

Several inequalities for an integral transform of positive operators in Hilbert spaces with applications

This is the Published version of the following publication

Dragomir, Sever S (2023) Several inequalities for an integral transform of positive operators in Hilbert spaces with applications. Cubo, 25 (2). pp. 195-209. ISSN 0719-0646

The publisher's official version can be found at https://cubo.ufro.cl/ojs/index.php/cubo/article/view/3420 Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/47847/

Several inequalities for an integral transform of positive operators in Hilbert spaces with applications

S. S. Dragomir^{1,2} \boxtimes \bigcirc

¹Mathematics, College of Engineering & Science, Melbourne City, Australia. sever.dragomir@vu.edu.au

²DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science & Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa.

ABSTRACT

For a continuous and positive function $w\left(\lambda\right)$, $\lambda>0$ and μ a positive measure on $(0,\infty)$ we consider the following *integral transform*

$$\mathcal{D}(w,\mu)(T) := \int_{0}^{\infty} w(\lambda) (\lambda + T)^{-1} d\mu(\lambda),$$

where the integral is assumed to exist for T a postive operator on a complex Hilbert space H.

We show among others that, if $\beta \ge A \ge \alpha > 0$, B > 0 with $M \ge B - A \ge m > 0$ for some constants α , β , m, M, then

$$0 \leq \frac{m^{2}}{M^{2}} \left[\mathcal{D}\left(w,\mu\right) \left(\beta\right) - \mathcal{D}\left(w,\mu\right) \left(M+\beta\right) \right]$$

$$\leq \frac{m^{2}}{M} \left[\mathcal{D}\left(w,\mu\right) \left(\beta\right) - \mathcal{D}\left(w,\mu\right) \left(M+\beta\right) \right] \left(B-A\right)^{-1}$$

$$\leq \mathcal{D}\left(w,\mu\right) \left(A\right) - \mathcal{D}\left(w,\mu\right) \left(B\right)$$

$$\leq \frac{M^{2}}{m} \left[\mathcal{D}\left(w,\mu\right) \left(\alpha\right) - \mathcal{D}\left(w,\mu\right) \left(m+\alpha\right) \right] \left(B-A\right)^{-1}$$

$$\leq \frac{M^{2}}{m^{2}} \left[\mathcal{D}\left(w,\mu\right) \left(\alpha\right) - \mathcal{D}\left(w,\mu\right) \left(m+\alpha\right) \right].$$

Some examples for operator monotone and operator convex functions as well as for integral transforms $\mathcal{D}(\cdot,\cdot)$ related to the exponential and logarithmic functions are also provided.

RESUMEN

Para una función contínua y positiva $w\left(\lambda\right),\ \lambda>0$ y μ una medida positiva sobre $(0,\infty)$ consideramos la siguiente $transformada\ integral$

$$\mathcal{D}(w,\mu)(T) := \int_{0}^{\infty} w(\lambda) (\lambda + T)^{-1} d\mu(\lambda),$$

donde se asume que la integral existe para un operador positivo T, sobre el espacio complejo de Hilbert H.

Mostramos, entre otras cosas, que si $\beta \geq A \geq \alpha > 0$, B > 0 con $M \geq B - A \geq m > 0$ para algunas constantes α , β , m, M, entonces

$$0 \leq \frac{m^2}{M^2} \left[\mathcal{D}\left(w,\mu\right) (\beta) - \mathcal{D}\left(w,\mu\right) (M+\beta) \right]$$

$$\leq \frac{m^2}{M} \left[\mathcal{D}\left(w,\mu\right) (\beta) - \mathcal{D}\left(w,\mu\right) (M+\beta) \right] (B-A)^{-1}$$

$$\leq \mathcal{D}\left(w,\mu\right) (A) - \mathcal{D}\left(w,\mu\right) (B)$$

$$\leq \frac{M^2}{m} \left[\mathcal{D}\left(w,\mu\right) (\alpha) - \mathcal{D}\left(w,\mu\right) (m+\alpha) \right] (B-A)^{-1}$$

$$\leq \frac{M^2}{m^2} \left[\mathcal{D}\left(w,\mu\right) (\alpha) - \mathcal{D}\left(w,\mu\right) (m+\alpha) \right].$$

También se proporcionan algunos ejemplos para las funciones operador monótono y operador convexo, así como de transformadas integrales $\mathcal{D}\left(\cdot,\cdot\right)$ relacionadas con las funciones exponencial y logarítmica.

Keywords and Phrases: Operator monotone functions, Operator convex functions, Operator inequalities, Löwner-Heinz inequality, Logarithmic operator inequalities.

1 Introduction

Consider a complex Hilbert space $(H, \langle \cdot, \cdot \rangle)$. An operator T is said to be positive (denoted by $T \geq 0$) if $\langle Tx, x \rangle \geq 0$ for all $x \in H$ and also an operator T is said to be *strictly positive* (denoted by T > 0) if T is positive and invertible. A real valued continuous function f on $(0, \infty)$ is said to be operator monotone if $f(A) \geq f(B)$ holds for any $A \geq B > 0$.

