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Abstract. In this paper, fractional and fractal derivative-based viscoelastic laws are adopted to develop 

linear creep models for reinforced and prestressed concrete under constant and time-varying loading. 

The model parameters are determined by curve-fitting the creep compliances of the spingpot and Kelvin-

Voigt viscoelastic models to experimental data of basic creep in plain concrete specimens. Equilibrium 

and strain compatibility equations are formulated for reinforced and prestressed concrete under 

concentric loading which are solved simultaneously with the constitutive stress-strain equation of the 

selected viscoelastic model. For the case of a constant load, adoption of the fractal viscoelastic models 

lead to first-order differential equations that, when solved, yield analytical expressions for basic creep 

in reinforced and prestressed concrete. A semi-analytical solution is derived when adopting the 

fractional viscoelastic laws, obtained using the Laplace transform technique. Both models ensure strain 

compatibility and consider stress redistribution from concrete to the steel reinforcement bars. A high-

level of agreement is made between the derived fractional and fractal-derivative based models and 

existing experimental data of creep in reinforced and pre-stressed concrete members under constant 

load. When the applied loading varies with time, numerical procedures are employed to approximate 

the fractional and fractal derivatives. It is found that creep in plain concrete members subjected to time-

varying loads is accurately predicted when using the fractional derivative models. Comparisons are 

then made to other methods of modelling creep under time-varying stress. The primary advantage of the 

derived models is that only up to three parameters require calibration using basic creep tests for an 

accurate representation of creep and that closed-form expressions for creep can be obtained for the 

case of constant, sustained loading. 

Keywords: Creep; Fractal derivative; Fractional derivative; Reinforced concrete; Viscoelasticity;  

1 Introduction  

 
Viscoelastic materials can be defined as exhibiting both viscous and elastic properties during 

deformation. Traditional viscoelastic models, including the Maxwell, Kelvin-Voigt (KV), 

Zener and anti-Zener (AZ) models, consist of an arrangement of elastic springs and dashpots 

(D) in series and/or parallel. Despite their common adoption, these models cannot accurately 

describe the dynamic behavior of real materials [1]. High levels of accuracy can be obtained 

when viscoelastic chains are employed to describe material behavior. However, the required 

multitude of viscoelastic elements results in a great number of material parameters to be 

characterized which can convolute analytical and numerical modelling [2]. 

The traditional models of viscoelasticity can be generalized by replacing the integer-order 

derivative in the constitutive stress-strain relation by a fractional or real order, resulting in the 

models of fractional viscoelasticity [3] . The study of performing integration and differentiation 

to a non-integer order is called Fractional Calculus [4]. Many definitions of the fractional 

derivative have been proposed including the Reimann-Liouville and Caputo. The left-sided 
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Riemann-Liouville fractional integral of a function 𝑓(𝑡)  of order 𝛼 > 0 where 𝛼 ∈ 𝑅+ is 

defined as;  

 

𝐷𝑡
−𝛼𝑓(𝑡) =

1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝑓(𝜏)

𝑡

0

 𝑑𝜏, (1) 

and the left-sided Riemann-Liouville fractional derivative of a function 𝑓(𝑡) of order 0 < 𝛼 < 1 is 

known as; 

𝐷𝑡
𝛼𝑓(𝑡) =

1

𝛤(1 − 𝛼)
𝐷𝑡

1 ∫
𝑓(𝜏)

(𝑡 − 𝜏)𝛼

𝑡

0

 𝑑𝜏. (2) 

In Eqs. (1) and (2), 𝛤 denotes the Gamma function; 

 

𝛤(𝛼) = ∫ 𝑒−𝑡𝑡𝛼−1
∞

0

 𝑑𝑡. (3) 

The stress-strain relations and creep compliances of the fractional dashpot (FD), fractional 

Kelvin-Voigt (FKV) and fractional anti-Zener (AZ) models of viscoelasticity are listed in Table 

1 in addition to their traditional counterparts. In Table 1, 𝜂 is the dynamic viscosity of the 

springpots (fractional dashpots) in the D and KV models, 𝐸 is the modulus of elasticity of the 

spring in the rheological models, 𝜂1 and 𝜂2 denote the dynamic viscosity of the first and second 

springpots in the AZ model respectively, and 𝐷𝑡
𝑥( ) is the operator of differentiation of order 𝑥. 

Note that the order of differentiation 0 < 𝛼 < 1 in the constitutive stress-strain equations of the 

fractional viscoelastic models. The mechanical analogues of these rheological models are 

depicted in Fig. 1. Researchers have shown that fractional viscoelasticity is an effective method 

of modelling time-dependent behaviour of rocks and soils [5-8] and creep behavior of concrete. 

Bouras et al. [9] developed a thermo-viscoelastic rheological model based on fractional 

derivatives to describe creep in plain concrete at extreme temperatures. The analysis was limited 

to the sprinpot model of viscoelasticity and accuracy of the develop model at ambient 

temperature was low. Paola and Granata [10] proposed a fractional viscoelastic model for the 

hereditary behaviour of concrete. Ageing effects were considered by calibrating the fractional 

order and dynamic viscosity of the springpot model of viscoelasticity at different loading ages. 

