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Abstract
Managing neurological disorders is a major challenge for public health and health care sys-
tems in Australia and around the world. Currently, there is no reliable way of identifying
disorders from brain signal data automatically, quickly, and accurately. Electroencephalog-
raphy (EEG) is a powerful and popular technique to capture brain signal data for neuro-
logical disorder diagnosis through visual inspection. But this process is time-consuming,
subjective, exhaustive, and error-prone. EEG records the electrical activities of the brain
and provides important information about changes in electrophysiological brain dynamics
for neurological diseases including autism spectrum disorder (ASD), schizophrenia (SZ),
epilepsy, and Alzheimer’s disease.

While EEG signals provide substantial insight into brain activity, there is a limited
body of research dedicated to the automated detection and assessment of various neuro-
logical diseases and disorders. Even today, experts frequently evaluate the EEG signal
manually. Therefore, it is necessary to develop a computer-aided diagnostic (CAD) sys-
tem for the precise and automatic diagnosis of neurological disorders as early as possible.
Classification methods play a crucial role in distinguishing EEG segments and assessing
an individual’s health status. The effective utilisation of appropriate classification algo-
rithms to accurately and efficiently identify distinct EEG signals associated with various
disorders poses a significant challenge in designing a reliable and efficient CAD system.

This study intends to work towards the detection of two neurological disorders, named
ASD and SZ. Existing research works related to these two diseases have some limitations,
such as:
Research problem 1: Those are still insufficient and have scope to improve in terms of
accuracy and performance.
Research problem 2: Very few studies have considered developing a system for classi-
fication of multiple neurological disorders in a single framework.
Research problem 3: Most of the studies are related to a particular disease and verified
using a specific dataset, which left questions about their effectiveness on other datasets of
the same disease as well as their efficacy on other diseases.
Research problem 4: Lack of CAD systems for assisting clinicians in diagnosis of those
diseases.

The key aim of this project is to address the issues mentioned above by developing
several innovative frameworks that will use EEG data to automatically and efficiently
identify ASD and SZ. We have used several publicly available datasets for validation of
the proposed methods.

To address research problem 1, we have proposed a time-frequency spectrogram image-
based framework for ASD classification using both machine learning (ML) and deep learn-
ing (DL)-based classification techniques (Chapter 3). In this technique, EEG signals are
first converted into spectrogram images using the short-time Fourier transform (STFT),
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and then those images are used as input for different ML and DL-based classifiers. Ex-
perimental results show that both ML and DL methods performed well in the EEG signal
classification between ASD and healthy control (HC) subjects, but DL performed bet-
ter than the ML-based classifiers. The research finding also indicates that the proposed
method can be used for developing a CAD system for the identification of ASD from HC
subjects.

Similarly, for SZ detection, we have developed a framework using an entropy topo-
graphic image with a DL-based convolutional neural network (CNN) model (Chapter 4).
We used Shannon entropy to extract entropy values from each channel of the EEG signal
and then plotted them on the brain scalp to produce the topographic image. Then those
images are trained and classified using our proposed CNN model. The obtained results
indicate that the proposed method can be used for brain signal data mining purposes.

The second research problem motivates us to propose our third research work: devel-
oping a multi-class classifier for multiple neurological disorders using spectrogram images
of EEG signal data (Chapter 5). In this technique, we have extended our proposed
method of ASD classification to a five-class classification framework. In this method, we
have classified four neurological disorders, namely ASD, SZ, epilepsy, and Parkinson’s dis-
ease, from HC subjects. We have used two histogram-based feature extractors and four
ML-based classifiers to categorise those extracted features. We have also used DL-based
models for the classification of those images, and the obtained result shows a promising
outcome.

To solve the third research problem, we have developed a generic CNN model for the
classification of EEG data for different neurological disorders (Chapter 6). Most of the
previous frameworks worked for a particular disease and a particular EEG dataset, which
motivated us to create a generic CNN model that can work with different neurological
disease classifications. The experimental results show promising outcomes on different
datasets from various neurological diseases.

Finally, to resolve the first and fourth research problem, we have proposed a framework
for subject-independent SZ detection using a DL-based Convolutional Long Short-Term
Memory (ConvLSTM) model (Chapter 7). The proposed model is designed to perform
classification independently of training and testing subjects so that it can perform clas-
sification in real-life situations where new testing EEG data is unknown to the trained
model. Finally, we have developed a web-based CAD system for SZ detection using the
proposed ConvLSTM-based framework.

As of now, the outcome of this PhD work is four journal articles and two conference
papers related to the proposed methods that have been published in reputed journals
and conferences. One more article is currently under review. Also, the developed web-
platform-based CAD system will be a helpful tool for the clinical diagnosis of different
neurological disorders.
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Chapter 1

Introduction

Brain health is a concept that is always changing, gaining attention from the health indus-
try as well as from the general public, and this engenders extensive discussions for valid
reasons. The human body’s command centre is the brain and central nervous system,
which regulate both conscious and unconscious bodily processes and so have an impact
on every area of existence [1]. When our brains are impaired by illness or other reasons,
there are serious hazards involved for not just the general health and wellbeing of an indi-
vidual but also for the production and growth of the entire world [1]. As per predictions,
it is estimated that approximately one out of every three individuals could potentially
encounter the onset of a neurological condition during their lifetime. This places neuro-
logical conditions as the second leading cause of mortality and the primary contributor
to disability [1]. In addition, it is thought that extreme poverty and growth impairment
cause 43% of children under the age of five in low- and middle-income nations to fall short
of their developmental potential, which would result in financial losses and anticipated
yearly earnings that are 26% lower when they reach adulthood [1].

Neurological disorders are diseases related to the brain, spinal cord, nervous system,
neuromuscular junction, and muscles [2]. 10% of the global disease burden and 30% of
the non-fatal disease burden come from mental, neurological, and substance use disorders
[3]. Neurological conditions were the fourth-highest contributor to the fatal burden of
disease in Australia in 2022 [4]. The overall worldwide social cost of dementia in 2019 was
anticipated to reach US$ 1.3 trillion, approximately 1.5% of global GDP [5]. Dementia,
depression, bipolar disorder, schizophrenia, and other psychoses, as well as developmental
disorders including autism spectrum disorder, are the major neurological disorders. In this
study, we will mainly consider two diseases for our research: autism spectrum disorder
and schizophrenia.

Autism spectrum disorder (ASD) comprises a range of intricate neurological devel-
opmental conditions, encompassing autism, childhood disintegrative disorder, Asperger’s
syndrome, and an unspecified variant of pervasive developmental disorder [6]. The scope
and intensity of ASD symptoms can exhibit significant variation, but frequently encompass
challenges in social communication and interaction, intense preoccupations, diminished eye
contact, and repetitive behaviours. ASD typically emerges in early childhood, often man-
ifesting by the age of five, and tends to endure into adulthood [7]. The World Health
Organisation (WHO) reported that globally, in every 100 children, one child is diagnosed
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with ASD [7], [8]. In Australia, the prevalence of autism increases by approximately 40%,
transitioning from one in 100 individuals to approximately one in 70 individuals falling
within the autism spectrum [9]. According to data from the Centers for Disease Control
and Prevention (CDC), as of 2020, roughly one in 54 children in the United States received
a diagnosis of an ASD [10]. ASDs can markedly impede an individual’s ability to engage
in daily routines and participate fully in society. They frequently have adverse effects on
a person’s educational and social accomplishments, employment prospects, daily life func-
tioning, and integration into the community. Worldwide, individuals with ASD often face
challenges such as discrimination, stigmatisation, and violations of their human rights [7].
To date, there is no known cure for ASD; however, early intervention has the potential to
enhance brain development and improve learning, communication, and social skills [7].

Schizophrenia (SZ) is a chronic brain disorder that affects a person’s thinking, feelings,
behaviours, and normal functionality. Symptoms can include hallucinations, delusions,
disorganised talking, trouble with thinking, and a lack of motivation [11]. According to
WHO, worldwide, 24 million people are affected by it, and in Australia, between 150,000
and 200,000 people are affected by it [12]. Schizophrenic people are vulnerable and 2-
3 times more likely to die early than the general population [13]. SZ is treatable with
medicines and psychosocial support. So, detection of ASD and SZ is important for treat-
ment and intervention.

1.1 Research challenges and motivation

Comprising approximately 86 billion neurons, the human brain is widely regarded the most
complicated biological structure within the observable universe. It has a storage capacity
of about 1.25 × 1012 bytes and an interconnection distance of at least 100,000 kilometres
[14], [15]. It controls perception, thinking, paying attention, emotion, memory, and doing
actions [15], [16]. It serves as the central controller of the body by transmitting and re-
ceiving information as electrical impulses known as action potentials. The human brain
responds to every stimulus by creating action potentials, or electrical impulses. The pri-
mary challenge is to capture those electrical impulses and use that knowledge to advance
a better understanding of several brain disorders. However, the extraction of insights
from vast datasets and the identification of psychiatric disorders represent pivotal and
expansive domains within the realm of biomedical science. The assessment of neurologi-
cal disorders necessitates an examination of the functional aspects of the brain. Various
methodologies are available for studying the functional states of the brain, including mag-
netic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), positron
emission tomography (PET), electrocorticography (ECoG), and electroencephalography
(EEG) [17].

EEG is a highly employed method for capturing brain signals due to its exceptional
temporal precision, non-invasive nature, user-friendliness, and cost-effectiveness [18]. It
yields huge amounts of multi-channel EEG signals that neurologists traditionally analyse
visually in order to detect and comprehend neurological irregularities. Nevertheless, the
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absence of standardised assessment criteria renders this visual inspection an impractical
and time-consuming process, marked by the potential for errors, exhaustive effort, sub-
jectivity, high costs, and reliability concerns [19]. Moreover, some neurological disorders
share overlapping features in EEG signals, which may lead to misdiagnosis.

As such, there is a need for developing an automated system to evaluate and diagnose
neurological disorder from EEG signals in real-time to help the neurologist. This PhD
research study builds analysis techniques to automatically detect neurological biomarkers
from brain signal data and help clinicians properly diagnose their patients suffering from
ASD and SZ.

1.2 Research problem statements

EEG recording produces a large volume of data comprising diverse categories, especially
when the recordings span a prolonged time period. Despite the amount of brain function-
related information present in EEG recordings, the procedures for classifying and evalu-
ating these signals have not been adequately developed. To effectively extract valuable
insights from such extensive data, automated methods become indispensable for analysing
and classifying the information using appropriate techniques. Traditionally, EEG record-
ings are evaluated visually by experienced clinicians who manually scan the EEG records
to detect abnormalities in them, but this is error-prone, subjective, and unsatisfactory
due to the lack of standardised criteria for assessments and the inherent time-consuming
nature that can lead to errors stemming from fatigue [20], [21]. As a result, there is a
need to develop automatic systems capable of classifying the recorded EEG signals more
efficiently.

After reviewing an extensive amount of research papers, we have found some gaps that
can be articulated as some research problems. This research study aims to analyse the
EEG brain signal data to find solutions for the following research problems:

Research Problem 1 (RP1): Detecting neurological disorders like ASD and SZ from
EEG data is an ongoing challenge for researchers and neurologists. EEG is a huge volume
of data that holds the functional state of the brain. Currently, the examination of EEG
recordings to identify ASD and SZ is still reliant on manual investigations conducted by
expert clinicians. Also, EEG signals have huge data quantities and high spatial variability,
so it is very difficult to extract valuable information from EEG signals using traditional
machine learning or data mining approaches. Despite much investigation of EEG data,
researchers are as yet unable to use it to its fullest in a continuous decision-making process.
Hence, there is a need to develop methods that can extract additional valuable information
from EEG signals and improve classification performance.

Research Problem 2 (RP2): The second research gap we have found is the scarcity
of multi-disease classifiers. The majority of current research has focused on classifying a
single disease in comparison to healthy controls (HC). However, even in the few studies
that address multi-class classification, they typically involve no more than two diseases.
Consequently, diagnosing a patient’s EEG signal for multiple diseases necessitates the
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use of multiple CAD systems, which can be both costly and time-consuming. Therefore,
there is a pressing need for an effective, reliable, and high-accuracy CAD system that
can diagnose multiple neurological diseases within a single framework, i.e., a multi-disease
classifier. This approach would help overcome the scarcity of expert neurologists and reduce
the diagnostic costs associated with handling multiple diseases.

Research Problem 3 (RP3): The next research gap we have found is related to
the generalisability of the developed methods. Despite numerous published studies on EEG
signal classification in recent years, they suffer from a significant limitation in adaptability,
i.e., the developed methods are mostly tested on a particular dataset of a particular disease.
This is because methods designed to handle specific EEG classification problems may not be
fully efficient when applied to classify EEG signals associated with different diseases. The
challenges arise from the nonstationarity, non-linearity, and strong localisation present in
the temporal, spectral, and spatial dimensions of EEG signals. Each neurological disorder
exhibits distinct periodic and statistical properties in the underlying EEG characteristics,
making it difficult to employ a detection method created for one disorder to effectively
examine another. So, there is a need for developing a generalised framework that is dataset-
and disease-independent.

Research Problem 4 (RP4): Although several studies have been done on EEG
signal classification in the past few years, there is still a scarcity of CAD systems to help
clinicians in their diagnosis process. An automated and efficient CAD system can reduce
the manual process for the clinician and also curtail the cost of diagnosing neurological
disorders.

Based on the above research problems, in this study, we have proposed five different
methods:

• First two methods are proposed to address the first research problem for classify-
ing ASD and SZ from HC subjects using EEG data. In the first method, We have
differentiated ASD participants from HC subjects using the spectrogram image rep-
resentation of the EEG data. We have applied both ML- and DL-based approaches
to the spectrogram images to do the categorization. In the second proposed method,
we have used the entropy topography based visual representation of the EEG signal
with DL-based models to classify SZ from HC subjects. (RP1)

• To address the second research problem we have proposed the third method which
is a single framework for classifying four neurological disorders from HC subjects. In
this developed method we have used the spectrogram images of EEG data from the
four neurological disorders with both ML and DL-based classification techniques to
carry out the classification task. (RP2)

• In the fourth method, we have tried to address the third research issue. Here, a
generic CNN based framework is proposed for classifying EEG signals from different
neurological disorders and also from different data sources for the same disorders.
We have tested the proposed model on seven different datasets from six different
neurological disorders. (RP3)



Chapter 1. Introduction 5

• Finally, the fifth method is for developing a CAD system for classifying SZ subjects
from HC subjects using EEG data. In this method, we have used DL-based Convo-
lutional Long Short-Term Memory (ConvLSTM) model to perform classification of
SZ from HC subject using leave-one-subject-out cross-validation technique. Them,
we have used the trained model to develop a web-based system for identification of
SZ from user uploaded data. (RP4)

1.3 Research objectives

In this research study, different DL-based techniques are used in EEG signal analysis for
the detection or classification of neurological abnormalities. Five different methods have
been proposed to address the four research questions in this dissertation. The performance
of the newly developed methods is compared with the existing techniques in the same EEG
disorder domain. The following list summarises the objectives of this dissertation:

• To develop DL-based EEG signal classification techniques for ASD and SZ detection.

• To explore the feasibility of time-frequency (T-F) spectrogram image representation
of EEG signal for different neurological disorder classifications.

• To evaluate the viability of topographic image representation of EEG signals for SZ
classification.

• To develop a single framework for multiple neurological disorder classifications.

• To explore the feasibility of a generic framework for disease- and dataset-independent
EEG signal classification.

• To develop a web-based system to provide services for neurological disorder detection.

• To research state-of-the-art EEG data processing techniques for the identification of
neurological disorders and to improve their performance.

• To provide automated EEG analysis and classification methods for the identification
of anomalies in EEG.

1.4 Significance of the study

Diagnosis of mental disorders is typically carried out using clinical interviews designed
based on the two standard diagnosis systems: the Diagnostic and Statistical Manual of
Mental Disorders (DSM-5) and the International Classification of Diseases, 11th Revision
(ICD-11). These systems are based on symptoms related to individual diseases, which
can include behavioural, cognitive, emotional, or physical disturbances. However, this
subjective assessment approach can be error-prone and vary from expert to expert as the
symptoms overlap across the diseases. That is why researchers have been trying to develop
new ways to help clinical diagnosis using computerised automated systems.
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This research project will address the lack of knowledge in this area by examining
various aspects, such as why these algorithms are dataset-specific in nature. Although
lots of remarkable research has been conducted in this field, there is still a need to develop
systems that can automatically detect abnormalities in EEG signals and reduce false
positive and false negative rates. The data mining approach developed by this study will
help in the diagnosis and identification of abnormalities in patients in real-time.

The detection of various types of anomalies from biomedical data through the recog-
nition of abnormal period patterns is valuable for many applications. This research will
be significant by developing a new technique for ASD and SZ detection, which will offer
considerable importance in the medical field as well as future research in this area. The
main significance of the study is:

• Will significantly advance the current data mining techniques used at various levels of
EEG data analysis, such as data pre-processing, feature extraction, and recognition
of brain potential abnormalities.

• Will help technologists build up a computer-assisted analysis system for accurately
identifying ASD and SZ.

• Will be beneficial to the medical field while at the same time contributing to the
academic world of ASD and SZ-related research.

• Will be helpful for clinical diagnosis.

– To help the expert neurologist identify ASD and SZ

– Aids for improving the diagnosis of ASD and SZ from EEG signals

• By correlating the information gained by these techniques with different medication
regimens, a physician can more quickly decide on a treatment plan that maximally
benefits the patient.

It is hoped that the output of this research work will be beneficial to the medical field
while at the same time contributing to knowledge enhancement in the academic world.

1.5 Contributions of the dissertation

The research described in this dissertation focuses on the classification of EEG signals
from various brain activities for the analysis of various brain disorders. In this disserta-
tion, we have presented five methods for the identification of various kinds of neurological
disorders. The major goal of this work is to provide methodologies and procedures for
the classification of ASD and SZ EEG signals from healthy subjects. We have also com-
pared our proposed algorithms with other recently published works to see how well those
approaches function. The following points illustrate the dissertation’s contributions:

1. Introduce the spectrogram representation of the EEG signals for ASD classification.
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2. Introduce the topographic representation of the EEG signals for SZ classification.

3. Develop a multi-disease classification framework using EEG data to classify different
neurological disorders.

4. Develop a generic framework for classifying EEG signals for various neurological
disorders.

5. Develop a web-based system for SZ identification from EEG data.

Below, we cover some quick facts about the contribution points.

1. Introduce the spectrogram representation of the EEG signals for ASD
classification:

In our first proposed method, we have used the spectrogram image representation of the
EEG data to classify ASD subjects from HC subjects. To perform classification on the
spectrogram images, we have used both ML- and DL-based techniques. In the ML-based
approach, a histogram-based feature extraction technique is used, and then the dimensions
of the extracted features are reduced using principle component analysis (PCA). Finally,
four different ML-based classifiers are used to perform the classification on those extracted
features. In the DL-based approach, three different convolutional neural networks (CNN)
are developed to carry out the classification task on those images. The experimental
results demonstrate that the proposed approach has significant advantages over other
existing methods.

2. Introduce the topographic representation of the EEG signals for SZ classi-
fication:

The second method we have proposed is based on the topographic representation of the
EEG data for SZ detection. Here, we have used the Shannon entropy (ShanEn) of the EEG
signals to calculate the channel-wise entropy value and the topographic plotting technique
to generate the visual representation of the signal data entropy. Then we have proposed a
CNN model to perform classification on those topographic images for SZ detection. The
experimental results demonstrate that the proposed approach has significant advantages
over many other existing methods.

3. Develop a multi-disease classification framework using EEG data to classify
different neurological disorders:

In our third proposed method, we have developed a multi-disease classification framework
to classify four different neurological disorders using EEG data. In this framework, we have
used the spectrogram representation of the EEG data and then used both ML and DL-
based processes for classification. In the ML-based approach, we have used two different
histogram-based feature extraction methods in combination with PCA and four different
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ML-based classifiers to check their performance. In the DL-based approach, a CNN model
is developed and used to perform the classification. We have also used two existing popular
CNN models to compare the performance of the proposed CNN model with those existing
popular models and obtained better results than those popular models using the proposed
model.

4. Develop a generic framework for classifying EEG signals for various neuro-
logical disorders:

In this proposed approach, we tried to work around the existing dataset and disorder-
dependent solutions by developing a CNN-based generic framework named GENet to
classify EEG signal data from different neurological disorders. In this method, EEG
data are segmented, and then the GENet model is used to perform feature extraction
and classification of those signal data. Seven different EEG datasets for six different
neurological disorders are used to validate the proposed model. We have performed both
binary classification on those datasets and a multi-class classification using four of those
seven datasets. Both the binary and multi-class classification results have shown promising
results in the existing studies.

5. Develop a web-based system for SZ identification from EEG data:

In this fifth method, we have developed a web-based system for SZ detection from EEG
signal data. To perform the classification task, we have developed a framework using a
DL-based Convolutional Long Short-Term Memory (ConvLSTM) model, performed the
classification using the leave-one-out-cross validation (LOOCV) technique, and used the
trained model in the back-end of the website to perform SZ detection on the uploaded user
data. In this framework, EEG data are segmented, and the proposed ConvLSTM model
is trained using those data. Finally, the trained model is used to perform classification on
the test data. The developed web-based system will be helpful in the clinical diagnosis
process for SZ disorder.

In this research work, we have tried to develop some new approaches for the classifica-
tion of EEG data to identify ASD and SZ and hope that the proposed methods contribute
to successful classification approaches. Finally, the developed web-based system can be
used in the clinical diagnosis process of SZ disorder and can be extended for other neuro-
logical disorder diagnosis purposes.

1.6 Structure of the Dissertation

This dissertation consists of eight chapters, each containing important information related
to our research. Figure 1.1 shows an overview of this thesis structure.

A brief discussion about those chapters is given below:

• Chapter 2 provides an overview of EEG signal classification techniques and research
related to EEG signal analysis. This chapter briefly introduces the background
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Figure 1.1: Chapter overview of the dissertation

knowledge and related information for this research and studies related to ASD and
SZ.

• Chapter 3 introduces the first method of this dissertation, which is a spectro-
gram image-based EEG signal classification technique for ASD disorder. This re-
search study was the first in the field of ASD detection to introduce the spectrogram
image-based classification technique. In this process, EEG signals are first converted
to spectrogram images, and then classification operations are carried out on those
images using different image categorisation techniques. This classification technique
can be used to distinguish ASD subjects from HC subjects.

• Chapter 4 reports the second proposed method, which is a topographic image-
based EEG signal classification technique for SZ disease. This classification tech-
nique was also the first in the field of SZ classification from EEG data. This cat-
egorisation technique combines Shannon entropy-based topographic images with a
convolutional neural network to differentiate between SZ and HC participants. The
proposed model is evaluated using two different datasets with different deep learn-
ing configurations, and the obtained results showed that the developed method is
promising for SZ detection.

• Chapter 5 introduces a spectrogram image-based EEG signal classification tech-
nique for multiple neurological disorders. This classification technique is proposed
to perform a multi-class classification task for four neurological disorders, namely,
ASD, EP, PD, and SZ, from HC subjects.

• Chapter 6 presents a generic CNN-based model named GENet for classifying raw
EEG data of different neurological diseases. It is developed to work on disease-
independent EEG signal categorisation.
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• Chapter 7 introduces a ConvLSTM-based framework for subject-independent SZ
classification. It will also present the web platform that is developed using the
subject-independent ConvLSTM model to provide support for the clinicians.

• Chapter 8 gives a summary of the study presented by this research as well as the
findings. This chapter also contains details on future works.
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Chapter 2

Background

This research will build on the existing literature in the area of detecting ASD and SZ
from brain signals. EEG reflects the electrical activity of the human brain and provides
evidence of brain’s function over time, which makes EEG as widely used to study brain
functions and to diagnose neurological disorders like SZ, epilepsy, brain tumours, head
injury, sleep disorders, dementia etc. by physicians and scientists. It is also helpful for
the treatment of abnormalities, behavioural disturbances (e.g., ASD), attention disorders,
learning problems and language delay [22]. Several studies have been accomplished to
detect different mental disorders from which some of the reported literature are discussed
in this chapter.

To create an effective automated system for EEG data classification, a comprehen-
sive understanding of EEG signals is crucial. Therefore, this chapter provides essential
and overarching information on the generation of EEG signals and their significance in
diagnosing brain disorders.

2.1 Human brain anatomy

The human brain is an intricate organ responsible for regulating not only essential bodily
functions but also cognitive processes, memory, emotions, sensory perception, motor skills,
vision, respiration, temperature control, and hunger. At the core of this complex system
is the central nervous system, which includes the spinal cord originating from the brain
[23]–[25]. It also controls heart and respiration rates, which affects how people react to
stressful events. The brain’s weight varies throughout life. At birth, it weighs around
one pound, increasing to about two pounds during childhood. In adulthood, the average
female brain weighs about 2.7 pounds, while an adult male’s brain weighs around three
pounds. It is composed of approximately 60% fat and 40% water, carbohydrates, protein,
and salts [26]. It includes blood vessels and nerves, consisting of neurons and glial cells
[26].

2.1.1 Brain structures and their functions

On a high level, the brain can be divided into three major parts named cerebellum, brain-
stem and cerebrum [23], [26] as shown in Figure 2.1. A brief description of those parts are
given below:
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Figure 2.1: Main parts of a human brain [26].

2.1.1.1 Cerebrum

The cerebrum is the largest and most important part of the human brain, and is essential
to many higher-order cognitive operations. It is split into two hemispheres, the left and the
right, and is situated at the front and top of the brain [16], [27]. A network of nerve fibres
known as the corpus callosum connects the two hemispheres and enables communication
and information sharing between them [16], [27]. Numerous cognitive processes are carried
out by the cerebrum, including [16], [23], [27]:

• Conscious Thought: It contributes to our awareness, perception, and comprehen-
sion of our surroundings. We can think, explain, and make decisions because of this
area.

• Sensory Processing: It takes in and interprets sensory data from its surroundings,
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such as touch, vision, hearing, taste, and smell. The cerebrum’s several sections are
each tailored for processing particular sensory inputs.

• Language: Language comprehension and production are predominantly located in
certain areas of the cerebrum, typically in the left hemisphere in most individuals.

• Motor Control: The cerebrum is in charge of directing the body’s voluntary mo-
tions. It contains the main motor cortex, which communicates with the muscles to
initiate movement.

• Emotions: Through links with other brain areas, it contributes to the regulation
of emotions and responses to emotions.

• Memory: The cerebrum has a role in the creation of memories as well as short-term,
long-term, and general memory functions.

• Problem-Solving and Learning: The cerebrum plays a critical role in problem-
solving, skill acquisition, and situational adaptation.

The cerebrum’s outermost layer comprises neural tissues referred to as the cerebral
cortex. Within each hemisphere of the brain, there exist four distinct sections known as
lobes: frontal, parietal, temporal, and occipital, each assigned specific functions and roles
[16]. Figure 2.1 shows those four lobes with other parts of the brain.

Figure 2.2: Anatomical areas of a human brain [26].

Details of the lobes are discussed below [16]:
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• Frontal Lobe: The largest segment of the brain, known as the frontal lobe, oversees
personality traits, decision-making processes, and motor functions. It is situated in
the front of the cranial region. Within the frontal lobe, there is also an area associated
with smell recognition and the Broca’s region, which plays a role in language and
speech abilities.

• Parietal Lobe: Positioned at the centre of the brain, the parietal lobe plays a
vital role in object recognition and the understanding of spatial relationships. Addi-
tionally, it is involved in processing tactile sensations and pain perception from the
body. Furthermore, within the parietal lobe, one can find Wernicke’s area, which
contributes to the brain’s comprehension of spoken language.

• Temporal Lobe: Situated on the lateral sides of the brain, it plays roles in short-
term memory, speech processing, musical rhythm perception, and, to a certain de-
gree, smell recognition.

• Occipital Lobe: The posterior part of the brain is responsible for visual processing.

2.1.1.2 cerebellum

The cerebellum, often referred to as the "small brain," is a compact structure located at
the posterior part of the head, situated above the brainstem and below the temporal and
occipital lobes [28]. Comprising two hemispheres similar to the cerebral cortex, the inner
region interfaces with the cerebral cortex, while the outer region contains neurons. Re-
markably, it constitutes approximately 10% of the brain’s total weight but houses roughly
80% of all neurons in the brain [29]. Its primary functions encompass maintaining posture,
balance, and coordination of voluntary muscle movements. However, recent research, as
explored in [26], has delved into the cerebellum’s potential involvement in emotional reg-
ulation, cognitive processes, social behaviour, and its conceivable roles in conditions such
as addiction, autism, and schizophrenia.

2.1.1.3 brainstem

The brainstem, situated at the base of the brain, forms the critical link between the
cerebrum and the spinal cord. Comprising three distinct structures - the midbrain, pons,
and medulla oblongata - it operates as a vital relay station, facilitating the transmission
of signals between various regions of the body and the cerebral cortex [26]. This intricate
structure plays a pivotal role in regulating several fundamental physiological processes,
including respiration, awareness, control of eye and mouth movements, as well as the relay
of sensory information such as pain, temperature, and auditory stimuli. Furthermore, it
exerts control over essential bodily functions like heart rate, blood pressure, and appetite
[26].
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2.1.2 Communication system of human brain

The communication system of the human brain is a complex network of neurons (nerve
cells) and glial cells (supporting cells) that work collectively to send and process informa-
tion. Electrical and chemical signals are used to communicate inside and among various
brain areas. Billions of neurons possess the remarkable ability to engage in rapid commu-
nication with one another by means of chemical messengers known as neurotransmitters.
Neurons vary in shape and size, but they all have four components: dendrites, a soma (cell
body), an axon, and axon (synaptic) terminals [15], [16]. Figure 2.3 shows the structure
of a neurone with its components. A brief description of those parts is given below:

Figure 2.3: Anatomy of a neuron [30].

2.1.2.1 Dendrites

Dendrites are branch-like extensions of neurons, resembling the roots of a tree, that extend
from the cell body. They play a vital role in receiving information from other neurons
and transmitting electrical signals back to the cell body. Covered in synapses, dendrites
facilitate communication between neurons. It’s worth noting that dendrites can vary in
length among neurons, with some having longer dendritic extensions than others. In the
central nervous system, neurons often exhibit long, intricate dendrites, enabling them to
receive signals from a multitude of other neurons.

2.1.2.2 Soma (Cell Body)

Fundamentally, the soma, often referred to as the cell body, serves as the core of the
neuron. Its primary function is to uphold the overall well-being of the cell and ensure
the proper functioning of the neuron [31]. Housed within the soma is the cell nucleus,
responsible for the generation of genetic information and the orchestration of protein
synthesis. These essential proteins, in turn, play a critical role in facilitating the operation
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of other components within the neuron. Encasing the soma is a membrane that not only
provides protection but also enables communication between the soma and its immediate
surroundings.

2.1.2.3 Axon

The axon, also known as a nerve fibre, extends from the cell body of the neuron at a region
called the axon hillock. Its primary function is to convey signals away from the cell body
and toward terminal buttons, facilitating the transmission of electrical impulses to other
neurons. In terms of size, axons can vary widely, ranging from as small as 0.1 millimetres
to exceeding 3 feet in length [32]. Some axons are enveloped in myelin, a fatty substance
that serves as insulation, thereby enhancing the speed of signal transmission. These long
nerve processes have the capacity to branch out, enabling the relay of signals to multiple
destinations before ultimately terminating at synapses.

2.1.2.4 Axon (synaptic) terminals

Situated at the extremity of the neuron, the axon terminals, often referred to as terminal
buttons, play a crucial role in transmitting signals to other neurons. At the termination
of the terminal button, there exists a gap known as a synapse. Within these terminal
buttons, there are reservoirs containing neurotransmitters. These neurotransmitters are
subsequently released from the terminal buttons into the synapse, facilitating the trans-
mission of signals to other neurons. During this process, electrical signals undergo a
transformation into chemical signals [32]. Following this transmission, any surplus neuro-
transmitters that were not transferred to the next neuron are reabsorbed by the terminal
buttons [32].

2.1.2.5 Neuron’s communication system and the synapse

Neurons establish communication among themselves through the connection between ax-
ons and dendrites. When a neuron communicates with another neuron, it sends an electri-
cal signal known as an action potential (AP) along the length of its axon. This electrical
signal undergoes a transformation into a chemical signal at the axon’s termination point.
The synapse, which is the region between the end of an axon and the tip of a dendrite
from another neuron, is where the axon releases this chemical signal along with chemical
messengers called neurotransmitters. These neurotransmitters are stored in small vesicles
(tiny sacs) within the synaptic terminals. The neurotransmitters convey the signal to the
nearby dendrite of the postsynaptic neuron via the synapse, where the dendrite converts
the chemical signal back into an electrical one. Importantly, receptors on the postsynaptic
neuron are specific to the neurotransmitters released by the presynaptic neuron [31]–[33].

Postsynaptic potentials (PSPs) are generated by the postsynaptic neuron when neu-
rotransmitters bind to its receptors. These PSPs can be categorised into two primary
types: excitatory postsynaptic potentials (EPSPs), which increase the likelihood of the
postsynaptic neuron generating an action potential, and inhibitory postsynaptic potentials
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(IPSPs), which decrease this likelihood. If the PSP reaches its threshold for conduction,
the postsynaptic neuron becomes activated, initiating an action potential. This action
potential then propagates through the neuron and undergoes similar conversions when it
reaches neighbouring neurons [34]. Essentially, this action potential carries the information
transmitted by nerve cells. Figure 2.4 shows the synapse and the neuron’s communication
process.

Figure 2.4: The synapse is where signals pass from one neuron to an-
other. When the signal reaches the end of the axon, it triggers the release
of neurotransmitters from tiny vesicles. These neurotransmitters cross the
synapse and attach to receptors on the neighbouring cell, potentially alter-
ing the receiving cell’s properties. If the receiving cell is also a neuron, the

signal can continue transmission to the next cell [33].

This synaptic transmission mechanism enables information to be transferred and in-
tegrated across the neural network, enabling complex brain activities such as thoughts,
feelings, movements, and emotions. Therefore, by monitoring the brain’s electrical activ-
ity, it becomes easy to reveal the brain’s operational mechanisms and mental states and
to diagnose or address various neurological conditions.
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2.1.3 Electroencephalography (EEG)

Electroencephalography (EEG) is a non-invasive neurophysiological technology that cap-
tures and analyses electrical activity in the brain. Electrodes are placed on the scalp to
detect electrical signals generated by the collective activity of neurons in the brain. EEG
is frequently used for many different purposes, including the diagnosis and monitoring of
neurological diseases, such as epilepsy, brain tumour, head injury, sleep disorder, dementia,
schizophrenia, and monitoring depth of anaesthesia during surgery; treatment of abnor-
malities; behavioural disturbances (e.g. Autism), attention disorders, learning problems,
language delay, etc.; evaluation of sleep patterns; and study of brain function. It offers
insightful information on brain activity and aids in comprehending the dynamics of the
brain under various settings and stages.

2.1.3.1 History of EEG

EEG has a long history that began in the late 19th and early 20th centuries. Richard
Caton, a British biologist, carried out one of the earliest studies on brain electrical activity
in 1875. He noticed that electrical currents in animals’ exposed brains changed according
to brain activity and sensory stimuli [35]. The revolutionary discovery of the first human
EEG was made in 1924 by German psychiatrist Hans Berger. The recordings of Berger’s
17-year-old son’s scalp were made using a Siemens double coil galvanometer, and the
recordings showed rhythmic brainwave activity that he called "alpha waves" [36], [37].
Berger published his research in 1929 and popularised the term "electroencephalogram"
to refer to the process of capturing brain electrical activity. Figure 2.5 shows the first
recording of the EEG signals made by Hans Berger.

Figure 2.5: Hans Berger and his first recording of EEG signals in 1920s
[37], [38].
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2.1.3.2 EEG Recording system

EEG recording system consists of several key components working together to ensure
accurate and reliable EEG data acquisition. The major components of an EEG recording
system include:

• Electrodes: During the EEG test, a number of small discs called electrodes are
placed on the scalp at specific locations on the surface of the scalp with temporary
glues. These electrodes are conductive sensors that detect the electrical signals
generated by the brain during its activities.

• Electrode cap or headgear: Many EEG recording methods include electrode caps
or helmets to guarantee accurate and consistent electrode placement. The setup
procedure is more effective with these caps since they have prearranged electrode
placements.

• Electrode paste or gel: The electrodes are coated with a conductive paste or gel
before being put on the scalp. With less resistance and noise, this paste enhances
the electrical connection between the electrodes and the skin.

• Amplifiers: The electrodes can only detect very weak electrical impulses in the
microvolt (µV) range. These signals are amplified while retaining their quality using
EEG amplifiers. Additionally, filters are built into amplifiers to cut out unwanted
frequencies like those from muscle movement and background noise.

• Analog-to-Digital converter (ADC): An ADC is used to transform the amplified
analogue EEG signals into digital data. Then, this digital material is prepared and
stored for investigation. Initially, EEG recordings were made on paper, but today,
digital EEG is thought to be a viable method for capturing EEG signals since it
solves the issue of paper storage.

EEG signals are obtained by strategically placing multiple electrodes inside the brain,
on the scalp, and over the cortex. These electrodes capture the collective neuronal activity,
which results from the combined effects of EPSPs and IPSPs generated by numerous
pyramidal neurons located near each electrode [39]. There are two types of EEG recordings
based on their location on the head: scalp EEG and intracranial EEG (iEEG). Scalp EEG
involves placing small electrodes on the scalp to establish good mechanical and electrical
contact. In contrast, intracranial EEG uses special electrodes implanted directly into the
brain during surgery. Another variation is the ECoG, where EEG is measured directly
from the cortical surface using subdural electrodes.

The amplitude of EEG signals varies depending on the recording method. In a normal
adult, scalp EEG signals typically range from about 1 to 100 µV, while measurements
with subdural electrodes, like needle electrodes, result in approximately 10 to 20 mV
amplitudes. The non-uniform brain architecture and functional organisation of the cortex
lead to variability in EEG signals depending on the location of the recording electrodes.
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2.1.3.3 EEG electrode placement style

Depending on their intended application, EEG recordings can include 1 to 256 electrodes
recorded simultaneously, which is known as multichannel EEG recording. Each channel
typically consists of a pair of electrodes that produce a signal during the recording. Figure
2.6 shows the alignment of the electrodes over the six scalp regions [40]. The primary
regions of the scalp where electrodes are placed are as follows:

• Frontal (F): These electrodes cover the front part of the head.

• Temporal (T): These electrodes cover the sides of the head.

• Central (C): These electrodes cover the central part of the head.

• Parietal (P): These electrodes cover the top and back of the head.

• Occipital (O): These electrodes cover the back of the head.

The naming of each electrode is comprised of letters from the scalp region and the
numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. A "z" in place of a number refers to an electrode
placed on the midline. The numbers represent the locations of the electrodes within each
region, with odd numbers on the left side and even numbers on the right side of the head.
For example, F7 and F8 are frontal electrodes on the left and right sides of the head,
respectively. Fz is a frontal electrode at the vertex of the head. Pz is a parietal electrode
at the top and back of the head.

Different electrode localisation configurations, such as 10-20, 10-10, and 10-5 interna-
tional systems, have been suggested. However, the 10-20 system is widely recognised as
the most commonly used [41], [42]. The numbers "10" and "20" indicate that the actual
spacing between surrounding electrodes is 10% or 20% of the skull’s overall front-to-back
or right-to-left distance, respectively. The positions are defined by two points: the inon,
which is the crest point of the back of the skull, often indicated by a bump (the prominent
occipital ridge, which can usually be located with mild palpation), and the nasion, which
is the point between the forehead and the nose level with the eyes. Figure 2.7 shows the
electrode location on the brain using the international 10-20 approach.

The EEG voltage signal reflects voltage differences between electrodes, allowing mul-
tiple display configurations on the EEG recording. These arrangements, known as mon-
tages, determine how the EEG signals detected by different electrodes are combined and
displayed. There are various types of montage, each with its own unique purpose and
advantages:

• Bipolar montage: Adjacent electrodes are coupled in a bipolar montage to pro-
duce differential signals. The voltage difference between these coupled electrodes
is presented, emphasising localised brain activity and minimising interference from
distant sources [44], [45]. The complete montage comprises a sequence of such chan-
nels. For instance, the channel labelled "Fp1-F3" represents the voltage difference
between the Fp1 electrode and the F3 electrode. Subsequently, the next channel in
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Figure 2.6: Electrodes divided into six scalp regions: frontal, central,
parietal, occipital, right temporal, and left temporal [40].

Figure 2.7: The international 10-20 electrode placement system [43].

the montage, "F3-C3," represents the voltage difference between F3 and C3, and this
pattern continues throughout the entire array of electrodes.

• Referential montage: A referential montage selects one electrode as the reference
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and compares the EEG signals from all other electrodes to this reference [44], [45].
Although it is not in the same location as the "recording" electrodes, this reference
does not have an ensemble position. Because they do not enhance the signal in
one hemisphere more than the other, midline placements are frequently employed.
Another common term is "linked ears," which refers to an average of electrodes
that are physically or mathematically tied to both the earlobes and the mastoids.
Although this kind of montage gives a more complete picture of general brain activity,
it might not be as good at capturing localised changes as bipolar montages.

• Laplacian montage: The Laplacian montage draws attention to spatial gradients
in EEG data and can help pinpoint where brain activity is occuring. It measures
the voltage variation between each electrode and the mean voltage of the electrodes
nearby [44], [45].