We have the following representation of operator monotone functions [6], see for instance [1, p. 144–145]:

Theorem 1.1. A function $f:[0,\infty)\to\mathbb{R}$ is operator monotone in $[0,\infty)$ if and only if it has the representation

$$f(t) = f(0) + bt + \int_{0}^{\infty} \frac{t\lambda}{t+\lambda} d\mu(\lambda), \qquad (1.1)$$

where $b \geq 0$ and a positive measure μ on $[0, \infty)$ such that

$$\int_{0}^{\infty} \frac{\lambda}{1+\lambda} \, d\mu \left(\lambda\right) < \infty. \tag{1.2}$$

A real valued continuous function f on an interval I is said to be operator convex (operator concave) on I if

$$f((1 - \lambda) A + \lambda B) \le (\ge) (1 - \lambda) f(A) + \lambda f(B)$$
(OC)

in the operator order, for all $\lambda \in [0,1]$ and for every selfadjoint operator A and B on a Hilbert space H whose spectra are contained in I. Notice that a function f is operator concave if -f is operator convex. We have the following representation of operator convex functions [1, p. 147]:

Theorem 1.2. A function $f:[0,\infty)\to\mathbb{R}$ is operator convex in $[0,\infty)$ with $f'_+(0)\in\mathbb{R}$ if and only if it has the representation

$$f(t) = f(0) + f'_{+}(0)t + ct^{2} + \int_{0}^{\infty} \frac{t^{2}\lambda}{t+\lambda} d\mu(\lambda), \qquad (1.3)$$

where $c \geq 0$ and a positive measure μ on $[0, \infty)$ such that (1.2) holds.

We have the following integral representation for the power function when t > 0, $r \in (0, 1]$, see for instance [1, p. 145]

$$t^{r-1} = \frac{\sin(r\pi)}{\pi} \int_0^\infty \frac{\lambda^{r-1}}{\lambda + t} d\lambda. \tag{1.4}$$

Observe that for t > 0, $t \neq 1$, we have

$$\int_0^u \frac{d\lambda}{(\lambda+t)(\lambda+1)} = \frac{\ln t}{t-1} + \frac{1}{1-t} \ln \left(\frac{u+t}{u+1}\right), \quad \text{for all } u > 0$$

By taking the limit over $u \to \infty$ in this equality, we derive

$$\frac{\ln t}{t-1} = \int_0^\infty \frac{d\lambda}{(\lambda+t)(\lambda+1)},$$

which gives the representation for the logarithm

$$\ln t = (t - 1) \int_0^\infty \frac{d\lambda}{(\lambda + 1)(\lambda + t)}, \quad \text{for all } t > 0.$$
 (1.5)

Motivated by these representations, we introduce, for a continuous and positive function $w(\lambda)$, $\lambda > 0$, the following integral transform

$$\mathcal{D}(w,\mu)(t) := \int_{0}^{\infty} \frac{w(\lambda)}{\lambda + t} d\mu(\lambda), \quad t > 0,$$
(1.6)

where μ is a positive measure on $(0, \infty)$ and the integral (1.6) exists for all t > 0. For μ the Lebesgue usual measure, we put

$$\mathcal{D}(w)(t) := \int_{0}^{\infty} \frac{w(\lambda)}{\lambda + t} d\lambda, \quad t > 0.$$
(1.7)

If we take μ to be the usual Lebesgue measure and the kernel $w_r(\lambda) = \lambda^{r-1}$, $r \in (0,1]$, then

$$t^{r-1} = \frac{\sin(r\pi)}{\pi} \mathcal{D}(w_r)(t), \quad t > 0.$$

$$(1.8)$$

For the same measure, if we take the kernel $w_{ln}(\lambda) = (\lambda + 1)^{-1}$, t > 0, we have the representation

$$\ln t = (t-1) \mathcal{D}(w_{\ln})(t), \quad t > 0.$$
 (1.9)

Assume that T > 0, then by the continuous functional calculus for selfadjoint operators, we can define the positive operator

$$\mathcal{D}(w,\mu)(T) := \int_0^\infty w(\lambda) (\lambda + T)^{-1} d\mu(\lambda), \qquad (1.10)$$

where w and μ are as above. Also, when μ is the usual Lebesgue measure, then

$$\mathcal{D}(w)(T) := \int_0^\infty w(\lambda) (\lambda + T)^{-1} d\lambda, \quad \text{for } T > 0.$$
(1.11)

From (1.8) we have the representation

$$T^{r-1} = \frac{\sin(r\pi)}{\pi} \mathcal{D}(w_r)(T)$$
(1.12)

where T > 0 and from (1.9)

$$(T-1)^{-1} \ln T = \mathcal{D}(w_{\ln})(T)$$
 (1.13)

provided T > 0 and T - 1 is invertible.

In what follows, if A is an operator and a is a real number, then by $A \ge a$ we understand $A \ge aI$, where I is the identity operator.

In this paper we show among others that, if $\beta \geq A \geq \alpha > 0$, B > 0 with $M \geq B - A \geq m > 0$ for some constants α , β , m, M, then

$$0 \leq \frac{m^2}{M^2} \left[\mathcal{D}\left(w,\mu\right) \left(\beta\right) - \mathcal{D}\left(w,\mu\right) \left(M+\beta\right) \right]$$

$$\leq \frac{m^2}{M} \left[\mathcal{D}\left(w,\mu\right) \left(\beta\right) - \mathcal{D}\left(w,\mu\right) \left(M+\beta\right) \right] \left(B-A\right)^{-1}$$

$$\leq \mathcal{D}\left(w,\mu\right) \left(A\right) - \mathcal{D}\left(w,\mu\right) \left(B\right)$$

$$\leq \frac{M^2}{m} \left[\mathcal{D}\left(w,\mu\right) \left(\alpha\right) - \mathcal{D}\left(w,\mu\right) \left(m+\alpha\right) \right] \left(B-A\right)^{-1}$$

$$\leq \frac{M^2}{m^2} \left[\mathcal{D}\left(w,\mu\right) \left(\alpha\right) - \mathcal{D}\left(w,\mu\right) \left(m+\alpha\right) \right].$$

Some examples for operator monotone and operator convex functions as well as for integral transforms $\mathcal{D}(\cdot,\cdot)$ related to the exponential and logarithmic functions are also provided.

2 Main results

In the following, whenever we write $\mathcal{D}(w,\mu)$ we mean that the integral from (1.6) exists and is finite for all t > 0.