The same approach was adopted by Beltempo et al. [11], where a fractional-order creep function 

was proposed for aging concrete by fitting the springpot model parameters to the B3 concrete 

creep model at various initial loading times. Though these works considered ageing effects 

through loading time, the effect of time-varying stresses on creep was not analysed. Zhang et 

al. [12] developed a nonlinear creep damage constitutive model for plain concrete under high 

stress using a fractional viscoelastic springpot. Overall, the power-law form of the memory 

kernels in fractional viscoelastic models allow highly accurate representations of experimental 

data with the benefit of few model parameters requiring characterization [13]. Additionally, 

fractional viscoelastic laws feature a full reciprocal relationship between creep and stress 

relaxation laws. This allows stress relaxation curves to be obtained using the same model 

parameters from the creep compliance, which is convenient as experimental creep tests are 

commonly conducted [10]. The mathematical consistency also gives application to the 

Boltzmann superposition principle for analysis of the effects of time-varying stresses and 

strains. However, when model parameters and applied stress vary with time, numerical 

approximations must be employed to solve fractional equations which are dependent on strain 

history leading to an increase of computational costs.    
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The large computational requirements associated with solving fractional derivatives can be 

avoided using fractal derivatives, which were derived as a local derivative to model the complex 

behaviour of fractal materials. The fractal derivative of a function 𝑓(𝑡) of order 𝑝 is defined as; 

 

𝐷𝑡
𝑝(𝑓) =

𝐷𝑡
1(𝑓)

𝑝 × 𝑡𝑝−1
, (4) 

where fractal order 𝑝 > 0. Cai et al. [14] first employed fractal derivatives to characterise 

viscoelastic materials and proposed the fractal M and fractal KV viscoelastic models by 

replacing the integer-order derivative in the constitutive equations with a fractal order. Table 1 

provides the stress-strain constitute relations and corresponding creep compliances of the fractal 

M, fractal KV and fractal AZ models where 0 < 𝑝 < 1. It shown that the creep compliances of 

the fractal models can be obtained by replacing time 𝑡 in the traditional creep compliances with 

𝑡𝑝  [14]. As with fractional viscoelastic models, fractal models are more accurate than the 

traditional M and KV models whilst featuring fewer model parameters. However, fractal 

models were found to be computationally more efficient than fractional models whilst featuring 

simpler mathematical expression and yielding similar accuracy. Despite the evident advantages 

of modeling viscoelastic materials with fractal derivatives, adoption in civil engineering 

applications is limited. Wang et al. [15] developed a fractal derivative-based viscoelastic model 

considering damage evolution to describe the trimodal creep behaviour of granite, and Qu et al. 

[16] simulated chloride diffusion in fly-ash concrete using fractal and fractional derivatives.   

 
Table 1 Governing equations of traditional, fractional and fractal viscoelastic models 

Model Stress-strain relation Creep compliance J (t) 

D 𝐷𝑡
1(𝜖𝑐𝑟) =  

𝜎

𝜂
 

𝑡

𝜂
 

KV 
𝐷𝑡

1(𝜖𝑐𝑟) +
𝐸

𝜂
𝜖𝑐𝑟 =  

𝜎

𝜂
 

1

𝐸
(1 − 𝑒𝐸𝑡/𝜂) 

AZ 
𝜎 + (

𝜂1 + 𝜂2

𝐸
) 𝐷𝑡

1(𝜎) = 𝜂2𝐷𝑡
1(𝜖𝑐𝑟) + (

𝜂1𝜂2

𝐸
) 𝐷𝑡

2(𝜖𝑐𝑟) 
1

𝐸
(1 − 𝑒𝐸𝑡/𝜂1) +

𝑡

𝜂2

 

FD 𝐷𝑡
𝛼(𝜖𝑐𝑟) =  

𝜎

𝜂
 

𝑡𝛼

𝜂 × 𝛤 (1 + 𝛼)
 

FKV 
𝐷𝑡

𝛼(𝜖𝑐𝑟) +
𝐸

𝜂
𝜖𝑐𝑟 =

𝜎

𝜂
 

1

𝐸
[1 − ℰ𝛼 (−

𝐸

𝜂
𝑡𝛼)] 

FAZ 
𝜎 + (

𝜂1 + 𝜂2

𝐸
) 𝐷𝑡

𝛼(𝜎) = 𝜂2𝐷𝑡
𝛼(𝜖𝑐𝑟) + (

𝜂1𝜂2

𝐸
) 𝐷𝑡

1+𝛼(𝜖𝑐𝑟) 
1

𝐸
[1 − ℰ𝛼 (−

𝐸

𝜂1

𝑡𝛼)] +
𝑡𝛼

𝜂2 × 𝛤 (1 + 𝛼)
 

Fractal 

D 

𝐷𝑡
1(𝜖𝑐𝑟)

𝑝 × 𝑡𝑝−1
=  

𝜎

𝜂
 

𝑡𝑝

𝜂
 

Fractal 

KV 

𝐷𝑡
1(𝜖𝑐𝑟)

𝑝 × 𝑡𝑝−1
+

𝐸

𝜂
𝜖𝑐𝑟 =  

𝜎

𝜂
 

1

𝐸
(1 − 𝑒𝐸𝑡𝑝/𝜂) 