• Average reference montage: The average of all EEG electrodes is used as the
reference point for each electrode in the average reference montage. It is frequently
used in clinical EEG recordings and aids in reducing the influence of common noise
[44], [45].

In digital EEG, all signals are digitised and stored in a specific montage. As montages
can be mathematically constructed from one another, EEGs can be displayed in any
desired montage on an EEG machine.

2.1.3.4 EEG Brainwaves

The electrical patterns created by the simultaneous activity of neurons in the brain are
known as EEG brainwaves. These brainwaves are divided into a number of frequency
bands, each of which is connected to certain mental states, abilities, and actions. EEG
brainwaves are recorded in Hertz (Hz) and can be seen in a variety of mental states,
including awakeness, sleepiness, and drowsiness. The frequency bands of brain rhythms
can be divided into five categories: 0.5-4 Hz (delta, δ), 4-8 Hz (theta, θ), 8-13 Hz (alpha,
α), 13-30 Hz (beta, β) and >30 Hz (gamma, γ) [44]. Details of those bands are discussed
below:

• Delta waves have a rhythmic band range of 0.5 to 4 Hz and are the slowest brain-
waves with the highest amplitude. It is primarily observed during deep sleep, in
states of unconsciousness, in serious brain disorders, and in the waking state. It
predominates in situations including learning disabilities, severe attention deficit
hyperactivity disorder (ADHD), brain traumas, cognitive difficulties, etc [46].

• Theta waves have frequencies between 4 and 8 Hz and typically have amplitudes
larger than 20 V. In calm or sleepy states, such as during meditation or light sleep,
theta waves are frequently observed. It is also linked to creativity, emotional feeling,
sensation, and memory. It mostly affects young children and the elderly. Theta wave
overexposure can cause depression, ADHD, hyperactivity, and other conditions [47].
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• Alpha has a frequency range of 8 to 13 Hz with an amplitude of 30-50m µV. It
appears when the brain is in a wakeful relaxation state with the eyes closed. They
are commonly observed when individuals are in a relaxed and calm state. It is
commonly connected with strong mental activity, stress, and anxiety. It is associated
with momentary memory storage and cognitive processes [48].

• Beta is in the rhythmic range of 13 Hz to 30 Hz. It appears as low-amplitude
oscillations with symmetrical frequencies in the frontal region. When the brain is
alert and immersed in mental tasks, it produces beta waves. These waves signify a
highly focused mental state, often connected with dynamic actions, attentive focus,
and problem-solving related to the external environment [44].

• Gamma waves have a frequency band ranging from 30 Hz and up. The maximum
frequency of this rhythm is occasionally specified as 80 Hz or 100 Hz. It is the
fastest brainwave and is associated with high-level cognitive processing, perception,
and consciousness [44].

Figure 2.8 shows sample signals from those five frequency bands.

Figure 2.8: Sample EEG signals of five frequency bands [49].

External or non-neural electrical impulses that interfere with the proper recording of
brain activity are referred to as artefacts in EEG. These artefacts can be caused by a
variety of things, including electrical equipment, surrounding factors, perspiration, eye
blinking, and muscle movements. The EEG signals may be distorted by artefacts, which
makes it difficult to determine the underlying brainwave activity with accuracy.
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In EEG recordings, common artefact types include:

• Muscle artefacts: Muscle movements, including eye blinks, jaw clenching, and
facial expressions, can introduce electrical noise into the EEG recordings.

• Electrode artefacts: Poor electrode contact, movement, or displacement can lead
to sudden changes in voltage that are not related to brain activity.

• Eye movement artefacts: Rapid eye movements, such as saccades and eye blinks,
can generate electrical signals that resemble brainwave activity.

• Sweat and skin artefacts: Sweat on the scalp or changes in skin conductivity can
create unwanted electrical signals.

• Cardiac artefacts: Heartbeat-related electrical signals can occasionally interfere
with EEG recordings.

• Environmental interference: Electrical equipment, power lines, and other elec-
tromagnetic sources in the environment can introduce unwanted signals.

• Electromyographic artefacts: Electrical activity from nearby muscles, especially
in the neck and face, can contaminate EEG recordings.

To get precise EEG data for analysis, these artefacts need to be minimised or elimi-
nated. Artefacts are detected and their effects are reduced using signal processing tech-
niques, including filtering and artefact rejection algorithms. EEG data must be carefully
analysed by trained technicians and academics to distinguish between real brainwave ac-
tivity and signals caused by artefacts.

Abnormal EEG signal patterns can be an indication of a number of neurological dis-
orders. Some examples of abnormal patterns that can be seen in EEG recordings are as
follows [44], [50]:

• Spike-and-Wave complexes: These are sharp, high-amplitude spikes followed by
slow waves. They are often seen in epilepsy, particularly in absence seizures.

• Sharp waves: Similar to spikes but with a slightly broader waveform. Sharp waves
can be associated with epileptic activity or other brain abnormalities.

• Slow waves: Abnormally slow and high-amplitude waves, often observed in cases
of brain injury, encephalopathy, or during certain stages of sleep.

• Burst suppression: Alternating periods of low and high amplitudes are seen in
conditions like hypoxic-ischemic encephalopathy or during deep anaesthesia.

• Theta-Delta coma: Predominance of theta and delta waves in comatose patients,
indicating severe brain dysfunction.

• Alpha coma: Absence of alpha waves despite open eyes, suggesting significant
brain dysfunction.
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• Focal slow activity: Abnormal slow wave activity localised to a specific brain
region, indicating a possible focal brain lesion or dysfunction.

• Periodic patterns: A repetitive and periodic waveform that can be seen in condi-
tions like Creutzfeldt-Jakob disease or certain drug intoxication.

These unusual patterns offer important information for identifying and tracking dif-
ferent neurological disorders like epilepsy, dementia, bipolar disorder, sleep problems, in-
somnia, schizophrenia, attention deficit hyperactivity disorder, autism spectrum disorder,
and migraines. In order to provide accurate clinical diagnoses and direct the selection of
the most appropriate treatments, skilled neurologists and EEG technicians analyse these
patterns.

In this dissertation, we have focused on two neurological disorder research problems
using EEG data. Those are autism spectrum disorder and schizophrenia, which are briefly
introduced in the sections below.

2.2 Autism spectrum disorder and its effect on EEG

Autism spectrum disorder (ASD) is a complicated neurodevelopmental disease charac-
terised by social communication difficulties, repetitive behaviours, and restricted inter-
ests. Since it spans a broad spectrum of symptoms and severity levels that might differ
from person to person, which is why it is known as a "spectrum" disorder. The key char-
acteristics of ASD include social communication challenges, restricted interests, sensory
sensitivities, repetitive behaviours, difficulty with transitions, etc [51], [52].

ASD is often identified in childhood, and early intervention and specialised therapy
can considerably improve results. The specific causes of ASD are still being researched,
although it is most likely a mix of genetic, environmental, and developmental factors [51],
[52]. According to the Centers for Disease Control and Prevention (CDC), around 1% of
the world’s population has ASD, which is around 75 million people [53]. In the US, 1
in 36 children is diagnosed with an ASD [53]. Since 2000, the prevalence of autism has
increased by 178%. According to the CDC, boys are four times more likely than girls to
get an autism diagnosis. Nearly four out of every five children with autism experience a
mental health problem, with ADHD being the most frequent. Autistic people may have
co-occuring health problems such as digestive difficulties, seizures, epilepsy, and sleep
problems. Approximately 4 out of every 5 autistic children have some difficulty with their
motor abilities, such as walking, balancing, or writing [53].

There are certain EEG patterns and modifications connected to autism that have been
found in research. These findings contribute to our knowledge of the disorder’s neurological
foundations. Some significant EEG pattern alterations that have been noted in people with
autism are:

• Increased theta activity: Theta brainwaves are linked to profound relaxation,
daydreaming, and creativity. According to certain research, people with autism
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show more theta activity, primarily in the right posterior regions, especially while
performing tasks that require social contact [54], [55]. This may be due to variations
in how people with autism interpret social cues and use social cognition [54], [55].

• Unusual alpha activity: Alpha brainwaves are linked to relaxed wakefulness and
a reduction in sensory input. Unusual alpha activity has been seen in several in-
vestigations of people with autism, pointing to possible abnormalities in attention
control and sensory processing [56], [57].

• Decrease in gamma synchronisation: Cognitive activities, including perception,
memory, and attention, are associated with gamma brainwaves. Autism individuals
have been shown to have decreased gamma synchronisation, which might be a factor
in their inability to absorb complex information and integrate sensory data [58], [59].

• Changed functional connectivity: Autism-related variations in functional con-
nectivity across brain areas have been identified by EEG connectivity research. This
altered connection may lead to difficulties in coordinating brain networks involved
in social communication [60], [61].

• Sensory responses: Few studies have found changes in sensory responses in the
EEG signals of individuals with ASD [62]. They may show altered EEG responses
to certain sensory stimuli, which is consistent with the sensory sensitivity frequently
seen in autistic people [63].

It’s crucial to remember that while certain EEG patterns are linked to autism, they
are not unique to the condition and might differ greatly across people. Furthermore,
these patterns fit into a bigger picture that entails intricate connections between genes,
brain development, and environmental variables. EEG results are only one piece of the
puzzle when it comes to understanding the neurological causes of autism. To assist in
the diagnosis and treatment of ASD, this dissertation aims to develop methods that can
identify EEG signals from ASD individuals and separate them from healthy individuals.

The second neurological disorder that we have considered in this study is schizophrenia.
In the next section, we will introduce schizophrenia disorder and its effect on EEG signal
data.

2.3 Schizophrenia and its effect on EEG

Schizophrenia (SZ) is a complex and multifaceted mental disorder that profoundly af-
fects an individual’s cognition, emotions, perception, and behaviour, leading to an altered
perception of reality. Individuals with SZ may frequently experience delusions and hal-
lucinations, which at times can result in aggressive behaviour. Tragically, the incidence
of suicide is notably higher among individuals with SZ when compared to the general
population. SZ typically manifests in patients between the ages of 16 and 30, and if left
untreated, it can lead to prolonged psychosis. Key symptoms of SZ encompass hallucina-
tions, delusions, disordered thinking, motor abnormalities, reduced motivation, difficulties
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with memory and attention, and diminished emotional expression, as described in [11],
[13].

Globally, an estimated 24 million people, or approximately 1 in 300 individuals (0.32%),
grapple with SZ. Among adults, the prevalence stands at one in every 222 individuals
(0.45%) [64]. While not as common as certain other mental health conditions, SZ fre-
quently emerges during late adolescence and early adulthood, with an earlier onset often
observed in males as opposed to females [13]. Below, we outline some of the economic
repercussions associated with SZ, as detailed in [65]:

• SZ demands ongoing medical attention with substantial direct healthcare costs, bur-
dening healthcare systems, insurance, and government budgets.

• SZ often starts in early adulthood, disrupting education, careers, and work, causing
productivity loss for individuals and the economy.

• Treatment, medications, and support for SZ patients put a financial burden on the
family members of that person.

• SZ significantly impacts the quality of life. Individuals may deal with stigma, limited
social engagement, and impaired daily functioning, resulting in lower life satisfaction.

Schizophrenia has a complicated economic effect that is difficult to quantify because
of a variety of causes and varying levels of severity across people. However, studies reveal
significant expenses for support services, lost productivity, and healthcare. Enhancing
early intervention, access to mental healthcare, and social inclusion may be able to lessen
some of these financial consequences. Researchers have long been interested in discovering
the underlying neurological causes of SZ, and EEG has proven to be a useful technique
in investigating the brain activity of those suffering from the condition. Here are some
important details about the connection between SZ and EEG:

• Patterns of EEG in SZ: Research has indicated that individuals diagnosed with
SZ frequently demonstrate distinct EEG abnormalities in comparison to individuals
without the disorder. These anomalies manifest as alterations in various aspects of
brainwave activity, encompassing changes in frequency, amplitude, and synchronisa-
tion. Specifically, deviations can be observed in key brainwave oscillations, such as
gamma, alpha, and theta waves, providing valuable insights into the neurophysio-
logical differences associated with SZ [66].

• Gamma oscillations: SZ frequently exhibits decreased gamma oscillations, which
are high-frequency brainwaves that occur between 30 and 80 Hz. Gamma oscillations
are essential for working memory, perception, and information processing. Cognitive
problems may be a result of abnormalities in gamma activity in people with SZ [67]–
[69].
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• Sensory processing: EEG research has shed light on the sensory processing pat-
terns of people with SZ. The P50 suppression paradigm suggests deficiencies in sen-
sory gating, which make it difficult to filter out unimportant sensory inputs, resulting
in sensory overload and attentional interruptions [70]–[72].

• Mismatch negativity: Mismatch Negativity (MMN) is an auditory event-related
potential that reveals the brain’s capacity to recognise and interpret changes in
auditory input. SZ patients have been found to have decreased MMN amplitude,
which is a sign of impaired automatic auditory processing and sensory discrimination
[73]–[75].

• Connectivity and synchronisation: SZ patients show different functional connec-
tions between different brain areas, according to EEG connectivity research. These
alterations in connection may underpin the disorder’s disturbed integration of in-
formation across multiple brain regions, contributing to cognitive and perceptual
impairments [76]–[78].

While the findings of EEG analysis in SZ give useful information, they represent only
one part of a complex condition. The underlying causes of SZ are likely caused by a mix
of neurological, environmental, and genetic factors. Our comprehension of these aspects
is helped by EEG research, but further studies are required to completely understand how
EEG patterns relate to the many symptoms and cognitive deficiencies associated with SZ.

In the next section, we will introduce the different automated EEG signal analysis
techniques used by the researchers for different neurological disorder detection.

2.4 Automated EEG analysis

In general, expert clinicians visually analyse the EEG recordings to look for abnormalities
in the signal data and identify the disorder. Due to the non-stationary and complex nature
of the EEG signal, this process of visual analysis is expensive, error-prone, time-consuming,
tiresome, subjective, and has some reliability issues due to the overlapping characteristics
of the disorders [22], [79], [80]. Additionally, EEG analysis is essential for all brain-related
neurosurgeries as well as helping with the diagnosis and treatment of brain diseases. The
neurologist will effectively diagnose a greater number of patients if the time and cost of
the EEG analysis process are reduced by automated analysis technologies.

2.4.1 Methods for analysing EEG signals

EEG analysis methods can be classified into three categories based on the analysis domain:
time domain analysis, frequency domain analysis, and time-frequency domain analysis. A
detailed discussion of those analysis methods is given in the following subsections:
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2.4.1.1 Time domain analysis

EEG time-domain analysis focuses on assessing the features and patterns of EEG signals
in their original state without transforming them into frequency or other domains. The
temporal features of brain activity can be better understood by this kind of investigation.
Some commonly used time-domain analysis techniques are given below [81]–[84]:

• Amplitude analysis is a measurement of the deviation of EEG signals from the
mean value, commonly given as the difference between the maximum and minimum
deviation (i.e., peak-to-peak) or in rectified EEG from baseline-to-peak. It is often
measured in microvolts (µV). This can reveal details about the level of brain activity
as well as any potential anomalies.

• Statistical measures of EEG data are used to quantify various aspects of the
brain’s electrical activity. Some commonly used statistical measures are mean, me-
dian, standard deviation, variance, skewness, percentile values, entropy measures,
power spectral density, kurtosis, etc. These statistics are essential for comprehend-
ing the properties of EEG signals, spotting anomalies, monitoring changes over time,
and researching the functional connections and dynamics of the brain.

• Event-Related potential (ERP) analysis involves averaging EEG responses that
are time-locked to certain triggers, events, or stimuli. This investigation reveals the
typical brain activity linked to cognitive functions such as sensory perception, paying
attention, and making decisions.

• Burst detection identifies EEG bursts, which are short bursts of oscillations with a
high frequency and amplitude. For analysing certain brain states and developmental
changes in EEG patterns, burst detection is especially helpful.

• Spike and sharp wave detection finds sudden, abrupt spikes or waveforms in the
EEG data that may represent aberrant brain activity, including epileptic discharges.

• Signal complexity measures uses metrics like approximate entropy or sample
entropy to quantify the complexity of EEG signals. These measurements can shed
light on whether brain activity is random or predictable.

In the early stages of processing and analysing EEG signals, time-domain analysis
is frequently employed. It assists researchers in identifying remarkable characteristics,
anomalies, and patterns in raw EEG data, which may then be used to lead further ex-
ploration with frequency-domain, time-frequency, or other advanced analytic approaches.
However, time-domain analysis has some advantages and disadvantages as follows:

Advantages: Time-domain analysis of EEG data offers a direct view of brain activity
dynamics. It tracks changes in electrical potentials over time, aiding in understand-
ing neural event timing and sequencing. Moreover, this analysis is often easier to



Chapter 2. Background 30

interpret and visualise as it deals with raw signal values over time. It uses less com-
putationally demanding techniques like amplitude measurements or basic statistical
analysis. It is especially useful for studying event-related potentials, providing high
temporal precision in studying brain responses to specific events or stimuli.

Disadvantages: However, time-domain analysis lacks detailed frequency information in
EEG signals, potentially missing crucial frequency-related characteristics. Addi-
tionally, it can be challenging to separate meaningful signals from noise, impacting
accuracy. Also, detecting complex interactions between different frequency compo-
nents or phase relationships might be harder. The analysis quality heavily depends
on the quality of the recorded EEG signals, and issues like poor electrode contact
could distort interpretations.

2.4.1.2 Frequency domain analysis

The distribution of frequencies contained in the EEG signal is examined during a frequency-
domain analysis of the EEG. This analysis offers insights into the spectral content of brain
activity and assists in identifying dominant frequency components linked to various cog-
nitive processes and brain states.

• Power spectral density (PSD) analysis uses methods like the Fourier Trans-
form to determine the EEG signal’s strength in various frequency bands (such as
delta, theta, alpha, beta, and gamma). The energy distribution across frequencies is
displayed using a PSD analysis, indicating the frequencies that are most important
to the signal [81], [83], [84].

• Relative power analysis expresses each frequency band’s power in terms of the
overall power across all frequency bands. This study reveals the relative prominence
of various frequency components.

• Peak frequency analysis reveals the frequency where the EEG signal is most
powerful. Peak frequencies can be connected to various mental states and cognitive
functions.

• Coherence analysis investigates the level of synchronisation between EEG signals
captured from various electrode pairings. Information on the functional connection
between different brain areas is available via coherence analysis.

• Spectral entropy analysis determines how unpredictable or complicated the fre-
quency distribution of the EEG signal is. Spectral entropy can shed light on potential
modifications to cognitive processes as well as changes in brain dynamics.

Frequency-domain analysis is valuable for studying brain states, cognition, and EEG
signal abnormalities. It helps researchers understand frequency distribution and how brain
regions function and communicate. Frequency-domain analysis also has some advantages
and disadvantages as follows:
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Advantages: Frequency-domain analysis of EEG signals identifies specific frequency bands
linked to different brain activities. It helps understand brain states and functions,
identify oscillatory patterns and rhythms crucial for studying cognitive processes
and neurological conditions. Different frequency bands correspond to different brain
states, like alpha waves during relaxation. This analysis characterizes and quanti-
fies different brain states as different frequency bands correspond to different brain
states. Frequency-based filtering techniques improve signal quality by removing noise
or artifacts.

Disadvantages: Frequency-domain analysis transforms time domain signals into fre-
quency domain, possibly losing some temporal details. It requires understanding
of frequency bands and their implications, and the interpretation can be complex.
The choice of parameters like window size and frequency bands can greatly affect
the results. Despite aiding in noise removal, artifacts or non-brain signals might still
interfere with frequency-specific interpretations.

2.4.1.3 Time-Frequency domain analysis

EEG time-frequency domain analysis combines frequency and time information to show
how the spectral content of EEG signals varies over time. The complex nature of brain
activities that take place across a range of time scales may not be fully captured by con-
ventional time-domain or frequency-domain analysis alone. By demonstrating how various
frequency components change over time and providing insights into short-term cognitive
processes and their frequency features, time-frequency analysis fills in this gap. By us-
ing techniques like sliding windows, time-frequency analysis is used to identify changes in
frequency content over shorter time intervals. The most commonly used methods include
[81], [84], [85].:

• Short-Time Fourier transform (STFT) breaks down an EEG signal into smaller
segments (windows) and computes the Fourier Transform for each segment. This re-
veals the frequency components present in the signal at different time points. STFT
provides a valuable insight into the temporal dynamics of EEG signals by showing
how frequency components evolve over time. However, its fixed window length limits
its ability to capture both high- and low-frequency changes simultaneously.

• Wavelet transform is a powerful time-frequency analysis technique used in EEG
signal processing to capture frequency changes over time more effectively compared
to methods like the STFT. An EEG signal is divided into a number of wavelet
functions with various scales (frequencies), and the wavelet transform evaluates how
well these functions match the signal at various time points. Compared to fixed-size
windows in STFT, it offers higher versatility to catch localised frequency fluctuations.

• Continuous wavelet transform (CWT) is a useful technique for studying EEG
signals with varying frequency content over time. It extends the concept of the
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traditional Fourier transform to provide a time-frequency representation of a signal.
It employs wavelet functions that are scaled and shifted to match different frequency
components of the signal at various time points. The CWT is particularly well-suited
for EEG analysis due to its ability to capture localised frequency changes.

In essence, time-frequency domain analysis of EEG extends beyond conventional time
and frequency studies, allowing for a fuller comprehension of how brain activity changes
over time and throughout various frequency ranges. Some advantages and disadvantages
of time-frequency domain analysis are given below:

Advantages: It provides both temporal and frequency information at once, localizing
transient frequency changes over time. This is useful for capturing non-stationary
events in EEG signals, like ERPs or frequency band changes during tasks. It gives a
detailed view of oscillatory dynamics by showing how frequency components change
over time. Techniques like wavelet transforms or spectrograms are effective for signals
where frequency content changes over time.

Disadvantages: Analyzing time-frequency data needs expertise in interpreting joint rep-
resentations. Simultaneously interpreting changes in both domains can be chal-
lenging. The choice of parameters like window size and time-frequency resolution
can greatly affect the results. Balancing high time resolution with frequency res-
olution can be challenging. Artifacts or noise in EEG signals can interfere with
time-frequency representations, potentially affecting the analysis accuracy.

2.4.2 EEG signal classification techniques

In biomedical research, the categorisation of EEG data is crucial in order to diagnose brain
disorders and contribute to a better understanding of cognitive processes. In biomedical
research, the categorisation of EEG data is crucial. An effective classification approach
aids in the differentiation of EEG segments and in the assessment of a person’s health.
Classification is an activity that occurs throughout daily life and simply involves making
judgements based on the information that is currently accessible. In essence, classification
is an algorithmic procedure that divides unclassified sets of observations (the testing class)
into the proper categories based on previously determined observations (the training class).
In the context of pattern recognition and machine learning, classification refers to an
algorithmic process for categorising a given piece of input data into one of a set of categories
[86]–[88]. The categories are referred to as classes, while the input data is technically
referred to as an instance. A vector of features that collectively represent all of the
instance’s known properties serves as its formal description [86]–[88].

Assigning class labels to the characteristics obtained from the observations of a collec-
tion of data on a particular topic is the aim of classification. A classifier is an algorithm
that executes classification, particularly in a practical implementation. The mathematical
function used by a classification algorithm to assign input data to a category is some-
times referred to as a classifier. Training sets enable classifiers to acquire the knowledge
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necessary to determine the class of a feature vector. These sets are made up of feature
vectors that have been tagged with the classes to which they belong. A feature vector is
a reduced-dimensional representation of a pattern’s defining traits. Signal classification
analyses distinct features in a signal to categorise it. This categorisation uncovers insights
about the underlying process that produced the signal [86], [88].

The EEG classification process can be broadly categorised into two groups, primarily
based on their approaches to feature extraction and classification techniques: machine
learning (ML) based classification and deep learning (DL) based classification.

2.4.2.1 Machine learning based classification

ML algorithms rely on manually crafted features and statistical techniques to learn pat-
terns in data. Feature engineering is a crucial step in ML, where domain experts select or
engineer relevant features. In EEG classification using machine learning, the focus is on
extracting relevant features from EEG signals to represent various patterns associated with
different neurological conditions. Feature extraction methods often include time-domain
and frequency-domain analysis, statistical measures, or other signal processing techniques.

A wide range of traditional machine learning and pattern recognition algorithms have
been employed in EEG data analysis. For instance, independent component analysis (ICA)
is a commonly used technique for eliminating artefacts [89]. Principal component anal-
ysis (PCA) and local Fisher’s discriminant analysis (LFDA) are often applied to reduce
the dimensionality of features [79], [89]–[93]. Classic supervised learning methods like
linear discriminant analysis (LDA), support vector machines (SVM), k-Nearest Neigh-
bours (k-NN), Random Forests, Naive Bayes, and decision trees are commonly utilised for
neural classification [79], [90]–[92], [94]–[98]. Additionally, canonical correlation analysis
(CCA) is frequently employed to detect and analyse steady-state visual evoked potentials
(SSVEPs). These methods play essential roles in various aspects of EEG data processing
and classification.

Machine learning models are often interpretable, and feature engineering plays a crucial
role in achieving accurate classifications. ML models are typically less complex than deep
learning models, making them easier to train and deploy in some cases. Additionally, ML
models can often be trained on standard CPUs and may not require specialised hardware.
These approaches may be computationally efficient and require less data compared to
deep learning methods, but their performance may plateau as data volume increases.
Moreover, ML often relies on domain knowledge and human-crafted features, which can
be time-consuming and may limit the model’s performance [99].

2.4.2.2 Deep learning based classification

DL algorithms, specifically artificial neural networks, aim to learn feature representations
directly from raw data. They automatically extract hierarchical features in an end-to-
end manner, reducing the need for extensive feature engineering. Among the DL meth-
ods, Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), are



Chapter 2. Background 34

gaining popularity in EEG classification. DL models can automatically learn hierarchical
features from raw EEG data without extensive manual feature engineering. CNNs excel
at capturing spatial patterns in EEG signals, making them well-suited for image-like data
representations of EEG [79], [90]–[92]. RNNs and its variants, on the other hand, are
valuable for capturing temporal dependencies in EEG sequences, such as those found in
time-series data [100]–[102].

DL models can automatically learn relevant features from raw data, potentially reduc-
ing the need for manual feature engineering. Those models often require large amounts of
labelled data and substantial computational resources for training but have the potential
to achieve high classification accuracy. Deep learning models can be highly complex and
act as "black boxes," making it less interpretable compared to traditional machine learn-
ing models. Deep learning models, especially deep neural networks with many layers, are
highly complex and require substantial computational resources [99].

Researchers choose between these two approaches depending on factors such as the avail-
ability of data, computational resources, interpretability requirements, and the specific
EEG classification problem they aim to solve. Hybrid approaches that combine elements
of both machine learning and deep learning are also explored to harness the strengths of
each methodology [103]–[107].

Again, the classification of EEG signals can be grouped into two main strategies: su-
pervised classification and unsupervised classification. The subsequent section provides a
concise overview of these two approaches for EEG classification.

2.4.2.3 Supervised Classification

The supervised classification approach involves developing a function by assessing the
features present in predefined feature sets, and then that function is used to predict the
class label for a test set [108]–[113]. This process consists of two stages: initially, a
learning model is developed to describe established class categories within a dataset. This
prototype is built based on data sample analysis and pre-existing class labels known as
the training set. In the subsequent stage, the learned prototype is applied to new (test)
data samples to predict their respective class labels. The supervised approach depends on
a set of training data (the training set), which consists of a collection of cases that have
been manually marked with the appropriate output [86], [87], [114]–[117].

In general, supervised classification approaches include training the classifier using
a pre-defined set of training samples, and when new data samples are presented to the
classifier, it will differentiate those new data samples based on the training experience
[114]. In this approach, the training set consists of pairs of data points that can be
mathematically represented as Ts = (x1, y1), (x2, y2), .........., (xn, yn), where x is the real
value feature set, i.e., x ∈ X and y denotes the class label usually represented by real
numbers, i.e., y ∈ Y . The aim of the supervised classification is to find a mapping function
f , which will find the mapping between the feature space (X) and label space (Y ), i.e.
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f : X → Y . If the class label set contains a finite number of elements like y ∈ 1, 2, 3, ....., m

then it is considered a classification task. For example, if the class labels have two classes,
then it is considered a binary classification, with one in the intended class and the other
in the non-intended class [86], [88], [112], [118]–[120].

The removal of outliers from the training data sets is crucial since outliers are the
main cause of mistakes in supervised classification. A data point that deviates from the
entire pattern of the training data is referred to as an outlier. Human error, measurement
mistakes, experimental errors, etc. are the main causes of outliers. The effectiveness
of the classifier can be improved by identifying and removing outliers [121]. Commonly
known supervised classification algorithms are support vector machine (SVM), and linear
discriminant analysis (LDA), decision trees, Naive Bayes (NB), logistic regression (LR),
linear regression, Gaussian process regression, Kalman filters, k-nearest-neighbour (kNN)
algorithms, kernel estimation, neural networks (NN) etc.

2.4.2.4 Unsupervised Classification

The process of unsupervised classification includes classifying data according to some
indicator of innate ability, such as the distance between examples, which can be viewed
as a vector in a multi-dimensional vector space. By assuming that training data has not
been manually labelled, this approach looks for underlying patterns in the data that may
be utilised to identify the right output class label for fresh data instances [86], [87].

In unsupervised classification, the classifier is given data that are both unlabelled and
categorised, and it must predict the class of the testing data without any prior training.
As a result, in unsupervised classification, the classifier cannot learn from a pre-defined
set of training examples [122]. The more difficult tasks that cannot be evaluated using
supervised classification techniques are evaluated using unsupervised classification. The
main goal of unsupervised classification is to categorise complicated data by discovering
its underlying dynamics or distribution.

Some of the commonly known unsupervised classification approaches are K-means clus-
tering, density-based spatial clustering of applications with noise (DBSCAN), hierarchi-
cal clustering, expectation maximisation (EM), generative adversarial network classifiers,
hidden Markov models, categorical mixture models, deep belief netts-based classification,
and blind signal separation-based classification like Kernel Principal Component Analysis
(Kernel PCA), Independent Component Analysis (ICA) etc.

2.5 Existing research works for ASD and SZ detection and
their limitations

In this section, we have discussed several existing studies for ASD and SZ classification
using EEG data, and later, we have identified a few limitations of those studies that we
have tried to address in this dissertation.
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2.5.1 Existing EEG signal classification Methods for ASD detection

As technological advancement grows day by day, computer-aided diagnosis (CAD) has
become a necessary part of the medical industry. Several studies have been carried out to
diagnose ASD using EEG signals.

Sheikhani et al. [123] used a technique called the short-time Fourier transform (STFT)
on EEG signals collected from 19 different channels. The participants consisted of 10 in-
dividuals with ASD, aged between 6 and 11 years, and 7 age-matched control subjects
without ASD. The goal was to analyse the EEG data and determine potential differences
between these two groups. They used variance analysis to evaluate the obtained values.
The results of their analysis highlighted a significant finding: the beta frequency band
(ranging from 14 to 34 Hz) demonstrated a discrimination rate of 82.4% between the two
groups. This indicates that the beta frequency band could potentially serve as a distin-
guishing factor between individuals with ASD and control subjects. Furthermore, they
investigated the coherence values between 112 pairs of the 19 EEG channels. Coherence
represents the degree of connectivity between different brain regions. Their findings re-
vealed abnormal connectivity patterns primarily within the parietal lobe and temporal
lobe. Additionally, they observed anomalies in the connectivity between these lobes and
the central lobe of the brain. This suggests potential disruptions in the communication
and synchronisation between these specific brain regions among individuals with ASD
compared to the control group.

In a later study [124], they harnessed spectrogram and coherence values derived from
quantitative electroencephalography (qEEG) to assess 17 children diagnosed with ASD
and 11 control children, all falling within the age range of 6 to 11 years. Among the
participants, there were 13 boys and 4 girls in the ASD group and 7 boys and 4 girls in the
control group. Through statistical analysis, they evaluated the effectiveness of qEEG in
distinguishing between the two groups. Their findings indicated that the alpha frequency
band exhibited the highest differentiation level, reaching 96.4%, particularly under the re-
laxed, eye-opened condition using spectrogram criteria. Further examination of the qEEG
data revealed notable differences in the ASD group’s left brain hemisphere. Specifically,
they observed significantly lower spectrogram criteria values at specific electrode locations:
F3, T3 (p < 0.01), and FP1, F7, C3, Cz, and T5 (p < 0.05). These observations highlight
distinctive neurophysiological patterns in individuals with ASD compared to the control
group. Regarding connectivity, their analysis encompassed coherence values across 171
pairs of EEG electrodes. Notably, the examination of gamma frequency band (ranging
from 36 to 44 Hz) coherence values revealed a higher occurrence of abnormalities. These
abnormalities were particularly pronounced in the connectivity patterns between the tem-
poral lobes and other brain lobes.

Shams et al. [125] classified autism using EEG through principal component analysis
(PCA) and neural networks in motor movement and open-eyed tasks. They gathered data
from six autistic and six typically developing (TD) children aged 7 to 9, utilising eight
electrodes. EEG data from motor movement and open-eyed tasks were collected separately.
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Data was pre-processed by channel normalisation, downsampling (250 Hz to 83.3 Hz), and
Butterworth band-pass filtering. Averaging smoothed the data, followed by STFT and
PCA to reduce dimensions and enhance feature selection. Multilayer perceptron (MLP)
models were trained for classification. Testing included two protocols: one mixing all data
and dividing it randomly, and another leaving out each subject for testing in turn. In the
first protocol, motor tasks predicted autism with 100% accuracy and TD at 85.3%. For
open-eyed tasks, autism achieved 86% accuracy, and typically developing children 78.9%.
In the second protocol, motor tasks achieved 100% accuracy for autism and 99% for TD.
Open-eyed task accuracy for autism ranged from 40% to 80%, and TD was around 90%.
The study highlights that motor tasks are more effective in detecting autistic traits than
open-eyed tasks. Consequently, the authors suggest that future research should emphasise
motor regions for improved prediction accuracy.

Bosl et al. [126] proposed a diagnostic approach to use EEG data as a biomarker
for children at high risk for ASD. They used minimum mean square error (mMSE) for
feature extraction and kNN, NB, and SVM for classification on the extracted features.
They used a dataset of 79 infants (46 at high risk for autism (HRA) and 33 controls)
ranging in age from 6 to 24 months. Resting-state EEG signals were recorded using 64
electrodes while the infant was situated on their mother’s lap in a softly illuminated room.
During this time, a research assistant blew bubbles to capture the infant’s attention. The
modified multiscale entropy method was used to pre-process the raw data. A feature set
of 192 values was produced by calculating the low, high, and mean for each curve in the
mMSE collection. The classification of infants at high risk and those who were healthy
fit together best around 9 months old, with over 90% accuracy. In a later study [127],
they used a data-driven approach for ASD classification in which EEG data from 188
infant (89 low-risk controls (LRC), 99 HRA; ages 3 to 36 months) participants were used.
The EEG signal was decomposed into six subbands using the wavelet transform (WT),
and nine different non-linear features were extracted from each subband. Using SVM for
classification, they achieved a sensitivity and specificity value exceeding 95% at some ages
in distinguishing ASD subjects from LRC subjects.

Ahmadlou et al. [128] proposed a fractality and wavelet-chaos-neural network-based
ASD diagnosis system. To assess the complexity and dynamic changes in the autistic brain,
the concept of fractal dimension is introduced. Specifically, two methods for computing
fractal dimension are explored: Higuchi’s fractal dimension and Katz’s fractal dimension.
Using eye-closed EEG data from 17 subjects (9 ASD aged 6 to 13, 8 TD aged 7 to 13) with
a two-layer radial basis function neural network (RBFNN), they achieved 90% accuracy.
Using the same database in their later study [104] where they used an improved visibility
graph (VG) for fractality investigation-based features named power of scale-freeness of VG
(PSVG). An enhanced probabilistic neural network (EPNN) was used for classification
and got an accuracy of 95.5%. In another study, the same authors used the analysis of
functional connectivity of the brain using fuzzy synchronisation likelihood and diagnosed
ASD based on that [129]. Using EEG data from 18 subjects (9 ASD, 9 TD) with an EPNN
classifier, they obtained 95.5% accuracy.
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In a separate investigation [130], Jamal et al. employed EEG recordings during tasks
involving facial perception. Their aim was to employ discriminative analysis and SVM
to classify ASD. They derived synchronised EEG patterns from 128 electrodes, involving
12 participants with ASD and control subjects. Through leave-one-out cross-validation,
their model exhibited an accuracy of 94.7% in distinguishing between ASD and typical
populations. In another study, Eldridge et al. [131] used variance in time by computing
the sum of signed differences (SSD) and mMSE features from pre-processed signals and
feeding them to three different classifiers named SVM, LR, and NB. On a dataset of 49
children (19 ASD and 30 non-ASD), the highest accuracy of 79% was yielded with the NB
classifier.

In [132], Grossi et al. proposed a complex EEG processing algorithm named MSROM/I-
FAST with seven machine learning algorithms, namely: sine net neural networks (Sn), lo-
gistic regression (LR), sequential minimal optimisation (SMO), kNN, K-contractive map
(K-CM), NB, and random forest (RF), to classify autism. Using 25 subjects’ (15 ASD
(13 males and 2 females between 7 and 14 years of age) and 10 typically developing (TD)
(4 males and 6 females between 7 and 12 years of age) resting state EEG data from 19
electrodes, the highest accuracy of 92.8% was achieved with the RF classifier. In a later
study [133], they used the MS-ROM/I-FAST algorithm again to distinguish ASD EEG
from children diagnosed with other neuropsychiatric disorders (NPD). They achieved an
overall predictive capability in distinguishing ASD from other NPD cases that ranged from
93% to 97.5%. The trained neural network was subsequently applied to fresh data from 10
ASD adolescents, with 9 out of 10 ASD cases being properly identified by the network. In
their new study [134], they used two EEG channels, namely, C3 and C4, to classify ASD
EEG data. They achieved 100% accuracy for the dataset of the first study and 94.95%
for the dataset of the later study.

Abdulhayh et al. [135] utilised EEG intrinsic function pulsation to identify autism pat-
terns. They compared the ASD and TD groups, analysing the statistical features of EEG
signals. Within ages 4 to 13, 10 children with ASD and 10 TD children were chosen. EEG
was recorded using 64 electrodes at 500 Hz during the resting state. After artefact removal
and empirical mode decomposition, intrinsic mode functions were derived. Analysing the
pulsations of these modes revealed stability differences in certain channels for the ASD
and TD groups. Notably, channel 3’s first intrinsic mode showed consistent patterns in
ASD and TD, while typically developing children exhibited randomness. Similar patterns
were observed in specific channels for non-autistic and autistic children. Utilising 3D
mapping, they detected and identified unusual brain activity. This computational method
successfully distinguished abnormal EEG activity in children with ASD from that in their
typically developing peers.

Dejman et al. [136] conducted a study using EEG to analyse the brain network in
autism. They employed transfer entropy and graph theory, studying 12 high-functioning
autistic youths and 19 healthy controls. EEG signals were collected as subjects viewed
human faces in a dark room at 1 kHz. Transfer entropy, measuring information flow be-
tween EEG channels, was computed after pre-processing raw signals to eliminate noise.
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Channels were paired, and transfer entropy between all pairs was calculated, forming a
graph with nodes representing channels and edges denoting connections above a threshold.
Noisy transfer entropy values were filtered out using the shift test. Further computations
were performed on the graph, including the average degree, total clustering coefficient,
average path length, and longest path length of the brain network. A comparison util-
ising independent sample t-tests with permutation highlighted a significant difference in
average degrees between ASD and healthy controls. Healthy controls had notably higher
average degrees, aligning with ASD’s connectivity theory—indicating fewer neural con-
nections and challenging information transfer in the autistic brain. This study suggests
that a lower average degree of effective connectivity could serve as an autism biomarker.
Future research aims to incorporate additional graph parameters, multivariate effective
connectivity measures, and diverse perception tasks during EEG collection.

Heunis et al. [137] used recurrence quantification analysis (RQA) as an ASD biomarker,
systematically considering technical and demographic factors. They applied RQA to
resting-state EEG data, tested linear and nonlinear classifiers, and progressively anal-
ysed subsets of ASD and TD individuals to mitigate confounders. A simulated diagnostic
scenario used a leave-one-subject-out approach. In the age-matched subset (7 ASD and 7
TD children aged 2-6), a nonlinear support vector machine classifier achieved 92.9% ac-
curacy, 100% sensitivity, and 85.7% specificity in distinguishing ASD from TD. However,
potential confounders including age, sex, intellectual ability, training/test segment counts,
and repeatability emerged.

Djemal et al. [103] proposed a CAD system using discrete wavelet transform (DWT),
Shannon entropy (ShanEn), and an artificial neural network (ANN) for ASD diagnosis.
Their study gathered resting state EEG data from 16 channels—10 healthy participants
aged 9 to 16 years and 9 autistic participants aged 10 to 16 years. Independent component
analysis removed eye artefacts, and an elliptic band-pass filter was used for efficient fil-
tering. They generated two datasets: one with overlapping signal segments and the other
with non-overlapping segments. These sets underwent wavelet decomposition and entropy
calculation. Four entropy functions—log energy, threshold, Renyi, and Shannon—were
compared. For classification, they trained two models: one with wavelet statistical values
and the other combining wavelet with entropy functions. They used a three-layer neu-
ral network for classification with 10-fold cross-validation. The highest accuracy of 96%
with a standard deviation was achieved using DWT statistical values. DWT with entropy
functions reached 98.4% accuracy with ShanEn, and other entropies also achieved good
accuracy above 83%. Further analysis optimised the DWT with the ShanEn method. For
segment length, 50 seconds outperformed others within the range of 10 to 180 seconds.
Overlapping windows, yielding about 99.7% accuracy, outperformed non-overlapping seg-
ments.

