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Abstract:

One of the most intriguing areas of applied mathematics is the study of non-linear partial
differential equations (NLPDEs). They play a pivotal role in describing, modelling, and predicting
many real-life phenomena. Due to the abstract nature, the fundamental problem is to find their
exact solutions. Several methods have been proposed for this purpose. The study aims to find out
unexplored exact solitary wave solutions to some NLPDEs arising in the fields of wave
propagation and optical fiber. We shall be dealing with nonlinear dispersive PDEs. They are the
ones where we could expect to have special type of exact solutions known as solitary wave
solutions or solitons. Since solitons have been proven to be the exact solutions of many families

of NLPDE:s, their complete understanding would lead us to a broad understanding of the real-life
phenomena themselves. In this thesis, modified extended tanh method, improved tanh (%)-

expansion method, generalized auxiliary equation mapping method, and improved generalized
Riccati equation method have been used to solve few distinguished NLPDEs and NLFPDEs. The
results obtained by these methods are new and have not been reported in literature previously
proves the efficacy and productiveness of these methods. The main objective of this research is to
find new exact solutions and graphical visualization of these results of PDE of integer and
fractional order. This project has two aspects of its significance. One is purely mathematical, and
the other is its applications in other fields of science and technology. The new solutions would
help scientists in developing cost-effective simulators to understand complex qualitative features

of many phenomena in the fields of wave propagation and signal processing.
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Synopsis of Thesis:

Thesis Title: Exact Solitary Wave Solutions of Some Non-Linear Partial Differential Equations

arising in Wave Propagation and Optical fibers.

Partial differential equations play an important role in modelling and analyzing the nonlinear real
life physical phenomena, as there is an abundance of phenomena around us that can be represented
by NLPDEs. It is very important to formulate not only the governing PDE of a certain phenomenon
but also to find out its exact solutions. Since these solutions of the PDE representing a physical
phenomenon can be used to simulate and replicate the phenomenon itself in a virtual environment.
These PDEs are naturally abstract, so there is no single general solution-recipe that could work on
all of them. Usually, each individual equation must be studied as a separate problem. Numerous
numerical, analytical, and approximate methods have been proposed and implemented to get the
exact solutions of PDEs. However, in this study we would be interested in a particular type of
exact solutions known as the solitary wave solutions. For this we will be using such analytical
methods that are recently developed and have not been applied to most of the PDEs arising in our
field of interest. This project will go further by applying existing methods to fractional nonlinear
PDEs. NLFPDEs are generalizations of NLPDESs in which the orders of derivatives involved are
fractional. Some of the obtained results have been shown graphically in 3-D, 2-D and contour

graphs to study wave dynamics.



Thesis outline:

This thesis includes 6 chapters,

Chapter-1: This chapter includes literature review including general introduction and
preliminaries that provides significance of PDEs and FPDE:s in different field of sciences along
with history and background of solitons, which helps readers to understand the context of this
research. This chapter also comprise basic definitions and brief description of methods used. Then
it moves to motivation of this study, research objective, significance, and contribution to

knowledge.

Chapter-2: The main objective of this chapter is to explore soliton solutions to some nonlinear
PDEs by employing a very straightforward and robust technique called, modified extended tanh
expansion method [1]. We have solved the Dodd-Bullough-Mikhailov equation, Sinh-Gordan
equation, Liouville equation and (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equation.
We succeed in securing solitary and periodic wave solutions. Which provides deep insights into
nonlinear phenomena and is helpful in different fields of sciences. Some of the derived solutions
have been discussed in the form of 2-,3-dimensional graphs and contour plots to exhibit the power
of proposed method graphically. The results generated by this technique are new and prove that it
is a very strong and effective method to generate a variety of solutions and can be applied on
different nonlinear models. All the graphs and solutions obtained in this chapter have been solved

using computational software Maple.

Chapter -3: In this chapter, variety of exact wave solutions for recently developed (3 + 1)-
dimensional Boiti-Leon-Manna-Pempinelli equation and fourth order Ablowitz-Kaup-Newell-

Segur water wave (AKNS) equation has been investigated by using the innovative and efficient

(&)

method called improved tanh(T)-expansion method (IThEM). The exact solutions obtained for

these equations are in the form of hyperbolic, trigonometric, exponential, logarithmic functions
which are completely new and distant from previously derived solutions. Their solutions help

scientists to investigate the dynamics of nonlinear fluids with higher dimensional effects. To



understand the dynamical physical behavior of this equation some important solutions have been
discussed graphically in the form of two and three-dimensional along with contour plots by
selecting suitable parameters with the aid of Maple program. The achieved outcomes exhibit that
this new method is efficient, direct, and provides different classes of families. This technique can
solve many nonlinear differential equations having importance in different fields of sciences. All
the graphs and solutions obtained in this chapter have been solved using computational software

Maple.

Chapter-4: In this chapter, a very effective technique called generalized auxiliary equation
mapping method has been employed to investigate some very important nonlinear equations in
optical fibers such as Fokas system and (2 + 1) Davey-Stewartson (DS) system. Under different
situations, the obtained solutions exhibit various wave pattern like bright and dark soliton, kink
soliton, periodic wave soliton and singular solitons. Solutions of both equations provide valuable
insights of wave propagation, signal processing in optical fibers, imaging techniques and have
applications in many areas such as mathematical physics, biology, and oceanography. These
solutions are novel and interesting and prove the efficiency of the method. The accuracy of the
obtained results provides the efficiency of the method and ensures that it can be used for other
mathematical models involved in optical fibers. Graphical simulation of some reported results has
been discussed here to visualize and support the mathematical results in terms of 3-D, 2-D and
contour plots. All the graphs and solutions obtained in this chapter have been solved using

computational software Maple.

Chapter-5: In this chapter, improved generalized Riccati equation mapping method has been used
to find some new exact travelling wave solutions to space-time fractional non-liner double
dispersive equation (DDE), space-time fractional non-liner Telegraph equation for transmission
lines, space-time fractional (2+1) dimensional Heisenberg ferromagnetic spin chain equation.
Riccati equation mapping method proves to be very effective tool to find a variety of soliton
solutions. As a result, we found dark, combined dark-bright, singular periodic wave, combined
singular periodic wave solutions and rational solutions. These newly discovered solutions would
help a large community of scientists to understand the phenomenon such as earth sciences and
shock physics in a more depth also interpretation of these exact solutions can help scientists to

develop new technologies such as soliton-based communication devices. We have simulated the



solitons, to check their types, with the help of graphs and all the solutions obtained in this article

have been verified by back substitution in original equation by using Maple 17.

Chapter-6: This chapter includes the summary of previous chapters, highlights the significance
of this research, contribution to the knowledge and conclusions. It also includes limitations of our

work and scope of further work in this field.

All the references will be stated in the end of our work.



Chapter 1. Introduction, Preliminaries and

Literature Review



1.1 Introduction:

A lot of physical phenomena happening around us can be represented by nonlinear partial
differential equations. The NPDEs arising in optical fibers, plasma and biological sciences will be
of great interest. It is very important to formulate the governing NPDE of a certain phenomenon
as well as to find out its exact solutions. We shall be dealing with nonlinear dispersive PDEs. They
are the ones where we could expect to have solitary wave solutions. First ever discovery of solitons,
not termed as solitons then, was made in 1834 when the Victorian Engineer John Scott Russell
observed a solitary wave, travelling along the Scottish canal [2]. The wave was travelling along
the channel of water for a long period of time while still retaining its original identity. He
reproduced the phenomenon in a wave tank and named it the "Wave of Translation".
Unfortunately, his great observation could not get much attention from the scientists of the
nineteenth and early twentieth century era. In the mid-1960's his work got attention when scientists
started to use modern digital computers to analyze wave propagation. Nowadays, his ideas are
used to formulate abstract dynamical behaviors of wave systems in different branches of science
and engineering. The presence of so-called waves of translation has been already noticed in
hydrodynamics, nonlinear optics, tornadoes, shock waves, plasma, and the Great Red Spot of

Jupiter etc.

A soliton is a nonlinear solitary wave which has an additional property of retaining its permanent
visual appearance, even if it interacts with another soliton. The difference between solitary waves
and solitons is not much highlighted in the literature and had been blurred. We may define solitary
waves to be the soliton like solutions of NPDEs describing the wave processes in dispersive and
dissipative media. A single soliton solution is commonly referred to as a solitary wave. However,
when two or more soliton like solutions occur, they are termed as solitons [3] . Since solitons have
been proved to be the exact solutions of a large class of PDEs that are well accepted as the
governing equations of many real-life phenomena, it is very important to understand them well.
Their complete understanding would lead us to a broad understanding of the real-life phenomena
themselves. Solitons are developed by the balance between nonlinearity and linear dispersion,
nonlinearity tends to localize the wave while dispersion spreads it out. If we can create this balance,

then we could expect to have soliton solution of a PDE. Well known example having solitons is,



Korteweg-de Vries (KdV) equation [4] used to model the shallow water waves. The applications
of shallow water equations are very vast in the field of ocean modelling and Coriolis forces in
atmosphere. Shallow water wave equation is also introduced to examine the characteristic of moist

convection in atmospheric dynamics [5].

Another well-known nonlinear model is Schrodinger equation, is very important equation in
Physics for some obvious reasons as it describes nonlinear wave propagation in optics, nonlinear
fluids, rouge ocean waves, it generates exact solitary waves called solitons. Zakharov and Shabat

solved this equation first time in 1972 [6].

Neither the KDV and Schrodinger equation are the only equations, nor shallow water wave or
optical fibers are the only phenomenon which involves solitary waves and their beneficial uses.

The applicability of solitary wave solutions covers a broad range of practical problems.

As the solution of the NPDE representing a physical phenomenon is used to simulate and replicate
the phenomenon itself in a virtual environment, therefore, the challenges of solving NPDEs have
been a subject of interest of many mathematicians. Exact solutions play a very important role in

the proper understanding of the physical phenomena they correspond to.

As NPDE:s are naturally abstract, there is no single general technique to find out the solution that
could work on all of them. Usually, each individual equation must be studied as a separate problem.
Several scientists dedicated their bright minds to working out such methods that could be used to
find the solutions to NPDEs and FNPDEs (nonlinear fractional partial differential equations).
Numerous methods have been proposed and implemented to get the exact solutions of NPDEs.
Such as tanh method [7], this is a powerful technique developed by Willy Malfiet in 1992 to
compute exact solitary wave solutions in the form of tangent hyperbolic functions. In past many
modifications had been done on this technique but Fan [8] extended this method using Riccati
equation to generate different type of solutions along with hyperbolic function solutions. The Sine-
Cosine method [9] developed by A. M Wazwaz, the pioneer of G' /G expansion method was Wang
etal. [10], introduced this method to solve variety of nonlinear evolution equations, Ansatz method
[11], R. Hirota introduced new form of Backlund transformation method [12], Painlevé expansion
[13] was developed to provide unified approach for both nonlinear ordinary and partial differential

equation, Auxiliary equation method [14] was introduced by Sirendaoreji, Functional variable



method [15], Hirota method [16] was introduced by R. Hirota as a direct method to generate exact
solutions and Backlund transformations of certain nonlinear models. Lie symmetry approach[17],
Generalized Riccati equation mapping method [18] , Variational iteration method [19] to find
approximate solutions of nonlinear problems, tanh—coth method [20] derived by A. M Wazwaz
and many more methods. In the recent past, many techniques have modified, extended to improve
the shortcomings of old methods to get more generalized types of exact solutions of nonlinear
Partial differential equations of high order such as, double auxiliary equation method [21],
modified extended Fan sub-equation method [22], Extended Jacobi’s elliptic function method [23],
the sardar sub-equation method [24], the generalized G'/G expansion method [25], Extended trial

equation method [26], improved tanh (%)-expansion method [27], improved generalized Riccati

equation mapping method [18], Modified extended Tanh Method [1], generalized auxiliary
equation method [28] and generalized Kudryashov method [29] etc.

1.2 Research Objectives:

Prime objective of this study is to investigate and procure novel exact solutions known as the
solitary wave solutions for some nonlinear PDEs which are prominent in different fields of
sciences and have numerous applications using few well known analytical methods. It is very
important to formulate not only the governing PDE of a certain phenomenon but also to find out
its exact solutions. I will be dealing with integrable nonlinear dispersive PDEs. They are the ones
where we could expect to have solitary wave solutions. I handpicked the models that have
importance in physics, fluid dynamics, plasma physics. Oceanography, biology and many more.
Having the knowledge of the physical behavior of these nonlinear wave solutions helps scientists
and Engineers to analyze, predict and control nonlinear phenomena such as rough waves in oceans,
signal transmission in optical fibers, seismic waves, neural waves in brain, blood pressure,
population dynamics, fluid flow in pipes, heat transfer. Finding these types of solutions is a
momentous achievement by the researchers as they provide valuable insights about the behavior
of nonlinear systems. All the models that are NLPDEs of order integer and fractional have been

considered in this study and are selected wisely due to having significance in their respective field.
e My questions of interest would be:

1. Does a PDE have solitary wave solutions?



2. What types of solitons we may get after finding the solutions?

3. Are obtained solutions exact and novel?

4. What implications would these new solutions have for our understanding of the problem?
5. Are the obtained results accurate?

6. What mathematical tools can be developed/modified to get more and new exact solutions?

7. Where tools for exact solutions fail, can we use alternative approach to find exact solutions

such as approximate analytical techniques?

8. Can the existing methods be extended to handle nonlinear partial differential equations of

non-integer order?

1.3 Research Methodology:

This project is very intriguing as well as difficult at the same time. For an organized research effort,
I had divided my research plan into different stages. Each one of them had its own importance and

a timeline. The work structure that I followed can be divided in the following parts:

1.4 Phase 1:

During the literature review, I selected such PDEs that contain both linear dispersive and nonlinear
terms. These NLPDEs of order integer and fractional are related to the fields of wave propagation
and optical fibers. I reviewed several equations and selected those which have some practical
interest and pointed out the possibility of totally novel solutions to those NPDEs. Some basic steps
that I followed to get these solutions, and make them presentable to the research community, are

explained in the subsections as follows.

1.4.1 Identification of suitable mathematical methods:

This stage involved the identification of “right tool for the right job”. There are several ways to
find soliton solutions to a given nonlinear dispersive partial differential equation. Many scientists
have proposed various effective algorithms and techniques (some of which I have discussed in the
section Literature Review). Each one of these techniques has its own advantages and
disadvantages. Some are more generalized than the others and some are only suitable for some

specific types of NPDEs. So, the selection of appropriate mathematical techniques is very



important. I have used modified and generalized analytical methods which are new and robust in
deriving new families of solutions. These methods have not applied previously to these models,

signifying the importance of this research study.

1.4.2 Software used:

As in other fields such as Computer science and Information technology, mathematics and its
related sciences took a great advantage of the modern technologies and their computational
capabilities. It really boosted the research both in terms of quality and quantity. Many abstract
equations and problems nowadays are only a matter of some built-in commands. However, their
use is not limitless. For the PDEs I solved are of abstract nature and their ready-to-use recipes are
still a dream. Since the obtainment of exact solutions to these PDEs is not an easy task, calculations
just by hand is certainly not a good choice. Fortunately, we are blessed with several modern
mathematical software which would help me to perform certain computational tasks and the
visualization of the results. I used software named MAPLE and MATHEMATICA. There are

many others but the reason for choosing these two is my previous familiarity with them.

1.4.3 Solutions of Equations:

To find exact solutions, I have taken help from the above-mentioned mathematical software.
Although the software cannot solve the PDEs directly, they can however be used to perform certain
tasks which were not possible, or extremely difficult, without them. Major steps to find the
solutions of these equations is to transform PDEs to required ODEs by using complex wave
transformation. Then by following the main steps of selected analytical technique I convert
nonlinear ODE into system of algebraic system. We solve this system which leads me to the
families of solutions of our PDE. The coding helped me to get through this stage with ease and at

a rapid pace.

1.4.4 Verification of the solutions:

The next important step in my research was the verification of the obtained solutions. Exact
solutions are the solutions that satisfy the PDE exactly. Without the verification, we cannot say for
sure that the obtained mathematical expressions are in fact the solutions of the considered NPDE.
The verification process again lies on the codes and manual verification is not possible most of the
time. For verification, I directly substituted expected solutions into the NPDE and if it satisfies the

differential equation, I considered those expressions to be the exact solutions of the NPDE.



1.4.5 Graphical simulation of the solution:

Next step of my research was graphical simulation of solutions. This is the last, but not the least,
consequent substage of my research. By their simulations we can judge the type of a solitary wave
(such as kink, periodic, singular, compactons, peakon, dark soliton and bright soliton etc.) and its
journey across the domain of interest. Again, the illustration of these results is only possible with
modern computer technology. Without the graphical simulation, it is very hard to explain the
solutions and their practical uses. These solutions would help engineers and computer scientists to
make simulators that can directly simulate the waves for practical uses with having too much
information about the solutions themselves. It will also save them from going too deep into

mathematical aspects of the equations.

1.4.6 Write up of the findings:

Writing the results is a very important part of all the phases throughout my research project.
Collecting facts is one thing and presenting them in an interesting and self-explanatory way is
another. Along with my writing skills, and guidance from my supervisors, I used a couple of
software for the said purpose and performed my write-up in MS-Word and Scientific Workplace

(a Latex compiler).

1.5 PhaseIl:

The second phase of my research proposal was to extend my project to the nonlinear PDEs of
fractional integer. Fractional calculus is a branch of mathematical analysis that studies the real or
complex number order differential or integral operators. It is currently a very active research issue
among the researchers as a lot of physical phenomena can be modelled by means of fractional
derivatives in many fields of science and engineering. This phase was conducted simultaneous to
Phase I. As I mentioned earlier, this field is more open and even some of the very basic methods
have not yet been extended to these types of PDEs. I hope in future I shall be able to extend several

already existing methods to make them able to solve NFPDE:s.

