≥ βHLr
k), the raven’s signals appear to be weaker. In this situ

ation, the wolves try to follow the direction of all ravens in the search 
space by conducting the following position updating process (Fig. 2): 

RCP =

∑Nr

i=1
Xr

i

Nr
, i = 1, 2,…,Nr (31)  

NewXw
i = XW

i +
r1 × RCP − r2 × Xr

k

Di

{
i = 1, 2,…,Nw
k = 2,…,Nr

(32)  

where Nr is the number of ravens; RCP is the ravens’ center point which 
mimics the crowd of ravens; NewXw

1 shows the upcoming position vector 
of the ith wolf (XW

i ); di is the distance between the ith wolf and the best 
raven; Xr

k shows the position vector of the other hungry ravens; r1 and 
r2 are two random numbers in the range of [0,1]. 

Fig. 6. The quality performance index.  
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After the exploration and exploitation phases of the algorithm, the 
boundary violation control is conducted for all of the new position 
vectors while the hunger level of the candidates is also calculated, and 
the best raven is represented as the best solutions candidate of the 
optimization process. The pseudo-code and flowchart of the WBO are 
presented in Algorithm 1 and Fig. 5, respectively. 

Algorithm 1. The pseudo-code of the WBO. 

2.3. Analysis of key variables and processes in Wolf-Bird Optimization 
algorithm 

Firstly, the initialization process and the determination of each 
candidate’s position within the search space are crucial. The decision 
variables xj

i, and their bounds xj
i,max and xj

i,min, define the range and 
granularity of the search space. The random number generation in this 
stage introduces variability and diversity among the solution candi
dates. This diversity is essential for a comprehensive exploration of the 
search space, especially in complex optimization problems where the 
global optimum might be surrounded by multiple local optima. The 
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Table 1 – 
Project Information.  

Number Activity Logical Mode 1 Mode 2 Mode 3 Mode 4 Mode 5    

Time Cost $ Quality 
% 

Risk CO2 Time Cost $ Quality 
% 

Risk CO2 Time Cost $ Quality 
% 

Risk CO2 Time Cost $ Quality 
% 

Risk CO2 Time Cost $ Quality 
% 

Risk CO2 

1 Foundation - 26.00 8100.00 90.65 14.97 225.33 24.00 7850.00 89.20 12.00 198.45 20.00 8120.00 92.10 12.50 187.52 15.00 8400.00 78.90 12.90 98.32 13.00 9408.00 74.96 16.31 108.15 
2 Retaining wall 1FS+ 1 15.00 2252.00 94.91 13.22 137.97 13.00 2150.00 94.51 10.50 125.08 11.00 2220.00 95.30 11.30 111.04 9.00 2410.00 87.10 11.54 54.25 8.00 2699.20 82.75 14.41 59.68 
3 Columns of 

ground 
2FS 13.00 2015.00 91.16 10.33 116.31 10.00 1980.00 90.21 8.00 101.30 7.00 2042.00 92.10 9.40 98.00 6.00 2100.00 85.45 9.50 36.32 5.00 2352.00 81.18 11.26 39.95 

4 Beam and roof of 
the ground 

3FS+ 1 10.00 4325.00 91.98 11.95 188.28 8.00 3652.00 91.40 9.65 169.91 6.00 3920.00 92.56 9.80 152.36 4.00 4150.00 86.41 10.30 111.25 3.00 4648.00 82.09 13.03 122.38 

5 Columns of 1st 
floor 

4FS+ 2 13.00 1550.00 93.61 5.58 190.88 10.00 1200.00 92.65 4.20 178.35 7.00 1356.00 94.56 5.40 148.00 6.00 1420.00 89.36 6.00 128.60 5.00 1590.40 84.89 6.08 141.46 

6 Beam and roof of 
1st floor 

5FS+ 1 10.00 3600.00 95.63 12.82 177.77 8.00 3200.00 94.80 10.30 177.88 6.00 3410.00 96.45 10.65 125.36 4.00 3540.00 85.45 11.02 45.25 3.00 3964.80 81.18 13.97 49.78 

7 Columns of 2nd 
floor 

6FS+ 2 13.00 1550.00 92.04 8.04 158.51 10.00 1200.00 91.30 6.32 143.65 7.00 1356.00 92.78 7.05 127.63 6.00 1420.00 84.12 7.80 35.98 5.00 1590.40 79.91 8.76 39.58 

8 Beam and roof of 
2nd floor 

7FS+ 1 10.00 3600.00 97.58 9.28 183.86 8.00 3200.00 96.50 7.25 169.25 6.00 3410.00 98.65 8.25 145.25 4.00 3540.00 88.89 8.50 89.54 3.00 3964.80 84.45 10.11 98.49 

9 Columns of 3rd 
floor 

8FS+ 2 13.00 1550.00 93.99 6.90 150.19 10.00 1200.00 93.40 5.30 145.25 7.00 1356.00 94.58 6.40 111.25 6.00 1420.00 78.45 6.45 74.63 5.00 1590.40 74.53 7.52 82.09 

10 Beam and roof of 
3rd floor 

9FS+ 1 10.00 3600.00 91.48 3.54 167.47 8.00 3200.00 90.50 2.65 151.72 6.00 3410.00 92.45 3.47 134.89 4.00 3540.00 82.10 3.90 125.25 3.00 3964.80 78.00 3.86 137.78 

11 Columns of the 
4th floor 

10FS+ 2 13.00 1550.00 92.83 6.32 114.52 10.00 1200.00 91.40 4.50 106.58 7.00 1356.00 94.25 6.80 89.25 6.00 1420.00 86.45 7.00 65.32 5.00 1590.40 82.13 6.89 71.85 

12 Beam and roof of 
the 4th floor 

11FS+ 1 10.00 3600.00 96.38 15.30 156.73 8.00 3200.00 95.30 11.85 143.56 6.00 3410.00 97.45 13.90 124.58 4.00 3540.00 91.20 14.20 43.56 3.00 3964.80 86.64 16.68 47.92 