Alturki et al. [105] used different feature extraction and classification techniques for
the diagnosis of ASD. They used both single-channel and multi-channel EEG data for
analysis. At first, ICA is used to remove artefacts and then segmented and filtered using
an elliptic band-pass filter. Then they decomposed the signal using DWT into delta, theta,
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alpha, beta, and gamma sub-bands. They used logarithmic band power (LgBP), standard
deviation (SD), variance, kurtosis, and ShanEn to extract features from the segmented
decomposed subbands and feed those features to different classifiers, namely: LDA, SVM,
kNN, and ANN. Using a dataset of 19 children (9 ASD, ages 9 to 16 years, and 10 non-
ASD, ages 10 to 16 years), they achieved the highest accuracy of 98.2% using the ShanEn
and ANN classifiers.

In another study, Alotaibi et al. employed phase-based functional brain connectivity
from EEG data within a machine learning framework [138]. They used a dataset of
12 ASD and 12 TD children. Specifically, functional brain connectivity networks were
quantitatively characterised using graph-theoretic parameters derived from three different
approaches based on a standard phase-locking value (PLV). These parameters were used
as features in a machine learning setup. The study achieved an accuracy of 95.8%, 100
sensitivity, and 92% specificity using the trial-averaged PLV approach combined with a
cubic SVM. Furthermore, the research highlighted significant alterations in functional
brain connectivity among ASD children, particularly in the theta frequency band. The
analysis of aggregated graph-theoretic features demonstrated these changes, shedding light
on the differences in brain connectivity patterns between the two groups.

Linear and nonlinear Event-Related Potential (ERP) analysis of EEG signals for ASD
and TD classification was done by Bakheet et al. [139]. They used data from partic-
ipants while they viewed happy, fearful, and neutral facial expressions. To reveal ERP
component activity, they used multivariate empirical mode decomposition (MEMD) to
extract intrinsic mode functions (IMFs). Then nonlinear features (sample entropy (Sam-
pEn)) and standard linear measures (maximum, minimum, and standard deviation) are
extracted from IMFs, evaluated through statistical tests, and used to create input vec-
tors for discriminant analysis (DA), SVM, and kNN classifiers. They achieved the best
classification accuracy of 100% for happy stimulus dataset. They also identified the Sam-
pEn measurements from the alpha and theta bands, along with linear features from the
delta band, as possible biomarkers for disruptions in emotional facial expression (EFE)
processing in ASD children.

Kang et al. [140] used multi-features (entropy, relative power, coherence, and bico-
herence) to distinguish between ASD and TD children. They selected features using the
minimum redundancy maximum correlation algorithm and SVM for classification. Us-
ing a dataset of 96 children (aged from 3 to 6 years) with 48 low-function ASD children
(38 males and 10 females; age: 4.9 ± 1.1 years) and 48 TD children (38 males and 10
females; age: 4.9 ± 1.2 years) and 10-fold cross validation, they achieved an accuracy of
95.67%. Ari et al. [141] introduced an innovative automated technique to detect ASD
using the Douglas-Peucker (DP) algorithm, a sparse coding-based feature mapping, and
deep CNNs. Initially, the DP algorithm reduces the EEG sample count without compro-
mising quality. EEG rhythms are then extracted using the wavelet transform, encoded
using sparse representation, and further processed using the matching pursuit algorithm.
The resulting sparsely coded rhythms are segmented and translated into decimal numbers
to form an image with concatenated histograms. Data augmentation with ELM-based
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autoencoders enriches the dataset. Subsequently, pre-trained deep CNN models classify
ASD and healthy EEG signals. This method achieved a performance of 98.88% accuracy,
100% sensitivity, 96.4% specificity, and a 99.19% F1-score for automated ASD detection.

Aslam et al. [142] conducted in-depth analysis and evaluation of an extensive feature
set to identify optimal features for prediction. This selection process involved utilising
Least Squares Feature Extraction (LSFE) in combination with feature selection algorithms
(FSA). They determined a set of up to eight most relevant channels using various FSA
approaches. Moreover, the study explored the significance of channels and individual
features on a per-subject basis. The study yielded impressive results for emotion prediction
using a linear support vector machine (LSVM) classifier. They used two datasets to
validate their proposed model on ASD classification, and they achieved 100% accuracy for
one dataset and 95.5% for the other. They reported that this algorithm had significantly
lower complexity than the typically used classifiers (i.e., deep neural networks, CNN, NB,
and dynamic graph CNN).

Chawla et al. [143] proposed a framework using the flexible analytic wavelet transform
(FAWT) of the EEG signal for ASD classification. At first, they filtered the signal and
segmented it into durations of 5–20 seconds, then decomposed it into various sub-bands
using FAWT. After that, feature vectors are created by extracting multiscale permutation
entropy values from decomposed sub-bands. They used different classifiers to perform
classification on those extracted features, like kNN, LR, SVM, RF, and CNN, and obtained
the best accuracy of 99.19% using CNN with a segment length of 10 seconds.

2.5.2 Existing EEG signal classification Methods for Schizophrenia De-
tection

Sabeti et al. [144] tried to classify schizophrenic patients and age-matched control par-
ticipants using EEG signals. Data from 20 patients and 20 controls are collected, each
with 20 EEG channels. Features like Shannon entropy, spectral entropy, approximate
entropy, Lempel-Ziv complexity, and Higuchi fractal dimension are extracted. Leave-
one-participant-out cross-validation is used for evaluation with two classifiers, LDA and
Adaboost. Initially, LDA achieves 86% accuracy, and Adaboost reaches 90%. To en-
hance performance, genetic programming is employed to select the most relevant features
and eliminate redundant ones. The refined features are used with LDA and Adaboost,
achieving 89% and 91% accuracy, respectively.

Sabeti et al. [145] compared three different EEG analysis methods: complexity, vari-
ability, and spectral measures for the classification of individuals with schizophrenia and
normal participants. The research involved 15 participants with schizophrenia and 18
age-matched normal individuals. EEG data was recorded from 20 channels for each par-
ticipant. The study extracted various features from the EEG data of each participant, like
spectral entropy (SpEn) and reyni’s entropy (ReEn) from the spectral measures group,
approximate entropy (ApEn) and lempel-ziv complexity (LZC) from the complexity mea-
sures group, and central tendency measure (CTM) from the variability measure. They
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used kNN for distinguishing between the two groups (schizophrenic and normal). Using a
leave-one-participant-out cross-validation approach, they achieved an accuracy of 94%.

Santos et al. presented a CAD system using an optimised methodology over the P3b
wave in order to classify schizophrenia using SVM and neural networks based on the
multilayer perceptron (MLP) [146]. EEG signal of the auditory odd-ball (AOD) task was
recorded from 47 subjects (16 SZ, 31 healthy controls (HC)). They achieved a mean correct
classification rate (CCR) of 93.42%, with 96.73% specificity and 87.27% sensitivity.

An Epsilon-complexity function-based EEG signal classification model was proposed
by Piryatinska et al. [147]. They used their ϵ-complexity of continuous functions to
estimate the ϵ-complexity coefficients of the original signal and its finite differences, and
then used RF and SVM for classification of the extracted features. Using 10-fold cross
validation on a dataset of 84 subjects (45 SZ, 39 HC), they obtained an accuracy of 85.3%
using RF and 81.07% for SVM.

Thilakvathi et al. [148] also utilised the complexity of EEG signals to distinguish
individuals with schizophrenia from normal subjects. The research investigates EEG signal
complexity in both rest and mental activity conditions. The study involves 55 subjects
with schizophrenia and 23 normal subjects, totalling 78 participants. EEG recordings are
obtained during resting states with closed eyes and during mental activity stimulation
using modified odd-ball paradigms. They used ShanEn, spectral entropy, information
entropy, Higuchi’s fractal dimension, Kolmogorov complexity, and approximate entropies
for feature extraction in both conditions. They found that EEG signal complexity tends
to be higher in individuals with schizophrenia compared to the normal group, especially
during different mental states. The study’s highest classification accuracy of 88.5% is
achieved when considering features from both stimulus conditions together. Overall, the
research suggests that assessing EEG signal complexity during mental activity can serve
as a valuable approach for identifying individuals with schizophrenia.

In the research [149], authors created an Automated Diagnostic Tool (ADT) for analysing
EEG signal patterns and classifying them as normal or schizophrenia. The ADT involves
steps like EEG series splitting, non-linear feature extraction, t-test-guided feature selec-
tion, classification, and validation. It was applied to a 19-channel EEG dataset of 28
subjects (14 SZ patients and 14 HC subjects). The raw EEG data was divided into se-
quences of 6250 sample points, producing 1142 features for each class. Non-linear feature
extraction generated 157 features for each EEG pattern, with 14 principal features identi-
fied as significant. Different classification methods were employed, including decision-tree,
LDA, kNN, probabilistic neural network (PNN), and SVM with various kernels. Experi-
mental results indicated that SVM with Radial Basis Function (SVM-RBF) demonstrated
the best performance, achieving an average accuracy of 92.91% on the EEG dataset.

Oh et al. used an eleven-layer convolutional neural system for diagnosis of SZ [150]
using the same dataset as [149]. 14-fold validation for subject-based testing and 10-fold
validation for non-subject-based testing were performed. 98.07% and 81.26% classification
accuracy were found for non-subject-based testing and subject-based testing, respectively.

A Pearson correlation coefficient (PCC)-based EEG signal classification framework was
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reported in [151]. They segmented the signals into a 10-second time frame and then used
PCC to represent the relationships between the channels. After that, they used those
PCC matrices as input for classification in a CNN model. A dataset of 84 subjects (45
SZ, 39 HC) was used to validate the proposed method and achieved an accuracy of 90%.

A random forest-based SZ classifier using the same 28 subjects’ EEG recordings was
proposed in [152]. Data were pre-processed using ICA and Fast Fourier Transformation.
K-fold cross validation with 10 iterations was performed with 75% of the dataset used for
training and 25% for testing. A random forest classifier achieved 96.77% accuracy.

In another piece of research, Shalbaf et al. [106] presented an automated diagnostic
approach using transfer learning and deep CNNs to differentiate between SZ patients and
HCs based on EEG signals. At first, EEG data is transformed into images using the
continuous wavelet transform (CWT), and then Pre-trained CNNs, including AlexNet,
ResNet-18, VGG-19, and Inception-v3, are applied to the EEG images, and their convo-
lutional and pooling layers’ outputs serve as deep features. These features are then used
as input for a SVM classifier. The methodology is tested on EEG signals from 14 SZ
patients and 14 healthy subjects. The best results are achieved by applying the method to
the combination of frontal, central, parietal, and occipital regions using ResNet-18-SVM,
yielding accuracy, sensitivity, and specificity of 98.60%, 99.65%, and 96.92%, respectively.

Aslan et al. [153] used STFT-based 2D time-frequency (T-F) images and deep learning
(DL) for SZ classification. After converting the EEG data to spectrogram images, they
used a DL-based VGG-16 CNN model for the classification of those images. Two different
EEG datasets of 84 subjects (39 HC and 45 SZ) and 28 subjects (14 HC and 14 SZ) were
used to evaluate the proposed model. They achieved an accuracy of 95% and 97.4% for
the datasets, respectively.

Siuly et al. [154] used the empirical mode decomposition (EMD) technique for the
diagnosis of SZ from EEG signals. They decomposed the EEG signal into intrinsic mode
functions (IMFs) by the EMD algorithm, and then twenty-two statistical features were cal-
culated from those IMFs. Then, five significant features were selected using the Kruskal-
Wallis test. Finally, different classifiers were used for classification and achieved an ac-
curacy of 89.59% using an ensemble bagged tree classifier on a database of 81 subjects,
including 49 patients with SZ and 32 HC persons.

In another study, Khare et al. [155] proposed an automated approach for identifying
SZ by combining T-F analysis and CNNs to address the limitations of feature extraction
methods. EEG signals are processed using CWT, STFT, and smoothed pseudo-Wigner-
Ville distribution (SPWVD) methods to generate scalograms, spectrograms, and SPWVD-
based time-frequency representation (TFR) plots, respectively. These 2-D plots are then
used as input for pre-trained AlexNet, VGG16, ResNet50, and a custom CNN model.
The results demonstrate an accuracy of 93.36% with the SPWVD-based TFR and CNN
models. Compared to benchmark networks like AlexNet, ResNet50, and VGG16, the de-
veloped CNN model, featuring four convolutional layers, not only requires fewer learnable
parameters but also offers computational efficiency and speed.

Sun et al. [156] employed a two-step approach to classify SZ and HC subjects using
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EEG data. In the first step, time and frequency features are extracted and transformed into
red-green-blue (RGB) images that encode spatial information. The second step involves
creating hybrid deep neural networks (DNNs) by combining CNN and LSTM to analyse
RGB images for classification. The findings highlight the significance of the fuzzy entropy
(FuzzyEn) feature over the FFT feature in capturing brain topography. The proposed DL
method was evaluated using a dataset of 109 subjects (54 SZ, 55 HC) and achieved an
average accuracy of 99.22% using FuzzyEn and an average accuracy of 96.34% using FFT
for classification.

Shoeibi et al. [157] developed a DL-based SZ classification framework using EEG signal
data. At first, they segmented the signal into a 25-second time frame and then normalised
it by z-score and norm L2 methods. They used both ML and DL for classification. ML-
based methods include kNN, DT, SVM, NB, bagging, RF, and Extremely Randomised
Trees (ERT), while DL-based models include 1D-CNN, long-short term memory (LSTM),
and 1D-CNN-LSTM. Using a dataset of 28 subjects (14 HC and 14 SZ) with five-fold cross
validation, they achieved an accuracy of 99.25% using the CNN-LSTM model.

Akbari et al. [158] introduced a new framework for automated diagnosis of SZ using
phase space dynamics (PSD) of EEG signals. They plotted the two-dimensional PSD of
EEG signals in Cartesian space and extracted fifteen graphical features to assess chaotic
behaviour and distinguish healthy individuals from those with SZ. The forward selection
algorithm (FSA) was utilised to identify significant features and optimal channels. Eight
different classifiers are then evaluated for SZ detection, with kNN and generalised re-
gression neural network (GRNN) demonstrating superior performance. Through 10-fold
cross-validation, the kNN classifier with city-block distance achieves an average classifica-
tion accuracy of 94.80% on a dataset of 28 subjects (14 SZ and 14 HC).

A cyclic group of prime order with a modulo 17 operator was used by Aydemir et
al. [159]. They presented a feature extractor named cyclic group of prime order pattern
(CGP17Pat) to create a new multilevel feature extraction model. Iterative neighbourhood
component analysis (INCA) was used for feature selection, and kNN was used for classifica-
tion. They used a dataset of 28 subjects (14 HC and 14 SZ) with ten-fold cross-validation
and leave-one-subject-out (LOSO) validation. The proposed model obtained an accuracy
of 99.91% for 10-fold and 84.33% for LOSO validation. WeiKoh et al. [160] proposed
a CAD system for SZ using EEG signal data. They transformed the EEG signals into
images through spectrogram analysis. Subsequently, local configuration pattern features
are extracted from these images. A 10-fold validation approach is employed, incorporating
Student’s t-test and z-score standardisation for each fold. The kNN classifier yielded the
highest accuracy of 97.20% for a dataset of 28 subjects (14 SZ and 14 HC).

A local descriptor-based SZ detection framework was presented in [161]. The authors
extracted features from the EEG data using both a histogram of local variance (HLV)
and a symmetrically weighted-local binary patterns (SLBP)-based histogram, and then a
correlation-based feature selection algorithm was used to reduce the length of the feature
vector. Finally, the AdaBoost classifier was used for classification. They validated their
proposed model using two datasets of 84 subjects (45 SZ and 39 HC) and 28 subjects (14
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SZ and 14 HC). The proposed method achieved an accuracy of 92.85% and 99.36% for the
tested datasets, respectively.

2.5.3 Limitations of the existing studies

Although the above-mentioned methods have achieved different levels of success in cer-
tain cases, they are limited in their robustness and generalisation. This is because it is
sometimes very difficult to obtain representative features from EEG signals using existing
techniques due to their non-stationarity and presence of noise. Again, the classification
approaches mentioned above used a feature engineering approach to craft features from
raw EEG data for classification, which requires experts with comprehensive knowledge
of the target feature domain. On the other hand, DL-based classification approaches are
getting popular among researchers due to their ability to learn features from raw data
automatically and also perform classification using those features in an automatic process,
which provides better performance in most cases with large-scale data like EEG.

Another noteworthy concern pertains to the prevailing trend in research, where the
majority of studies focus on constructing classification frameworks specifically tailored to
address a single neurological disorder, such as ASD or SZ, among others. This practice
results in the creation of individualised systems for each disorder, which can be time-
consuming and resource-intensive. In light of this, there is a practical need for a more
efficient approach that offers a unified solution capable of classifying multiple neurological
disorders. By adopting such a unified system, clinicians would stand to benefit from
increased cost-effectiveness and convenience, allowing them to streamline their diagnostic
processes across various neurological conditions using a single platform. This shift towards
a more versatile and comprehensive approach could greatly enhance the overall diagnostic
workflow and resource utilisation in the medical field.

Another significant observation is that many studies tend to validate their developed
methods using a single dataset specific to the disorder for which the system was designed.
This approach raises concerns about the generalisability of these methods. In other words,
it becomes uncertain whether the methods that have shown success on a particular dataset
of a given disease would also be effective when applied to different datasets of the same
disorder or datasets belonging to entirely different diseases. This lack of cross-dataset
validation introduces challenges in determining the robustness and applicability of these
methods across varying scenarios and conditions.

Furthermore, it’s important to note the absence of a computer-aided diagnosis (CAD)
system that can assist clinicians in their diagnostic procedures. Despite the numerous
methods that have been devised for classifying various neurological disorders, only a lim-
ited number of these methods have been successfully translated into practical CAD systems
that can be utilised for real-life diagnostic purposes.
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2.6 Summary

This chapter offers an overview of EEG signal classification while providing essential back-
ground knowledge related to EEG. The initial focus includes an outline of the human brain,
the fundamentals of EEG, the impact of ASD and SZ on EEGs, and the EEG measurement
techniques from the head surface locations. The next section of the chapter focuses on the
categorisation of EEG data, revisiting the techniques used in earlier research to identify
ASD and SZ in EEG signals. According to the literature study, current techniques have
their limits, making the creation of new classification algorithms necessary to guarantee
accurate neurological disorder diagnosis and treatment.

In the next chapter, we will introduce an ASD classification framework using T-F
spectrogram images of EEG signals with both ML and DL-based classification techniques.
This framework is the first to use the spectrogram image for ASD EEG data classification.
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Chapter 3

Spectrogram Image Based Autism
Spectrum Disorder Classification

Autism spectrum disorder (ASD) is a developmental condition characterised by persistent
challenges in social interaction, speech, nonverbal communication, and the presence of
restricted or repetitive behaviours. This chapter introduces an efficient diagnostic frame-
work for ASD, centred on the utilisation of time-frequency spectrogram images derived
from EEG signals. This method aims to address the first research problem (RP1) regard-
ing ASD classification.

In this proposed system, we have utilised short-time Fourier transform (STFT) to con-
vert pre-processed EEG signals into two-dimensional spectrogram images. Subsequently,
these images undergo classification using both machine learning (ML) and deep learning
(DL) techniques. In the ML approach, we have extracted textural features, selected sig-
nificant features via principal component analysis (PCA), and then input those into six
distinct ML-based classifiers for the classification task. The performance of these models is
then evaluated. In the DL-based approach, we have developed three different convolutional
neural network (CNN) models and assessed their performance in classifying spectrogram
images.

The contents of this chapter have been published in the Plos One (Publication 2) [90]
and also in the Electronics Letters (Publication 1) [79].

3.1 Introduction

Autism spectrum disorder (ASD) comprises a group of intricate neurological developmen-
tal conditions, including autism, childhood disintegrative disorder, Asperger’s syndrome,
and an unspecified form of pervasive developmental disorder [6]. The spectrum of ASD
symptoms varies widely in terms of range and severity, often encompassing challenges in
social communication and interactions, intense fixations, reduced eye contact, and the
presence of restricted or repetitive behaviours. ASD typically emerges in early childhood,
with onset occurring primarily within the first five years of life, persisting throughout an
individual’s lifetime [7]. According to the World Health Organisation (WHO), globally,
approximately one in 160 children is diagnosed with ASD, as reported in [7]. In Australia,
the prevalence of autism increases by approximately 40%, transitioning from one in 100



Chapter 3. Spectrogram Image Based Autism Spectrum Disorder Classification 52

individuals to approximately one in 70 individuals falling within the autism spectrum [9].
In the United States, the Centers for Disease Control and Prevention (CDC) reported that
in 2020, roughly one in 54 children received a diagnosis of ASD [10].

ASDs can significantly impede an individual’s capacity to engage in daily activities and
participate in social interactions. They often exert adverse effects on a person’s educational
and social accomplishments, employment opportunities, ability to carry out daily routines,
and integration into society [7]. Regrettably, individuals with ASD frequently encounter
instances of mistreatment, discrimination, and violations of their human rights on a global
scale [7]. To date, there is no known cure for ASD; however, early intervention has the
potential to enhance brain development and improve learning, communication, and social
skills. To achieve this, the development of an effective, efficient, and highly accurate
diagnostic system for ASD is imperative.

The human brain, boasting approximately 86 billion neurons, is widely acknowledged
as the most intricate biological system known to science. This awe-inspiring organ gov-
erns our thoughts, perceptions, memories, emotions, and actions. The functional state
of the brain represents a vast reservoir of data and serves as the primary source of in-
formation for diagnosing neurological disorders. Consequently, it stands as a pivotal and
expansive area of exploration within the realm of biomedical science. Various methodolo-
gies exist for capturing the functional dynamics of the brain, including positron emission
tomography (PET), magnetic resonance imaging (MRI), functional magnetic resonance
imaging (fMRI), electrocorticography (ECoG), and electroencephalography (EEG) [22],
[162], [163].

Among these techniques, EEG stands out as a favoured choice due to its exceptional
temporal resolution, user-friendliness, non-invasiveness, cost-effectiveness, and widespread
availability for clinicians [18]. Neurons utilise electrical impulses within different frequency
bands for their communication, which are recorded in EEG via electrodes affixed to the
scalp. This process generates copious volumes of multi-channel EEG signals that neurol-
ogists traditionally rely on for visual interpretation to identify and diagnose neurological
disorders [88]. However, visual inspection suffers from limitations, including the absence
of standardised assessment criteria, rendering it an imperfect evaluation method. It is also
characterised by being time-consuming, susceptible to errors, resource-intensive, subjec-
tive, human-error-prone, and afflicted with reliability challenges [19].

As technological advancements continue to progress, computer-aided diagnosis (CAD)
has become an integral component of the medical field. Numerous studies have been
conducted to diagnose autism spectrum disorder (ASD) utilizing EEG signals. These
studies can be broadly categorised into two groups based on their feature extraction and
classification techniques.

The first approach, known as the machine learning (ML) technique, involves the extrac-
tion of various time-frequency-based features from EEG signals. These extracted features
are subsequently employed in ASD classification through diverse ML-based classification
techniques. The success of ML-based classification relies heavily on the identification of
significant features within EEG signals. Several researchers have adopted this approach
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to address ASD classification challenges. For instance, Sheikhani et al. [123] utilised the
short-term Fourier transform (STFT) for feature extraction and the k-nearest neighbour
(kNN) algorithm, achieving an accuracy of 82.4% with a dataset comprising 17 subjects
(10 ASD and 7 control). In a subsequent study [124], they again utilised STFT, com-
bined with statistical analysis and kNN, achieving an accuracy of 96.4% on a dataset of
28 subjects (17 ASD, 11 control). Bosl et al. [126] introduced a diagnostic approach util-
ising EEG data as a biomarker for high-risk ASD children. They extracted features using
minimum mean square error (mMSE) and employed kNN, naive Bayes (NB), and support
vector machine (SVM) classifiers, achieving classification accuracies exceeding 90% with
a dataset of 79 infants (46 high-risk for autism (HRA), 33 controls) aged 6 to 24 months.
In a subsequent study [127], they employed a data-driven approach for ASD classification
using EEG data from 188 infant participants (89 low-risk controls (LRC), 99 HRA) aged
3 to 36 months. The EEG signal underwent wavelet transform (WT) decomposition into
six subbands, and nine different non-linear features were extracted from each subband.
Employing leave-one-out cross-validation, they assessed these features as inputs to SVM,
achieving sensitivity and specificity values exceeding 95% at various ages in distinguishing
ASD subjects from LRC subjects.

Eldridge et al. [131] leveraged variance in time, computing the sum of signed differences
(SSD) and mMSE features from pre-processed signals, and employed various classifiers.
They achieved the highest accuracy of 79% with the NB classifier on a dataset of 49 children
(19 ASD and 30 non-ASD). In another study by Grossi et al. [132], a complex algorithm
named MSROM/I-FAST was introduced for EEG processing, along with seven machine
learning algorithms, including random forest (RF), logistic regression (LR), and k-nearest
neighbour (kNN), to classify autism. Using resting-state EEG data from 25 subjects (15
ASD and 10 typically developing (TD)), they achieved the highest accuracy of 92.8% with
the RF classifier. Heunis et al. [137] employed recurrence quantification analysis (RQA) for
feature extraction from resting-state EEG of 14 children (7 ASD and 7 TD), subsequently
applying an SVM classifier to achieve a high accuracy of 92.9% using leave-one-subject-out
validation. Haputhanthri et al. [164] developed a decision support system (DSS) named
ASDGenus for ASD diagnosis using EEG data from 15 participants (10 ASD, 5 control).
They combined statistical features, such as mean and standard deviation, before and after
discrete wavelet transform (DWT) for each channel. Correlation-based feature selection
(CFS) was employed for significant feature selection, and four classifiers (LR, SVM, NB,
and RF) were applied, with the highest accuracy reaching 93% using the RF classifier. In a
later extension [165], they incorporated Shannon entropy for EEG data feature extraction
and integrated thermogram face image data from 17 participants (8 ASD, 9 control). This
achieved an accuracy of 88% using only EEG data with the RF classifier and 94% accuracy
using both EEG and thermogram image data with LR and MLP classifiers. In a recent
study [166], Abdolzadegan et al. extracted linear and nonlinear data from EEG data of 45
subjects (34 ASD, 11 non-ASD), applying various feature selection techniques and SVM
and kNN classifiers. They achieved an accuracy of 90.57% and 72.77%, respectively. These
ML-based classification approaches involve the creation of features from raw EEG data
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using feature engineering methods, requiring expertise in the target feature domain [167].
Recently, deep learning (DL)-based classification approaches have gained popularity

among researchers due to their capacity to automatically learn features from raw data and
perform classification in an automated manner [167]. Ahmadlou et al. [128] introduced an
ASD diagnosis system based on fractality and a wavelet-chaos-neural network combina-
tion. They introduced the concept of utilising fractal dimensions (FDs), which represent
the complexity and self-similarity of a signal, as features. Using EEG data recorded with
eyes closed from 17 subjects (9 ASD, 8 typically developing (TD)), they achieved an ac-
curacy of 90% with a two-layer radial basis function neural network (RBFNN). In their
subsequent study [104], they improved the visibility graph (VG) for fractality assessment
and introduced features known as the power of scale-freeness of VG (PSVG). They em-
ployed an enhanced probabilistic neural network (EPNN) for classification and achieved
an accuracy of 95.5% on the same dataset.

In another study, the same authors explored functional connectivity analysis of the
brain using fuzzy synchronisation likelihood-based ASD diagnosis [129]. Using EEG data
from 18 subjects (9 ASD, 9 TD), they utilised an EPNN classifier, obtaining an accu-
racy of 95.5%. Djemal et al. [103] introduced an ASD diagnosis system utilising discrete
wavelet transform (DWT), Shannon entropy (ShanEn), and an artificial neural network
(ANN). They employed a two-layer ANN with ten-fold cross-validation on an EEG dataset
comprising 19 subjects (9 ASD and 10 non-ASD). Data were segmented into 50-second
segments using two different overlapping techniques. With half-overlapping segmentation,
they achieved an impressive classification accuracy of 99.7%, and without any overlap-
ping in segmentation, they achieved an accuracy of 98.6%. Alturki et al. [105] also
used 50-second segmentation and decomposed the signal into subbands using DWT. They
extracted features, including logarithmic band power (LgBP), standard deviation (SD),
variance, kurtosis, and ShanEn, from the segmented decomposed subbands. These fea-
tures were then fed into different classifiers: linear discriminant analysis (LDA), SVM,
kNN, and ANN. Using a dataset of 19 children (9 ASD and 10 non-ASD), they achieved
the highest accuracy of 98.2% with the combination of ShanEn and ANN classifiers.

DL-based classification approaches offer the advantage of not requiring domain-specific
experts for feature extraction from raw data. DL methods perform both feature extraction
and classification automatically, typically yielding superior results compared to ML-based
classification processes. However, they are often regarded as black-box models for users
[153]. In some cases, researchers use engineered features as inputs for DL models instead
of employing raw EEG data on a large scale. This approach can reduce computation time
and allow the model to be trained on essential features [103]–[105], [128], [129].

While some state-of-the-art techniques have shown promising results in specific sce-
narios, their robustness and ability to generalise are often constrained. This limitation
stems from the difficulty of extracting representative features from EEG signals using ex-
isting methods, primarily due to the non-stationary characteristics of EEG signals and the
presence of noise. None of the previous approaches have explored the concept of utilising
two-dimensional (2D) time-frequency images to describe EEG data, a perspective that
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could potentially reveal exceptional features from diverse angles.
In this chapter, we have introduced a novel approach based on 2D EEG spectrogram

images, employing both ML and DL-based techniques for the automatic detection of ASD.
These 2D time-frequency (T-F) spectrogram images serve as representations of the non-
stationary nature of EEG signals and are subsequently analysed through separate ML and
DL processes. Spectrogram images, in the T-F domain, provide a visual representation of
EEG signals, where the frequency band evolves over time, and various colours within the
image correspond to different energy levels in the EEG signal [168]. While previous stud-
ies have explored the use of T-F-based images for classifying neurological disorders such
as epilepsy [19], epileptic seizures [169], clinical brain death diagnosis [168], schizophrenia
[153], and sleep stage classification [170], this approach has not been applied to ASD clas-
sification before. In this chapter, we have proposed a T-F image-based method for ASD
classification, employing both ML and DL techniques.

For ML-based classification, we have employed tCENTRIST for feature extraction
from spectrogram images due to its computational simplicity and superior performance.
The extracted features are then classified using six different classifiers: Naïve Bayes (NB),
Linear Discriminant Analysis (LDA), Random Forest (RF), k-Nearest Neighbours (k-NN),
Logistic Regression (LR), and Support Vector Machine (SVM). We have employed ten-fold
cross-validation to assess the performance of the ML-based classification methods.

In the DL-based approach, we have utilised three distinct Convolutional Neural Net-
work (CNN) models to classify the spectrogram images. The dataset is splited into three
subsets for training (70%), validation (15%), and testing (15%) the models. Obtained
results are compared with existing literature that utilises the same dataset for ASD clas-
sification.

The major contributions of this study are listed below:

1. For the first time, time-frequency spectrogram image-based EEG signal representa-
tion technique is used for ASD classification.

2. performed classification using both ML and DL-based classification with different
classifiers.

3. Design and validate a new efficient and automatic CNN-based framework for spec-
trogram image classification.

4. Explore the framework’s performance with a publicly available dataset and outper-
formed the existing studies.

3.2 Methodology

In this research, we have presented an ASD classification method utilising spectrogram
images derived from EEG signals. Figure 3.1 offers an overview of the proposed framework,
which can be broken down into three components: pre-processing and spectrogram image
generation, machine learning-based classification, and deep learning-based classification.
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Figure 3.1: An overview of the proposed classification framework.

3.2.1 Pre-processing and spectrogram image generation

In this section, the raw EEG data undergoes a pre-processing phase to eliminate arte-
facts. This process involves re-referencing, filtering, and normalisation techniques. To
re-reference the data, the Common Average Referencing (CAR) method is applied, which
uses the average value of all electrode channels as the reference. Next, an Infinite Im-
pulse Response (IIR) filter is employed to perform a low-pass filtering operation with a
cutoff frequency of 40 Hz. Following the filtering step, the signals from each electrode are
normalised to fall within the [-1, 1] range.

The pre-processed signals are then segmented into 3.5-second window frames for each
subject in the dataset. Subsequently, the STFT is applied to each of these segments,
resulting in the generation of spectrogram plots. These spectrogram images are saved as
image files and serve as input data for both the ML and DL-based classification methods.

3.2.2 Machine learning based process

The process of ML-based classification involves three distinct stages: feature extraction,
dimension reduction, and classification. To extract meaningful features from spectrogram
images, we employ the ternary CENTRIST (tCENTRIST) method, which is based on
the fusion of Local Ternary Pattern (LTP) and CENsus TRanformed hISTogram (CEN-
TRIST) techniques initially introduced by Dey et al. [171]. Ternary CENTRIST (tCEN-
TRIST) combines LTP in place of the Linear Binary Pattern (LBP) found in CENTRIST
[172]. This innovative tCENTRIST approach has demonstrated superior performance in
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tasks such as garment texture classification [171] and gender classification from facial
images [173]. Moreover, it maintains computational simplicity.

The feature extraction process leverages the Spatial Pyramid Matching (SPM) scheme,
dividing images into subregions. Within each of these subregions, LTP-based histograms
are generated and concatenated to form a single comprehensive histogram representing
the image’s features. To manage the high dimensionality of these features, Principal
Component Analysis (PCA) is employed to reduce their dimensionality. Consequently,
the reduced feature set becomes the input for various ML-based classifiers.

For classification, six distinct classifiers are applied: NB, LDA with pseudolinear dis-
criminant analysis characteristics, RF, k-NN with a neighbor number set to nine (k=9),
LR, and SVM with a linear kernel (used LibSVM [174]).

3.2.3 Deep learning based process

For the purpose of DL-based classification, the CNN architecture is selected as it is
renowned for its effectiveness in addressing image-related challenges [175], [176]. In this
study, three distinct CNN models are employed to assess their performance.

The first model comprises three convolutional blocks, each equipped with a max-
pooling layer. Additionally, a fully connected layer with 512 units, activated by the
rectified linear unit (relu) activation function, is stacked on top of these layers. An il-
lustrative representation of Model 1’s structure is depicted in Figure 3.2.

Figure 3.2: First CNN model.

The second model closely resembles the first, except for the incorporation of a 20%
dropout applied to the final max-pooling layer. The utilisation of dropout entails randomly
deactivating 20% of neurons during each training epoch. Model 2’s architecture is visually
summarised in Figure 3.3.
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Figure 3.3: Second CNN model.

The last CNN model encompasses four consecutive sets of convolutional and max-
pooling layers. Following every pair of convolutional and max-pooling operations, a 25%
dropout is applied. After the final max-pooling layer, a fully connected layer with 256
neurons is introduced, followed by a 50% dropout layer, culminating in a softmax clas-
sification layer designed for handling two classes. A comprehensive layout of Model 3 is
provided in Figure 3.4.

Figure 3.4: Third CNN model.

3.3 Performance evaluation

This section begins by providing a comprehensive overview of the dataset used in this
experiment, along with a detailed description of the pre-processing techniques applied
to it. Following this, we delve into the discussion of performance metrics, including the
relevant equations used to assess the effectiveness of the proposed system.
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3.3.1 Dataset

The proposed method is assessed using a dataset obtained from King Abdulaziz University
(KAU) Hospital, Jeddah, Saudi Arabia, as detailed in [177]. This dataset is publicly
accessible via the following link: https://malhaddad.kau.edu.sa/Pages-BCI-Datasets.aspx.
To protect the anonymity of participants, no personally identifiable information about the
subjects has been disclosed.

The dataset consists of sixteen subjects, comprising twelve individuals from the ASD
group (comprising 3 girls and 9 boys, aged between 6 and 20) and four participants from
the control group (all boys, aged between 9 and 13), all of whom have no previous history
of neurological disorders. EEG signals from these subjects were recorded using Ag/AgCl
electrodes, a g.tec EEG cap, g.tec USB amplifiers, and the BCI2000 software. The record-
ings were conducted while the subjects were in a relaxed state to ensure the acquisition
of EEG data free from artefacts. The data were recorded across 16 channels, adhering to
the international 10-20 system, as illustrated in Figure 3.5, with the right ear lobe serving
as the reference (REF) and AFz as the ground (GND). During the recording process, a
band-pass filter with a pass frequency range of 0.1 to 60 Hz was employed, along with a
notch filter set at a pass frequency of 60 Hz, to effectively filter the dataset and eliminate
unwanted noise. Finally, all EEG signals were digitised at a sampling rate of 256 Hz.

Figure 3.5: Electrode placement to collect the EEG data [177].

As per the proposed approach, the data undergoes pre-processing, involving CAR,
IIR filtering, and normalisation. Subsequently, the processed signals are divided into 3.5-
second time intervals to capture precise information. These signal segments are then used
to generate spectrogram plot images through STFT. In total, 4657 images are generated,
comprising 3276 images from individuals with ASD and 1381 images from those without
ASD. Sample spectrogram images produced by the proposed method are illustrated in Fig-
ure 3.6, where Figure 3.6a displays images from the ASD group, and Figure 3.6b showcases
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images from non-ASD subjects. These images serve as input data for the classification
process, employing both ML and DL techniques.

Figure 3.6: Sample spectrogram images generated by the proposed
method: (a) ASD group, (b) non-ASD group

The generation of images and the execution of machine learning-based experiments
take place within the MATLAB (R2020a) environment on a computer equipped with an
Intel Core i5 64-bit processor, running at a clock speed of 1.7 GHz, and boasting 8 GB of
memory. On the other hand, deep learning-based experiments are conducted within the
Google Colab environment [178].

3.3.2 Performance evaluation parameters

The performance evaluation of the proposed framework involves the utilisation of Receiver
Operating Characteristic (ROC) parameters, which include True Positive (TP), True Neg-
ative (TN), False Positive (FP), and False Negative (FN). These parameters are employed
to compute critical performance metrics such as sensitivity, specificity, F1 score, and over-
all accuracy using equations 3.1 through 3.4. Employing these evaluation criteria allows
us to assess the performance characteristics of the classifiers, as discussed in prior studies
[179]–[184].
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Sensitivity(Sen) =
TP

TP + FN
∗ 100 (3.1)

Specificity(Spec) =
TN

TN + FP
∗ 100 (3.2)

Accuracy(Acc) =
TP + TN

TP + FP + TN + FN
∗ 100 (3.3)

F1score(F1) = 2 TP

2 TP + FP + FN
(3.4)

Here,

• TP implies that a spectrogram image from an ASD subject is correctly diagnosed as
being in the ASD class.

• TN implies that a spectrogram image from a HC subject is correctly diagnosed as
being in the HC class.

• FP implies that a spectrogram image from a HC subject is falsely diagnosed as ASD.

• FN implies that a spectrogram image from an ASD subject is falsely diagnosed as
HC.

A ROC graph serves as a valuable means to visualise the classifier’s reliability. This
graph is constructed by plotting sensitivity (true positive rate) along the Y-axis and 1-
specificity (false positive rate) along the X-axis. A common metric for assessing the
effectiveness of binary classifiers is the Area Under the ROC Curve (AUC). The AUC
value adheres to the following inequalities:

0 ≤ AUC ≤ 1 (3.5)

As expressed in equation 3.5, an AUC value of 1 signifies that the classifier possesses
flawless discrimination capabilities. Conversely, a value equal to or below 0.5 suggests that
the classifier lacks any discriminatory capability whatsoever [185].

3.4 Result and discussion

Within this section, we delve into the comprehensive outcomes of the proposed classifica-
tion methods. This exploration is organised into two distinct subsections, each dedicated
to one of the two distinct classification processes: the performance of ML-based classifica-
tion and the performance of DL-based classification.
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3.4.1 Results for machine learning based process

In the case of ML-based classification, the evaluation of the proposed system’s performance
employs the k-fold cross-validation technique. This approach entails the random division
of the dataset into k subsets of equal size. Subsequently, the system is trained using k-1 of
these subsets while testing is conducted using the remaining subset. This process repeats
k times (hence "k-fold"), with each subset serving once as the testing set. In this particular
analysis, we have employed a ten-fold cross-validation strategy, partitioning spectrogram
images into two subsets, with 90% used for training and 10% for testing. This process is
repeated ten times to ensure that each image in the dataset is exactly once part of the
test subset. Finally, the results obtained from the ten-fold iterations are averaged to yield
a comprehensive classification metric.

In the domain of ML-based classification, six distinct classifiers are employed: NB, LDA
utilising pseudolinear discriminant analysis, RF, k-NN with k=9, LR, and SVM utilising
a linear kernel. Table 3.1 presents a comprehensive overview of the overall performance
metrics, encompassing equations 3.1 through 3.5, for the six classifiers mentioned above.
Among these classifiers, the SVM-based approach exhibits the highest overall performance,
achieving an accuracy rate of 95.25%. In contrast, the NB-based method displays the
lowest overall performance, yielding an accuracy rate of 72.09%.

Table 3.1: Overall classification performance of different ML-based clas-
sifiers.