Fractal 

AZ 𝜎 +
(𝜂1 + 𝜂2)𝐷𝑡

𝑝(𝜎)

𝐸𝑝𝑡𝑝−1
= 𝜂2𝐷𝑡

𝑝(𝜖𝑐𝑟) +
𝜂1𝜂2𝐷𝑡

1+𝑝(𝜖𝑐𝑟)

𝐸𝑝𝑡𝑝
 

1

𝐸
(1 − 𝑒𝐸𝑡𝑝/𝜂1) +

𝑡𝑝

𝜂2
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 In this paper, fractional and fractal viscoelastic laws are utilised for the development of 

creep models for reinforced and prestressed concrete under constant and time-varying loading. 

There is no available research in the open literature that utilizes fractal viscoelasticity theory 

for concrete creep modelling, and studies on fractional viscoelasticity rarely consider time-

varying stresses and the effects of reinforcement on creep. This research seeks to address these 

limitations with the literature and aims to derive a robust concrete creep model that captures the 

advantages of fractional and fractal viscoelasticity. The D, KV and AZ models of viscoelasticity 

are considered due to the focus on time-dependent creep strain. Concrete creep, as with other 

mechanical properties of concrete materials [17, 18], is influenced by many parameters 

including compressive strength, mix proportions, elastic modulus, initial loading age, loading 

history and environmental conditions pre- and post-curing [19-21].  Herein, it is assumed that 

there is a perfect bond between the concrete and reinforcing and prestressing steel, and that the 

concrete is loaded in the service range (up to approx. 0.4𝑓𝑐
′ ). Hence, the developed models are 

limited to linear concrete creep and do not consider the non-linear creep range. The fractional 

and fractal viscoelastic models will be compared for accuracy using existing experimental data 

in the literature and efficiency for both cases of constant and time-varying loading.  

 

Figure 1 Dashpot (D), Kelvin-Voigt (KV) and anti-Zener (AZ) models of viscoelasticity 

2 Model Development   

2.1 Rheological model and equilibrium equations 

 

The total strain in concrete is defined as; 

 
𝜖𝑐 = 𝑒𝑐,𝑒𝑙 + 𝑒𝑠ℎ + 𝜖𝑐𝑟 (5) 

 

where 𝑒𝑐,𝑒𝑙 is the instantaneous mechanical strain, 𝑒𝑠ℎ is the shrinkage strain, and 𝜖𝑐𝑟 denotes 

the basic creep strain. Thermal expansion is ignored herein as the focus is concrete at constant 

ambient temperatures. Moreover, the concrete is assumed to be loaded in the elastic region and 

therefore, the mechanical strain does not incorporate inelastic deformations. To ensure strain 

compatibility between the concrete and steel reinforcing bars, the total concrete strain must 

equate to the strain in the reinforcing steel 𝜖𝑠 and prestressing steel 𝜖𝑝. Hence,  

 
𝜖𝑐 = 𝜖𝑠 = 𝜖𝑝 (6) 
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Eqs. (5) and (6) are graphically represented in Fig. 2 as a rheological model consisting of the 

reinforcing steel, prestressing steel and concrete placed in parallel, with the concrete containing 

the mechanical, shrinkage and creeping elements placed in series. The equilibrium equation for 

a reinforced and prestressed concrete member subjected to concentric axial loading 𝑃 is; 

 
𝑃 = 𝑁𝑐 + 𝑁𝑠 + Δ𝑃 (7) 

where 𝑁𝑐 is the axial force in the concrete, 𝑁𝑆 is the axial force in the reinforcing steel and Δ𝑃 

is the loss of prestressing force. Combining Eqs. (5), (6) and (7) gives;  

 
𝑁𝑐

𝐴𝑐𝐸𝑐
+ 𝜖𝑐𝑟(𝑁𝑐) + 𝜖𝑠ℎ =

𝑃 − 𝑁𝑐  

𝐴𝑠𝐸𝑠 + 𝐴𝑝𝐸𝑝

(8) 

where 𝐴𝑠is the concrete cross-sectional area, 𝐸𝑐 is the elastic modulus of concrete at the time of 

loading,𝐴𝑠 is the area of reinforcing steel, 𝐴𝑝 is the area of prestressing steel, 𝐸𝑠 is the elastic 

modulus of reinforcing steel and 𝐸𝑝 is the elastic modulus of prestressing steel. Eq. (8) is then solved 

based on the selected viscoelastic model’s constitutive stress-strain relation. 

 

Figure 2 Rheological model of prestressed concrete consisting of reinforcing steel, prestressing steel and concrete elements 
in parallel.  