13 Columns of the 
5th floor 

12FS+ 2 13.00 1550.00 95.32 11.85 163.65 10.00 1200.00 94.62 9.45 144.32 7.00 1356.00 96.01 10.02 135.98 6.00 1420.00 86.41 11.30 97.20 5.00 1590.40 82.09 12.91 106.92 

14 Beam and roof of 
the 5th floor 

13FS+ 1 10.00 3600.00 98.57 4.69 139.11 8.00 3200.00 97.40 3.21 126.98 6.00 3410.00 99.74 5.40 111.04 4.00 3540.00 91.02 5.52 56.98 3.00 3964.80 86.47 5.11 62.68 

15 Columns of a 
ridge roof 

14FS+ 1 5.00 420.00 91.82 5.85 124.31 3.00 356.00 91.60 4.25 114.25 2.00 411.00 92.03 6.08 98.40 1.00 580.00 83.25 6.85 75.98 1.00 649.60 79.09 6.38 83.58 

16 Beam and roof of 
ridge floor 

15FS+ 1 6.00 1110.00 92.96 3.34 168.63 4.00 980.00 92.45 2.51 156.32 3.00 995.00 93.47 3.25 132.07 2.00 1020.00 87.98 3.65 100.36 2.00 1142.40 83.58 3.64 110.40 

17 Brickworks of 
ground 

4FS+ 1 14.00 1620.00 94.04 1.66 166.89 11.00 1480.00 93.00 1.05 157.45 9.00 1620.00 95.07 2.14 127.80 8.00 1740.00 79.99 2.45 98.65 7.00 1948.80 75.99 1.81 108.52 

18 Mechanical 
installations of 
ground 

17FS+ 2 10.00 1300.00 95.36 8.32 109.08 8.00 1220.00 94.50 6.50 101.98 6.00 1352.00 96.21 7.40 84.52 4.00 1480.00 82.14 7.65 24.65 3.00 1657.60 78.03 9.07 27.12 

19 Electrical 
installations of 
ground 

17FS+ 2 15.00 1250.00 95.54 6.08 128.76 13.00 1100.00 95.30 4.90 121.07 9.00 1260.00 95.78 5.01 99.04 6.00 1350.00 89.65 5.63 68.42 5.00 1512.00 85.17 6.63 75.26 

20 Brickworks of 
1st floor 

6FS+ 1 14.00 1800.00 92.21 5.15 125.95 11.00 1620.00 90.70 3.54 114.06 9.00 1870.00 93.72 5.89 101.50 8.00 1942.00 80.45 6.00 45.65 7.00 2175.04 76.43 5.61 50.22 

21 Mechanical 
installations of 
1st floor 

20FS+ 2 10.00 1600.00 97.53 5.93 130.92 8.00 1520.00 97.00 4.22 125.97 6.00 1710.00 98.05 6.41 97.65 4.00 1780.00 91.45 6.54 82.63 3.00 1993.60 86.88 6.47 90.89 

22 Electrical 
installations of 
1st floor 

20FS+ 2 9.00 1420.00 97.65 3.79 167.23 7.00 1350.00 96.40 2.87 151.26 5.00 1420.00 98.90 3.61 134.95 4.00 1500.00 87.26 3.75 111.52 3.00 1680.00 82.90 4.13 122.67 

23 Brickworks of 
2nd floor 

8FS+ 1 14.00 1800.00 93.50 5.55 193.39 11.00 1620.00 92.30 4.20 178.32 9.00 1870.00 94.69 5.30 152.47 8.00 1942.00 83.45 5.50 97.52 7.00 2175.04 79.28 6.05 107.27 

24 Mechanical 
installations of 
2nd floor 

23FS+ 2 10.00 1680.00 94.93 12.07 138.67 8.00 1532.00 94.15 9.34 126.47 6.00 1750.00 95.71 10.98 110.80 4.00 1780.00 88.98 11.36 64.52 3.00 1993.60 84.53 13.15 70.97 

(continued on next page) 
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Table 1 – (continued ) 

Number Activity Logical Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

25 Electrical 
installations of 
the 2nd floor 

23FS+ 2 9.00 1420.00 92.55 10.74 181.74 7.00 1350.00 90.47 8.45 175.65 5.00 1420.00 94.63 9.41 134.74 4.00 1500.00 78.32 9.50 86.52 3.00 1680.00 74.40 11.71 95.17 

26 Brickworks of 
3rd floor 

10FS+ 1 14.00 1800.00 94.16 2.46 165.55 11.00 1620.00 93.32 1.65 149.08 9.00 1870.00 95.00 2.91 134.29 8.00 1942.00 85.65 3.20 98.42 7.00 2175.04 81.37 2.68 108.26 

27 Mechanical 
installations of 
3rd floor 

26FS+ 2 10.00 1680.00 91.82 2.87 178.69 8.00 1530.00 91.24 2.04 170.36 6.00 1740.00 92.40 3.09 134.95 4.00 1780.00 86.97 5.20 74.77 3.00 1993.60 82.62 3.12 82.25 

28 Electrical 
installations of 
the 3rd floor 

26FS+ 2 9.00 1420.00 90.44 8.19 159.03 7.00 1350.00 90.00 6.45 156.65  1420.00 90.87 7.14 114.78 4.00 1500.00 82.42 7.65 64.52 3.00 1680.00 78.30 8.92 70.97 

29 Brickworks on 
the 4th floor 

12FS+ 1 14.00 1800.00 96.16 12.95 159.09 11.00 1620.00 94.98 10.32 142.36 9.00 1870.00 97.33 11.00 130.02 8.00 1942.00 86.41 11.40 111.78 7.00 2175.04 82.09 14.12 122.96 

30 Mechanical 
installations of 
the 4th floor 

29FS+ 2 10.00 1695.00 93.38 8.26 163.88 8.00 1570.00 92.63 6.40 153.21 6.00 1760.00 94.12 7.50 126.97 4.00 1780.00 86.35 7.70 42.63 3.00 1993.60 82.03 9.00 46.89 

