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ABSTRACT

For a continuous and positive function w (\), A > 0 and p a
positive measure on (0, c0) we consider the following integral

transform
D) (@)= [T wOA+D) (),

where the integral is assumed to exist for 1" a postive oper-
ator on a complex Hilbert space H.

We show among others that, if 5> A > a > 0, B > 0 with
M > B — A >m > 0 for some constants «, 8, m, M, then

N

0< 25 (D (w,1) (8) = D (w, 1) (M + B)]
< 22D (w,1) (B) = D (w, 1) (M + B)] (B~ A)
= % [D (w, u) (@) — D (w, p) (m + a)] (B - A)~"
S 3 [D (w, i) () = D (w, ) (m + )] .

Some examples for operator monotone and operator convex
functions as well as for integral transforms D (-, -) related to

the exponential and logarithmic functions are also provided.
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RESUMEN

Para una funcién continua y positiva w (A), A > 0 y p una
medida positiva sobre (0, co) consideramos la siguiente trans-

formada integral
D) (@)= [T wA+D) (),

donde se asume que la integral existe para un operador posi-
tivo T', sobre el espacio complejo de Hilbert H.

Mostramos, entre otras cosas, quesi § > A>a >0, B>0
con M > B — A > m > 0 para algunas constantes «, 3, m,

M, entonces

N

0< 75 [P (w. ) (8) =D (w, 1) (M + B)]

< ™D () (8) — D (w, ) (M + B)) (B — )
<D () (4) ~ D ) (B)

< 21D (w, ) (@) — D w0, ) (m+ )] (B — 4)”
< M 1D (1) ) = () om0

También se proporcionan algunos ejemplos para las funciones
operador mondtono y operador convexo, asi como de trans-
formadas integrales D (-, -) relacionadas con las funciones ex-

ponencial y logaritmica.

Keywords and Phrases: Operator monotone functions, Operator convex functions, Operator inequalities, Lowner-

Heinz inequality, Logarithmic operator inequalities.
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1 Introduction

Consider a complex Hilbert space (H,(:,-)). An operator T is said to be positive (denoted by
T > 0) if (Tz,z) > 0 for all z € H and also an operator T is said to be strictly positive (denoted
by T > 0) if T is positive and invertible. A real valued continuous function f on (0, c0) is said to
be operator monotone if f(A) > f(B) holds for any A > B > 0.

We have the following representation of operator monotone functions [6], see for instance [1, p.

144-145):

Theorem 1.1. A function f : [0,00) — R is operator monotone in [0,00) if and only if it has the

representation
A
t)=f(0)+ bt ——dp (A 1.1
HCEIURTE s v AeT (11)
where b > 0 and a positive measure p on [0,00) such that
/mid (A\) <0 (1.2)
0o 1+A a ' '

A real valued continuous function f on an interval I is said to be operator convex (operator concave)
on [ if

fA=XNA+AB) < (2)(1-A) f(A) +Af(B) (0C)

in the operator order, for all A € [0, 1] and for every selfadjoint operator A and B on a Hilbert
space H whose spectra are contained in I. Notice that a function f is operator concave if —f is

operator convex. We have the following representation of operator convex functions [1, p. 147]:

Theorem 1.2. A function f : [0,00) = R is operator convex in [0, 00) with f} (0) € R if and only

if it has the representation

f(t):f(0)+f’+(0)t+ct2+/oo A dp (\), (1.3)

o L+

where ¢ > 0 and a positive measure p on [0,00) such that (1.2) holds.

We have the following integral representation for the power function when ¢ > 0, r € (0, 1], see for

instance [1, p. 145]
: o) )\r—l
pro1 = Sin(rm) dX. (1.4)

Observe that for ¢ > 0, t # 1, we have

“ X\ Int 1 -+t
= 1 for all 0
/0 A+t) (A +1) t—1+1—tn(u+1>7 or all u >

By taking the limit over u — oo in this equality, we derive

Int _/°° dX
t—1  Jo A+t)(A+1)
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which gives the representation for the logarithm

o dA

Motivated by these representations, we introduce, for a continuous and positive function w (),

A > 0, the following integral transform

w (N)

—d t 1.
L. >0, (16)

Dw) ()= [

where p is a positive measure on (0,00) and the integral (1.6) exists for all ¢ > 0. For p the

Lebesgue usual measure, we put

D (w) (£) = /OOO ;”sz A\, >0, (1.7)

If we take p to be the usual Lebesgue measure and the kernel w,. (A\) = A""1, r € (0, 1], then

o1 = SO s @), s o, (1.8)