Equations studied:

The PDEs studied in this thesis are, Dodd-Bullough-Mikhailov equation, Sinh-Gordan equation,
Liouville equation and (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony that plays significant

role in problems arising in fluid flows, solid state physics, nonlinear optics, quantum field theory



and chemical kinetics [30]. The (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP)
equation has imperative impact and significance in the wave propagation in incompressible fluids,
moreover when z = 0, it describes the interaction of Riemann wave propagation [31]. Fourth order
Ablowitz-Kaup-Newell-Segur water wave equation is significant because it can be reduced into
some very famous nonlinear equations such as KdV equation, mKdV (2 + 1) dimensional
Boussinesq wave equation, sine-Gordan equation and nonlinear Schrodinger equation has wide
range of applications in optical physics, quantum mechanics and many more [32]. Fokas system
is the extension of nonlinear Schrodinger equation in (2 + 1)-dimension. Davey-Stewartson
(DSS) equation is the generalization of Schrodinger equation. The doubly dispersive equation is
an important nonlinear physical model describing the nonlinear wave propagation in the elastic
inhomogeneous circular cylinder Murnaghan’s rod. Nonlinear Telegraph equation is important
mathematical model to study nonlinear wave propagation in electrical transmission lines,
Heisenberg ferromagnet model (HFM) is an interesting nonlinear model that exhibits magnetic

solitons and, also very important to study magnetic behavior in magnetic materials [33].

1.6 Significance and contribution to knowledge:

This project has two aspects of its significance. One is purely mathematical, and the other is its
applications to the other fields of science and technology. The mathematical aspects involve the
challenges of solving nonlinear PDEs which has been a subject of interest to many great
mathematicians. This interest is due to the reason that behind almost every nonlinear PDE there
lies a real-life phenomenon. As the solution of the PDE representing a physical phenomenon is
used to simulate and replicate the phenomenon itself in a virtual environment, therefore, the exact
solutions play a pivotal role in the proper understanding of that phenomena. New families of
solutions for these PDEs provide more valuable information to researchers and scientists in
expanding their scientific knowledge, studying insights of practical problems and provides new
directions of research. Researchers working in labs can tally their findings with the exact solutions
of the models. That would lead us all to more realistic and implementable models. Motivated by
the significance of these models we are hopeful that our results which are new is a great
contribution to the knowledge as these results will be beneficial to understand how nonlinearity of

different models work and changes over time under certain conditions.



1.7 Definitions and properties:

1.7.1 Partial Differential Equation:

A partial differential equation is an equation that contains the dependent (the unknown function),
and its partial derivatives. It is known that in the ordinary equations (ODE) the dependent variable
u = u(x), depends on only one independent variable x. Whereas, in PDEs the dependent variable
u =u(x,t),or u =u(x,y,t), must depend on more than one independent variable. Such as if

u = u(x, t), than it depends to independent variable x and on the time variable t.
Partial differential equations are classified as linear and nonlinear [34].

1.7.2 Definition and properties of modified Riemann-Liouville derivative:

Let us consider continuous (but not necessarily differential) function, f: R = R,w = f(w),
then its Jumarie’s modified Riemann-Liouville fractional derivative of order « is defined as

follows [35]:

f@w) = ;]W(W = - f(O]d,a <O.
F(—O() 0 ’

For a > 0, we have,

f@w) = (FePw),

1 d (¥ 1.1
-3 W=D U© - fO]d50<a<t (D
0
And,
fOwW) =(f@PwH*g<a<q+1l,q=1,
where I'(.) is gamma function defined as:
I['(a) = lim a'q- (1.2)

aemoala+ 1D)(a+2)...(a+q)

some characteristics of modified Riemann—Liouville derivative [35] are given below:
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wd% § > 0. (1.3)

The Jumarie’s modified fractional differentiation is a linear operation:

D, *(Af(w) + Bg(w)) = AD,*f(w) + B D,,“g(w), Aand B are constants. (1.4)
D,,“C =0, Cis constant. (1.5)
D, [f(w) gw)] = g(w) D,,*f(w) + f(w) Dy, “g(w), (1.6)
D, f(gw)) = f3(gw)) D, “gw) = Dy“f(gw))(g' W))*. (1.7)

1.7.3 Properties and Definition of Caputo Derivative:

Let, m to be a smallest integer that is greater than « , the Caputo time fractional derivative

operator of order @ > 0 of the function u(t, 7) is defined as follows [36].

a a‘xu(t, T)
Dt f(t) = 7,
(1 omf (s)
e E—— —_ m-a-—1 _ 18
:!F(m—a)J;(t S) “9em ds, m—1<a<m, (1.8)
0™u(t, 1)
Lat—m’ a=me N’

some characteristics of Caputo fractional derivative are given below [36].

For ae(m, m + 1], the Caputo fractional derivative of the power function t%,§ > 1 is given by,

0, a > 3§,
apd — rA+s4
D%t (1+8) B g<s. (1.9)
r1+6—a)
D*C =0, C is constant. (1.10)
Caputo derivative is linear.
D“(Af(t) + Bg(t)) = AD“f(t) + BD*g(t), A and B are constants. (1.11)

If f(t) is continuous in [0,1] and g(t) has n + 1 continuous derivatives in [0, t].
If f(t) is continuous function in [a, b], then,



th-1
reg)
If f(t) is continuous function in [a, b], f"'(t) exists and f'(0) = 0, then,

d d
alﬁ f(t) = IP 2O+ f(0).

D*DBf(t) = DHPE(1),

where a + Be(1,2).
Lemmal:Ifm—1<oa<m,mE€ N, then,

D*I*f(t) = f(t) and

m-—1 n

IDEF(R) = F() = . — f®(0),t >0,

n=0

(1.12)

(1.13)

(1.14)

(1.15)

Now we are going to address recently derived derivative called the conformable derivative in [37,

38] and it satisfies all the conditions of the standard derivative. Here, we shall present the definition

and some properties of this new derivative.

1.7.4 Definitions and properties of Conformable derivative

Consider a function f: [0, ) — R. The conformable derivative of the function f (t) of a‘"* order

is defined as[39]

peH© = i LELITO v 0 e o),

If f(t) is a — differentiable in some (0,a),a > 0,and th%l f4(¢t) exists, then,

£(0) = Jim £(2).

Properties of differentiable Conformable derivatives that satisfy following properties:

1. Conformable derivative is linear.

Dt“(Af(t) + Bg(t)) = A(D“f(t)) + B(D“g(t)), A and B are constants.

ii. DS({")=rt""% r€R.
iii. D.*C =0, Cis constant.

iv.  Leibniz Rule, D,*(f(t). g(t)) = g(t)D:*f(t) + f(t)D:%g(¢t).

(1.16)

(1.17)
(1.18)
(1.19)

(1.20)



a (F®OY _ gD f(O)—f ()P g (t)
D (g(t)) - g2(t) : (1.21)

vi. If f is differentiable, D% f(t) = (£)17¢ %(tt). (1.22)

vii.  Chain rule: Let f be an a —differentiable function and g is also differentiable defined in

the range of f,

D:“(gof () = f'(OD“g(f (). (1.23)

1.7.5 Definitions and properties of Atangana’s derivative

Here we review the definition of Atangana’s conformable derivative and its various properties.

The Atangana’s conformable is defined as [40]

1 1-a
f(t+e(t+m) >—f(t) (1.24)

€

ADEF(E) = lim
Properties of Atangana’s derivative:

i.  Let f:[a,00) — R is a differentiable function which is also @ —differentiable then,

307 (90f (@) = ' (2)4D7 9(f @), (1.25)
where the function g is also differentiable and is defined in the range of f.
ii.  Assume f and g, are functions, and both are f —differentiable then,

$DZ(af (2) + bg(2)) = a4DEf(2) + b§DFg(2), (1.26)

a, b are real numbers and B € (0,1].

iii.  4DZ(C) = 0, C is constant. (1.27)

iv.  Leibniz Rule, 4DZ(f (2).9(2)) = g(2)aD&f(z) + f(2)4D%g(2), (1.28)

Apa (F@)Y _ 9@ 4DEf(2)~-f(2)§DEg(2) :
v. oD; (g(z)) = 70 , provided g # 0, (1.29)



1

F(a))l‘“h, and h > 0, when € - 0, [41]

vi.  Letus consider eq. (1.24) where € = (z +

therefore we get,

D) = (2 + ;) L2, (130)
X L
f—;(ﬂm , (1.31)

where y is a constant. Hence, we obtain,

0ef© = x L2 (132)

Remark: It is worth mentioning here that Ji-Huan He and Zheng-Biao Li [42] proposed an easy
approach, namely the fractional complex transform[43, 44] which converts the fractional
differential equations into ordinary differential equations. In Chapter 5 of this thesis, the fractional
complex transforms and chain rule[45, 46] have been used with Caputo fractional derivative and
conformable derivative to convert fractional-order partial differential equations, into integer order
differential equations. The resulting equations are relatively easier to handle. They can be solved
with different methods to obtain their exact solitary wave solutions. Moreover, we have used a
recent definition of the comfortable fractional derivative called Atangana’s conformable
derivative[41, 47]. They have also proposed a transformation which converts the conformable
fractional differential equation with Atangana’s conformable derivative into a nonlinear

conformable ordinary differential equation.

1.8 Modified extended tanh expansion method:

Let us consider the nonlinear partial differential equation with independent variables x, t and some

dependent function u:

( 9 a8 9% o° ) (1.33)
u,

Alu,—u,—u,—uU-=U.. |=0,
Ox "0t "0x? "ot?
where A is a polynomial in 1 with its various orders of nonlinear partial derivatives.

Stepl. Let



u(x, t) = u§), (1.34)

where,

£ =kx +t, (1.35)

is a wave transformation which can convert nonlinear differential Eq.(1.33) into nonlinear ordinary

differential equation,
H(u, ku', v, k2u”, v2a",...) =0, (1.36)
where k, v are nonzero.

Step2. We suppose that the following series expansion is the solution of Eq.(1.36).

() =S =ao+ X, (a:(@E) + b(@(EN ™). (1.37)

where ag, a;, b;(1 < i < N) are constants, which are to be determined provided ay, by # 0. The

function ® = O () satisfies the following ordinary differential equation.

D'(E) =Q+ ®(§)?, where ( is real constant. (1.38)

The parameter N can be found by balancing highest order derivative with nonlinear term.
Substituting (1.67) and (1.68) into the ordinary differential equation (1.29) will yield a system of
algebraic equations in terms of a,, a;, b; and Q (where 1 <1 < N). Solving the resulting system of
coefficients, we can then determine a, a;, b; and (). General solutions of Riccati differential

equation (1.68) are as follows:

If Q < 0, we have

$() = —V=btanh (v=b¢")).
or,

#(§) = —V=b coth (V=5¢')).

If Q > 0, we have



$() = VB tan ((VB¢)).
or
6(©) = —Vcot (V=B¢")).

If Q = 0, we have

$(6) = —~
-1

Using these general solutions of Riccati equation along with the values of a, a;, b; and Q in to Eq

(1.67), we have obtained the solutions of Eq (1.33).

1.9 Improved tanh (%)-expansion method:

Let us consider the nonlinear partial differential equation with independent variables x, t and

some dependent function u:

AQ, iy, g, Wy gy oo ) =0, (1.39)

Where A is a polynomial in u with its various orders of nonlinear partial derivatives.

Stepl. Let

u(x, t) =u(), (1.40)
where,

§ =kx+vt, (1.41)

is a wave transformation which can convert nonlinear differential Eq. (1.63) into nonlinear

ordinary differential equation,

H(w, ki, vid, k20 v, ..) = 0, (1.42)

where k, v are nonzero.

Step2. We suppose that the following series expansion is the solution of Eq. (1.42)



N (1.43)
WE) =A@ = ) Aylp +tanh (/2)]",
k=-N

where A, (0 < k < N) and A_, (1 < k < N) are constants, which are to be determined provided

Ay # 0,A_y # 0. The function ¢p = ¢ (&) satisfies the following ordinary differential equation.

¢'(§) = asinh(¢(£)) + bcosh(p(§)) + ¢, where a,b, c are real constants. (1.44)

Eq. (1.44) has following special type of solutions:

Family 1: When a? + ¢ — b? < 0,b — ¢ # 0 then

a Vb2 — a? — c2 b%2 —a? — c?
¢(¢) = 2arctanh |— P + - tan 3 (&

Family 2: When a? + ¢? — b? > 0and b — ¢ # 0, then

a va? + c?—b? Va2 + c2—p? ,
¢(¢) = 2arctanh | - — — —————tanh| ———— ()

Family 3: When a? + ¢? — b? < 0, b#0 and c=0, then

¢ (&) = 2arctanh —%+ bzb_ @ tan b22— @ (&

Family 4: When a? + ¢? — b? > 0, ¢#0 and b=0, then

o« NoTa [VoTa
¢(§) = 2arctanh - + . tan > (&

Family 5: When a? + ¢? — b? < 0, b-c#0 and a=0, then

b+c Vb?% —c?
¢(é) = 2arctanh = Ctan 3 (&




Family 6: When a =0 and ¢=0, then

b
wo=ufm(3)

Family 7: When b=0 and c=0, then
a !

¢(¢) = In|—tanh E(f) .

Family 8: When a? + b? = ¢?, then

a V2a V2a
+ tanh | — (&)
—b ++Va?+b? —b++a?+b? 2

¢ (&) = 2arctanh

Family 9: When a=b=c=Kka, then
#(§) = 2a rctanh[e**C) —1].
Family 10: When a = ¢ = ka and b = —ka, then

eka(€n)
¢(€) = 2arctanh lml .

Family 11: When b = a, then

(a+c)eb®) — 1]

¢(¢) = —2arctanh [(a ~ e -1

Family 12: When b = c, then

a

b(§') —
¢ (&) = 2arctanh lgl .

Family 13: When a = —c, and b = ¢ then

¢ (&) = 2arctanh|1 + e‘C(s")]_



Family 14: When b = —b, and ¢ = —b then

b+ e
¢ (&) = 2arctanh [—l :

Family 15: When b = —b ,a = —b and ¢ = b then

1
¢)(f) = 2 arctanh I:W:l .
Family 16: When b = —c, then

ae?’)
(]5(5) = 2 arctanh m .
Family 17: When a = 0 and b = c, then

¢(&) = 2 arctanh [c(§")]
Family 18: When a = 0, and b = —c, then
¢ (&) = 2arctanh [L]

c(€")

Family 19: When b = 0,and a = c then
V2c
¢(€) = 2arctanh |1 + \/Etanh T(fl)

Family 20: When a = 0,and b = 0 then

() =& +C,

where &' =&+ C, Ay, A_x(k = 1,2,...,N), a, b, c are constants to be determined later. Positive
integer N in Eq. (1.43) can be found by using homogeneous balance principle between the

derivatives of highest order and the highest power of nonlinear terms in Eq. (1.43)



Step4. Substituting Eq. (1.43) along with Eq. (1.44) into Eq. (1.42). We get the polynomial
equations. Equalizing coefficients of the resulting polynomial to zero, we get over-determined

system of algebraic equations for A;where i = 0,+1,+2, .... £N.

StepS. With the help of Maple, we solve the system described in step 4, provides the values of
Ao, Ag, A_y where, i = 1,2, ....N, a, b, c. We substitute these values in Eq. (1.43) coupled with
solutions of Eq. (1.44) and applying the transformation in Eq. (1.42), we construct several exact

solutions of Eq. (1.39), establishing twenty families [27].



1.10 Generalized Auxiliary Equation mapping Method:

It is now evident that NLPDEs have some amazing applications in different fields of sciences. To
understand the physical phenomena of these equations some powerful methods are required to
generate exact solutions. Finding suitable method for its application on PDEs and its interpretation
is very critical for this research. For this reason, many useful methods have been introduced as
each PDE is abstract in nature so there is no unified method that can be applicable on all type of
PDEs. Some well-known methods in literature are Tanh expansion method [48], modified
extended tanh expansion method [49] , Adomian’s decomposition method [50], Backlund

transformation method [51], Painlevé expansion [52], Fractional Homotopy analysis method [53],
Kudryashov’s method [54, 55], Exponential Rational function method [56]., (%)-expansion

method [57], Khater method[58], Improved generalized Riccati equation mapping method [24].
Here we are rewriting famous method called generalized Auxiliary equation mapping method
developed by Sirendaoreji [61]. By using an appropriate auxiliary equation not only makes

calculations easy but also, we can find different types of exact solutions.

To describe the leading steps of the auxiliary equation method [61]. we consider the following

NLPDE for an unknown function ¢(x, t).

M( O, Px» Py» Pz Pxx ) = 0. (1.45)

Step 1. We assume Eq (1.45) has the following wave transformation § = x — pt. Substituting

this wave transformation into Eq (1.45) turns into following ODE:

K(v,v',v",v'",...) = 0. (1.46)

Step 2. AEM assumes the solution of Eq. (1.46) is of the form,

v(§) = do +d; Q) + -+ dy QY (1.47)
in which a,(i = 1,2,...,X) are all constants to be found.
Step 3. X is a positive integer which can be computed from the homogeneous balance principle.

Q(¢&) follows the auxiliary ODE as:



AN 2 1.48
(F) = @@+ @@ +ca*®, o

here a, b, and c are real valued parameters. The exact solutions of Eq. (1.48) are as follows.

Family 1: When a > 0, then

—absech? (@ €>

Q) = 5 (1.49)
b? —ac (1 + etanh (@f))
Family 2: When a > 0, then
abcsch? (@ 5)
Q®) = . (1.50)
b? —ac (1 + e coth (@f))
Family 3: When a > 0 and A > 0 then
_ 2asech(Vag) (1.51)
0 = eVA — bsech(va¢)
Family 4: When a < 0 and A > 0 then
Q) = Zasec(\/—_af) (1.52)
~eVA - bsec(v/—a&)
Family 5: When a > 0 and A < 0 then
Q) = 2acsch(Vag) | (1.53)
evV—A — besch(vaé)
Family 6: When a < 0 and A > 0 then
2acsc(V—ag) (1.54)

0 = eVA — besc(V—aé)’



Family 7: When a > 0 and ¢ > 0 then

2 (Va
—asech <Ta )

Q) = :
b + 2&+v/ac tanh (@ f)

Family 8: When ¢ > 0 and a < 0 then

— asec? (@ f)

b + 2¢ev—ac tan <\/? f>.

Q) =

Family 9: When ¢ > 0 and a > 0 then

acsch? (@ & )

b + 2&vac coth (@ €>.

Q) =

Family 10: When a < 0 and ¢ > 0 then

—acsc? (g 5)

b + 2ev/—ac cot (g €>.