Classifier Sen % Spec % F1 AUC Acc %
NB 66.83 84.67 0.78 0.77 72.09
LDA 91.54 86.26 0.93 0.96 89.97
RF 99.27 70.02 0.94 0.97 90.59
kNN 90.67 96.13 0.94 0.98 92.29
LR 96.99 90.06 0.96 0.98 94.95
SVM 97.07 90.95 0.97 0.98 95.25

When examining sensitivity, the RF classifier claims the top position with the highest
sensitivity rate of 99.27%. The SVM classifier follows closely with the second-highest
sensitivity of 97.07%, while the NB classifier trails behind with a sensitivity rate of 66.83%.
Fold-wise sensitivity results for these different classifiers are illustrated in Figure 3.7.

Conversely, the kNN classifier boasts the highest average specificity value at 96.13%,
followed by the SVM classifier with 90.95%, and the RF classifier in the last position,
registering a specificity rate of 70.02%. Fold-wise specificity outcomes for these diverse
classifiers are showcased in Figure 3.8.

It is noteworthy that although SVM and LR may not rank as the best performers
in terms of individual sensitivity or specificity, they emerge as the top two classifiers
when considering F1 scores and accuracy metrics. This outcome is a result of the RF
classifier, which achieves the highest sensitivity rate (99.27%) but exhibits a notably low
specificity rate (70.02%). Conversely, kNN records the highest specificity rate (96.13%)
but comparatively lower sensitivity (90.67%) in comparison to the others. In contrast,
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Figure 3.7: Fold-wise sensitivity comparison for different ML-based clas-
sifiers.

Figure 3.8: Fold-wise specificity comparison for different ML-based clas-
sifiers.

both SVM and LR maintain a balanced blend of sensitivity and specificity, resulting in
impressive F1 scores of 0.97 and accuracy rates of 95.25% and 94.95%, respectively. The
fold-wise accuracy results for these various classifiers are displayed in Figure 3.9.

To further assess performance, the ROC curves for different classifiers are depicted in
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Figure 3.9: Fold-wise accuracy comparison for different ML-based classi-
fiers.

Figure 3.10, where the curves for kNN, LR, and SVM closely overlap. The AUC serves
as an indicator of classifier performance, with a larger AUC indicating superior classifier
performance. The AUC values for various classifiers are detailed in Table 3.1, with SVM,
LR, and kNN achieving the highest AUC value of 0.98, while NB attains the lowest AUC
score of 0.77. For a more granular view of classifier performance, the fold-wise AUCs for
different classifiers are presented in Figure 3.11.

3.4.2 Results of deep learning based process

As outlined in the methodology section, three distinct CNN models are employed for
the DL-based classification process. In this procedure, the complete image dataset is
partitioned into three segments, allocating 70% of the images for model training, 15%
for validation, and the remaining 15% for testing the trained model. All models undergo
training for a duration of 50 epochs to mitigate the risk of overfitting. A uniform batch
size of 64 is applied for training all models, with additional batch sizes of 32, 128, and 256
employed during the training of the third model to assess the influence of batch size on
the performance of the model. The comprehensive performance metrics for these diverse
models are detailed in Table 3.2.

Table 3.2 clearly illustrates that all DL-based models outperform the ML-based clas-
sifiers. Among them, Model 3 with a batch size of 64 yields the most impressive results,
achieving a remarkable 99.15% accuracy and an exceptional F1 score of 1.00. Models
1 and 2 exhibit commendable sensitivity values; however, due to their relatively lower
specificity, their overall F1 scores and accuracy are inferior in comparison to Model 3.
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Figure 3.10: ROC graph for different ML-based classifiers.

Figure 3.11: Fold-wise AUC value comparison for different ML-based
classifiers.

In the context of the diverse batch sizes employed for Model 3, a batch size of 128
produces the highest sensitivity at 99.60%, while a batch size of 32 yields the highest
specificity at 99.10%. Nevertheless, the overall best performance is achieved by the batch
size of 64. Batch size 256 delivers the second-best overall performance, boasting an accu-
racy rate and F1 score of 99.00% and 0.99, respectively. Batch sizes 128 and 32 occupy
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Table 3.2: Overall classification performance of different tested CNN mod-
els.

Classifier Sen % Spec % F1 AUC Acc %
Model 1 98.80 89.76 0.97 0.94 96.16
Model 2 98.81 88.94 0.97 0.94 96.02
Model 3 (Batch size 32) 97.71 99.10 0.99 0.98 98.15
Model 3 (Batch size 128) 99.60 96.57 0.99 0.98 98.72
Model 3 (Batch size 256) 99.39 98.12 0.99 0.99 99.00
Model 3 (Batch size 64) 99.19 99.04 1.00 0.99 99.15

the third and fourth positions, each achieving accuracy rates of 98.72% and 98.15%, with
identical F1 scores of 0.99. Figure 3.12 depicts the ROC curve for all DL-based models,
while Table 3.2 provides the AUC values, where Model 3, with batch sizes of 64 and 256,
achieves an AUC of nearly 1 (0.99). Model 3, with batch sizes of 32 and 128, attains an
AUC of 0.98, whereas Models 1 and 2 record an AUC of 0.94.

Figure 3.12: ROC graph of different CNN Models with different tested
batch sizes for CNN model 3.

Since Model 3 with a batch size of 64 has demonstrated superior performance among
the three proposed DL models for ASD identification in comparison to TD children, we
offer a detailed examination of the loss versus accuracy graph for this model. Figure 3.13
displays epoch-wise trends of training and validation loss versus accuracy for Model 3 with
a batch size of 64. In this graph, both training and validation accuracy approach 100% as
the losses decrease to nearly zero with the increasing number of epochs. This phenomenon
indicates that the CNN model has effectively adapted to the training data, resulting in
lower loss values on the validation set.
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Figure 3.13: Training and validation loss vs. accuracy graph of third
CNN Model with training batch size of 64.

A comparison between the proposed approach and prior research conducted using the
same ASD dataset employed in this analysis is presented in Table 3.3. Notably, some of
the prior works, such as [177], [186], [187], adopted ML-based classification methods, while
others, including [103], [105], [188], utilised DL techniques for ASD classification.

Table 3.3: Performance comparison of the proposed framework with ex-
isting methods using the same EEG dataset.

Authors Feature extraction Classifier Accuracy %
Alsaggaf et al. [186] FFT FLDA 80.27
Alhaddad et al. [177] FFT FLDA 90.00
Kamel et al. [187] FFT RFLD 92.06
Nur et al. [188] MLPN MLPN 80.00
Djemal et al. [103] DWT, ShanEn ANN 98.60
Alturki et al. [105] DWT, ShanEn ANN 98.20
Proposed Method Spectrogram image CNN 99.15

In the studies conducted by Alsaggaf et al. [186], Kamel et al. [187], and Alhaddad et
al. [177], feature extraction from EEG signals involved employing the Fast Fourier Trans-
form (FFT) method. Kamel et al. utilised Regulated Fisher Linear Discriminant (RFLD)
for classification and achieved an accuracy of 92.06%. Alsaggaf et al. and Alhaddad et al.,
on the other hand, utilised Fisher Linear Discriminant Analysis (FLDA) for classification,
resulting in accuracies of 80.27% and 90.00%, respectively.

In a more recent study, Nur et al. [188] utilised the Multilayer Perceptron Network
(MLPN) classification method and obtained an accuracy of 80%. Djemal et al. [103]
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employed Discrete Wavelet Transform (DWT) with Shannon Entropy (ShanEn) on 50-
second segment lengths in conjunction with an Artificial Neural Network (ANN) classifier,
achieving an accuracy of 98.60% for non-overlapping segments. Similarly, Alturki et al.
[105] used DWT with ShanEn for feature extraction and employed ANN for classification,
attaining an accuracy of 98.20%. The proposed technique, which employs spectrogram
images in conjunction with a CNN classifier, surpasses all the mentioned approaches,
achieving an accuracy of 99.15%.

Table 3.4 offers a comprehensive summary of existing ASD classification studies that
employed different datasets. A detailed discussion of these existing methods can be found
in Section 3.1. Given the variability in datasets used for validation in these studies,
conducting a fair comparison with the proposed method is challenging.

Table 3.4: Performance comparison of the proposed framework with ex-
isting methods using different EEG datasets.

Authors Dataset Feature extraction Classifier Accuracy %
Sheikhani et al., 2008 [123] Own dataset STFT kNN 82.40
Ahmadlou et al., 2010 [128] Iranian dataset Wavelet and fractal dimension RBNN 90.00
Bosl et al., 2011 [126] Own dataset mMSE SVM 90.00
Ahmadlou et al., 2012 [104] Iranian dataset Wavelet and visibility graph EPNN 95.50
Sheikhani et al., 2012 [124] Own dataset STFT and statistical kNN 96.40
Ahmadlou et al., 2012 [129] Iranian dataset Wavelet and fuzzy logic EPNN 95.50
Eldridge et al., 2014 [131] Own dataset SSD, mMSE SVM, LR, NB 79.00

Grossi et al., 2017 [132] Own dataset MSROM/I-FAST
Sn, LR, SMO, kNN,

K-CM, NB, RF 92.80
Djemal et al., 2017 [103] KAU DWT, ShanEn ANN 98.60
Heunis et al., 2018 [137] Own dataset RQA, PCA SVM 92.90
Haputhanthri et al., 2019 [164] Own dataset DWT and statistical LR, SVM, NB, RF 93.00
Jayarathna et al., 2019 [189] Own dataset statistical and entropy RF, LR, JRip, CNN etc. 98.06
Haputhanthri et al., 2020 [165] Own dataset statistical and entropy LR, MLP, NB, RF 88.00
Abdolzadegan et al., 2020 [166] Own dataset Linear and nonlinear kNN, SVM 90.57
Alturki et al., 2020 [105] KAU DWT, ShanEn ANN 98.20
Proposed Method KAU Spectrogram image CNN 99.15

3.5 Summary

In this chapter, we have introduced the utilisation of T-F spectrogram images of EEG
signals for distinguishing between ASD and TD children. We have generated spectrogram
images through STFT from EEG signals and employ both ML and DL techniques for
classification. In the ML-based classification, we have used six distinct classifiers to classify
the features extracted using the tCENTRIST method. In the DL-based process, we have
used three different CNN models to process the spectrogram images.

Our results highlight that SVM exhibits the highest classification accuracy in the
ML-based classification process, achieving an accuracy rate of 95.25%. In contrast, in
the DL-based classification process, the proposed CNN model demonstrates outstanding
performance, achieving an accuracy of 99.15%. To provide context, we also compare
our approach with other state-of-the-art methods in the literature that utilised the same
dataset employed in this analysis.



Chapter 3. Spectrogram Image Based Autism Spectrum Disorder Classification 69

These findings underscore the effectiveness of our proposed approach, surpassing the
majority of techniques documented in existing literature. This approach can serve as a
foundation for CAD systems intended for the detection of various neurological disorders
that utilise EEG recordings for diagnosis.

In order to respond to the first research problem related to the classification of SZ,
a second methodology has been formulated. This method involves the utilisation of to-
pographic images derived from EEG signal data. The subsequent chapter provides a
comprehensive and detailed discussion of this developed approach.
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Chapter 4

Topographic Image Based EEG
Signal Classification

In response to the first research problem, the preceding chapter introduced a framework
aimed at detecting ASD through spectrogram analysis. In continuation, the current chap-
ter is dedicated to the development of an alternative method, specifically tailored to ad-
dress the same research problem (RP1) but in the context of schizophrenia (SZ) disorder.

We have developed a novel approach that utilises deep learning techniques to differen-
tiate individuals with SZ from healthy controls by creating an entropy topography of the
EEG signal. Our method involves extracting Shannon entropy values from each channel
of the EEG signal and mapping them onto the brain scalp to generate topographic images.
Subsequently, these images are subjected to training and classification using our custom
convolutional neural network. We assessed the method’s performance on two distinct EEG
datasets from individuals with SZ, and the results demonstrated its potential for mining
brain signal data.

The contents of this chapter have been presented in 33rd Australasian Database Con-
ference, ADC 2022 (Publication 4) [190].

4.1 Introduction

Brain signal data is increasingly harnessed to evaluate brain activity, offering significant po-
tential for the diagnosis and treatment of mental and neurological conditions. Among these
signals, electroencephalogram (EEG) data is a prominent example. There is a growing
global demand for streamlined methods to interpret brain signal data, making healthcare
more effective and cost-efficient. In the realm of biomedical research, the development and
adoption of advanced signal processing algorithms for EEG data analysis are of paramount
importance [22].

EEG, which captures the brain’s spontaneous electrical activity in the form of ex-
tensive time-series data, is inherently non-linear and non-stationary. It exhibits patterns
linked to an individual’s mental health state. EEG data serves various purposes, includ-
ing the creation of brain-computer interfaces (BCIs) [191], exploration of changes in brain
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electrical activity in response to external stimuli or internal mental processes [22], recog-
nition of sleep stages [192], detection of emotions and fatigue [193], and the prediction of
brain-related health conditions (prognosis) [90], [194].

Traditionally, expert clinicians visually analyse EEG signals, yet discerning subtle but
critical changes through visual inspection can prove challenging. Consequently, this has
spurred biomedical engineers to explore innovative and efficient algorithms for detecting
these changes. Data mining techniques can extract vital biomarkers from brain signal data,
facilitating the automatic categorisation of brain states into distinct disorder categories
through the development of computer-aided diagnostic (CAD) systems.

Lately, EEG technology has garnered significant attention for its precise monitoring of
brain activity. Nevertheless, the raw EEG signal presents challenges, as it is susceptible to
artefacts and exhibits complexity due to its temporal and spatial variability. In the process
of identifying brain states, the pivotal stages involve feature extraction and classification.
Traditional manual feature extraction and selection methods necessitate specific domain
expertise. Furthermore, the cost associated with conventional feature selection methods
escalates exponentially with the increasing number of features, as discussed in Dash et
al.’s work [195].

While prior research has predominantly concentrated on feature extraction processes
in either the time domain [98], frequency domain [196], or time-frequency domain [154],
with relatively limited exploration in the spatial domain. The spatial domain of an EEG
signal refers to the physical space where electrical brain activity is measured and recorded.
In EEG, electrodes are placed on the scalp to capture electrical potentials generated by
neural activity in the brain. The spatial domain, therefore, encompasses the scalp surface
where these electrodes are positioned. Techniques such as source localization or scalp
topographic mapping help to infer the underlying brain regions generating the recorded
electrical signals. Spatial domain analysis in EEG involves interpreting the spatial patterns
of electrical potentials across electrodes. Changes in these patterns can indicate variations
in brain activity associated with cognitive tasks, stimuli, or neurological conditions. The
objective of this study is to leverage a combination of the time, frequency, and spatial
domains to achieve accurate detection of anomalies in multichannel EEG recordings.

Over the past decade, numerous studies have delved into the realm of mining extensive
EEG datasets, as evidenced by research works [78], [79], [154], [197], [198]. The majority
of these investigations have employed diverse statistical metrics as signal features and have
employed various classifiers for feature classification. However, conventional approaches
often struggle to extract salient and discriminative attributes from vast datasets. More-
over, statistical features applied to lengthy signals may inadvertently overlook short-term
properties, which hold paramount importance in identifying abnormalities. This limitation
can be addressed by visualising small signal segments’ entropy as topographic images.

Furthermore, when it comes to classification, deep learning (DL)-based models outper-
form machine learning (ML)-based classifiers, especially in scenarios involving large data
volumes. DL models possess the capability to autonomously learn features and perform
classification [167]. Nevertheless, the majority of studies within the field of data mining
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for EEG data have primarily assessed their proposed methodology on a specific dataset,
raising questions about their generalisability to other datasets.

Hence, for the purpose of detecting anomalies within this extensive brain signal dataset
using time, frequency and spatial domain, this study introduces a novel framework that
combines topographic imaging and deep learning, with a specific focus on EEG data
mining. EEG multichannel recordings offer insights into the spatial distribution of brain
electrical activity. In this context, waveform patterns are transformed into images, provid-
ing a visual representation of the electric landscape of brain activity at discrete moments
or illustrating the varying frequency characteristics of recorded EEG signals for imaging
purposes [199].

In our proposed approach, the signals undergo an initial segmentation into three-second
(3s) time windows to facilitate feature extraction from these brief signal segments. Sub-
sequently, Shannon entropy (ShanEn) is employed to extract entropy values from these
segments, which are then utilised to generate corresponding topographic images. Follow-
ing this, a deep learning-based convolutional neural network (CNN) is developed to extract
features and conduct classification on these topographic images. To assess the general-
isability and performance of the proposed model, we have used two well known publicly
available EEG datasets pertaining to schizophrenia disorders. The key contributions of
this study encompass the following:

1. Develop a data mining framework for brain signal data, especially EEG.

2. Introduce an entropy-based topographic visualisation of the EEG signal.

3. Design and validate a new efficient and automatic CNN-based framework for topo-
graphic image classification.

4. Explore the framework’s generalisability and performance with two different EEG
datasets.

Details of the proposed method and the obtained results are discussed in the sections
below.

4.2 Methodology of the proposed mining framework

Here, we have proposed a brain signal data mining framework using topographic images
and a deep learning-based CNN model. This framework works in a couple of steps: first,
the signals are resampled and segmented into small time windows in the pre-processing
step, and then topographic images are generated from those signal segments. Finally, we
have trained our proposed CNN model on those generated topographic images to perform
classification into different classes, and the classification performance is evaluated using
different evaluation parameters. Figure 4.1 shows the overall diagram of the proposed
framework. Details of those steps are discussed below:
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Figure 4.1: A schematic diagram of the proposed classification framework
combining topographic images and deep learning-based CNN model.

4.2.1 Pre-processing of the raw data

In this phase, we have undertaken pre-processing of the original EEG signal data to create
the topographic image. Initially, we applied resampling to the raw data, aligning it with
a standardised 256 Hz sampling frequency, which is a commonly utilised frequency range
and offers computational advantages over higher frequencies [200]. Subsequently, the data
underwent segmentation into compact three-second (3s) segments. This segmentation
strategy was employed to maximise feature extraction from these smaller signal portions
and to augment the overall dataset size [79], [90], [194].

4.2.2 Creation of topographic images for signal segments

A brain signal topographic image is a neuroimaging technique that is used to plot the
activity of the different brain regions using several tones of colour (like black and blue,
which could represent low signal amplitudes, whereas yellow and red could represent higher
amplitudes.) [201]. This method provides a far more exact and representative picture of
the position of rhythm, amplitude, and other changes in relation to the skull’s surface
and also helps to pinpoint the exact location of signal alteration. Here, we have used
entropy topography, where entropy has been extracted from non-overlapping windows of
brain signal recordings and plotted to a 2-D map by colour coding of signal features. To
extract the entropy values, we have used Shannon entropy (ShanEn), which quantifies the
probability density function of the distribution of values using the below equation 4.1:

ShanEn = −
∑

i

pilogpi (4.1)

In this context, i represents the probability of the occurrence of the amplitude value
vi within the data time series, while pi signifies the likelihood of the amplitude value vi

appearing at any point throughout the data time series. Consequently, pi can be expressed
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4.3 Materials and parameters used for evaluating perfor-
mance

We have conducted a validation of the proposed brain signal data mining framework using
two publicly available EEG brain signal datasets related to schizophrenia (SZ) disease. In
our evaluation, we carried out binary classification tasks distinguishing SZ subjects from
healthy control (HC) subjects. To assess the performance of our proposed framework,
we employed a range of commonly used evaluation metrics within this domain. Further
details regarding the datasets and evaluation parameters are provided in the following
subsections.

4.3.1 Data Acquisition

In this research, we have used two publicly available EEG datasets of schizophrenia dis-
orders to validate the proposed framework. The first dataset we have used contains 81
subjects (14 females and 67 males; average age 39 years), 49 of whom have SZ and 32 are
HC subjects [202]. EEG data was recorded from 64 electrodes at a sampling rate of 1024
Hz. In this study, we have used the same data as the authors of [154] used. Details of the
data collection and pre-processing steps can be found in [202].

The second dataset we have used is from the Institute of Psychiatry and Neurology in
Warsaw, Poland [78] with 28 subjects. Among those subjects were 14 patients (7 females,
7 males; average age 28.3 ± 4.1 and 27.9 ± 3.3 years, respectively) and 14 HCs within the
same age and gender group. Fifteen minutes of resting state EEG data were recorded at
a 250 Hz sampling frequency from 19 channels of the 10–20 international standard EEG
system. Details of the data can be found in [78].

4.3.2 Performance evaluation criteria

Cross-validation serves as a technique to assess the predictive performance of a model while
mitigating the risk of overfitting. Achieving high classification rates may hinge on the
specific pairing of training and testing sets. The strategy we employed is known as k-fold
cross-validation, where the dataset is divided into k subsets of equal or nearly equal size.
During each iteration, k-1 subsets are designated for training, while the remaining subset
is reserved for testing. This process is repeated k times, with each subset serving as the
test set exactly once. In our study, we adopted 10-fold cross-validation to comprehensively
evaluate the performance of our proposed framework.

Subsequently, the system’s performance was assessed using six standard evaluation
metrics: sensitivity (Sen), specificity (Spec), precision (Prec), F1 score (F1), accuracy
(Acc), and the receiver operating characteristic (ROC) curve.
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4.4 The outcomes of the proposed framework

In this research work, we have introduced a data mining system tailored for EEG signal
data, integrating topographic images and a deep learning-based approach. We have tested
the proposed model on two distinct EEG datasets of SZ disease to perform a binary
classification (SZ vs. HC). Details of the achieved results, along with visualisation and
descriptions of experimental setups are discussed in the subsequent subsections.

4.4.1 Experimental configuration

We initiated our experimentation by pre-processing the EEG data, which involved resam-
pling it to 256 Hz and segmenting it into 3-second chunks. Subsequently, we computed
Shannon Entropy (ShanEn) for these shorter segments and utilised the calculated ShanEn
values to generate topographic images. This process resulted in a total of 4,728 images for
SZ subjects and 3,108 images for HC subjects in the case of dataset 1. As for dataset 2,
these figures amounted to 5,146 images for SZ subjects and 4,235 images for HC subjects.
Sample topographic images from both datasets are presented in Figure 4.3.

(a) DS1 - HC (b) DS1 - SZ (c) DS2 - HC (d) DS2 - SZ

Figure 4.3: Examples of topographic images for the tested datasets. For
HC and SZ individuals, 4.3a and 4.3b are from dataset 1 while 4.3c and

4.3d, respectively, are from dataset 2.

These images were subsequently employed for training and classification using the
CNN model. During the CNN model training phase, we adopted the mini-batch mode
and tested four distinct batch sizes: 32, 64, 128, and 256 as part of our experimentation.

4.4.2 Experimental Outcomes of the Proposed Framework

In this study, we have validated our proposed framework using two distinct EEG datasets
related to SZ disorder, employing the 10-fold cross-validation technique. We have tested
four different training batch sizes to assess their impact on the performance of the CNN
model. Table 4.1 presents the average performance metrics for the framework across
the tested datasets and batch sizes. The values highlighted in bold represent the highest
average performance achieved for each evaluation parameter within the respective dataset,
as determined over the 10-fold cross-validation process.

Table 4.1 reveals that the performance of the proposed framework experiences a decline
as the training batch size increases. Specifically, for dataset 1, the highest 10-fold average
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Table 4.1: Results of the proposed method’s ten-fold average performance
(mean±std) on two test datasets for various batch sizes.

Datasets Parameters Batch size 256 Batch size 128 Batch size 64 Batch size 32

Dataset 1

Sen% 91.86±1.17 91.59±0.81 91.71±1.12 92.94±1.10
Spec% 81.78±3.30 83.93±1.61 84.69±2.49 83.49±1.84
Prec% 88.50±1.83 89.64±1.25 90.14±1.46 89.57±0.84
F1 0.90±0.01 0.91±0.01 0.91±0.01 0.91±0.01
Acc% 87.87±1.05 88.54±0.59 88.93±1.24 89.20±0.81

Dataset 2

Sen% 97.80±0.85 97.76±0.47 97.74±0.62 97.84±0.60
Spec% 97.56±0.66 97.95±0.67 97.81±0.53 97.86±0.48
Prec% 97.97±0.63 98.30±0.56 98.18±0.49 98.22±0.45
F1 0.98±0.01 0.98±0.00 0.98±0.01 0.98±0.00
Acc% 97.69±0.42 97.85±0.53 97.77±0.51 97.85±0.45

(a) Dataset 1

(b) Dataset 2

Figure 4.4: Fold-wise comparison of sensitivity value for different training
batch sizes for the tested two datasets.

sensitivity of 92.94±1.10% is achieved when utilising a batch size of 32, while for dataset 2,
it reaches 97.84±0.60% with the same batch size. To delve into a more detailed fold-wise
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performance analysis, we have depicted fold- and batch-size-specific sensitivity values in
Figure 4.4. Figure 4.4a corresponds to dataset 1, whereas Figure 4.4b pertains to dataset
2.

Examining Figure 4.4a, it is evident that for a single fold of dataset 1, the highest
sensitivity of 94.43% is attained in fold 2 with a batch size of 32, while the lowest sensitivity
of 89.48% is observed in fold 10 with a batch size of 64. In the case of dataset 2, fold 7
with a batch size of 256 and fold 6 with a batch size of 256 yield the highest and lowest
single-fold sensitivities, amounting to 99.62% and 96.58%, respectively. High sensitivity is
a desirable trait, as it signifies the model’s capability in detecting abnormalities.

(a) dataset 1

(b) dataset 2

Figure 4.5: Fold-wise comparison of specificity value for different training
batch sizes for the tested two datasets.

Figure 4.5 illustrates the specificity comparison, considering both fold and batch size,
for dataset 1 (Figure 4.5a) and dataset 2 (Figure 4.5a). In the case of dataset 1, the
highest and lowest specificity values are 88.29% (fold 5, batch size 64) and 76.35% (fold
6, batch size 256), respectively. As for dataset 2, these values are 99.51% (fold 7, batch
size 128) and 96.5% (fold 3, batch size 256), respectively. When considering the mean



Chapter 4. Topographic Image Based EEG Signal Classification 81

specificity over the 10-fold cross-validation, the highest value of 84.69±2.49% is observed
with a batch size of 64, while the lowest value of 81.78±3.30% is associated with a batch
size of 256, as displayed in Table 4.1. A higher specificity score implies that the model
can effectively differentiate between healthy individuals and those with the disease.

(a) dataset 1

(b) dataset 2

Figure 4.6: Fold-wise comparison of precision value for different training
batch sizes for the tested two datasets.

The next performance metric under consideration is precision, which signifies the per-
centage of relevant instances correctly retrieved. Figure 4.6 provides an overview of pre-
cision values, taking into account fold and batch size considerations. Specifically, Figure
4.6a and Figure 4.6b display precision results for datasets 1 and 2, respectively.

From Figure 4.6a, we can see, in dataset 1, the highest and lowest single-fold precision
values are achieved in fold 5 (92.77% for batch size 64) and fold 8 (85.74% for batch size
256), respectively. For dataset 2 in Figure 4.6b, these values are attained in fold 7 (99.62%
for batch size 128) and fold 4 (96.97% for batch size 256), respectively. Looking at the
10-fold average precision from Table 4.1, the highest value for dataset 1 is 90.14±1.46%
with a batch size of 64, while the lowest is 88.50±1.83% with a batch size of 256. As
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for dataset 2, the corresponding values are 98.30±0.56% (batch size 128, highest) and
97.97±0.63% (batch size 256, lowest).

We also thoroughly examined the accuracy parameter. As evident from Table 4.1,
batch size 32 consistently yielded the highest accuracy for both tested datasets, resulting
in values of 89.20±0.81% for dataset 1 and 97.85±0.45% for dataset 2. Figure 4.7a and
Figure 4.7b present the detailed accuracy comparisons, considering fold and batch size,
for dataset 1 and dataset 2, respectively.

For dataset 1, the highest single-fold accuracy, 90.94%, was achieved in fold 5 with a
batch size of 64, while the lowest, 85.84%, was observed in fold 6 for a batch size of 256.
In contrast, for dataset 2, the highest single-fold accuracy reached 99.25% in fold 7 with a
batch size of 128, while the lowest accuracy value was 97.12% in fold 4 with a batch size
of 256.

(a) dataset 1

(b) dataset 2

Figure 4.7: Fold-wise comparison of accuracy value for different training
batch sizes for the tested two datasets.

The ROC graph, which plots sensitivity (true positive rate) on the Y-axis against 1-
specificity (false positive rate) on the X-axis, is a valuable tool for visualising the classifier’s
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(a) dataset 1

(b) dataset 2

Figure 4.8: ROC curve for different training batch sizes of two datasets.

performance. A good classifier tends to have a graph closer to the (0, 1) point. We
generated ROC graphs for both datasets, employing different training batch sizes, to
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assess the performance of the proposed model, as presented in Figure 4.8. Specifically,
Figure 4.8a corresponds to dataset 1, while Figure 4.8b pertains to dataset 2.

In Figure 4.8a, we observe that the ROC curve for batch size 32 is slightly closer to the
(y = 1) line due to its higher sensitivity value. However, its (1-specificity) value (0.1652)
is marginally higher than that of batch size 128 (0.1531). Generally, all tested batch sizes
exhibit similar ROC curves, as their sensitivity and specificity values exhibit only minor
differences, as shown in Figure 4.8a. Likewise, for dataset 2, batch size 32 yields the
highest sensitivity, while batch size 128 achieves the highest specificity. Nevertheless, the
differences are minimal, resulting in overlapping ROC curves for all batch sizes in dataset
2, as illustrated in Figure 4.8b.

To facilitate a comparison of our proposed model’s performance with existing works
related to the datasets used in this study, we have provided a comparative table in Table
4.2. While our proposed model has not attained the highest accuracy among the tested
datasets, it underscores the potential of utilising topographic image-based brain signal
classification for such tasks. Moreover, this proposed method explores the combined fea-
tures of time, frequency, and spatial domain in schizophrenia classification. We have also
explored the performance of the framework on two well-known EEG datasets to check the
generalisability of the proposed model. Furthermore, fine-tuning the CNN model and ex-
ploring transfer learning techniques using pre-trained CNN models can potentially enhance
the accuracy of the classification process.

Table 4.2: Comparison of performance with previous research using the
same datasets.

Datasets Comparison for Classification Accuracy (%)
dataset 1 Siuly et al. [154] 89.59% Thilakvathi et al. [148] 88.50% Proposed model 89.20%
dataset 2 Singh et al. [203] 98.96% Shoeibi et al. [157] 99.25% Proposed model 97.85%

4.5 Summary

In this research study, we have introduced a novel topographic image-based brain signal
data mining framework employing deep learning techniques. Our proposed model was put
to the test using well-established EEG brain signal data to perform classification tasks
related to schizophrenia neurological disorder. The EEG signals underwent initial seg-
mentation into small time segments, followed by the computation of entropy values using
Shannon Entropy for each segment. Subsequently, these entropy values were employed to
generate topographic plots corresponding to the signal segments.

We have introduced a CNN model to perform classification on those topographic im-
ages, distinguishing between two classes: patients and healthy individuals. The results
of our proposed framework demonstrated promising performance, with accuracy rates of
89.20% and 97.85% achieved for dataset 1 and dataset 2, respectively.
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Although the proposed model could not beat the existing studies in term of accuracy
but have produced an accuracy very close to the existing best studies. The main contri-
bution of this study is that we have explored the spatial domain of the EEG signal for
SZ classification. In clinical settings, topographic maps can assist in identifying abnor-
mal brain activity or patterns associated with various neurological disorders, helping in
diagnosis and treatment planning. Moreover, we have used Shannon Entropy to produce
the topographic images; other kind of entropy methods can be explored to produce the
topographic images and check the performance of the categorisation task. Additionally,
different CNN models and transfer learning can be explored to improve the performance
of the proposed framework.

Chapters 3 and 4 present two of our proposed methods for addressing the first research
question. In the next chapter, our third proposed method is presented that is proposed to
address the second research question.
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Chapter 5

Multiple Disease Classification
Using a Single Framework

In this chapter, we have presented our third proposed method to address the second
research problem (RP2), which is to develop a single system for classifying multiple
neurological disorders.

In this research, we have developed a multi-class classification framework for iden-
tifying four common neurological disorders – autism, epilepsy, Parkinson’s disease, and
schizophrenia – using EEG data. Our approach combines both machine learning (ML)
and deep learning (DL) classifiers. The process begins with the removal of noise and arte-
facts from the EEG signal through filtering techniques, followed by signal normalisation
to enhance computational efficiency. Subsequently, the normalised signals are divided into
small time segments, and spectrogram images are generated from these segments utilising
the short-time Fourier transform.

In the ML-based classification component of our framework, we have employed two
histogram-based textural feature extraction methods to compute features independently.
Principal component analysis is then applied to select significant features from the ex-
tracted feature set. Finally, we have utilised four distinct ML-based classifiers to categorise
these selected features into different disorder classes.

In the DL-based approach, we have developed a Convolutional Neural Network (CNN)
specifically tailored for classifying the spectrogram images. To assess the performance
of our proposed CNN model, we conducted a comparative analysis with two well-known
CNN models: AlexNet and ResNet50. Furthermore, we evaluated the performance of our
model in binary classification tasks, distinguishing between disorder and healthy states.

The ML-based classification method has been presented in the International Confer-
ence on Web Information Systems Engineering (Publication 3), and an extension of the
work is published in Plos One (Publication 5). The DL-based method is published in
IEEE Transactions on Technology and Society (Publication 6).



Chapter 5. Multiple Disease Classification Using a Single Framework 93

5.1 Introduction

Neurological disorders encompass a diverse group of conditions that affect both the central
and peripheral nervous systems, spanning from neurodegenerative and neurodevelopmen-
tal disorders to psychiatric conditions [204]. This category encompasses a wide array
of diseases, numbering over 600 in total. Among the most well-known neurological dis-
orders are epilepsy (EP), Parkinson’s disease (PD), mild cognitive impairment (MCI),
Alzheimer’s disease (AD), schizophrenia (SZ), cerebrovascular diseases, including stroke,
as well as conditions like migraines and headache-related ailments, brain tumours, and
developmental disorders such as autism spectrum disorder (ASD) and attention deficit
hyperactivity disorder (ADHD) [204].

These disorders contribute significantly to the global disease burden, accounting for
10% of the overall burden and 30% of the non-fatal disease burden [3]. In Australia, they
constitute over 20% of the total disease burden and incur a financial cost of $74 billion in
2017 [205]. Conditions like depression and anxiety alone impose a substantial economic
burden, costing the global economy approximately one trillion USD in lost productivity
annually [3]. Neurological disorders have a profound impact on the lives of affected in-
dividuals and their families, and in severe cases, they can even lead to mortality. Early
diagnosis and medical intervention can significantly improve clinical outcomes, but detect-
ing these diseases in their early stages remains a challenge. Furthermore, access to mental
health professionals is inadequate in many regions, with a shortage of such professionals
in low-income countries and an overabundance in high-income countries [3].

Currently, the majority of diagnoses for brain disorders are made through manual
assessments conducted by neurologists or trained clinicians. These assessments often in-
volve techniques such as administering disease-related questionnaires, observing patient
behaviour, or visually inspecting brain functionality captured through various methods
like magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI),
positron emission tomography (PET), electrocorticography (ECoG), and electroencephalo-
gram (EEG) [22], [162], [163]. Among these techniques, EEG is particularly favoured due
to its exceptional temporal resolution, accessibility, non-invasiveness, cost-effectiveness,
and widespread availability for clinicians [18].

EEG, is a technique employed to record the electrical activity generated by a large
number of neurons within the human brain. It is commonly utilised for studying the phys-
iological states of the brain. Typically, expert neurologists visually analyse a substantial
amount of EEG signals to detect abnormalities. However, this process is time-consuming,
subjective, complex, and prone to human error. Moreover, the intricate nature of EEG
signals, including issues such as a poor signal-to-noise ratio, aperiodic patterns, and non-
stationarity, coupled with overlapping disease-related features, makes visual diagnosis by
neurologists even more challenging. This can sometimes lead to misdiagnosis [19].

To address these challenges, the development of computer-aided diagnostic (CAD)
systems aimed at assisting clinicians in their decision-making has been a critical area
of research. However, most existing studies have focused on developing individual CAD
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systems for single disease classification, typically distinguishing between a specific neu-
rological disorder and healthy controls (HC) [79], [98], [154], [162]. Furthermore, even
within the realm of multi-class classification, most studies have considered at most two
diseases. Consequently, diagnosing multiple neurological disorders in a single patient’s
EEG signal often necessitates the use of multiple CAD systems, which can be costly and
time-consuming.

Hence, there is a compelling need for an effective, reliable, and high-accuracy CAD
system capable of diagnosing multiple neurological diseases within a unified framework.
Such a system could help address the shortage of expert neurologists and reduce the
diagnostic costs associated with multiple diseases. CAD systems have significant potential
in assisting medical professionals during the diagnosis process, particularly in terms of
saving time and enhancing diagnostic accuracy. Therefore, the primary objective of this
study is to design a novel framework capable of automatically detecting four neurological
disorders – namely, ASD, EP, PD, and SZ – from EEG signal data.

It’s worth noting that a significant portion of existing studies in the literature has
primarily focused on single disease classifications using EEG data, typically distinguish-
ing between a specific neurological disorder and HC subjects [78], [79], [98], [103], [127],
[132], [154], [162], [169], [180], [184], [188], [197], [198], [206]–[209]. However, there is a
growing interest in developing unified classification systems capable of categorising various
neurological conditions from EEG signals.

Some studies have ventured into building single classification systems for distinguishing
between multiple neurological disorders, often employing a 3-class classification approach
among AD, MCI, and HC subjects. For instance, Akrofi et al. [210] developed an auto-
mated pattern recognition system based on coherence analysis for distinguishing between
AD, MCI, and HC using EEG data, achieving an overall accuracy of 83.99% through tech-
niques like k-means clustering and multiple discriminant analysis. McBride et al. [211]
proposed an innovative approach involving Sugihara causality analysis, which yielded a
high average accuracy rate of 96.5% for separating AD, MCI, and HC classes across three
different recording protocols. Ieracitano et al. [212] introduced a novel method utilising
continuous wavelet transform (CWT) and bispectrum (BiS) representation to distinguish
between AD, MCI, and HC classes. They employed a multi-layer perceptron classifier to
process the extracted CWT and BiS features and achieved an accuracy of 89.22% for the
3-way classification scheme. In a recent study, Burcu et al. [213] presented a methodology
based on discrete wavelet transform (DWT), power spectral density (PSD), and coherence
measures to classify AD, MCI, and HC EEG data. By using a bagged tree classifier and
a 5-fold cross-validation scheme, they achieved an average accuracy of 96.5%.

In addition to the classification of AD, MCI, and HC classes, there have been notable
efforts to develop frameworks for distinguishing between other neurological disorders such
as ASD and EP from HC subjects.

Ibrahim et al. [214] introduced a framework for the classification of ASD and EP
against HC. They employed a pre-processing step to decompose the EEG signal into
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sub-bands using discrete wavelet transform (DWT) and extracted relevant features, in-
cluding standard deviation (SD), band power (BP), Shannon entropy (ShanEn), and the
largest Lyapunov exponent. These features were subsequently classified using various
machine learning algorithms, including artificial neural networks (ANN), k-nearest neigh-
bour (k-NN), support vector machines (SVM), and linear discriminant analysis (LDA).
Their approach achieved an accuracy of 94.62% for the 3-class classification task using
the k-NN classifier. Alturki et al. [105] pursued a similar three-class classification task,
distinguishing between ASD, EP, and HC. They used DWT to decompose the EEG signals
and extracted features such as logarithmic band power (LBP), SD, variance, kurtosis, and
Shannon entropy (ShanEn). Their approach achieved an overall classification accuracy of
99.9% using SVM and 97% using ANN for both single-channel and multi-channel modes.

While these existing studies have demonstrated good classification performance, there
remains room for improvement in terms of accuracy, performance, and the number of
disease categories considered. Notably, these studies show that it is feasible to develop a
unified framework for multi-class EEG classification. However, to the best of our knowl-
edge, no studies have considered more than two disease classifications from healthy subjects
within a single framework. Moreover, the development of a single system for diagnosing
multiple neurological disorders can help address the shortage of expert clinicians and re-
duce the cost associated with using multiple CAD systems for diagnosing different diseases.
Therefore, there is a substantial research opportunity for the development of a compre-
hensive CAD system for diagnosing multiple neurological disorders from EEG data.

In the context of existing studies, the data mining process typically involves two pri-
mary stages: feature extraction from the signal data and subsequent classification of these
extracted features using various classifiers. Many of these studies have traditionally relied
on utilising statistical information as features derived from the signal data, and subse-
quently, these features are subjected to classification using diverse classifiers. However,
when dealing with extensive datasets, these conventional approaches often face limita-
tions in effectively extracting meaningful and distinguishing features from EEG data, as
noted in the literature [90]. Furthermore, the extraction of statistical features from ex-
tended recordings (long-term data) may inadvertently neglect short-term variations in
signal characteristics that are pivotal for identifying anomalies [90].

To overcome these challenges, a novel approach has been introduced in recent studies.
This approach involves the visual representation of small segments of the signal, using
the raw signal data to create visual depictions, and focusing on the analysis of these
compact data segments [79], [90]. By adopting this method, researchers aim to address
the limitations associated with conventional techniques and obtain a more comprehensive
view of the EEG data, particularly when dealing with high volumes or when short-term
variations are of significance, such as in anomaly detection tasks.

