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ABSTRACT

Background and aims: Gaming disorder [GD] risk has been associated with the way gamers bond with
their visual representation (i.e., avatar) in the game-world. More specifically, a gamer’s relationship
with their avatar has been shown to provide reliable mental health information about the user in their
offline life, such as their current and prospective GD risk, if appropriately decoded. Methods:
To contribute to the paucity of knowledge in this area, 565 gamers (Mage 5 29.3 years; SD 510.6) were
assessed twice, six months apart, using the User-Avatar-Bond Scale (UABS) and the Gaming Disorder
Test. A series of tuned and untuned artificial intelligence [AI] classifiers analysed concurrently and
prospectively their responses. Results: Findings showed that AI models learned to accurately and
automatically identify GD risk cases, based on gamers’ reported UABS score, age, and length of gaming
involvement, both concurrently and longitudinally (i.e., six months later). Random forests out-
performed all other AIs, while avatar immersion was shown to be the strongest training predictor.
Conclusion: Study outcomes demonstrated that the user-avatar bond can be translated into accurate,
concurrent and future GD risk predictions using trained AI classifiers. Assessment, prevention, and
practice implications are discussed in the light of these findings.
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INTRODUCTION

Since their commercial conception in the 1970s, videogames have become integrated into
modern popular culture (Will, 2019). Alongside a boom in technological advancements and
improved internet capabilities, the gaming industry has developed into a global community
allowing millions around the world, and in Australia (where the present study was carried
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out), to enjoy gaming as a shared activity (Statista, 2023;
Stavropoulos, Motti-Stefanidi, & Griffiths, 2022).

In the past two decades, gaming has greatly proliferated,
with recent nationwide data suggesting that approximately
70% of all Australians (i.e., 17 million) play videogames in
some form or frequency, while the vast majority of house-
holds (i.e., 8.6 million), including those with children, have
access to digital game devices (Brand, Todhunter, & Jervis,
2017). Alongside the growth of gaming, gaming pathologies
have begun to emerge (King et al., 2020). Literature high-
lights that while most gamers enjoy positive outcomes such
as psychomotor/dexterity, cognitive, health, and educational
benefits (Granic, Lobel, & Engels, 2014; Koulouris, Jeffery,
Best, O’Neill, & Lutteroth, 2020; Nuyens, Kuss, Lopez-Fer-
nandez, & Griffiths, 2017; Raith et al., 2021; Watson et al.,
2019), a minority of gamers may experience harmful effects
associated with excessive and/or disordered gaming (e.g.,
reduced educational/work performance, distress, loneliness;
Burleigh, Griffiths, Sumich, Stavropoulos, & Kuss, 2019;
Nuyens, Kuss, Lopez-Fernandez, & Griffiths, 2019; Şalvarlı
& Griffiths, 2022; Stavropoulos et al., 2019; Colder Carras,
Stavropoulos, Motti-Stefanidi, Labrique, & Griffiths, 2021;
Van Looy, 2015; �Spor�ci�c & Glavak-Tkali�c, 2018).

There is consensus that disordered gaming occurs as a
consequence of the interplay between factors related to the
individual players (e.g., personality, psychopathology), their
immediate and more distant environmental surroundings
(e.g., adverse family/peer interactions), as well as the game
applications themselves (e.g., reinforcement schedules; King
et al., 2019; Starcevic & Khazaal, 2020; Stavropoulos, Rennie,
Morcos, Gomez, & Griffiths, 2021). For instance, in relation
to individual factors, Király, Koncz, Griffiths, and Deme-
trovics (2023) highlighted disordered gaming risk factors
including gender (being male), age (being younger), per-
sonality traits (higher neuroticism, higher impulsivity, low
self-esteem), comorbidities (e.g., anxiety, autistic behav-
iours), motivation factors (e.g., escapism), and neurobio-
logical predispositions (e.g., reduced grey-matter volume in
the ventromedial and dorsolateral prefrontal brain areas). In
relation to environmental factors, disordered gaming risk
factors include poor quality of family relationships and
parental monitoring, childhood maltreatment and easy ac-
cess to gaming equipment, as well as pro-gaming peers and
broader cultural influences (Király et al., 2023). Finally, in
relation to specific structural characteristics of the game it-
self, disordered gaming risk factors include rewarding and
reinforcing gaming experiences through operant condition-
ing processes, online game delivery, monetization aspects
(e.g., buying/selling game winning equipment using offline
currencies), and distinct game genres (e.g., Massively
Multiplayer Online Role-Playing Games; MMORPGs;
involving character development, socialization, competition
and achievement elements; Király et al., 2023).

It should be noted that although higher gaming time has
been related to higher disordered gaming risk, scholars have
contended that it may not necessarily indicate disordered
gaming, unless it compromises functionality in the gamer’s
everyday life (e.g., employment, education, and family life;

Billieux, Flayelle, Rumpf, & Stein, 2019; Griffiths, 2010).
Consequently, it is emphasized that high gaming involve-
ment should be distinguished from disordered gaming
(Billieux et al., 2019; Griffiths, 2010). Such literature has led
to further calls for research examining the potentially
harmful consequences of excessive gaming, as well as better
identifying risk factors for developing problematic gaming
patterns (Király, Potenza, & Demetrovics, 2022).

Disordered gaming

The World Health Organization (WHO) officially included
gaming disorder (GD) in the 11th revision of the Interna-
tional Classification of Diseases (ICD-11; WHO, 2019). The
ICD-11 defines GD as a pattern of gaming behaviour
characterized by impaired control over gaming, increasing
priority given to gaming over other activities to the extent
that it takes precedence in daily life, and continuation/
escalation of gaming despite the occurrence of negative
consequences. The ICD-11 further states that a diagnosis of
GD must have a significant impairment to an individual’s
personal, family, social, educational, occupational and/or
other important areas of functioning (typically evident over
a period of at least 12 months). Given the increased recog-
nition of disordered gaming as a legitimate psychiatric
condition, research into more specific risk factors and po-
tential influencers of addictive gaming has greatly increased
(Bäcklund, Elbe, Gavelin, Sörman, & Ljungberg, 2022; Liao,
Chen, Huang, & Shen, 2022).

The WHO’s (2019) diagnostic classification of GD fol-
lowed the inclusion of the provisional diagnosis of internet
gaming disorder (IGD) in the fifth edition of the Diagnostic
and Statistical Manual for Mental Disorders (DSM-5;
American Psychiatric Association, 2013). According to the
DSM-5 (2013), and similar to WHO (2019) the criteria for
diagnosing IGD includes: preoccupation with gaming, with-
drawal symptoms when gaming is not possible, tolerance (i.e.,
needing to spend increasing amounts of time gaming), un-
successful attempts to control or reduce gaming, loss of in-
terest in other activities, continued excessive gaming despite
negative consequences, and significant impairment in per-
sonal, social, educational, or occupational areas of functioning
(with at least five of these criteria being met for more than a
year to be considered as having a gaming disorder).