Theorem 2.1. For all A, B > 0 with $B - A \ge 0$ we have the representation

$$0 \le (B - A)^{1/2} \left[\mathcal{D}(w, \mu) (A) - \mathcal{D}(w, \mu) (B) \right] (B - A)^{1/2}$$

$$= \int_0^\infty \left(\int_0^1 \left[(B - A)^{1/2} (\lambda + sB + (1 - s) A)^{-1} (B - A)^{1/2} \right]^2 ds \right) \times w(\lambda) d\mu(\lambda).$$
(2.1)

Proof. Observe that, for all A, B > 0

$$\mathcal{D}(w,\mu)(B) - \mathcal{D}(w,\mu)(A) = \int_0^\infty w(\lambda) \left[(\lambda + B)^{-1} - (\lambda + A)^{-1} \right] d\mu(\lambda). \tag{2.2}$$

Let T, S > 0. The function $f(t) = -t^{-1}$ is operator monotone on $(0, \infty)$, operator Gâteaux differentiable and the Gâteaux derivative is given by

$$\nabla f_T(S) := \lim_{t \to 0} \left[\frac{f(T + tS) - f(T)}{t} \right] = T^{-1}ST^{-1}, \quad \text{for } T, S > 0$$
 (2.3)

Consider the continuous function f defined on an interval I for which the corresponding operator function is Gâteaux differentiable on the segment [C, D]: $\{(1-t)C + tD, t \in [0, 1]\}$ for C, D selfadjoint operators with spectra in I. We consider the auxiliary function defined on [0, 1] by

$$f_{C,D}(t) := f((1-t)C + tD), t \in [0,1].$$

Then we have, by the properties of the Bochner integral, that

$$f(D) - f(C) = \int_0^1 \frac{d}{dt} (f_{C,D}(t)) dt = \int_0^1 \nabla f_{(1-t)C+tD}(D-C) dt.$$
 (2.4)

If we write this equality for the function $f(t) = -t^{-1}$ and C, D > 0, then we get the representation

$$C^{-1} - D^{-1} = \int_0^1 ((1-t)C + tD)^{-1} (D-C) ((1-t)C + tD)^{-1} dt.$$
 (2.5)

Now, if we take in (2.5) $C = \lambda + B$, $D = \lambda + A$, then

$$(\lambda + B)^{-1} - (\lambda + A)^{-1}$$

$$= \int_{0}^{1} ((1 - t)(\lambda + B) + t(\lambda + A))^{-1} (A - B) \times ((1 - t)(\lambda + B) + t(\lambda + A))^{-1} dt \qquad (2.6)$$

$$= \int_{0}^{1} (\lambda + (1 - t)B + tA)^{-1} (A - B)(\lambda + (1 - t)B + tA)^{-1} dt$$

and by (2.2) we derive

$$\mathcal{D}(w,\mu)(A) - \mathcal{D}(w,\mu)(B)
= \int_{0}^{\infty} w(\lambda) \left(\int_{0}^{1} (\lambda + (1-t)B + tA)^{-1} (B-A) \times (\lambda + (1-t)B + tA)^{-1} dt \right) d\mu(\lambda)
= \int_{0}^{\infty} w(\lambda) \left(\int_{0}^{1} (\lambda + sB + (1-s)A)^{-1} (B-A) \times (\lambda + sB + (1-s)A)^{-1} ds \right) d\mu(\lambda)$$
(2.7)

for all A, B > 0, where for the last equality we used the change of variable $s = 1 - t, t \in [0, 1]$. Now, since $B - A \ge 0$, hence by multiplying both sides with $(B - A)^{1/2}$ we get

$$(B-A)^{1/2} \left[\mathcal{D}(w,\mu) (A) - \mathcal{D}(w,\mu) (B) \right] (B-A)^{1/2}$$

$$= \int_{0}^{\infty} w(\lambda) \left(\int_{0}^{1} (B-A)^{1/2} (\lambda + sB + (1-s)A)^{-1} (B-A) \times (\lambda + sB + (1-s)A)^{-1} (B-A)^{1/2} ds \right) d\mu(\lambda)$$

$$= \int_{0}^{\infty} w(\lambda) \left(\int_{0}^{1} (B-A)^{1/2} (\lambda + sB + (1-s)A)^{-1} (B-A)^{1/2} \times (B-A)^{1/2} (\lambda + sB + (1-s)A)^{-1} (B-A)^{1/2} ds \right) d\mu(\lambda)$$

$$= \int_{0}^{\infty} w(\lambda) \times \left(\int_{0}^{1} \left[(B-A)^{1/2} (\lambda + sB + (1-s)A)^{-1} (B-A)^{1/2} \right]^{2} ds \right) d\mu(\lambda),$$

$$= \int_{0}^{\infty} w(\lambda) \times \left(\int_{0}^{1} \left[(B-A)^{1/2} (\lambda + sB + (1-s)A)^{-1} (B-A)^{1/2} \right]^{2} ds \right) d\mu(\lambda),$$

which proves the identity in (2.1). Since

$$\left[(B-A)^{1/2} (\lambda + sB + (1-s)A)^{-1} (B-A)^{1/2} \right]^2 \ge 0$$

then by integrating over s on [0,1], multiplying by $w(\lambda) \geq 0$ and integrating over $d\mu(\lambda)$, we deduce the inequality in (2.1).