31 Electrical 
installations of 
the 4th floor 

29FS+ 2 9.00 1420.00 94.63 6.65 158.89 7.00 1350.00 94.17 4.98 147.36 5.00 1420.00 95.09 6.50 124.36 4.00 1500.00 87.42 6.52 35.59 3.00 1680.00 83.05 7.25 39.15 

32 Brickworks on 
the 5th floor 

14FS+ 1 14.00 1800.00 93.02 4.89 128.85 11.00 1620.00 92.83 3.45 120.32 9.00 1870.00 93.21 5.34 99.99 8.00 1942.00 88.20 5.98 65.42 7.00 2175.04 83.79 5.32 71.96 

33 Mechanical 
installations of 
the 5th floor 

32FS+ 2 10.00 1680.00 94.03 3.14 124.29 8.00 1530.00 93.40 2.09 111.14 6.00 1740.00 94.65 3.77 101.65 4.00 1780.00 85.72 3.89 85.41 3.00 1993.60 81.43 3.42 93.95 

34 Electrical 
installations of 
the 5th floor 

32FS+ 2 9.00 1420.00 95.07 2.35 213.33 7.00 1350.00 94.42 1.52 199.32 5.00 1420.00 95.71 2.95 165.42 4.00 1500.00 90.45 3.02 123.65 3.00 1680.00 85.93 2.56 136.02 

35 Rooftop 34FS 15.00 935.00 93.62 8.64 188.61 10.00 870.00 92.41 6.47 178.65 7.00 890.00 94.83 8.45 143.68 5.00 920.00 80.65 9.20 99.98 4.00 1030.40 76.62 9.42 109.98 
36 Elevator 34FS+ 2 17.00 2400.00 90.81 7.13 105.35 15.00 2150.00 90.56 5.24 100.36 11.00 2350.00 91.05 7.23 79.65 8.00 2680.00 82.42 7.77 24.63 7.00 3001.60 78.30 7.77 27.09 
37 Facade 34FS+ 5 55.00 5320.00 91.58 4.35 194.41 52.00 4580.00 91.15 3.12 189.32 37.00 5120.00 92.00 4.63 142.62 29.00 5980.00 79.00 4.97 75.63 25.00 6697.60 75.05 4.74 83.19 
38 Outdoors 35FS+ 1 37.00 2420.00 92.63 11.96 143.95 32.00 2100.00 91.78 9.12 134.65 25.00 2850.00 93.48 11.25 111.45 19.00 3412.00 84.53 11.32 80.25 16.00 3821.44 80.30 13.03 88.28  
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balance between exploring new areas of the search space (exploration) 
and intensifying the search around promising regions (exploitation) is 
largely influenced by how these initial positions are set and randomized. 

The classification of solution candidates into ravens and wolves 
based on their Hunger Levels (HL) is another critical aspect. This step 
implicitly determines the algorithm’s focus, as ravens (with lower HL 
values) are considered better solutions and are given priority in the 
search process. The number of ravens, determined by the random 
integer Nr, can significantly influence the algorithm’s dynamics. A 
higher number of ravens might lead to a more intensive exploitation of 
the best solutions found so far, while a lower number might encourage 
more exploration by giving wolves (lesser solutions) more prominence. 
This balance is pivotal in preventing premature convergence to local 
optima and ensuring a thorough search of the solution space. 

Finally, the exploration and exploitation mechanisms, particularly 
the use of Lévy flights and the intelligent random walk, are innovative 
elements of the WBO algorithm. The efficiency of Lévy flights in 
exploring unknown, large-scale search spaces is crucial, especially in 
higher-dimensional problems. The step lengths determined by the Lévy 
distribution enable the algorithm to jump out of local optima, exploring 
more distant regions of the search space. Simultaneously, the intelligent 
random walk around the best raven, constrained by variables such as 
tiredness and hungriness levels, mimics a more focused search. This dual 
approach allows the algorithm to balance between broad-ranging search 
patterns and localized intensive searches, adapting to the problem’s 
landscape. 

In summary, each variable and process in the WBO algorithm plays a 
distinct role in shaping its search strategy. Understanding these roles 
and their interplay is key to appreciating the algorithm’s potential and 
limitations, and is essential for its effective application to various opti
mization problems. 

Problem. definition and formulation 

Three main components make up the framework as follows:  

• The decision variables and initialization Module;  
• The BIM Module;  
• The novel metaheuristic optimization algorithm Module. 

2.4. Decision variables and initialization module 

A building project’s activity-on-node (AON) diagram consists of M 
nodes, and arrows represent the connections among activities. Every 
task can be completed miscellaneously, and depending on the number of 
resources, technology, and equipment used, each has its own cost, time, 
risk, quality, and CO2 emissions. The TCRQC tradeoff problem optimi
zation technique attempts to improve project quality while reducing 
project time, cost, risk, and CO2 emissions by selecting the appropriate 
course of action for each activity. As a result, the first objective function 
in Eq. 33 is to shorten the project’s duration, which is represented by Tp: 

Minimum Tp = min(max(STi +Di)) = min(max(FTi) ); i = 1,…,M (33)  

where Di represents each activity’s length; STi and FTi show activities’ 
start and finish times, respectively; M elucidates project scheduling’s 
overall number of nodes[137]. 

In addition, the overall cost of a project includes indirect costs (IC), 
direct costs (DC), and delay costs (DC). The cost of the materials, 
equipment, and resources needed to carry out tasks is included in the 
direct costs. The costs applied throughout the project, such as manage
ment, administration, and insurance, are referred to as indirect costs and 
are fixed [138]. Other methods exist for assessing the total project’s cost 
differently; however, this research only considers direct, indirect, and 
delay costs. Eq. 34 illustrates the objective function that reduces the 
overall cost of the project as follows: 

Minimum TCp = Dj
Ci
+ Ij

Ci
+DC (34)  

Dj
Ci
=

∑n

i=1
Cj

i (35) 

Table 2 – 
Parameters of the algorithms used in this study.  