To achieve the aforementioned objective, we have introduced a data mining approach
based on time-frequency (T-F) spectrogram images, specifically designed for analysing
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brain signal data, particularly EEG recordings, to identify four distinct neurological dis-
orders: autism spectrum disorder, epilepsy, Parkinson’s disease, and schizophrenia, in ad-
dition to healthy control subjects, resulting in a total of five classes. Spectrogram images
serve as the basis for visualising EEG signals in the T-F domain, effectively capturing the
nonstationary characteristics inherent in the signal data [79]. These spectrogram images
portray changes in the frequency spectrum over time, with varying colours represent-
ing different energy levels [90]. In comparison to alternative feature extraction methods,
spectrogram images possess the advantage of encompassing more unexplored EEG signal
characteristics, potentially yielding improved performance when integrated into a classi-
fication algorithm [90]. Previous research has successfully employed spectrogram images
for the discrimination of patients from HC across various neurological disorders, includ-
ing epilepsy [19], epileptic seizures [169], ASD [90], and schizophrenia [153], consistently
achieving strong classification outcomes. These promising results have motivated the in-
corporation of spectrogram images in our current study.

In this research, we have harnessed these spectrogram images and employed both
machine learning and deep learning techniques for feature extraction and classification
to tackle a multi-class classification task. In both classification pipelines, the EEG data
underwent pre-processing to eliminate noise and artefacts. Subsequently, the signals were
partitioned into smaller time intervals, and spectrogram images were constructed from
those segments using STFT.

In the ML-based approach, we have extracted histogram-based textural features from
these images using two techniques known as completed CENsus TRanform hISTogram
(cCENTRIST) and ternary CENsus TRanform hISTogram (tCENTRIST). These histogram-
based methods were originally proposed by Dey et al. [171] and have exhibited strong
performance in texture classification tasks. To reduce the dimensionality of the extracted
features, principal component analysis (PCA) was applied. Finally, we employed four
ML-based classifiers: SVM, k-NN, RF, and LDA to categorise the reduced feature set.

On the contrary, in the DL-based classification approach, we adopted the CNN model.
CNNs have gained popularity in image-related classification tasks due to their exceptional
ability to autonomously learn relevant features and effectively classify data into various
categories [175]. In this research, we have introduced a CNN model for the multi-class
classification of neurological disorders, utilising T-F-based spectrogram images. To ensure
unbiased results and assess the effectiveness of our proposed system, we have employed
a five-fold cross-validation strategy. Furthermore, we have compared the performance
of our proposed model with two other well-known CNN architectures, namely AlexNet
and ResNet50. Additionally, we have assessed the proposed model’s binary classification
capabilities using the four datasets included in this study and compared its performance
with state-of-the-art literature that utilises the same EEG datasets.

Following are the significant contributions of this study:

1. For the first time, a single, unified framework is designed to classify four neurological
abnormalities from brain signal data.
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2. Two distinct feature extractors in combination with four different ML-based classi-
fiers are examined in ML-based classification.

3. Design and validate a new efficient and automatic CNN-based framework for both
multi- and binary-class neurological disease classification.

4. Explore the performance of the proposed CNN model with other popular CNN mod-
els and obtain better performance for multi-class classification. Also, improve the
binary classification accuracy compared to existing methods.

5. Build a low-time-cost CNN model for spectrogram image classification.

6. Validate the proposed framework using four EEG signal datasets from four different
neurological abnormalities.

7. Obtain improved performance for the multi-disease classification process compared
to the existing methods.

The remainder of the chapter contains a detailed discussion of the proposed method
and the obtained results.

5.2 Methodology

This section contains a detailed discussion of the proposed multi-disease classification
framework using both ML and DL-based approaches. Section 5.2.1 contains the discussion
of the ML-based classification framework, and Section 5.2.2 contains the discussion of the
DL-based classification framework.

5.2.1 Workflow of the proposed machine learning based framework

In this research, we have adopted T-F-based spectrogram images for the classification
of brain signal data using cCENTRIST and tCENTRIST-based feature extraction tech-
niques with four distinct ML-based classification approaches. The workflow encompassed
multiple stages: First, the raw brain signal data underwent initial processing to eliminate
artefacts. Then the signals are partitioned into small time frames, and spectrogram images
were derived using STFT. After that, we have applied cCENTRIST and tCENTRIST-
based techniques to extract relevant features from the spectrogram images, and PCA was
employed to reduce the dimensionality of the extracted features. Finally, four different
classifiers, namely: kNN, SVM, RF, and LDA, are employed to categorise the spectrogram
images into their respective classes. For a comprehensive understanding of this method-
ology, Figure 5.1 provides a visual overview of these steps. Further details are elaborated
in the subsequent sections.
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Figure 5.1: Schematic diagram of the proposed ML-based categorisation
framework.

5.2.1.1 EEG data acquisition

In this study, we have used four different datasets of four neurological disorders, namely:
ASD, EP, PD, and SZ. These datasets are discussed in detail below:

5.2.1.1.1 Autism spectrum disorder dataset

The ASD dataset employed in this study was obtained from King Abdulaziz University
(KAU) Hospital, located in Jeddah, Saudi Arabia [177]. This dataset comprises twelve
individuals diagnosed with ASD, consisting of 3 girls and 9 boys, with an average age of
12.5 ± 4.84 years. Additionally, four control group subjects, all boys, were included in the
dataset, with an average age of 11 ± 1.83 years and no history of neurological disorders.
The EEG data for this study was recorded in a resting state using the international 10–20
systems, encompassing 16 channels. The details of the recording process can be found in
[177]. During the recording phase, the EEG data underwent filtering procedures, which
included a band-pass filter with a passband of 0.1–60 Hz and a notch filter centred at 60 Hz
to eliminate unwanted noise. Subsequently, all EEG signals were digitised at a sampling
rate of 256 Hz.

5.2.1.1.2 Epilepsy dataset

The epilepsy dataset used in this study was gathered at Universidade Federal do Para,
Brazil, as documented in [215]. This dataset encompasses resting-state EEG signals
obtained from 14 subjects. Among these participants, 7 were patients diagnosed with
epilepsy, comprising 3 females and 4 males, with average ages of 24 ± 7 and 39.5 ± 6.4
years, respectively. Additionally, there were 7 healthy control subjects, matched for both
sex and age with the patient group. The resting-state EEG data was recorded using 20
channels at a sampling rate of 256 Hz.
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5.2.1.1.3 Parkinson’s disease dataset

For this study, a publicly accessible dataset was obtained from the University of Iowa,
Iowa City, Iowa, United States, as described in [197]. This dataset includes data from 14
patients with Parkinson’s disease (PD), consisting of 8 females and 6 males, with average
ages of 72.33 ± 7.53 and 69.13 ± 9.69 years, respectively. Additionally, there were 14 control
subjects who were matched with the patient group in terms of age and gender. The resting-
state EEG data in this dataset was recorded using 64 channels and had a sampling rate of
500 Hz. The Brain Vision system with Pz as the baseline reference channel was employed
for the recording process. Further details regarding the data acquisition procedure can be
found in [197].

5.2.1.1.4 Schizophrenia dataset

The dataset used in this study consists of 28 subjects in total. This group comprises 14 pa-
tients, including 7 females and 7 males, with an average age of 28.3 ± 4.1 years for females
and 27.9 ± 3.3 years for males. These patients were hospitalised at the Institute of Psychi-
atry and Neurology in Warsaw, Poland, and were diagnosed with paranoid schizophrenia.
Additionally, there are 14 healthy control subjects, also within the same age group and
with a similar gender proportion, from the same institute [78]. The EEG data was recorded
during a resting state, and each recording spanned 15 minutes. The data was sampled at
a rate of 250 Hz and collected from 19 channels following the international standard 10–20
EEG montage.

For a summarised view of the participants’ demographic information across different
datasets, please refer to Table 5.1. Figure 5.2 provides an illustrative representation of
EEG signals from channel Fp1 for the four neurological disorders under investigation.

Table 5.1: Demographic information pertaining to the datasets in use.

Disease Patient (M/F) Normal (M/F) Frequency Channels
ASD 12 (9/3) 4 (4/0) 256 16
EP 7 (4/3) 7 (4/3) 256 20
PD 14 (6/8) 14 (6/8) 500 64
SZ 14 (7/7) 14 (7/7) 250 19

Total 47 (28/19) 39 (23/16)

5.2.1.2 Data pre-processing and artefact removal

In this research, the pre-processing of the raw EEG data consists of two primary steps:
dataset standardisation, aimed at aligning all datasets to a common standard for compa-
rability, followed by filtering to eliminate noise and unwanted signals. Further details of
these procedures are elaborated upon in the subsequent sections.
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Figure 5.2: A typical 2000 sample EEG signal data points from the Fp1
channel of the four evaluated datasets.

5.2.1.2.1 Resampling of datasets for standardisation purposes

To enable a fair comparison of data recorded under different conditions, it is essential
to standardise them. As depicted in Table 5.1, all four datasets used in this study are
collected with varying sampling frequencies and different numbers of recording channels,
making it necessary to bring them to a common standard for accurate comparisons. To
achieve this, we selected the ASD dataset, which has 16 channels, as the reference. We
then adjusted the other three datasets (EP, PD, and SZ) to match this standard. For
consistency, we utilised the standard 16 channels (Fp1, Fp2, F3, F4, F7, F8, C3, C4, T3,
T4, P3, P4, T5, T6, O1, O2) typically employed for 16-channel EEG data recordings.
Subsequently, we resampled the PD and SZ datasets to 256 Hz, aligning all the datasets
with a common sampling frequency of 256 Hz.

5.2.1.2.2 Filtering of data for artefact removal

EEG data are known for their nonlinear, non-stationary, and complex characteristics,
often contaminated with various artefacts. These artefacts can significantly impact the
diagnosis process, particularly because some artefacts may resemble neurological disorder
patterns, potentially leading to biased clinical interpretations [216].

In this study, after aligning all datasets to a common configuration, the next crucial
step involves the removal of artefacts from the raw EEG data. To achieve this, three pre-
processing techniques have been applied: Common Average Referencing (CAR), Infinite
Impulse Response (IIR) filtering, and normalisation.
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• Common Average Referencing (CAR): CAR is a straightforward re-referencing
technique that computes the average of all electrode recordings and uses it as a
reference. This reference signal primarily captures the components common to all
electrodes, leaving behind the isolated signal from each electrode, which represents
individual channel activity.

• Infinite Impulse Response (IIR) Filtering: Following CAR, the signal under-
goes low-pass IIR filtering with a cut-off frequency set at 40 Hz. This step effectively
eliminates artefacts arising from muscle activity, ocular movements, and external
noise sources, which often introduce higher-frequency signals.

• Normalisation: Normalisation is employed to mitigate variations in individual
signal characteristics attributable to fundamental frequency rhythms and reduce
computational complexity. In this study, the Zero Mean Unit Variance (ZMUV)
method is utilised to normalise signals from each channel. This normalisation ap-
proach transforms the signal distribution to have a mean of zero and a variance of
one, a widely accepted technique in CNN-based image classification processes [90].

5.2.1.2.3 Segmenting EEG signals

The datasets used in this study have a relatively small number of samples, especially
for deep learning-based classification tasks. Addressing this data scarcity challenge, a
common strategy employed in previous works is to segment the available data into smaller,
informative segments [79], [153]. This segmentation approach has been utilised in various
studies to effectively increase the dataset’s sample size, maintaining the original data’s
labels and facilitating more robust analysis.

Given the aperiodic and non-stationary nature of EEG signals, as well as their varying
signal magnitudes over time, the pre-processed EEG data from each participant is seg-
mented into three-second (3s) data segments. This segmentation strategy aims to capture
representative information from specific time intervals [98]. Consequently, each segmented
data segment becomes a 2D vector with dimensions of 16×768, where 16 represents the
number of EEG channels, 768 corresponds to 256 samples per second multiplied by 3
seconds, providing a structured format for subsequent analysis and classification.

5.2.1.3 Generation of spectrogram image

This step involves the transformation of pre-processed signal data into spectrogram images.
Following the segmentation, spectrogram images are generated from these small segments
using the STFT-based spectrogram plotting technique. Spectrograms are a widely used
method for analysing the time-frequency domain of EEG signal data. The STFT pro-
cess converts the time-varying EEG signal into a two-dimensional matrix with time and
frequency axes.

To calculate the STFT, the signal is initially divided into overlapping windowed blocks
[217]. A Hamming window approach is applied to ensure continuity between the first and
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last points in the frames and to mitigate the leakage effect on the spectrum. Subse-
quently, the Fourier transform (FT) is computed for each segment, resulting in its own
local frequency spectrum. The STFT of a signal x(t) can be calculated using the following
equation 5.1:

STFT{x(t)} = X(τ , ω) =
∫ ∞

−∞
x(t)w(t − τ )e−iωtdt (5.1)

Here, ω is the signal frequency, w(τ ) is the nonzero window function, and X(τ , ω) is
the FT of the product x(t)w(t − τ ), reflecting the signal’s phase and amplitude with time
and frequency. STFT is frequently visualised by its spectrogram, which is an intensity
representation of STFT magnitude over time. These images are further used for feature
extraction and classification in this study.

5.2.1.4 Feature extraction and dimension reduction

In this phase, features are extracted from the spectrogram images and then reduced in
dimensionality for the subsequent classification tasks. The feature extraction process em-
ploys two texture-based feature extractors: the completed CENsus TRanform hISTogram
(cCENTRIST) and the ternary CENsus TRanform hISTogram (tCENTRIST). These fea-
ture extraction methods were introduced by Dey et al. [171] and have demonstrated their
effectiveness in tasks such as garment texture classification and face image-based gender
identification [171], [173].

To provide a brief overview of these feature extractors, let’s delve into CENTRIST,
cCENTRIST, and tCENTRIST in the following sections:

5.2.1.4.1 CENsus TRanform hISTogram (CENTRIST)

CENTRIST is a non-parametric local transform approach built on the idea of Census
Transform (CT) [218], which maps a pixel by comparing intensity values with its eight
neighbouring pixels and generates an eight-bit string (CT values). This approach is sim-
ilar to LBP except that LBP performs interpolation for corner pixels, but CENTRIST
considers those pixels as is. A sample CT calculation process is given in Figure 5.3.

Figure 5.3: CENTRIST applies the Census Transform (CT) calculating
method. If the centre pixel is greater than (or equal to) one of its neighbours,

a bit 1 is set in the appropriate location. Bit 0 is set if it is not.

CENTRIST is designed to capture both local and global information within an image.
It does so by constructing a histogram using the CT values of various image patches.
Additionally, CENTRIST integrates spatial information based on the Spatial Pyramid
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Matching (SPM) approach. SPM involves dividing an image into smaller regions and then
aggregating the matching results within those regions to improve recognition accuracy.
To further streamline the feature set, PCA is applied to reduce the dimensionality of the
extracted CENTRIST features.

5.2.1.4.2 Completed CENTRIST (cCENTRIST)

In this texture extractor, called cCENTRIST, the authors have replaced the traditional
Local Binary Pattern (LBP) with a Census Transform-based approach (CLBP) for gen-
erating CT (Census Transform) values. When comparing a pixel to its neighbouring
pixels, cCENTRIST considers both the magnitude (CLBP_M) and the signs (CLBP_S)
of the differences. Furthermore, it employs global thresholding to produce a binary code
(CLBP_C) for the center pixel. cCENTRIST generates a uniform and rotation-invariant
CT code by incorporating information from the signs, magnitudes, and centre-pixel char-
acteristics of the neighbouring pixels.

For an image of size 3x3, differences (dp) have two different components calculated
from the differences between each neighbouring pixel and the central pixel using equation
5.2, where sp and mp are the sign and magnitude parts of the differences dp.

dp = SP × mp and

SP = sign(dp), [1 if dP ≥ 0, else − 1]

mp = |dp|
(5.2)

If P and R are the neighbour number and radius of LBP code, respectively, then
CLBP_SP ,R, CLBP_MP ,R and CLBP_CP ,R are calculated using the equations 5.3 -
5.5 as follows:

CLBP_CP ,R = t(gc, c), t(x, c) =

1, x ≥ c

0, x < c
(5.3)

CLBP_SP ,R =
P −1∑
p=0

s(gp − gc)2p, s(x) =

1, x ≥ 0

0, x < 0
(5.4)

CLBP_MP ,R =
P −1∑
p=0

t(mp, c)2p, t(x, c) =

1, x ≥ c

0, x < c
(5.5)

Here c is a threshold calculated as the average of the whole image, gc is the grey value of
the centre pixel, and gp(p = 0, 1, ...., P − 1) is the neighbouring pixel’s grey value on a circle
with radius R. Finally, a 3D histogram is generated as a CT value using CLBP_SP ,R,
CLBP_MP ,R and CLBP_CP ,R and PCA is applied to reduce the dimension of the
feature vector. Algorithm 1 describes the process of cCENTRIST.

5.2.1.4.3 Ternary CENTRIST (tCENTRIST)

In this texture extractor, known as tCENTRIST, the authors replaced the conventional
Local Binary Pattern (LBP) with a Local Ternary Pattern (LTP) within the CENTRIST
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Algorithm 1: Feature extraction and dimension reduction using cCENTRIST
and PCA

Input: Spectrogram image I
Output: Dimension reduced feature vector of I

1 Initialisation;
2 Calculate level 2 Spatial Pyramid (SP) for the image I
3 for each block of SP do
4 (a) Calculate CLBP_CP ,R, CLBP_SP ,R and CLBP_MP ,R using equations

5.3, 5.4 and 5.5, respectively
5 (b) Concatenate all histograms from each to form a single histogram feature

block
6 Apply PCA to extract M feature points from the extracted features

framework. This modification introduces an additional bit to handle fluctuations in in-
tensity. For a 3x3 image window, tCENTRIST generates a ternary code for each central
pixel (c) using the following equation 5.6:

LTPP ,R =
P −1∑
p=0

q(gp − gc)3p, q(a) =


1 ifa ≥ µ

−1 ifa < µ

0 otherwise

(5.6)

where, µ is a threshold value of ±5 and gp, gc, P , andR are defined in equation 5.3-5.5.
After calculating the LTP values, two histograms are generated using the upper and lower
codes of LTP and finally concatenated to build a single histogram. Afterwards, PCA is
applied to reduce the dimension of the feature vector. Algorithm 2 describes the process
of tCENTRIST.

Algorithm 2: Feature extraction and dimension reduction using tCENTRIST
and PCA

Input: Spectrogram image I
Output: Dimension reduced feature vector of I

1 Initialisation;
2 Calculate level 2 Spatial Pyramid (SP) for the image I
3 for each block of SP do
4 (a) Calculate LTP value using equation 5.6.
5 (b) Construct a histogram using the LTP value;
6 Concatenate all histograms from each to form a single histogram feature block
7 Apply PCA to extract M feature points from the extracted features

Both the cCENTRIST and tCENTRIST feature extractors incorporate a spatial pyra-
mid (SP) structure that divides the images into a pyramid-like hierarchy of blocks. This
SP structure allows them to capture both local and global information from the images.
After feature extraction, PCA is employed to reduce the dimensionality of the extracted
features. PCA helps in selecting the most informative features while reducing computa-
tional complexity. Finally, the reduced features are fed into four machine learning-based
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classifiers for classification into different classes. These classifiers are an integral part of
the classification process, aiding in distinguishing between neurological disorders based on
the extracted features.

5.2.1.5 Classification of the extracted features

In this classification step, the features extracted in the previous step using cCENTRIST
and tCENTRIST feature extractors are utilised. The classification process employs four
different machine learning-based classifiers: SVM, kNN, RF, and LDA.

• Support Vector Machine (SVM): Currently, SVM is a highly effective classifier
for detecting abnormalities in brain signal data. It is particularly adept at handling
high-dimensional and non-linear data. In this study, we used the same multi-class
LibSVM [174] as the authors of cCENTRIST and tCENTRIST [171] used, which is
SVM with the following linear kernel function, K(x, y):

K(x, y) = xT y (5.7)

Here, kernel function is constructed from the dot product of two invariant, x and y.

• k-Nearest Neighbour (kNN): Another classifier tested in this study is kNN,
known for its simplicity and robustness, especially when dealing with large-scale
datasets. It classifies data points based on the most frequent class among their
closest neighbours in the feature space [219]. In kNN based classification, we have
tested for 10 different k values (1 to 10) with Euclidean distance metrics as defined
as follows:

D(xy, s) =

√√√√ n∑
i=1

(si − xy)
2 (5.8)

Here, s denotes the training set, and y is the unknown test data.

• Random Forest (RF): Another classifier evaluated in this study is Random Forest
(RF), an ensemble learning method proposed by Leo Breiman [220]. RF comprises
multiple decision trees, and the final prediction is based on a majority vote from these
trees. In this study, entropy is employed as an impurity metric for constructing the
RF model, which is defined as follows:

Entropy, IE = −
n∑

i=1
pi log2 pi (5.9)

Here, pi refers to the probability of class ci in the data sample.

• Linear Discriminant Analysis (LDA): The fourth and final classifier we have
used is LDA, which performed well in many classification tasks like emotional speech
recognition, multimedia information retrieval, face recognition, image identification,
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etc. [221]. For each class c with a mean µc and covariance Σ, LDA is calculated as
follows:

yc = xT Σ−1µc − 1
2µT

c Σ−1µc + log
nc

n
(5.10)

where x is the test instance, nc and n are the number of instances in class c and in
the whole dataset, respectively. x is classified with the highest yc values.

These classifiers are applied to the spectrogram images to perform multi-class classifi-
cation, distinguishing between different neurological disorders. The performance of these
classifiers is assessed using various evaluation techniques.

5.2.2 Workflow of the proposed deep learning based framework

In this approach, the data collection and spectrogram image generation process are the
same as in the ML-based approach. However, we introduce a novel CNN model for clas-
sification. Figure 5.4 provides an overview of the process. The EEG data acquisition,
filtering, and segmentation processes remain consistent with the ML-based framework.
The subsequent steps of this framework are discussed in detail in the following subsec-
tions:

Figure 5.4: An outline of the proposed DL-based multi-disease categori-
sation system.

5.2.2.1 CNN model training for feature extraction

CNN, a popular DL-based classification model for image-related problems, has demon-
strated remarkable efficiency in automatically learning relevant features and categorising
data into different classes [175]. CNNs are generally less sensitive to noise and capable of
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extracting valuable information from noisy data [222]. In this study, we have designed a
CNN model for classifying the spectrogram images generated from EEG data. The specific
details of the proposed CNN model are outlined below:

The proposed CNN model comprises four convolutional layers, each followed by max-
pooling, and a fully connected layer. All convolutional layers consist of 32 filters with a
kernel size of 3×3 and a stride of 1 pixel, followed by a max-pooling layer with a pool
size of 2×2. The second and fourth convolutional layers incorporate dropout layers with
a 25% dropout rate. The fully connected layer consists of 256 neurons, followed by a 50%
dropout layer. The classification layer employs softmax as the activation function, while
relu is used as the activation function in the other five layers. A schematic representation
of the proposed model is provided in Figure 5.5. Training of the proposed model involves
using categorical cross-entropy as the loss function, the Adam optimiser, and softmax as
the classifier.

Figure 5.5: An structural outline of the proposed DL-based CNN model.

5.2.2.2 Classification of different diseases

Following feature extraction and CNN model training, the classification process is carried
out on the datasets, encompassing both multi-class and binary-class classifications. In the
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multiclass classification, four categories are considered, each corresponding to a neurolog-
ical disorder (ASD, EP, PD, and SZ), and all images from healthy control subjects across
all four datasets are grouped into a single HC class. This results in a total of five classes
for the classification task: ASD vs. EP vs. HC vs. PD vs. SZ.

Additionally, to evaluate the performance of the proposed framework for individual
disease detection, binary classification is conducted for each of the datasets separately.
In this context, each dataset is treated independently, leading to four distinct binary
classification tasks: ASD vs. HC, EP vs. HC, PD vs. HC, and SZ vs. HC.

5.2.2.3 Performance comparison with popular models

We have evaluated the performance of our proposed CNN model by comparing it to two
well-known CNN models, AlexNet and ResNet50, in the context of multi-class classifica-
tion. Below are some details about these two popular models:

5.2.2.3.1 AlexNet

AlexNet is indeed a groundbreaking CNN architecture developed by Alex Krizhevsky et
al. in 2012 [223]. Its success in winning the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) was a significant milestone in the field of computer vision and deep
learning. AlexNet’s architecture includes eight weight layers, with the first five being con-
volutional layers and the last three fully connected layers. These layers, combined with
techniques like ReLU activation, max-pooling, and dropout, contributed to its remark-
able recognition accuracy. Researchers have since built upon the principles introduced by
AlexNet to develop even more advanced deep learning models for various image classifi-
cation tasks. Details of the network architecture can be found in [223].

5.2.2.3.2 ResNet50

Indeed, ResNet, short for Residual Network, is a significant advancement in deep learning
and convolutional neural networks. It was introduced by Kaiming He and his team in 2015
and played a crucial role in winning the ILSVRC challenge [224]. ResNet is characterised
by its deep architecture, and there are several variants with different layer configurations,
such as ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152. ResNet-50, in
particular, contains 50 layers, including 49 convolutional layers and a fully connected layer.
The key innovation in ResNet is the use of residual connections, or skip connections, which
help address the vanishing gradient problem in very deep networks. This architectural
concept has since been adopted and adapted in many other deep learning models to enable
training of extremely deep neural networks. Details of the network architecture can be
found in [224].
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5.2.2.4 Performance evaluation materials and parameters

To validate the proposed model, EEG brain signal data from four distinct neurological
disorders - ASD, EP, PD, and SZ is utilised. These four datasets are employed to conduct
a five-class classification task, distinguishing between ASD, EP, PD, SZ, and HC using the
proposed method. The performance of the proposed approach is assessed using various
evaluation metrics commonly employed in this field of study. Further details about these
evaluation metrics are outlined below:

5.2.2.4.1 Classification performance measure

To mitigate potential bias in the model’s classification performance and provide a more
reliable estimate of the model’s overall accuracy on the entire dataset, a cross-validation
scheme is recommended in the literature [98], [182], [225], [226]. In this study, we have
employed a five-fold cross-validation technique to validate the performance of the proposed
models. In this approach, the dataset is divided into five roughly equal parts, with four
parts used for training the classifier and the remaining part for testing the trained system.
This process is repeated five times, ensuring that each image in the dataset is included in
the test set exactly once. This testing procedure is illustrated in Figure 5.6.

Figure 5.6: Overview of the used five-fold cross-validation technique.

The results generated from the five-fold cross-validation are utilised to assess the sys-
tem’s performance using six key parameters: sensitivity (Sen), specificity (Spec), precision
(Prec), F1 score (F1), accuracy (Acc), and the receiver operating characteristic (ROC)
curve. These metrics provide valuable insights into the classifier’s behaviour based on the
test data [98], [154], [181], [227]. The calculations for these six parameters involve the use
of four key values: true positive (TP), true negative (TN), false positive (FP), and false
negative (FN), as described in equations (5.11) through (5.15).

Sensitivity(Sen) =
TP

TP + FN
∗ 100 (5.11)

Specificity(Spec) =
TN

TN + FP
∗ 100 (5.12)
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Precision(Prec) =
TP

TP + FP
∗ 100 (5.13)

F1score(F1) = 2 TP

2 TP + FP + FN
(5.14)

Accuracy(Acc) =

∑n
i=1 TPi

TP + FP + TN + FN
∗ 100 (5.15)

The values of TP, TN, FP, and FN for multi-class classification can be determined
using the confusion matrix, as illustrated in Figure 5.7. In this figure, for class C, the TP
value is represented by green cells, FN is indicated by blue cells, TN is reflected in yellow
cells, and FP values are shown in orange cells. These values can be calculated similarly
for other classes.

Figure 5.7: Confusion matrix used for calculating the evaluation param-
eters for five class classification.

The ROC graph is a useful tool for visualising the classifier’s reliability. It is made by
plotting sensitivity (true positive rate) on the Y-axis and 1-specificity (false positive rate)
on the X-axis. These parameters provide insights into how classifiers will perform when
dealing with test data [98], [112], [154], [181], [228], [229].

5.3 Results and discussion

In this study, we have introduced a data mining framework for brain signal analysis using
spectrogram images and both ML and DL-based techniques. We applied this framework
to four EEG datasets related to neurological disorders (ASD, EP, PD, SZ) and conducted
a five-class classification task (ASD vs. EP vs. PD vs. SZ vs. HC). In this section, we
will provide a detailed overview of the results obtained and visualise the outcomes of our
experiments along with the experimental settings.

5.3.1 Experimental setup

In our methodology, we segmented the EEG data of each subject into 3-second segments
and then generated spectrogram images with a size of 112×112 pixels using the Short-
Time Fourier Transform (STFT) method. This process resulted in the creation of 5437
images from the ASD dataset (3825 ASD and 1612 HC), 2483 images from the EP dataset
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(1248 EP and 1235 HC), 1745 images from the PD dataset (864 PD and 881 HC), and
9752 images from the SZ dataset (5312 SZ and 4440 HC). The combined dataset consisted
of 19417 images, with five classes having 3825, 1248, 864, and 5312 images for the ASD,
EP, PD, and SZ classes, respectively, and all HC images from the four diseases combined
to form the normal class, containing 8168 images. Sample images from these five classes
are illustrated in Figure 5.8, where 5.8a, 5.8b, 5.8c, 5.8d, and 5.8e show sample images
from the ASD, EP, PD, SZ, and Normal classes, respectively.

Figure 5.8: Sample spectrogram images generated by the proposed
method for different datasets.

After generating the spectrogram images, we divided them into five approximately
equal sub-parts to facilitate 5-fold cross-validation for the proposed approaches. Each
experimental model was trained using four of these sub-parts, with the remaining sub-part
used for validation. This process was repeated five times to ensure that each sub-part was
used once for model validation. This 5-fold cross-validation approach allowed us to assess
the overall performance of the models on the entire dataset while mitigating issues related
to overfitting and bias in the results.

Image generation and ML-based classification were conducted using the MATLAB
(R2020a) environment on a computer equipped with an Intel Core i5 64-bit processor
operating at a frequency of 1.7 GHz and 8 GB of memory. For DL-based classification
experiments, we utilised the Google Colab1 environment. All models were trained for
50 epochs to avoid overfitting, and we employed mini-batch mode for batch size selection,
experimenting with three different batch sizes (32, 64, and 128) during the training process
of the models.

5.3.2 Results

This section comprises two parts, each discussing the results from the two different ap-
proaches employed in this proposed method: ML-based classification results and DL-based
classification results.

5.3.2.1 Machine learning based classification results

In this proposed brain signal data mining framework, two different histogram-based tech-
niques, cCENTRIST and tCENTRIST, are used to extract textural features from the

1https://colab.research.google.com/notebooks/intro.ipynb
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spectrogram images. Subsequently, PCA is employed to reduce the dimension of the ex-
tracted features. Finally, four ML-based classification techniques, namely SVM (LibSVM),
RF, LDA, and kNN (with k values ranging from 1 to 10), are employed to classify the re-
duced features separately for each feature extractor. A five-fold cross-validation technique
is utilised to validate the performance of the classifiers. Table 5.2 presents the average
results from five rounds of evaluations based on equations (5.11) to (5.15) for the four
classifiers. For kNN, the results for k=9 are provided as it yielded the best performance
among the ten different k settings tested.

Table 5.2 provides a comprehensive view of our results. Notably, when employ-
ing cCENTRIST-based feature extraction, kNN achieves the highest overall accuracy at
86.28%, while RF demonstrates the lowest overall accuracy among the four classifiers.
SVM and kNN exhibit similar accuracy levels, with LDA delivering moderate perfor-
mance in comparison. In terms of individual rounds, kNN reaches its peak accuracy of
86.69% during round 2, while RF exhibits the lowest performance with an accuracy of
77.13% in round 3.

On the other hand, when utilising tCENTRIST-based feature extraction, SVM emerges
as the top-performing classifier with the highest overall accuracy of 88.78%. LDA, con-
versely, yields the lowest overall accuracy at 72.46%, while kNN and RF achieve accuracy
levels of 87.96% and 76.21%, respectively. In individual rounds, SVM attains its high-
est accuracy of 89.13%, whereas LDA performs less optimally, achieving an accuracy of
72.01%.

Figure 5.9 visually illustrates the accuracy trends for the different classifiers and feature
extraction techniques across multiple rounds of the cross-validation process. These findings
underscore the critical role of selecting an appropriate combination of feature extraction
methods and classifiers to optimise classification performance in this context.

Figure 5.9: Round-wise accuracy comparison for different ML-based clas-
sifiers tested in this study.
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Furthermore, for a comprehensive assessment of classifier performance, we computed
the average accuracy over the five-fold cross-validation along with the standard deviation
(SD) for each combination of feature extraction method and classifier. These results are
depicted in Figure 5.10. Notably, SVM combined with the tCENTRIST-based feature
extraction method achieves the highest average accuracy at 88.78%, with a relatively low
SD value of 0.36, indicating consistent and robust performance. Conversely, LDA in com-
bination with tCENTRIST exhibits the lowest average accuracy of 72.46%, accompanied
by a slightly higher SD value of 0.39. These findings further emphasize the effectiveness
of SVM with tCENTRIST for classifying neurological disorders using EEG data.

Figure 5.10: Five-fold average accuracy with standard deviation for dif-
ferent ML-based classifiers.

To provide a comprehensive evaluation of classifier performance, we computed and
visualized sensitivity, specificity, precision, and F1 score for each classifier using the equa-
tions 5.11 - 5.15 and have made some comparative visualisations as shown in Figure 5.11,
5.12, 5.13 and 5.14.

The analysis of sensitivity values, as depicted in Figure 5.16, reveals important insights
into the performance of the classifiers. For the tCENTRIST-based feature extraction
approach, tCENTRIST+SVM achieves the highest single-round sensitivity of 89.58% and
an overall 5-fold average sensitivity of 88.44% (with a standard deviation of 0.69). In
contrast, tCENTRIST+RF exhibits the lowest single-round sensitivity at 58.95% and an
overall 5-fold average sensitivity of 59.64% (with a standard deviation of 0.72).

When considering the cCENTRIST feature extractor, SVM outperforms other classi-
fiers by achieving the highest 5-fold average sensitivity of 85.59% (with a standard devia-
tion of 0.49), while RF produces the lowest average sensitivity of 60.11% (with a standard
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Figure 5.11: Round-wise comparison of sensitivity values for different
ML-based classifiers.

deviation of 0.89). These results highlight that the tCENTRIST+SVM classifier demon-
strates greater sensitivity in detecting diseases compared to other classifiers, which is a
desirable characteristic in medical diagnostics. Sensitivity is particularly crucial for min-
imising false negatives, ensuring that individuals with conditions are correctly identified
and referred for further evaluation or treatment.

Figure 5.12: Round wise comparison of specificity values for different
ML-based classifiers.

Figure 5.12 illustrates the round-wise specificity of the ML-based classifiers. It is evi-
dent that SVM and kNN exhibit similar specificity values across the rounds for both feature
extractors. Specifically, tCENTRIST+SVM achieves the highest single-round specificity
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value of 96.73% and an overall 5-fold average specificity of 96.61% (with a standard devi-
ation of ±0.1).

Conversely, tCENTRIST+RF records the lowest single-round specificity at 91.85%
and the lowest overall 5-fold average specificity of 91.99% (with a standard deviation of
±0.12). A higher specificity value is indicative of the model’s ability to effectively distin-
guish healthy individuals from patients. In medical diagnosis, high specificity is essential
to minimise false positives and avoid unnecessary medical interventions for individuals
without the condition.

Figure 5.13: Round wise comparison of precision values for different clas-
sifiers.

Precision, a crucial measure in information retrieval and classification evaluations,
reflects the percentage of retrieved instances that are relevant. Figure 5.13 displays the
round-wise precision values for the different classifiers. From the plot, it becomes evident
that the RF classifier, despite its overall poor performance with both cCENTRIST and
tCENTRIST, tends to exhibit higher precision compared to other classifiers in most cases.
This phenomenon can be attributed to the fact that while RF has low sensitivity, the
images it identifies as patients are often correct, making its precision relatively high in
these cases.

Overall, tCENTRIST+SVM yields the highest 5-fold average precision of 89.51%
(±0.67), followed by tCENTRIST+RF with a precision value of 89.23% (±0.84). In
contrast, tCENTRIST+LDA produces the lowest average precision, at 69.66% (±0.51).
Precision is particularly important in the medical context, as it indicates the classifier’s
ability to correctly identify true positives while minimising false positives. High precision
ensures that when the model classifies an individual as having a particular condition, it is
highly likely that the individual indeed has the condition, reducing the chances of incorrect
diagnoses.
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Figure 5.14: Round wise comparison of F1 score values for different ML-
based classifiers.

The F1 score, which represents the harmonic mean of precision and recall, is a critical
measure for evaluating classifier performance. Figure 5.14 illustrates the round-wise F1
scores for the tested classifiers. The F1 score is particularly valuable in situations where
there is an imbalance between positive and negative classes or when both precision and
recall need to be considered.

From the plot, it is evident that the SVM classifier consistently outperforms the other
classifiers in terms of F1 scores across all rounds. Overall, tCENTRIST+SVM achieves
an average F1 score of 0.89 (±0.009), demonstrating its robustness in achieving a balance
between precision and recall. In contrast, kNN exhibits an average F1 score of 0.84
(±0.005), and RF lags behind with the lowest average F1 score of 0.66 (±0.01). A high
F1 score indicates that the classifier effectively combines precision and recall, making it a
suitable choice for applications where both false positives and false negatives need to be
minimised.

To assess the classifiers’ performance comprehensively, we have constructed ROC
curves by plotting sensitivity (true positive rate) against 1-specificity (false positive rate).
Figure 5.15 displays the ROC curves for the classifiers employed in this study.

From the ROC curves, it is evident that the curve for the tCENTRIST+SVM classifier
is positioned at the top, indicating the highest sensitivity among all the classifiers. This
suggests that tCENTRIST+SVM excels at correctly identifying positive cases (patients)
while minimising false negatives. In contrast, the ROC curve for tCENTRIST+RF is
situated lower, reflecting its lower sensitivity compared to other classifiers, resulting in
a lower true positive rate. The ROC curve analysis provides valuable insights into each
classifier’s ability to discriminate between different classes and make informed predictions.
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Figure 5.15: Comparison of ROC graphs for different ML-based classifiers
tested in this study.

5.3.2.2 Deep learning based classification results

In our study, we have conducted experiments using three different models: the proposed
model, AlexNet, and ResNet50, applying a five-fold cross-validation technique. The mod-
els were trained for 50 epochs to optimise their performance while avoiding overfitting.
We have also investigated the impact of different batch sizes (32, 64, and 128) on the
models’ results and compared their performance. To evaluate the results comprehensively,
we computed five key metrics: sensitivity (Sen), specificity (Spec), precision (Prec), F1
score (F1), and accuracy (Acc). Tables 5.3, 5.4 and 5.5 provide disease-specific, batch-
wise average sensitivity, specificity, precision, F1 score, and accuracy values over five-fold
for the proposed models, AlexNet and ResNet50, respectively. Overall average values are
highlighted in bold.

Table 5.3: The average performance results using a five-fold cross-
validation approach for the proposed model in a multi-class classification

scenario.

Diseases Batch Size 128 Batch Size 64 Batch Size 32
Sen% Spec% Prec% F1 Acc% Sen% Spec% Prec% F1 Acc% Sen% Spec% Prec% F1 Acc%

ASD 98.82 99.59 98.33 0.99

98.49
±0.19

99.03 99.6 98.39 0.99

98.49
±0.21

98.7 99.61 98.44 0.99

98.20
±0.28

EP 97.77 99.91 98.73 0.98 98.08 99.86 97.94 0.98 96.47 99.85 97.73 0.97
Normal 98.43 98.88 98.46 0.98 98.28 98.93 98.52 0.98 98.35 98.44 97.87 0.98
PD 99.08 99.92 98.42 0.99 98.38 99.95 98.97 0.99 97.71 99.94 98.83 0.98
SZ 98.42 99.48 98.63 0.99 98.52 99.46 98.57 0.99 98.12 99.46 98.57 0.98
Avg 98.5 99.56 98.51 0.98 98.46 99.56 98.48 0.99 97.87 99.46 98.29 0.98

Table 5.3 provides insights into the performance of the proposed model with different
batch sizes. Here are the key observations:

Accuracy Improvement: The proposed model exhibits an increase in accuracy as
the batch size increases. Specifically, it achieves an accuracy of 98.20% (±0.28) for a batch



Chapter 5. Multiple Disease Classification Using a Single Framework 119

size of 32. This accuracy improves to 98.49% (±0.21) when the batch size is increased to
64. Interestingly, even with a batch size of 128, the accuracy remains at 98.49%, but the
standard deviation (SD) decreases to ±0.19 from ±0.21.

Batch Size Effect: This suggests that the proposed model’s performance benefits
from larger batch sizes, as indicated by the improved accuracy and reduced variability
(SD) with batch size 64 and 128. However, there is no further accuracy improvement
beyond a batch size of 64.

Overall, increasing the batch size appears to enhance the performance stability of the
proposed model without compromising accuracy, as demonstrated by the reduced SD for
larger batch sizes.

Table 5.4: The average performance results using a five-fold cross-
validation approach for the AlexNet model in a multi-class classification

scenario.