The case of operator monotone functions is as follows:

Corollary 2.2. Assume that f is operator monotone on $[0, \infty)$, then all A, B > 0 with $B - A \ge 0$ we have the equality

$$0 \le (B - A)^{1/2} \left[f(A) A^{-1} - f(B) B^{-1} \right] (B - A)^{1/2}$$

$$- f(0) (B - A)^{1/2} (A^{-1} - B^{-1}) (B - A)^{1/2}$$

$$= \int_0^\infty \left(\int_0^1 \left[(B - A)^{1/2} (\lambda + sB + (1 - s) A)^{-1} (B - A)^{1/2} \right]^2 ds \right) \lambda d\mu (\lambda)$$
(2.9)

for some positive measure $\mu(\lambda)$. If f(0) = 0, then

$$0 \le (B-A)^{1/2} \left[f(A) A^{-1} - f(B) B^{-1} \right] (B-A)^{1/2}$$

$$= \int_0^\infty \left(\int_0^1 \left[(B-A)^{1/2} (\lambda + sB + (1-s) A)^{-1} (B-A)^{1/2} \right]^2 ds \right) \times \lambda \, d\mu (\lambda) . \tag{2.10}$$

Proof. From (1.1) we have the representation

$$\frac{f(t) - f(0)}{t} - b = \mathcal{D}(\ell, \mu)(t), \qquad (2.11)$$

with $\ell(\lambda) = \lambda$, for some positive measure $\mu(\lambda)$ and nonnegative number b. Since

$$\mathcal{D}(\ell,\mu)(A) - \mathcal{D}(\ell,\mu)(B) = [f(A) - f(0)]A^{-1} - [f(B) - f(0)]B^{-1}$$
$$= f(A)A^{-1} - f(B)B^{-1} - f(0)(A^{-1} - B^{-1}),$$

hence by (2.1) we get (2.9).

The case of operator convex functions is as follows:

Corollary 2.3. Assume that f is operator convex on $[0, \infty)$, then all A, B > 0 with $B - A \ge 0$ we have that

$$0 \leq (B-A)^{1/2} \left[f(A) A^{-2} - f(B) B^{-2} \right] (B-A)^{1/2}$$

$$- f'_{+}(0) (B-A)^{1/2} (A^{-1} - B^{-1}) (B-A)^{1/2}$$

$$- f(0) (B-A)^{1/2} (A^{-2} - B^{-2}) (B-A)^{1/2}$$

$$= \int_{0}^{\infty} \left(\int_{0}^{1} \left[(B-A)^{1/2} (\lambda + sB + (1-s) A)^{-1} (B-A)^{1/2} \right]^{2} ds \right) \times \lambda \, d\mu (\lambda) ,$$

$$(2.12)$$

for some positive measure $\mu(\lambda)$. If f(0) = 0, then

$$0 \leq (B-A)^{1/2} \left[f(A) A^{-2} - f(B) B^{-2} \right] (B-A)^{1/2}$$

$$- f'_{+}(0) (B-A)^{1/2} (A^{-1} - B^{-1}) (B-A)^{1/2}$$

$$= \int_{0}^{\infty} \left(\int_{0}^{1} \left[(B-A)^{1/2} (\lambda + sB + (1-s) A)^{-1} (B-A)^{1/2} \right]^{2} ds \right) \times \lambda \, d\mu (\lambda) .$$

$$(2.13)$$

Proof. From (1.3) we have that

$$\frac{f\left(t\right)-f\left(0\right)-f_{+}^{\prime}\left(0\right)t}{t^{2}}-c=\mathcal{D}\left(\ell,\mu\right)\left(t\right),$$

for t > 0. Then for A, B > 0,

$$\mathcal{D}(\ell,\mu)(A) - \mathcal{D}(\ell,\mu)(B) = f(A)A^{-2} - f'_{+}(0)A^{-1} - f(0)A^{-2} - f(A)B^{-2} + f'_{+}(0)B^{-1} + f(0)B^{-2}$$
$$= f(A)A^{-2} - f(B)B^{-2} - f'_{+}(0)(A^{-1} - B^{-1}) - f(0)(A^{-2} - B^{-2})$$

and by (2.1) we derive (2.13).

When more conditions are imposed on the operators A and B we have the following refinements and reverses of the inequality

$$0 \le \mathcal{D}(w, \mu)(A) - \mathcal{D}(w, \mu)(B)$$

that hold for $B - A \ge 0$.

Theorem 2.4. If $\beta \geq A \geq \alpha > 0$, B > 0 with $M \geq B - A \geq m > 0$ for some constants α , β , m, M, then

$$0 \leq \frac{m^{2}}{M^{2}} \left[\mathcal{D}\left(w,\mu\right) \left(\beta\right) - \mathcal{D}\left(w,\mu\right) \left(M+\beta\right) \right]$$

$$\leq \frac{m^{2}}{M} \left[\mathcal{D}\left(w,\mu\right) \left(\beta\right) - \mathcal{D}\left(w,\mu\right) \left(M+\beta\right) \right] \left(B-A\right)^{-1}$$

$$\leq \mathcal{D}\left(w,\mu\right) \left(A\right) - \mathcal{D}\left(w,\mu\right) \left(B\right)$$

$$\leq \frac{M^{2}}{m} \left[\mathcal{D}\left(w,\mu\right) \left(\alpha\right) - \mathcal{D}\left(w,\mu\right) \left(m+\alpha\right) \right] \left(B-A\right)^{-1}$$

$$\leq \frac{M^{2}}{m^{2}} \left[\mathcal{D}\left(w,\mu\right) \left(\alpha\right) - \mathcal{D}\left(w,\mu\right) \left(m+\alpha\right) \right].$$

$$(2.14)$$

Proof. For $s \in [0,1]$ we have

$$\lambda + sB + (1 - s)A = \lambda + s(B - A) + A.$$

We have

$$\lambda + s(B-A) + A \ge \lambda + sm + A \ge \lambda + sm + \alpha = \lambda + (1-s)\alpha + s(m+\alpha)$$

