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Abstract
Recommender systems have been widely used for implementing personalised content on many mobile online services to

reduce computational overload and preserve wireless data for users. The underlying mechanisms used for building rec-

ommender systems analyse data collected from users to make recommendations. This poses concerns over the privacy of

data from users as both service providers and the cloud will have access. Privacy-preserving recommender systems protect

user information by incorporating various cryptographic mechanisms to prevent accessing the data. However, existing

works are not practical due to the use of heavy cryptography. In this paper, we propose an efficient privacy-preserving

recommender system that takes advantage of clustering to improve efficiency. Using a secure clustering mechanism, user

data are assigned to multiple clusters before being fed into the recommendation. Our proposed protocols are privacy-

preserving and do not leak information that could be used to identify a data subject. The experiments show that our system

is efficient and accurate.

Keywords Recommender systems � Privacy � Data security � Homomorphic encryption

1 Introduction

The prosperous development of wireless networks and

mobile online services has brought conveniences to mil-

lions, the ubiquity of modern portable devices has become

a primary source for accessing information. Subsequently,

a variety of mobile-focused services have been made

available such as entertainment, social interaction and so

on. As a result, the sheer volume of data generated put

great pressure on both clients and the server. Personalised

contents allow information to be selectively delivered to

users based on their preferences, reducing computational

overloads and saving precious wireless data for users.

Recommender systems enable such personalised content

and they have been widely used for recommending various

items. For instance, a music streaming service [1] uses a

recommender system to recommend music content to users

to reduce computational loads and help save mobile data.

Collaborative Filtering [2] (CF) is one of the most com-

monly used techniques for building recommender systems,

its recommendation is based on analysing the patterns in

which users behave on the platform to predict the

preference.

While recommender systems have become an essential

tool for many online services to reduce computational

overload and improve user experience by delivering per-

sonalised content to users, issues related to data privacy

have been raised in recent years [3]. While the recom-

mender system only requires analysis of collected user data

such as ratings to make recommendations, the collected

data can be exploited to reveal the identity of the data

subject [4]. Furthermore, as the data are usually stored on a

third-party cloud provider, the cloud provider will have

access to the private information of all users.
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The privacy-preserving recommender system has been

widely studied for enabling recommendations while pro-

tecting user data. In general, there exist two categories for

protecting the data: crypto-based solutions [5–7] apply

various cryptographic schemes on the recommending

mechanisms to ensure the confidentiality of the data,

whereas other solutions [8–10] use data perturbation

techniques to add noises into the data before being pro-

cessed by the recommendation mechanism to retain pri-

vacy at the expense of reducing accuracy. While crypto-

based approaches generally preserve both confidentiality

and accuracy, they are impractical due to excessive com-

putational overheads on performing complex cryptographic

operations.

In this paper, we focus on the performance issue in

crypto-based recommender systems. As cryptographic

operations are computationally expensive, reducing the

amount of data needed for the recommending mechanism

will suffice for enhancing the performance. In most cases,

there exist certain relations in the data from recommender

systems. For instance, users from a video streaming service

likely spend their time watching content that is of their

interest and interacting with the system such as posting a

comment and rating the content they watched. The goal of

our proposed system is to selectively choose the most

optimal batch of users for computing the recommendation.

To do that, data are clustered before the recommendation.

However, to ensure the confidentiality of the data while

enabling recommendations, several privacy-preserving

mechanisms are incorporated to ensure data confidentiality

for clustering and recommendation.

The contributions of this paper include the following:

1. We propose an efficient and privacy-preserving rec-

ommender system. The proposed system employs

User-based Collaborative Filtering (UCF) as the rec-

ommending mechanism. All data and computations in

the proposed system are protected using ElGamal

encryption. The proposed system is inspired by a

privacy-preserving k-mean clustering technique [11]

for performance enhancement. For simplicity, the

proposed system is referred to as PPCF-KM.

2. We conduct the security analysis for PPCF-KM. The

PPCF-KM is secure under the semi-honest adversary

model and if the underlying cryptographic scheme is

semantically secure.

3. We implement the PPCF-KM and evaluate the system

regarding performance and recommending accuracy.

The results show that the proposed system is efficient,

outperforms existing crypto-based solutions with

regard to computational overheads and yields better

results.