In the present study, the ICD-11 criteria for GD (WHO,
2019) were employed for three compelling reasons: (i) it is
the only official (and not provisional) disordered gaming
diagnosis currently employed worldwide; (ii) it has been
supported that the ICD-11 diagnostic framework empha-
sizes more serious/pivotal (and a succinct number of)
GD symptoms, without compromising diagnostic validity
(Jo et al., 2019); and (iii) it provides consistency
and comparability in relation to empirical evidence
internationally (Pontes & Griffiths, 2019).

User-avatar bond

A number of scholars in the gaming studies field have reit-
erated that greater emphasis should be given to game-related
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features. This includes the user-avatar bond (UAB), as a
potential GD risk factor in role-playing games (RPGs; Green,
Delfabbro, & King, 2021; Lemenager, Neissner, Sabo, Mann,
& Kiefer, 2020). RPGs have been consistently demonstrated
to be a genre of videogames that have a higher risk of GD
among individuals (Stavropoulos, Gomez, Mueller, Yucel, &
Griffiths, 2020; Stavropoulos, Pontes, Gomez, Schivinski, &
Griffiths, 2020; Szolin, Kuss, Nuyens, & Griffiths, 2022).
An avatar is a visual in-game representation of the player,
with the term originating from the Sanskrit word ‘avat�ara’,
referring to the embodiment of a deity in a human form
(Lochtefeld et al., 2002; Szolin et al., 2022).

Within the gaming context, the avatar facilitates a
process whereby the gamer may, to an extent, experience
embodiment with their gaming persona/figure, while they
are able to portray themselves in ways that align more with
their desired self-expressions (�Spor�ci�c & Glavak-Tkali�c,
2018; Stavropoulos, Gomez et al., 2020; Stavropoulos,
Pontes et al., 2020). Consequently, a complex psychological
attachment is facilitated between gamers and their avatars.
This increases game engagement and can also influence
some gamers’ online and offline behaviours through sub-
conscious processes (e.g., altered perceptions, automatic
thoughts, and non-deliberate actions corresponding with
their avatar features; Burleigh, Stavropoulos, Liew, Adams,
& Griffiths, 2018; Liew, Stavropoulos, Adams, Burleigh, &
Griffiths, 2018; Ortiz de Gortari, Pontes, & Griffiths, 2015;
Ratan, Beyea, Li, & Graciano, 2020). Considering the
UAB’s particular strength/intensity, empirical research in-
dicates that factors such as age, and the duration of
engagement with the game world, may play a critical role
in the how an individual connects with their avatar
(e.g., younger gamers, with lengthier game involvement,
could be more UAB receptive/susceptible, due to more
dynamic/fluid personality features and time/emotional
game investment; Stavropoulos, Gomez et al., 2020; Stav-
ropoulos, Pontes et al., 2020; Stavropoulos, Ratan, & Lee,
2022; Rehbein, 2016).

Moreover, Blinka et al. (2008) noted that the UAB en-
compasses critical aspects and subdimensions. These entail
identification (e.g., the gamer becomes more like their
avatar, and they feel the same or alike), immersion (e.g., the
avatar’s needs in the world of the game [such as partici-
pating in a competition/task] are experienced as offline
needs by the gamer, and can even be prioritised to their
needs outside of the game [such as sleeping and/or eating]
in the case of disordered gaming), and compensation/
idealization (e.g., the avatar is who/how the gamer would
like to have been in their offline life, but they may not be
in a position to; the avatar may express an individual’s
ideal self).

Additionally, it has been argued that the need of some
gamers, who might be experiencing low-self-esteem and/or
may be dissatisfied by their offline self, could lead them to
escape their discomfort through their idealized avatars
within the game world (Stavropoulos, Gomez et al., 2020;
Stavropoulos, Pontes et al., 2020; Stavropoulos, Ratan et al.,
2022). Such avatar-mediated mood modification tendencies

may cause some gamers to immerse/over-engage with (and
emotionally depend on) their in-game character, fuelling
their GD risk (Stavropoulos, Gomez et al., 2020; Stavro-
poulos, Pontes et al., 2020; Stavropoulos, Ratan et al., 2022).
These findings are reinforced by other notable studies (e.g.,
those examining wishful avatar identification; Burleigh et al.,
2018; Green et al., 2021; Liew et al., 2018; Yee, Bailenson, &
Ducheneaut, 2009).

It has also been proposed that the UAB could operate as
a form of ‘digital phenotype’, meaning a digital/gamified
footprint of an individual’s mental health, that, if analysed,
can be translated into information not only concerning the
gamer’s risk of GD, but also for other psychopathological
conditions (e.g., depression, anxiety [Loi, 2019; Stavropoulos
et al., 2021; Zarate, Stavropoulos, Ball, de Sena Collier, &
Jacobson, 2022]). Despite the consistent associations be-
tween GD and the UAB in the extant literature, the trans-
lation of the UAB into GD risk has never to date, to the best
of the authors’ knowledge, been investigated (Burleigh et al.,
2018; Liew et al., 2018; Ortiz de Gortari et al., 2015; Ratan
et al., 2020).

The present study

Analytical advancements in the field of machine learning
(ML) can support artificial intelligence (AI) applications,
which allow the automatic prediction/translation of one
form of information/data into another (e.g., a gamer’s UAB
into GD risk; Horton & Kleinman, 2015; Kuhn & Wick-
ham, 2020). To achieve such predictions, ML/AI pro-
cedures require training on related data, where predictors
(e.g., UAB sub-dimensions) and outcomes (e.g., GD risk)
are known, such that they can learn how to interpret/use
the first variable to identify the latter (in the form of su-
pervised algorithms; Horton & Kleinman, 2015; Kuhn &
Silge, 2022; Kuhn & Wickham, 2020). After this stage is
completed, a new set of data is examined by the trained
AI/ML, where the accuracy of its predictions is validated
(i.e., while in the first stage of the process AI learns to
detect GD risk based on the UAB, in the second stage it
makes predictions to demonstrate their learning quality;
Kuhn & Silge, 2022).

Indeed, recent research examples have aimed to use
ML/AI to diagnose GD via Resting Brain State, MRI, PET
and EEG data with encouraging findings (Han et al., 2021;
Song et al., 2021). Taking these into consideration, the
present study innovatively examined a recently collected
longitudinal dataset using AI/ML classifiers, aiming to
translate gamers reported UAB identification, immersion,
and compensation/idealization into their present and pro-
spective (i.e., six months later) GD risk, while also taking
into consideration their age and years of videogame
engagement. In particular the choice of a longitudinal design
was chosen over cross-sectional data collection because it
allows the examination of the direction of causality between
the behaviours examined, while additionally enabling
the potential translation of the user-avatar bond into pro-
spective GD risk (Zarate, Dorman, Prokofieva, Morda, &
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Stavropoulos, 2023). Consequently, the following research
questions (RQs) were formulated:

� RQ1: How can, if at all, ML/AI applications be trained to
identify whether a gamer presents with current GD risk,
based on their UAB reported identification, immersion,
compensation, age, and length of gaming involvement
(i.e., concurrent GD phenotype)?