Q) =

Family 11: When a > 0 and A = 0 then

a Va
Q) = _E<1 + e tanh <7€>>

Family 12: When a > 0 and A = 0 then

a Va
Q) = _E<1 + £ coth <7€>>

Family 13: When a > 0 then

(1.55)

(1.56)

(1.57)

(1.58)

(1.59)

(1.60)



4qetVas (1.61)
(esVe¢ — p)2 — 4qc’

Q) =

Family 14: When a > 0 and b = 0 then

+4aqeeVas (1.62)
1 — 4ace?sVas
Step 4. We then substitute Eq. (1.47) and Eq. (1.48) into Eq. (1.46) and gathering all the
coefficients of (Q(£))'(Q'(¢))/(I =0,1,2....) and (J = 0,1) and equating them to zero yields a
set of algebraic equations for unknowns d,(i =0, 1, ....,R), a, b, c. We solve this system with the

aid of computational software Maple. In the end we plug the obtained solutions of the system along
with the solutions of Eq. (1.48), we get solutions of Eq. (1.45).

Q) =

1.11 Improved Generalized Riccati Equation Mapping Method:
The improved generalized Riccati equation method (IGREM) is one of the methods to get exact

traveling wave solutions to the PDEs having both steepening and spreading effects. It is a straight-
forward and easy-to-use method that, by symbolic computation, can generate many different types
of exact traveling wave solutions. S. Zhu [18] introduced this method with the extended tanh-
function method to solve (2+1) dimensional Boiti-Leon-Pempinelle equation. Cevikel et al. [62]
used Riccati equation combined with tanh-coth method to solve nonlinear coupled equation in
mathematical physics. Li et al. [63] used this method to find exact solutions of (3+1)-dimensional
Jimbo-Miwa equation. Tala-Tebue et al. [64] used this method to solve discrete nonlinear electrical
transmission lines in (2+1) dimension. Salathiel et al. [65] utilized generalized Riccati equation
mapping method to construct soliton and travelling wave solutions for discrete electrical lattice.
Koonprasert et al. [27], implemented this method to find more explicit solitary solutions to the
space-time fractional fifth order nonlinear Sawada-Kotera equation. Most recently, Bibi. et.al [66]
has used this method on Caudrey-Dodd-Gibsson equation. Their work shows that the improved
generalized Riccati equation method has a great protentional for solving partial differential

equations of integer and fractional order.

Let us consider the following differential equation with independent variables x,t and some

dependent function u:

M (u, D;u, Dyu, Dyyl, Dyyy Ut ... ) =0, (1.63)



where M is a polynomial in u with its various orders of nonlinear partial derivatives.

Stepl. Let
u(x,t) =U(), (1.64)
§=(x—41), (1.65)

is a complex transformation which can convert nonlinear differential Eq. (1.63) into nonlinear
ordinary differential equation, where Ais a constant which is to be determined, this complex
transform is an easy transform to convert nonlinear differential equation into ordinary differential

equation. Hence, we get.

Q'=Q'WU(),U'(5),U"(&),....) =0, (1.66)

where, U'(§) = dz—ij) indicates derivative in term of £. We integrate Eq. (1.66) as many times as

we get at least one term without derivative.

Step2. We suppose that the following series expansion is the solution of Eq. (1.66).

N | (1.67)
U= ) @@,

i=—N
where a;(i = 0,+1,£2, .... £N) being constants, which are to be determined provided a; # O.
The function ¢ = ¢ (&) satisfies the Riccati differential equation.

' (E)=r+pp(&) +qp(£)? wherer,p,q are constants. (1.68)

Step3. Positive integer N in Eq. (1.67) can be found by using homogeneous balance between the

derivatives of highest order and the nonlinear terms in Eq. (1.66) by the following formula.

Step4. Substituting Eq. (1.67) along with Eq. (1.68) into Eq. (1.66) followed by collecting all the
same order terms ¢' together. We get the polynomial equation in ¢* and ¢!, where
(i=0,1,2,.....). Equalizing coefficients of the resulting polynomial to zero, we get over-

determined system of algebraic equations for a;where i = 0,+1,+2,.... £N.



StepS. With the help of Maple, we solve the system described in step 4, and obtain a;, where,
i=0,%1,+£2,....£N. We substitute these values in Eq. (1.67) coupled with solutions of Eq.
(1.68) and applying the transformation in Eq. (1.66) we construct several exact solutions of

Eq.(1.63), establishing four families [27].

Family 1: When A> 0 and pq # 0 or qr # 0, the hyperbolic function solutions of Eq. (1.68) are,

~

6.0 =~ 5| p+ Vramn (S¢)

2q
1 VA ]
(&) = "2 _P + v Acoth <T€>_’

$3(8) = —% [p + vV A(tanh(V A¢) + isech(V A¢))],

$4(6) =~ 52 [p + VB(oth(VEE) # esch(VE))),

~

1 VA VA L\
Ps(&) = —Elz p+ \/Z(tanh <Tf> + coth <T§>>

_1[ /(2 +B?)(A) - AVAcosh(VA)]
() =2 P ¥ A sinh(VA¢) + B ’
&) = 1] £/(BZ = 49)(A) + AVAsinh(VAS)
¢7(5) = 2q i P A cosh(\/ff) + B ’

where two non-zero real constants A and B satisfies B2 — 4% > 0.

2r cosh (g E)

v Asinh (@E) — p cosh (@E)l

¢8(f) =



—2r sinh (7A E)
p sinh (@E) —~/Acosh (@E)l

¢9(f) =

@) = 2r cosh(ﬁf)
$100) = TR sinh(VA¢) — p cosh(VAE) £ (VA
2r sinh(vV A
¢11(f) = UL (\/—f)

—psinh(V A€) + vV A cosh(V A¢) + VA

4r sinh (@ 5) cosh <@ f)

$12(8) = (_Zp sinh(@f) cosh(@g)) .

+2v A cosh? (@E)—\/Z

Family 2: When A< 0 and pq # 0 or qr # 0, the trigonometric solutions of Eq. (1.68) are.

1 V=24 \]
6150 = 3¢ |-+ VBuan (256 )|

1 V=4 \]
¢14(f):—ﬁlp+\/—_AC0t( > f)_,

$15(8) = % [—p + \/—_A(tan(\/—_Af) + sec(\/—_Af))],

$16(§) = —% [ p+ \/—_A(cot(\/—_Af) + csc(\/—_Af))],

1 v-A V-A
¢17(f)=gl—2p+\/—_A<tan< 2 f)—cot( " f))l,




h16(E) = 1 -_ + +,/(42 — B2)(—A) — AV—=A cos(V—1¢)]
R 2 i Y A sin(y/4qr — p%¢) + B ’

/(42 = BA)(=A) + AV=A cos(vV=4¢)
A sin(\/—_Af) +B ’

.
$19($) :E -b

where two non-zero real constants A and B satisfies A2 — B? > 0.

—2r cos (\/? f)

V—Asin <\/?€> + p cos (\/?SC),

2r sin <\/? E)

—p sin (\/?SC) +v/—Acos (\/?SC)’

¢20(f) =

¢21(f) =

—2r cos(\/—_Af)
\/—_Asin(\/—_Af) +p cos(\/—_Af) +V=A

b2 (f) =

2r sin(\/—_Af)
—p sin(\/—_AE) + \/—_Acos(\/—_Af) +v=A

4r sin <\/?§> cos (?f)

$24($) = (_Zp sin(@f) cos(@f)) )

+2\/—_Acosz(@5>—\/—_A

¢23(f) =

Family 3: When r = 0 and pq # 0 the solutions of Eq. (1.68) are,

q(d + cosh(p¢) — sinh(pé))’

¢25(f) =



—p (cosh(p¢) + sinh(p¢))
q(d + cosh(pé) + sinh(pé))’

¢26(f) =

where d in the above solution is an arbitrary constant.

Family 4: When r = p = 0 and q # 0 the rational solutions of Eq. (1.68) is

1
qé +c

¢27(f) = -

)

where ¢’ in the above solution is an arbitrary constant.

1.12 Summary:

In this chapter intensive literature review has been done that comprises important definitions and
properties that helps reader to get a refresher. It also includes a brief overview, and steps of all the
methods used in this thesis, along with some background their significance in the real world

together with the contribution to the knowledge.

In chapter 2 we will be finding exact solutions of some well-known equations.



Chapter 2. Abundant travelling wave
solutions of some nonlinear equations
using modified extended tanh

expansion method.



2.1 Introduction:

In recent decades, to describe and analyze non-linear physical phenomena, partial differential
equations (PDEs) have been used as the best tool. Seeking exact solutions of partial differential
equations has been a hot topic. PDEs are abstract in nature and to find their solutions both
numerically and analytically is a tedious task. To find the exact solutions of these PDEs is the main
goal of researchers and to achieve their goal they are working hard to develop powerful techniques.
There is no unified method to solve these equations, so to cope with this situation researchers are
developing new methods and modifying previous methods such as Adomian’s decomposition
method [50], Backlund transformation method [51], Painlevé expansion [52], Fractional
Homotopy analysis method [53], Variational iteration method [67], Sine-Cosine method [68],
Homogeneous balance method [69], Fan sub-equation method [70], Modified simple equation
method [71], First integral method [72], Extended trial equation method [73], exp(—¢(¢))-
expansion method [74], Auxiliary equation method [75], Ansatz method [11], Functional variable
method [15], improved generalized Riccati equation mapping method [18], tanh expansion method

[48], modified extended tanh expansion method [1].
In this chapter, we will investigate the following nonlinear PDEs:

02

ot dx

u+ Ae* + Be %+ Ce™?* =0, (2.1)

where A, B, C are arbitrary constants. The above-mentioned equation plays significant role in
problems arising in fluid flows, solid state physics, nonlinear optics, quantum field theory and

chemical kinetics [30]. For various values of A, B, C we have the following equations:
Dodd-Bullough—Mikhailov equation:
ForA=C =1,B = 0, we have

62

ot 0x

u+et+e =0, (2.2)

Dodd-Bullough-Mikhailov equation has significance in fluid flow and quantum field theory.



Sinh-Gordon equation:

For A=1,B=-1,C =0, we have

02
ot 0x

u+et—e*=0, (2.3)

The sine-Gordon equation has various applications and been discussed in literature in detail [76],
some of them mentioned here such as, in one-dimensional crystal dislocation theory, magnetic flux
propagation in Josephson junctions (gaps between two superconductors), wave propagation in
ferromagnetic materials such as the motion of rigid pendula attached to a stretched wire, solid state
physic , nonlinear optics, and dislocations in metals [30] and propagation of deformation along the
DNA double helix [77] Exact solutions of considered equation has been obtained in terms of
hyperbolic and trigonometric solutions using modified tanh method by mean of symbolic software
Maple. One of the powerful features of this method comes from the fact that it is the generalization
of many known methods, developed by Malfiet [48] and has been used and modified by many

renowned researchers.
e Liouville equation:

For A =1,B = C = 0, we have Liouville equation [78]

02

5% 6xu +e*=0, (2.4)

The motivation of this work is to boost the research related to these equations using powerful
variation of modified extended tanh function method to provide more precise exact solutions. Tanh
method was firstly presented by [48], where he introduced tanh as a new variable. This method is
straight forward, simple, and reliable that has ability to find solutions of variety of NPFDEs
without reproducing many different forms of the same solution. A lot of work has been done by

this method with variations discussed in [79].



2.2 Tllustrative Applications:
2.3 Dodd-Bullough—Mikhailov equation:

To use improved tanh expansion method on equation (2.2), first we will use Painlev

transformation,
v = e%, so that u = In v, this transformation will change equation (2.2) into the following ODE,

2

Ox 0t

0 0
() (— 3 = 2.5
v( V) (axv)(atv)+v +1=0. (2.5)
Now using the following wave transformation,

E=x—ct,

in equation (2.5), converts the equation into the ODE,

2 2
—v(==v)c+ (iv> c+v3+1=0. (2.6)

Balancing the highest order of linear term with the nonlinear term in equation (2.6) we usually

determine the value of N. Here 3N = 2(N + 1) = N = 2. This gives solution of the form,

_g= b b,
v(é)=S=ay+a,P¢)+ 6) + a,®(&)* + GR

Replacing equation (2.7) into equation (2.6) along with equation (1.38), we get algebraic system

(2.7)

and by equating this system to 0 we get values of coefficients ay, a4 , a,, b1, b, ¢, Q, as follows.

Set1 :

3 9
Q=E,C=C,a0 =E,a1 = 0,a2 = O,bl =0,b2 =§

Substituting these coefficients into equation (2.7) along with the Riccati equation solutions we get

solutions of equation (2.6) as follows.

For ) < 0, we have



— 2
by = —tanh(V3/2vV—c"1¢) +3 2.8)

2tanh (\/§/ZV—C‘1§)2 ’

in addition, substituting u = In v we determine the solution of equation (2.2) as

1 —tanh(\/§/2\/—c‘1€)2 + 3
n :
2tanh (\/§/2V—c‘1§)2

U = (2.9

Similarly, as done previously in equations (2.8)and (2.9) we get remaining solutions of equation

(2.2) as

In coth(v/3/2V —c‘lf)z -3

_ —. (2.10)
2 coth(\/§/2\/—c‘1€)
For Q0 > 0, we have
1 2
tan (7(\/5\/ ¢t f) +3
u3 - ln 1 2 (211)
2tan (7(\/§VC_1 5)
1 2
cot (i(\@\/c‘l 5) + 3
uy = In 1 7 (2.12)
2cot (7(\/§Vc‘1 E)
Set2 :
2 i 1 3
== 4‘2Cl\/§lC:C;aO____i_ra1:0ra2:01b1:0’
1 i3
<— 2 +T>
b, =9 P :

For Q < 0, we have



1—-iV3

1+iV3
((tanh (M

BRETCETYE)

\/g 1+ l\/§
tanh TC

e)z

(1+iV3) (coth <f\/€/4ﬁ>2 — 3)

)

Ug = In

2(1 + iv3)coth <§\/€/4 s i)

|

For Q > 0, we have

1—-iV3

2

f—6(i\/§+ 1)
[

=)

=1
N+ W)

1—iV3

\

tan <

/—6(i\/§ +1)
c

4

\

e)z

=1
T+ iv3)

Set3 :

1

cot \

4

3

Q:Q,C:_ ag = =,049 :O,az :_'bl

40’
If Q < 0, we have

2

2Q

( J—M6> |

0, bz = 0.

(2.13)

(2.14)

(2.15)

(2.16)



4x0 — 3t\?
—2 COSh (—) + 3
4/=Q

cosh <4xQ — 31:)2
4/=Q

4xQ — 3t\?
scoth (£2231)
~ (1 co W, \‘
ulo—ln\z_ 2 /

For Q0 > 0, we have

)

4xQ — 3t\?
—2cos (—) + 3
4\/Q

200S (M)z
4/Q

a2
3cot <4xQ Bt)

e

u11 = ln

)

Uy =ln/
k

Set4 :
1 i3 1 V3
3<_7+T> 1 V3 3<_7+T>
Q—Q,C—T,ao——1+l—,a1—0,a2—T,
b1=0,b2=0.

For Q < 0, we have

8vV—-Q

333t — 8xQ — 3¢\
2 cosh
8v—0

. 3iv3t — 8xQ — 3t 3
(1—lv3)(cosh<l t ad t) —7>
2.21)

u13 = ln

)

3(1 - ivV3) (coth (3i‘/§t8_8\/_i§ - 3t> - %)

u14 = ln

(2.17)

(2.18)

(2.19)

(2.20)

(2.22)



If Q > 0, we have

(1-3) <COS <3i\/§t ;\%Q - 3t> _ %>

U5 = In > , (2.23)
2 cos 3iv/3t — 8xQ — 3t
8v/Q
2
. 3iv/3t — 8xQ — 3t
—1+iv3) | 3cot +1
1 ( )( < N > ) (224)
U1 = In ) )
Set 5
3 a, 1
Q=8—az,c=7,a0=—z,a1=0,a2=a2,
b;=0,b, = 9
17272 7 64a,
For Q < 0, we have
Uq7
4 2
/p— _ /p— _
—3tanh Vey-a," (a5t — 21) — 2tanh Vey—a;" (a5t — 21) -3
| 8 8 (2.25)
= n > )
-1 _
8tanh<\/g‘/ a, 8(a2t 2x)>
4 2
[ -1 _ [ -1 _
-3 coth<\/8 e 8(a2t 2x)> —2coth<\/8 e 8(a2t 2x)> -3
Ug = In > (2.26)
V6, —a, " 1(a,t — 2x)
8 coth 3
For Q0 > 0, we have
4 2
_ [ —1 _ [ —1
3tan<(a2t ng;\/g i > —2tan<(a2t ng\/g i ) +3
U9 = In : (2.27)

8tan ((azt - 2?2\/3\/ a2‘1>



3 cot ((azt _ 2;2\/8\/ az_l) _ 9 cot ((azt - 2x§\/€\/ﬁ> \a

Uyo = In 7 > (2.28)
(a,t — 2x)V64/a,=1
800t< 2 3 2 >
Set 6
3  3iv3
Q —7+lT\/—c—%a —l+iﬁa =0,a, =a,,b; =0
- 8a 2% 8 gt R TR
1 iv3
59
by = 64a,
For Q < 0, we have
( 1+ iV3)
T m )
4
/ 3tanh<§\/(i\/§+ 1)a2—1(a2t—2x)> \
. (2.29)
+2 tanh <§\/(i\/§ +1)a; " (azt — 2x)> +3
X > ;
8 tanh <§\/(i\/§ +1)a, 1 (ast — 2x)>
) ( 1+ iV3)
22 (1+z\/—)
4
/ 3coth< \/(l\/_+1)a2 1(a2t—2x)>
(2.30)

| 2
\+2 coth< (l\/— + 1)a2‘1(a2t - 2x)>

8 coth (%\/(i\@ +1)a, " (ayt — 2x)>

For Q > 0, we have



/ 3 tan (1/8(a2t - 236)\/(—31"/§ - 3)a2‘1>4 \

i3 k—%tan (1/8(a2t — 2x)\/(—3i\/§ — 3)a2‘1> + 1) (2.31)

Uyz = In- >
iV3+1 8 tan <1/8(a2t — 2x)\/(—3i\/§ — 3)a2—1>

/ cot (1/8(61215 — Zx)\/(_Bi\/? - 3)a2‘1>4 \

i3 k—§c0t<1/8(a2t — 2x)\/(—3i\/§ — 3)a2‘1> + 1) (2.32)
Uyy = In- 5 ]
iV3+1 8 cot(1/8(a2t — 2x)\/(—3i\/§ — 3)a2—1)