The organisation of this paper is as follows. Section 2

reviews existing literature in the privacy-preserving rec-

ommender systems. Section 3 introduces preliminaries for

our proposed system. Section 4 presents the system archi-

tecture and adversary model of PPCF-KM. Section 5 pre-

sents the PPCF-KM in details, followed by the security

analysis in Sect. 6. Section 7 presents the evaluation of our

system and Sect. 8 concludes the paper.

2 Related works

2.1 Crypto-based recommender systems

Crypto-based recommender systems mainly apply various

homomorphic schemes on the recommending mechanisms

for protecting the data. The basic idea is that user ratings

are encrypted using homomorphic encryption, and the

computations of similarities and recommendations are

done over the ciphertext space which guarantees its con-

fidentiality. Canny [5] proposes a privacy-preserving rec-

ommender system using ElGamal [12] encryption.

Erkin [13] proposes a crypto-based PPCF scheme using

Paillier encryption [14] and a more efficient DGK

encryption [15]. The work [13] is later refined [6] by

introducing a method called data packing. Basu et al. [16]

integrates item-based CF with Paillier to the cloud. Bad-

sha et al. [7] proposes a user-based PPCF system using

BGN encryption [17]. Nikolaenko et al. [18] proposes the

first privacy-preserving recommender system based on

matrix factorisation using garbled circuit. Subsequently

Kim et al. [19] improves the efficiency using fully homo-

morphic encryption.

2.2 Other solutions for privacy-preserving
recommender system

Other non crypto-based recommender systems mainly

focus on data perturbation, where the data are disrupted in

certain ways to preserve privacy at the cost of reducing

accuracy. Polat and Du [8] propose a random data pertur-

bation technique for preserving data privacy in recom-

mender systems. Li et al. [20] introduce a simple data

splitting protocol for item-based PPCF to preserve privacy.

Casino et al. [9] applies k-anonymity to recommender

systems, for each user in the dataset, there exist at least

k � 1 records similar to the target user. Zhu et al. [10]

proposes a neighbourhood-based CF scheme using differ-

ential privacy, in which noises are added into the dataset

while preserving the overall distribution of the dataset.

McSherry and Mironov [21] apply DP to build a recom-

mender system based on the Netflix database to improve

privacy.
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3 Preliminaries

3.1 Collaborative filtering

Collaborative Filtering (CF) is one of the most widely used

technique for building recommender systems. CF analyses

user patterns and predicts items for a target user based on

similarity and ratings from other users. Let U ¼
ðu1; u2; . . .Þ be the list of all users, where ui indicates i-th

user in U. Let A ¼ ða1; a2; . . .; aMÞ be the list of M items in

the system. A user ui has a vector Vi ¼ ðri1; ri2; . . .; riMÞ,
where rij represents the rating of user ui given to an item j.

Given two user ui and uj, a recommendation of item j for

user ui can be computed using Eq. 1.

Pi;j ¼
P

uk2Uðsimðui; ukÞ � rk;jÞP
uk2U ksimðui; ukÞk

ð1Þ

where Pi;j denotes the predicted rating of j-th item given by

user ui, and sim denotes cosine similarity between ratings

of the target user ui and other users uk 2 U; k 6¼ i. Equa-

tion 2 presents the cosine similarity.

simði; jÞ ¼
PM

m¼1ðri;m � rj;mÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
m¼1 r

2
i;m

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
m¼1 r

2
j;m

q

¼
XM

m¼1

ri;m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

n¼1 r
2
i;n

q � rj;m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

n¼1 r
2
j;n

q

¼
XM

m¼1
Ri;m � Rj;m

ð2Þ

Let Ri denotes the list of normalised local similarities of

user ui, where Ri;m 2 Ri, m 2 ½1;M� and Ri;m ¼ ri;mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

n¼1 r
2
i;n

q

3.2 ElGamal

ElGamal [12] is an additively homomorphic encryption

scheme introduced in 1985. The ElGamal cryptosystem

consists of key generation, encryption and decryption.

Key generation:

• Randomly select a cyclic group G of a prime order q

with a generator g;

• Select a secret key sk from Z�q randomly;

• Generate the public key pk ¼ gsk.

The secret key sk is be kept private and the public key pk

and (G; q; g) are published.