� RQ2: How can, if at all, ML/AI applications be trained to
identify whether a gamer presents with future GD risk
(i.e., six months later), based on their UAB reported
identification, immersion, compensation, age, and length
of gaming involvement (i.e., prospective GD phenotype)?

METHODS

Participants

A sample of 627 gamers were initially recruited. Of these,
seven were excluded as preview-only responses, 19 as spam,
one as a bot, 12 due to lack of consent, eight for failing
validity questions (e.g., claimed they played non-existing
games; e.g., Risk of Phantom), and 15 for insufficient re-
sponses. Therefore, the final sample comprised 565 role-
playing-gamers (Mage 5 29.3 years SD 5 10.6, Minage 5 12,
Maxage 5 68; Malescisgender 5 283, 50.1%), who were
longitudinally assessed in the community, six months
apart (two time-points, T1 and T2). With regards to de-
mographics at T1, 271 (55.3%) reported being full-time
employed, 176 (36%) had an undergraduate degree, 359
(73.6%) stated heterosexual orientation, 410 (72.5%) iden-
tified as of Australian/English ancestry, 142 (25.1%) resided
with their family of origin, and 148 (30.2%) were single.

With regards to gaming patterns at T1, they reported
having been a gamer for on average for 5.62 years (Min5<1
year, Max 5 30 years; SD 5 4.49), for an average of 2.23 h
daily during weekdays (Min5<1 h, Max 5 15 h; SD 5 1.82)
and 3.39 h during the weekend (Min5<1 h, Max 5 18;
SD 5 2.40). Considering social media use patterns at T1,
they reported having been a social media user for an average
of 7.06 years (Min5<1 year, Max517; SD 5 7.06), spending
an average time of 2.55 h during weekdays (Min5<1 h,
Max 5 15 h; SD 5 2.16), and 3.01 h during the weekend
(Min5<1 h, Max 5 16 h; SD 5 2.48) with 145 (26%)
reporting Facebook as their preferred platform. The
maximum random sampling error for a sample of 565 at the

95% confidence interval (z 5 1.96) equalled ± 4.12% satis-
fying Hill’s (1998) recommendations. Missing values of
the analysed variables at T1 ranged between 3 (0.5% not
stating their age) to 16 (2.83% not answering Item 9 on the
User-Avatar Bond Scale), and were missing completely
at random in the broader dataset (MCARtest 5 38.4,
p 5 0.14 [9 missing patterns]; Little (1988).

Attrition between waves was 276 participants (48.8%).
Therefore, retention/attrition were studied in relation to par-
ticipants’ sociodemographic information considering statisti-
cal significance and effect size (Cohen’s d, very small∼0.01,
small∼0.20, medium∼0.50, large, 0.80, very large∼1.20;
Sawilowsky, 2009); Cramer’s V > 0.25 5 very strong,
>0.15 5 strong, >0.10 5 moderate, >0.05 5 weak, >0 no or
very weak). Low to moderate effect-sizes were found
regarding the associations between attrition and gender
(χ2 5 4.26, df 5 6, p 5 0.642, Cramer’s V 5 0.087),
sexual orientation (χ2 5 7.75, df 5 4, p 5 0.101, Cramer’s
V 5 0.126), ancestry (χ2 5 8.94, df 5 4, p 5 0.063, Cramer’s
V 5 0.126), romantic relationship engagement (χ2 5 3.76,
df 5 4, p 5 0.440, Cramer’s V 5 0.088), educational status
(χ2 5 11.2, df 5 7, p 5 0.129, Cramer’s V 5 0.152),
employment status (χ2 5 7.58, df 5 6, p 5 0.271, Cramer’s
V 5 0.124), number of years spent gaming (tWelch’s 5 3.509,
df5 526, p < 0.001, Cohen’s d5 0.296), average daily gaming
time during the week (tStudent 5 0.873, df 5 555, p 5 0.383,
Cohen’s d 5 �0.0741), average daily gaming time during
the weekend (tStudent 5 0.159, df 5 553, p 5 0.874, Cohen’s
d5 0.0135), number of years spent using social media (tStudent
5 2.501, df 5 556, p 5 0.013, Cohen’s d 5 0.2118), average
daily social media use time during the week (tStudent 5
�2.313, df 5 543, p 5 0.021, Cohen’s d 5 �0.1983), average
daily social media use time during the weekend (tWelch 5
�2.447, df 5 501, p 5 0.015, Cohen’s d 5 �0.2111), and age
(tStudent 5 4.967, df 5 560, p < 0.001, Cohen’s d 5 0.4192).
Tables 1 and 2 provide detailed description of the sample
at T1.

Measures

In addition to data concerning demographics, gaming use,
and social media use, the following data were collected.

Gaming Disorder Test (GDT-4; Pontes et al., 2021). The
GDT-4 assesses the diagnostic features/severity of disordered
gaming with a design directly modelled on the WHO (2019)
conceptualisation. There are four items each addressing a

Table 1. Participant’s age, gaming/social media use years and daily week and weekend consumed time at T1

Age

Number of
years spent
gaming

Mean daily
gaming time
in the week

Mean daily
gaming time

at the weekend

Number of years
spent using
social media

Mean daily social
media use time
in the week

Mean daily social
media use time
at the weekend

N 562 556 557 555 558 545 543
Mean 29.3 5.62 2.23 3.39 7.06 2.55 3.01
SD 10.6 4.49 1.82 2.40 4.41 2.16 2.48
Min 12.0 0.00 0.00 0.00 0.00 0.00 0.00
Max 68.0 30.0 15.0 18.0 17.0 15.0 16.0
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Table 2. Participants’ sociodemographic, gaming and social media use information at T1

N
Total
N Proportion p

Gender Man (cisgender) 283 565 0.501 1.000
Woman (cisgender) 259 565 0.458 0.053
Man (transgender) 4 565 0.007 <0.001

Woman (transgender) 1 565 0.002 <0.001
Nonbinary 12 565 0.021 <0.001
Not Listed 3 565 0.005 <0.001

Prefer not to say 3 565 0.005 <0.001
Sexual Orientation Heterosexual-Straight 359 488 0.736 <0.001

Homosexual 36 488 0.074 <0.001
Bisexual 75 488 0.154 <0.001
Asexual 5 488 0.010 <0.001
Other 13 488 0.027 <0.001

Ancestry Aus./Engl. 412 565 0.552 0.015
Chinese 20 565 0.035 <0.001
German 7 565 0.012 <0.001
Indian 10 565 0.018 <0.001
Other 118 565 0.209 <0.001

Occupational Status Full-time employed 271 490 0.553 0.021
Part-time employed 77 490 0.157 <0.001

Student 64 490 0.131 <0.001
Trainee 2 490 0.004 <0.001

Not currently working 32 490 0.065 <0.001
On temporary leave (education leave, public service leave,

training, maternity leave)
5 490 0.010 <0.001

Other 39 490 0.080 <0.001
Educational Status Professional degree (i.e., MD, JD, etc. completed) 10 489 0.020 <0.001

PhD degree (completed) 17 489 0.035 <0.001
Postgraduate studies (MSc completed) 67 489 0.137 <0.001

