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ABSTRACT

For a continuous and positive function w(A), A > 0 and y a positive measure on (0, ) we consider the following integral
transform

Do ®) = [ @G+ (),

where the integral is assumed to exist for ¢ > 0.

We show among others that D(w, ) is operator convex on (0, ). From this we derive that, if f : [0,00) — R is an
operator monotone function on [0, o), then the function [ f)—-f (t)] t~! is operator convex on (0, o). Also, if f : [0,00) — R
is an operator convex function on [0, ), then the function [f(O) + fl(o)x — f(t)] t72 is operator convex on (0, ). Some
lower and upper bounds for the Jensen’s difference

Dl ) () + D ) (B) _ <M)

2 2

under some natural assumptions for the positive operators A and B are given. Examples for power, exponential and logarithmic
functions are also provided.
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1. INTRODUCTION

Consider a complex Hilbert space (H , (s )) An operator T is said to be positive (denoted by T > 0)
if (Tx,x) > 0 for all x € H and also an operator T is said to be strictly positive (denoted by T > 0)
if T is positive and invertible. A real valued continuous function f on (0, ) is said to be operator
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monotone if f(A) > f(B) holds for any A > B > 0. We have the following representation of operator
monotone functions [8], see for instance [1, p. 144-145]:

THEOREM 1.1. A function f : [0,00) — R is operator monotone in [0, ) if and only if it has the
representation

)
t) = f(0) + bt —du(A 1.1
1O = fO+be+ [ Zdu, (1)
where b > 0 and a positive measure p on [0, o) such that
<A
—du(d . 1.2
| e < (12

A real valued continuous function f on an interval I is said to be operator convex (operator
concave) on I if
F((A=DA+AB) < ()1 - D) f(A) + Af(B) (OC)
in the operator order, for all A € [0, 1] and for every selfadjoint operator A and B on a Hilbert space
H whose spectra are contained in I. Notice that a function f is operator concave if —f is operator
convex.
We have the following representation of operator convex functions [1, p. 147]:

THEOREM 1.2. A function f : [0,00) — R is operator convex in [0, c0) with f/(0) € R if and only if it

has the representation
2

) = £(0) + f1(O)t +cf* + / i

= du(h), (13)

where ¢ > 0 and a positive measure p on [0, ) such that (1.2) holds.

We have the following integral representation for the power function when ¢ > 0, r € (0, 1], see

for instance [1, p. 145]
1 sin(ror) /°° At AL
T 0

A+t
Observe that for t > 0,t # 1, we have

/“ dA _ lnt+ 1 1n(u+t)
b A+D(A+1) t—1 1—-t \u+1
for all u > 0.

By taking the limit over u — oo in this equality, we derive
Int ® dA
-1 :A A+DA+1)
which gives the representation for the logarithm

© A
nt=@¢-1 [ — 2
nt=(t )l A+ D0+

forallt > 0.

Motivated by these representations, we introduce, for a continuous and positive function w(A),
A > 0, the following integral transform

Dlw, 1)(¢) = A ) %dm), >0, (1.4)

where p is a positive measure on (0, o) and the integral (1.4) exists for all ¢ > 0.
For i the Lebesgue usual measure, we put

A+t
If we take p to be the usual Lebesgue measure and the kernel w,(1) = A1, r € (0, 1], then

Dw)(@) := Am @dl, t>0. (1.5)

1 = sm,([m)D(wr)(t), t>0. (1.6)
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For the same measure, if we take the kernel wi,(1) = (A + 1)7!, ¢ > 0, we have the representation
Int =@ —-1)D(wy)(®), t>0. (1.7)

Assume that T > 0, then by the continuous functional calculus for selfadjoint operators, we can
define the positive operator

Dlw, p)(T) := / W) (4 T du(h),

where w and p are as above. Also, when p is the usual Lebesgue measure, then

D(w)(T) := / w4 +T)'dA, (1.8)
0
for T > 0.
From (1.6) we have the representation
171 = 20D 1)) (1.9)
/s

where T > 0 and from (1.7)

(T-1D"'InT = D(wp) (D) (1.10)

provided T > 0 and T — 1 is invertible.

In this paper, we show among others that D(w, p) is operator convex on (0, o). From this we derive
that, if f : [0,00) — R is an operator monotone function on [0, o), then the function [ f(0)— f(¢)]¢™!
is operator convex on (0, ). Also, if f : [0,00) — R is an operator convex function on [0, o), then
the function [ F(0)+ fl(o) — f(t)] t72 is operator convex on (0, %). Some lower and upper bounds
for the Jensen’s difference

D(w, p)(A) + D(w, p)(B) D(w. 1) A+B
2 H 2

under some natural assumptions for the positive operators A and B are given. Examples for power,
exponential and logarithmic functions are also provided.