Diseases Batch Size 128 Batch Size 64 Batch Size 32
Sen% Spec% Prec% F1 Acc% Sen% Spec% Prec% F1 Acc% Sen% Spec% Prec% F1 Acc%

ASD 89.77 92.81 81.66 0.84

72.98
±7.30

87.06 96.72 87.09 0.87

82.52
±4.47

91.24 98.88 95.65 0.93

90.07
±2.85

EP 51.96 96.42 84.41 0.49 69.26 99.13 86.00 0.75 76.95 99.74 96.26 0.84
Normal 80.18 74.45 69.82 0.74 81.93 88.35 84.88 0.82 95.18 88.28 85.98 0.90
PD 48.19 98.35 81.00 0.50 62.09 99.62 91.10 0.72 81.06 99.39 90.13 0.84
SZ 58.97 97.88 92.14 0.71 86.54 90.48 80.84 0.82 86.10 98.07 94.89 0.90
Avg 65.82 91.98 81.8 0.65 77.37 94.86 85.98 0.8 86.1 96.87 92.58 0.88

Table 5.4 provides insights into the performance of AlexNet with different batch sizes.
Here are the key observations:

Accuracy Variation: AlexNet achieves the highest accuracy of 90.07% with a batch
size of 32. However, as the batch size increases to 64 and 128, the accuracy decreases
significantly to 82.52% and 72.98%, respectively.

Standard Deviation: The SD of the accuracy increases as the batch size increases.
For batch size 32, the SD is 2.85, which rises to 4.47 for batch size 64 and further increases
to 7.30 for batch size 128.

Overall, these results indicate that, in the case of AlexNet with this dataset, increasing
the batch size not only leads to a decrease in accuracy but also results in higher variability
(SD) across the five-fold cross-validation, suggesting that a smaller batch size may be more
suitable for this model and dataset combination.

Table 5.5: The average performance results using a five-fold cross-
validation approach for the ResNet50 model in a multi-class classification

scenario.

Diseases Batch Size 128 Batch Size 64 Batch Size 32
Sen% Spec% Prec% F1 Acc% Sen% Spec% Prec% F1 Acc% Sen% Spec% Prec% F1 Acc%

ASD 97.74 99.04 96.25 0.97

96.41
±1.45

95.43 99.20 96.76 0.96

94.78
±4.15

98.65 99.46 97.81 0.98

98.23
±0.95

EP 93.84 99.23 91.12 0.92 90.47 99.65 94.48 0.92 95.86 99.89 98.33 0.97
Normal 96.74 97.18 96.14 0.97 95.12 95.18 93.93 0.94 98.62 98.45 97.93 0.98
PD 95.07 99.92 98.31 0.97 93.79 99.32 86.69 0.90 97.19 99.92 98.28 0.98
SZ 95.79 99.46 98.57 0.97 94.95 98.90 97.09 0.96 98.03 99.65 99.05 0.99
Avg 95.83 98.97 96.08 0.96 93.95 98.45 93.79 0.94 97.67 99.47 98.28 0.98

The performance of ResNet50 with different batch sizes is summarised in Table 5.5.
Here are the key observations:
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Accuracy Variation: ResNet50 achieves the highest accuracy of 98.23% with a batch
size of 32. However, as the batch size increases to 64, the accuracy decreases to 94.78%.
Surprisingly, with a batch size of 128, the accuracy increases slightly to 96.41%.

Standard Deviation: The SD of the accuracy remains relatively stable across dif-
ferent batch sizes, indicating consistent performance over the five-fold cross-validation.

Overall, these results suggest that ResNet50 is less sensitive to changes in batch size
compared to AlexNet with this dataset. However, a batch size of 32 appears to yield the
highest accuracy for ResNet50.

Figure 5.16: Fold-wise comparison of the sensitivity values for the three
tested DL-based models with different training batch sizes.

The sensitivity results for the proposed model, AlexNet, and ResNet50 for different
batch sizes are visualised in Figure 5.16. Here are the key observations:

Proposed Model Sensitivity: The proposed model consistently exhibits high sen-
sitivity across all batch sizes, with five-fold average sensitivity values of approximately
98.28% (batch size 32), 98.26% (batch size 64), and 98.33% (batch size 128). These values
indicate the model’s strong ability to correctly identify patients among the subjects.

ResNet50 Sensitivity: ResNet50 also maintains high sensitivity, particularly with a
batch size of 32, where it achieves a five-fold average sensitivity of approximately 97.67%.
The sensitivity slightly decreases with larger batch sizes (93.95% for batch size 64 and
95.83% for batch size 128). ResNet50 demonstrates robust performance in patient identi-
fication.

AlexNet Sensitivity: AlexNet, on the other hand, has lower sensitivity compared to
the proposed model and ResNet50. It exhibits the lowest single-fold sensitivity (59.54%)
for batch size 128, indicating a higher likelihood of misclassifying patients as healthy
subjects. The five-fold average sensitivities for AlexNet range from 65.82% (batch size
128) to 86.10% (batch size 32).
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Overall, these results highlight the superior sensitivity of the proposed model compared
to AlexNet and its competitive performance with ResNet50, especially when utilising larger
batch sizes.

Figure 5.17: Fold-wise comparison of the specificity values for the three
tested DL-based models with different training batch sizes.

Specificity, which measures the ability to correctly classify healthy subjects as such, is
crucial in medical diagnosis. Here’s an analysis of the specificity results for the proposed
model, AlexNet, and ResNet50 with different batch sizes, as shown in Figure 5.17:

AlexNet Specificity: AlexNet achieves a single-fold specificity as low as 89.65%
(batch size 32, fold 3) and as high as 99.70% (batch size 32, fold 5). However, its perfor-
mance varies significantly. The five-fold average specificity values for AlexNet are 96.87%
(batch size 32), 98.45% (batch size 64), and 98.97% (batch size 128). Although the average
specificity values are relatively high, the model exhibits variability in its performance.

ResNet50 Specificity: ResNet50 demonstrates a strong ability to correctly classify
healthy subjects, with a single-fold specificity ranging from 94.13% (batch size 128, fold
1) to 99.70% (batch size 32, fold 5). The five-fold average specificities for ResNet50 are
94.86% (batch size 32), 98.13% (batch size 64), and 98.98% (batch size 128). ResNet50
consistently delivers high specificity values.

Proposed Model Specificity: The proposed model consistently outperforms both
AlexNet and ResNet50 in terms of specificity. It achieves the highest single-fold specificity
values for all batch sizes and maintains very high specificity across the board. The five-fold
average specificities for the proposed model are 99.51% (batch size 32), 99.52% (batch size
64), and 99.55% (batch size 128). These results indicate that the proposed model excels
at correctly classifying healthy subjects, making it highly suitable for medical diagnosis.

Overall, the proposed model exhibits superior specificity compared to AlexNet and
ResNet50, demonstrating its effectiveness in ruling out healthy subjects from patients.
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Figure 5.18: Fold-wise comparison of the precision values for the three
tested DL-based models with different training batch sizes.

Precision, also known as positive predictive value, is crucial in classification tasks as
it indicates the validity of the results by measuring the percentage of correctly identified
patients among the retrieved group of patients. Here’s an analysis of precision results for
the proposed model, AlexNet, and ResNet50 with different batch sizes, as shown in Figure
5.18:

AlexNet Precision: AlexNet exhibits variable precision values across different batch
sizes, with the lowest precision of 81.80% (batch size 128) and the highest precision of
92.58% (batch size 32). The five-fold average precisions for AlexNet are 85.98% (batch
size 64), 85.97% (batch size 128), and 92.13% (batch size 32). While the average precision
values are moderate, AlexNet’s performance varies significantly.

ResNet50 Precision: ResNet50 demonstrates a higher and more consistent precision
compared to AlexNet. Its precision values range from 93.79% (batch size 64) to 98.28%
(batch size 32). The five-fold average precisions for ResNet50 are 96.08% (batch size 32),
94.93% (batch size 64), and 96.75% (batch size 128). ResNet50 consistently delivers high
precision values.

Proposed Model Precision: The proposed model consistently outperforms both
AlexNet and ResNet50 in precision, regardless of batch size. It achieves high and consistent
precision values, with an average precision of 98.60% (batch size 32), 98.41% (batch size
64), and 98.40% (batch size 128). The proposed model’s high precision indicates that it
correctly identifies patients with a very low rate of misclassification.

Overall, the proposed model exhibits superior precision compared to AlexNet and
ResNet50, demonstrating its ability to accurately identify patients while minimising the
misclassification of healthy subjects as patients.
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Figure 5.19: Fold-wise comparison of the F1 score values for the three
tested DL-based models with different training batch sizes.

The F1 score, which combines precision and recall, provides a comprehensive perfor-
mance measure for detecting patients in classification tasks. It is the harmonic mean
of precision and recall. Here’s an analysis of F1 score results for the proposed model,
AlexNet, and ResNet50 with different batch sizes, as shown in Figure 5.19:

AlexNet F1 Score: AlexNet exhibits varying F1 scores across different batch sizes.
The lowest F1 score is 0.654 (±0.067) achieved with batch size 128, indicating relatively
poor performance. The five-fold average F1 scores for AlexNet are 0.723 (batch size 64),
0.676 (batch size 128), and 0.793 (batch size 32). These values suggest that AlexNet’s
performance is inconsistent and less robust.

ResNet50 F1 Score: ResNet50 delivers higher and more consistent F1 scores com-
pared to AlexNet. The highest F1 score for ResNet50 is 0.978 (±0.013), indicating ex-
cellent performance, while the lowest F1 score is 0.834 (±0.041) for batch size 128. The
five-fold average F1 scores for ResNet50 are 0.946 (batch size 64), 0.915 (batch size 128),
and 0.969 (batch size 32). ResNet50 consistently provides robust F1 scores.

Proposed Model F1 Score: The proposed model consistently outperforms both
AlexNet and ResNet50 in F1 score, regardless of batch size. It achieves high and consistent
F1 scores, with an average F1 score of 0.984 (±0.005) for batch size 128, 0.981 (±0.004)
for batch size 64, and 0.982 (±0.004) for batch size 32. The proposed model’s F1 scores
indicate excellent and robust performance in detecting patients.

In summary, the proposed model consistently outperforms AlexNet and ResNet50 in F1
score, demonstrating its ability to provide robust and reliable results in detecting patients
across different batch sizes.

Figure 5.20 provides a comparison of fold-wise accuracy for the three tested models
with different batch sizes. Here’s an analysis of the accuracy results:
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Figure 5.20: Fold-wise comparison of the accuracy values for the three
tested DL-based models with different training batch sizes.

AlexNet Accuracy: AlexNet exhibits varying accuracy across different batch sizes
and folds. The lowest single-fold accuracy is 64.46% (batch size 128) in fold 3, while the
highest single-fold accuracy is 93.66% (batch size 32) in fold 5. AlexNet’s accuracy ranges
from 64.46% to 93.66% across different batch sizes and folds.

ResNet50 Accuracy: ResNet50 consistently delivers higher accuracy compared to
AlexNet. The lowest single-fold accuracy for ResNet50 is 87.69% (batch size 64), while
the highest single-fold accuracy is 98.92% (batch size 32). ResNet50’s accuracy ranges
from 87.69% to 98.92% across different batch sizes and folds.

Proposed Model Accuracy: The proposed model consistently outperforms both
AlexNet and ResNet50 in accuracy, regardless of batch size. The lowest accuracy for a
single fold is 98.09% (batch size 32) in fold 3, while the highest accuracy is 98.74% (batch
size 64) in fold 1. The proposed model’s accuracy ranges from 98.09% to 98.74% across
different batch sizes and folds.

In summary, the proposed model consistently outperforms AlexNet and ResNet50 in
accuracy, demonstrating its superior performance in accurately classifying patients and
healthy subjects. It provides high and consistent accuracy results across different batch
sizes and folds, indicating its robustness and reliability in detecting patients.

Figure 5.21 provides a comparison of the average accuracy with standard deviation
over the 5-fold for all the experiments. Here’s an analysis of the plot:

Green Bars (Average Accuracy): The green bars represent the average accuracy
for the three tested models (AlexNet, ResNet50, and the proposed model) with different
batch sizes. The proposed model consistently exhibits the highest average accuracy among
the three models, followed by ResNet50 and AlexNet.

Red Line (Standard Deviation): The red line shows the standard deviation of the
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Figure 5.21: Five-fold average accuracy with standard deviation for the
three tested DL-based models with different training batch sizes.

accuracy values over the five folds for each model and batch size combination. It provides
a measure of the variability or stability of the accuracy results. Notably, the proposed
model has a significantly lower standard deviation (0.19) compared to ResNet50 (0.95),
indicating that the proposed model’s classification results are more consistent and stable
over the full dataset.

In summary, the plot demonstrates that while ResNet50 achieves a similar average
accuracy to the proposed model, the proposed model outperforms ResNet50 in terms of
classification stability and consistency. This suggests that the proposed model is a robust
choice for classifying patients and healthy subjects with minimal variability in its accuracy
results.

Figure 5.22 presents the Receiver Operating Characteristic (ROC) curves for all the
models tested in the study. Here’s an analysis of the plot:

Proposed Model: The ROC curves for the proposed model with three different batch
sizes (32, 64, and 128) are shown. These curves are close to the ideal (0,1) point, indicating
that the proposed model performs well as a classifier for the dataset. ROC curves close to
the (0,1) point typically indicate strong classification performance.

ResNet50 and AlexNet: The ROC curve for ResNet50 with a batch size of 32 is
also close to the ideal point, suggesting good classification performance. However, for
other batch sizes of ResNet50 and for AlexNet, the ROC curves are noticeably below the
(0,1) point. This indicates that the performance of ResNet50 varies with batch size, and
AlexNet performs less effectively in classifying the dataset according to ROC analysis.
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Figure 5.22: Comparison of ROC graphs for the three tested DL-based
models with different training batch sizes.

In summary, the ROC curve analysis reinforces the idea that the proposed model is a
strong classifier for the dataset, particularly when compared to other models like ResNet50
and AlexNet, which exhibit varying performance depending on batch size.

5.3.3 Discussion of the deep learning based classification

The results of the three models clearly indicate that the proposed model outperforms the
other two models in terms of various performance evaluation criteria. Additionally, the
proposed model demonstrates its superiority in terms of model complexity and execution
time. Here’s a summary of the key findings:

5.3.3.1 Performance

The proposed model consistently outperforms ResNet50 and AlexNet in terms of sensitiv-
ity, specificity, precision, F1 score, and accuracy. It achieves the highest average accuracy
with a low standard deviation, indicating stable and robust performance.

5.3.3.2 Model Complexity

The proposed model has significantly lower complexity compared to ResNet50 and AlexNet.
Table 5.6 summaries the architectural aspects of the three CNN models. While ResNet50
has 50 hidden layers and over 23 million trainable parameters, AlexNet has 8 hidden layers
with over 41 million trainable parameters. In contrast, the proposed model has 5 hidden
layers with only 234,981 trainable parameters. This highlights the efficiency and simplicity
of the proposed model.
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Table 5.6: Comparative analysis of the architectural aspects among the
evaluated CNN models.

Model Layer Trainable parameters Training time/epoch
Alexnet 8 41,454,121 8-13s

ResNet50 50 23,628,677 25-56s
Proposed Model 5 234,981 5-6s

5.3.3.3 Execution Time

The proposed model demonstrates faster execution times compared to ResNet50 and
AlexNet. A comparison of the single epoch execution time of the three models is done in
the Google Colab environment and depicted in Figure 5.23. In a single epoch, ResNet50
with batch size 32 requires the highest execution time of 56 seconds, which reduces to 30
seconds for batch size 64 and 25 seconds for batch size 128. AlexNet’s execution times are
also higher, with 13, 10, and 8 seconds for batch sizes 32, 64, and 128, respectively. On
the other hand, the proposed model achieves much faster execution times, with 6, 5, and
5 seconds for the same batch sizes.

Figure 5.23: Comparison of the execution times of the three evaluated
CNN models for different training batch sizes.

In summary, the proposed model offers superior classification performance with a sim-
pler architecture and faster execution times compared to ResNet50 and AlexNet. These
findings highlight the efficiency and effectiveness of the proposed model for brain signal
data classification tasks.

5.3.3.4 Loss vs. accuracy graph

The loss vs. accuracy curves for the proposed model, ResNet50, and AlexNet provide
further insights into their performance and stability on the spectrogram image dataset.
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Figs. 5.24, 5.25 and 5.26 show the loss vs. accuracy graph for the proposed models,
ResNet50 and AlexNet, respectively. Figure 5.24 depicts that the proposed model exhibits
a smooth learning curve, with both training and validation losses steadily decreasing as the
number of epochs increases. Accuracy also shows a consistent improvement, approaching 1
(100%) as the epochs progress. These characteristics indicate the stability of the proposed
model on the dataset, and the convergence of loss and accuracy suggests that the model
effectively learns from the data without overfitting.

Figure 5.24: The evolution of accuracy and loss across epochs during the
training and validation of the proposed model.

In contrast, AlexNet and ResNet50 exhibit consistent and gradually improving train-
ing losses and accuracy as epochs progress. However, their validation losses and accuracy
exhibit pronounced fluctuations, indicating instability. When comparing the two mod-
els, it becomes evident that ResNet50 displays relatively lower instability in validation
loss changes over epochs compared to AlexNet. Nevertheless, both models experience
considerable fluctuations in validation accuracy throughout the training process.

5.3.3.5 Binary classification using the proposed model

Finally, to further evaluate the proposed model’s performance, we have conducted individ-
ual binary classification tasks on four disease datasets, namely PD vs. HC, ASD vs. HC,
EP vs. HC, and SZ vs. HC, using 5-fold cross-validation. Table 5.7 presents the fold-wise
sensitivity, specificity, precision, accuracy, and F1 score for the four binary classifications,
employing the proposed model with three different batch sizes.

From Table 5.7, it’s evident that the proposed model achieves exceptional performance
in these binary classifications. For instance, in the PD vs. HC task, it achieves 100%
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Figure 5.25: The evolution of accuracy and loss across epochs during the
training and validation of the ResNet50 model.

Figure 5.26: The evolution of accuracy and loss across epochs during the
training and validation of the AlexNet model.

accuracy in fold 3 and 4 across all batch sizes. Similarly, in the ASD vs. HC classification,
it achieves 99.91% accuracy in fold 3 with batch sizes 128 and 64. The EP vs. HC
classification demonstrates the highest accuracy of 99.80% in fold 5 with batch size 64,
while the SZ classification performs best with 99.49% accuracy in fold 2 with batch size



Chapter 5. Multiple Disease Classification Using a Single Framework 130

Table 5.7: The mean performance outcomes of the proposed model using
a five-fold cross-validation approach, while employing various batch sizes,

in a binary classification setting.

Batch Size 128 Batch Size 64 Batch Size 32
Disease Sen% Spec% Prec% F1 Acc% Sen% Spec% Prec% F1 Acc% Sen% Spec% Prec% F1 Acc%
PD vs Normal 99.64 99.88 99.89 1.00 99.77 99.64 99.89 99.88 1.00 99.77 99.75 99.64 99.68 1.00 99.71
ASD vs Normal 99.58 98.96 99.55 1.00 99.39 99.74 98.58 99.40 1.00 99.39 99.53 98.70 99.45 0.99 99.28
EP vs Normal 98.46 99.37 99.34 0.99 98.91 98.96 99.20 99.18 0.99 99.08 98.95 98.30 98.33 0.99 98.63
SZ vs Normal 99.11 98.96 98.77 0.99 99.02 99.08 99.01 98.85 0.99 99.05 98.76 99.06 98.87 0.99 98.92

64. These results underscore the model’s robustness and effectiveness in binary disease
classification.

5.3.3.6 Comparison with existing researches

Table 5.8 presents a comprehensive comparison of the proposed model’s binary classifica-
tion performance with existing works that have utilised the same datasets. It is evident
that the proposed method has achieved superior results across all diseases when compared
to the state-of-the-art approaches. This demonstrates the effectiveness and advancements
provided by the proposed model in the field of binary disease classification using EEG
data.

Table 5.8: Comparing our study with prior binary classification research
on four specific diseases that utilised same datasets.

Task Authors Method Accuracy%

ASD
vs

Normal

Alturki et al. [105] DWT, ShanEn, ANN 98.20
Ari et al. [141] sparse coding image, CNN 98.88

This study Spectrogram image, CNN 99.39

EP vs
Normal

Tawhid et al. [100] ConvLSTM 98.79
This study Spectrogram image, CNN 99.08

PD
vs

Normal

Anjum et al. [197] Linear-predictive-coding 85.70
Qiu et al. [230] Power spectral density, LeNet-5 96.31

This study Spectrogram image, CNN 99.77

SZ
vs

Normal

S.L. Oh et al. [150] CNN 98.07
Zülfikar et al. [231] Hilbert Spectrum image, VGG16 98.20

This study Spectrogram image, CNN 99.05

5.4 Summary

In this chapter, a comprehensive system has been developed for the multi-classification
of brain signal data related to multiple neurological disorders using a combination of T-F
spectrogram images and both ML and DL techniques. The unique aspect of this system
is its ability to classify multiple diseases within a single framework, addressing a gap in
existing research.
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The process begins with pre-processing the EEG data, including filtering for noise
reduction and artefact removal, followed by segmentation into smaller segments. T-F-
based spectrogram images are then generated from these segments using STFT, providing
a visual representation of the EEG data.

In the ML-based approach, textural features are extracted from these spectrogram im-
ages using two histogram-based feature extractors, cCENTRIST and tCENTRIST. PCA
is applied to reduce the dimensionality of these extracted features. Classification is carried
out using a variety of ML algorithms, including kNN with different k values, SVM, LDA,
and RF. The goal is to classify the features into one of five classes: ASD, EP, PD, SZ,
or HC. The results indicate that the tCENTRIST feature extractor, coupled with SVM,
achieved the highest classification accuracy of 88.78%. This was followed closely by kNN
with an accuracy of 87.96%. These outcomes highlight the effectiveness of the system in
accurately categorising EEG data related to neurological disorders.

In contrast, the DL-based approach, we have employed the spectrogram images as
input data for a novel CNN model, which is evaluated using three different batch sizes for
both multi-class (ASD vs. EP vs. HC vs. PD vs. SZ) and binary classification tasks (ASD
vs. HC; EP vs. HC; PD vs. HC; and SZ vs. HC). The proposed CNN model is compared
against two well-known CNN architectures, namely AlexNet and ResNet50, utilising the
same three batch sizes. Extensive experimentation is conducted using a five-fold cross-
validation approach to thoroughly evaluate the proposed method.

The experimental findings has revealed that the proposed CNN model has consistently
outperformed the other two popular CNN models. It has achieved an impressive overall
correct classification rate of 98.33% for four neurological disorders and an overall accuracy
of 98.49% for multi-class classification, demonstrating its superior performance. Further-
more, the proposed CNN model has exhibited significantly shorter training times compared
to AlexNet and ResNet50, making it a more efficient choice for practical applications. Ad-
ditionally, the stability of the loss vs. accuracy graphs for the proposed CNN model has
indicated its suitability for building a diagnostic system for multiple neurological disorders.

To further assess the performance of the proposed framework, binary classification
tasks are conducted using the datasets related to the four diseases considered in this
study. The results have showed that the proposed framework consistently outperformed
state-of-the-art techniques that utilised the same datasets, highlighting its effectiveness
and potential for clinical applications.

In conclusion, the obtained results reveal that this approach is robust and extensible
and can be used in studies involving EEG data and signal processing techniques. Notwith-
standing, the framework’s high classification accuracy indicates that an EEG data segment
as short as 3 seconds is enough for identifying these four diseases.

In the next chapter, we have addressed the third research question by developing a
generic framework for EEG signal classification that will work irrespective of disease or
dataset.
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Chapter 6

Convolutional Neural Network
Based Generic EEG Classification
Framework

In this chapter, we have developed a unified standard platform for diagnosing different
types of neurological disorders utilising electroencephalogram (EEG) signal data to ad-
dress the third research problem (RP3). Here, we have developed a Generic EEG neural
Network (GENet) framework based on convolutional neural networks that can identify
various NDs from EEG. The proposed framework consists of several parts: (1) preparing
data using channel reduction, resampling, and segmentation for the GENet model; (2) de-
signing and training the GENet model to carry out important features for the classification
task; and (3) assessing the proposed model’s performance using different signal segment
lengths, several training batch sizes, and the cross-validation technique on seven different
EEG datasets of six distinct NDs named schizophrenia, autism spectrum disorder, epilepsy,
Parkinson’s disease, mild cognitive impairment, and attention-deficit/hyperactivity disor-
der. In addition, this study also investigates whether the proposed GENet model can
identify multiple NDs from EEG. The proposed model achieved much better performance
for both binary and multi-class classification compared to state-of-the-art methods.

The contents of this chapter is under review in IEEE Transactions on Cognitive and
Developmental Systems.

6.1 Introduction

Neurological disorders (NDs) are a set of diseases that damage both the central and pe-
ripheral nervous systems and include everything from neurodegenerative to neurodevel-
opmental and psychiatric conditions [204]. There are more than 600 types of NDs in the
world [1]. Commonly known NDs include schizophrenia (SZ), Parkinson’s disease (PD),
mild cognitive impairment (MCI), epilepsy (EP), Alzheimer’s disease (AD), and dementia
[204]. Additionally, cerebrovascular diseases such as stroke, migraine and headache-related
diseases, brain tumours, and developmental disorders such as autism spectrum disorder
(ASD) and attention deficit/hyperactivity disorder (ADHD) are also classified as NDs
[204]. NDs have a huge impact on patients’ quality of life and increase their mortality
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risks. According to the World Health Organisation (WHO), one in three people may ex-
perience the onset of a neurological disorder (ND) at some stage of their lives, making it
the second biggest cause of mortality and the primary source of disability [1]. In addition,
it is believed that extreme poverty and growth stunting cause 43% of children under the
age of five in middle and low-income countries to fall short of their developmental po-
tential, which will result in financial losses and projected annual earnings that are 26%
lower in their adulthood [1]. Early detection and treatment can improve the health status
of ND patients; however, diagnosing ND at an early stage is difficult due to the lack of
computer-aided diagnosis (CAD) systems and the shortage of mental health professionals.

The majority of these brain diseases are typically diagnosed by expert clinicians us-
ing visual examination of brain activity captured by various methods such as magnetic
resonance imaging (MRI), functional magnetic resonance imaging (fMRI), positron emis-
sion tomography (PET), electrocorticography (ECoG), and EEG [22], [162], [163]. EEG
is the most extensively utilised of these techniques due to its excellent temporal resolu-
tion, availability, non-invasiveness, economical set-up costs, and widespread availability
for professionals [18]. EEG captures the electrical activities of neurones in the human
brain as signal data, and those signals are then visually analysed by the expert clinicians
for identification of NDs. This visual analysis process is subjective, lengthy, error-prone,
and difficult due to the overlapping features for different diseases, which may lead to mis-
diagnosis [19]. Additionally, the availability of neurologically trained workers differs by a
factor of 70 between high- and low-income countries (1 versus 70 for 100,000 people) [1].
As a result, the development of CAD systems will aid doctors and improve ND diagnosis
at earlier stages.

Several researchers have published a number of studies on EEG signal classification in
recent years [98], [141], [154], [155], [232]–[236], but they have a major drawback of adapt-
ability. Because of the disease-specific features, a method proposed to deal with a specific
EEG classification problem may not be totally efficient in its identical configurations for
the EEG signal classification problem of another disease. This is due to the nonstationar-
ity, non-linearity, and strong localisation in the temporal, spectral, and spatial dimensions
of the EEG signal [22]. For every ND like SZ, PD, ADHD, MCI, EP, and ASD, the un-
derlying characteristic of EEG has distinct periodical and statistical properties, making
it challenging to examine with a detection method created for a different ND. Therefore,
the motivation of this research is to provide a unified process for EEG signal classification
that is adaptable and effective for a wide range of EEG challenges.

With the advancement of technology, CAD has become an important part of the
medical industry. Several studies have been conducted to diagnose NDs using EEG data.
EEG signal classification techniques can be broadly classified into two categories based on
the used feature extraction and classification approaches, namely machine learning (ML)-
based classification and deep learning (DL)-based classification. In ML-based techniques,
handcrafted features like statistical and nonlinear parameters are extracted from the time,
frequency, and time-frequency domains, and different ML-based classifiers are used to
perform categorisation on those extracted features. ML-based classification of EEG signals
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is carried out in several studies for identification of SZ [92], [154], [190], MCI [98], PD [232],
ASD [79] and ADHD [237]. This process requires experts in those feature domains for the
analysis of EEG data.

In DL-based classification, several DL models exist, like convolutional neural networks
(CNN), long short-term memory (LSTM), recurrent neural networks (RNN), and gated
recurrent units (GRU), among which CNN is widely used for image and signal process-
ing, natural language processing, and data analytics [90]. CNN is generally less sensitive
to noise and can extract useful information from noisy input [222]. Although CNN has
been proven extremely effective for image classification, it has also demonstrated efficiency
in EEG signal categorisation. Previously, CNN-based EEG data classification was com-
pleted for SZ [155], EP [92], [233], PD [92], [198], [234], ASD [90], [92], [141], MCI [235]
and ADHD [236] and had good classification accuracy. However, those studies focused on
single disease identification, which makes their multi-disease applicability an issue. More-
over, most of the studies have converted the EEG signals to visual representations or
extracted handcrafted features before classifying them using the CNN model. Due to this
handcrafted feature extraction and signal visualisation, the CNN model cannot learn the
significant features that it can extract from the raw EEG data. This study addresses this
gap by using raw EEG signal data as input for the CNN model.

In this study, we have developed a CNN model based on the Generic EEG Neural
Network (GENet) that can categorise EEG signals from different NDs. Furthermore, we
have used the raw EEG data as an input to the GENet model so that the deep learning
process can self-learn the significant features from the EEG signal. At first, the raw EEG
data are pre-processed to make those signals ready for input into the GENet model. To
do that, we have reduced the total number of channels to 19 channels according to the
international 10-20 standard [42], [238] and resampled the signals to 256 Hz. Then, to use
the short-term features of the EEG signal, we have segmented the signals into small time
frames. Here, we have tested three different segment lengths to check the impact of the
signal segment length on the detection process. Finally, the GENet model was trained
using those signals and performed the classification task. Seven different EEG datasets
from six different NDs have been used to validate the proposed model. We have also
performed a five-class classification using four datasets from among those seven datasets.
A five-fold cross-validation technique is used to remove any biases in the results. Results
from this study are compared with existing state-of-the-art studies that have used the
same EEG datasets.

The major contributions of this study are compiled as follows:

1. A new framework is developed to address the challenge of multi-disease scalability
in existing studies.

2. For the first time, a generic EEG classification framework using the CNN model
is introduced for identifying different NDs, and the scalability of the framework is
validated using seven distinct datasets representing six major NDs.
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3. The proposed framework is extended for multi-disease classification problems to
address the gap in this study type.

4. The proposed computerised system is validated using extensive experiments, includ-
ing classifier performance evaluations, layer-wise classification feature visualisation,
ablation studies, and comparative analysis with noteworthy recent research.

5. In both binary and multi-class classification situations, the suggested GENet model
outperforms the existing methods.

Details of the proposed method and results are discussed in the sections below.

6.2 Materials and proposed methods

In this section, the proposed framework, the datasets used to validate the framework, and
the evaluation parameters are introduced in detail. In subsection 6.2.1, we have discussed
details of the datasets that are used in this study, followed by the different processing
steps of the proposed framework in subsection 6.2.2. The proposed classification model
is presented in subsections 6.2.3 and 6.2.4 and finally, different evaluation parameters
and approaches are discussed in the subsection 6.2.5. Figure 6.1 illustrates the schematic
diagram of the proposed framework. A detailed discussion of those steps is given in the
below subsections.

Figure 6.1: An schematic diagram of the developed framework and steps
involved in the process. Four modules of the framework are discussed in

four subsections 7.2.1, 6.2.2, 6.2.3, and 6.2.4.

6.2.1 EEG data collection

In this research, we have used seven different publicly available datasets for six different
NDs, namely: ASD, ADHD, EP, PD, MCI, and two datasets for SZ. A brief description
of those datasets is given below:

• The first schizophrenia dataset (hereafter referred to as SZ1) that we have used in
this study was collected from the Kaggle website [239]. It contains 81 subjects (49
SZ and 32 HC). EEG data are recorded from 64 channels at a sampling rate of 1024
Hz during the task of pressing a button.

• The second Schizophrenia Dataset (hereafter referred to as SZ2) is comprised of 28
subjects (14 age- and sex-matched subjects from the SZ and HC groups) that were
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collected at the Institute of Psychiatry and Neurology in Warsaw, Poland [78]. The
signals are recorded in their resting state at a sampling rate of 250 Hz from 19
channels of a standard 10-20 EEG electrode system.

• Dataset of MCI is collected from cardiac catheterisation units of Sina and Nour
Hospitals, Isfahan, Iran [240]. This dataset consists of 27 subjects’ resting-state EEG
signals (11 MCI and 16 HC) that were recorded from 19 electrodes at a sampling
rate of 256 Hz.

• The ADHD dataset is recorded in the Psychology and Psychiatry Research Centre
at Roozbeh Hospital (Tehran, Iran). It has a total of 121 subjects, with 61 from
the ADHD group and 60 from the control group. Visual attention task-based EEG
recording is carried out on 19 channels using the standard EEG 10–20 system at a
sampling frequency of 128 Hz.

• The epilepsy dataset is collected at Universidade Federal do Para, Brazil, with 14
subjects (7 EP, 7 HC) [215]. EEG data is recorded at a 256 Hz sampling rate from
20 channels while the subjects are in a resting state.

• For PD, a dataset from the University of Iowa, United States, is used here [197].
This dataset has a total of 28 subjects (14 age- and sex-matched subjects from each
group). EEG signal data in the resting state is recorded from 64 channels at a
sampling rate of 500 Hz.

• The autism spectrum disorder dataset consists of 16 subjects (12 ASD, 4 non-ASD),
which were collected from King Abdulaziz University (KAU) Hospital, Saudi Arabia
[177]. Resting-state EEG data is collected from 16 channels at a sampling frequency
of 256 Hz.

Each dataset is chosen because of its distinctive underlying temporal and spectral
characteristics, which are critical for the development of a uniform EEG categorisation
model. But due to limited space availability, thorough descriptions of these datasets have
been excluded. Table 6.1 provides a summary of the participants’ demographic data for
different datasets. Details of those datasets can be found in [78], [177], [197], [215], [239],
[240].

6.2.2 Preparing data for the proposed model

In this step, we have completed some pre-processing of the EEG signals to make the
data ready for input into the proposed model. Here, the pre-processing of the raw EEG
signal consists of three sub-tasks: (i) picking the standard common channels to use in
the classification process. (ii) resampling the signals, and finally (iii) segmenting the
signals into small time-frame blocks. Details of those steps are discussed in the following
subsections:
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Table 6.1: Demographic information related to the datasets used in this
research.

SZ1 [239] SZ2 [78] MCI [240] ADHD [241] EP [215] PD [197] ASD [177]
Patients(P) (Male/Female) 49 (41/8) 14 (7/7) 11 61 (48/13) 7 (4/3) 14 (6/8) 12 (9/3)
Normal(N) (Male/Female) 32 (26/6) 14 (7/7) 16 60 (50/10) 7 (4/3) 14 (6/8) 4 (4/0)
Patients Age range 40.02 ± 13.7 28.1 ± 3.7 66.4 ± 4.6 9.62 ± 1.75 32.86 ± 9.51 70.5 ± 8.35 12.5 ± 3.91
HCs Age range 38.38 ± 13.7 27.75 ± 3.15 65.3 ± 3.9 9.85 ± 1.77 32.86 ± 9.51 70.5 ± 8.35 11 ± 2.49
Sampling Frequency 1024 256 256 128 256 500 256
Resampled Frequency 256 256 256 256 256 256 256
Recorded no of channel 64 19 19 19 20 64 16
Used no of channel 19 19 19 19 19 18 16

Number of samples generated after signal segmentation
1 second segment (P/N) 14184/9324 15457/12716 21009/29931 9404/7466 3744/3707 2606/2657 11486/4848
2 second segment (P/N) 7083/4655 7725/6356 10503/14960 4683/3717 1872/1853 1299/1326 5737/2421
3 second segment (P/N) 4728/3108 5146/4235 6999/9972 3117/2471 1248/1235 864/881 3825/1612

Figure 6.2: Standard electrode locations used for EEG data recording
using the international 10-20 system.

6.2.2.1 Channel reduction to use standard channel data

From Table 7.1, we see that the number and position of the recording channels vary from
dataset to dataset. To prepare those data for input into the proposed CNN model, we
have selected the channels that are common to the datasets and also standard for EEG
signal analysis. To do so, we have selected the most widely used 19 channels (Fp1, Fp2,
F3, F4, F7, F8, C3, C4, T3/T7, T4/T8, P3, P4, T5/P7, T6/P8, O1, O2, Fz, Cz, Pz)
from the international 10-20 system [42], [238] as shown in Fig 6.2. For the PD dataset,
although it has recorded 64 channels, it was missing the Pz channel in those 64 channels,
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and for the ASD dataset, the original dataset only contains 16 channels of EEG recording.
As a result, we modified our proposed model to accept 18 and 16-channel data as input
for the classification of PD and ASD, respectively.

6.2.2.2 Resampling the signals to a standard frequency

After channel selection, the next thing we did was resample all the datasets to a common
frequency band so that they could be input into the proposed model. From Table 7.1 we
can see that four datasets have a 256 Hz sampling rate, which is a widely used sampling
frequency for EEG data and computationally less expensive compared to high-frequency
bands [200]. We have also chosen this frequency band as the standard for the proposed
model and converted all other datasets to a 256 Hz sampling rate.

6.2.2.3 Segmentation of the EEG signals

Data scarcity is a major issue in the field of EEG signal analysis using deep learning-based
techniques. This issue is often solved by researchers using segmentation techniques. In
this process, original EEG data are segmented into small informative segments and given
the same level as the original one, which results in an increase in data sample size with
an equal ratio [79], [153]. In this study, we have tested three different segment lengths
(one second (1s), two seconds (2s), and three seconds (3s)) to check the effect of segments
on the classification process as well as the minimum length of the EEG signal, which is
enough for representative feature extraction and disease classification. In the bottom three
rows of Table 7.1, we have given the total number of samples generated after segmentation
of 1s, 2s, and 3s, respectively.

6.2.3 Proposed Generic EEG neural Network (GENet) model

In this study, we have developed a CNN model named GENet to perform classification
of the raw EEG signal data. We have used the CNN model as it is usually less sensitive
to noise and can extract useful information from noisy input by learning suitable features
on its own using convolutional kernels, filtering, pooling, and nonlinear activation opera-
tions, and classifying data into different categories [222]. An architectural diagram of the
proposed GENet model is shown in Figure 6.3.

The GENet model contains seven convolution (Conv2D) layers, three max-pooling
(MaxPooling2D) layers, four dropout layers, and a fully connected (FC) layer. Table 6.2
lists the details of the configuration of those layers. The Conv2D layer consists of multiple
kernels for feature extraction, and the local connection and weight sharing characteristics
are used to reduce network parameters and overfitting. Conv2D layer operations can be
defined using (6.1) which involves multiplying input data with a convolutional kernel and
adding an offset, with the kernels sequentially scanning the input data of the upper layer
[242].
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Figure 6.3: GENet: the proposed CNN model.

y(i, j) =
n∑

k=1

m∑
l=1

ω(k, l)x(i − k, j − l) + b (6.1)

Where y(i, j) is the ith row and jth column output feature map, w(k, l) is the filter
weights, x(i − k, j − l) is the input data, and b is the bias term. The first two Conv2D
layers of the GENet model have 16 filters with a kernel size of (3 × 3) and a stride of
one pixel. After each convolutional layer, the activation function is utilised to activate
the node’s summed input. Here, Rectified Linear Unit (ReLU) is used, which has a linear
identity for all positive values and assigns zero to all negative values using (6.2) on input
x [242]. ReLU has the benefit of good generalisation with less computational cost.

R(x) = max(0, x) (6.2)

Following those two Conv2D layers is a max-pooling layer with a pool size of (1 × 2)
and a stride of (2 × 2). Pooling layers are used to downsample the output from the
convolution layer to reduce the dimensionality of the feature maps and introduce some
degree of translation invariance [242]. The most common pooling operation is max pooling,
which selects the maximum value from a local neighbourhood using (6.3).

yi,j,k = max
m,n

xi×s+m,j×s+n,k (6.3)



Chapter 6. Convolutional Neural Network Based Generic EEG Classification Framework140

where yi,j,k is the output of the kth feature map at position (i, j), xi×s+m,j×s+n,k is
the input at position (i × s + m, j × s + n) and the kth feature map, and s is the stride.

Following the pooling layer, we have used a 25% dropout layer to regularise the CNN
model and avoid overfitting issues. At each training epoch, a random portion of the layer’s
nodes are dropped out (set to zero) via Dropout. As a result, the risk of overfitting is
reduced, and the network is forced to learn more robust features.

The third and fourth Conv2D layers have 32 filters with (3 × 3) kernels and one pixel
stride. These two Conv2D layers are also followed by a MaxPooling2D layer with pool
size and stride, both of which are (2 × 2), and a 25% dropout layer. The fifth, sixth,
and seventh Conv2D layers have 16 filters each with a kernel of (3 × 3) and one pixel
stride. Then there is a MaxPooling2D layer with a pool and stride of (2 × 2), followed by
a dropout layer of 25%.