2.4 Sinh-Gordon equation:

To use improved tanh expansion method on equation (2.3), first we will use Painlevé
transformation. v = e%, so that u = In v, this transformation will change equation (2.3) into the

following ODE,

o (a )(a )+ 3_p=0 233
% axat" axv atv % v=0. (2.33)

By using the following wave transformation,

E=x—ct,
in equation (2.33), it converts the equation into the following ODE,
9? ? \°
—v|=— — 3 _p= 2.34
v(a€2v>c+<a€v) ct+v’—v=0, (2.34)

balancing the highest order of linear term with the nonlinear term in equation (2.34), we usually

determine the value of N. Here 3N = 2(N + 1) = N = 2. This gives solution of the form,

b,

P(§)*

b,
v()=S=ay+a;P(¢) +—+ a, ®(§)* +

G (2.35)



Replacing equation (2.35) into equation (2.34) along with equation (1.38), we get algebraic
system and by equating this system to 0 we get values of coefficients ag, a; ,a,, by, by, ¢, Q, as

follows:

Set1 :

1
Q=%,c =cay=0,a; =0,a, =0,b; =0,b, ZZ'

Substituting above mentioned coefficients into equation (2.35) along with the Riccati equation
solutions we get solutions of equation (2.33) as follows:

For Q < 0, we have

-2
1 ’—1

vy = —tanh| — |— , (2.36)

1 \/E c f

moreover, substituting u = In v we determine the solution of equation (2.3) as

-2
1 |-1

wy; =In| —tanh | —= [—¢ . (2.37)
VZc

Adopting the same procedure, we will retrieve the remaining solutions of equation (2.3) as follows,

-2
1 |-1

wy =In| —coth | —= [—¢& . (2.38)
VZyc

For Q > 0, we have

-2
1 |1
w3 = In| tan ﬁ Zf , (2.39)

-2
1 |1
w, = In| cot ﬁ Ef , (2.40)



Set 2 :

Q=—Z,C=C,a0=0,a1 :0,a2 :0,b1 :0,b2 :z

For ) < 0, we have

-2
In| tanh [ — |L¢ (2.41)
W = I an — |— , .
5 \/E c
-2
In| coth | —= |2¢ (2.42)
Wg = IN| CO —_— | . .
6 \/E c

For Q0 > 0, we have

-2
1 t 1 _15 (2.43)
w,=In| —tan | = |— , .
7 \/E c
-2
1 t ! _15 (2.44)
wg =In| —cot | —= |[— , .
8 \/7 c

Set3 :

1 1
QZQ,CZE,CIOZO,al =0,a2 za,bl :O,bz =

For Q < 0, we have

w —ln< tanh (_ZXQH)Z (2.45)
o= n(~tanh (—7=-) ) '
_ 2
Wio = In <—coth <%) ) (2.46)

For Q > 0, we have

_ 2
wy1 = In (tan (%) ), (2.47)



—2xQ + t\?
Wy, = In|{ cot (W) . (2.48)

Set4 :

1 1
Q:Q,C: _ﬁ,ao :0,a1 = 0,a2 = _E,bl :0,b2 = 0.

For Q0 < 0, we have

2 V Q .
2 V Q . '

For Q0 > 0, we have

| < . (2xQ+t)2> 251)
Wi = 1IN | —an ) .
15 2\/5

| ( . (2xQ+t>2> 2.52)
Wi = IN| —CO . .

16 2\/5

SetS :

1 a, 1 1
QZ——C=—,a0=—,a1=0,a2=a2,b1=0,b2

4a,’" 2 2 ~ 16a,

For Q) < 0, we have

<tanh <%\/a12(ta2 — 2x)> + 1)
4 tanh <%\/a12 (ta, — 2x)>

2
w7 =In : (2.53)



2 2
(coth <%\/a12(ta2 — 2x)> + 1)

wig = In 5 (2.54)
th(3 = (ta, -2
coth| 7 az( a, X)
For Q0 > 0, we have
1 [T ! 1 -1 ’
—tan(z a—z(taz—Zx)> +2tan(z a—z(ta2—2x)> -1
W19:1n 2 y (255)
stan (5 |22 (ta, - 2
an| z o (ta, X)
1 -1 ! 1[I :
—cot(z a—z(taz—Zx)> +Zcot<z a—z(taz—Zx)> -1
Woo = In 5 : (2.56)
acot(L |2 (ta, -2
cot| 7 az(a2 X)
Set 6 :
1 a, 1
Q:4_612,C:7,a0:_§,a120,a2 =a2,b1=0,b2 :16a2.
For 0 < 0, we have
2 2
1 ,—1
<—tanh(z a—z(taz—Zx)> +1>
W21:]n 5 , (257)
atanh (% |22 (ta, - 2
anh | 7 az(az X)
2 2
1 ,—1
(—coth(z a—z(taz—Zx)> +1>
W22:1n . (258)

2
1 ’—1
4 coth <Z a—z(taz — 2x)>

For Q0 > 0, we have



2

4
1 fl 1 /1
tan(z a—z(taz—Zx)> —2tan<z a—z(taz—Zx)> +1

Wo3 = In : (2.59)

4 tan <%\/aiz(ta2 — 2x)>
cot< f(taz — 2x)> -2 cot< \/7(“12 — 2x)>

Wy = In (2.60)
4 cot( \/7(ta2 — 2x)>
2.5 Liouville equation:
By choosing transformation u = In v, we get Eq (2.4) in the form as:
: 9 vy +v? =0 @.61)
Yoxac) T GG T =0 '

To investigate the exact solutions of Eq (2.61) we introduce wave transformation { = x — ct, to
get following ODE,

2

T v)2c+v3=0, (2.62)

—v( v)c + (

¢

by balancing principle in equation (2.62) we determine the value of N = 2. This gives solution of

the form,

by d(8)? + b, 2.63
o TP g (2.63)

Plugging equation (2.63) into equation (2.62) along with Riccati equation(1.38), we get algebraic

v()=S=ay+a;P&)+—=

system and by equating this system to 0 we get values of coefficients ag, a,,a,, by, by, ¢, Q, as

follows:
Set1 :
ao ao
0= QC ZQ ao,a1=0,a2=3,b1=0,b2=0.

Substituting above mentioned coefficients into equation (2.63) along with the Riccati equation
solution we get solutions of equation (2.61) as follows:

For Q) < 0, we have



Qo
—2xQ0 + aot)z’ (2.64)
2v/—0Q

moreover, substituting u = In v we determine the solution of Eq (2.4) as

1.71 ==
cosh (

Qo
Tl = ln 27
cosh (—ZxQ + aot) (2.65)
2V -0
Tz = ln 27
sinh (—ZxQ + a0t> (2.66)
2V =0
Qo
T3 = ln 27
cos (—ZxQ + a0t> (2.67)
2V/Q
Qo
74 =1In 2
sin (—ZxQ + aot) (2.68)
2VQ
Set 2 :
b2 2b2 2
0= .Q,C = ZQZ,QO = Q ,aA1 = Olaz zﬁlbl = O,bz = bZ'
—b,
s = In 2 2
— 2 — 2 2.69
Q cosh (—ZxQ +3b2t> sinh <—2xQ +3b2t> (269
2(—-Q)2 2(—Q)2
b,
Tg = In 2 2
<—2x92 + b2t> . (—zmz + b2t> (2.70)
Qcos| ——=—=| sin| ———5—=
2(0)2 2(0)2
Set3 :
b, b,
0= Q,C = ﬁ,ao :E’al = 01a2 = Olbl = OJbZ = bZ'
2
_ 2
b, | tanh (L-:,bzt) -1
2(—Q)2
r, =1 : (2.71)

2
— 2
anh < 2xQ +3b2t> N
2(—Q)2



2
_ 2
b, [ coth (M) .
2(-Q)z

Tg = In (272)

2
— 2
2(-Q)2

2
_ 2

2(0)2 (2.73)

2
— 2
tan( 202 + b2t> 0
2(Q)2

2
_ 2
2(Q)2
TlO = ln f (2'74)

2
— 2
Cot( 2xQ -};bzt> 0
2(Q)2

2.6 Results and discussion

With the assistance of IThM, along with painleve transformation we accomplished to obtain
numerous wave patterns for Dodd-Bullough—Mikhailov equation, Sinh-Gordon equation,
Liouville equation. The obtained solutions are in the form of hyperbolic and trigonometric function
solutions. All the obtained results are either solitary waves or trigonometric solutions. Different
wave patterns can be obtained by giving appropriate values to free parameters. We observe the
shape of the soliton depends on free parameters and it changes when we change the value of the
parameters. These models include exponential functions terms which indicate the solutions are in
logarithmic functions. These answers have not been reported previously, which might be a
valuable addition in literature to analyze these models. 3-D, 2-D and contour plots explain
divergence and physics of these waves by choosing suitable values of parameters included in

solutions.

Graphical profile of Real value of Eq (2.10) expressed as u, has been exhibit in Figure 2.1, in the
form of 3-dimensional, and 2-dimensional and contour plot which demonstrates W type soliton by

choosing parameters, ¢ = —2,t = 1.
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Figure 2.1:-graphs of solitary wave solution ufor c = —-2,t =1
Graphical depiction of Real value of Eq (2.14) expressed as ug has been exhibit in Figure 2.2, in
the form of 3-dimensional , and 2-dimensional and contour plot which demonstrates bright soliton

by choosing parameters, ¢ = 2,t = 1.

Figure 2.2:graphs of peaked soliton ug for c = 2,t = 1.
Graphical depiction of Real value of Eq (2.21) expressed as 143 has been exhibit in Figure 2.3, in
the form of 3-dimensional, and 2-dimensional and contour plot which demonstrates as solitary

wave solution by choosing parameters, ) = —0.4, t = 2.
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Figure 2.3: graphs of solitary wave solution u,3.for Q = —-0.4, t =2



Graphical depiction of Real value of Eq (2.32) expressed as u,4 has been exhibit in Figure 2.4, in
the form of 3-dimensional, 2-dimensional and their contour plot which demonstrates singular

periodic wave solution by selecting parameters, a, = —2, t = 1.

Figure 2.4: -graphs of singular periodic wave solution u,, for, a, = -2, t = 1.
Graphical illustration of Real value of Eq (2.37) expressed as w; has been exhibit in Figure 2.5,
in the form of 3-dimensional, and 2-dimensional and contour plot which demonstrates localized
excitation wave pattern as bright soliton by selecting parameters, ¢ = 0.—0.005, t = 1. Shape of

solitary wave can be change by varying the value of c.
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Figure 2.5: -graphical simulation of solitary wave solution w,for c = —0.005, t = 1.
Graphical illustration of Eq (2.42) expressed as wg has been exhibit in Figure 2.6, in the form of
3-dimensional , and 2-dimensional and contour plot which demonstrates localized excitation wave

pattern as dark soliton by selecting parameters, ¢ = 2, t = 1.



Figure 2.6: -graphical simulation of solitary wave solution wg for c = 2, t = 1.
Graphical illustration of Real value of Eq (2.51) expressed as wys has been exhibit in Figure 2.7,
in the form of 3-dimensional, and 2-dimensional and contour plot which demonstrates localized

excitation wave pattern as periodic wave solution by selecting parameters, (1 = 1.5, t = 1.

Figure 2.7: -graphical simulation of periodic wave solution w5 for @ = 1.5, t = 1.
Graphical illustration Real value of Eq (2.54) expressed as w;g has been exhibit in Figure 2.8, in
the form of 3-dimensional, 2-dimensional and their contour plot which demonstrates localized

excitation wave pattern as bright soliton by selecting parameters, a, =1, t =1,
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Figure 2.8: -graphical simulation of peaked soliton wyg fora, =1, t =1.



Graphical illustration of absolute value of Eq (2.60) expressed as w,, has been exhibit in Figure
2.9, in the form of 3 dimensional, and 2 dimensional and contour plot which demonstrates localized

excitation wave pattern as periodic wave solution by selecting parameters,a, = 1.5,t = 1.
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Figure 2.9: -graphical simulation of peaked soliton w,4 for a, = 1.5, t = 1.

Figure 2.10 exhibits graphical analysis of Compacton for Real value of Eq (2.66) expressed as 7.
3-dimensional, 2-dimensional, along with contour plots have been presented with selected
parameters, a, = 0.1,Q2 = 0.5,t = 2. The shape of the wave depends on these parameters.
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Figure 2.10: -graphical simulation of peaked soliton 7, for ag = 0.1,Q = 0.5,t = 2.
Figure 2.11, exhibits graphical analysis of periodic wave solution for Eq (2.74) expressed as 1.
The 3, 2-dimensional along with contour plot have been presented with selected parameters, () =

1.5, b2 = 05,t =1.
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Figure 2.11: -graphical simulation of periodic wave solution 7;o for @ = 1.5,b, = 0.5, = 1..

2.7 Conclusions

Improved tanh expansion method is applied to perceive general solutions of Dodd-Bullough—
Mikhailov equation, Sinh-Gordon equation, and Liouville equation. As conclusion of these
findings, we succeeded in generating some totally new solutions which are several bright and dark
solitary wave solutions obtained in the form of hyperbolic wave solutions and periodic wave
solutions. These new solutions may be worthwhile in the field of fluid flows, solid state physics,
nonlinear optics, quantum field theory and chemical kinetics. This method is very efficient and
straight forward to generate general and abundant solutions. Many researchers have applied this
technique to many nonlinear models due to its effectiveness and still they are improving this
method to increase its efficiency. The nature of generated solutions has been analyzed physically
by 2D and 3D graph and contour plot simulation, and all the solutions obtained in this article have

been verified by using mathematical software Maple.

2.8 (3 + 1)-dimensional Wazwaz -Benjamin-Bona-Mahony equations:

Benjamin-Bona-Mahony equation (BBM) was derived by Benjamin, Bona and Mahony in 1972,
which is the improved version of Korteweg-de-Vries (KDV) equation for surfaced water waves in
uniform channel and regularized version in shallow water waves [80]. A lot of work has been done
on this equation due to its importance in surface wave water, in nonlinear dispersive system for
long wave lengths, acoustic gravity waves in compressible liquids, hydromagnetic waves in

plasma physics and many more. Later in 2017, Wazwaz studied (3+1) dimensional modified BBM



equation and derived new equation which he named as Wazwaz-Benjamin-Bona-Mahony equation

(WBBM) [81] as follows:

g + g + 2(6 ) o =0 2.75
ac ot T oy T \oxazact) T (2.75)
g +a + 2(6 ) o =0 2.76
ac " Tyt T 6zt T \oxaxact) T (2.76)
g +a + 2(6 ) o =0 2.77
ac "ozt T kY T \axayact) T 277

Wazwaz [81] obtained solitons, periodic wave solutions and kink wave solutions using tanh/sech
method. Used sardar sub equation method to obtain generalized hyperbolic and trigonometric
function solutions. Based on these ideas we have used modified extended tanh method to derive

new generalized solutions of WBBM equation.

Implementation of METEM

Here we study first equation of (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equations

(2.75)-(2.77), using the following travelling wave transformation,
u(x,y,z,t) =U(m), withn =kx + Ay + uz — ct,

equations (2.75)-(2.77) reduces to ODEs and after integrating once we get,

AU®)? d? B
(k—cUu(m) + 3 + cuk (d_nz U(n)) =0, (2.78)
v + D L k(v ) = o 2.79
(u—o)u(m) + 7 t¢ an? m ] =0, (2.79)
3 m@? o4 _
A-a)Uum) + 3 +c d—nZU(n) =0. (2.80)

2
Now applying balancing principle to nonlinear term U(n)3 with the order to linear term ;_772 U(m)

in equations (2.78)-(2.80) we get N = 1. Therefore we get,



by
Un) =AY)=ay+a,P() + @, (2.81)

now, substituting Eq. (2.81) along with Eq. (1.38) into Eq. (2.78)-(2.80), simultaneously after

collecting all terms with the same powers of tanh (@) and equating each coefficient to 0, we

get a system of NL algebraic equations. Solving these equations by using Maple 17, we get the

following non-trivial solutions.

2.8.1 Equation 1:

Solving for the first equation of (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equation,

we have following set of coefficients.

Set1 :
Substituting these coefficients into equation (2.78) along with the Riccati equation solutions we

get solutions of equation (2.75) as follows:

For ) < 0, we have

c—k 3
=m,ao=0,a1=0,b1= _ZAC#k(C_k)'
—b,
Upg = ) 2.82
v v—Qtanh (\/ —Qn) (2.82)
—b,
Upp = ) 2.83
L2 vV—Qcoth (\/—Qn) (2:83)
For Q > 0, we have
biV2
U3 = ’
, 2.84
o (00 250
—blx/i

U1,4 = .
o (5T =



Set 2 :

Substituting these coefficients into equation (2.78) along with the Riccati equation solutions we
get solutions of equation (2.75) as follows:

For Q < 0, we have

c—k —6cku
sz,aozo,alz T,blzo.
6ck
Uy = — ’— AMV—Qtanh(\/—Qn),

6ck
Uy = 3 s v —Qcoth(v —Qn).
For Q0 > 0, we have

- 63{{‘11 V2V/Qtan <\/§‘2/577>

u1'7 - 2 )
— 63{{“ V2V Qcot <\/§\2/577>

Uy g = — )
Set 3 :

(2.86)

(2.87)

(2.88)

(2.89)

Substituting these coefficients into equation (2.78) along with the Riccati equation solutions we
get solutions of equation (2.75) as follows:

For Q < 0, we have

/ l Grlen /

l Akt —\



6cky 3 <2€uk + [— 6cku \J —6Acuk ) (c—k)

ap=0,a, = |— ,by = —
° ! A ! 16cku+/—6Acuk
Uq9 =
3cku V—Qn
— V= tanh (—) \
A V2

|
I
+3 (zmk + —%./—6Acuk> (c— k)x/i/

/—\/___—\

) (2.90)
X | 16¢cku/—6Acuk (\/ Q tanh (@U)))
Ug,10 =
SCku \/_Qn>
|/ V=0 co h( 77 \l
| |
\+3 (20;1]( + ——w/—6/1qu ) (c— k)\/_/ (2.91)
X <16cku\/—6/1€,uk (\/—Q coth (@))) .
For Q > 0, we have
Upq1 = e 6ck,u\/_ \/_-077 — 3| 2cuk + ——,/—616/,1 (c—k)
2 2 (2.92)

X (16cku\/—6/1quk(\/—.(2 tan (@n)))_l,



-1 6ck V=1 6ck
Uiaz = = |- A“V—!)cot( > 77>+3 2cuk + —T'u,/—6lcuk (c—k)

(2.93)

-1
)

X (16cku\/—6xlcuk(\/—.(2 cot (mn)))

2.8.2 Equation 2:

Solving for the second equation of (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equation,

we have following set of coefficients.