7r
For the same measure, if we take the kernel wy, (A) = (A+1)"", ¢ > 0, we have the representation

Int = (t—1)D (ww) (), t>0. (1.9)

Assume that T" > 0, then by the continuous functional calculus for selfadjoint operators, we can

define the positive operator
Dw) ()= [ w0+ T) du ), (1.10)
where w and u are as above. Also, when p is the usual Lebesgue measure, then
D (w) (T) = /Ooow()\) A+T)"ld\, for T > 0. (1.11)

From (1.8) we have the representation

D (w,) (T) (1.12)
where T' > 0 and from (1.9)

(T—1)""'InT =D (wn) (T) (1.13)
provided T > 0 and T" — 1 is invertible.

In what follows, if A is an operator and a is a real number, then by A > a we understand A > al,

where [ is the identity operator.
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In this paper we show among others that, if 5> A>a >0, B>0with M > B—A>m >0 for

some constants «, 3, m, M, then

(™)

0< 57z [P (w.n) (8) =D (w,p) (M + )]
< ™D (a1 (3) — D ) (M + 8)) (B~ 4)”
<D 0, ) (4) D (1) (B)
< M 0w, ) (0) ~ D () ()} (B )
< M ) (0) = D () (. + ).

Some examples for operator monotone and operator convex functions as well as for integral trans-

forms D (-, ) related to the exponential and logarithmic functions are also provided.

2 Main results

In the following, whenever we write D (w, ) we mean that the integral from (1.6) exists and is

finite for all ¢t > 0.

Theorem 2.1. For all A, B > 0 with B — A > 0 we have the representation
0< (B - A)"*[D(w,p) (A) - D (w,u) (B)] (B - A)"* (2.1)
- /OOO </01 [(B AP sB+(1—s5)A)" (B_A)Wrds) x w(\) dp (V) .
Proof. Observe that, for all A, B > 0
D (w, 1) (B) = D (w, 1) (A) = / Tw [+ B) T -0 ) dr (. (22)

Let T,S > 0. The function f(t) = —t~! is operator monotone on (0,00), operator Gateaux

differentiable and the Gateaux derivative is given by

Vfr (S) := lim [f(THS) — f(T)} =T77'8T~, forT,8 >0 (2.3)

t—0 t

Consider the continuous function f defined on an interval I for which the corresponding operator
function is Gateaux differentiable on the segment [C, D] : {(1—-t)C +tD, t €[0,1]} for C, D

selfadjoint operators with spectra in I. We consider the auxiliary function defined on [0, 1] by
fep(t):=f((1—-t)C+tD), te0,1].

Then we have, by the properties of the Bochner integral, that

FD)=1© = [ L ter®)dt= [ Viugeun (D=0t (24)
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If we write this equality for the function f (¢) = Land C, D > 0, then we get the representation

c-1_p-1l— /1 (1—=t)C+tD) " (D—-C)((1—t)C +tD) " dt.
0

(2.5)
Now, if we take in (2.5) C = A+ B, D = A+ A, then

A+B) ' —+A)!

/01 (=) O+ B) +tA+A) (A= B) x (1) A+ B)+t(A+ A dt (2.6)

:/1()\—1—(1—t)B—i—tA)_l(A—B)(/\—i-(l—t)B—i-tA)_ldt
0

and by (2.2) we derive
D (w,p) (A) =D (w, n) (B)
:/Oow(/\) </1 A+ (1 —t)B+tA)  (B-A) ><()\+(1—t)B+tA)_1dt) du(\)  (2.7)
0 0

—/Oow(/\) (/1(/\+SB+(1—S)A)_1(B—A) X (A 8B+ (1— ) 4) 7 ds) du ()
0 0

for all A, B > 0, where for the last equality we used the change of variable s =1 —¢, ¢ € [0,1]

Now, since B — A > 0, hence by multiplying both sides with (B — A)l/ % we get

(B - A>”2 [D (w, 1) (A) — D (w, ) (B)] (B — A)"/?
= (/lB )2(A+ 5B+ (1-5)A)H(B-A)
0
(
B

A
(/\—i—sB—i-l A)NB - A)l/gds)du(/\)
A)

1 (2.8)
</ YZ(N4sB+(1-s)A)"H(B=A)Y?
0

( A2+ sB+(1—s)A) (B - A)? ds) dp ()

—/Ooow(/\)x (/O [(B—A)1/2(/\+SB+(1—s)A)_1(B—A)1/2rds> (),

which proves the identity in (2.1). Since

[(B — A2 (A +sB+(1-s)A) " (B- A)l/“‘}2 >0

then by integrating over s on [0, 1], multiplying by w()\) > 0 and integrating over du (\), we
deduce the inequality in (2.1).