Encryption: Let m 2 G be a message needed to be

encrypted, select a random number r from Z�q and compute

the following:

Eðm; pkÞ ¼ ðc1; c2Þ ¼ gr mod p; gm � pkr mod pð Þ

Decryption: Let Eðm; pkÞ ¼ ðc1; c2Þ be an encrypted

message under pk, the plaintext m can be recovered using

the secret key sk and compute the following:

DðEðm; pkÞ; skÞ ¼ c2
c1sk

mod p

Homomorphic Addition: Given two encrypted message

m1 and m2 with the same public key pk, the addition of

m1þ m2 can be computed as follow:

HAðm1þ m2Þ ¼ Eðm1; pkÞ � Eðm2; pkÞ
¼ cm11 ; cm12

� �
� cm21 ; cm22
� �

¼ gr1þr2 mod p; gm1þm2 � pkr1þr2 mod pð Þ

Homomorphic Multiplication: Given a encrypted mes-

sages Eðm1; pkÞ and a plaintext m2, the multiplication of

m1 � m2 can be computed as follow:

HMðm1 � m2Þ ¼ Eðm1; pkÞm2

¼ cm21 ; cm22
� �

¼ gr1�m2 mod p; gm1�m2 � pkr1�m2 mod p
� �

3.3 K-means clustering

K-means algorithm is a clustering mechanism that is used

to partition a given set of multi-dimensional points into k

clusters. The algorithm is firstly described by MacQu-

een [22], it begins with selecting a random set of k points

from the dataset, denoted as the centroids of the cluster (l).
Let X be the set of points. During each update step, all

points x 2 X are assigned to their nearest center-point (see

Eq. 3). In the standard algorithm, each pint will be assigned

to one cluster. If multiple clusters have the same distance to

a point, a random one would be chosen. At the end of each

update step, the centroid of each cluster is re-calculated

(see Eq. 4).

Si ¼ xp : xp � li
�
�

�
�2� xp � lj

�
�

�
�2 8j; 1� j� k

n o
ð3Þ

li ¼
1

kSik
X

xj2Si
xj ð4Þ

4 Our model

In this section, we present the design of PPCF-KM. We

first introduce the system architecture of PPCF-KM, fol-

lowed by the design of several data structures used in the

protocol. Lastly, we present the adversary model. Figure 1

presents the overview workflow of our model.
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4.1 System architecture

The proposed system consists of three entities:

1. Recommender server (RS) is an entity that provides

computational resources for generating recommenda-

tions and persistent storage facilities to preserve

encrypted user data.

2. Security provider (SP) is a security provider that

engages in privacy-related functionalities such as

decryption and interacts with RS to assist clustering

and recommendations. It is responsible for generating

public/private keys and offers decryption for data.

3. Users submit ratings to the RS, all recommendation

requests issued by users are sent to the RS. Upon

receiving the predicted score, users interact with the SP

for decryption.

There exist four stages in our proposed PPCF scheme, they

are initialisation, clustering, recommendation and

decryption.

During initialisation, RS initialises parameters k as the

initial k number of clusters, the number of clustering

rounds iter and several data structures needed for holding

data and running the clustering algorithm. SP generates a

keypair sk, pk using a security parameter K, where the

secret key sk is only known to the SP and pk is public to RS

and all users. Users compute the local similarities for their

ratings, both ratings and local similarities are normalised

and encrypted under pk and the result is submitted to RS

for storage.

During clustering, both RS and SP interactively perform

several privacy-preserving mechanisms for clustering

encrypted ratings into k clusters recursively for iter times.

Upon completing the clustering, the RS obtains the clus-

tered data C consisting of k entries, where the key of an

entry is the centroid of the cluster and the values corre-

spond to users that are closest to the centroid.

During recommendation, a user sends a recommending

query to the RS, it consists of her encrypted ratings and

local similarities along with an index I indicating that the I-

th item needs a rating. Upon receiving the request, the RS

measures the distance between the target user and all

clusters to determine the closest cluster. Subsequently,

users from the closest cluster are used for computing

similarity and recommendation. Results are returned to the

target user.

During decryption, the target user obfuscates the data by

adding noises to the predicted results locally, a secure

communication channel is subsequently established with

the SP. The target user sends obfuscated results to the SP

for decryption. The SP decrypts and returns the data to the

target user. Upon receiving the decrypted results, the target

user de-obfuscates the results and reveals the predicted

ratings for the I-th item.

4.2 Data structures

In PPCF-KM, ratings of a user is represented as a vector,

let Vi be the list of ratings of user ui, there exist M items in

the system, Vi  ri;m for 1�m�M.

