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ABSTRACT 

 

 

Several authors have suggested that published mathematical descriptions of heat and mass 

transfer that occur in ventilated beds of hygroscopic porous media are complicated.  

Furthermore, they are sometimes presented in a terse style.  In this work algebraic expressions 

that govern the rates at which transfer waves propagate through beds of hygroscopic porous 

media are derived in detail.  Expressions that govern the behaviour of ventilated beds of porous 

media that display no, or a high degree of hygroscopy are similarly derived.  The governing 

equations comprise functions of only three parameters that completely describe systems in 

which thermodynamic equilibrium between the solid and fluid phases exist, and there are no 

dispersive processes.  Significantly, the work includes an annotated MATLAB® script that 

enables the performance of systems described by Freundlich and Tóth isotherms to be 

compared.  This is in keeping with an objective of the work, namely to make the analysis of 

heat and mass transfer in beds of hygroscopic media readily accessible to neophytes. 

 

 

Key words: Porous media, hygroscopic, heat and mass transfer, Freundlich, Tóth  
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PREFACE 

 

Heat and mass transfer processes that occur in ventilated beds of hygroscopic porous media are 

governed by mass and energy conservation equations.  When referring to their solution, Ingram 

[1] stated that it is  ‘difficult to interpret their physical significance’.  Similarly, Close [2] 

suggests that aspects of the analysis of heat and mass transfer ‘cause difficulties in 

comprehension’, and Hunter [3] writes that the analysis is ‘necessarily complicated’.  Both 

Close [2] and Hunter [3] noted that empirical equations formulated to capture the sorption 

properties can give rise to the prediction of anomalous behaviour of ventilated beds of 

hygroscopic media.  Thorpe [4] noted that this occurs when the Tóth isotherm is employed to 

model the performance of ventilated beds of RD silica gel.  This work enables the results of 

applying Tóth’s and Freundlich’s isotherms to be contrasted. 

 

The theoretical framework of the study was developed by Banks [5], but his presentation is 

quite terse.  In  order to help students and researchers new to this field the present work has 

three objectives, namely to present: 

1. Derivations of expressions first stated by Banks [5] that govern the behaviour of 

ventilated beds of solid desiccants.  The expressions account for two extremes, namely 

when the solids approach being non-hygroscopic, and when they are highly 

hygroscopic. 

2. Derivations of useful algebraic relationships that govern the behaviour of beds of 

hygroscopic porous media when they are ventilated with air. 

3. An annotated MATLAB® script that plots the trajectories of temperature in the 

temperature-humidity plane.  The script enables users to extract other data that may be 

of interest to them. 

This work may be used as supplementary material to the following papers: 

 

Thorpe, G. R. (2024) Heat and mass transfer in hygroscopic porous media: Significance of the 

sorption isotherm presented at the 9th Thermal and Fluids Engineering Conference, 2024 [6]. 

 

Thorpe, G. (2023) Heat and Mass Transfer in Hygroscopic Porous Media: Consequences of 

Invoking Tóth’s Sorption Isotherm. Transp Porous Med 148, 137–156 (2023). [4]    

https://doi.org/10.1007/s11242-023-01931-7 

 

Further details can be found in the papers and accompanying supplementary information 

provided by Thorpe [4] [6] [7].  The author expresses his gratitude to Dr Julian van Leersum 

for assistance with developing Eqn (29). 

 

Graham Thorpe 

Melbourne, Australia 

 

https://doi.org/10.1007/s11242-023-01931-7
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BACKGROUND 

 

When a bed of warm, dry desiccant is ventilated with cool, dry air it is conventionally assumed 

that two transfer waves traverse the bed, as indicated in Fig 1.  Velocities on the slower wave,  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  The initial thermodynamic state of a bed of silica gel is defined by its initial 

temperature of 45°C, and it is equilibrium with interstitial air that has a humidity of 

0.017 kg water/kg dry air, state B.  The bed is ventilated with air that has a 

temperature and humidity of 15°C and 0.01 kg/kg respectively, state A.  The plateau 

state, P, has  a temperature and humidity of 26.1°C and 0.00555 kg/kg respectively.  

The interstitial velocity of air through the bed is 0.1 m/s and after 10,000s operation 

the distances penetrated trailing and leading edges of the moisture wave, AP, are 

8.26 mm and 16.83 mm respectively.  The corresponding distances for the 

temperature wave, PB, are 775 mm and 1369 mm. 

 

AP, are associated with moisture being adsorbed by the hygroscopic medium, and the liberation 

of heat of sorption reduces the cooling capacity of the interstitial air.  Heat and mass transfer 

are inextricably intertwined, and the slow progress of this wave is associated with the high-

density solid phase adsorbing moisture from air that has a low density.  The slow moving wave 

is dubbed the ‘moisture’ wave.  According to Banks’ [5] nomenclature, points along the 

moisture wave lie on a line of constant 𝐹1.  Figure 2 shows loci of points on this wave in the 

T-w plane. 

 

Heat and mass transfer processes along the faster moving wave, PB, are governed by the solids 

being cooled by exchanging sensible heat with the interstitial air.  The rate of cooling is 

enhanced because latent heat is extracted from the solid phase because this phase loses water 

with the passage of the wave.  This faster travelling wave is dubbed the ‘temperature’ wave, or 

lines of  constant 𝐹2 in Banks’ [5] nomenclature.  Loci in the T-w plane of this wave are depicted 

in Figure 2. 
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Fig. 2.  Lines of constant 𝐹1 and 𝐹2 in the T-w plane for the case considered are shown as AP 

and PB respectively.  The figure also depicts the saturation temperature as a function of 

humidity. 

 

Figure 2 shows the corresponding lines of constant 𝐹2 and 𝐹2 in the T-w plane.  Tangents to 

these curves are given by 

 

− (
𝜕𝑤

𝜕𝑇
)

𝑖
= 𝛼𝑖 =

(𝜎𝜈 + 𝜆𝛼ℎ+𝛼𝑊) − (−1)𝑖((𝜎𝜈 + 𝜆𝛼ℎ−𝛼𝑊)2 − 4𝛼𝑊𝜆𝛼ℎ  )0.5

2
  𝑖 = 1,2 (1) 

 

An alternative expression for 𝛼𝑖 can be obtained by recognising that (𝜎𝜐 + 𝜆𝛼ℎ+𝛼𝑊)2 −

4𝛼𝑊𝜆𝛼ℎ can be rearranged to form (𝜎𝜐 + 𝜆𝛼ℎ−𝛼𝑊)2 + 4𝛼𝑊𝜎𝜐  so Eqn  (1) can be expressed 

as  

 

− (
𝜕𝑤

𝜕𝑇
)

𝑖
= 𝛼𝑖 =

(𝜎𝜐 + 𝜆𝛼ℎ+𝛼𝑊) − (−1)𝑖((𝜎𝜐 + 𝜆𝛼ℎ−𝛼𝑊)2 + 4𝛼𝑊𝜎𝜐  )
0.5

2
 𝑖 = 1,2 (2) 

 

 

The speeds, 𝒱𝑖,  of points on the transfer waves, 𝐹1 and 𝐹2. are given by 

 

𝒱𝑖 = 𝒜𝑖𝑣 (3) 

 

where 𝒜𝑖 is the ratio of the speed of small changes in 𝐹𝑖  on a transport wave to the speed, 𝑣, 

of the interstitial air,  𝒜𝑖 is given by 

 

𝒜𝑖 =
1

1 + 𝜇 γ𝑖

(4) 

 

in which the volume weighted density, 𝜇, is defined by 𝜇 = (1 − 𝜌𝑠𝜀) 𝜌𝑎𝜀⁄  and 
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𝛾𝑖 = 𝜈−1(𝜎𝜈 + 𝜆𝛼ℎ−𝛼𝑖) (5) 

 

γ𝑖 is an analogue of the ratio of the specific heats of the solid and fluid phases in bed of non-

hygroscopic material.  However, γ𝑖 accounts for exchanges of heat of sorption between the 

solid and fluid phases which is made explicit by Thorpe [7]. 