O



Several inequalities for an integral transform of positive... 201

The case of operator monotone functions is as follows:

Corollary 2.2. Assume that f is operator monotone on [0,00), then all A, B > 0 with B—A >0

we have the equality

o

<(B-AV[f(A)A - (BB (B4
—F0)(B= A2 (A1 =B ) (B - A)/? (2.9)

o) 1 9
i (/O (B= )" (A sB+(1-5)4)7" (B - 4)"] ds) A (N)
for some positive measure (1 (X). If f(0) =0, then

0< (B-A)2[f(A)A - f(B)B](B-4)"

— /OOO (/01 [(B — AP A +sB+(1—s)A) " (B- A)l/Qr ds> X Ndp (N). (210
Proof. From (1.1) we have the representation
M —b=D () (1), (2.11)
with £(\) = A, for some positive measure 1 (A) and nonnegative number b. Since
D (0, 11) (A) =D (6 10) (B) = [f (A) = (O] AT = [f (B) = f(0)] B~
=f (AT = (BB~ f(0) (A7 = BTY),
hence by (2.1) we get (2.9). m

The case of operator convex functions is as follows:

Corollary 2.3. Assume that f is operator convex on [0,00), then all A, B > 0 with B— A >0
we have that
0<(B-A)[[(HA2 - [(B)B?](B-4)"
~fLO)B-A) (AT =BT (B- )
— f(0)(B—A)"/?(A72 = B2) (B—A4)'

- (/ (B =) s (=9 ) (5= ) ds) s rdn (),

(2.12)

for some positive measure 1 (X). If f(0) =0, then

0< (B—A)"2[f(A)A2—f(B)B?](B-4)"
—JL0)(B-A) (AT =BT (B~ 4)"? (2.13)

/Ooo </01 [(B—A)l/2 (/\—i—SB—l—(l—s)A)1(B_A)1/2rd8> CAdi (N
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Proof. From (1.3) we have that

f#)—£0) = fL (O
t2

c=D(p)(t),
for t > 0. Then for A, B > 0,

D (C,1) (A) =D (L) (B) = f(A) AT = fLO0) AT = f(0) A = f(A) B2+ fL(0) B~ + £ (0) B~
=f(A)AT?~f(B)B~fL(0)(A™ =B™) = f(0)(A7* - B7?)

and by (2.1) we derive (2.13). O

When more conditions are imposed on the operators A and B we have the following refinements

and reverses of the inequality
0< D(waﬂ) (A) - D(wa:u) (B)
that hold for B — A > 0.

Theorem 2.4. If 6> A>a >0, B >0 with M >B—A>m >0 for some constants c, 3, m,
M, then

(™)

0< 572 [P (w. ) (8) =D (w,p) (M + )
< ™D (. ) (9) — D () (M + )] (B~ 4)
<D (w,) (4) ~ D (w19 (B) 214
< M2 D () 0) = D . ) (-] (B~ 4)”
< M D (1) 0) D () (m + ).

Proof. For s € [0,1] we have
A+sB+(1—-s)A=X+s(B—A)+ A
We have
As(B-=A)+A>A+sm+A>A+sm+a=A+(1-s)a+s(m+a),
s €[0,1] and A > 0, which implies that
A+sB+(1—5)A) "<+ (1—s)at+s(m+a) "

and, by multiplying both sides by (B — A)l/2 >0,

(B-—A)"*A+sB+(1—s)A) " B-A’ <A+ =s)a+sm+a) " (B-A)

<SMMA+0—s)a+s(m+a)]".
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Furthermore,

[(B- A2 (At sB+(1-5)4) (B~ A)1/2]2 < MZD4(1—s)atsm+a)?,

for s € [0,1] and A > 0, which implies by integration that
o0 1 2
/ w(N) (/ (B-2)"2 (At sB+(1-5) )7 (B-4)"] ds> di ()
0 0

<o [T (/01[A+<1—s>a+s<m+a>]st>du<x>

—E/Omwm (/01[A+<1—s>a+s<m+a>11<m+a—a>

m
XA+ (1 —s)a+s(m+a)t ds) du(\)  (and by (2.7))
M2
= — [D(w,p) (@) =D (w,p) (m + a)].
Using (2.8) we get
1/2 12 M?