Fig. 1 An overview of PPCF-KM. a Privacy-preserving data clustering; b generating recommendations
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Vi  fri;1; ri;2; . . .; ri;Mg

Each item r is a positive integer. Similarly, Ri represents

the list of local similarities of user ui following the Eq. 2.

Ri  fRi;1;Ri;2; . . .;Ri;Mg

Note that each Ri;m in the Ri is not an integer, normalisation

is applied to transform floating-point values into positive

integers.

The user ui element-wise encrypts both Vi and Ri,

denoted as V 0i and R0i. The user ui only submits V 0i and R0i to

the RS. The Recommender Server (RS) receives submitted

ratings and local similarities of all users, denoted as V 0 and
R0 respectively.

V 0  V 01;V
0
2; . . .;V

0
l

� �

R0  R01;R
0
2; . . .;R

0
l

� �

where l denotes the number of users in the system. Both V 0

and R0 are maintained in a user table T , where a row of the

table T is consisted of ratings and local similarities of a

user. During clustering, the encrypted ratings are required

whilst the local similarities are used for predictions and

recommendations. Table 1 illustrates the structure of the

user table T .

As PPCF-KM employs clustering, let l be a list of

centroids for k clusters and C be the data structure where

clustered data are stored. C behaves as a key-value store,

where the key is the centroid and the value is a collection

of user data that belong to the centroid in the key.

The security provider (SP) offers cryptographic func-

tions to users and RS. The private key sk used for

decryption is securely possessed by the SP. In PPCF-KM,

the SP does not store data and is only responsible for

assisting data processing with RS and decrypting data for

users. Table 2 shows the notations used in this paper.

4.3 Adversary model

In this work, the semi-honest model is used for both RS and

SP. Specifically, both RS and SP faithfully follow the

designed protocols and do not deviate, while they might be

interested in the data and the processing. The RS, SP and

users are assumed to not collude, as in most existing PPCF

schemes. The following scenarios are considered in our

work:

Attack 1 (Malicious Recommender Server): The rec-

ommender server is potentially malicious and attempts to

reveal the private information of users stored in the system.

Attack 2 (Malicious Security Provider): The security

provider is potentially malicious and attempts to learn the

private data of users.

Attack 3 (Malicious Users): A user might exploit the

system in an attempt to disclose or deduct the private

information of other users in the system.

The RS is responsible for storing encrypted data from

users and provides computing power for generating rec-

ommendations. SP on the other hand obtains the private

key for decryption. The main focus of PPCF-KM is to

protect the privacy of user data, this includes ratings sub-

mitted by the user and any intermediate values of an

individual during initialisation, clustering, recommenda-

tion and decryption. The PPCF-KM is said to preserve user

privacy if no information about users (ratings and local

similarities) is leaked to respective attackers under each of

the described scenarios.

5 Proposed privacy-preserving collaborative
filtering protocol

In this section, we present the design of our PPCF-KM

scheme. As discussed that existing crypto-based PPCF

schemes suffer from performance issues due to the heavy

cryptography and the amount of data needed to be pro-

cessed. In this work, a privacy-preserving k-mean [11] is

employed for secure clustering. After data are clustered,

recommendations are divided into two steps, where the

distance between the target user and centroid of all clusters

are measured and users who belong to the closest cluster

are used for computing similarities and recommendations.

The result is sent back to the target user who will subse-

quently execute the decryption stage with the SP to finalise

the result and get the predicted rating.

5.1 Initialisation

During the initialisation, the RS selects initial parameters

k; iter; l;V 0;R0;C, where k is the number of clusters and

iter is the iteration, l denotes the collection of centroids, V 0

is the collection of all encrypted rating vectors from users

and R0 is the collection of all encrypted local similarities of

all users. All encrypted user ratings and local similarities

are maintained in a table T .

Table 1 Data structure of the user tableT

V 0 R0

u1 V 01 ¼ fEðr011Þ; . . .;Eðr01MÞg R01 ¼ fEðR011Þ; . . .;EðR01MÞg
u2 V 02 ¼ fEðr021Þ; . . .;Eðr02MÞg R02 ¼ fEðR021Þ; . . .;EðR02MÞg
u3 V 03 ¼ fEðr031Þ; . . .;Eðr03MÞg R03 ¼ fEðR031Þ; . . .;EðR03MÞg

..

. ..
. ..