 $s \in [0,1]$ and $\lambda \geq 0$, which implies that

$$(\lambda + sB + (1 - s)A)^{-1} \le [\lambda + (1 - s)\alpha + s(m + \alpha)]^{-1}$$

and, by multiplying both sides by $(B-A)^{1/2} \ge 0$,

$$(B-A)^{1/2} (\lambda + sB + (1-s)A)^{-1} (B-A)^{1/2} \le [\lambda + (1-s)\alpha + s(m+\alpha)]^{-1} (B-A)$$

$$\le M [\lambda + (1-s)\alpha + s(m+\alpha)]^{-1}.$$

Furthermore,

$$\left[(B-A)^{1/2} (\lambda + sB + (1-s)A)^{-1} (B-A)^{1/2} \right]^{2} \le M^{2} [\lambda + (1-s)\alpha + s(m+\alpha)]^{-2}$$

for $s \in [0,1]$ and $\lambda \geq 0$, which implies by integration that

$$\int_{0}^{\infty} w(\lambda) \left(\int_{0}^{1} \left[(B - A)^{1/2} (\lambda + sB + (1 - s) A)^{-1} (B - A)^{1/2} \right]^{2} ds \right) d\mu(\lambda)$$

$$\leq M^{2} \int_{0}^{\infty} w(\lambda) \left(\int_{0}^{1} \left[\lambda + (1 - s) \alpha + s (m + \alpha) \right]^{-2} ds \right) d\mu(\lambda)$$

$$= \frac{M^{2}}{m} \int_{0}^{\infty} w(\lambda) \left(\int_{0}^{1} \left[\lambda + (1 - s) \alpha + s (m + \alpha) \right]^{-1} (m + \alpha - \alpha) \right)$$

$$\times \left[\lambda + (1 - s) \alpha + s (m + \alpha) \right]^{-1} ds d\mu(\lambda) \quad \text{(and by (2.7))}$$

$$= \frac{M^{2}}{m} \left[\mathcal{D}(w, \mu) (\alpha) - \mathcal{D}(w, \mu) (m + \alpha) \right].$$

Using (2.8) we get

$$(B-A)^{1/2} \left[\mathcal{D}\left(w,\mu\right)(A) - \mathcal{D}\left(w,\mu\right)(B) \right] (B-A)^{1/2} \leq \frac{M^2}{m} \left[\mathcal{D}\left(w,\mu\right)(\alpha) - \mathcal{D}\left(w,\mu\right)(m+\alpha) \right].$$

Multiplying both sides with $(B-A)^{-1/2}$ we deduce the fourth inequality in (2.14). We also have

$$\lambda + s(B - A) + A \le \lambda + sM + A \le \lambda + sM + \beta = \lambda + (1 - s)\beta + s(M + \beta),$$

which implies that

$$(\lambda + sB + (1 - s)A)^{-1} \ge [\lambda + (1 - s)\beta + s(M + \beta)]^{-1}$$

and, by multiplying both sides by $(B-A)^{1/2} \ge 0$,

$$(B-A)^{1/2} (\lambda + sB + (1-s)A)^{-1} (B-A)^{1/2} \ge [\lambda + (1-s)\beta + s(M+\beta)]^{-1} (B-A)$$

$$\ge m [\lambda + (1-s)\beta + s(M+\beta)]^{-1},$$

for $s \in [0,1]$ and $\lambda > 0$. By taking the square, we get

$$\left[\left(B - A \right)^{1/2} \left(\lambda + sB + \left(1 - s \right) A \right)^{-1} \left(B - A \right)^{1/2} \right]^{2} \ge m^{2} \left[\lambda + \left(1 - s \right) \beta + s \left(M + \beta \right) \right]^{-2},$$

for $s \in [0,1]$ and $\lambda \geq 0$. By taking the integrals in this inequality we obtain

$$\int_{0}^{\infty} w(\lambda) \left(\int_{0}^{1} \left[(B - A)^{1/2} (\lambda + sB + (1 - s) A)^{-1} (B - A)^{1/2} \right]^{2} ds \right) d\mu(\lambda)$$

$$\geq m^{2} \int_{0}^{\infty} w(\lambda) \left(\int_{0}^{1} \left[\lambda + (1 - s) \beta + s (M + \beta) \right]^{-2} ds \right) d\mu(\lambda)$$

$$= \frac{m^{2}}{M} \int_{0}^{\infty} w(\lambda) \left(\int_{0}^{1} \left[\lambda + (1 - s) \beta + s (M + \beta) \right]^{-1} (M + \beta - \beta) \right)$$

$$\times \left[\lambda + (1 - s) \beta + s (M + \beta) \right]^{-1} ds d\mu(\lambda) \quad \text{(and by (2.7))}$$

$$= \frac{m^{2}}{M} \left[\mathcal{D}(w, \mu) (\beta) - \mathcal{D}(w, \mu) (M + \beta) \right].$$

Using (2.8) we get

$$(B-A)^{1/2} \left[\mathcal{D}\left(w,\mu\right)(A) - \mathcal{D}\left(w,\mu\right)(B) \right] (B-A)^{1/2} \ge \frac{m^2}{M} \left[\mathcal{D}\left(w,\mu\right)(\beta) - \mathcal{D}\left(w,\mu\right)(M+\beta) \right].$$

Multiplying both sides with $(B-A)^{-1/2}$ we deduce the second inequality in (2.14). The rest of the inequalities are obvious.