(B~ A D (w, 1) (4) ~ D (w, w) (B (B~ 4)"* < 2D (w, p) () — D (w, ) (m + )]
Multiplying both sides with (B — A)fl/ * we deduce the fourth inequality in (2.14). We also have
A+sB-—A)+A<A+sM+A<A+sM+B=A+(1—-5)f+s(M+p),

which implies that
A+sB+(1—s)A) " >N+1—s)f+s(M+p)"

and, by multiplying both sides by (B — A)1/2 >0,

(B=A) A+sB+(1-5)A) " (B-A)Y2>N+1—-s)B+s(M+p)] " (B-A)
>mA+(1—s)B+s(M+8)] ",

for s € [0,1] and A > 0. By taking the square, we get
2
[(B—A)W A+sB+(1—5)A) " (B4 >m? A+ (1—s)B+s(M+B) 7,
for s € [0,1] and A > 0. By taking the integrals in this inequality we obtain
0o 1
/ w(\) (/ (B-4)"2 (A +sB+(1 -4 (B~ ,4)1/2}2 ds) d ()
0 0
00 1
_m2/ w (A) (/ /\+(1—s)ﬁ+s(M+5)]_2d8> dp ()
/ V([ - sesore s 0res-5)
(1-

$)B+s(M+8)] " ds)du(N)  (and by (27))

:@f :|3

[D (w, 1) (B) = D (w, p) (M + )]
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Using (2.8) we get
m2
(B—A)""2 D (w, ) (A) = D (w, ) (B)] (B— A)"/* > a7 [P (1) (B) =D (w,p) (M + B)].

Multiplying both sides with (B — A)_l/ ? we deduce the second inequality in (2.14). The rest of

the inequalities are obvious. [l

It is well known that, if P > 0, then
(Pa,y)|” < (Pa,x) (Py,y),
for all x, y € H. Therefore, if T' > 0, then
0< (z,2)? = (T7'T,2)* = (T, T"'2)”* < (Tw,a) (TT "2, T &) = (T, z) (, T 'z,
forallz € H.If x € H, ||z|| = 1, then

1< (Ta,z) (x, T 'z) < (Tx,z) sup (2,7 'z) = (Tz,z) HT71

llzll=1

which implies the following operator inequality
7Y <. (2.15)

Remark 2.5. If A > 0 and B — A > 0, then obviously ||A|| > A > HA_lH_l and ||B — A||
1 B
B—-A2> H(B —A)_lH . So, if we take B = ||Al|l, a = |47} YoM = |IB— Al and m

Y

-1
H(B - A)le in (2.14), then we get

D (a,12) (JA]) = D (w, ) (1B = A] + [} A])
1B -4 -7

_ D(w,p) (JA1) =D (w, ) (1B — A +]}A])

18- 4|3 -7

0<

(B-4)"

< D (w, 1) (A) — D (w, ) (B)

18— AP B4 (2.16)

IN

X

2 ) () =2 ) (3= 0 )] - )

IN

18— 4l (8- 47|

<[Pt (Ja ) = 2w ([ =7 a7
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Corollary 2.6. Assume that f is operator monotone on [0,00). If 8 > A > « > 0, B > 0 with
M > B—A>m >0 for some constants o, 5, m, M, then

§ [f(ﬁ)_f(M+ﬁ)_ M

5 M+ ﬂ<M+ﬁ>f<0)}

m [fB) fM+p M o
<5 |55 TP ﬁ(M+ﬂ>f(O)] .
<AV AT = (B) B - [ (0) (A7 - BY) (2.17)
M? fla) f(m+a) m -1
SH{ o  m+a _a(m—i—a)f(o)}(B_A)
M2 [f(a) f(m+a) m
SW{ a m+«a oz(m—i—oz)f(o)}

W (8 [OM+8)]_ w2 [f(B) f(M+5) :
R Y I R V. ]Sﬁ[ 5 Mip }(B_A)l
<rat—rmpr< L[ )5 (2.18)

M2 [ f(a) _f(m+a)].

m? | « m+
The proof follows by (2.14) and the representation (2.11).

Remark 2.7. If A> 0 and B— A > 0, then for f an operator monotone function on [0,00) with
f(0) =0, we obtain from (2.18) some similar inequalities to the ones in Remark 2.5. We omit the

details.