 

SOME USEFUL IDENTITIES 

 

To show that  
𝛾𝑖

𝜎
=

𝛼𝑊

𝛼𝑊 − 𝛼𝑖

(6) 

 

Equation (5) may be expressed in the form 

 

𝛾𝑖

𝜎
= 1 −

𝛼𝑖 − 𝜆𝛼ℎ

𝜎𝜈
(7) 

 

which when multiplied by (𝛼𝑊 − 𝛼𝑖) becomes 

 

𝛾𝑖

𝜎
(𝛼𝑊 − 𝛼𝑖) = (1 −

𝛼𝑖 − 𝜆𝛼ℎ

𝜎𝜈
) (𝛼𝑊 − 𝛼𝑖) 

                                                       = 𝛼𝑊 −
𝛼𝑖(𝛼𝑊 + 𝜆𝛼ℎ + 𝜎𝜈) − 𝛼𝑖

2 − 𝛼𝑊𝜆𝛼ℎ

𝜎𝜈
(8) 

Let 

𝐴 = 𝛼𝑊 + 𝜆𝛼ℎ + 𝜎𝜈 (9) 

and 

𝐶 = −4𝛼𝑊𝜆𝛼ℎ (10) 

in which case 

𝛼𝑖 =
𝐴 − (−1)𝑖(𝐴2 + 𝐶)0.5

2
(11) 

 

which when substituted into Equation (8) enables us to write 

 

𝛾𝑖

𝜎
(𝛼𝑊 − 𝛼𝑖) =   𝛼𝑊 −

1

𝜎𝜈
{𝐴

𝐴 − (−1)𝑖(𝐴2 + 𝐶)0.5

2
− (

𝐴 − (−1)𝑖(𝐴2 + 𝐶)0.5

2
)

2

− 𝛼𝑊𝜆𝛼ℎ} (12) 

 

Consider 
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𝐴
𝐴 − (−1)𝑖(𝐴2 + 𝐶)0.5

2
− (

𝐴 − (−1)𝑖(𝐴2 + 𝐶)0.5

2
)

2

=
2𝐴2 − (−1)𝑖2𝐴(𝐴2 + 𝐶)0.5 − 𝐴2 + (−1)𝑖2𝐴(𝐴2 + 𝐶)0.5 − (−1)2𝑖(𝐴2 + 𝐶)

4
(13)

 

 

Collecting terms in Eqn (13) results in 

 

𝐴
𝐴 − (−1)𝑖(𝐴2 + 𝐶)0.5

2
− (

𝐴 − (−1)𝑖(𝐴2 + 𝐶)0.5

2
)

2

= −
𝐶

4
(14) 

 

Substituting Eqn (10) into Eqn (12) we see that the terms in braces sum to zero, hence we 

obtain 
𝛾𝑖

𝜎
(𝛼𝑊 − 𝛼𝑖) =   𝛼𝑊 (15) 

 

or the desired result, Eqn (6). 

 

To show that 

                                               
𝛾𝑖

𝜎
=

𝛼𝑗 − 𝛼𝑊

𝜎𝜈
           𝑖, 𝑗 = 1,2;      𝑖 ≠  𝑗 (16) 

  

Retaining the definitions of A and B in equations (9) and (10) enables us to write 

 

2𝛼𝑖 =  𝐴 − (−1)𝑖(𝐴2 + 𝐶)0.5 (17) 

 

And from Eqn (5)  

𝛼𝑖 = 𝜆𝛼ℎ + 𝜎𝜈 − 𝛾𝑖𝜈 (18) 

 

Adding 𝛼𝑊 − 𝛼𝑊 to Eqn (18) gives 

𝛼𝑖 = 𝜆𝛼ℎ + 𝜎𝜈 + 𝛼𝑊 − 𝛼𝑊 − 𝛾𝑖𝜈 (19) 

 

or  

𝛼𝑖 =  𝐴 − 𝛼𝑊 − 𝛾𝑖𝜈 (20) 

 

Hence 

2𝛼𝑖 =  2𝐴 − 2𝛼𝑊 − 2𝛾𝑖𝜈 (21) 

 

Making use of Eqn (17) in Eqn (21) yields 

 

𝐴 + (−1)𝑖(𝐴2 + 𝐶)0.5 − 2𝛼𝑊 − 2𝛾𝑖𝜈 = 0 (22) 

 

 



 

8 
 

Observe that +(−1)𝑖 = −(−1)𝑗 when i, j = 1,2 and i  ≠  j hence  

 

2𝛼𝑗 = 𝐴 + (−1)𝑖(𝐴2 + 𝐶)0.5 (23) 

Eqn (21) becomes 

2𝛼𝑗 − 2𝛼𝑊 − 2𝛾𝑖𝜈 = 0 (24) 

 

which when divided by 𝜎 can be written as 

 
𝛾𝑖

𝜎
=

𝛼𝑗 − 𝛼𝑊

𝜎𝜈
(25) 

 

which is the desired result. 

 

To show that 

𝛼1𝛼2 = 𝛼𝑊𝜆𝛼ℎ (26) 

 

Firstly, we determine an expression for 𝛼1𝛼2 in terms of the nomenclature introduced in 

equation (11) and write 

 

𝛼1𝛼2 =
(𝐴 − (−1)1(𝐴2 + 𝐶)0.5)(𝐴 − (−1)2(𝐴2 + 𝐶)0.5)

4
(27) 

 

= −
𝐶

4
(28) 

 

Hence from the definition of C in Equation (10) we find the required result, namely Eqn (26). 

 

To show that 

𝛼1𝛼2 = 𝛼𝑟𝛼𝑎 (29) 

 

in which 𝛼𝑎 is defined as 

𝛼𝑎 = (
𝜕𝑇

𝜕𝑤
)

𝑎

(30) 

 

where the subscript ‘a’ signifies that the moist air is flowing along an adiabatic saturator, and 

it leaves with a temperature, a. 

 

𝛼𝑟 = (
𝜕𝑇

𝜕𝑤
)

𝑟

(31) 

 

where the subscript ‘r’ signifies a line of constant relative humidity in the T-w plane. 
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Eqn (29) is a remarkable relationship between the slopes of lines of constant 𝐹𝑖 and the 

thermodynamic properties of moist air, and it was stated without proof by Banks [5].   

 

Over a small element of length in an adiabatic saturator, 𝑚𝑎𝑑𝑤 water evaporates into the air 

stream.    This increases its humidity by an amount, 𝑑𝑤, and so that the specific enthalpy of the 

air stream increases by ℎ𝑣𝑑𝑤.  Hence, all other things being equal we have 

 

(
𝜕ℎ + ℎ𝑣𝑑𝑤

𝜕𝑤
)

𝑎
= (

𝜕ℎ

𝜕𝑤
)

𝑎
+ ℎ𝑣 = (

𝜕ℎ

𝜕𝑤
)

𝑇

(32) 

Now 

𝑑ℎ = (
𝜕ℎ

𝜕𝑤
)

𝑇
𝑑𝑤 + (

𝜕ℎ

𝜕𝑇
)

𝑤
𝑑𝑇 (33) 

from which we obtain 

 

(
𝜕ℎ

𝜕𝑤
)

𝑎
= (

𝜕ℎ

𝜕𝑤
)

𝑇
(

𝜕𝑤

𝜕𝑤
)

𝑎
+ (

𝜕ℎ

𝜕𝑇
)

𝑤
(

𝜕𝑇

𝜕𝑤
)

𝑎

(34) 

or 

(
𝜕ℎ

𝜕𝑤
)

𝑎
= (

𝜕ℎ

𝜕𝑤
)

𝑇
+ (

𝜕ℎ

𝜕𝑇
)

𝑤
(

𝜕𝑇

𝜕𝑤
)

𝑎

(35) 

 

If ℎ is constant such that 𝑑ℎ = 0 we obtain from Eqn (33) 

 

(
𝜕ℎ

𝜕𝑇
)

𝑤
= −

(
𝜕ℎ
𝜕𝑤

)
𝑇

(
𝜕𝑇
𝜕𝑤

)
ℎ

(36) 

By inspection of Eqn (32), we observe that  

−ℎ𝑣 = (
𝜕ℎ

𝜕𝑇
)

𝑤
(

𝜕𝑇

𝜕𝑤
)

𝑎

(37) 

Inserting Eqn (36) into Eqn (37) yields 

 

−ℎ𝑣 = −
(

𝜕ℎ
𝜕𝑤

)
𝑇

(
𝜕𝑇
𝜕𝑤

)
ℎ

(
𝜕𝑇

𝜕𝑤
)

𝑎
= − (

𝜕ℎ

𝜕𝑤
)

𝑇

𝛼𝑎

𝛼ℎ

(38) 

We wish to demonstate that 𝛼1𝛼2 = 𝛼𝑟𝛼𝑎, which from Eqn (26) is equivalent to showing that 

 

𝛼𝑟𝛼𝑎 = 𝛼𝑊𝜆𝛼ℎ (39) 

 

At this point we make use of identities stated by Banks [5], and developed in more detail in the 

Supplementary Information that accompanies Thorpe [4]. (Note that the latter work is available 

Open Access).  We define the function,  𝜓, by 
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𝜓 =
(

𝜕ℎ
𝜕𝑤

)
𝑇

ℎ𝑣

(40) 

Hence from Eqns  (38) and  (40) 

𝛼𝑎 = −
(

𝜕𝑇
𝜕𝑤

)
ℎ

𝜓
=

𝛼ℎ

𝜓
(41) 

 

It is demonstrated by Thorpe [4]  (after being stated by Banks [5]) that 

 

𝛼𝑟 = −
Ω

𝑤𝑆
(42) 

and that 

 

𝛼𝑊 = −
Ω

𝑤𝜆𝜓𝑆
(43] 

 

From Eqns (41) and (42) 

𝛼𝑎𝛼𝑟 = −
𝛼ℎ

𝜓

Ω

𝑤𝑆
(44) 

This may be expressed as  

𝛼𝑎𝛼𝑟 = 𝛼𝑊𝜆𝛼ℎ (45)  

 

which is equivalent to the desired result, namely Eqn (29). 