2.2 Solutions for fractional viscoelastic models  

If the applied axial loading is constant, and the shrinkage strain ignored, a semi-analytical 

expression for basic creep strain can be derived when adopting fractional viscoelastic 

constitutive laws. Substituting in the constitutive equation for the FKV model (Table 1) into 

Eq. (8) gives;  

 
𝐷𝑡

𝛼 (𝜖𝑐𝑟) + 𝑐1 ∙ 𝜖𝑐𝑟 −  𝑐2 = 0 (9) 

where the constants 𝑐1 and 𝑐2 are; 

𝑐1 =  
𝐸

𝜂
+

𝐸𝑐(𝐴𝑠𝐸𝑠 + 𝐴𝑝𝐸𝑝)

𝜂 (𝐴𝑠𝐸𝑠 + 𝐴𝑝𝐸𝑝 + 𝐸𝑐𝐴𝑐)
,   𝑐2 =

𝑃𝐸𝑐

𝜂 (𝐴𝑠𝐸𝑠 + 𝐴𝑝𝐸𝑝 + 𝐸𝑐𝐴𝑐)
 (10) 

Applying the Laplace transform to Eq. (9) and rearranging yields;  
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Ε̂𝑐𝑟  = (
𝑐2

𝑐1
) ×

𝑐1

𝑠 (𝑠𝛼 + 𝑐1)
 (11) 

where 𝑐1 and 𝑐2 denote constants. The basic creep strain is now derived using the inverse Laplace 

transform;   

ϵ𝑐𝑟  = (
𝑐2

𝑐1
) × ℒ−1 [

𝑐1

𝑠 (𝑠𝛼 + 𝑐1)
] = (

𝑐2

𝑐1
) [1 − ℰ𝛼(−𝑐1𝑡𝛼)] (12) 

In Eq. (12), ℰ𝛼 is the Mittag-Leffler function; 

ℰ𝛼(𝑥) = = ∑
𝑥𝑛

Γ(𝛼𝑛 + 1)

∞

𝑛=0

 . (13) 

For the case of non-constant loading and/or when the shrinkage strain is considered, numerical 

schemes must be employed to solve for the basic creep strain. The discretization approach derived 

by Bouras et al. [9] for the Caputo fractional derivative is adopted and generalized for the FKV model 

of viscoelasticity giving; 

𝜖𝑛 =
𝜖𝑛−1 − ∑ (𝜖𝑗+1 − 𝜖𝑗)[(𝑛 − 𝑗)1−α − (𝑛 − 𝑗 − 1)1−α]𝑛−2

𝑗=0 +
𝑁𝑐,𝑛

𝐴𝑐𝜂
 Γ (2 − 𝛼)(Δ𝑡)𝛼

𝐸 
𝜂

Γ (2 − 𝛼)Δ𝑡𝛼 + 1
 (14) 

where Δ𝑡 is the time step size,  𝑡 = 𝑛Δ𝑡, 𝑛 = 2 … 𝑡𝑓/Δ𝑡, 𝑡𝑓 is the final time, and ( ′)𝑛 = ( ′)  (nΔt). 

Derivation of Eq. (14) is shown in the Appendix. Creep strain at 𝑛 = 1 is; 

ϵ𝑐𝑟,1 =
N𝑐,1 Γ (2 − 𝛼)(Δ𝑡)𝛼/(𝐴𝑐𝜂)

𝐸 Γ(2 − 𝛼)Δ𝑡𝛼/𝜂
+ ϵ𝑐𝑟,0 (15)  

and 𝜖𝑐𝑟,0 = 0. Eqs. (8) and (14) are then solved simultaneously at every time step. Both semi-

analytical solution (12) and numerical solution (14) can be reverted to the FD model by setting 𝐸 =

0. If the shrinkage strain is ignored, numerical solution (14) and Eq. (8) give the same result. Only a 

minor difference in creep is observed if the shrinkage strain is considered in numerical procedure 

(14), see Fig. 3. Typically, a time-step size of Δ𝑡 = 1 day is sufficient to provide accurate results.  

2.3 Solutions for fractal viscoelastic models  

When adopting fractal viscoelastic equations, closed-form solutions for basic creep in reinforced 

and prestressed concrete can be obtained if the loading is constant and shrinkage strain is ignored. 

Combining Eq. (8) with the stress-strain relation of the fractal KV viscoelastic model gives;   

𝜖𝑐𝑟̇

𝑝 ∙ 𝑡𝑝−1
+  𝑐1 ∙ 𝜖𝑐𝑟 − 𝑐2 =  0 (16) 

Eq. (16) has the following solution which can be obtained using conventional means;  

𝜖𝑐𝑟 =
𝑐2

𝑐1
 (1 − 𝑒−𝑐1𝑡𝑝

) (17) 

The fractal viscoelastic equations can be solved numerically using discretization approaches for the 

cases of non-constant loading and/or when the shrinkage strain is considered. Applying a backwards 

Euler scheme to the fractal KV model gives;  
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𝜖𝑐𝑟,𝑛 =  
𝑁𝑐,𝑛𝑝Δ𝑡 (𝑛Δ𝑡)𝑝−1 + 𝐴𝑐𝜂 𝜖𝑐𝑟,𝑛−1

𝐴𝑐𝜂 + 𝐴𝑐𝐸𝑝Δ𝑡 (𝑛Δ𝑡)𝑝−1
 (18) 

Eqs. (4) and (18) can be solved simultaneously at every time step. Again, analytical solution (17) and 

numerical solution (18) can be reverted to the fractal D model by setting 𝐸 = 0, and numerical 

solution (18) and Eq. (17) gives a very close result when shrinkage strain is ignored. However, in 

contrast to the fractional viscoelastic models, a much smaller time-step is required for the numerical 

approximation (18) to converge to the analytical expression (17). In the example depicted in Fig. 3 a 

time step size of Δ𝑡 = 0.01 days was required whereas the numerical approximation of the FKV 

model was accurate with Δ𝑡 = 1 day. The smaller time-step size requirement results in longer 

computation times. A smaller time-step size may be required due to the lack of history dependence 

in the numerical approximation of the fractal derivative which is only dependent on the creep strain 

in the previous time step. Whereas in the numerical approximation of the fractional differential 

equations, the entire creep strain history appears in every iteration. 