Undergraduate university course (completed) 176 489 0.360 <0.001
Intermediate between secondary level and university

(e.g., technical training)
97 489 0.198 <0.001

Senior secondary school (Years 11–12) 101 489 0.207 <0.001
Secondary school (Years 7–10) 9 489 0.018 <0.001

Other 12 489 0.025 <0.001
Livingwith_w1 Family of origin (two parents/partners, only child) 34 564 0.060 <0.001

Family of origin (two parents/partners and siblings) 108 564 0.191 <0.001
Mother (only child, parent divorced-separated-widowed) 19 564 0.034 <0.001
Mother and sibling(s) (parent divorced-separated-widowed) 17 564 0.030 <0.001
Father (only child, parent divorced-separated-widowed) 6 564 0.011 <0.001

Father and sibling(s) (parent divorced-separated-widowed) 5 564 0.009 <0.001
With partner 149 564 0.264 <0.001

Alone 61 564 0.108 <0.001
With friend(s) 28 564 0.050 <0.001

Temporary accommodation 4 564 0.007 <0.001
Other 18 564 0.032 <0.001

With partner and children 115 564 0.204 <0.001
Relationship status Single 148 490 0.302 <0.001

In a romantic relationship (A romantic relationship is
defined as a romantic commitment of particular intensity
between two individuals of the same or the opposite sex
(When you like a guy [girl] and he [she] likes you back).

157 490 0.320 <0.001

Engaged 24 490 0.049 <0.001
Married 145 490 0.296 <0.001
De facto 16 490 0.033 <0.001

Partner games together Yes 99 344 0.288 <0.001
No 245 344 0.712 <0.001

Partner uses social media together Yes 227 340 0.677 <0.001
No 113 340 0.333 <0.001

(continued)
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particular symptom (e.g., “I have had difficulties controlling
my gaming activity”) using a five-point Likert-type scale from
1 (Never) to 5 (Very often). Total scores range from 4 to 20
with higher scores indicating greater GD severity. Participants
at GD risk were classified those with more than 3/5 (Often) in
¾ of the GDT-4 items (Pontes et al., 2021). The internal
consistency coefficients were sufficient across both study
waves (Cronbach’s α GDT wave 1 5 0.808, McDonald’s ω GDT

wave 1 5 0.812, Cronbach’s α GDT wave 2 5 0.854, McDonald’s
ω GDT wave 2 5 0.862).

User-Avatar-Bond Questionnaire (UAB-Q; Blinka,
2008)

The UAB-Q was used to assess different gamer-avatar bond
dimensions. The 12 UAB-Q items are answered on a 5-point
Likert scale from 1 (strongly disagree) to 5 (strongly agree)
comprising three factors: identification (four items; “Both me
and my character are the same”), immersion (five items:
“Sometimes I think just about my character while not
gaming”), and compensation (three items: “I would rather be
like my character”). The scores range from 12 to 60 with

higher scores indicating stronger UAB experiences both
overall and on the respective subscales. The internal con-
sistency coefficients were sufficient across both study waves
(Cronbach’s α UAB-Q wave 1 5 0.804; McDonald’s ω UAB-Q

wave 1 5 0.813, Cronbach’s α UAB-Q wave 2 5 0.849; McDo-
nald’s ω UAB-Q wave 2 5 0.867, Cronbach’s α Ident. wave 1 5
0.701; McDonald’s ω Ident. wave 1 5 0.729, Cronbach’s α Ident.

wave 2 5 0.770; McDonald’s ω Ident. wave 2 5 0.789 Cronbach’s
α Immers. wave 1 5 0.717; McDonald’s ω Immers. wave 1 5 0.727,
Cronbach’s α Immers. wave 2 5 0.764; McDonald’s ω Immers.

wave 2 5 0.775, Cronbach’s α Comp. wave 1 5 0.604; McDo-
nald’s ω Comp. wave 1 5 0.656, Cronbach’s α Comp. wave 2 5
0.660; McDonald’s ω Comp. wave 2 5 0.709).

Procedure

Approvals were granted by the Victorian University Hu-
man Research Ethics Committee [HRE21-044], the
Department of Education and Training of The Victorian
State Government, Australia [2022_004542], and the Mel-
bourne Archdiocese of Catholic Schools [1179]. Partici-
pants were sampled from the community (e.g., RMIT,

Table 2. Continued

N
Total
N Proportion p

Social media users Yes 550 565 0.973 <0.001
No 15 565 0.027 <0.001

Facebook users No 168 565 0.297 <0.001
Facebook 397 565 0.703 <0.001

Twitter users No 320 565 0.566 0.002
Twitter 245 565 0.434 0.002

Instagram users No 195 565 0.345 <0.001
Instagram 370 565 0.655 <0.001

Pinterest users No 469 565 0.830 <0.001
Pinterest 96 565 0.170 <0.001

TikTok users No 368 565 0.651 <0.001
Tik Tok 197 565 0.349 <0.001

Most preferred social media Facebook 145 557 0.260 <0.001
Twitter 66 557 0.118 <0.001

Instagram 135 557 0.242 <0.001
Pinterest 5 557 0.009 <0.001
Tik Tok 99 557 0.178 <0.001

Other, please define which 107 557 0.192 <0.001
Gaming with best friend No 336 565 0.595 <0.001

Yes 229 565 0.405 <0.001
Using social media with best friend No 189 565 0.335 <0.001

Yes 376 565 0.665 <0.001
Gaming with other friends No 312 565 0.552 0.015

Yes 253 565 0.448 0.015
Using social media with offline friends No 154 565 0.273 <0.001

Yes 411 565 0.727 <0.001
Gaming with family members No 406 565 0.719 <0.001

Yes 159 565 0.281 <0.001
Using social media with family
members

Yes 472 564 0.837 <0.001

No 92 564 0.163 <0.001

Note. Hₐ is proportion ≠ 0.5.
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Victoria, Melbourne and Deakin Universities), Victorian
public and catholic schools, Australian gamers’ groups
(e.g., Aus Gaymers Network), venues (e.g., Fortress Mel-
bourne), and online forums (e.g., AusGamers), as well as
advertising via YouTube videos. Gamers older than 12 years
were eligible to voluntarily/anonymously participate and
were provided with the plain language information state-
ment describing the study aims, risks and their participa-
tion rights (e.g., withdrawal without any penalties and/or
repercussions at any point) and provided their informed
consent. For adolescents (i.e., 12–18 years), these were
firstly addressed by their responsible parent/guardian and
secondly by the adolescents themselves. Data collection
involved three data-streams, paired via a non-identifiable
code, unique for each participant: (i) a battery of de-
mographic, internet/gaming/social media use questions,
and psychometric questionnaires/scales available via an
online Qualtrics link; (ii) wearing an actigraphy tracker
(Fitbit) for seven days to monitor physical activity/sleep
(e.g., daily steps and sleep duration), that was electronically
paired with the other data-streams via a unique code (i.e.,
records were automatically collected via the Fitbit portal
based on the participant’s code and those not owning a
Fitbit were provided with a device during a mutually
arranged/agreed meeting with the research team) and;
(iii) carrying a mobile monitoring application, called Aware
Light (Van Berkel, D’Alfonso, Susanto, Ferreira, & Kosta-
kos, 2023) recording screen on/off time, number and length
of calls (i.e., duration) and texts (i.e., length in characters)
for seven days (i.e., Light Aware data were also matched
with the other data-streams through the unique participant
code). The procedure was repeated four times, once every
six months, with the present study being based on the first
two completed collection waves (for detailed information
see Supplementary Materials 1.