 

To show that 

𝛾1𝛾2 = −𝑎𝑊𝜎 𝜈⁄ ≡ 𝜎𝛽 (46) 

 

From Eqn (7) we have 

 

𝛾1𝛾2

𝜎2
= (1 −

𝛼1 − 𝜆𝛼ℎ

𝜎𝜈
) (1 −

𝛼2 − 𝜆𝛼ℎ

𝜎𝜈
) (43) 

which when expanded can be expressed as 

 

𝛾1𝛾2 = {𝜎2 −
𝜎(𝛼1 − 𝜆𝛼ℎ)

𝜈
−

𝜎(𝛼2 − 𝜆𝛼ℎ)

𝜈
+

𝛼1𝛼2 − 𝜆𝛼ℎ(𝛼1+𝛼2) + (𝜆𝛼ℎ)2

𝜈2
} (44) 

 

By making use of Eqn (26) for 𝛼1𝛼2 and recognising that  

  

𝛼1+𝛼2 =
𝐴 − (−1)(𝐴2 + 𝐶)0.5 + 𝐴 − (−1)2(𝐴2 + 𝐶)0.5

2
(45) 

Hence 

𝛼1+𝛼2 = 𝐴 = 𝛼𝑊 + 𝜆𝛼ℎ + 𝜎𝜈 (46) 



 

11 
 

 

Substituting Eqn (26) and Eqn (46) into Eqn (44) yields 

 

𝛾1𝛾2 = {𝜎2 −
𝜎𝐴

𝜈
+

2𝜎𝜆𝛼ℎ

𝜈
+

𝛼𝑊𝜆𝛼ℎ − 𝐴𝜆𝛼ℎ + (𝜆𝛼ℎ)2

𝜈2
} (47) 

 

which simplifies to 

𝛾1𝛾2 = −𝑎𝑊𝜎 𝜈⁄ (48) 

 

The sorbability, 𝛽, can be expressed as −𝑎𝑊 𝜈⁄  [4],[5] hence 

 

𝛾1𝛾2 = 𝜎𝛽 (49) 

 

Eqn (48) and Eqn (49) furnish the desired results.  It should be noted that the definition of 

sorbability, 𝛽, is  

 

𝛽 = (
𝜕𝑊

𝜕𝑤
)

𝑇

(50) 

 

ALGEBRAIC RELATIONSHIPS WHEN THE SORBABILITY APPROACHES ZERO 

AND INFINITY 

 

Intuitive reasoning 

 

A bed of porous medium containing a non-hygroscopic solid lies at one end of a continuum.  

At the other end is a bed comprising an idealised solid that adorbs an infinite quantity of 

sorbate.  Real hygroscopic systems fall somewhere within these two extrema.  Recognising the 

behaviour at these extreme provides useful insights into the heat and mass transfer processes 

that occur in ventilated beds of hygroscopic porous media. 

 

We can intuitively predict the behaviour of a system comprising a non-hygroscopic medium.  

For example, if we consider such a bed that is ventilated with air at a constant state and which 

has come to a quasi-steady state and we impose a step-change on the specific humidity and 

temperature of the air entering the bed we can intuit the following: 

 

i. Heat and mass transfer processes are decoupled. 

ii. It is possible that air entering a bed of non-hygroscopic medium has a different humidity 

from the interstitial air within the bed.  A moisture front will form, with air on the 

downstream side having the initial humidity within the bed.  It will be replaced with air 

that has the humidity of the air entering the system.  The front travel with the velocity 

of the interstitial air. 
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iii. A temperature wave will traverse the bed, and in this case 𝛾 = 𝜎, the ratio of the specific 

heats of the solid phase and moist air.  Hence from Eqn (4) the velocity of the 

‘temperature’ wave, 𝒱, is 

 

𝒱 =
𝑣

1 + 𝜇𝜎
(51) 

 

In the case of a highly sorbent solids such that 𝛽 = (𝜕𝑊 𝜕𝑤⁄ )𝑇 → ∞ we might 

intuitively expect that: 

 

iv. The speed of a moisture transfer wave is zero, because as moisture vapour in the 

interstitial air flows towards a point in the bed of porous hygroscopic medium it is 

completely adsorbed by the solid.  As a result, we anticipate that 𝛾2 → ∞ and 𝐴2 → 0. 

 

v. The total amount of heat liberated by water vapour that is adsorbed by the highly (𝛽 →

∞) hygroscopic is much greater that any changes of enthalpy of the solid phase.  As a        

result, the heat liberated by the moisture being adsorbed is used solely for increasing 

the sensible heat of the interstitial air.  Hence, the behaviour of the air tends to follow 

that of the adiabatic wet bulb temperature, which is close to that of a line of constant 

enthalpy on a psychrometric chart.  In other words, lines of constant  𝐹1 are similar to 

lines of constant enthalpy of moist air. 

 

vi. We have noted in vi above that the enthalpy of the bed across a temperature wave 

changes, but the moisture content remains constant.  The rate of cooling of a desiccant 

material by the exchange of sensible heat between cool air and warmer solids is 

enhanced by an exchange of latent heat.  The latter arises because water evaporates 

from the solid phase.  We can state that 𝛾1 < 𝜎. 

vii. The sorbability, 𝛽, of a hygroscopic material is defined by Eqn (50) which indicates the 

rate at which the moisture content of a substance increases with the humidity of the 

interstitial air.  The difference in the humidity of air at states P and B along a 

temperature wave approaches a constant value as the sorbability of the solid increases.  

Ceteris paribus, the amount of water removed from the solid phase tends to a constant 

value.  However, as the sorbability increases so does the amount of water adsorbed, 

hence the removal of a fixed amount of water across the temperature wave becomes an 

increasingly small fraction of the total adsorbed moisture.  This leads to the moisture 

content of the solids tending to being constant along a temperature wave as the 

sorbability increases. 
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A more rigorous approach 

 

The intuitive reasoning presented above has been put on a sound footing by Banks [5].  An 

objective of the present work is to fill in some of the algebraic details of his analysis.  The 

equations that govern 𝛼𝑖 and 𝛾𝑖, Eqns (1), (2) and (5) do not rely on any specific physical 

properties of the sorbate/sorbent system.  They are quite general.   However, they govern the 

quantities 𝐹𝑖 and  𝐴𝑖 that specify the performance of a ventilated sorbent/sorbate system.  Lines 

of constant 𝐹𝑖 determine the thermodynamic state paths of a system, and the values of 𝐴𝑖 

determine the speed at which changes in the thermodynamic state are transported.  As pointed 

out by Banks [5] 𝐹𝑖 and  𝐴𝑖 depend on three terms, namely 𝜎𝜈, 𝜆𝛼ℎ and 𝛼𝑊.  A defining 

property of a sorbing medium is its sorbability, 𝛽, and from Eqns (48) and (49) we note that  

 
𝜎𝜈

𝑎𝑊
= −

𝜎

𝛽
(52) 

 

Hence, if the sorbability is low then 𝜎𝜈 dominates 𝑎𝑊, and vice versa if the sorbability is high.  

After the manner of Banks [5] we shall consider the extrema of 𝛼𝑖 and 𝛾𝑖 𝜎⁄  as the sorbability 

tends to zero (the non-hygroscopic case) and to infinity (the idealised infinitely sorbing case).  

The behaviour of real systems lies in this range. 