2. PRELIMINARY RESULTS

We start with the following elementary identity that give a simple proof for the fact that the function
f(@) = t7! is operator convex on (0, o), see for instance [6, p. 8]:

LEMMA 2.1. For any A, B > 0 we have

A1+ B! (A+B>—1 ~ (A—l _B—l) (A—I +B—l)71 (A—l _B—l)
2 2 - 2

> 0. (2.1)

If more assumptions are made for the operators A and B, then one can obtain the following lower
and upper bounds:

COROLLARY 2.2. Assume that0 <o < A< fand 0 <y < B < § for some constants «, f,y, §. Then

~1 -1 -1
(o +y‘1)71 (4 —B‘l)z < A ;B 3 <AJ2rB>

1
2 - (2.2)

<lpres) T (ar -8,

DN | =

Proof. We have 7! < A™! < a ! and 57! < B! <y7!, which gives
Fl+8 <A +B <a 4y

namely

(' +y ) < (A +B Y < (B4
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By multiplying both sides by (A_1 - B_l) and dividing by 2, we get

(A =B) (A +B) (A -B)

L i\l pe1)2
> (a +y ) (A B ) < 5
<o (e A - o
We know that for T > 0, we have the operator inequalities
o<|r <T <7l (2.3)

Indeed, it is well known that, if P > 0, then

|(Px, y)I* < (Px,x)(Py,y)

forall x, y € H.
Therefore, if T > 0, then

0 < {x,x)* = <T_1Tx,x>2 = <Tx,T_1x>2
<{Tx,x) <TT71x,T71x> =(Tx,x) <x, T71x>

forall x € H.
If x € H, |x| = 1, then

5

1< (Tx,x) <x,T71x> < (Tx,x) sup <x, T71x> =(Tx,x) ||T71
[x[=1

which implies the following operator inequality
[T <T.
The second inequality in (2.3) is obvious.

REMARK 2.3. If A, B > 0 and B — A > 0, then by taking a = ”A””fl, B=1Aly = ”B‘1||71 and § = | B
in (2.2), we get

-1 -1 -1
LA (4 -y < A28 _<A+B>
2 ? 2 (2.4)

1 _
< (1A + 1817 (a7 - B7)".

A continuous function g : SA;(H) — B(H) is said to be Gateaux differentiable in A € SA;(H),
the class of selfadjoint operators on I, along the direction B € B(H) if the following limit exists in
the strong topology of B(H)

m w e B(H). 2.5)

Vga(B) :=1i

If the limit (2.5) exists for all B € B(H), then we say that g is Gateaux differentiable in A and we can
write g € G(A). If this is true for any A in an open set S from S.A;(H) we write that g € G(S).

If g is a continuous function on I, by utilising the continuous functional calculus the corresponding
function of operators will be denoted in the same way.

For two distinct operators A, B € SA;(H) we consider the segment of selfadjoint operators

[A,B] :={(Q—-t)A+tB|te[0,1]}

We observe that A, B € [A, B] and [A, B] ¢ SA;(H).
We have the following gradient inequalities, see for instance:

LEMMA 2.4. Let f be an operator convex function on I and A, B € SA;(H), with A = B. If f €
Q([A, B]), then

Vsf(B—A)> f(B) - f(A) 2 Vaf (B-A). (2.6)
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LetT, S > 0. The function f(¢) = ™! is operator Gateaux differentiable and the Gateaux derivative
is given by

VFH(S) 1= %inol =-T7'sT! (2.7)

f(T+t5)—f(T)]
t

forT, S > 0.
Using (2.7) for the operator convex function f(t) = !, we get
-DYD-CO)D'>Dl-Cclz>-Cc'D-0)C
that is equivalent to
DYD-CO)Dl'<ct'-Dl'<cY(D-C)! (2.8)
forall C,D > 0.
If
m<D-C<M
for some constants m, M, then
mD2 <D (D-C)D!
and
cYD-0) < MC™?
and by (2.8) we derive
mD2<Cc =D < MC™2 (2.9)
Moreover, if C > @ > 0 and D < §, then we get
C?<a?andD?>6872,
which implies that
m_ci_pieM (2.10)

COROLLARY 2.5. Assumethat0 < a < A< B, 0<y<B<dand0 <m < B—A < M for some
constants a, f, y, §, m, M. Then
2