Set1 :
Substituting these coefficients into equation (2.79) along with the Riccati equation solutions we

get solutions of equation (2.76) as follows:

For Q0 < 0, we have

_tTH T b —
Q_ch)l'ao_o'al_ 6cA, by =0,
U, 1 = —V—6cAV—Qtanh(vV-Qn), (2.94)
Uy, = —V—6cAV—Q coth(V—0n). (2.95)

For Q0 > 0, we have

Ups =% V—12cAvQtan (ﬁ\;ﬁ"> , (2.96)
Una =_71 V=T2cavQcot <ﬁ‘£§"> . (2.97)

Set?2 :

Substituting these coefficients into equation (2.79) along with the Riccati equation solutions we

get solutions of equation (2.76) as follows:

For Q) < 0, we have



cC ., U
—3+3 3(c—w)
2772 U
Q=——2_2 0 =0a, =V—6cAb = — 2

4ckr 70 1 Y a6k

2
’—ZC + 2u
k 7
u2'5 = _\/g

ckA 4
(coth (—W) + 1\‘ (c—uw
J

Uze = —V6

For Q > 0, we have

— \ 2
(tan ﬁ) — 1) (c—w
Uy = —V3

—2c + Z,u77 '
— [c— U N ckA
2V —cA kL ktan| ————

4

(cot \ﬁ> — 1) (c—uw

— =
2V—cA kaOt\T/

u2’8 = \/§

(2.98)

(2.99)

(2.100)

(2.101)



Set3 :

Substituting these coefficients into equation (2.79) along with the Riccati equation solutions we

get solutions of equation (2.76) as follows:

For Q < 0, we have

B _(c—u)/ 3
Q=g @=0a=0b =— 2c

3
Uyg = — —m(c—ll) (2.102)
29 kv—Q tanh(\/—_ﬂn)'

3
Uy = — —m(c—u) (2.103)
210 kv—Q coth(v -0 n)'

For Q > 0, we have

—%(c—u)\/?

Up1y = . , (2.104)
kv/Q tan (QVZQU)
f_ 3 (c— W2
o 2c2 (¢~ 1 (2.105)
2,12 — . ’
k/Q cot (%\/2977)

2.8.3 Equation 3:

Solving for the third equation of (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equation,

we have the following set of coefficients.

Set1 :
Substituting these coefficients into equation (2.80) along with the Riccati equation solutions we

get solutions of equation (2.77) as follows:

For Q < 0, we have



, 6¢c, ——= —
U.3‘1 - - 2 )

, 6¢c, ——= —
U.3‘2 - - 2 .

For Q0 > 0, we have

6c
B —Fk\/?\/ZQtan(\/ALQn) (2.108)
u3‘3 - 2 )
6c
] /—Fk\/f\/_ZQcot(\/_‘lﬂn) (2.109)
Uz 4 = — 2 )
Set 2 :

Substituting these coefficients into equation (2.80) along with the Riccati equation solutions we

get solutions of equation (2.77) as follows:

For Q < 0, we have

Q_C—A —0.q =0.b (=) 3
T2z T TR T 2cu’

by
Uz = — , 2.110
35 kv—Q tanh(\/ —Qn) ( )
b
- 2.111)

Hae =7 kv—Q coth(\/—Qn)'

For Q0 > 0, we have



b2

Uy, = : (2.112)
k200 tan (% Vaay)
biV2
Uzg = — 1 : (2.113)
kv2Q cot (§v4ﬂn)
Set3 :

Substituting these coefficients into equation (2.80) along with the Riccati equation solutions we

get solutions of equation (2.77) as follows:

For 0 < 0, we have

- —c+4
Q 16,/ —6¢cu 16¢./—6cu
- 2ck? ’
. 6Ckb 3( —%? —6q1+26>(c—l)
ap=0,a,= |[——k,b; =— :
0 ! ! 16¢/—6cuk
U39 =

3c V—Qn 6¢
— /—Ik\/—_ﬂtanh( 5 >+3 2c + —7\/—6cu (c —DV2

(2.114)

X <16ck —6cu (\/—_Q tanh (%))) ,

(2.115)
" 10



-1

\/—_Qn>
X | 16¢ck./—6cu| Vv—0Q coth| ——
: ( vz

For Q0 > 0, we have

6¢ V=1 6¢
Uzqq = ’—Ik\/—!)tan< 2”)—3 2c + —7,/—6011 (c—2)

(2.116)
X (16ck,/—6cu(m tan (@n)))_l,
U312 = — —Ek\/—_ﬂcot<mn> + 3| 2c + —Ew/—6cﬂ (c—2)
' K 2 K 2.117)

-1

X (16ck,/—6cu (V=2 cot (mﬂ)))

2.9 Results and discussion:

In this section we have discussed graphical representation and their physical interpretation of
various solutions of (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equation. These results
have been obtained by using the modified extended tanh method. The physical nature and diversity
of these exact solutions can be well explained and analyzed in Figure (2.12) -(2.18) by 3-D, 2-D

and contour plots with the appropriate choice of arbitrary constants.

Graphical depiction of imaginary part of u, ; expressed in Eq (2.82) has been shown in Figure
2.12, in the form of 3-dimensional , and 2-dimensional and contour plot which demonstrates
propagation of singular kink wave soliton for the values of parameters involved as, y =1, z =
05 t=1,k=15 u=02, c=1, A=0.1. This type of wave important in carrying

information.
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Figure 2.12: -graphs of singular anti kink wave soliton for u, ;

Figure 2.13 depict wave propagation of periodic wave solution of imaginary value of u; g

expressed in Eq (2.89), in the form of 3-dimensional , and 2-dimensional and contour plot by

selecting arbitrary constant, y =1,z=1, t =01, k=1, u=1, c=4, A =5.

-10

Figure 2.13:-graphs of periodic wave soliton for u; g.

Figure 2.14 depicts bright solitary wave propagation of absolute value of u, ;o expressed in Eq

(2.91) in the form of 3-dimensional, and 2-dimensional and contour plot by selecting parameters,

y=1,z=-2,t=09, k=05 u=-1,c=1, 1=0.5.

Figure 2.14: graphs of bright solitary wave solution u, 1.



Figure 2.15 depicts the wave propagation of periodic wave solution of imaginary value of u; 4
expressed in Eq (2.97), in the form of 3-dimensional, 2-dimensional and their contour plot by

selecting parameters, y =1,z=1, t=1, k=5, u=04, c=15 1=0.1.
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Figure 2.15: graphs of periodic wave solution u; 4.

Figure 2.16 depicts wave propagation of singular kink wave soliton of u, ¢ expressed in Eq (2.99),

in the form of 3 dimensional , and 2 dimensional and contour plots by selecting parameters, y =

1,z=1,t=2, k=05 u=35 ¢c=25 12=0.1

x
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Figure 2.16:graphs of singular kink wave solution u;¢.

Figure 2.17 depicts wave propagation of kink wave solution of Real value u, 9 expressed in Eq
(2.102), in the form of 3 dimensional , and 2 dimensional by selecting parameters, y = 1,z = —1,

t=2 k=05 pu=-15 c=-05 1=0.1
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Figure 2.17:graphs of singular kink wave solution u; .

Figure 2.18 depicts wave propagation of periodic wave of absolute value u3gexpressed in Eq
(2.113), in the form of 3-dimensional , and 2 -dimensional and contour plot by selecting

parameters, y=1,z=1,t=1, k=1, u=09, c=6, 1 =1.
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Figure 2.18:-graphs of singular kink wave solution 13 g.

2.10 Conclusions:

Modified extended tanh method successfully employed on (3+1)-dimensional Wazwaz-Benjamin-
Bona-Mahony equation to perceive new general solutions as an outcome of this technique, we
produced some totally new solutions in the form hyperbolic wave solutions and trigonometric
wave solutions, which can generate kink, periodic, singular periodic wave, bright solitons by
appropriate choice of arbitrary constants involved in solutions. These new solutions may be
worthwhile in the field of ocean engineering, astrophysics, and aerodynamics, plasma physics and
fluid mechanics to explain wave propagation of incompressible fluids. This technique is very
effective in generating exact solutions of almost all nonlinear PDEs arising in wave propagation.

Therefore, this method is modifying and evolving continuously. The physical nature and behavior



of some of these results has been analyzed by 2D and 3D graph simulation, and contour plots and

all the solutions obtained in this article have been verified by using Maple 17.

2.11 Summary:

This chapter demonstrated that modified extended tanh expansion method have been employed
successfully on the Dodd-Bullough-Mikhailov equation, Sinh-Gordan equation, Liouville
equation and (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equation to extract variety of
solutions. Main steps of chapter include introduction of governing equations followed by focal
steps of methods used and derivation of solutions by proposed method. Finally graphical

representation of some results followed by conclusion.

All the obtained results are new and maybe beneficial for researchers who are working on these

models. The significance of a few of these solutions has been shown graphically.

In next chapter we will be finding exact solutions of few more NLPEDs by another useful method

called improved tanh(¢@(§)/2) -expansion method.



Chapter 3. Exact solutions of some nonlinear
partial differential equations using
improved tanh(¢@(§)/2) -expansion

method



3.1 Introduction:

Nonlinear partial differential equations (NLPDEs) play an indispensable role in numerous fields
of mathematics, physical sciences, and engineering. Integrable differential equations gain much
attention in the modern era of research for the study of wave propagation especially in plasma
physics, ocean and rogue waves, optical fibers, incompressible fluids and many more. Traveling
wave solutions in particular solitary wave solutions which are the exact solutions of some NLPEs
is the prime objective and most active research area of researchers and scientist to study and
understand nonlinear complex physical phenomena [82—89]. It is interesting to point out that with
the evolution of soliton theory, many efficient and robust method have been developed and then
modified to generate accurate and novel exact solutions of NLPDEs such as Backlund
transformation method [51], Painlevé expansion [31], Variational iteration method [67], tanh
method [90], Sine-Cosine method [68], improved generalized Riccati equation mapping method
[18], Auxiliary equation method [75], Ansatz method [11], Functional variable method [15], G'/G

expansion method [91] and many more methods.

3.2 Illustrative Examples:

3.3 (3 +1)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) equation:

In the last decade Boiti-Leon-Manna-Pempinelli (BLMP) equation has gained a lot of attraction
by researchers due to the uses of this model in plasma physics, fluid dynamics, ocean engineering,
astrophysics, and aerodynamics to explain wave propagation of incompressible fluids [31, 88, 92—
96]. The (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) equation has imperative
impact and significance in the wave propagation in incompressible fluids, moreover when z = 0,

it describes the interaction of Riemann wave propagation [31].

Boiti-Leon-Manna-Pempinelli (BLMP) model has been introduced in [97, 98]. Later Wazwaz
derived new (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) equation with constant

coefficients in [31, 99].



(e +uy +u), +alu tuy +u,)  +5 (ux(ux +uy + uz))x =0, 3.1)

where, u = u(x, y, z, t), is unknown analytical function with spatial variables x, y, z and temporal

variable t, whereas a and f are no-zero constants.

A lot of work has been done on this model. The stair and step solitons of (24 1) and (3 + 1)
dimensional BLMP has been studied in [97]. Bilinear form, lax pairs and Backlund transformation
are constructed by [100]. The authors in [31], [96] secured multiple solitons and complex multi
soliton solution by using Painleve test and Hirota’s direct method to generate lump solitons,
solitary wave solutions and periodic wave solutions and their interactions. New three wave
solutions and hyperbolic and trigonometric solutions have been generated for and (3 + 1)
dimensional BLMP in [101, 102]. Moreover, authors in [99] investigated the interaction solutions
among lump wave, N-solitons, periodic and breather wave solutions. Solitary wave, periodic wave
and trigonometric wave solutions has been obtained in [103] with the aid Sine Gordan expansion
method and extended tanh function method. Periodic solitons and periodic type solutions of (3 +

1) dimensional BLMP has been studied in [104].

The technique, improved tanh (%)-expansion method [105], used here is new and direct and very

convenient to handle, and no study has not been done so far on this equation by this technique, as
both equation and method is new. With the aid of mathematical software, we manage to generate

various interesting types of new exact traveling wave solutions.

The prime motive here is to thoroughly study newly derived (3 + 1)-dimensional Boiti-Leon-

Manna-Pempinelli (BLMP) equation and concurrently reveals the significance of improved tanh
(%)-expansion method. It’s worth mentioning here that higher dimensional nonlinear models

generate large number of exact solutions as compared to lower dimensional equations [31]. We
are hopeful that our new abundant exact solutions which are new and have not been reported in
literature of this higher dimensional model have great significance for many higher dimensional

nonlinear problems in various fields of sciences.

Implementation of IThEM:

To use improved tanh(@)-expansion method on equation (3.1).



We use following wave transformation,
u(x,t) =u(é), withé =kx + kyy + k3z + wt,

in equation(3.1), substituting « = § = —3 and after integrating by keeping constant of integration

zero, we get the following nonlinear ODE:

3

d
ko (ks + kg + ky) — e

3k1 (ks + ki + ky)
2 (dg“(€)>

u(é) + wlks + ky + k3) fu(f)

(3.2)

2
using homogeneous balance principle between( dfsu(§)> and< u(f)) we get N = 1.

Therefore, the exact series solution has the form,

Aq

01€3)
u(é) =AY) = + Ay, +A; (p + tanh( >>,
p + tanh (d)(f)) 2 (3-3)

now, substituting Eq.(3.3) along with Eq.Error! Reference source not found. into Eq.(3.2) after
collecting all terms with the same powers of tanh (d)f)) and equating each coefficient to zero,

we obtain a system of nonlinear algebraic equations. Solving these equations by using Maple 17,
we get the following non-trivial solutions. All the abbreviations used in the below mentioned

solutions have been expressed in table:

D =a?—b? + c? QO = xk, + zks + yk,
E=bB-c)(b-cp?>-b—c) F = —a? + b?
F' = a? + c? G = p2—c?
Family 1:

Some trigonometric function solutions are formulated for BLMP equation for a + ¢ — b% <

0,b—c#0:

a=ab=cc=cw= —k13D;P =D



A_1 =2ki(—=(b—)p?*+2pa—b—c),A, =0,

w = (\/—_DAO tan ((tDk13 — Q)@) + 2k, (b — c)2p2>
' —4(ak, + Ay/4)(b — )p + 2(b? — cH)k, + a4,

(3.4)
X (\/—D tan ((tDk13 — Q)V—D) +(-b+op+ a)—l'
a=ab=bc=c,w=-Dk’,p=np,
A_1 = O,Al = Zkl(b - C),
U, = (—ZMtan ((tDk13 —Q)V —D/Z) +2(pb — pc — a)) ki + 4o, (3.5)

a=pb—-c),b=b,c=cw= —4Ek13,
p=pA_1 =2k ((b—c)p?*—b—c),A =2k (b—0),

Uus
Ao/2V=Etan (2V=E(tk;*2(p? — 1)b? — 2bcp? + (p? + 1)c?) — 0/4))

—k,E (tan (2\/—_E(tk13(2(p2 — 1)b? — 2bcp? + (p? + 1)c?) — Q/4))2 - 1) (3.6)

-1
X (\/—Etan (2\/—E(tk13(2(p2 — 1)b?% — 2bcp? + (p? + 1)c?) — Q/4))) )
Family 2:
The hyperbolic function solutions can be derive as using the following conditions:

Fora?+c?—b*>>0andb —c # 0:

a=ab=bc=cw= —Dk13,p =p A, =0,
A_1 = 2ki(—(b — c)p? +2pa—b — ),

3
Uy = — tanh <(t(D)k1 — Q)\/E

2
—(4ak, + Ag)(b — O)p + 2(b? — ¢k, + a4, (3.7)

)x/BAO + 2k, (b — ¢)%p?

x (~tanh (DY, — OWD/2)VD + (<b+ )p +a)

a=ab=bc=cw= —Dk13,p =pA_, =0,
Al = Zkl(b - C),

1
Ug = (2 tanh <Z(t(D)k13 — Q)Jﬁ) VD + 2pb — 2pc — 2a> kqy + Ay, (3.8)



Family 3:
When a? + ¢ — b? < 0, b#0 and c=0, the trigonometric function solutions generated as:
3 a
a=a,b=b,c=0,a)=4k1 FJp:E:
A_1 = _Zle/b,Al = Zbkl,
ug = (—2k,VF tan(—VF (4tFk,* + Q)/2) + Ay + 2k,VF)

3 B (3.9)
x (tan(VF (4tFk,° — Q)/2))
a
a=ab=bc=0,w=4k,’F,p= oA = —2k,°F /b, A, = 2bk,,
3 2
(—ZF (tan(VF(-4tFk;* - 0)/2)" - 1) kl)
u7 =
+Aotan(VF(—4tFk,* — Q)/2)VF (3.10)
x (Aotan(VF(—4tFk,* — 0)/2)VF) ",
a=ab=bc=0,w= k13F,p =p,A_1 =0,4, = 2bk,,
ug = (—2tan (VF(—tFk;> — Q)/2)VF + 2pb — 2a)k, + A,, (3.11)
Family 4:
Another choice of hyperbolic function solutions for a® + ¢ — b? > 0, c#0 and b=0:
a=ab=0,c=c,w= —k13F’,p =pA; =0,
A_; = 2k,(pa — (—p? + 1)c,
L <(tanh ((tks*F" = QVF /2)VF - a) Ag +>
o=
2(—p? + Dkyc? — p(4ak, + Ag)c (3.12)
-1
X (tanh ((tk13F’ - Q)\/F/Z) \/F —cp — a) ,
a=ab=0,c=cw=—-Fk’p=pA_ =2k (2pa— (-p*+ 1)c),
A1 = 0,
o <(tanh ((tky*F" = QVF /2)VF - a) Ao +>
10 —
2(—p? + Dkyc? — p(4ak, + Ag)c (3.13)

-1

X (tanh ((tk13F’ - Q)\/F/Z) \/F —cp — a) ,

a=ab=0,c=c,w= —k13F’,p =p,A_1 =0,4; = —2ck,,



Uy = (tanh ((tF’k13 - Q)JF) JF = 4pc - 4a) ky + A, (3.14)