Data analysis

To address RQ1 (i.e., concurrent GD digital phenotype;
identifying present GD risk based on an individual’s age,
number of years spent gaming, and reported avatar
identification, immersion and compensation/idealization)
machine learning (ML) procedures using the Tidymodels
package were conducted in R-Studio (Horton & Klein-
man, 2015; Kuhn & Wickham, 2020). Firstly, data were
balanced considering Yes/No GD risk cases to improve
learning/ML-prediction using the synthetic minority
oversampling technique (SMOTE; DMwR package;
Torgo & Torgo, 2013). This algorithm introduces addi-
tional cases of the minority group by taking into
consideration a potential number (k) of their nearest
neighbours based on Euclidean distance (Chawla, Bowyer,
Hall, & Kegelmeyer, 2002).

Practically, k-NN operates by identifying the distance
between a suggested case and all other data cases considered.
Firstly, it chooses a number (k) of cases nearest to the point
of interest. Then, it attaches the most frequent class to that

point (e.g., Yes/No GD risk; Chawla et al., 2002). Secondly,
data were split into 4/5 training and 1/5 testing, stratifying
Yes/No GD risk proportions to be equal across the splits,
while adopting a conservative bell-shaped Bayesian prior
distribution. It should be noted that when adopting a
Bayesian perspective, a potential distribution/variability is
required for every model parameter before proceeding to
data analysis. The range of these values was carefully/
modestly/conservatively suggested here to follow a Cauchy
shape (i.e., t-shape with seven degrees of freedom; Muth,
Oravecz, & Gabry, 2018).

Finalized training and testing datasets were similar
regarding Yes/No GD risk proportions (χ2 5 0, df5 1, p5 1).
For cross-validation and ML hyperparameters’ tuning, training
data were additionally divided 10 times (i.e., folds) and training
data bootstrapped versions were also created. Thirdly, the ML
recipe (i.e., predictive equation) was introduced, such that: (i)
the binary Yes/No GD risk at T1 was the outcome and age,
number of years spent gaming, avatar-identification, avatar-
immersion and avatar-identification were the independent
predictors; (ii) a minimum ratio of 50% GD risk cases was
maintained across all samples tested, including the cross-vali-
dation and bootstrapped training data versions; and (iii) zero
variance, strongly sparse/skewed, and potentially highly inter-
correlated predictors were excluded, to solidify findings. It
should also be highlighted that the latter did not effectively
exclude any predictor in the current recipe.

Predictors were also scaled and centred prior to the
recipe to accommodate classification (i.e., 0 5 mean and
1 5 Standard Deviation [SD]; Kuhn & Wickham, 2020).
Fourthly, a series of supervised ML models (i.e., models
where the outcome is known in the training step/stage)
recommended for binary classification (see Table 3)
were introduced, alongside the null model (i.e., no ML
prediction) in their tuned and their untuned versions,
where hyperparameters were appropriately adjusted
(Kuhn & Wickham, 2020). A hyper-parameter constitutes
an ML parameter, the value of which needs to have been
specified prior to the learning ML being trained, in contrast
to simple parameters which are “learned” during the
training of the model. Therefore, hyperparameters pose
external model configurations (i.e., not based on the data)
employed for the estimation of model parameters. Fine-
tuned hyperparameters increase the capacity of a learning
model to perform with higher accuracy, and are achieved
through a “grid” process in tidymodels (Kuhn & Wick-
ham, 2020).

Fifthly, model and recipes were combined to create
different workflows, which were: (i) trained in the default
versions on the training data; (ii) tuned considering their
hyperparameters via the bootstrapped versions the training
data, and; (iii) tested across their default/tuned versions on
the testing data. To address RQ2 (i.e., prospective GD
digital phenotype in six months), the same procedure
was repeated with GD T2 being the outcome/dependent
variable. Findings were compared based on their confusion
matrices, accuracy, precision, the area under the curve,
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Table 3. ML models trained, tuned and tested

Type Operation Hyperparameters tuned
R-package/engine

employed

Least Absolute Shrinkage
Selection Operator (LASSO)

LASSO constitutes a regression
analysis based, supervised ML
classifier, that applies variable
selection and regularization to
increase prediction accuracy. It

achieves that via reducing noises and
selecting certain features to
regularize the model. From a
calculation perspective lasso

considers the magnitude rate of the
coefficient, as a penalty to the loss
function. Therefore, the loss function

is amended to reduce model
complexity via restraining the sum of

predictors’ coefficients [Loss
function 5 OLS þ A (penalty) X
summation (addition of s size[s] of

coefficients)].

penalty 5 To perform regularization
(i.e., L1), LASSO considers/adds a
penalty to the size of regression
coefficients (i.e., predictor effects),
aiming to minimize them. The

optimum penalty value is obtained
via the tuning process.

glmnet

K Nearest Neighbours (k-NN) Th k-NN algorithm entails a
supervised, non-parametric

classification/prediction, that relies
on estimating proximity/relevance/
distance of one case with “k” others,

as per their Euclidean distance.
Alternatively, k-NN classifies/
categorizes a case taking into

consideration its neighbouring cases
(i.e., similarity of a case with
previously identified cases).

neighbors 5 The number (k) of
neighbouring points to be

considered in order to optimize the
learning/prediction performance of
the algorithm, as defined via the

tuning process.

knn

Support Vector Machine Kernel
(SVM-K)

Kernel ML is based on pattern
examination/analysis and is mostly
known via its popular support-vector
machine (SVM) version. The kernel
function refers to a mathematic
procedure, which enables SVM to

pursue deep learning via conducting
bidimensional classifications of uni-

dimensional data through the
projection of a lower-dimension to a

higher one. Subsequently, a
kernelized SVM employs a linear
computation to address non-linear/

classification problems.

cost 5 In SVM, cost resembles/
postulates the logistic function via a
piecewise linear. In practice, the cost
hyperparameter programs/guides the
algorithm’s optimization regarding
the rate/size of misclassification
allowed in the training sample.