Loy, y1m
0< E ((Z + Y ) y
1 - A'+B' [A+B\"
< Laay) T a—) < A _( - ) 211)
2 2 2
1 -1 2 1 -1 M?
<-(B'+67") (AT-BY) ' <= (p'+56") —.
Proof. From (2.10) we have
m 1 4 M
which implies that
2 2
-1 1z _ M
0< G <(a-B") <—
and by (2.2) we get (2.11). O

REMARK 2.6. If the positive operators A, B are separated, namely 0 < « < A< f <y < B < ¢ for
some constants a, f, y, 6, then obviously 0 <y —f < B— A< § —a and by (2.11) form =y — f and
M =6 —a, we get

1, 1B 1,4 L1 )2
0<2(a +y ) 5 Sz(a +y ) (A B )
- - -1
SA1+B1_<A+B> 2.12)
2 2
1, -1 N2 1, _v-1 (6 —a)?
Si(ﬂl_’_él) (Al—Bl)SE(ﬂl"r(Sl) — )
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If 0 < |A]|B"| < 1, then
o<|a| <A<|Al< B <B<|B|

L (1 -1

1BJ*
<Lga s (a -
<5 (|7 +[57]

and by (2.12) we get

1 _ _
0< 1 (A |B)

_A'+B' (A+B ! (2.13)
- 2 2

1 -1 -1\ 711 -1)2
< (1A +1817) (a7 - B7)

1

<

_ _\2
S (B +87) (18- a7 ) A
We can present now our main results.
3. MAIN RESULTS

We have
THEOREM 3.1. For all A, B > 0 we have

D(w, p)(A) + D(w, p)(B) D(w, 1) A+B
2 da 2

=)

= %/ (A+ A7 = +B)") (A+A) "+ Q+B) ) x((A+A) " =(A+B) ™) wA)d () (3.1)
2> 0.

The function D(w, ) is an operator convex function on (0, co)

Proof. We have for all A, B > 0

D(w, p)(A) + D(w, p)(B) D(w. 1) A+B
2 da 2

- [ v
0
Since, by (2.1)

A+A'+@A+B)" (A+A+B>_l
2

(3.2)

— — -1
(A+A)1+(A+B)1_<A+A;B> ().

2

2

(A+A7" =Q+B™) (A+A +(A+B))  x (A+A =1 +B)7")

S N

>

for all A > 0, then by (3.2) we obtain the representation (3.1).
Since D(w, p) is continuous in B(H) and satisfies Jensen’s inequality (3.1), it follows that D(w, )
is an operator convex function on (0, ). o

The case of operator monotone functions is as follows:

COROLLARY 3.2. Assume that f : [0,00) — R is an operator monotone function on [0, ). Then the
function [ f(t) — f(0)]t™! is operator convex on (0, o0). For all A, B > 0 we have

[DAT BB (A+B> ("”B (A-B7) (A7 4B7) " (A7 -B)

(3.3)

2 2 2 ) >0 2
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If £(0) = 0, then f(¢)t™! is operator convex on (0, %) and

FA)A™ + f(B)B‘1> A+B\ [A+B\!
SO () ()

for all A, B> 0.

Proof. From (1.1) we have

() - f(0)
TOZIO = e i), (34)
for some p, a positive measure on (0, o), where #(1) = A, A > 0. By utilising Theorem 3.1 and Lemma
2.1 we deduce the desired results. o

COROLLARY 3.3. Assume that f: [0,00) — R is an operator convex function on [0, o). Then the
function [f(t) - f(0) - ﬂ(O)t] t72 is operator convex on (0, ). For all A, B> 0 we have

f(A)A™2 + f(B)B2 iy <A+B> <A+B>‘2

2 2 2
-2 -1 -1 -1 —1\ 71 4-1 -1 (3.5)
-2 —2 A1_B A B A" —-B
> 10 [~ (%7) +f;(o>[( (o7 +57) (o)
If £(0) = 0, then [f(t) - f{(O)t] t~2 is operator convex on (0, o) and
—2 —2 -2 A—I_B—l A—l B—l -1 A—l_B—l
f(a)A -2Ff(B)B _f <A;B) (A;rB> - 70) [( ) ( +2 ) ( )| 59

forall A, B> 0.