.

ul V 0l ¼ fEðr0l1Þ; . . .;Eðr0lMÞg R0l ¼ fEðR0l1Þ; . . .;EðR0lMÞg
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As for the SP, a security parameter K is chosen and a

keypair pk and sk is generated using K, where pk denotes

the public key and sk denotes the private key of SP. pk is

made public while the sk is securely managed by the SP.

A user ui obtains the public key pk from the SP and

prepares to submit her ratings to the RS. Let Ri be the list

of normalised local similarity and Vi be the rating data of

user ui. The user computes local similarities according to

the Eq. 2 and normalises the result before element-wise

encrypting Vi and Ri, denoted as V 0i and R0i respectively.

Both encrypted V 0i and R0i are submitted to the RS.

5.2 Clustering

To cluster the encrypted data, an existing privacy-pre-

serving k-mean algorithm PPODC [11] is adopted as a

building block for our construction. The PPODC is built

using several existing mechanisms such as Secure Multi-

plication Protocol (SMP) [23], Secure Bit Decomposition

(SBD) [24] and Secure K-Min (SKMIN) [23]. The RS is

responsible for clustering the data by executing the PPODC

with the SP. The protocol takes as input T ; l; k and iter,

and outputs a collection of new centroids and k lists of

clustered data, denoted as C.

The RS randomly selects k entries from the table T ,

where each row j 2 k consists of the rating vector V 0j and

local similarities R0j of user uj, the k rating vectors are

assigned to l fV 0j ; . . .;V 0kg; j 2 k as the initial vectors for

clustering. The output C is a key-value store where the key

is the centroid and the value is a list of encrypted data that

belong to the centroid. C is initialised with k entries, where

each entry is the centroid lj 2 l; j 2 ½1; k� and an empty list

for each entry is initialised.

For each user ui 2 T ; i 2 ½1; l�, where ui  fV 0i ;R0ig, the
PPODC measures the Square Euclidean Distance between

the rating vector V 0i of user ui and each centroid in l, which
results in k intermediate distance values Di for the user ui.

The intermediate values Di are decomposed into k

encrypted binary vectors using the SBD function, the k

binary vectors are subsequently compared by the SKMIN

function to determine the smallest value Ki, which is the

centroid that is the closest to the input user ui.

Table 2 Notations
RS Recommender server

SP Security provider

ui User i

pk Public key of SP

sk Private key of SP

EnckðÞ An encryption function using key k

DeckðÞ A decryption function using key k

� Homomorphic Addition

M Total number of items

k Total number of clusters

l Total number of users

iter Iteration of clustering

ri;m m-th rating of an item by user i, 1�m�M

Vi A rating vector of user i, Vi  ri;m for 1�m�M

Ri A normalised local similarity of user i, Ri  Ri;m for 1�m�M

V 0i An encrypted rating vector of user i, V 0i  Epkðri;mÞ for 1�m�M

R0i An encrypted normalised local similarity vector of user i, R0i  EpkðRi;mÞ for 1�m�M

V 0 A collection of encrypted rating vectors from users, V  V 0i for 1� i� l

R0 A collection of encrypted normalised local similarity vectors from users, R R0i for 1� i� l

T A user table that maintains V 0 and R0

l A collection of encrypted centroids for each cluster, l lj for 1� j� k

C A collection of finalised clusters
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The user ui is assigned to the list in C according to Ki.

The RS repeatedly runs the above procedures for every

user in T . In the end, each user is assigned to a cluster.

Centroid recalculation can be done by aggregating all

encrypted points in C and the number of users that belong

to each cluster using homomorphic addition. The aggre-

gated results are sent to SP for decryption and the centroid

of each cluster can be re-computed in plaintexts.

New centroids are encrypted using pk, both l and entries

in C are updated with the newly computed centroids. The

values in C is re-initialised for the next clustering except

for the final round. Both the RS and SP interactively per-

form the above procedures for iter times. In the end, a final

clustered table C that consists of k entries with the total

number of l records is returned. Each column represents a

cluster indexed by the centroid of the cluster. Table 3

presents the structure of the table C.

5.3 Recommendation stage

During the recommendation stage, the target user ut selects

an I-th item that needs rating and computes V 0t and R0t, they

are submitted to RS for a recommendation. The RS mea-

sures the distance between V 0t and all encrypted centroids in

l using the Secure Distance Measurement (SDM) protocol

in Algorithm 2. The SDM takes as input a rating vector and

index I of the target user, the collection of centroid l from

RS and outputs the centroid that is the closest to user input.