It is well known that, if $P \geq 0$, then

$$\left|\left\langle Px,y\right\rangle \right|^{2} \leq \left\langle Px,x\right\rangle \left\langle Py,y\right\rangle$$

for all $x, y \in H$. Therefore, if T > 0, then

$$0 \le \left\langle x, x \right\rangle^2 = \left\langle T^{-1} T x, x \right\rangle^2 = \left\langle T x, T^{-1} x \right\rangle^2 \le \left\langle T x, x \right\rangle \left\langle T T^{-1} x, T^{-1} x \right\rangle = \left\langle T x, x \right\rangle \left\langle x, T^{-1} x \right\rangle,$$

for all $x \in H$. If $x \in H$, ||x|| = 1, then

$$1 \le \langle Tx, x \rangle \left\langle x, T^{-1}x \right\rangle \le \langle Tx, x \rangle \sup_{\|x\|=1} \left\langle x, T^{-1}x \right\rangle = \langle Tx, x \rangle \left\| T^{-1} \right\|,$$

which implies the following operator inequality

$$||T^{-1}||^{-1} \le T.$$
 (2.15)

Remark 2.5. If A > 0 and B - A > 0, then obviously $||A|| \ge A \ge ||A^{-1}||^{-1}$ and $||B - A|| \ge B - A \ge ||(B - A)^{-1}||^{-1}$. So, if we take $\beta = ||A||$, $\alpha = ||A^{-1}||^{-1}$, M = ||B - A|| and $m = ||(B - A)^{-1}||^{-1}$ in (2.14), then we get

$$0 \leq \frac{\mathcal{D}(w,\mu) (\|A\|) - \mathcal{D}(w,\mu) (\|B-A\|+\|A\|)}{\|B-A\|^{2} \|(B-A)^{-1}\|^{2}}$$

$$\leq \frac{\mathcal{D}(w,\mu) (\|A\|) - \mathcal{D}(w,\mu) (\|B-A\|+\|A\|)}{\|B-A\| \|(B-A)^{-1}\|^{2}} (B-A)^{-1}$$

$$\leq \mathcal{D}(w,\mu) (A) - \mathcal{D}(w,\mu) (B)$$

$$\leq \|B-A\|^{2} \|(B-A)^{-1}\|$$

$$\times \left[\mathcal{D}(w,\mu) (\|A^{-1}\|^{-1}) - \mathcal{D}(w,\mu) (\|(B-A)^{-1}\|^{-1} + \|A^{-1}\|^{-1})\right] \times (B-A)^{-1}$$

$$\leq \|B-A\|^{2} \|(B-A)^{-1}\|^{2}$$

$$\times \left[\mathcal{D}(w,\mu) (\|A^{-1}\|^{-1}) - \mathcal{D}(w,\mu) (\|(B-A)^{-1}\|^{-1} + \|A^{-1}\|^{-1})\right].$$
(2.16)

Corollary 2.6. Assume that f is operator monotone on $[0, \infty)$. If $\beta \geq A \geq \alpha > 0$, B > 0 with $M \geq B - A \geq m > 0$ for some constants α , β , m, M, then

$$0 \leq \frac{m^2}{M^2} \left[\frac{f(\beta)}{\beta} - \frac{f(M+\beta)}{M+\beta} - \frac{M}{\beta(M+\beta)} f(0) \right]$$

$$\leq \frac{m^2}{M} \left[\frac{f(\beta)}{\beta} - \frac{f(M+\beta)}{M+\beta} - \frac{M}{\beta(M+\beta)} f(0) \right] (B-A)^{-1}$$

$$\leq f(A) A^{-1} - f(B) B^{-1} - f(0) \left(A^{-1} - B^{-1} \right)$$

$$\leq \frac{M^2}{m} \left[\frac{f(\alpha)}{\alpha} - \frac{f(m+\alpha)}{m+\alpha} - \frac{m}{\alpha(m+\alpha)} f(0) \right] (B-A)^{-1}$$

$$\leq \frac{M^2}{m^2} \left[\frac{f(\alpha)}{\alpha} - \frac{f(m+\alpha)}{m+\alpha} - \frac{m}{\alpha(m+\alpha)} f(0) \right].$$

$$(2.17)$$

If f(0) = 0, then

$$0 \leq \frac{m^2}{M^2} \left[\frac{f(\beta)}{\beta} - \frac{f(M+\beta)}{M+\beta} \right] \leq \frac{m^2}{M} \left[\frac{f(\beta)}{\beta} - \frac{f(M+\beta)}{M+\beta} \right] (B-A)^{-1}$$

$$\leq f(A) A^{-1} - f(B) B^{-1} \leq \frac{M^2}{m} \left[\frac{f(\alpha)}{\alpha} - \frac{f(m+\alpha)}{m+\alpha} \right] (B-A)^{-1}$$

$$\leq \frac{M^2}{m^2} \left[\frac{f(\alpha)}{\alpha} - \frac{f(m+\alpha)}{m+\alpha} \right].$$
(2.18)

The proof follows by (2.14) and the representation (2.11).

Remark 2.7. If A > 0 and B - A > 0, then for f an operator monotone function on $[0, \infty)$ with f(0) = 0, we obtain from (2.18) some similar inequalities to the ones in Remark 2.5. We omit the details.

The case of operator convex functions is as follows:

Corollary 2.8. Assume that f is operator convex on $[0, \infty)$. If $\beta \geq A \geq \alpha > 0$, B > 0 with $M \geq B - A \geq m > 0$ for some constants α , β , m, M, then

$$0 \leq \frac{m^{2}}{M^{2}} \left[\frac{f(\beta)}{\beta^{2}} - \frac{f(M+\beta)}{(M+\beta)^{2}} - f'_{+}(0) \frac{M}{\beta(M+\beta)} - f(0) \frac{M(M+2\beta)}{\beta^{2}(M+\beta)^{2}} \right]$$

$$\leq \frac{m^{2}}{M} \left[\frac{f(\beta)}{\beta^{2}} - \frac{f(M+\beta)}{(M+\beta)^{2}} - f'_{+}(0) \frac{M}{\beta(M+\beta)} - f(0) \frac{M(M+2\beta)}{\beta^{2}(M+\beta)^{2}} \right] \times (B-A)^{-1}$$