Proof. From (1.3) we have

[f(®) = f(0) = fL(O)t] 72 — ¢ = D(&, ) (1),
for some p, a positive measure on (0, ), where #(1) = A, A > 0. By utilising Theorem 3.1 and Lemma
2.1 we deduce the desired results. O
When more assumptions are imposed on the operators A and B, then the following improvement
and refinement of Jensen’s inequality hold:

THEOREM 3.4. Assume that 0 < a < A< B,0<y <B<5and0 <m < B— A < M for some
constants «, 5, y, 6, m, M. Then

_ mz}/a Z
< a+p? (w, p)(5)

Do, i) A) + Do )B) _ <A+B>
’ 2

. (3.7)

MZ
< 2B +0)

Proof. Wehave 0 < a+ A< A+A<f+A0<y+A<B+A<d+rand0<m<B+A-A-A=
B— A< Mforall A >0.By (2.11) we get

0<1 ! + I

2\a+1d y+24 6+ A1)

A+ DT +B+)T A+B\"!
S( + A7 +(B+A) —</1+ + )

D/ (@) + (‘Szﬂ - a) D/ (o )@~ LB - )5 ~ D", (@)

. . (3.8)

St M2
T2\p+A s+ (x+ )%
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We have that
1 1\
N _ B+ + 1) < B+DGE+ 1) (3.9)
B+A S+2 p+5+2A p+9
and
-1
1 1 N+ )
<a+/1 +y+/1> C a+y+22 =&
We have
2 _ 2 2
) = (a+y+20)° =20y + VN(a+ A) _ (a+A)*+F+A) 0,
(a+y +21)? (¢ +y +21)?
which shows that g is increasing on [0, ).
Therefore
g(A) > g(0) = Y“Y forall A > 0. (3.10)
By (3.8)—(3.10) we derive that
1 ya m
2a+y (5 +A)¢
~1 -1 -1
< A+ +B+H </1+ A+B)
2 2
< 1B+ D+ M?
-2 B+65 (a+ )Y
which implies that
1, ya [7 wd)
0< zm a+y Jo (5+/1)4d‘u(A)
1A+ + B+ A+B\
g/ A+h) +B+YH (A++> w(Ddp(d) (3.11)
0 2 2
1 M? (ﬂ+/1)(5+/1)
Mdu(A
Zﬁ +0 + ) wdu(d)

We observe that, by the definition of D(w, ©)(8), and the properties of the derivatives of integrals
with a parameter, we have

= w(d)

D' (w, p)(t) :=— G+ du(A),
” = wd)
Do @) =2 [ S dud,
and
/77 ® (A)
D)0 1= =6 [ RS,
which gives that
T4 = 20, o) (312)
o (Atroy T HHRO: '
Also, we observe that
B+NOG6+A) B-a+ti+a)0—-a+i+a)
(a+ M) (a + /1)4
1
=(-a)d - a)( YD +(@0+p- Za)( +/1)3+(a+/1)2'
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Therefore,
[T DD
_ w(D)dp(2) w(Ddp(2) w(D)dp(L)
_/0 NG +(5+,B—2)/ @+ 1) +(B-a)6 - )/ NCE (3.13)

= D (wop)(a) + (“f - a) Do, )@ = (6 = )5 ~ D, 1))

By making use of (3.11)-(3.13), we deduce (3.7). o

COROLLARY 3.5. If the positive operators A, B are separated, namely 0 < a < A< f <y < B < d for
some constants a, f, y, 6, then

0< - Y=B e, 6)

12(x +y)
< D(w, p)(A) ; D(w, p)(B) DCw. 1) (A ;L B>
5 —a)? fo)
< g( ; f;) D (. p)(@) + (;ﬁ - a) DY, &) ~ (B~ )5~ @)D" o, u)(a)] .
(3.14)
We have:

COROLLARY 3.6. Assume that f: [0,00) — R is an operator monotone function on [0, c0) with
f(0)=0,0<a<A0<y<B<§and0<m< B— Afor some constants @, y, §, m. Then we have
the refinement of Jensen’s inequality

miya [ £7(8)8° — 3£7(8)5% + 6f'(8)5 — 6.£(5)
- 12(ex +y) ot ]
< D(w, p)(A) ;L D(w, p)(B) DCw. 1) (A ;L B) _

(3.15)

Proof. From (3.4) for f(0) = 0 we have

Dt p)(E) = f’(t)t f(t),
e - 2f (Ot +2f(t)

D (6, p)(t) = .

and

11 3 _qfn 2 / _
D = £ OF o Q16

Employing the first part of (3.14) we derive (3.15). O

4. SOME EXAMPLES

By employing the first inequality in Theorem 3.4, we derive (3.15). If g(t) = ¢"~! for t > 0, r € (0, 1),
then
gW=0-Dr" g'O=0r-Dr-20"
and
g7 =0 -1 -20-3)"