Higher cost values indicate tighter
margins and the opposite.

degree 5 The degree hyperparameter
dictates the flexibility/boundaries of
prediction(s), such that higher values

allow higher flexibility.
scale_factor 5 The scaling hyper-

parameter of categorical/
classification kernel(s) reflects the
optimum normalization patterns/
process (i.e., kernel width) required
to avoid any data modification.

kernlab

X Gradient Boosting (XGB) XGBoost is recommended for
structured/tabular data. It

implements gradient boosted
decision trees to optimize prediction.
XGBoost does so via providing a

parallel tree boosting that integrates/
considers weak prediction/learner

models/decision trees. However, and
in contrast to random forest bagging

mtry 5 The number of independent
variables to be randomly assessed at

each decision tree split.
min_n 5 An integer/value/number
for the least data points in a node
(i.e., tree branch) that enables further

split.
tree_depth 5 The value defining the
highest tree depth (i.e., subsequent

xgboost

(continued)
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Table 3. Continued

Type Operation Hyperparameters tuned
R-package/engine

employed

of generated trees, XG-Boosting
operates in a sequential manner,
with any subsequent tree being

influenced by the previous/last tree
outcome.

splits) suggested to optimize
prediction.

Learn rate (i.e., shrinkage) 5 The
value/rate required for the boosting
adaptation to occur over successive
iterations. loss_reduction 5 The
reduction rate of the loss function
suggested to progress with tree splits.

sample_size 5 The amount/
proportion of data required to be
utilized in the algorithm’s fitting

process over each iteration.
Random Forests Random Forest is a flexible and

broadly employed supervised,
ensemble (i.e., composite) ML

model, that integrates/considers the
results of numerous decision trees
(i.e., bagging), while being trained/
learning to address a prediction/
classification task. Practically,

random forests conduct a meta-
estimation that averages/considers
the outcomes of multiple decision
tree classifiers, implemented on
different data sub-samples, to

improve accuracy and deter over-
fitting.

mtry 5 The number of independent
variables to be randomly assessed at

each decision tree split.
min_n 5 An integer/value/number
for the least data points in a node
(i.e., tree branch) that enables further

split.

ranger

Naïve Bayes Naïve Bayes operates as a
probabilistic, supervised, ML
classifier, which functions

generatively. This suggests that it
aims to model the data class
distribution, while assuming
conditional independence

probability (i.e., data characteristics/
measures are independent) to predict

the way a specific class would
generate input data.

smoothness 5 This refers to the
Kernel component Smoothness,
which defines the density value
required for the algorithm to

converge quicker, to the real density
of random numeric predictors.

Laplace 5 Laplace transformation/
smoothing refers to a technique/
strategy/method that addresses the
problem/risk of zero probability in

the algorithm.

naivebayes

Logistic Regression Logistic Regression is also
considered a supervised ML classifier
that employs a logistic function to
predict/model binary/dichotomous

dependent outcomes.

penalty 5 In logistic regression, as
with LASSO, the regularization
penalty hyperparameter aims to
address generalization error and

therefore reduce overfitting risks. As
such, it enhances the probability of

simpler concluded models.
mixture 5 A regularization

parameter value ranging between
0 and 1 to enhance model accuracy
[mixture 1 corresponds with LASSO;
0 with ridge regression and in the
interim with elastic modelling in

between LASSO and ridge].

glm

Note: Glmnet is derived from “Friedman et al. (2010). Package ‘glmnet’. CRAN R Repositary.”; Ranger is derived from “Wright and Ziegler
(2017). Package ‘ranger’.” Kernlab is derived from “Karatzoglou, Smola, and Hornik (2023). Package ‘kernlab’. CRAN R Project”. Xgboost is
derived from “Chen et al. (2023). Package ‘xgboost’. R version, 90, 1–66.”. All other engines ae derived from “ Kuhn, M., & Silge, J. (2022).
Tidy Modeling with R. " O’Reilly Media, Inc.".
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recall, and f-measures (see yardstick r package; Kuhn,
Vaughan, & Vaughan, 2020).1

Preceding the analysis, estimation for the sample size was
also considered from the overfitting perspective of the
developed models. In machine learning, overfitting refers to
the modelling error occurring, when a function used in a
model is too closely aligned to a limited set of data points.
This indicates insufficiency of the data and results in a
model generating accurate predictions for training data but
not for new/testing data (Chawla et al., 2002). The present
study addressed overfitting by considering the imbalance in
the dataset, and using the Synthetic Minority Over-Sampling
TEchnique (SMOTE; Chawla et al., 2002; Torgo & Torgo,
2013), applying early stopping in Random Forest applica-
tion, as well as use of regularization technique LASSO.
Further measures included cross-validation and hyper-
parameter tuning of the developed models (see Table 3).

Ethics

All procedures performed in the study involving human
participants were in accordance with the ethical standards of
the institutional and/or national research committee and
with the 1964 Helsinki declaration and its later amendments
or comparable ethical standards. The paper does not contain
any studies with animals performed by any of the authors.
Informed consent was obtained from all individual partici-
pants included in the study.

RESULTS

Before addressing RQ1 and RQ2, Yes/No GD riskwave_1
participants were identified with Nno_GD_Risk 5 430
(80.22%) and NYes_GD_Risk 5 106 (19.78%). For RQ1, to
accommodate ML learning, oversampling of the minority
class was conducted using k-NN SMOTE (Chawla et al.,
2002; Torgo & Torgo, 2013) resulting in a balanced dataset
(i.e., NYes_GD_Risk 5 530; 50%). Data were then split into
80% training and 20% testing and the proportions of Yes/No
GD risk were compared across the two parts showing
non-significant differences (χ2 5 0, df 5 1, p 5 1; Cramer’s
V5 0.00; 50% Yes GD risk across both training and testing).
The prediction recipe was introduced, scaling of predictors
was conducted, descriptives of the training, testing and
whole dataset were estimated (see bake recipe section;
Supplementary Material 2), while 10 sub-divisions and
bootstrapped versions of the training data were produced for
cross-validation and hyperparameter tuning (see folds &
train_boot section, Supplementary Material 2). Models and
workflows of the Null, LASSO, SVM-Kernel, Random For-
ests, Naïve Bayes, and Logistic Regression (see Table 3) in
their default hyperparameter versions (i.e., untuned) were
then introduced, trained on the training data, and tested on
the testing data. Table 4 summarizes their performance
suggesting that, while all classifiers performed/learned
acceptably and better than the null model, except LASSO,
Random Forests learning outperformed other classifiers with
excellent indicators across all criteria (see Fig. 1). Immersion
was the most significant predictor for Random Forests (i.e.,
>25 points) with all other predictors exceeding 10 points
(see VIP section, Supplementary Material 2).

To optimize learning and modelling capacity, the versions
of LASSO, SVM-Kernel, Random Forests, Naïve Bayes and
Logistic Regression, as well as XGB and k-NN were later
tuned (see Table 3 regarding their respective hyper-
parameters’ functions), trained on the training data and tested
on the testing data. Table 5 summarizes the tuned hyper-
parameters’ values per classifier and Table 6 their perfor-
mance. Results suggest that, while all classifiers performed/
learned acceptably and better than the null model, including
LASSO, Random Forests learning outperformed other clas-
sifiers comparatively with excellent indicators across all
criteria, followed by XGB, SVM-Kernel, and k NN (see Fig. 2).

The same process was repeated for RQ2 with Random
Forests again outperforming other classifiers in both their
tuned and untuned versions. Tables 7–9 summarize the per-
formance of the untuned versions, the tuned hyperparameters’
values, and the performance of the tuned classifiers respec-
tively. Figures 3 and 4 visualize the performance of the tuned
and untuned models (see Supplementary Material 3 and 4).