The FC layer connects all the neurons from the previous layer to the output layer. It
accepts flattened output from the convolutional layers and performs a linear transforma-
tion of the input followed by an activation function [242]. The internal equation of the FC
layer can be denoted as (6.4).

yk = σ(
∑

i

wi,kxi + bk) (6.4)

where yk is the kth neuron’s output, σ is the activation function, wi,k is the weight
parameter connecting the ith input neuron to the kth output neuron, xi is the ith neuron’s
input, and bk is the bias parameter for the kth output neuron. We have used an FC layer
with 256 neurons that is activated by ReLU functions, followed by a 50% dropout layer.
Finally, the classification layer uses 2 or 5 neurons, based on the number of classes for
classification (binary or multi). The softmax activation function is used for this layer,
which uses (6.5) for internal calculation.

yi =
exi∑n

j=1 exj
(6.5)

where yi is the ith element of the output vector, xi is the ith element of the input
vector, and n is the size of the input vector.

We have used categorical cross-entropy as the loss function that measures the cross-
entropy loss between the labels and predictions and is used in classification problems
with two or more label classes. To minimise the loss function, the Adam algorithm, a
stochastic gradient descent (SGD) technique based on the adaptive learning rate of the
first- and second-order moments of the gradient average, is used as the optimiser. This
approach typically accelerates the model’s convergence and is more resistant to noise and
sparse gradients.

6.2.4 Classification using proposed GENet model

After feature extraction and GENet model training, the classification process is carried
out on the test cases in the final dense layer. For binary classification, this layer contains
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Table 6.2: Architectural details of the GENet model.

Layer # Filter Size Activation Option
Conv2D 16 3x3 ReLU padding=same
Conv2D 16 3x3 ReLU padding=same
MaxPooling2D 1x2 stride=2x2
Dropout 25%
Conv2D 32 3x3 ReLU padding=same
Conv2D 32 3x3 ReLU padding=same
MaxPooling2D 2x2 stride=2x2
Dropout 25%
Conv2D 16 3x3 ReLU padding=same
Conv2D 16 3x3 ReLU padding=same
Conv2D 16 3x3 ReLU padding=same
MaxPooling2D 2x2 stride=2x2
Dropout 25%
Flatten
Dense 256 ReLU
Dropout 50%

Dense (classifier) 2 (binary)/
5(multi) softmax

Total trainable params: 943,906

two neurons, while for multi-class classification, it has five neurons, as we have conducted
a five-class classification process by modifying the last layer. To evaluate the performance
of the GENet model in binary classification, we have tested it on seven different EEG
datasets from six distinct NDs shown in Table 7.1. Furthermore, to assess the performance
of the proposed framework on multi-class classification, we have performed a multi-disease
detection using four of the tested datasets (SZ2, MCI, EP, and ADHD) from Table 7.1.
In this case, we have merged all the HC subjects from those four datasets into one group
(HC) and performed a five-class classification process (SZ vs. MCI vs. EP vs. ADHD vs.
HC).

6.2.5 Performance evaluation criteria

The number of correct classifications may depend on the training set and the test set, so
cross-validation is one way to identify a model’s prediction accuracy and decrease over-
fitting [90]. A technique to achieve this is known as the k-fold cross-validation, which
starts by randomly dividing the dataset into k subsets of equal or nearly equal size, with
k-1 subsets used for training and the rest used for testing. This training and testing
process is repeated k times (k-fold), using a different subset for testing every time. Here,
we have evaluated the models’ performance using a 5-fold cross-validation technique.

Finally, to report the performance of the proposed framework, we have used five well-
known evaluation parameters in this field, which are sensitivity (Sen) or recall, specificity
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(Spec) or selectivity, precision (Prec), F1 score (F1), and accuracy (Acc). We have also con-
sidered the receiver operating characteristic (ROC) curve for validation purposes. These
criteria can be used to anticipate how classifiers would behave on test data [91], [98], [154],
[181], [194], [243].

6.3 Results and discussion

In this research, a generic framework is proposed for the classification of EEG data from
patients and healthy subjects. To validate the proposed model’s scalability, we have tested
it on seven distinct EEG datasets from six different NDs. The next subsection discusses
the detailed experimental setup for the proposed system, and the detailed results of the
experiments are discussed in the later subsections.

6.3.1 Experimental setup

As stated previously in the methodology section, after pre-processing, we have segmented
the EEG signals into small time frames. To check the impact of the segment length on
the proposed model, we tested three different segment lengths: 1s, 2s, and 3s. After
segmentation, an EEG signal trial forms a matrix of s × c, where s is the signal length
and c is the number of channels. s can be defined by l × f , where l is the segment length
(1s, 2s, or 3s) and f is the sampling frequency (256 Hz). Therefore, the CNN input matrix
sizes for 1s, 2s, and 3s segment lengths are 256 × 19, 512 × 19, and 768 × 19, respectively.

Afterword, the resulting signal populations are arbitrarily divided into five equal or
nearly equal subparts to carry out the 5-fold cross-validation for all the datasets. In this
cross-validation scheme, four out of five subparts are used to train the proposed model,
and the rest are used to validate it. This approach is repeated five times to verify that
each segment is used exactly once for testing the models. The results of this 5-fold cross-
validation method demonstrate the model’s overall performance on the entire dataset while
also reducing over-fitting and biassing issues.

The experiments are performed on a computer equipped with an Intel(R) Core(TM)
i5 CPU @ 1.7 GHz processor, 8 GB of memory, Windows 10 64-bit operating system, and
Google Colab1. The GENet model is trained for 50 epochs, as it starts overfitting after
that. Training batch size selection is done using mini-batch mode, a popular batch size
selection approach for faster learning [90]. We have tested four different batch sizes (32,
64, 128, and 256) during the training process of the proposed model.

6.3.2 Layer-wise feature visualisation of GENet

T-distributed stochastic neighbour embedding (t-SNE) is a non-linear dimension reduction
approach that projects multivariate data on a 2D or 3D space in an unsupervised manner
[244]. We have used t-SNE visualisation to generate two-dimensional (2D) representations
of the extracted features from each layer of the GENet model. This technique helps to

1https://colab.research.google.com/notebooks/intro.ipynb
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visualise the model’s layer-wise extracted features in the classification process. Figure 6.4
illustrates the feature visualisation from input to output layer of the GENet model for the
tested SZ2 dataset. For the sake of convenience, we have included a single fold’s t-SNE
plot with 300 test subjects. The figures show the 2D map of the multidimensional feature
vectors, with each symbol representing an individual sample from the test set.

Figure 6.4: Layer-wise classification process visualisation of the GENet
model using t-SNE images. Here, features from test subjects are plotted
from the input layer to the output layer for the tested SZ2 dataset. At the
input layer, there was no clear cluster between two classes (SZ vs. Normal),
but as the data progressed from the hidden layers to the output layer, it

formed two clearly separable clusters of two classes.

A t-SNE plot is a useful way to visualise how the extracted features of a classifier from
different categories cluster together and are well separable or not [244]. From Figure 6.4,
we can see that in the input layer projection, all of the feature points from the two classes
are randomly mixed up, and as the data passes through the layers of the GENet model,
it is clustered into two classes. Finally, in the t-SNE plot of the output layer, we can
see the completely separable clusters of the two groups (SZ vs. HC). Hence, from these
t-SNE images, we can claim that our proposed GENet model performs well on EEG data
analysis for anomaly detection.

6.3.3 Results

We have performed two types of classification tasks: binary and multi-class classification.
The detailed results of these two experiments are discussed below:

6.3.3.1 Binary classification

For binary classification, we have tested the performance of the proposed model on seven
different datasets from six distinct NDs. To check the impact of segment length, three
different segment lengths are tested: 1s, 2s, and 3s, and those results are compared.
Furthermore, to test the impact of the training batch size on the GENet model, we have
used four separate batch sizes (32, 64, 128, and 256) to train the model. Figure 6.5 plots
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the 5-fold average accuracy comparison for three segment lengths and four batch sizes on
the tested datasets. From the figure, we can see that for most of the cases, a segment
length of 1s produces the best classification accuracy compared to the other two segment
lengths. For this reason, further discussions of this study are based on 1s segment length.

Figure 6.5: Accuracy comparison of the GENet model for the three tested
signal segment lengths (1s, 2s, and 3s). Seven subplots represent seven
tested datasets (SZ1, SZ2, MCI, ADHD, EP, PD, and ASD). In each sub-
plot, four groups of bars represent four training batch sizes (32, 64, 128,

and 256).

To further evaluate the performance of the GENet, we have used four evaluation pa-
rameters that are popular in this field of study: sensitivity, specificity, precision, and F1
score. An experiment’s sensitivity (also known as recall, hit rate, or true positive rate)
refers to the classifier’s ability to correctly distinguish patients from healthy people. On the
other hand, the capacity of a test to correctly separate healthy participants from patients
is referred to as specificity (also known as true negative rate or selectivity). Precision, also
known as "positive predictive value" in the classification context, refers to the percentage
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Figure 6.6: A comparison graph of the four evaluation parameters (Sen,
Spec, Prec, and F1) with standard deviation for the GENet model. Each
subplot represents an evaluation parameter, and the x-axis has the seven
assessed datasets. For each dataset, we have four bars for four different

training batch sizes (32, 64, 128, and 256).

of true patients in the retrieved patient group. Finally, the F1 score is calculated by com-
bining the precision and recall values of a test result to determine the test’s performance
in finding patients. It is the harmonic mean of precision and recall. The performance of
a classification framework expects high values for those parameters.

Table 6.3: The GENet model’s performance, averaged over five-fold cross-
validation and presented with standard deviations, across seven evaluated

datasets while using four different training batch sizes.

Batch Datasets
size SZ1 SZ2 MCI ADHD EP PD ASD

32

Sen% 98.49±0.41 99.54±0.14 99.98±0.01 99.98±0.03 100.00±0.00 98.90±0.54 98.91±0.42
Spec% 98.64±0.65 99.45±0.14 99.99±0.01 99.97±0.04 100.00±0.00 99.77±0.09 97.55±0.65
Prec% 99.10±0.42 99.55±0.11 99.99±0.01 99.98±0.03 100.00±0.00 99.77±0.08 98.96±0.28
F1 0.99±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.99±0.01 0.99±0.00
Acc% 98.55±0.18 99.50±0.04 99.99±0.01 99.98±0.01 100.00±0.00 99.34±0.33 98.51±0.43

64

Sen% 98.71±0.15 99.65±0.11 99.98±0.01 99.96±0.05 100.00±0.00 98.32±0.92 98.73±0.63
Spec% 98.94±0.24 99.50±0.18 99.99±0.01 99.95±0.09 100.00±0.00 99.20±0.58 97.39±1.24
Prec% 99.30±0.15 99.59±0.14 99.99±0.01 99.96±0.07 100.00±0.00 99.19±0.59 98.90±0.51
F1 0.99±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.99±0.01 0.99±0.01
Acc% 98.80±0.08 99.58±0.11 99.99±0.01 99.95±0.06 100.00±0.00 98.76±0.72 98.34±0.63

128

Sen% 99.10±0.31 99.45±0.14 100.00±0.00 99.98±0.03 100.00±0.00 97.66±0.60 98.77±0.38
Spec% 98.40±0.29 99.54±0.12 99.99±0.01 100.00±0.00 100.00±0.00 99.05±0.27 96.87±2.03
Prec% 98.95±0.19 99.62±0.10 99.98±0.02 100.00±0.00 100.00±0.00 99.03±0.20 98.67±0.89
F1 0.99±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.98±0.00 0.99±0.00
Acc% 98.82±0.29 99.49±0.12 99.99±0.01 99.99±0.02 100.00±0.00 98.37±0.31 98.19±0.66

256

Sen% 98.63±0.42 99.53±0.09 99.99±0.02 99.94±0.07 100.00±0.00 97.34±1.21 97.85±0.98
Spec% 98.35±0.52 99.51±0.13 99.98±0.00 99.99±0.03 99.95±0.07 98.41±1.12 96.41±1.03
Prec% 98.91±0.34 99.59±0.11 99.97±0.01 99.99±0.02 99.95±0.07 98.39±1.08 98.48±0.44
F1 0.99±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.98±0.01 0.98±0.01
Acc% 98.51±0.22 99.52±0.03 99.98±0.01 99.96±0.03 99.97±0.04 97.87±0.76 97.42±0.91

Table 6.3 lists the five-fold average values with standard deviation (SD) of the perfor-
mance parameters for the tested datasets with four different training batch sizes. From
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Table 6.3, we can see that for most of the datasets, batch size variation has not had
that much impact on the model’s performance except for PD and ASD, where param-
eter values decrease with the increase in training batch size. For the tested dataset SZ
1, the highest sensitivity value of 99.10(±0.31)% is achieved for batch size 128 while the
best specificity and precision values of 98.94(±0.24)% and 99.30(±0.15)% (pm0.15) are
obtained for training batch size 64. A five-fold average highest accuracy 98.82(±0.29)%
is achieved using the training batch size of 128. In the case of the F1 score, all the tested
training sizes produce the same value of 0.99. For dataset SZ 2, the highest values for the
five evaluation parameters are 99.65(±0.11)%, 99.54(±0.12)%, 99.62(±0.1)%, 1.00(±0.00)
and 99.58(±0.11)% for the training batch sizes of 64, 128, 128, 256, and 64, respectively.

In MCI and ADHD datasets, our proposed model has achieved a five-fold highest accu-
racy of 99.99% with SDs of (±0.01) and (±0.02), respectively. It has obtained 100(±0.00)%
sensitivity and 99.99% specificity and precision with SD (±0.02) and (±0.01), respectively,
in the classification performance for the MCI dataset. On the other hand, for the ADHD
dataset, sensitivity is 99.98(±0.03)% and specificity and precision values are 100(±0.00)%.
For both datasets, F1 scores are 1.00. Among the tested datasets, for the EP dataset,
we have achieved an overall 100(±0.00)% classification accuracy for three batch sizes
(32, 64, and 128). For batch size 256, the performance of the model has decreased to
99.97(±0.04)%.

As mentioned in Table 6.1, both the PD and ASD datasets have a smaller number of
channels than other datasets (18 and 16 channels for PD and ASD, respectively), so we
have modified the input layer of the GENet model to perform the training and classification
processes. For those two datasets, categorisation performance decreases with the increase
in training batch size. For the PD dataset, the highest average accuracy 99.34(±0.33)%
is achieved using batch size 32, and for ASD it is 98.51(±0.43)%. The highest sen-
sitivity, specificity, precision, and F1 score values are 98.90(±0.54)%, 99.77(±0.09)%,
99.77(±0.08)% and 0.99(±0.01), respectively, for the PD dataset and 98.91(±0.42)%,
97.55(±0.65)%, 98.96(±0.28)% and 0.99(±0.00), respectively, for the ASD dataset.

The ROC curve is a good indicator of the classifier’s performance. If the curve of a
classifier is close to the point (0, 1), then it is considered to be a good classifier, while if
the curve is close to or below the diagonal line, then it is considered to be a poor classifier.
We have plotted the ROC curve of the GENet model for the seven tested datasets, as
shown in Figure 6.7. From the figure, we can see that for EP, MCI, and ADHD datasets,
the proposed model achieved perfect classification performance, and for other datasets,
the performance is near perfect. Such large areas under the ROC curves also prove the
scalability of the proposed EEG classification framework.

6.3.3.2 Multi-class classification

To further assess the performance of the proposed GENet model, we have performed a
multi-class classification using four datasets among the seven tested datasets that have
similar data sampling records. For this purpose, we have used the SZ 2, MCI, EP, and
ADHD datasets and modified the final layer of the GENet model to perform a five-class
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Figure 6.7: ROC graph of the GENet model on tested datasets.

(SZ vs. MCI vs. EP vs. ADHD vs. Normal) categorisation task. This multi-class
classification task is also evaluated using the five-fold cross-validation technique. The
performance of this classification task is also measured using the same five parameters
as for binary classification. Table 6.4 summarises the performance result of the GENet
model for multi-class classification over five-fold and for four different batch sizes (32, 64,
128 and 256).

From Table 6.4, we can see that for multi-class categorisation using GENet, increasing
the batch size increases the performance of the model. The proposed model has achieved
an accuracy of 99.75(±0.07)% with batch size 32, which has increased to 99.81(±0.04)%,
99.83(±0.02)% and 99.84(±0.05)% for batch sizes 64, 128, and 256, respectively. To further
inspect the impact of batch sizes on the individual folds, we have plotted the sensitivity,
specificity, precision, and accuracy values as a spider plot in Figure 6.8.

In the Figure 6.8, each axis of the graphs represents a testing fold, and the four coloured
areas represent four different tested batch sizes. From the Figure 6.8, we can see that for
a single fold, the highest sensitivity of 99.87% is achieved for fold 5 of batch size 256 and
fold 2 of batch size 64, while the lowest sensitivity value of 99.55% is obtained for fold 1
of batch size 32. In case of specificity, the highest and lowest values are 99.96% for fold 2
with batch size 256 and 99.88% for fold 1 with batch size 32, respectively. Fold 4 of batch
size 64 has produced the highest precision of 99.92% and fold 5 of batch size 32 has given
the lowest precision value of 99.64%. A single fold with the highest accuracy of 99.88%
is achieved for fold 2 of batch size 256, and the lowest accuracy of 99.68% is obtained for
both folds 1 and 5 of batch size 32.
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Table 6.4: The average performance results of the GENet model
in a multi-class classification scenario, obtained through five-fold cross-

validation.

Batch Size Sen% Spec% Prec% F1 Acc%

256

Normal 99.86 99.83 99.84 1.00

99.84

SZ 99.59 99.93 99.60 1.00
MCI 99.95 99.99 99.96 1.00

EP 99.76 99.99 99.90 1.00
ADHD 99.90 99.99 99.92 1.00
AVG 99.81 99.94 99.84 1.00

128

Normal 99.86 99.80 99.81 1.00

99.83

SZ 99.46 99.94 99.68 1.00
MCI 99.96 99.98 99.94 1.00

EP 99.79 99.99 99.89 1.00
ADHD 99.95 99.98 99.86 1.00
AVG 99.80 99.94 99.84 1.00

64

Normal 99.86 99.78 99.80 1.00

99.81

SZ 99.43 99.93 99.62 1.00
MCI 99.94 99.99 99.96 1.00

EP 99.79 99.99 99.89 1.00
ADHD 99.90 99.99 99.88 1.00
AVG 99.78 99.94 99.83 1.00

32

Normal 99.78 99.74 99.76 1.00

99.75

SZ 99.27 99.91 99.51 1.00
MCI 99.91 99.98 99.94 1.00

EP 99.78 99.99 99.87 1.00
ADHD 99.92 99.96 99.60 1.00
AVG 99.73 99.92 99.74 1.00

6.3.4 Discussion

In this study, a generic framework using the GENet model is proposed to classify NDs
using EEG data. GENet is a CNN-based model that is designed to take raw EEG signal
data as input and train its internal layers with the significant features of the data to
perform classification tasks. To reduce the manual process in the classification steps, we
have tried to develop a DL-based system so that it will extract and classify the features
automatically. We have also tried to minimise the pre-processing steps by just segmenting
the signals into small chunks and reducing the recording channels to make the EEG signals
ready for the GENet model. To prove the multi-disease scalability of the proposed GENet
model, we have evaluated it using seven different EEG datasets from six distinct NDs. We
have tested two different datasets (SZ1 and SZ2) of the same disease (SZ) as well as five
other datasets from five different diseases (MCI, ADHD, EP, PD, and ASD).
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settings and the obtained results are given in Table 6.5.

Table 6.5: Ablation study results on dataset SZ1 and SZ2.

Ablation methods Accuracy %
SZ1 SZ2

Baseline (no ablation) 98.82 99.58
Removed 2nd block 97.57 99.13
Removed 3rd block 97.40 99.07
Removed both 2nd and 3rd block 81.05 97.63
Added a duplicate of 2nd block before 3rd block 98.12 98.94
Doubled the filters in first block 98.13 98.95
Doubled the filters in 2nd block 98.05 98.96
Doubled the filters in last block 98.16 98.97
Halved the filters in first block 98.13 99.03
Halved the filters in 2nd block 98.37 99.09
Halved the filters in last block 98.10 98.94
Added a conv2d layer in first block 98.14 98.99
Added a conv2d layer in second block 98.09 98.98
SGDM optimiser used in place of Adam 98.62 99.45
AlexNet 91.62 99.03
ResNet18 93.83 98.94

Different types of ablation processes were tested, including adding or removing blocks,
increasing or decreasing the filters of the convolution layers of different blocks, and adding
convolution layers in different blocks. From Table 6.5, we can see that adding or removing
the blocks has a negative impact on the accuracy of the proposed system. For example,
removing both the 2nd and 3rd blocks drops the accuracy from 98.82% to 81.05% for SZ1,
while for SZ2, it drops from 99.58% to 97.63%. In the case of adding a single convolution
layer, adding it in the first block gives a better result than adding it in the second block.
On the other hand, changing the filters in the different blocks has a different effect. We
have tried both halving and doubling the filters in each block. Among the three blocks,
doubling the filters in the last block produces the best results, while halving the filters in
the second block produces the best results. We have also tested the SGDM optimiser in
place of Adam and got an accuracy of 98.62% and 99.45% for SZ1 and SZ2, respectively.
Moreover, we have also tested and reported on two popular CNN models, AlexNet and
ResNet18. All the tested ablation methods prove that the proposed GENet model gives a
better result than the other tested models.

6.3.4.2 Time complexity analysis

Table 6.6 shows the time-complexity analysis of the proposed GENet model on the two
tested SZ datasets. From the table, we can see that, with the increase in training batch
size, the time per epoch decreases, but there is not much of a steady pattern in the accuracy
and loss values of training and validation. Yet, considering the time complexity analysis,
batch size 128 may gain good classification accuracy with a smaller training time.
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Table 6.6: Analysis of the proposed GENet model’s time complexity for
two SZ datasets evaluated with various batch size configurations.

Dataset Batch
size

Time
/ epoch

Training Validation
Acc.% Loss Acc.% Loss

SZ1

32 6s 98.46 0.05 98.55 0.05
64 5s 98.94 0.03 98.80 0.05
128 4s 98.96 0.03 98.82 0.05
256 4s 98.77 0.04 98.52 0.06

SZ2

32 14s 99.49 0.01 99.50 0.04
64 6s 99.56 0.01 99.58 0.02
128 4s 99.57 0.01 99.49 0.02
256 4s 99.63 0.01 99.52 0.02

6.3.4.3 Data augmentation

Data augmentation is a quick way to add more labelled data to train a network and has
been extensively used in the context of deep learning [100]. Due to the structure of the
EEG signal, relatively few data augmentation methods can be applied while maintaining
equal power, frequency, and spatial components. We have employed the same seven data
augmentation methods as the authors in [100]: multiplication, frequency shift, adding
noise, flipping data, and a combination of those four approaches on the SZ1 and SZ2
datasets, and the obtained results on those augmented data are given in Table 6.7.

Table 6.7: Comparison of the accuracy of various data augmentation
methods applied to the SZ1 and SZ2 datasets.

Data augmentation methods Accuracy %
SZ1 SZ2

No augmentation 99.58 98.82
Multiplied signal (Multi) 99.88 99.67
Adding noise (Noise) 99.76 99.37
Flipping the data (Flip) 99.66 99.27
Frequency shifting (Freq) 99.82 99.47
Noise + Flip 99.83 99.53
Noise + Multi 99.86 99.70
Flip + Freq 99.84 99.56

Table 6.7 shows that data augmentation improves the proposed model’s performance
and demonstrates its robustness to perturbations.

6.3.4.4 Comparison with existing studies

Finally, to compare the performance of the proposed GENet model with existing state-
of-the-art (SoA) research work that has used the same datasets as we have used in this
study, we have listed the SoA works with our accuracy in Table 6.8.



Chapter 6. Convolutional Neural Network Based Generic EEG Classification Framework152

Table 6.8: Assessing the proposed GENet model in comparison to the
pre-existing state-of-the-art (SoA) studies that utilised the same datasets.

Dataset SoA Authors SoA Accuracy % Our Accuracy %
SZ1 Xiaojun et al. [245] 92.00 98.82
SZ2 Mehmet et al. [246] 99.47 99.58
MCI Siuly et al. [98] 98.78 99.99

ADHD Ali et al. [247] 89.70 99.99
EP Tawhid et al. [100] 98.79 100.00
PD Anjum et al. [197] 85.70 99.77

ASD Tawhid et al. [90] 99.15 98.51

From Table 6.8, we can see that, for datasets SZ1, SZ2, MCI, ADHD, EP, and PD, our
proposed model has outperformed the SoA’s accuracy. For the ASD dataset, our proposed
model produces an accuracy close to the SoA, which is maybe due to the fact that it has
fewer data channels (16) than other datasets (19) for which this GENet model is proposed.

6.4 Summary

Here, we have proposed a DL-based generic framework for classifying ND from EEG data.
Firstly, we have pre-processed the EEG signal data and segmented the EEG signals into
short time fragments. We have tested three different time segments (1s, 2s, and 3s) to check
the impact of the segment length on the detection process. Then, we have proposed a CNN
model named GENet to classify the segmented signals into healthy or disordered groups.
To assess the performance and scalability of the proposed framework, we tested it on seven
different EEG datasets from six different NDs and performed extensive experimental work
using 5-fold cross-validation.

Among the tested segment lengths, 1s data segment gives the highest classification
accuracy compared to the other two time segments. The proposed GENet model offers
higher classification performance for the seven tested datasets. For six of the seven tested
datasets, our proposed model achieved higher accuracy than state-of-the-art work using
those datasets. We have achieved an accuracy of 98.82%, 99.58%, 99.99%, 99.99%, 100%,
99.77% and 98.51% for datasets SZ1, SZ2, MCI, ADHD, EP, PD, and ASD, respectively.
We have also tested the proposed model for multi-class classification using four (SZ2, MCI,
EP, and ADHD) of the seven datasets to perform a five-class (SZ vs. MCI vs. EP vs.
ADHD vs. Normal) classification task and achieved an accuracy of 99.84%. Moreover,
we have analysed the t-SNE images of the proposed GENet model to check the extracted
features’ plotting and found that those features are clustered into separable classes. We
have also completed several ablation studies to validate the proposed GENet model.

Finally, the findings show that this method is versatile and may be applied to multi-
disease classification tasks using EEG data and other signal processing tasks.
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Chapter 7

Web Based System for
Schizophrenia Detection using
ConvLSTM based Subject
Independent Analysis

In this chapter, we have developed a web-based system for diagnosing SZ from EEG
data to address both the fourth and first research problem (RP1, RP4). Convolutional
LSTM (ConvLSTM) is a type of deep learning architecture that combines the concepts
of convolutional neural networks (CNNs) and long short-term memory (LSTM) networks
[248]. It is particularly well-suited for image and video processing tasks where spatial and
temporal dependencies need to be considered.

In a ConvLSTM, the convolutional operations are used to extract spatial features from
the input sequence, while the LSTM operations are used to model temporal dependencies
and to maintain a memory of the information over time. By combining these two types of
operations, the ConvLSTM can effectively capture both the spatial and temporal patterns
in sequential data, making it a useful tool for many applications, such as video prediction,
anomaly detection, and weather forecasting [248].

The structure of a ConvLSTM network typically consists of an input layer, one or
more ConvLSTM layers, and an output layer. The input layer receives the input se-
quence, which is then processed by the ConvLSTM layers. Each ConvLSTM layer has two
components: the convolutional component and the LSTM component. The convolutional
component uses convolutional filters to extract spatial features from the input, while the
LSTM component uses gates to control the flow of information and to maintain a memory
of the information over time.

7.1 Introduction

Schizophrenia (SZ) is a severe mental disorder that impairs a person’s capability for clear
thinking, feeling, and behaviour [190]. It is characterised by a variety of symptoms, includ-
ing hallucinations, delusions, disordered thinking, and abnormal behaviour. Schizophrenia
symptoms can be chronic or episodic, and they often first arise in late adolescence or early
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adulthood [249]. People with schizophrenia may experience auditory or visual hallucina-
tions, where they see or hear things that aren’t there, as well as delusions, where they hold
strong, false beliefs that are not based in reality. Worldwide, 24 million people are affected
by it, which 0.32% (1 in 300 people) of the total population, and in adults, this rate is
0.45% [13]. SZ reduces the life expectancy of people by 2 to 3 times that of the normal
population due to physical illnesses like cardiovascular, metabolic, and infectious diseases
[13]. SZ can be treated using long-term medication, but it puts a severe cost burden on
their families and on the health systems [249]. Moreover, it requires timely detection of the
severity and stage of the SZ to provide treatment [13]. As a result, there is an increasing
need to create an effective and automatic diagnostic system for differentiating SZ patients
from healthy control (HC) individuals.

Usually, SZ is diagnosed primarily through interviews and observations of patient be-
haviour by a qualified psychiatrist, but it takes time, is sometimes biassed, and is subject to
errors [249]. Therefore, recently, various brain activity imaging methods such as magnetic
resonance imaging, functional magnetic resonance imaging, positron emission tomography,
electrocorticography, and electroencephalography (EEG) have been used to diagnose SZ
[22], [91], [92], [162], [190]. EEG is the most widely used of these techniques because of
its excellent temporal resolution, availability, non-invasiveness, relatively low financial
costs, and general availability for professionals [79], [90]. The electrical activity of neu-
rones in the human brain is recorded by the EEG as signal data, and the signals are then
visually analysed by experienced clinicians to identify SZ. This visual analysis process is
time-consuming, subjective, error-prone, and difficult due to the overlapping features for
different diseases, which may lead to misdiagnosis [19]. Furthermore, the availability of
expert clinicians varies by a ratio of 70 between high-income and low-income nations (1
versus 70 per 100,000 people) [1]. As a result, a computer-aided automatic data analysis
system is necessary to produce an accurate and reliable diagnosis of SZ.

With the advent of technology, CAD has become a key component of the medical
business. In recent years, a number of studies on the classification of SZ from EEG signals
have been published by various academics [101], [150], [152], [154], [155], [157]–[159], [203],
[249]–[257]. Based on the feature extraction and classification methods used, EEG signal
classification techniques can be roughly divided into two categories: machine learning
(ML)-based classification and deep learning (DL)-based classification.

In ML-based approaches, statistical and nonlinear parameters are manually retrieved
from the time, frequency, and time-frequency domains of EEG data, and various ML-based
classifiers are then employed to categorise the extracted features. For example, Zhang [251]
used a combination of different statistical features with a random forest (RF) classifier to
perform classification on a dataset of 81 subjects using 10-fold cross validation (CV) and
achieved an accuracy of 81.10%. Khare et al. [250] used empirical wavelet transformation
(EWT) to extract the amplitude modulation-frequency modulation (AM-FM) components
of the signal, and then different time domain features were extracted and selected using
the Kruskal-Wallis test. Finally, different ML-based classifiers are used to perform the
classification, among which support vector machine (SVM) achieved the highest accuracy
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of 88.70% on the same dataset and cross-validation technique. Siuly et al. used empirical
mode decomposition (EMD)-based features with an ensemble bagged tree (EBT) classifier
to obtain a 10-fold average accuracy of 89.59% on the same database. Khare et al. used
flexible tuneable Q wavelet transform (FTQWT) scheme-based statistical features with
flexible least squares SVM (FLSSVM) to classify SZ from healthy controls (HC). 91.39%
average accuracy was obtained over a 10-fold CV for the same dataset. In another ap-
proach, Khare et al. developed an optimised model by combining robust variational mode
decomposition (RVMD) and an optimised extreme learning machine (OELM) classifier.
The proposed model obtained the highest accuracy of 92.93% over a 10-fold CV on an
81-subject dataset.

Buettner et al. used spectral analysis (SA) with an RF classifier and obtained an
accuracy of 96.77% on a dataset with 28 subjects using a 10-fold CV [152]. In order to
achieve instantaneous amplitude- and frequency-based mode functions, Krishnan et al.
[255] investigated the use of multivariate empirical model decomposition (MEMD). From
these mode functions, a number of entropy-based features are derived and chosen using
recursive feature selection. Using a 10-fold CV, they achieved an average accuracy of 93%
on the same dataset. Aydemir et al. [159] used the analysis of the complexity and higuchi
fractal dimension (HFD) features to classify it with the k-NN classifier and reported an
accuracy of 99.91% in 10-fold CV and 84.33% in leave one subject out (LOSO) validation.
This ML-based study used handcrafted feature extraction methods before classification,
which were chosen based on the expertise of the researcher. This manual feature extraction
approach is costly, time-consuming, and biased. Additionally, if data sizes are huge, these
approaches might not work correctly and occasionally perform poorly [249].

On the other hand, very few studies have used DL-based classification of SZ from HC
subjects. In this process, both the feature extraction and classification processes are carried
out automatically. Moreover, for large-scale data, DL-based models can automatically
extract and learn important features and use those features for classification. Khare et
al. [155] used smoothed pseudo-Wigner Ville distribution (SPWVD) to generate the time-
frequency representations (TFR) from EEG signals and feed them into a convolutional
neural network (CNN) model. Using a 10-fold CV on a dataset of 81 subjects, they
achieved an accuracy of 93.36%. Guo et al. [253] used CNN to classify electrical markers
of the EEG signal of SZ from HC and obtained an accuracy of 92% on the same dataset.
Siuly et al. [249] used filtering and deep learning feature extraction and classification
using GoogLeNet and achieved an accuracy of 95.09% with a 10-fold CV on a dataset
of 81 subjects. Oh et al. [150] used a custom CNN model to automatically extract and
classify features of EEG signals and obtained an accuracy of 98.07% for 10-fold CV and
81.26% for LOSO validation on a dataset of 28 subjects. Singh et al. [203] developed
a spectral feature-based model using Fast Fourier transform (FFT) and fed it into both
CNN and long short-term memory network (LSTM) models for classification of SZ. On a
dataset of 28 subjects with the holdout validation method, they achieved the best accuracy
of 98.96% using the CNN model. Shoeibi et al. [157] tested different ML and DL-based
models to classify SZ from HC subjects on the same dataset. Among the different models
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tested, they achieved the best accuracy of 99.25% using the CNN-LSTM model with a
5-fold CV. Tawhid et al. used an entropy topography-based EEG signal presentation
technique with CNN to classify SZ patients from HC. They tested their proposed model
on two datasets of 81 and 28 subjects and achieved an accuracy of 89.20% and 97.85%,
respectively.

Although several deep learning algorithms have been developed for SZ classification,
the majority of them concentrate on subject-dependent classifications, where a subset of
EEG data collected from a subject is used for training the model and another subset is
used for testing the trained model. However, high EEG variability exists between people
for the same brain activity due to anatomical and physiological differences between them
[258]. When machine learning algorithms are trained with EEG data from all partici-
pants except one for performance testing, the individual differences significantly degrade
the classification performance. Most of the SZ detection methods did not validate their
proposed models for subject-independent analysis. Moreover, the real-life classification
performance of a system can be accurately calculated using subject-independent analysis.
Additionally, as the DL-based studies are still limited and not all the models are explored
in the SZ classification, there is still scope for improvement in terms of efficiency and
performance. Therefore, in this research work, we have tried to address these issues by
developing a DL-based SZ classification system for subject-independent analysis.

In this study, we have developed a subject-independent SZ detection network (SIS-
DNet) using a DL-based two-dimensional (2D) convolutional long short-term memory
(ConvLSTM) model to classify 2D EEG data. We have used ConvLSTM, which combines
CNN and LSTM in a single layer, to extract spatiotemporal information from time-series
data, and to the best of our knowledge, this study is the first to use the ConvLSTM model
in SZ classification. At first, the raw EEG data are resampled to 256 Hz to make them
input-ready for the SISDNet. Then, to use the short-term features of the EEG signal, we
have segmented the signals into small time frames of 3 seconds (3s). Finally, the SISDNet
model was trained using those signals and performed the classification task. Two different
EEG datasets from SZ have been used to validate the proposed model. Along with the
subject-independent analysis, we have also evaluated the proposed model using the 10-fold
cross validation (CV) technique to compare the results with existing research. The results
obtained from this study are also compared with existing state-of-the-art studies that have
used the same EEG datasets.

The major contributions of this study are compiled as follows:

1. A noble framework using the DL-based ConvLSTM model is proposed for subject-
independent SZ classification.

2. For the first time, the ConvLSTM model is used for SZ classification from EEG data.

3. A web-based system is developed using the proposed classification framework for
clinical use.
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4. Performance of the proposed framework is validated using both LOSO and a 10-fold
CV.

5. Explore the performance on two different datasets of SZ disease.

6. Increase classification performance over existing approaches using the same dataset.

7. Validate the proposed ConvLSTM model using different ablation studies and layer-
wise t-SNE feature visualisation.

The rest of the chapter contains the details of the proposed method and the evaluation
results, along with a detailed discussion of the developed web system.

7.2 Methods and materials

In this research study, we have developed a ConvLSTM-based SZ classification framework
using EEG signal data. The proposed framework consists of several steps: first, EEG
data is collected from publicly available sources, and then those signals are segmented
into small time frames. After that, the proposed ConvLSTM model is trained using those
signal segments, and finally, the trained model is used to perform the classification on
the test datasets and calculate different evaluation parameter values. An overview of the
proposed framework is given in Figure 7.1. A detailed discussion of those steps is given in
the below subsections.

Figure 7.1: An overview illustration of the proposed framework and steps
involved in the classification process.

7.2.1 EEG data collection

Here, we have used two publicly available EEG datasets for SZ disease. A brief description
of those datasets is given below:
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• The first dataset (hereafter referred to as the Kaggle dataset) is collected from the
Kaggle website [239]. There are 81 participants in all; 49 of them are SZ sufferers
and 32 are HC. EEG data is recorded from 64 channels at a sampling rate of 1024
Hz during a task of pressing a button.

• Second Schizophrenia Dataset (hereafter referred to as the Warsaw Dataset) is com-
prised of 28 subjects (14 age- and sex-matched subjects from the SZ and HC groups)
that were collected at the Institute of Psychiatry and Neurology in Warsaw, Poland
[78]. The signals are recorded in the resting state at a 250 Hz sampling rate from
19 channels of a standard 10–20 EEG electrode system.

Each participant provided their informed consent to the publication of their data at
the time the data was gathered, and all of these datasets are openly available online.
The confidentiality of the participants was also protected by not posting any personally
identifiable information about the respondents; therefore, no ethical approval was required
for our study. Table 7.1 summarises the demographic data of the participants for the used
datasets. [78], [239] contains more information on those datasets.

Table 7.1: Demographic data for the datasets used in this study.

Datasets
Kaggle Warsaw

Patients (Male/Female) 49 (41/8) 14 (7/7)
Normal (Male/Female) 32 (26/6) 14 (7/7)
Patients Age range 40.02±13.70 28.10±3.70
HCs Age range 38.38±13.70 27.75±3.15
Sampling Frequency 1024 256
Resampled Frequency 256 256
Recorded no of channel 64 19
Used no of channel 64 19

Samples generated after segmentation
Segments (Patient/Nornal) 4728/3108 5146/4235

7.2.2 Segmentation of the EEG signals

In the field of EEG signal analysis using deep learning-based algorithms, data shortages
are a critical challenge. The segmentation approach is frequently used by researchers to
address this problem. This method increases the data sample size while maintaining an
equal ratio by segmenting the original EEG data into brief informative segments and giving
them the same level as the original one [79], [90], [91], [100], [153], [190], [194]. Similar to
the authors of [91], [100], [190], we have divided the signals in this experiment into three-
second (3s) time segments. After segmentation, 4728 and 5146 segments were generated
from SZ subjects for the Kaggle and Warsaw datasets, respectively, while for normal
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subjects, those numbers are 3108 and 4235, respectively. These numbers are reported in
the bottom row of Table 7.1.

7.2.3 Proposed Subject Independent Schizophrenia Detection neural
Network (SISDNet) model

We have used a DL-based ConvLSTM model to extract features from the EEG data and
conduct classification. ConvLSTM was designed to deal with precipitation nowcasting
by fusing LSTM with CNN [248]. It is appropriate for classifying EEG signals because
it can extract spatiotemporal information from time-series data. The ConvLSTM cell
was developed by replacing the internal matrix multiplication operation of LSTM with
convolution operations, which retain the dimensions of the data flowing through it and
also retain the spatial information of the data. ConvLSTM predicts a grid cell’s future state
based on the inputs and previous states of its nearby neighbours by using a convolution
operator in state-to-state and input-to-state transitions [248]. Internal operation of the
ConvLSTM cell consists of the following key equation 7.1:

it = σ(Wxi ∗ χt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi)

ft = σ(Wxf ∗ χt + Whf ∗ Ht−1 + Wcf ◦ Ct−1 + bf )

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ χt + Whc ∗ Ht−1 + bc)

ot = σ(Wxo ∗ χt + Who ∗ Ht−1 + Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct)

(7.1)

Here, χ1, χ2, ....., χt are cell inputs, C1, C2, ...., Ct are cell outputs, H1, H2, ...., Ht are
hidden states, it, ft, ot are the input, forget, and output gates; W is the weight matrix;
and ’*’ and ◦ denote the convolution operation and Hadamard product, respectively.

Here, we have developed a ConvLSTM model named SISDNet to perform classification
of the raw EEG signal data. The architecture of the proposed ConvLSTM model is given
in Figure 7.2.