$$\leq f(A)A^{-2} - f(B)B^{-2} - f'_{+}(0) (A^{-1} - B^{-1}) - f(0) (A^{-2} - B^{-2})$$

$$\leq \frac{M^{2}}{m} \left[\frac{f(\alpha)}{\alpha^{2}} - \frac{f(m+\alpha)}{(m+\alpha)^{2}} - f'_{+}(0) \frac{m}{\alpha(m+\alpha)} - f(0) \frac{m(m+2\alpha)}{\alpha^{2}(m+\alpha)^{2}} \right] \times (B-A)^{-1}$$

$$\leq \frac{M^{2}}{m^{2}} \left[\frac{f(\alpha)}{\alpha^{2}} - \frac{f(m+\alpha)}{(m+\alpha)^{2}} - f'_{+}(0) \frac{m}{\alpha(m+\alpha)} - f(0) \frac{m(m+2\alpha)}{\alpha^{2}(m+\alpha)^{2}} \right] .$$

$$(2.19)$$

If f(0) = 0, then

$$0 \leq \frac{m^{2}}{M^{2}} \left[\frac{f(\beta)}{\beta^{2}} - \frac{f(M+\beta)}{(M+\beta)^{2}} - f'_{+}(0) \frac{M}{\beta(M+\beta)} \right]$$

$$\leq \frac{m^{2}}{M} \left[\frac{f(\beta)}{\beta^{2}} - \frac{f(M+\beta)}{(M+\beta)^{2}} - f'_{+}(0) \frac{M}{\beta(M+\beta)} \right] (B-A)^{-1}$$

$$\leq f(A) A^{-2} - f(B) B^{-2} - f'_{+}(0) \left(A^{-1} - B^{-1} \right)$$

$$\leq \frac{M^{2}}{m} \left[\frac{f(\alpha)}{\alpha^{2}} - \frac{f(m+\alpha)}{(m+\alpha)^{2}} - f'_{+}(0) \frac{m}{\alpha(m+\alpha)} \right] (B-A)^{-1}$$

$$\leq \frac{M^{2}}{m^{2}} \left[\frac{f(\alpha)}{\alpha^{2}} - \frac{f(m+\alpha)}{(m+\alpha)^{2}} - f'_{+}(0) \frac{m}{\alpha(m+\alpha)} \right].$$

$$(2.20)$$

Remark 2.9. If A > 0 and B - A > 0, then for f an operator convex function on $[0, \infty)$ with f(0) = 0, we obtain from (2.20) some similar inequalities to the ones in Remark 2.5. We omit the details.

3 Some examples

The function $f(t) = t^r$, $r \in (0,1]$ is operator monotone on $[0,\infty)$ and by (2.18) we obtain the power inequalities

$$0 \leq \frac{m^2}{M^2} \left[\beta^{r-1} - (M+\beta)^{r-1} \right] \leq \frac{m^2}{M} \left[\beta^{r-1} - (M+\beta)^{r-1} \right] (B-A)^{-1}$$

$$\leq A^{r-1} - B^{r-1} \leq \frac{M^2}{m} \left[\alpha^{r-1} - (m+\alpha)^{r-1} \right] (B-A)^{-1}$$

$$\leq \frac{M^2}{m^2} \left[\alpha^{r-1} - (m+\alpha)^{r-1} \right],$$
(3.1)

provided that $\beta \ge A \ge \alpha > 0$, B > 0 with $M \ge B - A \ge m > 0$ for some constants α , β , m, M. The function $f(t) = \ln(t+1)$ is operator monotone on $[0, \infty)$ and by (2.18) we get

$$0 \le \frac{m^2}{M^2} \left[\frac{\ln(\beta+1)}{\beta} - \frac{\ln(M+\beta+1)}{M+\beta} \right] \le \frac{m^2}{M} \left[\frac{\ln(\beta+1)}{\beta} - \frac{\ln(M+\beta+1)}{M+\beta} \right] (B-A)^{-1}$$

$$\le A^{-1} \ln(A+1) - B^{-1} \ln(B+1) \le \frac{M^2}{m} \left[\frac{\ln(\alpha+1)}{\alpha} - \frac{\ln(m+\alpha+1)}{m+\alpha} \right] (B-A)^{-1}$$

$$\le \frac{M^2}{m^2} \left[\frac{\ln(\alpha+1)}{\alpha} - \frac{\ln(m+\alpha+1)}{m+\alpha} \right],$$
(3.2)

provided that $\beta \geq A \geq \alpha > 0$, B > 0 with $M \geq B - A \geq m > 0$ for some constants α, β, m, M .

The function $f(t) = -\ln(t+1)$ is operator convex, and by (2.20) we obtain

$$0 \leq \frac{m^{2}}{M^{2}} \left[\frac{\ln(M+\beta+1)}{(M+\beta)^{2}} - \frac{\ln(\beta+1)}{\beta^{2}} + \frac{M}{\beta(M+\beta)} \right]$$

$$\leq \frac{m^{2}}{M} \left[\frac{\ln(M+\beta+1)}{(M+\beta)^{2}} - \frac{\ln(\beta+1)}{\beta^{2}} + \frac{M}{\beta(M+\beta)} \right] (B-A)^{-1}$$

$$\leq B^{-2} \ln(B+1) - A^{-2} \ln(A+1) + A^{-1} - B^{-1}$$

$$\leq \frac{M^{2}}{m} \left[\frac{\ln(m+\alpha+1)}{(m+\alpha)^{2}} - \frac{\ln(\alpha+1)}{\alpha^{2}} + \frac{m}{\alpha(m+\alpha)} \right] (B-A)^{-1}$$

$$\leq \frac{M^{2}}{m^{2}} \left[\frac{\ln(m+\alpha+1)}{(m+\alpha)^{2}} - \frac{\ln(\alpha+1)}{\alpha^{2}} + \frac{m}{\alpha(m+\alpha)} \right],$$
(3.3)

provided that $\beta \ge A \ge \alpha > 0$, B > 0 with $M \ge B - A \ge m > 0$ for some constants α , β , m, M. Consider the kernel $e_{-a}(\lambda) := \exp(-a\lambda)$, $\lambda \ge 0$ and a > 0. Then

$$D(e_{-a})(t) := \int_0^\infty \frac{\exp(-a\lambda)}{t+\lambda} d\lambda = E_1(at) \exp(at), \quad t \ge 0,$$

where

$$E_1(t) := \int_t^\infty \frac{e^{-u}}{u} du, \quad t \ge 0.$$
 (3.4)