 

 

Figure 3 Comparison of analytical and numerical solutions for fractional (a) and fractal (b) models. 𝑃 = 842 kN, 𝐴𝑐 =

5.8794 × 104mm4, 𝐴𝑠 = 1.2064 × 103, 𝐸𝑠 = 2 × 105MPa and 𝑒𝑐,𝑒𝑙 = 0.00034. 𝛼 = 0.4, 𝜂 = 1.4129 × 105 MPa∙daysα, 

𝐸 =  9.1838 × 103MPa and 𝛥𝑡 = 1 day (a).  𝑝 = 0.504, 𝜂 = 1.8269 × 105 MPa∙days, 𝐸 =  2.7032 × 104MPa and 𝛥𝑡 =
0.01 days (b).    

3 Model Calibration  

The dynamic viscosity 𝜂, elastic modulus 𝐸 and fractional/fractal order 𝛼/𝑝 of the fractional and 

fractal viscoelastic models require calibration for specific concretes. This can be achieved by curve-

fitting the associated creep compliances with experimental data of basic creep tests in plain concrete 

under constant stress. The Least-Squares Method (LSM) was adopted to obtain the model 

parameters using experimental results available in the literature. Studies were selected that 

conducted basic creep tests on plain concrete specimens followed by creep tests on reinforced or 

prestressed concrete, or creep tests with multi-stage loading, for verification of the developed 
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models in the proceeding sections. Table 2 lists the calibrated parameters in addition to the testing 

and concrete properties, and Fig. 4 depicts the fitted creep curves and experimental data. The FKV 

and fractal KV viscoelastic models lead to highly accurate representations of creep behavior in all 

cases examined. However, the FD and fractal D models could not accurately capture the creep strain 

behaviour in all cases, as seen in Fig. 4 (c) and (d). The dashpot models cannot reflect the decaying 

creep rate creep plateau after long time periods. Due to the sensitivity of the model parameters to 

the material characteristics of concrete and loading properties, the models require calibration before 

application in other scenarios not considered herein.  

 

Table 2 Calibrated model parameters and creep test data  

 

 Reference [22] [23] [24] [25] A  [25] B [26] 

 Fig. 4 a) b) c) d) e) f)  

 𝑓𝑐
′ (MPa) 52.8 37.2 27.0 30.0 28.0 62.0 

 𝜎/ 𝑓𝑐
′ 0.400 0.310 0.424 0.167 0.179 0.400 

 𝐸𝑐  (MPa) 46,600.0 28,150.0 23,714.7 29,400 22,700 42,000 

 𝑡𝑜 (days) 14 28 15-20 10 7 28 

FKV 𝜂 × 𝑒𝑐,𝑒𝑙  (MPa∙day𝛼) 121.268 40.654 224.494 58.726 12.416 2368.691 

 𝐸 × 𝑒𝑐,𝑒𝑙  (MPa) 7.795 4.593 6.137 4.402 1.066 282.441 

 𝛼 0.400 0.400 0.966 0.816 0.572 0.371 

FD 𝜂 × 𝑒𝑐,𝑒𝑙  (MPa∙day𝛼) 98.340 34.417 9.749 26.607 9.277 1940.298 

 𝛼 0.279 0.249 0.155 0.360 0.352 0.219 

Fractal KV 𝜂 × 𝑒𝑐,𝑒𝑙  (MPa∙dayp) 149.710 37.929 264.451 52.032 10.893 1813.750 

 𝐸 × 𝑒𝑐,𝑒𝑙  (MPa) 13.532 6.463 6.185 4.716 1.311 370.952 

 𝑝 0.485 0.401 1.000 0.778 0.547 0.323 

Fractal D 𝜂 × 𝑒𝑐,𝑒𝑙  (MPa∙dayp) 81.016 31.209 9.081 23.685 8.265 1667.321 

 𝑝 0.263 0.249 0.155 0.360 0.352 0.208 
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Figure 4 Fitting creep compliances of viscoelastic models to experimental data of basic creep in plain concrete  

During creep testing it is possible for the applied loading to decrease with time due to the 

deformations of the test specimen. When stress relaxation is observed, the viscoelastic model 

parameters cannot be obtained by fitting the creep compliance to the test results as the compliance 

function is obtained by solving the constitutive stress-strain relations of the viscoelastic models 

under constant stress. Instead, the numerical approximations of the fractional differential Eq. (14) 

and fractal differential Eq. (18) must be fitted to the creep test data. Zhou et al. [26] measured creep 

in high-strength concrete whilst considering the stress relaxation effect. Three types of high-strength 

concrete mixtures were analysed with initial loading ages of 𝑡𝑜 = 7 days and 𝑡𝑜 = 28 days. The creep 

strain of one specimen is shown in Fig.4 (f) in addition to the fitted creep curves. The concrete 

properties and calibrated viscoelastic parameters are provided in Table 2, and the applied loading is 

depicted in Fig. 5 (a). A time step-size of Δt = 1 day was adopted to calibrate the fractional models. 