 

Low sorbability, 𝛽 → 0 

 

In this case 𝜎𝜈 → ∞, hence 𝜆𝛼ℎ and 𝛼𝑊 become negligibly small compared with 𝜎𝜈 in Eqns 

(1) and (2) from which we conclude that  

 

𝛼1 → 𝜎𝜈 → ∞ (53) 

 

Hence (𝜕𝑇 𝜕𝑤⁄ )𝐹1
→ −∞ , or (𝜕𝑤 𝜕𝑇⁄ )𝐹1

→ 0 which indicates that lines of constant 𝐹1 tend 

to lines of constant w as the sorbent becomes non-hygroscopic.   

 

When we divide the numerator and denominator of Eqn (6) by 𝛼𝑊 there obtains 

 

𝛾1

𝜎
=

1

1 −
𝛼1

𝛼𝑊

→
𝛼𝑊

𝜎𝜈
 as 𝛽 → 0 and  𝜈 → ∞ (54) 

 

 

This implies that as the sorbability 𝛽 tends to zero, 𝛾1 → 0. As a result, we observe from 

Equation (4) that 𝒜1 → 1.  Hence, changes in 𝐹2, along lines of constant 𝐹1 tend to travel with 

same velocity of the fluid.  This was presaged in the section on the non-

hygroscopic/hygroscopic continuum. 
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Turning our attention to 𝛼2 and 𝛾2 we see that if 𝜎𝜈 ≫ 𝛼𝑊 and 𝜎𝜈 ≫ 𝜆𝛼ℎ then from Eqn (1) 

we have 

 

2𝛼2 ≈  𝜎𝜈 − ((𝜎𝜈)2 − 4𝛼𝑊𝜎𝜈)0.5 =  𝜎𝜈[1 − (1 − 4𝛼𝑊 𝜎𝜈⁄ )0.5] (55) 

 

Expanding (1 − 4𝛼𝑊 𝜎𝜈⁄ )0.5 in terms of a Maclaurin series, and recognising that 4𝛼𝑊 𝜎𝜈⁄ ≪

1 enables us write 

(1 − 4𝛼𝑊 𝜎𝜈⁄ )0.5 ≈ 1 − 2𝛼𝑊 𝜎𝜈⁄ (56) 

 

Which when substituted into Equation (55) results in 

 

𝛼2 =
𝛼𝑊𝜆𝛼ℎ

𝜎𝜈
→ 0 as  𝜈 → ∞ (57) 

 

Hence (𝜕𝑇 𝜕𝑤⁄ )𝐹2
→ 0 in the case of non-sorbent materials which implies that lines of constant 

𝐹2 are coincident with lines of constant temperature, T.   

 

We determine 𝛾2 𝜎⁄  by substituting (57) into (54) when  𝑖 = 2 gives the result 

 

𝛾2

𝜎
= 1 −

𝛼𝑊𝜆𝛼ℎ 𝜎𝜈⁄ − 𝜆𝛼ℎ

𝜎𝜈
→ 1 as  𝜈 → ∞ (58) 

 

Hence 𝛾2 → 𝜎.  This is in keeping with our intuitive reasoning that the equivalent of an 𝐹2 

wave in a non-hygroscopic porous medium, a temperature wave, would travel with a velocity 

governed by 

𝒜2 =
1

1 + 𝜇𝜎
(59) 

 

High sorbability, 𝛽 → ∞ 

 

We now turn out attention to the case in which the sorbability is high, i.e. 𝛽 → ∞ and 𝜈 → 0.  

In this case we observe from Eqn (2) that 

 

2𝛼1 → (𝜆𝛼ℎ+𝛼𝑊) − (−1)1((𝜆𝛼ℎ−𝛼𝑊)2  )0.5 as 𝜈 → 0 (60) 

 

Hence 𝛼1 = −(𝜕𝑇 𝜕𝑤⁄ )𝐹1
→ 𝜆𝛼ℎ.  From the definitions of 𝜆 and 𝛼ℎ, Eqns (6.12) and (6.13) in 

the Supplementary Information  respectively accompanying [4] 

 

𝜆𝛼ℎ = {1 −
(

𝜕𝐻
𝜕𝑊

)
𝑇

(
𝜕ℎ
𝜕𝑤

)
𝑇

} ∙
(

𝜕ℎ
𝜕𝑤

)
𝑇

(
𝜕ℎ
𝜕𝑇

)
𝑤

(61) 
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so 

𝜆𝛼ℎ =
{(

𝜕ℎ
𝜕𝑤

)
𝑇

− (
𝜕𝐻
𝜕𝑊

)
𝑇

}

(
𝜕ℎ
𝜕𝑇

)
𝑤

(62) 

 

This takes the form of Eqn (7.3.4) derived in the Supplementary Information presented in [4] 

as 

𝜆𝛼ℎ =
ℎ𝑠

𝑐𝑎 + 𝑤 (
𝜕𝜆𝑣

𝜕𝑇
|

𝑇
+ 𝑐𝑤)

(63)
 

i.e.  

 

(
𝜕𝑇

𝜕𝑤
)

𝐹𝑖

= −
ℎ𝑠

𝑐𝑎 + 𝑤 (
𝜕𝜆𝑣

𝜕𝑇
|

𝑇
+ 𝑐𝑤)

(64)
 

 

A line of constant enthalpy on a T-w plot is defined as 

 

(
𝜕𝑇

𝜕𝑤
)

ℎ
= −

(
𝜕ℎ
𝜕𝑤

)
𝑇

(
𝜕ℎ
𝜕𝑇

)
𝑤

= −
𝑐𝑊(𝑇 − 𝑇𝑜) + ℎ𝑣

𝑐𝑎 + 𝑤 (
𝜕𝜆𝑣

𝜕𝑇
|

𝑇
+ 𝑐𝑤)

(65) 

 

Now 𝑐𝑊(𝑇 − 𝑇𝑜) + ℎ𝑣 ≅ ℎ𝑠 (depending on the selection of the reference temperature, 𝑇𝑜, 

which is typically 0°C).  Hence, it is observed that when hygroscopic materials have a high 

sorbability a line of constant 𝐹1 is closely coincident with a line of constant enthalpy. 

 

To determine 𝛾1 we divide the numerator and denominator of Eqn (6) by 𝛼𝑊, and make use of 

Eqn (60) to obtain 

 

𝛾1

𝜎
=

1

1 −
𝛼1

𝛼𝑊

= (1 −
𝜆𝛼ℎ

𝛼𝑊
)

−1

as   𝛽 → ∞ (66) 

 

The numerator of Eqn (63) is the differential heat of sorption, ℎ𝑠, of water by silica gel, and we 

know that ℎ𝑠 > 0.  The denominator of Eqn (63) is the differential of the enthalpy of moist air, 

and this is greater than zero.  As a result, we have 

 

𝜆𝛼ℎ > 0 (67) 

 

If we consider a line of constant moisture content, W, of silica gel in the T-w plane the humidity 

of the air, w, increases monotonically with temperature, T, i.e. (𝜕𝑇 𝜕𝑤⁄ )𝑊 > 0. 
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The definition of 𝛼𝑊 is  

𝛼𝑊 = − (
𝜕𝑇

𝜕𝑤
)

𝑊

(68) 

 

hence 𝛼𝑊 < 0.   We can deduce from the above reasoning that (1 − 𝜆𝛼ℎ 𝛼𝑊⁄ ) > 1 so from 

Eqn (66) we find that 

𝛾1 < 𝜎 (69) 

 

The physical consequence of this result is that the speeds of 𝐹1 waves through beds of highly 

adsorbent porous media are greater than those through beds in which heat transfer alone occurs. 

 

When 𝛽 → ∞ and 𝜈 → 0 is quite trivial to determine an expression for  𝛼2 from Eqn (2), but 

for completeness we note that  

 

2𝛼2 = 𝜆𝛼ℎ+𝛼𝑊 − (−1)2(𝜆𝛼ℎ−𝛼𝑊) (70) 

 

from which 𝛼2 = 𝛼𝑊.  From the definition of 𝛼𝑊 it follows that a line of constant 𝐹2 becomes 

coincident with a line of constant moisture content, W, on a T-w plot as the sorbability of the 

sorbent increases. 

 

The determination of 𝛾2 as 𝛽 → ∞ is readily determined from Eqn (25) and recognising that 

𝛼1 → 𝜆𝛼ℎ.  Re-arranging Eqn (25) leads to 

𝛾2 =
1

𝜈
(𝛼1 − 𝛼𝑊) (71) 

or  

𝛾2 =  𝛽 (1 −
𝜆𝛼ℎ

𝛼𝑊
) (72) 

 

We have shown that 𝜆𝛼ℎ 𝛼𝑊⁄ > 0 hence 𝛾2 → ∞ as 𝛽 → ∞.  As a result, the speed of passage 

of an 𝐹2 wave is infinitely small in hygroscopic media the sorbabiity of which approaches 

infinity. 