Algorithm Parameters 

BA Frequency Range: [0,2], Loudness (A): 0.5, Pulse Rate (r): 0.5 
BOA Sensory Modality (c): 1, Power Exponent (p): 2 
CPA number of aphids (nA): 60, number of colonies (nC): 4, Female (Fr): 

[0.1, 0.9] 
FPA Recombination Rate: 0.8, Switch Probability (p): 0.1, Gamma: 1.5 
HHO Step Size: 1.5 
JA Parameter-Free 
KHA Beta: [0.002, 0.010] (ms− 1), crossover: 0.2  

Table 3 – 
The best findings of the WBO and other methods in the case study.   

BA BOA CPA FPA HHO JA KHA WBO 

Time 295.00 325.00 258.00 280.00 258.00 295.00 307.00 258.00 
Cost 118,308.00 118,696.00 118,107.80 117,950.80 118,279.00 119,033.04 117,844.00 117,804.00 
Quality 94.02 94.23 94.31 94.19 94.62 93.75 94.66 94.66 
Risk 6.31 6.01 6.13 6.25 5.79 6.51 6.17 5.79 
CO2 93.03 96.18 77.92 84.16 76.36 89.39 87.90 76.36 
All 0.70 0.74 0.69 0.70 0.70 0.73 0.68 0.69  

Fig. 7. BIM-based modeling of the case study project.  
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Ij
Ci
= Cic × T (36)  

DC =

⎧
⎨

⎩

C1(T0 − T) if T ≤ T0
(

e
T− T0

T0 − 1
)(

Dj
Ci
+ Ij

Ci

)
if T > T0

(37)  

where TCp shows the overall project’s cost; Dj
Ci 

and Ij
Ci 

represent the 
direct and indirect costs in conjunction with the j-th mode of the ith 
activity, respectively. DC shows the delay cost; T0 is the contractual 
planned duration of the project; C1 is the prize for early completion of 
the project, and T is the project’s total duration [139,140]. 

The quality of the whole project is the total quality of all the indi
vidual activities since project resources may comprise various materials, 
equipment, and labor. The quality will increase as the activities are 
extended, but going beyond a certain point will result in a decline in 
quality. Consequently, the quality performance index (QPIi), which is 
determined as follows, serves to indicate the quality of each activity 
[140]: 

QPIi = ait2
i + biti + ci (38)  

where ti shows the length of ith activity; ai, bi, and ci represent 

coefficients determined using the quadratic function based on BD 
(Fig. 6). SD, BD, and LD elucidate the shortest, best, and longest dura
tion. Nonetheless, BD is determined by Eq. 39. Hence, Eq. 8 formulates 
the objective function for quality as follows: 

BD = SD+ 0.613(LD − SD) (39)  

maxQ =
∑M

i=1

QPIi

M
(40) 

Nevertheless, using certain resources might devastate the environ
ment by generating CO2 during the project’s construction phase. There 
are two ways that CO2 gas may be released during the on-site con
struction procedure: directly through energy and fuel burning and 
indirectly from the manufacture and transportation of building mate
rials. Therefore, Eq. 41 can be used to identify the objective function of 
reducing the project’s whole CO2 emissions. 

minCE =
∑M

i=1
Edij +

∑M

i=1
Einij

= (
∑M

i=1
Qed × Fe +Qdd × Fd)+ (

∑M

i=1
Qk × Fj +Qek × Fe +Qdk × Fd)

(41) 

Fig. 8. Convergence history of WBO and other mentioned algorithms.  
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Where CE shows the total CO2 emission in the project; Edij and Einij are 
project’s direct and indirect CO2 emissions, respectively; Qed is activity’ 
electricity consumption; Qdd elucidates the activity’s diesel consump
tion; Qij shows consumption of material k in activity; Qek is the 
amount of electricity used to transport the material k needed for the 
operation; Qdk A displays the amount of diesel used to move the material 
k for the activity; Fj, Fe, and Fd represent per-unit production of material 
k, carbon emission factor per electricity unit, and diesel unit 
consumption. 

The project’s conditions, delivery methods, and contract terms 
significantly determine the real project risk [141–143]. Consequently, 
Eq. 42 can be used to represent the objective function for risk: 

minR = w1 ×

(

1 −
TFc + 1

TFmax + 1

)

+w2 ×

⎛

⎜
⎜
⎝

∑Pd

i=1
(Rt − R)2

Pd(R)2

⎞

⎟
⎟
⎠+w3

×

(

1 −
R

max(Rt)

)

(42)  

where the project’s overall current float and flexible scheduling float are 
shown by TFc and TFmax, respectively; R clarifies the level of uniform 
resources; Rt is the resource required on day t; and wi demonstrates the 
weights. 

Eq. 43 is utilized to evaluate the capabilities of the WBO to concur
rently optimize the time-cost-quality-risk-CO2 (All) tradeoff using the 
normalizing procedure: 

F(x) =
T − Tmin

Tmax − Tmin
+

C − Cmin

Cmax − Cmin
+

R − Rmin

Rmax − Rmin
+

CO2 − CO2(min)

CO2(max) − CO2(min)

+
Qmin − Q

Qmax − Qmin

(43) 

The building information modeling-based resource tradeoff by 
means of metaheuristic algorithms is an unconstraint optimization 
problem so there is no need for constraint handling approaches. 

2.5. BIM module and design examples 

In the current research, three numerical case studies indicate the 
capability of the proposed metaheuristic algorithm in dealing with 
resource tradeoff problems in the construction industry. 

2.5.1. Main BIM-based project 
The case study used to test the model is a five-story residential 

dwelling with a basement with a total floor area of 930 m2. The case 
study also verifies the suggested algorithm concerning the following five 
factors: cost, time, risk, quality, and CO2 emissions. Table 1 shows how 
the BIM procedure, project information, and expert judgments 
throughout the planning and designing stages elicit information about 
all 38 activities. All actions follow a Finished to Start (FS) pattern, 
meaning they end before they begin. Architectural, Structural, and MEP 
(Mechanical, Electrical, and Piping) modeling were carried out using 
Autodesk Revit 2022; all components were modeled at LOD 350 ac
cording to BIMFourm 2019 standard. After that, a parametric model was 
made in Revit with the help of Dynamo visual programming. The next 
research step was using the Navisworks software for soft and hard clash 
detection. MATLAB is then utilized for programming. Fig. 7 elucidates 

Table 4 - 
The statistical outcomes of the WBO and other algorithms for the main project (Case Study).  