For a = 1 we have

$$D(e_{-1})(t) := \int_0^\infty \frac{\exp(-\lambda)}{t+\lambda} d\lambda = E_1(t) \exp(t), \quad t \ge 0.$$

Let $\beta \geq A \geq \alpha > 0$, B > 0 with $M \geq B - A \geq m > 0$ for some constants α , β , m, M. Then by (2.14) we have

$$0 \leq \frac{m^{2}}{M^{2}} \left[E_{1} \left(a\beta \right) \exp \left(a\beta \right) - E_{1} \left(a \left(M + \beta \right) \right) \exp \left(a \left(M + \beta \right) \right) \right]$$

$$\leq \frac{m^{2}}{M} \left[E_{1} \left(a\beta \right) \exp \left(a\beta \right) - E_{1} \left(a \left(M + \beta \right) \right) \exp \left(a \left(M + \beta \right) \right) \right] \left(B - A \right)^{-1}$$

$$\leq E_{1} \left(aA \right) \exp \left(aA \right) - E_{1} \left(aB \right) \exp \left(aB \right)$$

$$\leq \frac{M^{2}}{m} \left[E_{1} \left(a\alpha \right) \exp \left(a\alpha \right) - E_{1} \left(a \left(m + \alpha \right) \right) \exp \left(a \left(m + \alpha \right) \right) \right] \left(B - A \right)^{-1}$$

$$\leq \frac{M^{2}}{m^{2}} \left[E_{1} \left(a\alpha \right) \exp \left(a\alpha \right) - E_{1} \left(a \left(m + \alpha \right) \right) \exp \left(a \left(m + \alpha \right) \right) \right] ,$$

$$(3.5)$$

for a > 0. For a = 1 we have

$$0 \leq \frac{m^{2}}{M^{2}} \left[E_{1}(\beta) \exp(\beta) - E_{1}(M + \beta) \exp(M + \beta) \right]$$

$$\leq \frac{m^{2}}{M} \left[E_{1}(\beta) \exp(\beta) - E_{1}(M + \beta) \exp(M + \beta) \right] (B - A)^{-1}$$

$$\leq E_{1}(A) \exp(A) - E_{1}(B) \exp(B)$$

$$\leq \frac{M^{2}}{m} \left[E_{1}(\alpha) \exp(\alpha) - E_{1}(m + \alpha) \exp(m + \alpha) \right] (B - A)^{-1}$$

$$\leq \frac{M^{2}}{m^{2}} \left[E_{1}(\alpha) \exp(\alpha) - E_{1}(m + \alpha) \exp(m + \alpha) \right].$$
(3.6)

More examples of such transforms are

$$D(w_{1/(\ell^2 + a^2)})(t) := \int_0^\infty \frac{1}{(t+\lambda)(\lambda^2 + a^2)} d\lambda = \frac{\pi t - 2a \ln(t/a)}{2a(t^2 + a^2)}, \quad t \ge 0$$

and

$$D(w_{\ell/(\ell^2+a^2)})\left(t\right):=\int_0^\infty \frac{\lambda}{\left(t+\lambda\right)\left(\lambda^2+a^2\right)}\,d\lambda=\frac{\pi a+2t\ln(t/a)}{2a\left(t^2+a^2\right)},\quad t\geq 0,$$

for a > 0. The interested reader may state other similar results by employing the examples of monotone operator functions provided in [2, 3, 4, 7] and [8].

Acknowledgements

The author would like to thank the anonymous referees for valuable suggestions that have been implemented in the final version of the manuscript.

References

- [1] R. Bhatia, Matrix analysis. New York, NY, USA: Springer-Verlag, 1997.
- [2] J. I. Fujii and Y. Seo, "On parametrized operator means dominated by power ones", Sci. Math., vol. 1, no. 3, pp. 301–306, 1998.
- [3] T. Furuta, "Concrete examples of operator monotone functions obtained by an elementary method without appealing to Löwner integral representation", *Linear Algebra Appl.*, vol. 429, no. 5–6, pp. 972–980, 2008.
- [4] T. Furuta, "Precise lower bound of f(A) f(B) for A > B > 0 and non-constant operator monotone function f on $[0, \infty)$ ", J. Math. Inequal., vol. 9, no. 1, pp. 47–52, 2015.
- [5] E. Heinz, "Beiträge zur Störungstheorie der Spektralzerlegun", Math. Ann., vol. 123, pp. 415–438, 1951.
- [6] K. Löwner, "Über monotone Matrixfunktionen", Math. Z., vol. 38, no. 1, pp. 177–216, 1931.
- [7] M. S. Moslehian and H. Najafi, "An extension of the Löwner-Heinz inequality", Linear Algebra Appl., vol. 437, no. 9, pp. 2359–2365, 2012.
- [8] H. Zuo and G. Duan, "Some inequalities of operator monotone functions", J. Math. Inequal., vol. 8, no. 4, pp. 777–781, 2014.