Family 5:
For a? + ¢? — b? < 0, b-c#0 and a=0, trigonometric function solutions has been generated as:

a=0b=bc=cw=Gk p=p,
A_y = 2ky(—bp* + cp* —b—c),A; =0,

. <A0\/§ tan ((Gtk,* + Q)VG/2) /2 )
P\ 20,0 = 0)2p? = 4gp/2 + K,G)

(3.15)
-1
X (\/E tan ((Gtk13 + Q)\/E/Z) +p((b — c)) ,
a=0b=b,c=c,w= leg,p =p,A_1 =0,4, = 2bk; — 2ck;4,
W5 = 2tan ((Gtk13 + Q)\/E/Z) kNG + 2p(b — )k + Ao, (3.16)
Family 6:
Mix soliton solution, hyperbolic function solutions have been acquired for a=0 and c=0:
b=bw=b%k>p=p A =0,A_ = —2bk,(p?>+ 1),
2bk,(p* +1
Uy = — o+ D + 4o, (3.17)
p + tanh (% In (tan (bz(b2k13t + Q)))> '
a=0,b=bc=0,0w=b%k>p=p A =2bk,A_, =0,
1
ws = Ag + 2bk, (p + tanh (E in (tan (b*(b%k;t + Q))))) (3.18)

a=0,b=b,c=0,0w=4b%k,>,p = 0,4, = 2bky,A_, = —2bk;,

1
Uye = Ao + 2bky (tanh (E In(tan(b?(b2k, 3t + Q) /2))))
2bk, (3.19)

tanh (% ln(tan(b(4b2k13t + Q)b/Z))>’

Family 7:
The hyperbolic function solution for b=0 and ¢=0, along with the following conditions:



a=aw=—a’k,’,p=p A_, = 4pak,, A, = 0,
4pak,

p + tanh (% In(tanh(a(a2k,’t — Q)b/Z)))

u17 = +A0,

(3.20)

Family 8:
We get mix solutions, trigonometric and hyperbolic function solutions respectively for a? +
b? = c?,

a=1b,b=b,c=0,w=8b%k>,p=1A_, = —4bky, A, = 2bk,,

2( 4blk,tan(bVZ(8b%k, 3t + Q)b/2)" + )

Aotan(bV2(8b%k, t + Q)b/2)V2 — 4k,b (3.21)
u
e tan(bv2(8b2k, >t + Q)b/2)V2
Family 11:
Exponential function solutions for a = b, we get as:
b=bc=c,w=—c?k,’,p=pA_ =0,4, = 2bk, — 2ck,,
= <2(b —-0) (((p —Db—c(p+ 1))k, + AO/Z) e_c(cz"lst‘ﬂ)>
19 =
—2(p—1)(b—c)ks — 4o (3.22)
X (—1 +(b— c)e‘C(02k13t—ﬂ))_1,
a=0,b=0,c=cw=—4c%k;>,p=0,A_; = —2cky, A; = —2ck,,
_4e(-8c3k3t+2cQ) 3], _ _
Uyg = de . 31 ¢ kl AO (e(—803k13t+269)c2 _ 1) 1’ (323)
+e(-8c%ks t+2cn)czA0 — 4ck,
Family 12:
For b = ¢, we get exponential function solution as follows:
4ck, + A_
a=1/ki\/—w/ki,c=c,w=w,p= ;,A1 =0,A_,=4_4,
41/ _O)/kl
e gel/k/=0llad g k) + 4(\[—w/ky + Ag/4)A_, (3.24)
21 — ) '

4el/k1\/—w/k1é’k1 +A_4

Family 13:
For a = —c, and b = ¢ we get another type of exponential function solution:



c=c,w=—c?k,,p=p Ay = —4pksc — 4k,c,A; =0,

(A0ec(e*K:°=0) — 4(p + 1) (kyc — A/4))
(p + ec(e?a’t=0) 1)

)

Uy =

Family 14:

For b = —b, and ¢ = —b we get another type of exponential function solution:

a=ab=0,c=0w=—a’k’,p=p A_, = 4pak,, A, = 0,

(Aoe‘az(a2k13t‘9) + apA, + 4pa2k1)

Uyz = )
% (ap + e‘az(a2k13f—ﬂ))
Family 16:
For b = —c, then we different types of exponential function solutions:

a=ac=cw=—-a’k’p=pA_, =04, = —4ck,,

(4Cpk1 — Ay — 4C(Cpk1 + ak, — A0/4)e—a2(a2k13t_g))

(Ce—az (a2k.3t-Q) _ 1)

Uzg =

)

a=ac=cw=—a’k’,p=p A, = 4dpak, + 4p?ck,, A, = 0,

B —4(cpky + aky + Ay /4)p
2> 7 \+4(cpky + Ay/4) (cp + a)ea(a?k’t-0)

X ((cp + a)ea(a?k’t=0) _ p)_l,

a=—-2cp,c=cw=—16c2p%k,>,p =p,A_, = —4p>ck,, A, = —4ck;,

)

3 4cp(16c2p2k,3t-Q -
. = [ Aot 8 ple,etep(16¢°p%ky*t-0) (Cze4cp(16c2p2k13t—n) _ 1) 1
26 +Cone4cp(1602pzk13t—Q) + 8cpky

Family 17:
For a = 0 and b = ¢, we get various wave solutions given as follows:

c=cw=wp=pA_4 =04, =4,

Uy, = Ag + A1 (p + &),

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)



Family 18:
When a = 0, and b = —c, we get various rational function solutions as follows:

c=c,w=0,p=pA_; =0,4; = —4ck,,

_4Cpk19 + (XAO - 4)k1 + Ao(ykz + Zk3)

= 3.31
Upg a (3.31)
a=0,b=—-cc=c,w=0,p=pA_1 =4cp?k,;, A, =0,
4c?p?k, Q0+ pAgQc + A
gy = — L1 TP L (3.32)
pcQl+1
0,b 0,4 0,4 2w
a=0b=—cc=cw=wp=04,=0A4A_, =—,
p 1 1 3ck12
202t + 20w + 349k, >
Usp = , 3.33
30 3k12 ( )
Family 19:
When b = 0, and a = ¢ we get dark solitons:
c=c,w=-2c%k>p=pA_ =2ck,(p?*+2p—1),4;, =0,
( tanh(cv2(2c%tk,® — Q)/2) V24, )
u _ _Zcpzkl + (_4‘Ck1 - Ao)p + ZCkl - AO (3.34)
3 tanh(cx/f(Zcztkl3 - Q)/2V2-p-1
c=c,w=—-2c%k>p=pA_, =04, = —2ck,,
Uy = 2V2 tanh(cvV2(2c%tky* — Q)/2) cky — 2¢c(p + 1)ky + A, (3.35)
Family 20:
we get hyperbolic function solutions for a = 0,and b = 0,
c=c,w=—c%k;>,p=pA_; = 2ck;(p* —1),4; =0,
2k (p? —1)c
Uy = 17— 1) + Ay, (3.36)

p — tanh ((cztk13 — Q) c/2>
c=c,w=—ck;>p=p A, =04, = —2ck,,

Uy = —2ck, (p — tanh ((cztk13 - Q)C/Z)) + Ay, (3.37)
c=c,w=—4c%k,>,p=0,A_, = —2cky, A, = —2ck,,



2cky
Uzs =

' tanh ((402tk13 - Q)C/Z) (3.38)

(4c?tk,® — Q)c)
5 :

+ Ay + 2ck, tanh (

3.4 Results and discussion:

With the help of IThEM, we secured different wave structures of newly derived equation, (3 + 1)-
BLMP that includes hyperbolic, trigonometric, exponential, and rational function solutions. All
the obtained results are new and generalized solitary waves that comprise kink waves, periodic
waves, solitons, singular solitons with suitable choice of free parameters. The uniqueness of our
work is evident as we successfully acquired 42 different types of wave solutions. However,
keeping in view the length of the article, we only present some selective ones. These solutions are
more generalized and novel and had not been reported in literature previously as we compared
with published results[103], it is worth mentioning our few solutions have similarity with them
but most of the solutions are new, and we were able to derive various periodic wave solutions,
singular periodic wave solutions, exponential function solutions and rational solutions other than
solitons, kink solitons and singular kink solitons, which have not been explained before. Diverse
wave structure of various solutions has been well characterized by 3-D, 2-D and their contour plots
and we found out that the existence of periodic wave solutions, kink wave solutions and other
solitons depends on free parameters. As these answers have not been reported so far, we are sure
our work would be a valuable addition in literature to analyze this new model. The diversity and
dynamic characteristics of these exact solutions can be well explained by 3-D, and 2-D and their
contour plots with the appropriate choice of parameters. Figure 1- 6 shows 3-D, and 2-D graphs
and their contour plots of some obtained results of (3 + 1)- BLMP equation to have a good grasp

of physical phenomena of these solutions under appropriate choice of free parameters.

Graphical depiction of Eq (3.6) expressed as uz has been exhibit in Figure 3.1, in the form of 3-
dimensional , and 2-dimensional and contour plot which demonstrates localized excitation wave
pattern as singular kink wave soliton by selecting appropriate parameters. The dynamic behavior

of singular kink type solution of Eq (3.6) is revealed well by suitable parameters.
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Figure 3.1: Graphical evolution of singular kink wave soliton for u; using parameters,b = 0.9,¢ = 1.5,p = 0.02,k, =
0.5,k =0.5,k3=0.1,490=0.55,y= 2, z=1, t = 2.

Graphical depiction of Eq (3.9) expressed as ug has been exhibit in Figure 3.2, in the form of 3-
dimensional, and 2-dimensional and contour plot which demonstrates localized excitation wave

pattern as singular kink soliton by selecting suitable parameters.
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Figure 3.2: Graphical evolution of singular kink wave soliton for ug.using parametersa = 0.2,b =0.1,k; = 0.1, k; =
0.21,k3=0.2,40=0.1,y=1,z=1, t = 2.

Graphical depiction of Eq (3.19) expressed as 1,4 has been exhibit in Figure 3.3, in the form of 3-
dimensional, and 2-dimensional and their contour plot which demonstrates localized excitation

wave pattern as singular periodic wave soliton by selecting appropriate parameters.
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Figure 3.3: Graphical evolution of singular periodic wave soliton for u,¢ using parameters b = 0.5,k; = 0.2, k; =
—0.1,k3 =0.3,40=1.5y= -1,z=-1, t = 4.

Graphical depiction of Eq (3.22) expressed as u49 has been exhibit in Figure 3.4, in the form of 3-
dimensional, 2-dimensional and their contour plot which demonstrates localized excitation wave

pattern as singular kink soliton by selecting suitable parameters.
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Figure 3.4: Graphical evolution of singular kink wave soliton for u,9.using parameters b = 0.1,¢ =0.9,p = 0.2, k, =
0.5k, =0.1,k3=0.84y=0.7y=1,z=1,t=1.

Graphical depiction of Eq (3.24) expressed as u,; has been exhibit in Figure 3.5 , in the form of 3
dimensional , and 2 dimensional and their contour plot which demonstrates localized excitation

wave pattern as periodic wave solution by selecting suitable parameters
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Figure 3.5: 3D and 2D-graphs of periodic wave solution for u,,.using parameters. ¢ = 2,k; = 5,k; =1, k3 = 2,4y =
0.54.,=09, p=2,y=1z=1, t=2.

Graphical depiction of Eq (3.35) expressed as usz, has been exhibit in Figure 3.6 , in the form of 3
dimensional , and 2 dimensional and their contour plot which demonstrates localized excitation

wave pattern as kink shape soliton by selecting appropriate parameters.
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Figure 3.6: graphical evolution of kink wave soliton for uz, using parameters c = 3,k; = 0.1,k; = 0.5, k3 = 1,4 =
0.5, p=08y=1z=-1,t=0.5.

3.5 Conclusions:

Improved tanh (%)-expansion method is applied to perceive general solutions of newly derived

(3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation. As a result, some totally new
solutions have been obtained which are several solitary wave solutions including hyperbolic wave
solutions, periodic wave solutions, exponential solutions. These new solutions may be worthwhile
in the field of ocean engineering, astrophysics, and aerodynamics, plasma physics and fluid
mechanics to explain wave propagation of incompressible fluids. Each type of solitary wave has
its importance in nonlinear media such as kink solitons which propagates in nonlinear physical
phenomena having high order nonlinearity, high order nonlinear effects and self-steepening. These
solitons have been studied extensively due to its perfect propagation through nonlinear media
[106]. Singular solitons are also very important types of solitons that appear with singularity. These
solitons likely provide information about formation of rouge waves, also another type of solitary
waves are periodic wave solutions that plays notable role in the study of chemistry, physics,
biology and many more [107]. This newly derived method, IThEM is more effective than many

other techniques such as tanh method and extended tanh method [108, 109], sine-cosine method
[110], ansatz method [111], Improved tan(?)-expansion method [112] to generate more general

and abundant solutions. This technique has developed recently and has not been used much
previously, results show that this scheme is robust and effective to find plenty of new solutions of
different types. It can be applied to many nonlinear PDEs arising in different fields of sciences to

generate new types of solutions. The nature of these results has been analyzed physically by 2D



and 3D graph simulation and their corresponding contour plots with the aid of computational

software.

3.6 Nonlinear fourth order Ablowitz-Kaup-Newell-Segur Water Wave
equation:

Higher order nonlinear PDEs are considered very valuable to describe physical mechanism and a
lot of useful work have been done to extract exact solutions of PDEs arising in various fields such
as engineering, medicine, plasma physics, nonlinear optics, earth sciences [56, 113-117].
Moreover, fractional calculus has become a compelling field for the study of many important

phenomena. Many researchers have worked in this field to exhibit its usefulness [118—122].

To find the solutions of these equations various powerful analytical and numerical methods have
been derived over the years some of them are, Homotopy perturbation method (HPM) [123], Lie
algebra method [124, 125], Variational iteration method (VIM) [126, 127], tanh method and
extended tanh method[108, 109], F-expansion method [128], Exp-function method [129, 130], Fan

sub-equation method [131], (%)-expansion method [132], sine-cosine method[110], Improved

tan(%)-expansion method [112], Exp (—d)(f)) method [133], and Kudryashov method [134],

auxiliary equation method [135]. The idea of improved tanh(@)-expansion method has been

provided by [105] where authors have established exact solutions of some fifth order PDEs.

(3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation has been solved in[136] by using

same scheme. This technique is new and generate different solution from improved tan(g) -

expansion method.

Motivated by these studies we applied innovative IThEM [105] to construct different wave
structures of exact solutions of fourth order nonlinear AKNS water wave equation [137, 138]. This
novel approach has been practiced on AKNS equation for the first time. IThEM is a direct and
convenient computational method and can handle a wide range of PDEs. This technique generates
a variety of exact solutions and hence by applying this procedure we succeed in exploring various
interesting families of exact wave solutions for under investigated model. These reported results
might help in the study of shock waves, water wave phenomena, especially in ocean waves and

other fields of physics and engineering. Accuracy of obtained results have been verified by back



substitution. AKNS equations are considered very important in nonlinear physics and have been

introduced by Albowitz, Kaup, Newell and Seguer for the first time in [139, 140].

Alyr + Uysxr T BUyUyy + Uy Uy — YUy =0, (3.39)

these equations are significant because it can be reduce into some very famous nonlinear equations
such as KdV equation, mKdV equation which are used for the study of shallow water waves and
wave propagation in plasma, (2 + 1) dimensional Boussinesq wave equation which is used for the
investigation of nonlinear wave effect on shallow water, sine-Gordan equation have application in
different fields of physics and nonlinear Schrédinger equation has wide range of applications in
optical physics, quantum mechanics and many more [32]. Several studies has been done on these
equations, [141] studied conformable (2+1)-dimensional AKNS equation by using sine-Gordan
expansion method, [142] obtained new hyperbolic solutions, [137] solved AKNS equation by

simple equation method and modified simple equation method, [143] construct new solutions of

this equation by (%) expansion method and [144] solved AKNS equation by modified exponential

function method. Recently, [145] have used (%,%)-expansion method on fractional AKNS

equation to derive various type of solutions. In our research article we are using improved
tanh(@)-expansion method to generate contemporary and unique solutions to make addition to
already present literature on model.

Implementation of IThEM:

0©)
2

of fourth order Ablowitz-Kaup-Newell-Segur water wave (AKNS) Eq. (3.39).

Here, we implement improved tanh(—=)-expansion method to extract travelling wave solutions

After applying the following wave transformation,
u(x,t) =u(é), withé =x+y+ wt,

in Eq. (3.39) and integrating twice by assuming constant of integration zero, we acquire the

following nonlinear ordinary differential equation:



d43 ?
3.40
( d53u(5)>w+<4w n é,,u<az>+6< Szu(@»‘)) (3.40)

2
using homogeneous balance principle between< su(é )> and< u(é )) we get n = 1. Hence

we get exact series solution in the form,

A_
u(é®) =S(p) = ! + Ay + A, (p + tanh ((p(f)>>, (3.41)

p + tanh (%E)) 2

now, substituting Eq. (3.41) along with Eq. Error! Reference source not found. into Eq. (3.40)
and by accumulating all terms having the similar powers of tanh ((pf)) and then equate these

coefficient to zero, we get a system of NL algebraic equations. Next by solving these equations

the help of mathematical software, we get following solutions:

Family 1:
For this family we get periodic and singular periodic wave solitons as follows:
a=ab=bc=cw= 4 ) =P
’ ’ ' a?—p2+c2+a PP

i =— 1 ((—2a®? — b% + ¢ — 8)p? + 6(b + c)ap — 3(b? — 2bc — c?))y £ 2rp2),

6(b+c) —bZ+c’+4
A, =0,D=a?-b%+c?