From (1.6) we get

D(w,)(t) = sm(m)tH’ t>0.
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Then by (3.7) we get
(1 -2 -rE-rmiya
12(a + )64+
A1 4 Bt (A +B )"1
< _
2 2
< Z(ﬂ-iw;)zﬁ" (1-r)a*+ <5Z'B —0() a(1-r)2-r) + é(ﬂ—a)@—a)(l—r)(2—r)(3—r)

providedthat 0 < a < A< B,0<y <B<dand 0 <m < B—-A <M for some constants «a, S,
Y, 6, m, M.
If we take r — 0+ in (4.1), then we get

0<

(4.1)

miya A1+B1 [A+B\" M25p
0< < — < ——m (42)
2(a +y)5* 2 2 2(f + 8)a*
which is the same as (2.11).
If0 <a<A<p<y< B for some constants «, 5, y, §, then
) (=nE=nG-n - pire
<
12(ax +y)o%
r—1 r—1 r-1
SA +B _<A+B> (43)
2 2
§—a)? 5+ 1
< M [(1—r)a2+ <2ﬁ—a> a(1-r)(2—-r) + g(ﬂ—a)((S—a)(l—r)(2—r)(3—r) ,
where r € (0,1).
If we take r — 0+ in (4.3), then we get, see also (2.12),
Y -1 -1 -1 N2
(y ﬁ)yagA +B (A+B SM. (4.4)
2(a +y)d* 2 2 2(B + 8)a*
We define the upper incomplete Gamma function as [12]
I(a,z) := / et dt,
which for z = 0 gives Gamma function
I'(a) := / t* e 'dt for Rea > 0.
0
We have the integral representation [13]
Z%* et
T = dt 4.5
(@2) F(l—a)A‘ z+t (*5)
for Rea < 1 and |phz| < 7.
Now, we consider the weight w-«,—(1) := A7%* for A > 0. Then by (4.5) we have
® A —a t
D (we-ap-) (1) = dA =T —a)t™e'T(a,t) (4.6)
o t+A
fora< landt > 0.
For a = 0 in (4.6) we get
o -2
D(we ) () = / €l =T)eT(0,1) = ¢'Ey (1) (4.7)
o t+A
for t > 0, where
E) := / ¢ du. (4.8)
t u
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Let a = 1 — n, with n a natural number with n > 0, then by (4.6) we have

o0 /Vl_le_/l y
D n-1-) (F) = d/l =T tn_ I'(1- t
()0 = [ EGmdd = T era -

= (- D" T - n,1).

If we define the generalized exponential integral [14] by

0o —t

.— -1 _ — P-1 ¢
Eyz) :=2"T(1-p,2) =z / m dt

z
then
t"IT(1 — n,t) = E,(t)
forn>1andt > 0.
Using the identity [14, Eq 8.19.7], forn > 2

(-2
(n—1)

B = 2 k) + ZyZm k- 212,
we get
D (wr1e-) () = (n = 1)1'E,(t)

( )nl —t

= (-1 =D 1()+ Z(n— - 2)I(-t)f

n—2
= Y (D (n—k = 2UF + (1) E (1)
k=0

forn>2andt > 0.
For n = 2, we also get

D(we-)(@) = [‘X’ et + M) Tdr=1— texp()E(2)

fort > 0.

(4.9)

(4.10)

(4.11)

PROPOSITION 4.1. For all a < 1, the function t?¢'T(a, t) is operator convex on (0, «). In particular,
e'E,(t) is operator convex on (0, ). As a consequence ¢€'E;(t) is operator convex and te'E;(t) is

operator concave on (0, c0).

We can also consider the weight w.,,2)1(1) =
calculations, we get

/12_'_ 2

D (W(Az+a2) (t) / —(/1 n t) ()LZ az)
1

t
(tz o) ( —Int+ lna>

fort >0anda > 0.
For a = 1 we also have

D) 0= [ Gparn®

1
:7(—t—lnt)
t2+1\2

fort > 0.
PROPOSITION 4.2. For all a > 0, the functions

(tzﬂl—az) (m‘ 1nt+lna)
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for A > 0 and a > 0. Then, by simple
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are operator convex on (0, ). In particular,
1 T
— <7t —In t)
2+1\2

The interested reader may state other similar results by employing the examples of monotone
operator functions provided in [3], [4], [5], [10] and [11].
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