The proposed model contains three ConvLSTM and two fully connected layers. The
first three ConvLSTM layers are followed by a batch normalisation layer and a 3D max-
poling layer, while the last two connected layers are followed by a batch normalisation
layer and a dropout layer. The number of filters in the first, second, and third ConvLSTM
layers is 32, 16, and 8, respectively, and for the fully connected two layers, those are 256
and 128. The kernel size of all ConvLSTM layers is 7x7, with a tangent hyperbolic (tanh)
activation function, a hard sigmoid recurrent activation function, and the same padding.
The dropout rates for the first and second dropout layers are 25% and 50%, respectively.
The last activation layer employs a softmax activation function to activate one of two
outputs: normal or schizophrenia. A categorical cross-entropy loss function and Adam
optimiser are utilised to build the model. Table 7.2 lists the details of the configuration
of those layers.
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Figure 7.2: Proposed ConvLSTM based SISDNet model layout.

Table 7.2: SISDNet model’s architectural specifics.

Layers # Filter
Kernel

size Option
ConvLSTM2D 32 7x7 padding=same
Activation tanh
BatchNormalisation
MaxPooling3D 1x4x2 padding=same
ConvLSTM2D 16 7x7 padding=same
Activation tanh
BatchNormalisation
MaxPooling3D 1x4x2 padding=same
ConvLSTM2D 8 7x7 padding=same
Activation tanh
BatchNormalisation
MaxPooling3D 1x4x2 padding=same
Flatten
Dense 256
Activation relu
BatchNormalisation
Dropout 25%
Dense 128
Activation relu
BatchNormalisation
Dropout 50%
Dense (classifier) 2
Total params: 504,258
Trainable params: 503,378
Non-trainable params: 880

7.2.4 Classification using proposed SISDNet model

In this step, the proposed model is trained and tested on the used datasets. To do that,
we have to split the dataset into train and test subsets so that we can use the training
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subset to train the model and the test subset to test the trained model. K -fold cross
validation is a technique used in machine learning to evaluate the performance of a model
[90]. The basic idea behind k-fold cross validation is to split the available data into
k equally sized folds. The model is trained on k-1 folds and tested on the remaining
fold. This process is repeated k times, with each fold serving as the test set once. The
performance of the model is then averaged across all k folds. It is useful because it allows
for a more accurate estimate of the performance of a model than simply using a single
train/test split. By using multiple folds, we can get a better sense of how the model will
perform on unseen data. There are a few different variations of k-fold cross validation,
such as subject independent analysis (known as leave-one-out cross validation (LOOCV))
and subject dependent analysis (known as stratified k-fold), which are designed to handle
specific types of data or modelling scenarios.

In this study, we have used both LOOCV and 10-fold cross-validation to validate the
proposed SISDNet model. In the LOOCV process, all the signal segments from one subject
are left out of the training subset and trained on the model with all of the other subject’s
data, and then the trained model is used to classify the left-out subject’s data segments.
This process is repeated for all the subjects in the dataset. On the other hand, in the
10-fold cross-validation technique, the dataset is divided into 10 subsets of equal or nearly
equal size, of which 9 are used for training and the rest are used for testing. This process
is repeated 10 times so that each subset belongs to the test set only once.

7.2.5 Performance evaluation matrices

We have used six well-known evaluation parameters to evaluate the performance of the
proposed SISDNet model, namely: sensitivity (Sen), specificity (Spec), precision (Prec),
F1 score (F1), accuracy (Acc), and false positive rate (FPR). Equations ((7.2)) - ((7.7))
are used to calculate those six parameters:

Sen =
nSZ

NSZ
× 100% (7.2)

Spec =
nNornal

NNornal
× 100% (7.3)

Prec =
nSZ

nNormal−SZ + nSZ
× 100% (7.4)

F1 =
2 × Sen × Prec

Sen + Prec
(7.5)

Acc =
nSZ + nNornal

NSZ + NNornal
× 100% (7.6)

FPR = 100 − Spec (7.7)

Here, nSZ and nNormal are the correctly identified SZ and normal subjects, respectively;
NSZ and NNornal are the actual number of patients and normal subjects, respectively.
nSZ−Normal denotes the number of SZ subjects identified as normal, while nNormal−SZ

denotes the number of normal subjects classified as SZ patients. These criteria allow us
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to grasp an idea about the classifier’s behaviour on the test data [91], [98], [100], [154],
[181], [190], [194].

7.3 Results and discussion

In this study, an SZ classification framework is developed using a deep learning-based
ConvLSTM model. We have used two SZ datasets to test the proposed model. We have
used both LOOCV and 10-fold cross-validation techniques to validate the model on the
tested datasets. A detailed discussion of the experimental setup and results is given in the
next two subsections.

7.3.1 Experimental setup

In the proposed system, we have segmented the raw EEG data into three-second (3s) time
frames. This segmentation process produced 5146 and 4235 signal segments for SZ and
normal subjects, respectively, in the Warsaw dataset, while for the Kaggle dataset, those
numbers are 4728 and 3108, respectively. Each of the produced signal segments has a size
of c × p, where p is the number of sampling points and c is the number of channels. p can
be further defined as f × t, where f is the sampling frequency and t is the segment length.
In this study, for the Kaggle dataset, f is 256 Hz, t is 3s, c is 64, and p is 768 (256 × 3)
making a signal segment a matrix of 64 × 768. On the other hand, for the Warsaw dataset,
f is 256Hz, t is 3s, c is 19, and p is 768 (256 × 3) making a signal segment a matrix of
19 × 768.

After the segmentation process, we have divided the dataset into train and test sub-
parts based on the validation technique. For the subject-independent analysis, the total
number of subparts is equal to the total number of subjects in the dataset, while for
the subject-dependent analysis, there are 10 subparts as we have used the 10-fold cross
validation. The experiments are carried out on a computer with an AMD Threadripper
Pro processor, 256 GB of RAM, and 48 GB of graphics memory. The proposed SISDNet
model is trained with 100 epochs for the Kaggle dataset and 50 epochs for the Warsaw
dataset, as the model starts overfitting after those epochs. We have used mini-batch mode
for batch size selection to speed up the learning process. In this study, we have used three
training batch sizes (32, 64, and 128) to train the model.

7.3.2 Results

In this research work, we have validated the proposed model using two different validation
techniques: subject-independent analysis and subject-dependent analysis. Details of those
experimental results are discussed in sections 7.3.2.1 and 7.3.2.2.

7.3.2.1 Subject independent analysis

In this validation technique, all the signal segments of a subject are kept out of the training
process and used for testing the system. This process is repeated for the total number of
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subjects in the system, and the final result is calculated by averaging those results. Details
of the results of the subject independent analysis on the Kaggle and Warsaw datasets with
different training batch sizes are given in Table 7.3.

Table 7.3: Performance of the proposed SISDNet model in subject inde-
pendent analysis on the Kaggle and Warsaw datasets with different training

batch sizes.

Batch Kaggle dataset Warsaw dataset
size Sen% Spec% Prec% F1 Acc% FPR% Sen% Spec% Prec% F1 Acc% FPR%
32 97.88 80.37 88.35 0.93 90.94 19.63 96.32 99.17 99.30 0.98 97.61 0.8297
64 97.80 86.94 91.93 0.95 93.49 13.06 91.77 99.93 99.94 0.96 95.45 0.0691

128 98.73 90.25 93.90 0.96 95.37 9.75 92.07 99.98 99.98 0.96 95.64 0.0230

From Table 7.3, we can see that, for the Kaggle dataset, batch size 128 has produced
the best result among the three tested batch sizes. It has produced an accuracy of 95.37%
with 98.73% sensitivity, 90.25% specificity, 93.90% precision, a 0.96 F1 score, and a 9.75
FPR. On the other hand, batch size 32 produced the lowest accuracy of 90.94% and batch
size 64 gave the highest accuracy of 93.49%.

For the Warsaw dataset, batch size 32 has produced the best performance with an
accuracy of 97.61%, sensitivity of 96.32%, and an F1 score of 0.98. For specificity, precision,
and FPR parameters, batch size 128 has produced the best result with 99.98%, 99.98%
and 0.023, respectively.

To further show the proposed model’s performance on the tested datasets in subject-
independent analysis, we have plotted the subject-wise accuracy for three different training
batch sizes as shown in Figs. 7.3 and 7.4.
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Figure 7.3: Subject-wise accuracy comparison of the SISDNet model for
the three training batch sizes on the Kaggle dataset.
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Figure 7.4: Subject-wise accuracy comparison of the SISDNet model for
the three training batch sizes on the Warsaw dataset.

From the Figure 7.3, we can see that for the Kaggle dataset, among the 81 subjects,
we have achieved more than 95% accuracy for 65 subjects for batch size 128, 10 subjects
have accuracy between 85% and 95%, 2 subjects have accuracy between 75% and 85%,
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and the rest of the 4 subjects have accuracy below 75%. On the other hand, for the
Warsaw dataset from Figure 7.4, we can see that among the 28 subjects, 24 subjects have
an accuracy over 90% and the rest 4 subjects have an accuracy between 80% and 90% for
a training batch size of 32.

7.3.2.2 Subject dependent analysis

In this analysis, we performed 10-fold cross-validation on the datasets, where each dataset
is randomly divided into 10 subparts, of which 9 are used for training the model and the
rest are used for testing the trained model. This process is repeated ten times, so that
each subpart belongs to the test set once. Table 7.4 reports the batch size-wise 10-fold
average performance result for both the tested datasets.

Table 7.4: Ten-fold average performance results of the SISDNet model on
multi-class classification.

Batch Kaggle dataset Warsaw dataset
size Sen% Spec% Prec% F1 Acc% FPR% Sen% Spec% Prec% F1 Acc% FPR%
32 97.47 94.29 96.28 0.97 96.20 4.594 99.27 99.07 99.25 0.99 99.19 0.960
64 97.58 94.44 96.37 0.97 96.31 5.557 99.22 99.26 99.39 0.99 99.24 0.739

128 97.64 94.18 96.24 0.97 96.26 5.824 98.80 99.42 99.52 0.99 99.09 0.576

From Table 7.4, we can see that for both datasets, batch size 64 has given the best
performance among the tested three batch sizes, with an average accuracy of 96.31% and
99.24% for the Kaggle and Warsaw datasets, respectively. To further assess the fold-wise
performance of the proposed model, we have plotted fold and batch size-wise sensitivity,
specificity, precision, F1 score, FPR, and accuracy in Figs. 7.5 and 7.6, for the Kaggle
and Warsaw datasets, respectively.
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Figure 7.5: Fold and batch size-wise comparison of the evaluation param-
eters for the Kaggle dataset.
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Figure 7.6: Fold and batch size-wise comparison of the evaluation param-
eters for the Warsaw dataset.

From Table 7.4 and Figs. 7.5 and 7.6, we can see that for the Kaggle dataset, a
single fold highest sensitivity of 99.11% is achieved for fold 2 with batch size 64, while
for the Warsaw dataset, it is 100% for fold 6 with batch size 32. Over the 10-fold, the
Kaggle dataset has the highest average sensitivity value of 97.64% for batch size 128, and
for the Warsaw dataset, the highest average sensitivity is 99.27% for batch size 32. For
the precision parameter, in the Kaggle dataset, a single fold highest value of 98.49% is
achieved in fold 4 of batch size 64, and for the Warsaw dataset, it is 100% for fold 3 of
batch size 128. Overall, an average of 96.37% and 99.52% precision values are obtained for
the Kaggle and Warsaw datasets, respectively, with batch sizes of 64 and 128, respectively.

In cases of specificity, the highest values are obtained 97.69% (fold 4 with batch size 64)
and 100% (fold 3 with batch size 128) for datasets Kaggle and Warsaw, respectively. The
average 10-fold highest specificity values are 94.44% (batch size 64) and 99.42% (batch
size 128) for the Kaggle and Warsaw datasets, respectively. Since FPR is calculated using
specificity and is preferred to be minimum, the settings that have obtained the highest
specificity have also produced the best FPR, and the best values are 4.594% and 0.576%
for the Kaggle and Warsaw datasets, respectively.

The fifth parameter we have used to measure the performance of the proposed model
is the F1 score, which is the harmonic mean of precision and recall and whose value ranges
from 0 to 1, with 1 indicating perfect precision and recall. For the Kaggle dataset, we
achieved the highest 0.98 F1 score for a couple of folds with different training batch sizes.
Overall, the 10-fold average F1 score obtained for all three training batch sizes is 0.97.
On the other hand, for the Warsaw dataset, we achieved an F1 score of 1 for fold 6 with
a training batch size of 32. The 10-fold-foldage F1 score obtained for all three training
batch sizes is 0.99.

The final evaluation parameter that we have considered is accuracy. From the Figs.
7.5 and 7.6, we can see that for the Kaggle dataset, a single-fold highest accuracy value
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of 97.58% is obtained for batch size 32, and a lowest of 94.13% is also achieved for the
same batch size. Over the 10-fold, the highest and lowest average accuracy values of
96.31% and 96.20% are obtained for batch sizes 64 and 32, respectively. Similarly, for the
Warsaw dataset, the single-fold highest and lowest accuracy values of 99.58% and 98.86%
are achieved using batch sizes of 32 and 128, respectively. Overall, the 10-fold highest and
lowest accuracy values obtained are 99.24% and 99.09%, respectively.

7.3.3 Discussion

In this study, a subject-independent deep learning-based model named SISDNet is pro-
posed to classify schizophrenia disorder using EEG data. In this section, we have dis-
cussed different aspects of the proposed SISDNet model in terms of feature visualisation,
model optimisation, developed web applications, and performance comparison with pre-
vious studies.

7.3.3.1 Layer-wise feature visualisation using t-SNE

We have generated two-dimensional (2D) representations of the retrieved features from
each layer of the proposed SISDNet model using t-distributed stochastic neighbour em-
bedding (t-SNE) [244] visualisation. t-SNE is a dimensionality reduction technique used
to visualise high-dimensional data in a lower-dimensional space, usually two or three di-
mensions. The goal of t-SNE is to preserve the pairwise similarities between each high-
dimensional data point and map them to a low-dimensional point. In other words, data
points should be similar in low-dimensional space if they are similar in high-dimensional
space. We have plotted the layer-wise extracted features for the proposed SISDNet model
on the Warsaw dataset for 10-fold cross-validation with batch size 32, which is given in
Figure 7.7. For simplicity, we have shown a single fold’s classification process for over 800
test subjects. The figure displays a two-dimensional map of the multidimensional feature
vectors, with each symbol denoting a distinct sample from the test set.

A t-SNE plot helps to visualise the layer-wise clustering process of the extracted fea-
tures of a classifier and how separable those features are at the end of the final layer.
From Figure 7.7, we can see that in the input layer, extracted feature points from all
the test subjects of two classes are randomly mixed up, and as the data passes through
the layers of SISDNet, they start forming clusters of two classes. The extracted features
started forming clusters after the first dense layer, as shown in Figure 7.7, from which they
formed two completely separable clusters in the final dense layer. Finally, the activation
layer projects those two clusters into two different groups (healthy vs. patient), which
indicates the better performance of the proposed SISDNet model.

7.3.3.2 Ablation study

In the context of machine learning and artificial intelligence, ablation studies are used to
identify the key elements that influence a model’s performance. In an ablation study, one
or more elements of the model are removed or disabled, and the performance of the model
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Figure 7.7: Visualisation of the layer-wise classification process in the
SISDNet model using t-SNE images. Here visualisation is plotted from the
input layer to the output layer for the tested Warsaw dataset with batch
size 64. At the input layer, there was no clear cluster between two classes
(SZ vs. Normal), but as the data progressed from the hidden layers to the

output layer, it formed two clearly separable clusters of two classes.

is assessed to determine the effect of the disabled elements. To validate the structure of
the proposed SISDNet model, we have conducted eleven different ablation studies using
both datasets. Here, we have used the results of the SISDNet model for batch size 32
as the baseline result and performed those ablation studies using the same setup. In the
ablation process, we have varied the processing units and filters to check their impact
on the proposed model, as shown in Table 7.5. From the Table 7.5, we can see that
changing the number of filters, kernel size, and adding or removing different components
(ConvLSTM, Maxpooling 3D, Batch Normalisation, Dropout) in different layers reduces
the classification performance. The proposed SISDNet model provides better results than
the other examined models, as demonstrated by all tested ablation techniques.

Table 7.5: Ablation study results on tested Kaggle and Warsaw datasets
for 10-fold cross-validation Here, we have conducted the ablation study
using a training batch size of 32 for both datasets and compared the results

of other tested models with the base model’s results.

Model Layer 1 Layer 2 Layer 3 Kaggle Warsaw
base CL (32)(7,7) + BN + Pool (1,4,2) CL (16)(7,7) + BN + Pool (1,4,2) CL (8) (7,7) + BN + Pool (1,4,2) 96.2 99.19
1 CL (8)(7,7) + BN + Pool (1,4,2) CL (8)(7,7) + BN + Pool (1,4,2) CL (8) (7,7) + BN + Pool (1,4,2) 95.98 98.18
2 CL (8)(3,3) + Pool (1,2,2) + DO (25%) CL (8)(3,3) + Pool (1,2,2) + DO (25%) CL (8)(3,3) + Pool (1,2,2) + DO (25%) 94.82 95.24
3 CL (8)(3,3) + Pool (1,2,2) + DO (25%) CL (8)(3,3) + Pool (1,2,2) + DO (25%) no 88.97 96.18
4 CL (8)(3,3) + Pool (1,2,2) + DO (25%) CL (16)(3,3) + Pool (1,2,2) + DO (25%) no 88.54 94.64
5 CL (16)(3,3) + Pool (1,2,2) + DO (25%) CL (8)(3,3) + Pool (1,2,2) + DO (25%) no 88.08 95.84
6 CL (16)(3,3) + BN + Pool (1,2,2) CL (16)(3,3) + Pool (1,2,2) + DO (25%) no 83.87 96.65
7 CL (16)(3,3) + BN + Pool (1,2,2) CL (16)(3,3) + BN + Pool (1,2,2) + DO (25%) no 83.22 96.43
8 CL (8)(5,5) + BN + Pool (1,2,2) CL (8)(5,5) + BN + Pool (1,2,2) + DO (25%) no 83.92 97.97
9 CL (16)(5,5) + BN + Pool (1,2,2) CL (16)(5,5) + BN + Pool (1,2,2) + DO (25%) no 84.55 98.02
10 CL (8)(7,7) + BN + Pool (1,4,2) CL (8)(7,7) + BN + Pool (1,4,2) + DO (25%) no 92.48 98.71
11 CL (16)(7,7) + BN + Pool (1,2,2) CL (16)(7,7) + BN + Pool (1,2,2) + DO (25%) no 84.11 98.37
* CL = ConvLSTM, Pool = Maxpooling 3D, BN = Batch Normalisation, DO = Dropout.

7.3.3.3 Comparison with existing studies

Finally, to compare the performance of the proposed SISDNet model with existing state-
of-the-art (SoA) research work that has used the same datasets as we have used in this
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study, we have listed the SoA works with our accuracy in Table 7.6 and 7.7.
From Table 7.6, we can see that, for the Kaggle dataset, our proposed model is the

first study that has been evaluated using LOSO. On the other hand, for 10-fold cross-
validation, our study achieved better accuracy than all other studies that have used this
dataset.

Table 7.6: Comparative analysis of the proposed model with Kaggle
dataset’s existing research.

Study Method Validation Acc.
[250] Empirical WT with SVM 10-Fold 88.70%
[154] EMD-based features with EBT 10-Fold 89.59%
[251] Statistical features with RF 10-Fold 81.10%
[252] F-TQWT-based scheme with F-LSSVM 10-Fold 91.39%
[253] Electrical marker with CNN NA 92.00%
[254] RVMD-based OELM method 10-Fold 92.93%
[190] Topographic image and CNN 10-Fold 89.20%
[155] SPWVD-based TFR and CNN 10-Fold 93.36%
[249] GoogLeNet 10-Fold 95.09%

Ours ConvLSTM 10-Fold
and LOSO

10-fold CV
96.31%
LOSO
95.37%

For the Warsaw dataset, from Table 7.7, we can see that our proposed method has
outperformed all other previous studies in the LOSO validation approach. In the case of
10-fold cross validation, study [159] produced 99.91% accuracy, but their LOSO accuracy
was way below (84.33%) than ours (97.61%). Moreover, they have tested their proposed
method on one dataset only, which leaves the question of its applicability to other datasets.
In summary, the presented ConvLSTM-based SISDNet framework attained the best clas-
sification accuracy for LOSO in both the tested datasets, and in 10-fold cross validation,
it attained the best accuracy for the Kaggle dataset and close to the best accuracy for the
Warsaw dataset.

7.3.3.4 Web-based system for schizophrenia classification

We have developed a web-based system to classify schizophrenia using EEG data. Figure
7.8 shows the workflow of the developed web system. In this web system, users need to
create an account to access the service. After creation of the account, the user can upload
the recorded EEG data in csv format into the classification service by using the upload
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Table 7.7: Comparative analysis of the proposed model with Warsaw
dataset’s existing research.

Study Method Seg. Validation Acc.
[152] Spectral analysis, RF 1min 10-Fold 96.77%

[255]
Multivariate empirical model decomposition,
entropy computation,
recursive feature elimination, and SVM

2s 10-Fold 93.00%

[101] Time-domain feature,
LSTM 4s 88:12 99.00%

[203] FFT, spectral feature extraction,
CNN, and LSTM 5s 90:10 98.96%

[256] TQWT, statistical moment,
ReliefF, and kNN 25s 10-Fold 99.12%

[158] Graphical feature extraction,
forward selection algorithm, and kNN - 10-Fold 94.80%

[157] CNN-LSTM 25s 5-Fold 99.25%
[190] Topographic image and CNN 3s 10-Fold 97.85%

[150] Custom CNN design 25s 10-Fold
& LOSO

10-Fold CV
98.07%
LOSO

81.26%

[257] L1 Norm, ES-KNN 25s 10-Fold
& LOSO

10-fold CV
99.21%

LOSO CV
97.20%

[159] CGP17Pat, MAP, INCA, kNN,
and iterative hard majority voting 25s 10-Fold

& LOSO

10-fold CV
99.91%

LOSO CV
84.33%

Ours ConvLSTM 3s 10-Fold
& LOSO

10-fold CV
99.24%

LOSO CV
97.61%

interface. After completion of the data upload, the web server starts the classification
process.

At first, the web server communicates with the data processing service to pre-process
the uploaded EEG data. In this step, the pre-processing service checks whether the up-
loaded data is in the proper format or not and then segments the data into a 3-second time
window to make it ready for the classification model. On completion of the segment gen-
eration process, this data processing server informs the web server about the availability
of data for the classification task.

On receiving this notification, the web server contacts the classification server to per-
form the categorisation task on the generated segments. After receiving the request, the
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classification server conducts the categorisation process on the generated segments of the
uploaded EEG data using the pre-trained model of the proposed SISDNet framework. It
labels each segment either SZ or normal with the classification probability of being in that
category. Finally, the web server counts the number of segments with a high probability
of being SZ or normal and shows the ratio of the two numbers as the probability of the
uploaded data being SZ or normal.

Figure 7.8: Workflow of the developed web-based system using the pro-
posed SISDNet framework. The user uploads EEG data to the web server
using a computer device. The server uses two services to perform the clas-
sification task: 1) the data processing service pre-processes the uploaded
data, and 2) the classification service performs the classification on the pro-

cessed data.

Figure 7.9 - 7.19 shows screen shots of different pages from the developed website.
Details of those pages with functionality are discussed below.
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Figure 7.9 shows the home page of the website. It contains a menu at the top of
the page, and the user can switch to different pages by using that menu. It also shows
the three steps involved in using the classification service, which are: i) prepare data; ii)
upload data; and iii) check the result. The user can see more details of those steps by
clicking the "Learn More" button or by using the "Classification" menu, under which there
are three sub-menus for the three steps. This page also contains the project information
for this research work.

Figure 7.9: The Homepage of the developed web-based classification sys-
tem.
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Figure 7.10 shows the project information and the personnel involved in this research
work with their different research profile links. Here, we have added the Google Scholar,
LinkedIn, and personal profiles of their corresponding institutions if people are interested
in seeing any information about any member of the research team.

Figure 7.10: Information page of the developed web-based classification
system. It contains information about the developer and the supervisor
panel of the project, as well as links to their profiles on different social and

institutional sites.
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Figure 7.11 shows the contact page for the user. If any user of the website wants to
contact us about any query or issue, they can use this form to do so. Users need to provide
their name, email address, subject, query, and any attachment related to the query and
send it to us, and we will see if we can solve the issues after receiving the email. To add an
attachment, the user needs to click on the "Browse" button, which will open a file selection
box from which the user will select the desired file and then click "Open" to attach the
chosen file with the query.

Figure 7.11: Contact page of the website. On this page, an user can
contact the system support team with any issues or suggestions regarding

the website.
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To use the classification service, users need to have an account in the system, and they
need to login to the system using those credentials. Figure 7.12 shows the authentication
page of the system, where users need to provide their email address and password to get
authenticated into the developed system. If the user is not yet registered in the system
and is a new user, s/he can register by clicking on the "Register" link on the page, which
will redirect her/him to the account creation page. On the other hand, if the user forgets
her or his password, she or he can retrieve it by clicking on the "Forgot Password?" link.

Figure 7.12: Login page of the website. Users need to have an account
to use the classification service of the system. By using the email and

password, they can login to the system.
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A new user can create an account on the website to use the web service. Figure 7.13
shows the account creation page of the website. Users can access the page by clicking the
"Sign Up" link on the top right menu bar or by clicking the "Register" link on the login
page. To create an account, the user needs to provide their name, a valid email address,
and the password that they want to use for logging into the system. After filling out all
the fields and clicking the "Sign up" button, an account activation email will be sent to
the user’s email address. The user needs to click on the link to activate her or his account
in the system.

Figure 7.13: Login page of the website. Users need to have an account
to use the classification service of the system. By using the email and

password, they can login to the system.
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If an existing user forgets her or his password to login into the system, then s/he can
request resetting the password of her or his account using the reset password page. On this
page, the user needs to provide the email address that s/he used to open the account and
then press the "Reset" button. After that, if the email address is correct and exists in the
system, the user will receive an email with a link to reset their password. By clicking the
reset link, the user will be redirected to the password reset page, where s/he will provide
the new password for her/his existing account.

Figure 7.14: This page is for resetting the account password. If the user
forgets her or his password, then she or he can request to reset it by using

this page.
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To change the password of an existing account, the user can use the "Change Password"
page, which s/he can access by clicking on the "Account Settings" drop-down menu on the
top right of the page. The page contains three input fields for inputting the passwords, as
shown in Figure 7.15. In the first input field, s/he needs to put the current password that
s/he wants to change, and in the following two fields, s/he needs to put the new password
that s/he wants to use for next time’s login. After that, s/he needs to press the "Change"
button to save the changed password in the system.

Figure 7.15: This page is for changing the account password. The user
needs to put the current password and the new password for changing the

account password.
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To use the classification service of the developed website, users need to do some prepa-
ration of their data before uploading it to the website. Figure 7.16 shows the Prepare Data
page that contains the instructions about preparing data before uploading to the system.
If the user’s data meets the preparation instruction, then s/he can upload the data to the
system by clicking the "Upload Data" button at the bottom of the instruction or by using
the top menu under the "Classification" drop-down menu item.

Figure 7.16: This page shows the data preparation instruction before
uploading to the classification service.
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On the upload page, the user will upload the prepared data to the web server for
classification purposes. Figure 7.17 shows the screen shot of the upload page. On this
page, there are some check boxes to check by the user to ensure that s/he has followed
the instructions for preparing the data and s/he has consented to upload the data in the
developed system, as the system stores the uploaded data. If the user agrees to all the
check lists, then the data upload panel is enabled to upload the data. The system also
asks for some basic demographic information about the test subject. After filling out those
details and selecting the csv data file, the user needs to click on the "Upload" button to
finish the upload task.

Figure 7.17: Web page for uploading the data to the classification server.
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After uploading the data to the server, the user can check the classification status and
results using the "Classification Results" page. On this page, the user can see the list of
classification tasks s/he has uploaded till now, with the latest submission at the top of the
list, as shown in Figure 7.18. The page contains a list of requests with the request number,
the time when the request was made, the status of the requested task, the uploaded file
name, and a link to view the details of the task’s result if it was a success. The Status field
value varies based on the current task done by the classification system, like pre-processing
data, classification, error, completed etc.

Figure 7.18: This page shows the list of classification request an user have
made till now. They can also see the details result of the classification by

clicking on the view result button at the end of each row.
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Figure 7.19: Details result page of a classification request displayed using
different charts and tables.
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On the classification result page, if the user clicks on the "View Details Result" link
of a particular requested task that has a "Success" status field value, then s/he will be
redirected to this page where s/he can see the details result of that particular classification
request as shown in Figure 7.19. On this page, the user will see the detailed result of the
classification task. The page has four sections: On the top section, a summary of the
classification result is presented in tabular format. The first row of the table contains the
total number of segments generated by the segmentation process of the uploaded data; the
second row shows the number of segments identified as normal; the third row contains the
number of segments identified as schizophrenia; and the fourth row contains the probability
of the uploaded data being normal vs. schizophrenia. In the second section, there are two
graphs showing the probability of the two classes and their distribution. The third section
contains detailed information about the uploaded data, like demographic information,
upload file name, upload time, processing start/end time, classification start/end time,
etc. Finally, the fourth segment contains the individual segments probability of being
either normal or schizophrenia.

7.4 Summary

In this chapter, a subject-independent deep learning-based model named SISDNet is pro-
posed to classify schizophrenia disorder using EEG data. SISDNet is a ConvLSTM-based
model that is designed to take input raw EEG signal data and train its internal layers with
the significant features of the data to perform classification tasks. Along with the subject-
independent analysis, we have also evaluated the proposed model for the 10-fold cross-
validation technique. We have tested the model on two different datasets of schizophrenia
disorders to validate the obtained results. We have also tested three different training
batch sizes to observe the impact on training the model.

In subject-independent analysis, for the Kaggle dataset, we obtained an accuracy of
95.37% with batch size 128, while for Warsaw, it is 96.32% using batch size 32, and
both are higher than state-of-the-art works using those datasets. For subject-dependent
10-fold cross-validation, we have achieved 96.31% and 99.24% accuracy for the Kaggle
and Warsaw datasets, respectively. We have done several ablation studies to validate the
proposed SISDNet model. Additionally, a t-SNE image-based analysis of the extracted
features of the proposed model is also performed to check the classification performance
of SISDNet. At last, we have developed a web-based schizophrenia classification system
to help clinicians in their real-life work.

Finally, the findings show that this method can be used to categorise other neurological
disorders and can also be used in other signal processing tasks. Moreover, the developed
web-based system can be improved to work and be used in real-world clinics, and it needs
to be extended to other neurological disorders.
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Chapter 8

Conclusions and Future Work

8.1 Summary of the dissertation

The EEG is a non-invasive method used to record electrical activity in the brain. It pro-
vides valuable insights into brain functioning and has considerable potential in the context
of mental and neurodegenerative diseases and abnormalities. EEG enables researchers and
medical professionals to observe patterns of brain activity, analyse changes over time, and
identify potential irregularities in brain function.

EEG plays a crucial role in the diagnosis and treatment of various mental and brain
neurodegenerative disorders. By analysing EEG data, medical practitioners can detect
anomalies and patterns associated with specific conditions, aiding in early diagnosis and
providing a foundation for effective treatment strategies. This non-invasive technique has
become an essential tool in the fields of neuroscience and clinical neurology.

Classifying EEG signals is a significant challenge in biomedical research. The diversity
and complexity of brain activity patterns require the analysis of large datasets to identify
and differentiate various types of EEG signals accurately. Effective classification methods
are necessary for distinguishing normal brain activity from abnormal patterns associated
with different diseases.

To classify EEG signals accurately, it is essential to extract representative features
from the large datasets. These features act as characteristic markers that help differentiate
between different types of brain activity. By identifying and selecting relevant features,
researchers can enhance the accuracy and efficiency of EEG signal classification algorithms.

The passage mentions that the dissertation revolves around studying and developing
EEG signal processing and classification techniques. The primary aim is to identify and
differentiate between various types of EEG signals effectively. The three main objectives
of the dissertation are likely to involve refining existing signal processing techniques, de-
veloping novel classification algorithms, and applying these methods to real-world EEG
data for accurate identification of brain activity patterns.

In this research study, we have developed some EEG signal processing and classification
techniques to meet the following goals:

1. Developed methods for the classification of ASD and SZ subjects from HC subjects
using EEG signals.
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2. Developed a multi-class classification framework for classifying multiple neurological
disorders using a single system.

3. Developed a generic EEG signal classification framework independent of dataset and
disorder.

4. Developed a web-based system for classification of the SZ disorder using EEG data.

To achieve those goals, we have developed a spectrogram image-based EEG classifi-
cation framework for ASD signal detection (Chapter 3). This spectrogram image-based
classification technique was first used in this study for the ASD classification process from
EEG data. In this process, we first filtered the data to remove different noises and then
generated spectrogram images from the filtered signals using an STFT-based plotting tech-
nique and segmented them into small time-frame segments. After that, those images are
used for classification using different ML and DL-based techniques. In ML-based classifi-
cation, we extracted histogram base features using tCENTRIST, reduced the dimension of
the extracted features using PCA, and finally used six different ML-based classifiers (NB,
RF, SVM, LDA, LR, and kNN) are used to classify the reduced features. On the other
hand, in DL-based classification, we have developed three different CNN models and used
those to classify the spectrogram images. We have evaluated the proposed model using the
dataset from King Abdulaziz University (KAU) Hospital, Saudi Arabia, Jeddah [177] and
obtained an accuracy of 95.25% for the ML-based approach using the SVM classifier and
99.15% for the DL-based approach. Experimental results show that the proposed system
is capable of distinguishing ASD signals from healthy signals.

In our second method, we developed a topographic image with a deep learning-based
CNN model to categorise SZ from HC subjects (Chapter 4). This topographic image-
based framework is also first used in this study for SZ classification from EEG signals. In
this approach, at first the signals were segmented into small time frames, and then the
topographic images were generated from the signal segments using topographic plotting
of the entropy values calculated by Shannon entropy. After that, the generated images
were classified into SZ vs. HC using a newly proposed CNN model. The proposed frame-
work was evaluated using two different open-access EEG datasets of SZ disorders. This
framework also shows promising results in the classification of EEG data for SZ detection.

In the third approach, we extended the spectrogram image-based method for designing
a novel multi-class neurological disorder classifier for classifying four neurological disorders,
namely: ASD, SZ, PD, and EP, from HC subjects (Chapter 5). Similar to the first
approach, we filtered the EEG signals and generated the spectrogram images using the
STFT-based plotting technique. After that, we used both ML- and DL-based techniques to
perform the classification of those images. In the ML-based approach, we used two feature
extractors named tCENTRIST and cCENTRIST separately and reduced the extracted
feature dimension using PCA. Finally, four ML-based classifiers (RF, SVM, LDA, and
kNN) are used to compare the classification performance on the reduced features. On the
DL-based approach, we modified the best proposed model of the first method for multi-
class classification among the five classes (ASD vs. SZ vs. PD vs. EP vs. HC). We



Chapter 8. Conclusions and Future Work 185

also conducted binary classification (disorder vs. HC) of the used datasets for the DL-
based approach. The proposed approaches were evaluated using four EEG datasets: ASD,
SZ, EP, and EP disorder. The experimental result shows the possibility of developing a
common system for the classification of EEG signals for multiple diseases.

A noble generic CNN model is proposed to classify EEG data from different neuro-
logical disorders (Chapter 6). This proposed model shows that instead of developing a
separate framework for each dataset or disease, a single framework can be developed that
will work on different datasets of a single disease as well as different datasets from different
diseases. In this approach, we first segmented the raw EEG data into small time frames
and then developed a CNN model to perform classification on those segments. To check
the generalisability, we tested the proposed framework on seven different datasets from six
different diseases. We tested three different segment lengths, four different training batch
sizes, and the 10-fold CV technique. We also performed a multi-class classification using
four of the tested datasets. The experimental results outperformed all the state-of-the-art
results for the datasets used in this study. The findings showed that this method is versa-
tile and may be applied to different disease classification tasks using EEG data and other
signal processing tasks.

Finally, we developed a web-based system for SZ detection using a new technique
to perform subject-independent classification tasks (Chapter 7). This new approach will
reduce classification errors, training time, and the analysis and classification of EEG brain
signals. Also, the developed web-based CAD system will help clinicians in their diagnosis
process. In this proposed method, the EEG data are first segmented into small time frames,
and then a DL-based model is developed using ConvLSTM to perform classification on
those signal segments. We evaluated the proposed framework using both LOOCV and 10-
fold CV on two different publicly available datasets of SZ disorders and obtained better
performance than the existing methods. We have also developed a web-based system
using the trained model in the back-end of the website to do the classification task on the
uploaded data to the system.

In summary, the main focus of this PhD work was on ASD and SZ detection from EEG
signal data, and the research presented here in this dissertation has found some innovative
and effective systems for classification of EEG signals in the biomedical signal processing
field. These methods will make it possible for neurologists to accurately and efficiently
detect brain degenerative disorders. Moreover, the developed web-based system will be
helpful for clinicians in the clinical diagnosis process and for brain disorder patients to
improve the quality of their lives.

8.2 Limitations of this research work

While our study provides valuable insights, it is not without its limitations. Some of the
limitations of this work are reported below:

In this study, we’ve directed our attention towards Autism Spectrum Disorder (ASD)
and Schizophrenia (SZ) despite the existence of over six hundred neurological disorders.
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This focus was necessitated by time constraints that limited the scope of the research.
While numerous neurological disorders warrant investigation, the complexities and depth
required for comprehensive analysis within a limited time-frame made focusing on ASD
and SZ more feasible.

A significant challenge faced during this research was the availability and size of
datasets. Publicly accessible datasets pertaining to these specific neurological conditions
are notably scarce. Furthermore, the datasets that do exist are often limited in terms of
the number of subjects included. This limitation can potentially impact the depth and
robustness of our study’s conclusions. The smaller sample size might restrict the gener-
alisability of findings and the ability to draw comprehensive conclusions representative of
the entire population affected by ASD and SZ.

An additional constraint we encountered relates to the collection of data. While the
ideal approach would involve gathering our own dataset to mitigate limitations found
in existing datasets, this was unattainable due to constraints in both time and budget.
The process of collecting data can be resource-intensive and time-consuming, and these
constraints prevented us from acquiring a more extensive and tailored dataset that might
have enriched the study’s outcomes.

These limitations acknowledge the boundaries within which the research was conducted
and emphasize the challenges faced. Despite these constraints, the study aims to provide
valuable insights within the specified scope and dataset limitations, while also highlight-
ing the need for more extensive datasets and additional research efforts in the field of
neurological disorders.

8.3 Future work

We believe that the approaches described in this dissertation have a positive impact in
the field of neurological disorders, particularly ASD and SZ classification from EEG signal
data. Future research will focus on examining the viability of applying the techniques
to other neurological disorder categorisations from EEG data. Additionally, we have
highlighted a few key issues that can be addressed in the future.

Firstly, EEG signals can be prone to contamination by various artefacts that can stem
from multiple sources, including the subject’s physiological factors and interference from
the equipment used to measure the EEG signals. Unfortunately, in the context of this
specific dissertation, the proposed methods did not focus on the development of techniques
to effectively remove these artefacts from EEG data. However, recognising the significance
of artefact-free EEG data for the success of the proposed algorithms, the need for further
investigation and study in this area becomes evident. The main objective is to devise
robust methodologies that can successfully eliminate artefacts without compromising the
integrity and quality of the underlying EEG signals. As the research progresses, future
iterations of the algorithms will be fine-tuned and enhanced to accommodate artefact re-
moval effectively. This refinement process is expected to yield substantial improvements in
signal classification, ultimately leading to more accurate and reliable results. By ensuring
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that the EEG signals are free from contamination, the algorithms’ performance will be
optimised, and their potential applications in various domains, such as brain-computer
interfaces and neurological research, can be fully realised.

Secondly, in most of our proposed methods, we have used the full frequency bands of
the EEG signal for analysis and classification, but as we know, EEG signals have different
frequency sub-bands like delta, theta, alpha, beta, and gamma. So, in the future, we can
focus on finding the frequency sub-bands that have more influence over other sub-bands
in the classification process of EEG signals. EEG signals offer important data on the
electrical activity of the brain. Researchers and physicians can acquire insights into certain
brain functions, such as different sleep stages, cognitive activities, emotional states, or
epileptic seizures, by finding important frequency sub-bands. Researchers may examine the
dynamics and interconnectedness of the brain since each frequency sub-band corresponds
to a certain neural activity. Additionally, certain neurological and psychiatric disorders
exhibit characteristic patterns in specific frequency subbands. Identifying these patterns
can aid in the diagnosis, monitoring, and understanding of the underlying mechanisms of
different neurological disorders.

Thirdly, most of the proposed methods have used all the channel recordings of the
EEG data, but in the future, we can focus on finding the important channels for classifying
different neurological disorders. EEG signals are measured from different electrodes placed
on the scalp, each corresponding to a specific brain region. Identifying important EEG
channels provides valuable insights into brain function, localised brain activity, and brain
disorders. It contributes to advancements in neuroscience, personalised medicine, brain-
computer interfaces, and other brain-related applications. Understanding the significance
of specific EEG channels enhances our knowledge of the brain and its complexities, leading
to improved diagnosis, treatment, and overall brain health.

Fourthly, we have developed a web-based system that works only for schizophrenia,
but it can be extended to other disorders like AD, MCI, PD, ASD, etc. Moreover, the
developed system is currently in the initial phase, which can be enhanced based on the
clinician’s feedback for real-life use.

Finally, it is hoped that the output of this research work will be beneficial to the medical
field while at the same time contributing to knowledge enhancement in the academic world.
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