 

FINDING THE DWELL, OR PLATEAU STATE, P, USING MATLAB® 

 

The user specifies: 

 

a. The thermodynamic state of the air entering the system, shown as A, in Figure 1  

b. The initial state of the bed.  This is also specified by the user in terms of its initial 

temperature and the humidity of interstitial air in equilibrium with the solid, state B.  

c. The isotherm to be used by specifying model.  If model = 1 the Tóth isotherm 

invoked, otherwise the Freundlich isotherm is invoked if model = 2. 
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The user should be aware that the MATLAB® script is designed for research purposes, and to 

enable readers to reproduce the results presented by Thorpe [4].  The script does not have 

checks to ensure that the operating conditions result in the formation of shock fronts, or 

otherwise.  It is operational under the default conditions supplied. 

 

The objective is to make use of the above-mentioned thermodynamic states as initial 

conditions, and integrate Eqs (1) and (2) to the point P at which the lines of constant 𝐹1 and 𝐹2 

intersect.  This is the plateau state. 

 

 

 

Figure 3.  The thermodynamic state, A, of the air entering the bed is specified by 

the user and it is specified by T_in and w_in.  Similarly, the initial state of the 

interstitial air in the bed of hygroscopic medium at B is specified by the user. 

 

With A and B known Eqns (1) and (2) are integrated to an upper integration limit of humidity, 

wP.  The integration is carried out by means of a Runge-Kutta algorithm out using 

dTbydw_RK(w,T,model,i).  model specifies which isotherm is to be used, and i refers 

to lines of constant F.  This parameter, i, is built into the script, and the user does not need to 

manipulate it. 

 

The idea is to determine a value of wP such that the two lines intersect, and abs(T1 – T2) is 

minimised.  The minimisation is achieved using the fminsearch function. 

DISCONTINUITIES 

 

Thorpe [4] demonstrates that a discontinuity may form when the velocity of the trailing edge 

of a transfer wave is higher than its leading edge. This situation is expected to occur when cool 
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moist silica gel is dried by ventilating them with warm air that has a low relative humidity [8].  

However, shock fronts are predicted to form when the Tóth isotherm is invoked to predict the 

performance when warm, dry silica gel is ventilated with cool, moist air. 

 

Consider the ‘shock’ wave propagating with a velocity, 𝒱, through a bed of silica gel as shown 

in Fig 4.  Properties such as the humidity, w, of the interstitial air, and moisture content, W, of 

the silica gel display discontinuities ∆𝑤 and ∆𝑊 respectively across the moving front.  The 

relative velocity of the interstitial air sensed by an observer travelling with the shock front is  

𝑣 − 𝒱, and the humidity entering the shock front from upstream is w.  The observer also 

perceives that the silica gel is approaching the shock front with a velocity of 𝒱, and its moisture 

content is 𝑊 + ∆𝑊.  The observer, moving with the shock front, senses that the silica gel is 

flowing upstream at a velocity  𝒱, and with a moisture content, 𝑊.   Air with humidity 𝑤 + ∆𝑤 

is perceived by the observer to be travelling downstream of shock with a velocity 𝑣 − 𝒱 relative 

to the front.  Since moisture is conserved across the front we have 

 

Rate of moisture approaching 

the discontinuity 
= 

Rate of moisture leaving 

the discontinuity 

 

𝜌𝑎𝜀(𝑣 − 𝒱)𝑤 + 𝒱𝜌𝑠(1 − 𝜀)(𝑊 + ∆𝑊) = 𝜌𝑎𝜀(𝑣 − 𝒱)(𝑤 + ∆𝑤) + 𝒱𝜌𝑠(1 − 𝜀)𝑊 (73) 

 

Collecting terms 

𝒱(𝜌𝑠(1 − 𝜀)∆𝑊 + 𝜌𝑎𝜀∆𝑤) = 𝜌𝑎𝜀𝑣∆𝑤 (74) 

 

so the speed of the front is given by 

𝒱 =
𝑣

1 + 𝜇
∆𝑊
∆𝑤

(75)
 

where  

𝜇 =
𝜌𝑠(1 − 𝜀)

𝜌𝑎𝜀
(76) 

 

The system portrayed in Fig 4 is considered to be adiabatic.  Hence, the conservation of 

enthalpy is accounted for  by replacing w and W  with h and H respectively, in which case 

 

𝒱 =
𝑣

1 + 𝜇
∆𝐻
∆ℎ

(77)
 

 

Comparing Eqns (75) and (77) enables us to write 

 

∆𝐻

∆ℎ
=

∆𝑊

∆𝑤
(78) 
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Fig. 4.  A bed of silica gel is ventilated with air that has a velocity 𝑣, and a shock 

wave propagates through a bed with a velocity 𝒱.  Hence the relative of velocity of 

the air flowing through the discontinuity is 𝑣 − 𝒱.  Upstream of the shock, the 

humidity of the air is 𝑤, and that downstream is 𝑤 + ∆𝑤.  To an observer travelling 

with the shock wave, it appears that silica gel with a moisture content 𝑊 + ∆𝑊 is 

approaching the shock front with a velocity 𝒱, whilst it leaves upstream with a 

moisture content 𝑊. 

 

Conservation equations across a shock front 

 

If we define the discontinuities across the shock front that forms between the air inlet and the 

plateau state 

∆𝐻 = 𝐻𝑝 − 𝐻𝑖𝑛𝑙𝑒𝑡 

∆ℎ = ℎ𝑝 − ℎ𝑖𝑛𝑙𝑒𝑡 

∆𝑊 = 𝑊𝑝 − 𝑊𝑖𝑛𝑙𝑒𝑡 

∆𝑤 = 𝑤𝑝 − 𝑤𝑖𝑛𝑙𝑒𝑡 

we are able to express the difference in the enthalpies of the air between the plateau state and 

the air entering the system, by designating their subscripts p and inlet respectively, thus  

 

∆ℎ = 𝑐𝑎(𝑇𝑝 − 𝑇𝑖𝑛𝑙𝑒𝑡) + 𝑐𝑤(𝑤𝑝𝑇𝑝 − 𝑤𝑖𝑛𝑙𝑒𝑡𝑇𝑖𝑛𝑙𝑒𝑡) + 𝑤𝑝ℎ𝑣|𝑝 − 𝑤𝑖𝑛ℎ𝑣|𝑖𝑛𝑙𝑒𝑡 (79) 

 

and the difference in the enthalpies of the solid phase across the discontinuity is given by 

 

∆𝐻 = 𝑐𝑠(𝑇𝑝 − 𝑇𝑖𝑛𝑙𝑒𝑡) + 𝑐𝑤(𝑊𝑝𝑇𝑝 − 𝑊𝑖𝑛𝑇𝑖𝑛𝑙𝑒𝑡) + 𝐻𝑊|𝑝 − 𝐻𝑊|𝑖𝑛𝑙𝑒𝑡 (80) 

 

Cross multiplying Eqn (78), and to ensure it is satisfied we define a function 

 

𝜙(𝑇𝑝, 𝑤𝑝) = ∆ℎ∆𝑊 − Δ𝐻Δ𝑤 (81) 

and search for values of 𝑇𝑝 and 𝑤𝑝 such that abs(𝜙(𝑇𝑝, 𝑤𝑝)) approaches zero to within a pre-

defined tolerance.  The function used to determine 𝜙(𝑇𝑝, 𝑤𝑝)  is  Obj_fn_Shock_Toth 
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The values of 𝑇𝑝 and 𝑤𝑝 are constrained to lie on a line of constant 𝐹2 that passes through the 

initial state of the bed of porous media.   A fourth order Runge-Kutta method is used to integrate 

the first order differential equation 

(
𝜕𝑇

𝜕𝑤
)

𝐹2

= −𝛼2 (82) 

The integration is carried out in the MATLAB script by dTbydw_RK_Toth and 𝑤𝑝 is 

adjusted by fminsearch until 𝜙(𝑇𝑝, 𝑤𝑝) approaches zero, within the default limit set by 

MATLAB.  