/ —2V—DAy(D + 4) x \

((x+y)a? — (x + y)b? + (x + y)c? + yt + 4x + 4y)V-D
tan 2D+ 4)
+2(D+4)((=b+ )p + a)4,
+((=b + ©)p* + 2pa—b — c)y(b —¢) (3.42)

2(a® = b%+c?+4)

2(D+4) x
({ <((x +y)a2 — (x +y)b2 + (x + y)c? + yt + 4x + 4y)\/_D>
\ V=D + (=b+c)p + a)}




\/_ —wb? + wc? —y + 4w
w ~

) = A1 =0,
p h—oc 1
A = —2bo+5cw E =12
LT TRre T E T T
- 1
up = Ay — 5 wtan (1/2V-E&)V-E, (3.43)
—4wb? + 4wc? —y + 4w
a= |[— ,b=b,c=c,w = w,
4w
\/_—wb2+wcz—y+4w
. w
p= b—c ’
i = —4w+yA_ lb +1 E_y—4w
1T TR o) T T TR E T
2
V=E¢& -
a)Etan< Z +4A0tan(\/—E§)\/—E—wE (3.44)
Uy = )
’ 4/—Etan (V—E¢)
a=ab=bc=cw= Y ) =p,A_; =0
' ,(b ') a?—p2+c2+a P TPATD
- —y(b—c
A = ,D: 2—b2+ 2'
17 2(a? — b2 4 c2 + 4) ¢ ¢
((x+y)a? + (—x —y)b* + (x + y)cz\
_ +yt + 4x + 4y)v—D
tan 2D+ 4) %
(3.45)

V=Dy + 2(D + 4)4, + y(—pb + pc + a)
2D + 4)

Family 2:
The kink and singular kink wave solutions are as follows:




3 y(b—o)
2(a%? — b2+ c?2+4)’
((x +y)a? + (—x —y)b? + (x + y)c?
+yt + 4x + 4y)VD o

|
2(D+4) / /l

A = D =a?—b?+c?,

VDy + 2(D + 4)A, + y(—pb + pc + a)
2(D+4)

)4 . .
=p,A, =0
@z —bZt+c2+4’PTPATD
((2a®? — b% + ¢ — 8)p? + (6b + 6¢)ap — 3b? — 6bc — 3¢?)y
5 (a? = b%2+c?2+4)

a=ab=bc=cw=

+ 2yp?

A =—
! 6b + 6¢
D =a? — b? + ¢?,

+yt + 4x + 4y)VD

(((x ty)at+ (x=y)b*+ (x+ y)CZ\\
tanh X

2(D+4) /
240(D+4VD+2(D +4)((b—c)p + a)4, +
2r((5-5)p +pa-5-5) 0-on
Ug =
((x+y)a?+ (—x—y)b? + (x + y)cz\
+yt + 4x + 4y)VD
tanhk 2(D+4) ) x [2(D + 4)

VD+ (c—b)p+a

Family 3:
Another set of periodic wave solutions for the following conditions:
Y . . yb .
a= O,b = b,C = O,w = _b2 _4,p = 1,A_1 = —m,Al = 0,

(3.46)

(3.47)



/ Ao (tan <b((x i y)bzzb; ):t8_ B 4y)> + 1) b? \

- b((x +y)b* —yt —4x — 4
—yb — 44, ( tan (C7) A M) 41 (3.48)
2b% -8
v = b((x + y)b% — yt — 4x — 4y) ’
2 _
<tan< 557 —8 >+1>b 4
y L y(bp? + 2ab — b) .
= lb:b) :0; = 3, . = ;A— = - ;A :01
a=d CTROT @ pr P TP 2(a> — b2 +4) 1
D' = a? — b?,
—24V=D'(D' + 4)
I ((y+x)a + (- x—y)b2+yt+4x+4y)\/
tan IO
2b3pA, + (—yp? — 2ad, —y)b? — 2p ((a +4)A0—ay
" = +2ady(a? + 4) (3.49)
i ( ((<y+x)a2+(—x—y>b2\‘ \‘
, +yt + 4x + 4y)V=D’
2(D'+4)| —tan 14 2(D’+3}7)) V= pb+a/
- b -
a=0,b=b,c=0,w=—h,p=—1A )/ A
_ b((y +x)b? —yt — 4x — 4y)
A0<ta ( 557 —8
~ 2 _ — -
—yb — 4dy(tan QY +x)b2b2 oo 4y))—1) (3.50)
U.9:
b +x)b? —yt —4x — 4
<tan< (& +2)b? —yt — 4x y)> (bz
Ay
Yy . . yb .
=0,b=bc=00w=———,p=0A4; = ——=, 0,
a=" CTROE TP LT 202 -9
b((y + x)b? — yt — 4x — 4y) ) -
ytan< 557 — 8 b+ 2b“A, — 84, 3.51)
Ui = 2b2 —8 )
a=a,b=b,c=0,w=+,p=p,/§1=— rb LA =0,
a’? —b%+4 2(a? - b2 +4)

D' = a? — b?,



-1
~2(D' +4)

an (v +x)a? — (x + y)b? + yt + 4(x + y) V=D’
2(D'+4) ,

XV=D'y +2(D' + 4)4, + y(a — pb)
Y . . yb - —yb
_—:p - _—;A—l — 5710 A\
4(b%? - 1) 8(b% —-1) 8(h%2—-1)
4b((y+x)b2—y?t—x—y>
2
857 —8 b

Uq1 (3.52)

0,4,

84, | tan +

2

4b<(y+x)b2—yTt—x—y)
8b2 —8

84, (tan <4b((y + x)b? —yt/4 — x — y)))

v| tan (3.53)

8b% — 8
Ui =
4b((y + x)b? —yt/4—x—y
tan( ( T ) (b2 —-1)

_ 14
~ 4(b%p2 — b2 + 1)

_yb@*-1)
8(b2p? — b2 + 1)’

a=bp,b=bc=0w D=p,A_; =

- yb
A = )
8(b%p? — b2+ 1)
(8(b%p? — b? + 1)Ag/(—p? + 1)b?) x
4 ((p2 - Dy +x)b* + )/Tt +x + y) J(=p? + 1)b?
tan 8+ (8pZ — 8)b2 +
t 2
4(@? - Do+ 0p? +VT+x+y>\‘ \
2 (2 _ v (op? + 1)b? _ 3.54
by(p 1)! tan 8+ (8p7 —8)Db? 1 ! (3.54)
A | )
4 ((p2 - Dy +x)b?+ YT +x + y) J(=p?+ 1)b?
tan 8+ (8p? — 8)b2 y
8(b2p? — b2 + 1)/(—p? + Db?
Family 4:

We generate more kink wave solutions for the following conditions:



= lb:0l = ) :—l.: .IA :0)
a=a Cz COT g P TR
- y(lp“+2ap—c) 5
A1 = 2(a? +c? +4) F=at+cs
((y+x)a? + (y+x)c? + yt\
~ +4x + 4y)VF
2A0\/F(F+4)tanhk AGET) )+
2¢3pAy + (—yp? + 2ady +v)c? + 2p ((a2+4)/10—ay)c
N +2ady(a® + 4)
14 — )
(b +x)a?+ (y+x)c2 +yt +4(x + y))VF
2(F+4) (tanh( ICETET)
VF +pc + a))
a=a,b=0,c=cw= 4 =LA, =0
) (Il )l a2+62+4:p ) 1 )
. y(Ia—c
A=gmraref=ate

_ ( +yt + 4x + 4y)VF
| AoVF(F + 4) tanh AGET)

(y+x)a?+ (v + x)62\

|
\ +(c+a)(F+4)A, — cy(la —c)

|
|

U =
y+x)a v+ x)c
(v +x)a* + (y +x)c?
+yt + 4x + 4y)VF
(F + 4)(Ic + tanh k ACET) )x/F+a)
c(p?+1
a=-pc,b=0,c=c,w Y ,D=pA_4 re@ )

T A(cpi+ 2 +1) T8 it 2+ 1)’

Cc
! P=p%+1,

A = )
17 8(cp2+c2 +1)

(3.55)

(3.56)



(4P(y + x)c? + yt + 4x + 4y)Vc?P ’
8 + (8p? + 8)c?

+8Vc2P(1 4+ c?P) x
(4P(y + x)c? + yt + 4x + 4y)Vc?P |

c?yPtanh <

| .
\ Aptanh 8 + (8D)c2 (3.57)
+yc?P
Ui = ’
8Vc2P(1 + c?P)
tanh (4P(y + x)c? + yt + 4x + 4y)Vc?P
an 8 + (8P)c?
a=ab= OC,; =cw =m,ﬁ =p A1 =0,
A = F=a®+c?
Y7 2(a2+c2+4) @ te
((y+x)a? + (y + x)c? + yt + 4x + 4y )VF
1 y tanh
U7 = m Z(F + 4) (358)
x VF + (2F + 8)4, + y(pc + a)
Family 5:
More periodic wave solutions for the given conditions:
14 : . y(=b—-c)
:O,b:b, =, =, :O,A_ = ,A :O,
¢ cTOCTTaypr_g? LT 2224
G = —c?+ b?,
(b +x)b? + (—x — y)c? —yt — 4x — 4y)VG
tan 270G —4)
- X (G = DAWG — (¥b*)/2 + (c*y)/2 35
18 — ’ .
(\/E(G - 4)) X (3-59)
((y + x)b% + (—x — y)c2 — yt — 4x — 4y)VG
tan
2(G—-4)
14 : . y(=b—o¢)
—_— 0,b —_— b’ —_— y —_— y —_— O’A_ —_— B
. o T iz ypz—1)’P 1T 8(—c2+ b2 - 1)
b—c
A1 y( ) G = _Cz + bz,

T 8(—c2+bh2-1)



/8(G — 1) tan ((4(y +20b® — 4(x +y)c® —yt — 4x = 4},)\/6)\\

8(G—-1)
Ao\/E+Y(G) X
2
(4(y + x)b? — 4(x + y)c? — yt — 4x — 4y)\/G _
tan< 8(G = 1) 1 (3.60)
u - )
1 8VG(G — 1) x
(4(y + x)b? + 4(—x — y)c? — yt — 4x — 4y)VG
8(G—-1)
14 .z (—p’b —p*c+b+0)
=0,b=b,c= = ,PD=p,A_1=— ,
cTew= b2 =4 P=Dfa 2(=cZ+ b2 — 4)
0,G =—c?*+b%P=p*+1,
((y +2x)b? + (—x —y)c? —yt — 4x — 4y)VG
2(G—4)
\ X (G — 4)AyVG + (2pAyb? — y(P)b /
iy —2¢%pAg + 2((yp*)/2 —v/2)c = 8pAg) (b = ©) (3.61)
((y + x)b% + (—x — y)c? —yt —4x — 4y)\/_
2(G—4)
xVG+p(b—c)) (G- 4)
14 L y(b—c)
= 0 b == b' = B == ——, = 'A == B
a=5 R A b Ry )
A_; =0,G = —c?+ b2,
2 o 2
/ /((y +x))/lz +4,(C x4yy)c )\/E\\
1 VGy tan I A
zhl_zaqus\ 2(G — 4) ). (3.62)
+p(—c+ b)y + 2(G— 4)4,
Family 6:
Here we get mix soliton under following conditions:
_ _ _ _ )4 . _
a=0,b=b,c=0,w = —m,p =p,A4, =0,
b(p? +1
A, =_M’p=2§2+1,

2(b2 — 4)



yPb

Uyy = —mx
-1
[ i an ((QE208° vt — e~ ) \ (3.63)
kp+tanh (Zb ) ) + Ay,
S N S ) 2
a=0,b=b,c=0,w = b2 _4),p =0,4; = 80 —1)’
- by
A==
8(b2—-1)
by
Uzz = — 2
/ln <tan (((y + x)b% —yt/2 — x — y)b))\
2(b? -1
8(b%—1) tanhk g ) )
( ) (3.64)
(y+x)b? —yt/4—x—y)b
- h(ln(tan( 202 —1)
ytan > /
+4, + 807 = D) :
a=0b=bc=0w=-—"—p=pd =2 _
1] ] ] (b2_4):p p: 1 2(b2_4);
A—l = 0,
- yb
/ In (tan (((y + x)b;&9 Vi = )4x — 4y)b>) (3.65)
kp + tanh )
2
Family 7:
We get singular kink soliton:
_ o _ ._ g ___bra . _
a=a,b=0c=0w _—(a2 +4),p =p,A_; = —(az T4 0,



~ pya
=Ay—————x
T

In (_tanh <((y +x)a’ +yt+4x + 4y)a>> \_1 (3.66)

k? + tanh 22 (a® +4) )

Family 8:
Set of mix solitons are as follows:
Y . . by
=Ibb=b,c=0,0 = ————, I,A_; ,Aq
@ == w2’ T 2(b2—2)

2\/—<(x + y)b? — 2 —2x — 2y
4b2 —

V2| (b? = 2)A,tan \2 — by /2

Uze = g
(x +y)b? — — —2x — 2y (3.67)

2 _
2(b% — 2)tan A7 = 8

—¥ t4w -y + 4w
- +4a) \/ \/_
a=-2 /— 4 _Bw (pz—l),6=%(192+1);
/_M
@ 8w y — 4w

w=wp=pA_ =04 = p JE = - ,P=p?+1,
1
Uyy = X
4Ep? — ’ (P ~~p-4E
/ p(a)\/_\/_+ 4A0) (3.68)
4(Ew) tanh <2\/E(f)>

(4p24, — 4A,)VE + V2P(Ew)

-y + 4w -y + 4w

¥ t+4w \]_W \/_W
——2 ——’bz— 2—1’ = 2
’ 70 > (» ), ¢ » (»

+1),w=uw,



. - w
p=pA_, = VA, = JE = ,P=p?+1,

—_320(<_ 3\/4% - 3\/§A )tanh <\/_€>\\/E
° \ +30(p*- DVE+ S ) P
+£(E )tanh <\/_§> —1/2(p? + 1)(Ew))tanh <\/_§> + Aop?(P)
3/8VE(Ew)(p* + 2/3p2 + 1DV2

VE —/E(g—gzp+\/5(p2—1) X
—’E(;)2p+\/—<p —2tanh<\/_ )\/—+1> )

a=1Ibb=hc=0w=——at =1A‘=b—yA =0
) ) ) Z(bz_z)rp y 4171 4(b2_2)1 -1 ’

Ew

(3.69)

2\/7<(x+y)b2 —%t— 2x — Zy)b
i ox
V2| bytan 1578 +4b%4, — 84, (3.70)

20 = 4b% — 8 ’

_4 =14 :_b—]/
42p2 —1)’P T AT T hpz — 1)

8(2b% —1)



2_yt_x_Yy
8\/7<(x+y)b 5> 2>b .
o(b

1
8tan —5]V2
16b* —8 2>
2
( {8\/7((x+y)b2 —%—%—%)b\’ \
+by| tan -1 (3.71)
Y 16b* —8 / /
Uzp = \/E + Ay.
8\/7<(x+y)b2 —%—%—%)b
2
8(2b> - 1)tan .
16b* -8
Family 11:

For this family we get exponential function solutions as:

Y " y(bp? —cp? —2pb+ b +c) .

b: rb:bl =, = J = rA— = ,A

a i 202 + 4) 1
=0,

((=p —Dc+ (p —1b)(2c?4, —y(p — 1)c

c((x+y)c2+yt+4x+4y)
k +byp — by + 84,)e ct+4 ) (3.72)

—(2c¢?4y —y(@ + Dc + byp — by +849)(p — 1)

31 — c((x+y)c2+yt+4x+4y)

Q({(—p—Dc+ (p—1)b)e c2+4 —2p+2)(c?+4)

=bb=bhc=—bw=—r" S SN (R S
e E e T )P T 2 T TIer 1) T a2 + 1)

)

= - (4(x+Y)b%+yt+4x+4y)b 3 )
((16174140 — 4yb3 + 16b%4y)e 2b%+2 — 4b%4, — by — 4A0>

(3.73)

Usz = (4(x+y)b2+yt+4x+4y)b

(16b% + 16)b?e 2b%+2 —4p2 — 4

_y(b—=o)
2(c2 +4)

a=bb=bc=cw= ,p=p,A_, =04, =

_r
(c?+4)

c((x+y)cz+yt+4x+4y)
—(b—c)(—2c24y —y(p+ 1c+ (p— Dby —84,)e c2+4
—2c?A, —y(p — 1)c+ (p — Dby — 84, (3.74)

c((x+y)c2+yt+4x+4y)
(=24+2(b—-0)e c2+4 )(c? +4)

U3z =




_yelp—1)
8(c2+1)’

a=>b = p c:cw:; = A ., =
p—1’ ' 4(cz+1)'p P i
V44

82+ D(p-1)

Alz

\ 5 . c(4c?x+4cy+yt+ax+4ay)
(4c Ay +c’y +4c Ao)e 2c%+2

—4(p — 1)?(c?4y — cy /4 + 4y)

Uzq = c(4c2x+4c?y+yt+ax+4y) c(4c?x+4c?y+yt+ax+4 ) ) (3'75)
<4ce 4c?+4 —4p + 4> (ce 4c2+4 +p— 1)
X (c?2+1)
Family 12:
Another exponential function solution:
_ y(ap —c) .
a=ab=cc=cw= e +4,p =pA_1 = —W,Al =0,
((x+y)a2+yt+4x+4y)a
Ay(a? + 4)e aZ+4 + (a%4, — ay + 44,)(ap — ¢))
Une = (3.76)
35 = ((x+y)a2+yt+ax+4y)a
(a? +4) (ap +e a?+4 — c)
Family 13:
More set of exponential function solutions
Y - _ye(p+1) -
a=-c,b=cc=cw =az—+4,P =p A3 :m,Al =0,
—c((x+y)cz+yt+4x+4y)
Ay(c? + 4)e cZ+4 + ((c?+ DAy +cy)(p + 1))
_ (3.77)
Usze = c((x+y)c2+yt+4x+4y)
(c?+4) <p +e c2+4 + 1>
Family 14:
a=ab=0c=0w= ,p=p,A_1=—ﬂ,fL=O,
a’+4 a’ + 4



a((x+y)az+yt+4x+4y)