Specifically, Secure Square Euclidean Distance (SSED)

measures the distance of two input vectors, which are

decomposed using the SBD function and measured by

SKMIN, the centroid lt; t 2 k that is the closest to the

target user is returned.

Based on the output lt from the SBD protocol, the RS

retrieves a list of local similarities R0s from C for computing

the similarity. Cosine similarity of the target user ut and the

list R0s is computed using the Eq. 2.

St½i� ¼
YM

m¼1;m 62I
Rt;m � Ri;m; i 2 R0s

where � denotes the multiplication of two ciphertexts (SMP).

The cosine similarity from Algorithm 3 between the

target user ut and users in R0s is stored in St. Note that the

local similarity R0 is used for computing the similarity as

supposed to the actual ratings V 0. Recommendation of I-th

item can be computed by using cosine similarities St from

Algorithm 3, the RS runs Algorithm 4 to compute the

rating of I-th item for user ut following the Eq. 1.

Pi;I ¼
Q

uj2Uðsimðui; ujÞ � rj;IÞ
Q

uj2U ksimðui; ujÞk
¼ Nt

Dt

Nt ¼
Y

i2St
ðSt½i� � ri;IÞ

Dt ¼
Y

i2St
kSt½i�k

In the end, two encrypted values Nt and Dt are generated,

where Nt and Dt denote the nominator and denominator of

Pi;I respectively. Note that it yields the same predicted

rating in the ciphertext space using homomorphic opera-

tions. However, as the ElGamal does not support division

over the ciphertext, both Nt and Dt are sent back to the

target user, where the user will finalise the result with the

SP for decryption.

Table 3 The final clustered user

data C, nCj
denotes the total

number of records of j-th cluster

in the table C, where j 2 ½1; k�

C1;l1 � � � Ck;lk

fV 01;R01g � � � fV 01;R01g

..

. � � � ..
.

fV 0nC1 ;R
0
nC1
g � � � fV 0nCk ;R

0
nCk
g
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5.4 Decryption stage

When the target user ut receives encrypted partial scores Nt

and Dt, the user generates two pseudorandom numbers n, d

and multiplies them into respective ciphertexts Nt and Dt.

The obfuscated scores N 0t and D0t are submitted to the SP

via a secure communication channel. The SP decrypts the

scores and sends ~Nt and ~Dt back to the target user. In the

end, the target user ut de-obfuscates the plain results and

computes the predicted rating Pt;I for I-th item by com-

puting the following:

Pt;I ¼
Nt

Dt

where Pt;I is the predicted I-th rating for the target user ut.

Algorithm 5 denotes the finalisation process including

decryption and computing of the recommendation.

6 Security analysis

In this section, we present the security analysis of our

proposed system and show that the PPCF-KM is secure

under the semi-honest adversary model. As discussed in

Sect. 4, all parties in the proposed system are semi-honest,

meaning that they faithfully follow the designed protocols

and do not deviate, but they might be interested in the

computation and try to disclose private information from it.

Furthermore, the RS, SP and users do not collude with each

other. The proposed system is said to be secure if no

information about any data subject is leaked to either the

RS, SP or users at any stage.

Attack 1 (Malicious Recommender Server): A mali-

cious RS will have access to all user data. However, all

user data are encrypted using ElGamal encryption which is

semantically secure under the Chosen Plaintext Attack

(IND-CPA), and the private key is securely kept by the SP.

Hence, all user data in the RS are guaranteed to be secure.

The adopted PPODC, which is based on the following

mechanisms SSED, SMP, SKMIN [23] and SBD [24] has

proven to be secure in semi-honest settings by respective

authors. During centroid recalculation, the RS is able to

learn the size of each cluster along with its aggregated

results and the updated centroid. During recommendation,

only the closest cluster to the user input is revealed to the

RS. At the end of the recommendation, the RS is respon-

sible for aggregating the encrypted results, no private data

is disclosed as it is computed over the ciphertext space

using homomorphic encryption. As for the decryption, the

RS is not involved in the process and no sensitive infor-

mation is leaked.

Attack 2 (Malicious Security Provider): The SP pos-

sesses the decryption key for data stored in RS, which the

SP is unable to access under the semi-honest model, as the

RS and SP do not collude. Therefore, the SP is unable to

learn anything about the user. During initialisation, the SP

is able to learn the size of the final cluster stored in C. As

for the recommendation, the SP learns nothing from the

computation with the RS. When interacting with users for

finalising the recommendation, obfuscation and masking

are added into ciphertexts by the target user before they are

submitted and decrypted by the SP. Hence, the SP can only

learn obfuscated results from user inputs.