 

Physical properties used in the MATLAB script are based on those presented by Chua et al. [9] 

 

NOMENCLATURE 
 
𝒜 Ratio of velocities 

𝑐𝑎  Specific heat of dry air, J (kg °C)-1 

𝑐𝑠  Specific heat silica gel, J (kg °C)-1 

𝑐𝑊  Specific heat of liquid water, J (kg °C)-

1 

𝐹  Characteristic potential 

ℎ  Specific enthalpy of air, J (kg dry air)-1 

ℎ𝑠  Heat of sorption, J kg-1 

ℎ𝑣  Latent heat of vaporisation of water, J 

kg-1 

ℎ𝑤  Isothermal differential heat of wetting, 

J kg-1 

𝐻  Specific enthalpy of moist solid, J (kg 

dry)-1 

𝐻𝑊  Integral heat of wetting , J kg-1 

𝐾0  Constant in Tóth’s sorption isotherm, 

Pa-1 

𝐾𝑝  A function of temperature 

𝑝  Vapour pressure of water, Pa 

𝑝𝑠  Saturation vapour pressure of water, Pa 

𝑝𝑣  Vapour pressure of water, Pa 

 

𝑝𝑎𝑡𝑚  Atmospheric pressure, Pa 

q  Tóth constant 

𝑟  Relative humidity of air 

ℛ𝑣  Gas constant for water,J.(kg K)-1 

𝑡 Time, s 

𝑇  Temperature, °C 

𝑇𝑜  Reference temperature, °C 

𝑇𝑎𝑏𝑠  Absolute temperature, K 

𝑣 Mean interstitial velocity, m s-1 

𝒱 Velocity of a transfer wave, m s-1 

𝑤 Specific humidity of air, kg.kg-1 

𝑊 Moisture content of silica gel, kg.kg-1 

𝑊0 Empirical constant, kg.kg-1 

𝑊𝑚 Empirical constant, kg.kg-1 

x Distance along the bed, m 

Greek symbols 

𝛼ℎ −(𝜕𝑇 𝜕𝑤⁄ )ℎ, °C 

𝛼𝑖 −(𝜕𝑇 𝜕𝑤⁄ )𝐹𝑖
, i = 1,2, °C 

𝛼𝑊 −(𝜕𝑇 𝜕𝑤⁄ )𝑊, °C 

𝛽 Sorbability (𝜕𝑊 𝜕𝑤⁄ )𝑇 

𝜀 Void faction of the silica gel bed 

𝛾 Ratio of effective specific heats 

𝜆 1 − (𝜕𝐻 𝜕𝑊⁄ )𝑇 (𝜕ℎ 𝜕𝑤⁄ )𝑇⁄  

𝜇 Volume-weighted ratio of solids and 

air 

𝜈 −(𝜕𝑇 𝜕𝑊⁄ )𝑤 ,°C 

𝜌𝑎 Density of dry air, kg m-3 

𝜌𝑠 Density of dry silica gel, kg m-3 

𝜎 Ratio of specific heats 

Subscript 

i, j Designates the transfer wave 
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MATLAB® SCRIPT 

 
%   To find the dwell state of ventilated beds of 
%   hygroscopic porous media and trajectories of  
%   heat and mass transfer waves in the temperature-humidity (T-w) plane. 

  

  
%   G. R. Thorpe 
%   Institute for Sustainable Industries and Liveable Cities 
%   Victoria University 
%   Melbourne, Australia 

  
%   DISCLAIMER 

  
%   This script is written for scientific research and teaching purposes 
%   only.  The author does not warrant that the script is free from 
%   errors.  The software is offered with the intention that it assists  
%   researchers.  They are solely responsible for the use to which any  
%   results are put.  

  
%   LIMITATIONS 

  
%   This script has been developed in the interest of transparency to  
%   demonstrate how data presented by Thorpe (2024)are obtained.  It is 
%   anticipated that the analysis is likely to be robust over a   
%   wide range of operating conditions.  However, adjustments  
%   to graphical outputs may have to be made to ensure that the data 
%   can be portrayed properly.  It does not have GUI, but the script 

%   is easy to use. 

 
%   REFERENCES 

  
%   SI refers to Supplementary Information provided in [4] 
%   Thorpe, G., 2023. 
%   "Heat and Mass Transfer in Hygroscopic Porous Media: 
%   Consequences of Invoking Tóth’s Sorption Isotherm." 
%   Transport in Porous Media, 148(1), pp.137-156 

  
%   ASTFE 24 refers to HEAT AND MASS TRANSFER IN HYGROSCOPIC POROUS MEDIA: 
%   SIGNIFICANCE OF THE SORPTION ISOTHERM, ASTFE CONFERENCE 2024. 

  
clear all 
global T_dwell w1 w2 T1 T2 
format long 
[hv0,dhvdT,ca,cw,cs,N,pt,eps,rho,P,mu]= phys_properties_SG; 

  

  
%   SPECIFY THE CONDITIONS UNDER WHICH THE SYSTEM OPERATES 

  
%   Condition of the air entering the bed: 
T_in=25;        %   Inlet temperature, deg. C 
w_in=0.019;     %   Humidity of air 

  
%   Initial state of the bed 
T_initial=50;   %   Initial temperature of the silica gel 
w_initial=0.04; %   Humidity of air inequilibrium with the solid 

  
%   CHOOSE THE SORPTION ISOTHERM TO BE INVESTIGATED 
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%   model = 1       Toth 
%   model = 2       Freundlich 

  
model=2; 

  
% 
%   End of main script 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   Toth isotherm with discontinuity 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
w0=0.007;   %   Estimated value of the humidity at dwell/plateau state. 
if model == 1 

     
%   This function is called when the governing equations are discontinuous, 
%   and a shock front forms 

  
%   Note that for a shock front to form the velocity ratio at 
%   the trailing edge must be greater than at the leading edge. 

  
[w_dwell]=fminsearch(@(w_dwell) 

dwell_find_shock_Toth(w_dwell,T_in,w_in,T_initial, ... 
    w_initial,model),w0); 

  
%   Plot results in the T-w plane 
Toth_plots(w_dwell,T_dwell,w_in,T_in); 

  
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   Freundlich isotherm  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if model == 2 
%   This function is called when the governing equations are continuous. 
%   fminsearch is called to estimate the value of wP, the value of the  
%   humidity at the dwell, or plateau state.  This is achieved by 
%   integrating SI 6.2.1 along lines of constant F1 and F2 and finding 
%   the value of wP when the two lines intersect, i.e. when the 
%   temperatures at the end of each line are equal.  To labour a point at 
%   the intersection of the two lines the humidities and temperatures 
%   are equal. 

  

  
[w_dwell]=fminsearch(@(w_dwell) dwell_find_Freundlich(w_dwell,T_in, ... 
    w_in,T_initial,w_initial,model),w0); 

  
%   Plot results in the T-w plane 
Freundlich_plots(w_dwell,T_dwell,w_in,T_in,w_initial,T_initial) 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%% End of main program %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
function [hv0,dhvdT,ca,cw,cs,N,pt,eps,rho,P,mu]= phys_properties_SG; 
%   Physical properties of silica gel/air/water system 

  
hv0 = 2500900; 
dhvdT = -2376.2; 
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ca = 1004.8; 
cw = 4186.8; 
cs = 921; 
N = 0.622; 
pt = 101325; 
rho = 1.169; 
eps = 0.4; 
P = 1158.0; 
mu = P*(1-eps)/(rho*eps); 
end 

  

  
function [T_diff] = dwell_find_Freundlich(wP, T_in, w_in, T_initial, 

w_initial,model) 
global T_dwell w1 w2 T1 T2 
[hv0,dhvdT,ca,cw,cs,N,pt,eps,rho,P,mu]= phys_properties_SG; 

  
%   This function integrates Eqn (1) of this work.  The limits of 
%   integration are w0 to wP.  In the case of the line of constant F1, 
%   the moisture wave, the initial humidity, w0, and temperature of 
%   the air  entering the bed of silica gel and the temperature are 
%   w0=w_in and T0=T_in. 
%   Along the line of constant F2, the initial conditions are w0=w_initial 
%   and T0=T_initial. 
%   At the end of the two integrations the humidity is set to wP.  However, 
%   the corresponding temperature are TF1 and TF2. At the point of 
%   intesection of the F1 and F2 lines these temperatures are equal. 
%   Hence to objective is to search for a value of wP that ensures 
%   that abs(TF1-TF2) < some limit.  In this case it is the default value 
%   10-6. 
%   The required value of wP is determined by the function fminsearch. 
% 

  
%   Constant F1 
w0=w_in; 
T0=T_in; 
i=1; 
[w,T]=ode45(@(w,T) dTbydw_RK(w,T,model,i),[w0 wP],T0); 
w1=w; 
T1=T; 
nT1=length(T); 
TF1=T(nT1); 