Smaller time-steps are required when calibrating the fractal equations, particularly for the fractal D 

model.  The fractal KV and fractal D model parameters were determined with time step-size of Δt =

0.01 days and Δt = 1 × 10−5 days respectively. Hence, it is recommend that the parameters for the 

fractal D models be obtained through the FD model, as the fractional exponent 𝛼 is equal to the 

fractal order 𝑝, and the dynamic viscosity in the fractal D model is equal to the dynamic viscosity in 

the FD model 𝜂 × Γ(1 + 𝛼).  The FKV creep compliances obtained when the stress relaxation is 

considered and not considered are shown in Fig. 5 (b). In the case of the later, the stress is taken as 
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constant and equal to the initial applied stress 𝜎0 = 25 MPa. A noticeable difference is seen in the 

obtained creep compliances, emphasising the importance of consideration of stress relaxation which 

otherwise leads to an underestimation of creep strain.   

  

4 Model Verification   

4.1 Constant loading  

Analytical expressions (12) and (17) are now verified by comparison to experimental results 

available in the literature. Short-term creep tests on prestressed concrete under sustained loading 

were conducted by Pan et al. [22] for three different reinforcement ratios. The viscoelastic model 

parameters listed in Table 2 were obtained using the creep tests conducted on plain concrete cubes 

featuring a size of 100×100×30 mm. As the prestressed concrete specimens measured at 250 × 250 

mm, a creep correction factor for specimen size was applied to the viscoelastic model parameters 𝜂 

and 𝐸 using the ACI 209R-92 method [27]. The size correction factor 𝛾𝑉𝑆 = 2/3[1 + 1.13𝑒−0.0213 𝑉𝑆] 

where 𝑉𝑆 is the volume-to-surface ratio, in this case 62.5 mm. The size factor was considered by 

dividing 𝐸 and 𝜂 by 𝛾𝑉𝑆. Area 𝐴𝑝 and elastic modulus 𝐸𝑝 of prestressing steel was taken as 808.175 

mm2 and 205,000 MPa respectively. Fig. 6 shows the results alongside the analytical Eqs. (12) and 

(17). The Kelvin-Voigt models show a high level of agreement with the experimental data for the 

0.38% and 0.76% reinforcement ratios, and slightly over predict creep in the 1.71% reinforcement 

ratio case. The Maxwell models lead to higher creep strains in all three cases.  

 

 

Figure 5 Relaxation of applied loading in creep tests in [26] a) and FKV creep compliances obtained with and without 
consideration of stress relaxation b).  

4.2 Time-varying loading 

Zou et al. [23] conducted creep tests on plain 100 × 100 mm rectangular concrete specimens 

subjected to multi-stage loading. Axial loading was increased by 6 kN every 3, 5 or 7 days until the 

maximum loading of 180 kN was reached. The first load was applied at 6 days and the total duration 

of the tests was 230 days. Two specimens were cast for each loading scenario and the observed 
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creep strains were averaged. Fig. 7 depicts the stress-induced axial strains (𝑒𝑐,𝑒𝑙 + 𝜖𝑐𝑟 ) observed in 

the experiments and the predictions of the derived numerical models. It is shown that the FKV model 

leads to a highly accurate representation of axial strain for the case of time-varying loading. The 

results of the FM model are indistinguishable to FKV model and have been omitted from Fig. 7 for 

clarity Conversely, the fractal derivative-based models are greatly inaccurate and significantly 

underestimate creep strain for cases of time-varying loading.  The 28-day elastic modulus of 28,150 

MPa was taken as Ec and a time step size of Δ𝑡 = 1 day was adopted for the numerical procedures. 

Smaller time steps were not found to not noticeably influence results for the fractional models but 

led to longer computation times. It is possible that the accuracies of the fractal models can be 

increased through construction of a fractal M or KV chain, however; as discussed previously, 

calibration of model parameters then becomes convoluted and the advantages associated with 

fractal models diminish.     

 

Figure 6 Comparisons of experimental results and analytical equations for creep strain in pre-stressed concrete at 0.38% (a), 
0.76% (b) and 1.71% (c) reinforcement ratios.  