Time BA BOA CPA FPA HHO JA KHA WBO 

Best 295.00 325.00 258.00 280.00 258.00 295.00 307.00 258.00 
Mean 317.77 345.87 269.57 291.13 258.30 307.33 321.57 260.83 
Worst 341.00 359.00 289.00 300.00 261.00 315.00 331.00 261.00 
Std 12.38 8.45 6.88 5.35 0.92 4.82 5.47 0.65 
Computational time (s) 1.51 1.37 1.59 1.54 1.40 1.36 2.24 1.81 
Cost BA BOA CPA FPA HHO JA KHA WBO 
Best 118,308.00 118,696.00 118,107.80 117,950.80 118,279.00 119,033.04 117,844.00 117,804.00 
Mean 119,180.91 120,041.90 118,986.03 118,432.99 118,912.46 119,937.56 118,121.75 118,236.40 
Worst 120,845.84 122,195.30 119,595.44 118,814.40 120,388.04 120,397.60 118,617.00 118,538.00 
Std 584.03 899.39 371.34 193.70 557.81 354.56 177.56 190.40 
Computational time (s) 2.36 1.36 1.57 1.54 1.40 1.34 2.20 1.98 
Quality BA BOA CPA FPA HHO JA KHA WBO 
Best 94.02 94.23 94.31 94.19 94.62 93.75 94.66 94.66 
Mean 93.27 94.12 93.89 93.94 94.10 93.21 94.66 94.64 
Worst 94.02 94.23 94.31 94.19 94.62 93.75 94.66 94.66 
Std 0.39 0.05 0.20 0.13 0.17 0.20 0.00 0.07 
Computational time (s) 1.52 1.42 1.57 1.53 1.41 1.41 2.19 1.97 
Risk BA BOA CPA FPA HHO JA KHA WBO 
Best 6.31 6.01 6.13 6.25 5.79 6.51 6.17 5.79 
Mean 6.55 6.14 6.33 6.36 5.89 6.60 6.31 5.79 
Worst 6.78 6.27 6.45 6.46 6.29 6.68 6.43 5.79 
Std 0.11 0.06 0.08 0.05 0.14 0.04 0.06 0.00 
Computational time (s) 1.82 1.37 1.57 1.55 1.40 1.51 2.20 1.97 
CO2 BA BOA CPA FPA HHO JA KHA WBO 
Best 93.03 96.18 77.92 84.16 76.36 89.39 87.90 76.36 
Mean 98.83 103.20 82.24 88.36 76.64 92.34 92.98 76.36 
Worst 106.11 107.76 87.39 91.99 79.84 94.45 99.14 76.36 
Std 3.07 3.15 2.60 2.21 0.88 1.20 2.86 0.00 
Computational time (s) 1.74 1.36 1.56 1.54 1.40 1.50 2.19 1.99 
All BA BOA CPA FPA HHO JA KHA WBO 
Best 0.70 0.74 0.69 0.70 0.70 0.73 0.68 0.69 
Mean 0.72 0.77 0.72 0.70 0.71 0.75 0.69 0.70 
Worst 0.75 0.83 0.74 0.71 0.72 0.76 0.71 0.71 
Std 0.01 0.02 0.01 0.00 0.01 0.01 0.00 0.00 
Computational time (s) 1.46 1.37 1.58 1.54 1.39 1.39 2.20 1.97  
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the modeling procedure based on BIM. 
As seen in Table 1, the BIM process, the project data, and the experts’ 

judgments are used in the planning and designing processes to extract all 
of the activity information. In other words, the information in this table 
was compiled using the experiences of a wide variety of highly accom
plished individuals and specialists in the relevant sector. The amount of 
time and cost required for mode 1 is the first suggestion made by the 
contractor, and a majority of contractors proposed the lowest amount at 
the initial stage to win the auction; however, given that the majority of 
contractors do not take into account rework, conflicts, hard or soft 
clashes, payment delays employers, and harsh weather conditions. Mode 
3 is the results produced from the BIM procedure. Modes 2 and 4 were 
considered based on the recommendations made by specialists and ex
perts working on this project. Mode 5 is the project’s actual time and 
cost, derived from the construction’s final state. Then, a random risk 
percentage and carbon dioxide emissions for each activity are demon
strated regarding the opinions of top academicians and industry 
authorities. 

2.5.2. Benchmark project (1) 
The second case study is based on a real-world building project with 

24 activities, including two basements, thirteen upper levels, and a 
foundation of planned poured piles. Its activities’ information is 
extracted from [137]. It should be highlighted that BIM, project data, 
and expert opinions in the first (case study in this study) and the second 
project are used to extract all activity data. The phrase "combined ac
tivity" is used in the first case study. For instance, installing a steel bar, 
setting up formwork, pouring concrete, and taking down the formwork 
are all considered to be part of completing the column assignment for 
the second level. 

2.5.3. Benchmark project (2) 
The third example is a moderate-sized construction project, with a 

total floor space of 12,870 m2 spread between a basement and six 
stories. It’s an office complex in Vietnam. [144] contains the construc
tion project data sets. The case studies presented here are primarily 
intended to show how the novel metaheuristic algorithm can be applied 
to actual cases. 

3. Results and discussion 

Some rigorous metaheuristic algorithms were used to examine the 
effectiveness of the WBO algorithm in resolving resource tradeoff 
problems in building projects, including the Bat Algorithm (BA) [145], 
Butterfly optimization algorithm (BOA) [146], Cyclical Parthenogenesis 
Algorithm (CPA) [147], Flower Pollination Algorithm (FPA) [148], 
Harris Hawks Optimization (HHO) [149], Jaya Algorithm (JA) [150], 

and Krill Herd Algorithm (KHA) [151]. All algorithms’ parameters are 
shown in Table 2. 