  
%   Constant F2 
w0=w_initial; 
T0=T_initial; 
i=2; 
[w,T]=ode45(@(w,T) dTbydw_RK(w,T,model,i),[w0 wP],T0); 
w2=w; 
T2=T; 

  
nT2=length(T); 
TF2=T(nT2); 
%   The variable to be minimised by fminsearch manipulating the value 
%   of wP. 
T_diff=abs(TF1-TF2); 
T_dwell=0.5*(TF1+TF2); 
end 

  
function dTbydw=dTbydw_RK(w,T,model,i) 
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%   Integrate Eqn (1) of this work and SI 6.20 by means of ode45 
%   function dTbydw_RK calculates values of dT/dw along 
%   lines of constant Fi, i=1,2. 
[hv0,dhvdT,ca,cw,cs,N,pt,eps,rho,P,mu]= phys_properties_SG; 

  
p=pt*w/(w+N); 
Omega=1-p/pt; 
[ps,dpsbydT] = Psat_Huang1(T); 
hv = latent_heat(T,hv0,dhvdT); 
r = rel_hum(w,ps,pt,N); 

  

  
%   model = 1       Toth 
%   model = 2       Freundlich 

  
if model == 1 
    Weq=Weq_Toth(w,T); 
end 
if model == 2 
    Weq=Weq_Freundlich(r); 
end 

  
W=Weq; 

  
if model==1 
    hsbyhv=hsbyhv_Toth(W,T); 
end 
if model==2 
    hsbyhv=1; 
end 

  

  
hs = Heat_of_sorption(hsbyhv,hv); 

  
if model == 1 
    zeta=zeta_Toth(W,T); 
end 
if model == 2 
    zeta=zeta_Freundlich(r); 
end 

  
beta=zeta*Omega/w;  %SI 7.5.15 
dhbydT = ca+w*(cw+dhvdT); 
lamda_alphah=hs/dhbydT; %SI By definition 7.2.3 
S=dpsbydT/ps;   %SI By definition 7.7.9 
alphaW=-Omega/(w*(hs/hv)*S);    %SI 7.9.8 
dHbydT=dH_by_dT1(cs,cw,W);    
dhbydT = dh_by_dT(ca,cw,w,dhvdT); 
sigma=dHbydT/dhbydT;        %SI 7.1.1           
nu=1.0/(zeta*(hs/hv)*S);    %SI 7.7.10 
nu_sigma=nu*sigma; 
A=lamda_alphah+nu_sigma+alphaW; 
C=-4*alphaW*lamda_alphah; 
alpha(1)=(A+sqrt(A^2+C))/2; %SI 6.20 
alpha(2)=(A-sqrt(A^2+C))/2; %SI 6.20 
gamma(1)=sigma*alphaW/(alphaW-alpha(1));    %This work 6 & 15 
gamma(2)=sigma*alphaW/(alphaW-alpha(2));    %This work 6 & 15     
if i==1 
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    dTbydw=-alpha(1);   %Definition of alpha Eqn 1 
end 
if i==2 
    dTbydw=-alpha(2);   %Definition of alpha Eqn 1 
end 

  
end 

  
function [psat,dpsatbydT] = Psat_Huang1(T) 
%   Saturation vapour pressure of water using Huang's formula 
%   SI 13.1 

  
 [hv0,dhvdT,ca,cw,cs,N,pt,eps,rho,P,mu]= phys_properties_SG; 
e_f=1.0053;  %   Enhancement factor calculated at atmospheric pressure 
             %   using Huang's approximation. 
psat=e_f/(T+105)^1.57*exp(34.494-4924.99/(T+237.1)); 
dpsatbydT=psat*(4924.99/(T+237.1)^2-1.57/(T+105)); 
end 

  
function [hv] = latent_heat(T,hv0,dhvdT) 
%   Latent heat of vaporization of water 
%   hv0 at 0 degC 
%   dhvdT is dhv/dT 
hv = hv0+dhvdT*T; 
end 

  
function [r] = rel_hum(w,ps,pt,N) 
%   Relative humidity of air given its humidity,w, and psat. 
p = pt*w/(w+N); 
r = p/ps; 
end 

  
function W=Weq_Freundlich(rh) 
%   Equlibrium moisture content, W,as a function of relative  
%   humidity, rh, according to Freundlich's isotherm.  
W=0.444*rh^(1/1.342); 
end 

  
function[Weq]=Weq_Toth(w,T) 

  
%   The Toth isotherm for RD silica gel to find 
%   the moisture content, Weq, of silica gel 
%   in equilibrium with air that has a humidity of w and a temperature, T. 
%   Data from Chua et al. (2002)   
%   SI 9.1 et seq. 

  
 [hv0,dhvdT,ca,cw,cs,N,pt,eps,rho,P,mu]= phys_properties_SG; 

  
Tabs=T+273.15; 
K0=7.3e-13; 
Qst=2693.0e3; 
W0=0.45; 
t=12;    % Toth constant 
Rwater=461.5; 
pvap=pt*w/(N+w); 
K=K0*exp(Qst/(Rwater*Tabs));    %SI 9.3 
KP=K*pvap;                      %SI 9.2 
Weq=KP/(1+(KP/W0)^t)^(1/t);     %SI 9.3 
end 
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function hsbyhv=hsbyhv_Toth(W,T) 
 [hv0,dhvdT,ca,cw,cs,N,pt,eps,rho,P,mu]= phys_properties_SG; 

  
hv=hv0+dhvdT*T; %   Latent heat of vaporization of water 
Qst=2693.0e3;   %   Differential heat of sorption 
hsbyhv=Qst/hv; 
end 

  
function[zeta]=zeta_Toth(W,T) 

  
%   Calulate zeta using Toth isotherm. 
%   Annotations provide the principal equations used. 

  
[hv0,dhvdT,ca,cw,cs,N,pt,eps,rho,P,mu]= phys_properties_SG; 

  
Tabs=T+273.15; 
K0=7.3e-13; 
Qst=2693.0e3; 
W0=0.45; 
t=12;    % Toth constant 
Rwater=461.5; 

  
K=K0*exp(Qst/(Rwater*Tabs)); 
pv=W/(K*(1-(W/W0)^t)^(1/t)); 
KP=K*pv; 

  
%   To find dpv/dW at constant temperature 

  
[psat,dpsbydT] = Psat_Huang1(T); 
rh=pv/psat; 
V=K*(1-(W/W0)^t)^(1/t); %SI 9.5 
U=1-(W/W0)^t;           %SI 9.7 
dpbydW=(1/(K*U^(1/t)))*(1+1/(U)*(W/W0)^t);  %SI 9.9 
dWbydr=psat/dpbydW; %SI 9.12 
zeta=pv/dpbydW;     %SI 9.13 
end 

  
function zeta=zeta_Freundlich(rh) 
%   zeta defined by SI 7.5.3 
dWbydr=0.444/1.342*rh^(-0.342/1.342); 
zeta=rh*dWbydr; 
end 

  
function [rh1,rh2]=rh_find 
global T_dwell w1 w2 T1 T2 
[hv0,dhvdT,ca,cw,cs,N,pt,eps,rho,P,mu]= phys_properties_SG; 

  
%   Plot lines of constant F1 and F2. 
%   Calculate values of relative humidities 
%   along lines of cnatant F1 and  

  

  
L_w1=length(w1); 
L_w2=length(w2); 
for i=1:L_w1 
    T=T1(i); 
    [ps,dpsbydT] = Psat_Huang1(T); 
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    psat1(i)=ps; 
    p(i)=w1(i)*pt/(N+w1(i)); 
    rh1(i)=p(i)/psat1(i); 
end 
for i=1:L_w2 
    T=T2(i); 
    [ps,dpsbydT] = Psat_Huang1(T);     
    psat2(i)=ps; 
    p(i)=w2(i)*pt/(N+w2(i)); 
    rh2(i)=p(i)/psat2(i); 
end 
hold on 
plot(T1,w1) 
hold on 
plot(T2,w2) 
ylabel('Humidity, kg/kg','FontSize',14) 
xlabel('Temperature,{\circ}C','FontSize',14) 
end 

  
function [hs] = Heat_of_sorption(hsbyhv,hv) 
hs = hsbyhv*hv; %Definition of hs/hv 
end 

  
function [dhbydT] = dh_by_dT(ca,cw,w,dhvdT) 
dhbydT = ca+w*(cw+dhvdT);   %SI 7.1.6 
end 

  
function [dHbydT] = dH_by_dT1(cs,cw,W) 
%   In this work dHW/dT is subsumed in the specific heats. 
%   i.e. dHW/dT = 0.  This is the subject of 5. CLOSING REMARKS 
%   of the ASTFE 24 paper. 
dHbydT = cs+cw*W;   %SI 7.1.2 
end 

  
function  r = r_Freundlich(W) 
%   An expression of Freundich's isotherm used in ASTFE 24 paper. 
r=(W/0.444)^1.342; 
end 

  
function [Obj_fn] = dwell_find_shock_Toth(wP, T_in, w_in, T_initial, 

w_initial,model) 
global T_dwell w1 w2 T1 T2 
[hv0,dhvdT,ca,cw,cs,N,pt,eps,rho,P,mu]= phys_properties_SG; 
%   Given the initial conditions of a bed of silica gel, defined by 
%   w_initial and T_initial Eqn SI 6.20 is integrated using 
%   the Runge-Kutta algorithm. 
%   Values of the humidity, w-p, at the plateau are adjusted 
%   by fminsearch to render Obj_fn a minimum within the default 
%   accuracy of MATLAB.  This gives the temperature, T_p, 
%   at the plaeau state. 