The case of operator convex functions is as follows:

Corollary 2.8. Assume that f is operator convex on [0,00). If § > A > a >0, B > 0 with
M > B—A>m>0 for some constants o, B, m, M, then

S g

< [fﬁ@ ) 1 O g~ O S < (4

< FAA™ (BB L) (A7 B~ 1 (0) (47 - B 219)
e U RO e ARG

<X [f T e AUE e SO
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If f (0) = 0, then

0< 2 [fﬂ(f) TR UET e
<™ [fgf) SR R0 g [ B0
< (A A= [(B)B™2 = [, (0) (A" = B (2.20)
< Mo

Remark 2.9. If A > 0 and B — A > 0, then for [ an operator convex function on [0,00) with
f(0) =0, we obtain from (2.20) some similar inequalities to the ones in Remark 2.5. We omit the

details.

3 Some examples

The function f(t) = t", r € (0,1] is operator monotone on [0,00) and by (2.18) we obtain the

power inequalities

o< Tl — e < I [ - e 8 (B A)
<Al _prl< %2 [arﬂ _ (m+a)r—1:| (B—A)! (3.1)
< ]\Tr/L[_j [arq _ (m_i_a)r—l} 7

provided that 8 > A > a >0, B> 0 with M > B — A > m > 0 for some constants «, 3, m, M.
The function f (¢t) = In (¢ 4 1) is operator monotone on [0, 00) and by (2.18) we get

O<m_2 _1n(ﬁ+1)_1n(M—|—ﬁ+1)} <m_2 {ln(ﬁ—i—l)_ln(]\/[—i-ﬂ—i-l)} B 4)"!

- M? | 154 M+p - M 154 M+

A (A1) - B (B 1) < M ln(a+1)—1n(m+a+1)](B—A)1 (3.2)
m e} m+ «

- M? [In(a+1) ln(m—i—a—i—l)}

m? | o m+«

provided that 6 > A > a >0, B> 0 with M > B— A > m > 0 for some constants «, 8, m, M.
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The function f (t) = —In (¢t + 1) is operator convex, and by (2.20) we obtain

O<m_2 1n(M+B+1)_1n(ﬁ+1)+ M
T M2 (M +p)? B2 B (M +p)
m? |m(M+8+1) kIn(B+1) M 1
— - —A
= Ml (M + B B Taarve| B
<B?Im(B+1)-A m(A+1)+A ' -B! (3.3)
M? |[ln(m+a+1) In(a+1) m 1
= [ (m+a)? o +a(m+a) (B=4)

<

)
m

Man(m—i—a—i—l) ln(a+1)+ m

2 (m+ a)? a a? a(m+ «)

provided that 8 > A >« >0, B > 0 with M > B— A > m > 0 for some constants «, 3, m, M.
Consider the kernel e_g (A) := exp (—aX), A > 0 and a > 0. Then

D(e_g) (t) :== /000 %_;/\) d\ = Ey (at)exp (at), t>0,

where

u

By (1) ::/ € du, t>0. (3.4)
t

For a = 1 we have

D(e_y) (t) := /OOO exff;) d\= By (t)exp(t), t>0.

Let > A>a>0,B>0with M >B—A>m >0 for some constants «, 3, m, M. Then by
(2.14) we have

0 < 75 [E1 (af) exp (aB) — B (a (M + B)) exp (a (M + 5))]

< 77 [B1 (aB)exp (af) — Ex (a (M + B)) exp (a (M + B))] (B — A

< E; (aA)exp (aA) — E; (aB)exp (aB) (3.5)

< MW [E) (ac) exp (acr) — By (a (m + a)) exp (a (m+ a))] (B — A)

< —5 [Ex (aa) exp (aa) — By (a (m + o)) exp (a (m + a))],

for a > 0. For a = 1 we have

0< I 1B (B)exp (8) ~ Ex (M + B)exp (M + 5)
< %2 By (B)exp () — B (M + ) exp (M + B)] (B~ 4)~
< By (A)exp (A) — By (B) exp (B) (3.6)
< M (5 () exp (@)~ By 0m -+ ) exp (m )] (B - 4)°
o

< 3 [E1 () exp (o) — By (m + ) exp (m + )] .
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More examples of such transforms are

oo 1 7t — 2aln(t/a)
(wl/(é2+a2)) (t) A (t+\) ()\2 + a2) 2a (t2 + a2) ’ =0
and
oo A wa + 2tIn(t/a)
D t) = = t=
(wé/(éz-ﬁ-az)) (t) /0 (t+ /\) ()\2 + a?) 2a (t2 +a?) ’ =0,

for a > 0. The interested reader may state other similar results by employing the examples of

monotone operator functions provided in [2, 3, 4, 7] and [8].
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