Attack 3 (Malicious Users): Users can submit encryp-

ted ratings and request recommendations from the RS.

However, under the semi-honest model of PPCF-KM, users

do not collude with any parties, the user cannot identify

information about an individual from the RS by commit-

ting fake ratings if there exists more than one record for

each cluster in C during the initialisation.

7 Evaluation

In this section, we present the analytical results of PPCF-

KM with regard to performance and accuracy.

7.1 Settings and configurations

The PPCF-KM scheme and other privacy-preserving

mechanisms are implemented in Java. ElGamal encryption

is implemented using the built-in Java BigInteger Library.

The proposed system is evaluated on a workstation laptop

that equips with an Intel Core i7-8850H with 32 GB of

DDR4 2400 MHz RAM. For the Java environment,

OpenJDK 11 LTS is the version in which the proposed

system runs. K is set to 1024 bits for security parameters,

which is equivalent to having keys of 1024 bits in length.

Wireless Networks

123



For evaluating the performance, MovieLens [25] 100k is

chosen for evaluation. It contains 943 users and 1683

movies, where the rating ranges from 0 to 5. To assess

recommendation accuracy, an extra dataset Jester [26] is

added along with the existing MovieLens. The Jester

dataset contains over 1 million records from 24,983 users

over 101 items, where the rating scales from �10 to 10. For
simplicity, we normalise the range of the dataset from 0 to

20. Let k be the number of clusters and d be the dimension

of vectors. For evaluating performance, computational

times for each stage in PPCF-KM are measured with var-

ious k and d. For accuracy, deviations between the baseline

and PPCF-KM are measured using Mean Absolute Devi-

ation (MAD). A baseline describes the same recommend-

ing mechanism without employing clustering to the dataset.

7.2 Performance of clustering

The computational cost of clustering is determined by the

number of clusters k and the dimension of the vector

d. Figure 2a presents computational costs for one round of

clustering. Overall the differences in time increase steadily

with regard to the setting of d and k. With a fixed k and

various d, taking 366 s when d is 20 and 480 s when the

dimension is increased to 40, resulting in around 20–25%

increase in total execution time. The computational dif-

ference is also consistent when changing the number of

k with a fixed dimension d, albeit in a more significant way.

Setting a fixed dimension d with various numbers of

clusters k, the cluster takes 366 s when k is 2–794 s when

the k is increased to 4. The time difference is measured

between 40 and 60% when stepping up the number of

clusters. Similarly, the interval is also consistent for

updating k.

Results show that choosing a large k will result in longer

initialisation, which corresponds to our analysis for proto-

cols SSED, SMP, SBD and SKMIN that the secure clus-

tering PPODC is relied on. The overheads are mainly

implied by SBD and SKMIN protocols as they contribute

approximately 75% of the total execution time. As SBD

decomposes an encrypted value into encrypted binary and

subsequently each encrypted bit is compared to other k � 1

bits in the SKMIN, its complexity scales quadratically

based on the setting of k and the bit-length of encrypted

values.

However, as k-mean is relatively easy to scale, a parallel

construction of the clustering mechanism is implemented

to take advantage of the multi-threading feature provided

by processor manufacturers. Using parallel computing,

each worker thread can compute independently and the

result can be aggregated into the main thread. Figure 2b

shows the execution time for the parallel clustering, where

t denotes the number of worker threads. As the amount of

load assigned to scale linearly with the number of t, where

each thread will get l � 1
t records for the cluster, the exe-

cution time decreases linearly as t increases while the

difference in time interval with various d and k remains

unchanged.

7.3 Performance of recommending

The recommendation stage involves distance measuring

and generating recommendations. Figure 2c presents the

computational time for measuring distances between cen-

troids and the input. Similar to the clustering stage,

increasing the number of clusters k results in a significant

change to the runtime than the dimensions d. It is worth

noting that fluctuations might be observed as the result of

clustering since clusters with equally assigned points are

unlikely.