  
w0=w_initial; 
T0=T_initial; 
i=2; 
[w,T]=ode45(@(w,T) dTbydw_RK_Toth(w,T,model,i),[w0 wP],T0); 
w2=w; 
T2=T; 
nT2=length(T); 
T_p=T(nT2); 
w_p=w(nT2); 
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Obj_fn=Obj_fn_Shock_Toth(w_in,T_in,w_p,T_p,model); 
T_dwell=T_p; 
end 

  
function dTbydw=dTbydw_RK_Toth(w,T,model,i) 
%   Integrate Eqn SI 6.20 using the Runge-Kutta algorithm 
%   The three parameters alphaW, lamda-alphah and nu-sigma 
%   are calculated. 

  
[hv0,dhvdT,ca,cw,cs,N,pt,eps,rho,P,mu]= phys_properties_SG; 
p=pt*w/(w+N);   %SI A form of 7.5.8 
Omega=1-p/pt;   %SI By definition 7.5.16 
[ps,dpsbydT] = Psat_Huang1(T); 
hv = latent_heat(T,hv0,dhvdT); 
r = rel_hum(w,ps,pt,N); 

  
Weq=Weq_Toth(w,T); 

  
W=Weq; 

  
    hsbyhv=hsbyhv_Toth(W,T); 

  
hs = Heat_of_sorption(hsbyhv,hv); 

  
zeta=zeta_Toth(W,T);   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
beta=zeta*Omega/w;  %SI 7.5.15 
dhbydT = ca+w*(cw+dhvdT); 
lamda_alphah=hs/dhbydT; %SI By definition 7.2.3 
S=dpsbydT/ps;   %SI By definition 7.7.9 
alphaW=-Omega/(w*(hs/hv)*S);    %SI 7.9.8 
dHbydT=dH_by_dT1(cs,cw,W);    

  
dhbydT = dh_by_dT(ca,cw,w,dhvdT); 
sigma=dHbydT/dhbydT;        %SI 7.1.1           
nu=1.0/(zeta*(hs/hv)*S);    %SI 7.7.10 
nu_sigma=nu*sigma; 
A=lamda_alphah+nu_sigma+alphaW; 
C=-4*alphaW*lamda_alphah; 
alpha(1)=(A+sqrt(A^2+C))/2; %SI 6.20 
alpha(2)=(A-sqrt(A^2+C))/2; %SI 6.20 
gamma(1)=sigma*alphaW/(alphaW-alpha(1));    %k 6 % 15 
gamma(2)=sigma*alphaW/(alphaW-alpha(2));    %This work 6 & 15     
if i==1 
    dTbydw=-alpha(1);   %Definition of alpha Eqn 1 This work 
end 
if i==2 
    dTbydw=-alpha(2);   %Definition of alpha Eqn 1 This work 
end 
end 

  
function Obj_fn=Obj_fn_Shock_Toth(w_in,T_in,w_p,T_p,model) 
%   To estimate the conditions across a shock wave.  Obj-fn 
%   is defined.   

  
%   The idea is to minimise the objective function 
%   which Eqn 81 in the ASTFE 24 paper 

  
[hv0,dhvdT,ca,cw,cs,N,pt,eps,rho,P,mu]= phys_properties_SG; 
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Qst=2693.0e3; 
Rwater=461.5; 

  
hv_in=hv0+dhvdT*T_in; 
hv_p=hv0+dhvdT*T_p; 
[ps_in,dpsbydT_in] = Psat_Huang1(T_in); 
[ps_p,dpsbydT_p] = Psat_Huang1(T_p); 

  
[W_in]=Weq_Toth(w_in,T_in); 
[W_p]=Weq_Toth(w_p,T_p); 

    
Tabs_in=T_in+273.15; 
Tabs_p=T_p+273.15; 

  
HW_in=hv_in*(1-hsbyhv_Toth(W_in,T_in))*W_in; 
HW_p =hv_p*(1-hsbyhv_Toth(W_p,T_p))*W_p; 

  
h_in=ca*T_in+w_in*(cw*T_in+hv_in); 
h_p=ca*T_p+w_p*(cw*T_p+hv_p); 
H_in=cs*T_in+W_in*cw*T_in+HW_in; 
H_p=cs*T_p+W_p*cw*T_p+HW_p; 

  
Dh=h_in-h_p; 
DH=H_in-H_p; 
Dw=w_in-w_p; 
DW=W_in-W_p; 
Obj_fn=abs(Dh*DW-DH*Dw); 
end 

  
function [rh2]=rh_find_shock 
global T_dwell w1 w2 T1 T2 
[hv0,dhvdT,ca,cw,cs,N,pt,eps,rho,P,mu]= phys_properties_SG; 
L_w1=length(w1); 
L_w2=length(w2); 

  
for i=1:L_w2 
    T=T2(i); 
    [ps,dpsbydT] = Psat_Huang1(T); 
    psat2(i)=ps; 
    p(i)=w2(i)*pt/(N+w2(i)); 
    rh2(i)=p(i)/psat2(i); 
end 

  
%plot(T1,w1) 
hold on 
 plot(T2,w2) 
hold on 
T_plot=linspace(20,55,46); 
LT=length(T_plot); 
for i=1:LT 
    T=T_plot(i); 
    [ps,dpsbydT] = Psat_Huang1(T); 
    wsat(i)=0.622*ps/(101325-ps); 
end 
plot(T_plot,wsat) 
ylabel('Humidity, kg/kg','FontSize',14) 
xlabel('Temperature,{\circ}C','FontSize',14) 
pbaspect([1 1 1]) 
end 
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function Toth_plots(w_dwell,T_dwell,w_in,T_in) 
[hv0,dhvdT,ca,cw,cs,N,pt,eps,rho,P,mu]= phys_properties_SG; 
w_dwell 
T_dwell 
Weq_dwell_Toth=Weq_Toth(w_dwell,T_dwell); 
Weq_inlet_Toth=Weq_Toth(w_in,T_in); 
[rh2]=rh_find_shock; 

  
T_plot=linspace(20,40); 
LT=size(T_plot); 
for i=1:LT 
    T=T_plot(i); 
    [ps,dpsbydT] = Psat_Huang1(T); 
    wsat(i)=0.622*ps/(101325-ps); 
end 
hold on 
plot(T_plot,wsat,'k') 

  
T_shock=linspace(T_in,T_dwell,30); 
w_shock=linspace(w_in,w_dwell,30); 
hold on 
plot(T_shock,w_shock) 
 DW=Weq_inlet_Toth-Weq_dwell_Toth; 
 dw=w_in-w_dwell; 
 V_shock=1/(1+mu*DW/dw) 
end 

  
function Freundlich_plots(w_dwell,T_dwell,w_in,T_in,w_initial,T_initial) 
[hv0,dhvdT,ca,cw,cs,N,pt,eps,rho,P,mu]= phys_properties_SG; 
w_dwell 
T_dwell 

  
    p=pt*w_dwell/(w_dwell+N); 
    [ps,dpsbydT] = Psat_Huang1(T_dwell); 
    r = p/ps; 
    W_dwell=Weq_Freundlich(r) 

     
    [rh1,rh2]=rh_find; 

     
%   Conditions at initial state 
T=T_initial; 
w=w_initial; 

  
    p=pt*w/(w+N); 
    [ps,dpsbydT] = Psat_Huang1(T); 
    r=p/ps; 
    Weq_F=Weq_Freundlich(r) 

  
end 

 

 