DISCUSSION

The present longitudinal study employed a relatively large,
normative sample of gamers to train AI/ML automated

1Accuracy reflects the ratio of correctly predicted cases, across the total
number of cases. It is produced through the accumulation of the true
positive and the true negative cases divided by the sum of all true positive,
true negative, false positive and false negative cases. Accuracy values closer
to 1 are considered desirable. Accuracy >0.90 5 Excellent; 70%<Accu-
racy<90% 5 Very good; 60%<Accuracy<70% 5 Good; Accuracy<60% is
poor (Allwright, 2022).
Area under the curve (AUC) refers to the area under the receiver operating
characteristic (ROC) curve, as the latter is visualized in an orthogonal axis
system/graph, where the horizontal line captures the false positive rate
(FPR; 1 – specificity) and the vertical axis the sensitivity (True positive
rate [TPR]; values closer to 1 are considered better/improved). AUC <0.5
5 No discrimination; 0.5<AUC<0.7 5 Poor discrimination; 0.7<AUC<0.8
5 Acceptable discrimination; 0.8<AUC<0.9 5 Excellent discrimination;
AUC>0.9 5 Outstanding discrimination (Statology, 2021).
Positive Predictive Value [PPV] or Precision is irrespective of the preva-
lence of a condition, and reflects the proportion/ratio of all the true positive
classified cases divided by the addition of the true positive and the false
positive cases (i.e., how many of those classified as positive were actually
positive? Values closer to 1 are considered better/improved).
Recall or sensitivity is associated to the prevalence of a condition and
reflects the proportion/ratio of all the true positive classified cases divided
by the sum of all the true positive and the false negative classified cases (i.e.,
how many of the true positive cases have been recalled? Values closer to 1
are considered better/improved).
Specificity reflects the proportion/ratio of all the true negative classified
cases divided by the sum of all the true negative and the false positive
classified cases (i.e., how many of the true negative cases have been
correctly classified? Values closer to 1 are considered better/improved).
F-Measure or F1-score/F-Score reflects the ratio of the multiplication of
recall and precision, multiplied by two and then divided by the accumu-
lation of recall and precision, such that the balance between precision and
recall achieved by the model is captured. Higher values are considered
better/improved (Jiao & Du, 2016).
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procedures to identify an individual’s concurrent and pro-
spective (i.e., six months later) GD risk, based on their age,
number of years spent gaming, and reported avatar identi-
fication, immersion, and compensation/idealization. Five
untuned (i.e., in their default versions) and seven tuned

(i.e., ML/AI hyper-parameters/calculation features specif-
ically adjusted to improve learning) recommended, and
widely employed ML classifiers, were comparatively exam-
ined twice (i.e., current and prospective GD risk; Blinka,
2008; Kuhn & Silge, 2022).

The data were split into training and testing parts for the
AIs to be trained and assessed respectively, while a predic-
tion recipe was introduced. The models were trained, tuned,
and tested, such that their capacity to learn whether an in-
dividual presents or not to be at GD risk at present and six
months later, could be confirmed. Findings demonstrated
that while all AI classifiers tested in the present study, were
able to learn and performed better than the null model
(i.e., random prediction), Random Forests had the strongest
learning potential. Of the UAB aspects identified, immersion
was the most important predictor of GD risk.

Gaming disorder and user-avatar bond

The present study’s findings align with previous studies
suggesting that stronger/higher UAB experiences are more
likely to associate with excessive/disordered/problematic
gaming, when/if there is a tendency for the individual to
‘escape from reality’, as a result of identity-related issues
including poor self-concept, psychological vulnerability, and
‘wishful identification’ (i.e., compensation for negative self-
perceptions; Green et al., 2021; Lemenager et al., 2020;
�Spor�ci�c & Glavak-Tkali�c, 2018; Stavropoulos, Gomez et al.,
2020; Stavropoulos, Pontes et al., 2020; Van Looy, 2015).
Moreover, scholars have supported that one of the most
important indicators of GD is the process of transporting the
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Fig. 1. Untuned classifiers performance across the criteria (GD Wave 1)

Table 4. Null model and untuned algorithms performance on testing data (GD Wave 1)

Null model Random forests Logistic regression LASSO Naïve Bayes SVM Kernel

ROC_AUC 0.5 0.975 0.701 0.5 0.788 0.741
PPV 0.5 0.942 0.641 0.5 0.8 0.664
F_meas 0.667 0.933 0.673 0.667 0.712 0.685
Recall 1 0.925 0.708 1 0.642 0.708
Accuracy 0.5 0.934 0.656 0.5 0.741 0.675

Table 5. Hyperparameter tuning summary across classifiers
(GD Wave 1)

Type
Hyperparameters

tuned
Tuning
results

Least Absolute Shrinkage
Selection Operator (LASSO)

penalty 0.00139

K Nearest Neighbours (k-NN) neighbors 10
Support Vector Machine Kernel
(SVM-K)

cost 32
scale_factor 1

X Gradient Boosting (XGB) mtry 1
min_n 6

tree_depth 15
Learn rate

(i.e., shrinkage)
11

loss_reduction 0.0425
sample_size 0.171

Random Forests mtry 1
min_n 6

Naïve Bayes smoothness 0.5
Laplace 0

Logistic Regression penalty 0.00234
mixture 0.55

See Table 3 for detailed information regarding the classifiers
applied.
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players’ psyche into the gaming environment, that is, the
facilitation of a true “detachment from reality and the actual
self” (�Spor�ci�c & Glavak-Tkali�c, 2018, p. 8).

Relatedly, the player-avatar connection/interaction is
maintained by identification and idealisation, and subse-
quently strengthened through both the immersive qualities
of the game itself, and the ‘escape motives’ of players (Green
et al., 2021; Lemenager et al., 2020; �Spor�ci�c & Glavak-Tkali�c,
2018; Stavropoulos, Gomez et al., 2020; Stavropoulos, Pontes
et al., 2020; Stavropoulos, Ratan et al., 2022). Therefore, the
immersion factor, expressing the experience of the avatar’s
needs as offline needs of the gamer, can be seen as advancing
UAB understanding, while sharpening the explanatory
framework for players vulnerable to GD (Stavropoulos,
Ratan et al., 2022). It is perhaps unsurprising that of all
the UAB aspects considered within the present study, im-
mersion was found to be the strongest predictor of GD risk.
In other words, whether a gamer resembles their avatar
(i.e., identification) or wishes to be like their avatar
(i.e., compensation/idealization) appears to induce lower GD
risk, compared to the extent that a gamer fuses with their
avatar’s needs, experiencing them as theirs (Ratan et al.,
2020). The latter increases more their GD likelihood and

Table 6. Tuned algorithms performance on testing data (GD Wave 1)

Null model Random forests Logistic regression LASSO Naïve Bayes SVM Kernel XGB k-NN