3.1. Main BIM-based project results 

Table 3 lists potential algorithms for each case and the best results of 
the WBO. However, 30 separate optimization runs are performed for the 
main statistical goals to calculate the mean, worst, standard deviation, 
and computation time. Whereas the stopping condition is considered 
based on a predefined 20,000 no. of objective function evaluations. 
Fig. 8 displays the convergence history of WBO and other algorithms in 
solving the tradeoff as mentioned above problems. 

In our analysis, the superior quality scores of the WBO and KHA 
approaches are primarily attributed to their inherent algorithmic 
structures, tailored for precise solutions in our study’s context. The WBO 
method achieves this through a weighted balance between exploration 
and exploitation phases, while KHA utilizes an adaptive search mecha
nism for enhanced performance. When examining cost and time effi
ciency, we note marginal variations among the methods, suggesting a 
similar level of resource utilization efficiency across all, with slight 
differences likely stemming from the stochastic nature of these algo
rithms. Additionally, the risk and CO2 emissions metrics, essential for 
assessing environmental and operational feasibility, indicate a more 
favorable environmental impact for HHO and KHA, likely due to more 
efficient computational processes that reduce energy consumption. 
Lastly, the overall score—a composite metric—reflects balanced per
formance across all criteria, with the closeness in overall scores of KHA 
and HHO to our proposed method highlighting their comparable effi
cacy in a holistic sense. 

Table 4 displays the statistical data obtained from the optimization 
performed on the case study. The WBO algorithm has the potential to 
outperform the vast majority of other metaheuristics in the first scenario 
of time optimization of the case study. This scenario estimates that 258 

Table 5 - 
The p-values of different statistical tests.  

Main Algorithm Statistical Test Alternative Metaheuristic Algorithms 

BA BOA CPA FPA HHO JA KHA 

WBO KS Test  0.999957  0.999957  0.999957  0.999957  0.999957  0.999957  0.999957 
MW Test  0.699134  0.699134  0.731602  0.699134  0.859307  0.699134  0.859307 
W Test  0.031250  0.031250  0.062500  0.031250  0.250000  0.031250  0.125000  

Table 6 - 
The maximum difference of metaheuristics.  

Main Algorithm Statistical Test Alternative Metaheuristic Algorithms   

BA BOA CPA FPA HHO JA KHA 

WBO MW Test  42.00  42.00  41.50  42.00  40.50  42.00  40.50  
36.00  36.00  36.50  36.00  37.50  36.00  37.50 

W Test  21.00  21.00  15.00  21.00  6.00  21.00  14.00 
1.00  1.00  1.00  1.00  1.00  1.00  1.00  

Table 7 - 
The KW test results (mean of the ranks).  

Rankings Algorithms Mean of Ranks 

1 WBO  21.58 
2 HHO  23.00 
3 CPA  23.33 
4 KHA  23.58 
5 FPA  24.50 
6 BA  26.42 
7 BOA  26.50 
8 JA  27.08 
Chi-sq. 0.8362 
Prob>Chi-sq. 0.9971  
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days is the best and most optimal time, so the WBO algorithm is likely to 
be outperformed by the rest of the algorithms. The WBO algorithm 
produces the result with the slightest standard deviation (Std), followed 
by the HHO method, which accounts for 0.92. The WBO algorithm is the 
one with the minimum outcome. In contrast, the BA algorithm generates 
the highest value of Std, around 12.40. In addition, the JA algorithm was 
able to complete the time optimization process in the shortest amount of 
time possible (1.36 s). On the other hand, the KHA algorithm procured 
the longest computing time, necessitating a significantly longer amount 
of time to complete the optimization procedure in the mentioned 
scenario. 

In the second scenario of the case study, which focuses on cost 
optimization, the WBO algorithm performs better than other alternative 
metaheuristic algorithms. In other words, unlike the JA method, the 
WBO algorithm can identify the project’s least cost, which determines 
the maximum optimal cost value. Nevertheless, the BA method required 
the most time spent on calculation in this scenario, followed by the KHA. 
On the other hand, the BOA approach required the least amount of time 
to be paid on computation for the project’s cost optimization described 
above. In addition, the KHA algorithm provided the minimum possible 
value for the standard deviation, which the WBO followed. In the 
meanwhile, the BOA came out on top with the highest standard devia
tion of all the algorithms that were investigated for this scenario. As a 

consequence of this, the WBO algorithm could be an appropriate met
aheuristic for the optimization of costs associated with project and 
construction management. 

The statistical results of the quality optimization performed on the 
case study demonstrate that the WBO and KHA approaches can deliver 
superior quality. The HHO came in second place behind the CPA algo
rithm regarding its remarkable quality value, around 94.3. In addition, 
the KHA has the potential to deliver the least standard deviation, which 
in this instance is precisely 0.00. In stark contrast, the BA has the highest 
Std. Compared to the KHA, which needed around 2.19 s of computing 
time, the HHO and JA methods required much less time to achieve the 
same level of quality optimization as the latter. 

Consequently, the WBO algorithm can provide excellent quality, the 
more desirable option for project managers to go in this particular sce
nario. However, WBO determined the lowest risk value within the case 
study scope, registered at almost 5.79. In addition, the BOA method 
demanded the least amount of computational time feasible in this case, 
followed by the HHO algorithm. As a result, the WBO could be a good 
candidate for risk optimization in project scheduling. During this time, 
the WBO can determine the least possible Std in the given scenario. 

Regarding sustainable construction, the WBO could be feasible to 
reduce projects’ carbon footprint. This is so that environmentally 
friendly construction could be done, as the WBO was able to determine 

Fig. 9. The mean values of 30 independent optimization run of the WBO and other methods in the second project.  

Table 8 – 
The best findings of the WBO and other methods in the second project.   