The numerical approximations of the fractional and fractal derivative models are also compared 

to the experimental results presented by Park et al. [25], who conducted creep tests on plain 

concrete under sustained and multi-stage loading. The cylindrical concrete specimens featured a 

diameter of 150 mm and a height of 300 mm and were loaded at 10 days (Specimen A) and 7 days 

(Specimen B). The model parameters for both specimens were calibrated using the sustained loading 

tests depicted in Fig. 4 and are listed in Table 2. It can be seen that initial loading age significantly 

influences the model parameters. Comparisons between the derived numerical methods and the 

experimental results for stepwise loading scenarios are shown in Fig. 8. Four specimens were tested 

for each loading scenario and the measured creep strains were averaged. The FM and FKV models 

are accurate though slightly over predict the creep strain by less then 10%. The fractal M model leads 

to a significant underestimation of creep strain whereas the fractal KV model is accurate for 

Specimen A and underestimates creep in Specimen B. Additionally, Fig. 8 shows the predictions 

based on the Parallel curve method proposed by Park et al. [25] and the age-adjusted effective 

modulus (AAEM) method for comparison to the fractional and fractal models. The Parallel curve 

addresses the significant underestimation of creep by the rate of creep (RCM) method when 

concrete is subjected to step-loading. In the RCM method, creep curves due to loading at different 

ages feature the same tangent at given point in time i.e., the curves are vertically parallel and creep 



12 

 

rate is independent of loading age. The Parallel curve method combines the RCM method with a 

horizontal parallel curve assumption (tangent of curves is constant along a horizontal line) and 

relates them through an ageing parameter. Effectively, the Parallel curve method bounds the actual 

creep between a horizontal parallel assumption (upper limit) and the vertical parallel assumption 

(lower limit). Creep strain at time 𝑡𝑛  due to loading at 𝑡0, 𝑡1, 𝑡2 … . . 𝑡𝑛−1  is defined using the Parallel 

curve method as; 

 𝜖𝑐𝑟(𝑡𝑛) = [1 − 𝛼𝑥(𝑡𝑛 )] ∑[ 𝐽′(𝑡𝑛, 𝑡0) − 𝐽′(𝑡𝑖−1, 𝑡0)]

𝑛

𝑖=1

∆𝜎𝑖−1

                                               +𝛼𝑥(𝑡𝑛 ) ∑[ 𝐽′(𝑡𝑛 −  𝑡𝑖−1 + 𝑡0, 𝑡0)]

𝑛

𝑖=1

∆𝜎𝑖−1 (19)

 

Where ∆𝜎𝑖−1 is the stress increment at 𝑡𝑖−1 and 𝛼𝑥 is the ageing factor. The AAEM method is defined 

as; 
 

 𝜖𝑐𝑟(𝑡𝑛) = 𝜎𝑐(𝑡𝑜) 𝐽(𝑡𝑛, 𝑡0) + Δ𝜎𝑐(𝑡𝑛) 𝜒(𝑡𝑛, 𝑡0) 𝐽(𝑡𝑛, 𝑡0) (20) 

 where Δ𝜎𝑐(𝑡𝑛) is the change in stress level from 𝑡0 to 𝑡n and 𝜒(𝑡𝑛, 𝑡0) is the stress-dependent 

ageing coefficient. As the Parallel curve and AAEM methods are dependent on an existing creep 

compliance 𝐽(t, 𝑡0), for comparison to the models derived herein the fractal KV model’s creep 

compliance was adopted with the parameters provided in Table 2. The Parallel curve method is 

highly accurate and selection of different fractional and fractal creep compliance equations 𝐽(t, 𝑡0) 

from Table 1 had a negligible influence on results. The AAEM method is not as accurate as the 

Parallel curve method. When compared to the fractional M and KV models, the AAEM method is not 

as accurate during majority of the creep test, particularly when loading is applied, however 

converges to the experimental results towards the end of the testing period. Aging factors of 𝛼𝑥 =

0.75 and 𝜒(𝑡𝑛, 𝑡0) = 0.8 were recommended by Park et al. [25] and were adopted for the 

predictions shown in Fig. 8. The Parallel curve and AAEM methods were also compared with the 

experiments conducted by Zou et al. [23], see Fig. 9 and 10. In this case, the aging factors 𝛼𝑥 and 

𝜒(𝑡𝑛, 𝑡0) required recalibration and best results were obtained when 𝛼𝑥 = 1.0, 0.90 and 0.85 and 

𝜒(𝑡𝑛, 𝑡0) = 1.0, 0.9 and 0.8 for the 3-, 5- and 7-day loading tests respectively. This result highlights the 

increasing effects of ageing with loading period. In this case, the FM and FKV models give 

indistinguishable results to the Parallel curve method with 𝛼𝑥 = 1.0. Hence, the Parallel curve 

method can yield more accurate results then the FM and FKV models for concrete subjected to time-

varying loading due to the consideration of aging. However, the aging factor 𝛼𝑥 requires calibration 

using creep test data specific to the loading history in question. Incorporation of ageing effects into 

the FM and FKV models for prediction of concrete creep will be considered in future research works.  
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Figure 7 Comparisons of experimental results and numerical models for stress-induced axial strain in plain concrete under 
multi-stage loading at 3-day (a), 5-day (b) and 7-day (c) intervals.  