ROC_AUC 0.5 0.981 0.704 0.704 0.811 0.96 0.955 0.939
PPV 0.5 0.951 0.647 0.647 0.755 0.959 0.873 0.966
F_meas 0.667 0.938 0.676 0.676 0.725 0.916 0.889 0.876
Recall 1 0.925 0.708 0.708 0.698 0.877 0.906 0.802
Accuracy 0.5 0.939 0.66 0.66 0.736 0.92 0.887 0.887
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Fig. 2. Tuned classifiers performance across the criteria (GD Wave 1)

Table 7. Null model and untuned algorithms performance on testing data (GD Wave 2)

Null model Random forests Logistic regression LASSO Naïve Bayes SVM Kernel

ROC_AUC 0.5 0.959 0.718 0.724 0.744 0.708
PPV 0.5 0.897 0.667 0.629 0.735 0.68
F_meas 0.667 0.897 0.643 0.65 0.673 0.63
Recall 1 0.897 0.621 0.672 0.621 0.586
Accuracy 0.5 0.897 0.655 0.638 0.698 0.655

Table 8. Hyperparameter tuning summary across classifiers
(GD Wave 2)

Type
Hyperparameters

tuned
Tuning
results

Least Absolute Shrinkage
Selection Operator (LASSO)

penalty 0.00569

K Nearest Neighbours (k-NN) neighbors 10
Support Vector Machine Kernel
(SVM-K)

cost 32
scale_factor 1

X Gradient Boosting (XGB) mtry 1
min_n 3

tree_depth 11
Learn rate

(i.e., shrinkage)
0.00268

loss_reduction 0.495
sample_size 0.336

Random Forests mtry 1
min_n 6

Naïve Bayes smoothness 0.5
Laplace 0

Logistic Regression penalty 0.0264
mixture 0.35

See Table 3 for detailed information regarding the classifiers
applied.
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presents an opportunity for AI to better learn to detect those
at risk of GD.

Furthermore, the methods employed in the present study
expand and advocate for the ML/AI translation of the UAB
into GD risk, while considering the age of the gamer and the
number of years they have spent gaming. Findings suggest
that the UAB could operate as a diagnostic indicator of GD
risk both at present and prospectively (six months later),
when addressed using trained ML/AI procedures. This
aligns with past literature recommending the careful
decoding/interpretation of the health/mental health infor-
mation likely embedded in the UAB (Stavropoulos et al.,
2021). Indeed, the avatar’s customization by the gamer,
allows conscious and less conscious projections of the

gamer’s wishes and characteristics into the avatar, such that
avatars and the way the gamers bond with them may prove
to be a valuable source of information (Stavropoulos, Ratan
et al., 2022).

These interpretations reinforce (and align with) the
proposed notion of ‘digital phenotype’, suggesting that an
individual’s cyber-behaviour and choices, such as their user-
avatar customization and bond, may operate as a unique
‘footprint’ of what they are experiencing offline, if/when
appropriately translated (Loi, 2019; Stavropoulos et al., 2021;
Zarate et al., 2022). This possibility is additionally
strengthened by the work of Lemenager et al. (2020), who
reported: (i) a consistent association between disordered
gaming and bonding with the avatar, and; (ii) enhanced

Table 9. Tuned algorithms performance on testing data (GD Wave 2)

Null model Random forests Logistic regression LASSO Naïve Bayes SVM Kernel XGB k-NN

ROC_AUC 0.5 0.959 0.72 0.721 0.773 0.95 0.85 0.904
PPV 0.5 0.883 0.673 0.685 0.792 0.981 0.8 0.947
F_meas 0.667 0.898 0.655 0.661 0.717 0.946 0.741 0.75
Recall 1 0.914 0.638 0.638 0.655 0.914 0.69 0.621
Accuracy 0.5 0.897 0.664 0.672 0.741 0.948 0.759 0.793
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activation of brain regions during times an individual is
consumed by thoughts regarding their avatar. Interestingly,
the notion of game transfer phenomena, described as the
tendency of gamers to experience altered/involuntary cog-
nitions/thoughts, behaviours and perceptions outside of
their gaming sessions, has also been associated with suffering
from a medical condition and/or drug abuse, indirectly
advocating for the health phenotyping/footprint potential
of gaming behaviours including UAB (Ortiz de Gortari &
Griffiths, 2015).

IMPLICATIONS, LIMITATIONS, AND FURTHER
RESEARCH

The automation of the decoding of such information using
trained AI/ML procedures demonstrated here, likely revo-
lutionizes the potential use of the UAB as a cyber-pheno-
type, meaning a source of information about the health/
mental health of the user outside the game. More specif-
ically, findings of the present study may: (i) pave the way for
large-scale, avatar-mediated (and therefore, more gamer-
friendly), low-cost, ML/AI-facilitated GD risk diagnostic
procedures; (ii) help in the development of more effective
GD prevention strategies, through the targeting of AI-
detected GD risk gamer groups based on the way they bond
with their avatars and; (iii) encourage the implementation of
AIs for evaluation of user information potentially embedded
within the UAB. In particular, from a conceptual perspec-
tive, and in relation to the notion of digital phenotype, the
use of ML/AI to show the GD diagnostic potential of the
UAB, expands past studies in the field, suggesting the need
for exploration of further health and mental information
likely embedded within the UAB, independent of GD risk
(e.g. depression, anxiety; Lemenager et al., 2020; Loi, 2019;
Ortiz de Gortari & Griffiths, 2015).

Overall, the present study suggests that GD risk can be
predicted using ML/AI algorithms, that are capable of
combining different variables on a large scale with reduced
rates of misdiagnosis, providing more accurate diagnostic
and/or risk indicators. In turn, these techniques may provide
clinically relevant insights into assessment and save signifi-
cant time for clinicians. Furthermore, from a GD treatment
perspective, the present findings argue in favour of the uti-
lization of the user-avatar bond when addressing GD
symptoms. As Tisseron (2009) suggested, the UAB can
provide the map for more accurate case formulation that can
in turn drive more effective GD treatment plans, when and
where avatars are involved. For instance, by observing avatar
characteristics, possessions, and needs/commitments in the
virtual world (e.g. using the empty chair technique to invite
the ‘avatar’ to talk in a disordered gamer’s session), clini-
cians may be able to work collaboratively with the treatment
seeker/receiver to understand what they could be missing in
their offline lives and plan how to pursue it to reduce their
game-dependency (Tisseron, 2009). However, the findings
of the present study should be interpreted taking into

account the limitations of the present study, which utilised a
rather small, community-sourced sample and relied exclu-
sively on self-reported data, that might invite potential biases
and confounding variables effects.

CONCLUSION

Despite such limitations, the present study innovatively
aimed to unlock the mental health diagnostic potential,
likely embedded within the UAB, through the pioneering
use of a sequence of different ML classifiers and emphasizing
an individual’s disordered gaming risk. It did so while
abiding with open science principles (i.e., accessible code
and findings), such that research teams in the field can
employ ML/AI to other already collected datasets related to
the UAB to corroborate or negate the present findings.
Furthermore, and in the context of the present study, ML/AI
is converted from a game mechanic employed by industry
to increase game engagement, and thus likely GD risk
(Millington, 2009) into a GD protective factor.
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