BA BOA CPA FPA HHO JA KHA WBO 

Time 101.00 110.00 89.00 91.00 87.00 100.00 102.00 87.00 
Cost 11,336.00 11,732.00 10,132.00 10,212.00 10,087.00 10,613.00 10,953.00 10,397.00 
Quality 96.30 96.12 96.33 96.50 96.81 95.57 96.81 96.81 
CO2 2400.61 2602.14 1999.19 2207.21 1978.92 2212.27 2556.12 1982.73  
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the least amount of CO2 in the case study. On the other hand, the BOA 
gave the highest result for CO2, which indicates that its performance was 
unfavorable in attaining the goal of completing the project with a 
smaller and smaller carbon footprint. On the other hand, the BOA 
technique resulted in the least amount of time spent computing, which 
was reported at 1.36 (s), followed by HHO. Consequently, considering 
the typical amount of time spent computing, the WBO algorithm could 

be regarded as a suitable option for optimizing the quantity of carbon 
dioxide in building projects. 

Using a dwelling home as a case study, the WBO and KHA algorithms 
can perform better than other metaheuristic algorithms in tackling the 
TCQRCT problem. The WBO and KHA algorithms provided the lowest 
value for the Std value, showing their better performance. The BOA used 
the least computational time to execute TCQRCT in the case study, 

Fig. 10. The computational time of the proposed WBO and alternative methods in the second project.  

Fig. 11. The standard deviation values of the proposed WBO and alternative methods in the second project.  

Table 9 – 
The best findings of the WBO and other methods in the third project.   

BA BOA CPA FPA HHO JA KHA WBO 

Time 1882.00 1911.00 1848.00 1870.00 1835.00 1888.00 1892.00 1835.00 
Cost 165,138.00 165,590.00 163,016.00 163,835.00 163,179.00 164,746.00 165,417.00 163,181.00  
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followed by the HHO and JA with about 1.39 (s). The WBO method 
could be appropriate for solving TCQRCT problems in building projects 
without considering processing time. The performance of different al
gorithms in the case study you described can be attributed to their un
derlying architecture and design, which are tailored to optimize specific 
aspects of project management. For instance, the HHO method, with its 
low standard deviation in time optimization, demonstrates its strength 
in maintaining consistency and accuracy. HHO’s design, inspired by the 
cooperative behavior and hunting strategy of Harris’ hawks, enables it 
to effectively balance exploration and exploitation phases. This balance 
is crucial in complex optimization problems, allowing HHO to adeptly 
navigate the optimization landscape and avoid being trapped in local 
optima. 

In contrast, the BA and KHA algorithms show differing levels of 
performance in various scenarios. The BA algorithm’s higher standard 
deviation in time optimization might be a consequence of its inherent 
design, which possibly prioritizes exploration over exploitation. This 
could lead to a wider range of results, impacting its consistency but 
potentially allowing for the discovery of novel solutions in more diverse 
problem spaces. On the other hand, the KHA algorithm’s minimal 
standard deviation in cost optimization suggests a design that closely 
hones in on optimal solutions with high precision. This precision, 
however, might come at the cost of increased computational time, as 
seen in the case study. The JA and BOA algorithms also exhibit specific 
strengths and weaknesses. The JA algorithm’s rapid completion of the 
time optimization process indicates a design optimized for computa
tional efficiency. This efficiency, while advantageous in scenarios 

demanding quick decision-making, might sacrifice depth of search and 
thoroughness, possibly leading to less accurate outcomes in certain 
cases. Meanwhile, the BOA’s performance in sustainable construction, 
particularly in optimizing carbon footprint, suggests a potential trade- 
off in its design. Its ability to compute quickly, as evidenced by its 
minimal computational time, contrasts with its less favorable results in 
reducing CO2 emissions, highlighting a possible prioritization of speed 
over environmental optimization. 

In summary, the varied performances of these algorithms reflect 
their design principles, where specific optimization goals - such as ac
curacy, consistency, computational speed, and environmental impact - 
are prioritized differently. This underscores the importance of choosing 
the right algorithm for a given project management task, considering the 
specific requirements and constraints of the scenario, and the particular 
strengths and design focus of the algorithm in question. 

3.2. Comprehensive statistical analysis of the main project 

Four famous statistical tests—Wilcoxon (W), Mann-Whitney (MW), 
Kolmogorov-Smirnov (KS), and Kruskal-Wallis (KW)—were used to 
provide a more accurate assessment of how successfully WBO handled 
the resource tradeoff based on BIM. Henceforth referred to as "KS," the 
Kolmogorov-Smirnov statistic is a member of the elite group of statistics 
known as "Empirical Distribution Function" (EDF) statistics, which are 
founded on the most considerable possible absolute value of the vertical 
difference between the theoretical and observed distributions 
[152–154]. The W test compares the rankings’ averages by considering 

Fig. 12. The mean values of 30 independent optimization run of the WBO and other methods in the third project.  

Fig. 13. The computational time of the proposed WBO and alternative methods in the third project.  
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pairs of ranks. This test’s null hypothesis is that there is no difference in 
the mean rankings of two randomly chosen variables from two datasets. 
With this metric, the test data set with the lower mean of ranks indicates 
superior statistical behavior [155]. The null hypothesis in the MW test 
suggests the difference between two randomly chosen variables from 
distinct datasets by considering the sum of the variables’ rankings. This 
means that the statistical dataset with a lower rank summation has su
perior statistical behavior [156]. Furthermore, The KW test is a 
commonly used statistical test that considers the overall rankings of 
several variables across various datasets. The KW test compares the 
mean of rankings across many datasets since the previously performed 
MW and W tests are applied two-by-two based on the summation and 
mean of ranks [157,158]. 

The p-values for the KS, MW, and W statistical tests are included in 
Table 5 for comparison. To put the capabilities of WBO into perspective, 
Table 6 shows the highest difference between several techniques, i.e., 
MW, and W statistical tests. The WBO can manage these problems since 
the mean (W test), and summation (MW test) rankings in WBO are often 
lower than in other ways. Table 7 presents the overall rankings of the 
algorithms for dealing with BIM-based resource tradeoffs, including the 
mean of ranks. It is also important to note that WBO now has the top 
rating, which is acceptable. 