 

Figure 8 Comparisons of experimental results from [25] and numerical models for creep strain in plain concrete under 
piecewise multi-stage loading. Specimen A load case 1 (a), specimen A load case 2 (b), specimen B load case 1 (c) and 
specimen B load case 2 (d). 
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5 Conclusions  

A rheological model for determining linear creep in reinforced and prestressed concrete 

under constant and time-varying loads was developed in this paper based on fractional and 

fractal viscoelastic laws. The parameters of the Dashpot and Kelvin-Voigt models were 

calibrated by fitting creep compliances with existing experimental data on basic creep in plain 

concrete. The viscoelastic models allowed an accurate representation of basic creep with only 

few model parameters. Analytical expressions were derived for creep in reinforced and 

prestressed concrete under constant loading by solving the resulting fractional and fractal 

differential equations. Comparisons the closed-from solutions and experimental show a high -

level of agreement for the Kelvin-Voigt based models, with the Dashpot models overpredicting 

creep strain. For the case of time-varying loading, numerical procedures were employed to 

determine creep strain. The fractional derivative-based models were shown to predict creep 

accurately and efficiently in plain concrete under multi-stage loading, whereas the fractal-based 

models significantly underpredicted creep. Overall, the fractional KV model proved to be the 

most accurate and robust method to model creep in concrete. Future research areas include 

relating the viscoelastic model parameters to physical properties of concrete, generalising the 

models for non-linear creep, further consideration of ageing effects and investigating the 

influence of temperature and humidity on model parameters. Different approaches to 

numerically solving fractional and fractal differential equations, including those that allow 

variable time steps to be employed, can also be explored.  

 

 

 

Figure 9 Effect of ageing factor 𝛼𝑥  on accuracy of Parallel curve method when compared to experimental results by [23] for 
stress-induced axial strain in plain concrete under multi-stage loading at 3-day (a), 5-day (b) and 7-day (c) intervals.  
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Figure 10 Effect of ageing factor 𝜒 accuracy of AAEM method when compared to experimental results by [23] for stress-
induced axial strain in plain concrete under multi-stage loading at 3-day (a), 5-day (b) and 7-day (c) intervals.  

Appendix  

The Caputo fractional derivative is discretised as follows;   
 

𝐷𝑡
𝛼𝑓(𝑡) =

1

𝛤(1 − 𝛼)
∫

𝐷𝑡
1𝑓(𝜏)

(𝑡 − 𝜏)𝛼

𝑡

0

 𝑑𝜏. (21) 

≈ 𝐷𝑡
𝛼𝑓(𝑡) =

1

𝛤(1 − 𝛼)
∑ ∫

𝐷𝑡
1𝑓(𝜏)

(𝑡 − 𝜏)𝛼

(𝑗+1)Δ𝑡

𝑗Δ𝑡

𝑛−1

𝑗=0

 𝑑𝜏. (22) 

≈ 𝐷𝑡
𝛼𝑓(𝑡) =

1

𝛤(1 − 𝛼)
∑ ∫

𝑓𝑗+1 − 𝑓𝑗  

Δ𝑡 (𝑡 − 𝜏)𝛼

(𝑗+1)Δ𝑡

𝑗Δ𝑡

𝑛−1

𝑗=0

 𝑑𝜏. (23) 

≈ 𝐷𝑡
𝛼𝑓(𝑡) =

1

𝛤(1 − 𝛼)Δ𝑡𝛼
∑(𝑓𝑗+1 − 𝑓𝑗)[(𝑛 − 𝑗)1−𝛼 − (𝑛 − 𝑗 − 1)1−𝛼]

𝑛−1

𝑗=0

 . (24) 

≈ 𝐷𝑡
𝛼𝑓(𝑡) =

1

𝛤(2 − 𝛼)Δ𝑡𝛼
∑(𝑓𝑗+1 − 𝑓𝑗)[(𝑛 − 𝑗)1−𝛼 − (𝑛 − 𝑗 − 1)1−𝛼]

𝑛−1

𝑗=0

 . (25) 

≈ 𝐷𝑡
𝛼𝑓(𝑡) =

1

𝛤(2 − 𝛼)Δ𝑡𝛼
∑(𝑓𝑗+1 − 𝑓𝑗)[(𝑛 − 𝑗)1−𝛼 − (𝑛 − 𝑗 − 1)1−𝛼]

𝑛−2

𝑗=0

+
𝑓𝑛 − 𝑓𝑛−1 

Γ (2 − 𝛼)Δ𝑡𝛼
. (25)

 

The following creep strain 𝜖𝑐𝑟 for the FKV model is obtained by substituting Eq. (24) into the 

stress-strain relation;  
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𝜖𝑐𝑟,𝑛 =

𝜎𝑛 

𝜂
Γ (2 − 𝛼)Δ𝑡𝛼 +  𝜖𝑐𝑟,𝑛−1 − ∑ (𝜖𝑗+1 − 𝜖𝑗)[(𝑛 − 𝑗)1−𝛼 − (𝑛 − 𝑗 − 1)1−𝛼]𝑛−2

𝑗=0

1 +
𝐸
𝜂  Γ (2 − 𝛼)Δ𝑡𝛼

, (26) 

with 𝜖𝑐𝑟 at time step 𝑛 = 1derived as 

𝜖𝑐𝑟 (1) =
𝜎1Γ(2 − 𝛼)Δ𝑡𝛼/𝜂

𝐸 Γ(2 − 𝛼)Δ𝑡𝛼/𝜂 + 1
+ 𝜖𝑐𝑟(0)  

and 𝜖𝑐𝑟(0) = 0. 
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