Lastly, PPCF-KM is compared with an existing crypto-

based PPCF scheme [6] with no clustering, which is

referred to as Vanilla. In Fig. 2d, the Vanilla implemen-

tation did not apply clustering to the dataset, every user in

the system participates in the computation which results in

an excessive amount of computation. PPCF-KM on the

other hand selectively chooses users from the cluster based

on the distance to generate recommendations. As a result,
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Fig. 2 Computational time for privacy-preserving clustering, where t ¼ 1 (a) and t ¼ 6 (b), distance measurement (c) and generating

recommendations (d) with various d and k
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the Vanilla is impractical in most settings, whilst PPCF-

KM is able to efficiently compute the recommendation in

less than 5 s under a setting which took Vanilla over 100 s

to complete. The results show that PPCF-KM is efficient

against the Vanilla by up to 20 times while providing better

scalability for performance without compromising the

utility and security.

7.4 Accuracy

Accuracy measures rating deviations introduced in the

predicted ratings as the result of clustering. The accuracy

of PPCF-KM is measured using the Mean Absolute Devi-

ation (MAD) against baseline ratings with various k and

d. Similarly, the implementation without a clustering

mechanism is considered to be the baseline for the mea-

surement. In addition to the MovieLen, an extra dataset

Jester [26] is added to the evaluation. This is to evaluate

the effectiveness of k-mean clustering under two types of

datasets, where data in MovieLens are sparely distributed

as supposed to the Jester.

Figure 3a shows the results for MovieLens under vari-

ous k and d. The baseline generates the predicted rating of

3.27 when the d is set to 20 and decreases accordingly with

the number of dimensions as the result of high data spar-

sity. The PPCF-KM shares similar predicting characteris-

tics as the baseline when k is set above 2 with the predicted

ratings above the baseline. The result shows that k plays a

crucial role in determining the accuracy of the recom-

mendation, as shown that the predicted rating is below the

baseline when only 2 clusters are used.

Compared to the MovieLens, the Jester dataset has a

higher density regarding data distribution. In Fig. 3b, the

predicted results from baseline are consistent regardless of

the dimensions, whereas PPCF-KF achieves similar results

when k is set to 2 or 6 respectively. More fluctuations are

measured when compared to the MovieLens, as the k-mean

might be overfitting for the Jester dataset. While PPCF-KM

maintains above baseline predictions, results indicate that

choosing an optimal k is critical for obtaining stable pre-

dicted results.

Table 4 presents the result of comparison in recom-

mending accuracy. The PPCF-KM column represents the

mean rating scores from k clusters and the MAD is the

Standard Absolute Deviation of PPCF-KM against the

baseline results. The result shows that PPCF-KM improves
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Fig. 3 Comparing the accuracy

of predicted recommendations

from PPCF-KM with the

baseline (Vanilla) with no

clustering using MovieLens

100k (a) and Jester (b)

Table 4 Accuracy comparison

of PPCF-KM with the baseline

under various dimensions

MovieLens Jester

d Baseline PPCF-KM MAD d Baseline PPCF-KM MAD

20 3.2784 3.91776 0.63936 10 13.1561 13.7088 4.4327

40 2.9819 3.6483 0.77436 20 13.1517 14.6403 7.39268

60 2.7658 3.44587 0.68007 30 13.1295 14.52864 7.26326

80 2.7509 3.23056 0.63114 40 13.1267 16.26396 14.37662

100 2.7079 3.17032 0.6645 50 13.1288 16.28464 14.77496

120 2.7158 2.9809 0.47502 60 13.1418 16.49386 15.0907

140 2.7303 2.95468 0.4219 70 13.1354 15.9399 12.34498

160 2.7366 2.78392 0.43184 80 13.1323 15.83772 12.12662

180 2.6853 2.9166 0.43978 90 13.1225 15.6868 11.53342

200 2.6496 2.8482 0.3964 100 13.1163 16.12534 13.6108
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predicted accuracy in most cases and the performance over

the baseline construction while guaranteeing the confi-

dentiality of user data during the initialisation and

recommendation.

8 Conclusion

In this paper, we proposed an efficient privacy-preserving

recommender system (PPCF-KM) in wireless networks.

PPCF-KM adopts user-based collaborative filtering and

homomorphic encryption to preserve user privacy while

enabling utility over the encrypted data. The system

incorporates a secure clustering mechanism to facilitate

heavy computational overhead imposed by PPCF proto-

cols. We carefully extend the privacy-preserving clustering

protocol to enable secure clustering in recommender sys-

tems. The PPCF-KM ensures data confidentiality under the

semi-honest attacker models. The evaluation shows that the

PPCF-KM is accurate, efficient and outperforms the

existing solution.
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