3.3. Results Overview for First Benchmark Project 

Table 8 lists potential algorithms for each case and the best results of 
the WBO for the second project. However, 30 separate optimization runs 
are performed for the best and mean results, standard deviation, and 
computation time. Whereas the maximum number of objective function 
evaluations is considered as 20,000 for stopping condition. Fig. 9 shows 
the mean values of 30 separate optimization runs using different algo
rithms and the proposed WBO. In this project, Time, Cost, Quality, and 
CO2 emissions (Kg) are considered. As can be seen, the proposed WBO 
method could deliver the minimum time in this project, registered at 87 
days, followed by CPA. Regarding cost optimization, although the HHO 
could compute the least cost in this project, the WBO is able to give an 
acceptable value. In stark contrast, BOA delivered the highest cost in this 
project, indicating its improper performance. 

Furthermore, the highest and best quality has been given by the 
proposed WBO approach in this project, which FPA follows. However, 
the HHO method could calculate the least CO2 emission, indicating its 
better capability in providing sustainable construction, followed by the 
novel WBO method. Fig. 10 shows the computational time (seconds) of 
the different metaheuristic algorithms and the proposed WBO in the 
second project. As inferred from the information, the proposed WBO 
method gave the longest time in three scenarios: cost, quality, and CO2 
emissions. In time and cost optimization, BOA took the least time; and in 

quality and CO2 emission optimization, JA took the least time. 
Fig. 11 shows the proposed WBO and alternative algorithms’ stan

dard deviation (Std) values in the second case study. As can be seen, the 
Std value for the WBO and HHO is zero in the time optimization, which 
means how close the results obtained from the 30 independent runs are 
to their mean value. In stark contrast, due to the higher value of Std 
rather than other algorithms, the BA optimization algorithm could not 
provide a consistent result in the analysis. Furthermore, the HHO 
method delivered the most negligible Std value in cost optimization, 
followed by FPA and WBO algorithms. However, the KHA method gave 
the least Std value for the quality optimization in this project. Finally, 
HHO and WBO algorithms could provide the least Std values in CO2 
optimization. 

3.4. Results overview for second benchmark project 

Table 9 shows potential algorithms for each case and the best results 
of the WBO for the second project. However, 30 separate optimization 
runs are performed for the best and mean results, standard deviation, 
and computation time. Whereas the maximum number of objective 
function evaluations is considered as 20,000 for stopping condition. In 
this project, Time and Cost are considered. As can be seen, the proposed 
WBO method could deliver the minimum time in this project, registered 
at 1835 days, followed by CPA. 

Regarding cost optimization, although the CPA could compute the 
least cost in this project, the WBO is able to give an acceptable value. In 
stark contrast, BOA delivered the highest cost in this project, indicating 
its improper performance. Fig. 12 shows the mean values of 30 separate 
optimization runs using different algorithms and the proposed WBO. 
Fig. 13 shows the computational time (seconds) of the different meta
heuristic algorithms and the proposed WBO in the second project. As 
inferred from the information, the proposed WBO method gave the 
longest time in three scenarios: cost, quality, and CO2 emissions. In time 
and cost optimization, BOA took the least time; and in quality and CO2 
emission optimization, JA took the least time. 

Fig. 14 presents the standard deviation (Std) values of the proposed 
WBO alongside other alternative algorithms in the second case study. 
Notably, the WBO and HHO both register an Std value of zero in time 
optimization, indicating that the outcomes from the 30 separate runs 
closely align with their average value. On the other hand, the BA opti
mization algorithm, with its higher Std value compared to other algo
rithms, demonstrated inconsistency in its results. Moreover, when it 
comes to cost optimization, the JA method showcased the lowest Std 
value. 

Fig. 14. The standard deviation values of the proposed WBO and alternative methods in the third project.  

M. Azizi et al.                                                                                                                                                                                                                                   



Journal of Engineering Research xxx (xxxx) xxx

21

4. Conclusions and future directions 

In this paper, the Wolf-Bird Optimizer (WBO) was presented as a 
novel metaheuristic algorithm inspired by the coexistence behavior and 
predatory partnership of wolves and ravens in nature. WBO finds the 
optimal solution from a population of candidate solutions. To this end, it 
is assumed that a group of ravens in nature are attempting to find some 
prey in their neighborhood. Subsequently, ravens send intelligent sig
nals to wolves to inform them of the location of the prey. Finally, the 
group of wolves conforms to the signals to reach the prey. The primary 
findings of this study can be summarized as follows:  

• The WBO has the capability to reach the optimal global solution 
using the least number of objective function evaluations, high
lighting the superior computational efficiency of this new algorithm.  

• Based on the W statistical test findings, WBO can produce superior 
outputs with lower means of ranks in most cases in comparison with 
other algorithms.  

• The KW statistical test results, including the mean of ranks, 
demonstrate that WBO outperforms the other algorithms in all data 
sets studied.  

• Regarding the outcomes of the best optimization runs completed by 
various approaches for time optimization in the main BIM-based 
project, the WBO algorithm conducted the case study in the least 
amount of time, 258 days.  

• The WBO can give 117,804.00($) for the case study cost, the most 
fantastic option among the others.  

• The WBO can also offer better quality value in the main BIM-based 
case study.  

• The WBO can give the project the best risk and CO2 optimization 
outcomes than alternative metaheuristics.  

• Compared to other algorithms, the WBO method can deliver 0.69 
concerning the solutions to the TCQRCTP, which is quite a compet
itive value. 

Additionally, the introduced WBO algorithm has demonstrated 
commendable and competitive outcomes in the two benchmark con
struction projects. The analyses conducted suggest that the WBO algo
rithm’s edge over other metaheuristic algorithms can be attributed to 
three main factors: (1) Rapid convergence behavior; (2) Minimal 
requirement for objective function evaluations. Moving forward, it 
would be beneficial to assess the proposed algorithm on intricate opti
mization challenges in various domains, such as large-scale design 
problems in structural engineering, truss structures’ shape and size 
optimization, and the design of tall steel buildings. It would also be 
pertinent to undertake both experimental and numerical validations of 
the real-world constrained optimization problems presented in CEC 
2020 for addressing future challenges. 
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