Ay(a® + 4)e aZ+4 + ap (a4, — ay + 44,
Us7 = a((x+y)a?+yt+4x+4y)
a?+4 (ap +e aZ+a )
Family 16:
14 ~ py(cp +a) .
a= a,b =—CC=Cw= az_+4,p = p,A_1 = —aZ—M,Al = 0,
((x+y)a2+yt+4x+4y)a
(—cyp + Ay(a? + 4)) (cp + a)e aZ+4
_ —p(a®4y — cyp — ay + 44,)
Uzg = (x+y)a?+yt+4x+4 da ’
(a? + 4) ((cp +a)e a’+4 — p)
Y - - cy
= ’b:—, = ) :_, = ,A_ ZO’A :—,
a=a CemOO= P TP A 17 g2 44
B _a((x+y)a+yt+ax+4y) _ _
<c(a2A0 + cyp + ay + 44,)e a?+4 —a?d,—cyp — 4A0>
Uzg = a((x+y)a?+yt+4x+4y) !
(a? + 4) (—1 +e a?+4 c)
R L I 4 N . B ay
e T T T a @+ )P TP T T @@ )M T T p@@ + )
__ a(4a®x+4aPy+yt+ax+ay)
(4a*4, +ya® + 4a%4,)e 2a2+2
—16p?(a?4, —ay/4 + 4,)
Ugo = a(4ax+4ay+yt+ax+4 )
4(a?+1) <e 2a2+2 a? — 4p2>
Family 17:
We get plane wave solutions:
- - Yy — 4w
a=0b=cc=cw=wp=04_,=0A4, = o
- — 4w
oy = Ao + (r )E'
6
. cy .
a=0,b=cc=c,w =£,p =pA_4 =ZV,A1 =0,

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)



cy ~

= + 4,,
a2 (yt + 4x + 4y)c + 4p 0
3cd; vy . .
a=0b=c,c=c,w=— > +Z,p=p,A_1=O,A1=
3 t+4x+4y)c+4plA -
oy = — ~2Jr(()/ ) p)1+AO
2tc24, 4
Family 18:
=0,b= = = =0A _y—4a) A
a=0b=—-cc=cw=wp=0A4_4= oo
(y —4w)é
u44:T 0’
a—Ob——cc—cw—Z =nA ——CVPZA
- ) - ) - 4 _4rp_pr -1 — 4 )y 417

c2yp?(yt + 4x + 4y) .
yt + Ao,
16 + 16p(T+x+y)c

Uys = —

a=0b=—-cc=cw =£,p =p,A_; =04, =—

1
+x+y)

e
4

u46 :AO +

Family 19:
More kink wave type of solutions for these families:

Y ~
a=c,b =O,c=c,w=m,p=p,A_1 =

cvV2(2c?x + 2¢ y+yt+4x+4y)

4A,\2(c? + 2) tanh <

4c2 + 8
+4A,(p + Dc? —yc(p?+2p— 1)+ 84,(p + 1)

7 = cV2(2c?x + 2c? y+yt+4x+4y)
2 ND)
(4c? + 8) (p+ 2tanh< 42 T8
a=c¢b=0c=cw= __r =-1,A_ VA,
42c2+1)’P 1T a2+ D)’

~8(2c2 + 1)

(3.83)

(3.84)

(3.85)

(3.86)

(3.87)

(3.88)



( ey tanh (cx/—((Sx + 8y)c? +yt + 4x + 4y)>

16c? + 8
2
(16d4c? + 84, )tanh [ EY2((8x +8y ) Tyt Ax T 4)) L (3.89)
16c~+ 8
Uyg =
) cV2((8x + 8y)c? + yt + 4x + 4y)
(16c +8)tanh< 16c2 18
y - - yc
=c,b=0,c= ——,p=p, A1 =04, = ———
=0 e T ) K T 4(c2+2)
cV2(2¢%x + 2c?%y + yt + 4x + 4
Mg = —— ‘E”t""“h< = 4c2y+s;/ y)>c (3.90)
¥ 402+ 8 i 3 '
+4Ay,c? +y(p + 1)c + 84,
Family 20:
Yy L
a—O,b—O,C—C,w—02+4,p—p,A_1— 2(C2+4),A1_
-1
__ye@*-1) ((x+y)? +yt+4x+4y)c ~ 391
Ugy = 2218 p + tanh 2218 + Ay, (3.91)
y ye yc
=0,b=0,c= — A = A = ———,
¢ M T S S T T UE D K T |
yc (4c2x + 4c2y + yt + 4x + 4y)c\\ ~ .
Ust = gy g\ D 8cZ + 8 4o
(3.92)
145
(12 o)
82+8an / (C+4+x+y)c
y ) - ye
—0b=0c=cw=—wa—p=p A, =04 =—"IT _
¢ CTOOT Ay P TP LT 2(c2+ 4)
. yc yt
u52:A0+2c2+8 (p + tanh (1/2<C2+4+x+y>c> . (3.93)

3.7 Results and discussion
In this part of chapter, we derived exact solitary wave solutions of AKNS equation by IThEM with

the help of symbolic computation. To understand the physical dynamics of these waves, 3D and
2D graphs and contour plots have been plotted to demonstrate the behavior of acquired solutions

by choosing appropriate values of parameters. These results will be beneficial for researchers to



acknowledge the application of this model in different fields of sciences as to best of knowledge
no study has been done on this equation by using proposed method. Many solutions AKNS of
various types have been reported in literature, by comparing our results with recently derived
solutions in [144], the authors have used modified exponential function method to derive
hyperbolic, periodic, exponential function solutions however, we succeed to generate more than

50 solutions in the form of hyperbolic, trigonometric, and rational solutions, all the results are new

and have not been reported before. Similarly, most recently authors in [145] have used (%’,%)-
expansion method on fractional AKNS equation to derive various type of solutions but we found
that we established comprehensive results which are distant and novel from others. For the better
understanding of these results physical analysis of some of the solutions has been depicted through
3D, 2D and contour plots. Fig (3.7) -(3.12) shows graphical behavior of some solutions of AKNS

equation by choosing appropriate parameters.

In Figure 3.7: Represents dynamical behavior of singular periodic wave solution of ug mentioned
in Eq (3.94), for 3D fig (a) and (b) we used a = —2,a = —3, respectively. For 2 D fig (c) and (d)
we used fora = —1,a = —2,a = —3, respectively, with —10 <x <10,y = 2, t=1,. For
contour plot we used parameters —30 < x < 30,t = 0..20,and —40 < x <40,t = 0..20 with

a=-3p=03,b=35A4,=05 y=02,y=2.
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Figure 3.7:For ug graphs exhibits periodic wave solution.

In Figure 3.8: 3D, 2D graphs and contour plot represents kink solitary wave solution of u,
mentioned in Eq (3.95), by choosing parameters,p = 2,a = 0.5,c = 0.5,4, = 0.5,y = 1. For 3D
fig(a) and fig(b) we choose y = 1.y = 10, For 2D fig(c) we choose y =1, y =5, y = 10, with
—15 < x < 15, and for contour plot fig(d) we have values —30 < x < 30,t = 0..20, and —40 <
x <40,t =0..20,fory = 1.
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Figure 3.8: :For u,4 graphs exhibits kink wave solution

In Figure 3.9: shows 3D and 2D graphs and contour plot of periodic solitary wave solution of 1,5
mentioned in equation (3.64) by choosing parameters b = 0.5, 4, = 1.5,y = —1. For 3D fig(a)
and fig(b) we choose y=1,y=15,and for 2D fig(c) we choose y=1, y=3, y=5,
respectively, and for contour plot fig(d) we have values —30 < x < 30,t = 0..20,and —40 < x <

40,t = 0..20, respectively for y = 1.
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Figure 3.10::For u,3 graphs exhibits periodic wave solution.

In Figure 3.11, 3D, 2D and contour plot exhibits graphical nature of singular kink solitary wave
u,; mentioned in equation (3.96) for the values p = 1.5,A; = 0.5, y = 3.5,y = 2. For 3D fig(a)
and fig(b) we choose a = 0.1,a = 0.3, for 2D fig(c) we choose a = 0.1, a= 0.2, a= 0.3,
respectively with parameters —15 < x < 15, y = 2, t = 1, for contour plot fig(d) we have

values—30 < x < 30,t =0..20,and —40 < x < 40,t = 0..20, a = 0.3 respectively.
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Figure 3.11: :For u,5 graphs exhibits singular kink wave solution.

In Figure 3.12, 3D, 2D graphs and contour plot of kink solitary wave, uzq9 mentioned in Eq (3.97)
by choosing parameters p = 2,a = —3,A, = 0.5, y =1,y = —2. For 3D fig(a) and fig(b) we
choose ¢ = 0.1,c = 1, for 2D fig(c) we choose c = 01,c = 0.5,c = 1, respectively with —15 <
x<15, y=—2, t=1, and for contour plot fig(d) we have —30 <x < 30,t = 0..20,and
—40 < x < 40,t = 0..20 respectively for c = 1.
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Figure 3.12: For uzqggraphs exhibits kink wave solution.

3.8 Conclusion:
Improved tanh (%)-expansion method has been successfully administered to achieve new and

general solutions to fourth order Ablowitz-Kaup-Newell-Segur water wave (AKNS) equation. As
an outcome of this technique, abundant new solutions have been derived including solitons which
can be classified into distinct types specified by their profiles such as, periodic, kink solitons. Each
solution has some physical interpretation like kink solitons have permanent profile that it remains
same over time while periodic wave solitons show dynamical profile and can depend on time. Kink
solitons have applications in almost all nonlinear phenomena as it propagates in high nonlinear
media with self-steeping effect such as in nonlinear fibers, singular solitons are one with
singularity and have applications in the study of rouge waves whereas periodic waves are also very
important and have many applications in various fields. These newly derived solutions may have
valuable scope for future study of the shock waves, water wave phenomena especially in ocean

waves. IThEM is more effective than tanh method and extended tanh method[108, 109], sine-
cosine method[110], ansatz method[111], Improved tan(%)-expansion method [112] in producing

different types of solutions which are more general and abundant. This is a new method and has
not been implemented much recently. The efficiency of this method can be predicted easily by the
rich variety of obtained results. This scheme is applicable to a variety of nonlinear PDEs. The
concluded wave structures can be helpful to understand the characteristics of nonlinear phenomena

that develop in various realms of nonlinear sciences. Moreover, the outcome of this article can



predict that this method is suitable to apply on various higher order nonlinear models to produce
many interesting solutions involved in engineering, nonlinear optics, physics and other life
sciences. In future we will be using this technique to other higher PDEs and on nonlinear fractional

PDEs.

3.8.1 Remark:

Since improved tan(%)-expansion method and improved tanh(@)-expansion method looks

similar, but their results are totally different. Improved tan(%)-expansion method produces

0©

seventeen families whereas improved tanh( >

)-expansion method produces twenty families that

generate abundant solutions in the form of hyperbolic, periodic, exponential, logarithmic

functions.

3.9 Summary:

In this chapter we have solved recently developed (3 + 1)-dimensional Boiti-Leon-Manna-

Pempinelli equation and fourth order Ablowitz-Kaup-Newell-Segur water wave (AKNS) equation

0®

by using the innovative and efficient method called improved tanh( >

)-expansion method

(IThEM). A lot of solitary wave solutions have been generated that prove the efficiency of
methods. The results are new and had not been reported in literature previously. Important steps
of the chapter include introduction of governing equations followed by focal steps of methods used
and derivation of solutions by proposed method. Finally graphical representation of some results

followed by conclusion.

Chapter 4 investigates two more important models which are the generalization of nonlinear

Schrodinger equation using generalized auxiliary mapping method.



Chapter 4. Optical soliton solutions of some
nonlinear equations using versatile

technique.



4.1 Introduction:

Exact solutions of complex nonlinear differential equations especially solitons have been studied
actively by researchers due to its numerous characteristics. Optical solitons have showed
significant effect in telecommunication field because of its key role in data transmission through
optical fibers over large distances, such passing through oceans and from one continent to other
without loss of data [146—149]. Therefore, to find optical solitons and other exact solutions many

powerful analytical methods have been developed [127, 133, 150-156].

The prime objective of this chapter is to study certain optical solitons using generalized auxiliary
mapping method developed by Sirendaoreji [61]. This method is very effective in extracting a
variety of exact solutions with the aid of mathematical symbolic computation. The optical solitons

will be studied through a supportive illustration.

4.2 Illustrative Applications:

In this section, optical solitons solutions of two renowned nonlinear partial differential equations

will be constructed using the above-mentioned method.

4.3 Fokas System:

We will first investigate the Fokas system for complex valued function ¥ and real valued function

¢ representing pulse propagation in monomode optical fibers [157].

9 92
itz +nyd =0,
4.1)

T3i¢ - r4i(|¢|2) = 0.
ay 0x

Where the parameters, 1,15, 73,1, # 0, are arbitrary constants. Fokas system is the extension of
nonlinear Schrodinger equation in (2 + 1)-dimension. A S Fokas [158] and Shulman [159]
derived this model to study nonlinear Schrodinger equation in multiple dimensions. Chakravarty
et.al [159] reduced the dual Yang-Mills equation into Fokas equation. Due to the importance of
this model in many fields, researchers are interested in deriving solutions of this model. K. J Wang

employed Exp-function to construct exact solutions of Fokas system [160]. S. Tarla et.al. [161]



investigated model via Jacobi elliptic function expansion method. J.Rao et.al. investigated doubly

localized rogue waves and lump solitons.

Let us use the following complex transformations to solve Eq. ((4.1).
Yy, t) =u(@e®,  dlxy,t) =V(),

where,

{=(x+y—nt), 0 = Aix + Ay + A3t + A4

Using the above-mentioned wave transformation in Eq. ((4.1) , converts the system into the

following nonlinear system of ODE,

2

i(=2r4 +v)— U(O +u(@Az —r—ul@) + ru()A? - u(@QV(E) =0,
d¢ d¢
(4.2)

T3 d—EV(O — 2nu({) d_fu(o =0,
separating real and imaginary parts of first equation of Eq. (4.2) we get,
w(As -1~ g2 u(() + 7”1”(011 —ru(QV({) =0, 4.3)
Vv =2n4
Integrating second equation in Eq. (4.2) we get,

2
v =22 (4.4)

T3
substituting equation (4.3) in the first equation of Eq. (4.2) we get,

2 3

WO =)+ ruon, - g (45)

2
Balancing the highest order of linear term dd—gzu(( ) with the nonlinear term u3({) in Eq. (4.5)

determine the value of N. Here 3N = N + 2 = N = 1. This gives solution of the form.



d
b, +d1(d—(Q(Z)) 46
QD) Q@

Replacing Eq. (4.6) into Eq. (4.5) along with Eq. (1.48), we get algebraic system and by equating

u(l()=S=ay+a;Q) +

this system to 0 we get values of coefficients ay, a; , b1, dq, 41, 4;, 13 as follows:

To make this manuscript nice and simple we are assuming,

B B2*
A= /ﬁzz —4B,B3, E = (tanh(f))? + —2(3)1;3 1= pm

T = |08 + 2.8~ BIBif

] = Aﬂz + 2ﬂ1ﬂ3 _ ﬁZZ’ H = (tan(f))z __2Atan(f) +1,

B2
e (JE{) o <\/—ﬁ1€> _ (JE{)
-\ | -\ 5 rf_ - b
2 2 4
B1
G= |5 (.
Set1 :
T
a =0, a,=0, d1:\/E ———, b1=0, Bi=p, B=0,
ToTy

Bz = B3, A3 = —/1127”1 — 2B, Ay = A4
Substituting these coefficients along with the auxiliary solutions of Eq. (1.48), we get solutions of
Eq. ((4.1) as follows.

2
wj(x')/l t) = uj(()eig’ d)].(x’y, t) — V](() — 7"4"1'1'] ((),

T3




4 (20)

w@=S=—"30

For B; > 0,

1)[)1 = (—\/Edl)eiep
=2 (-JRid)’,
3

For f; > 0,A> 0,

1, = (—dyy/Brtanh (/B10))e,
b2 = 2 (~dyBrtanh (JF20))’,

’ _( VBicosh Q) | )
3 smh(\/EZ) '

. (\/_cosh(\/ﬁf) )
* sinh(y/B10) A

FOI‘, ﬁl > Orﬁ:‘} > 0'

\/E(smh(ZG) sinh(F)
/ +\/—cosh(F) d1 \‘ .
|

sinh (2G)cosh (F)

/—\/E(sinh(ZG) sinh(F) ’

Y ++/2cosh (F)) dy
s = Ek sinh (2G)cosh (F) J ,

|«

(4.7)

(4.8)

(4.9)

(4.10)

4.11)

(4.12)

(4.13)

(4.14)



\/_( 2 cosh(F) sinh(2G)

++/2sinh (F)) d, ,
l)bS - k . )619’
sinh (2G)sinh (F)

\/E(—Z cosh(F) sinh(2G) ’
T / ++/2sinh (F)) dq \‘
El sinh (2G)sinh (F)

s =

For f; > 0,A= 0,

P = e'? (dlg(l — tanh (F))),

2
b = ?(%@(1 — tanh (F))) ,

3

Y, = et (d ‘/E(1—coth (F)))

2
7 = ?(%@(1 — coth (F))) .

3

For f; < 0,A> 0,

g = e'® (d F(tan (JEZ))>

\ )

(4.15)

(4.16)

4.17)

(4.18)

(4.19)

(4.20)

4.21)



Pg = %(dl \/? (tan (JE{))) ,

Py = e'? (—dl\/—_ﬁl (cot (\/—_,81{))),
o =2~ (cot (F0)))

For 5, <0,6; >0

1
cos(FN? —5)/—-p1 .
Y10 = <— ( 2) d1> elf,

sin (F)cos (F")

2

sin (F")cos (F")

1
5 —cos(F")?) ./ —pB; .
Y11 = <(2 ) d1> e'f,

sin (F")cos (F")

2

r ((% ~ cosF) P )
ne

P =1 sin (F")cos (F")

For ; > 0,

by, = (2B + POV B
2= e2VB1(0) — 40, B3

—(4B1B3 + ez\/_(())\/—
Prz = 7”3 e2VB1() — 4, B5

FOI‘ ﬂl > O,ﬂz = 0,

— (4B, BeP© 4 1)\/@
Vi3 = 4,31,3332‘/_({) -1 “

st

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

4.31)



_ 10 2
P13 = i (4&'8362\/? i 1)\/Ed1 ) (4.32)
4P BzeV @ — 1

T3

Set?2 :
apg=ay, a,=0, d; =0, by=0, B1=p1 PB2=PB2

ao?1ryra =2y 113

B3z =Bz A3 = , A=A

3

Substituting these coefficients along with the auxiliary solutions of Eq. (1.48), we get solutions of

Eq. ((4.1) as follows.

u(Q) =8 = a,. (4.33)

For ; > 0,

P1a = age’®, (4.34)
T. N2

$14 = _4(a0619) ) (4.35)
T3

Set3 :
ay?
ap=ay, a, =0, dy=dy, by =0, ,81:F; B, =0,

1

2
4a027‘2 T4—2.1 113

ﬂ3:0; Az =

) /11 :AI'

3

Substituting these coefficients along with the auxiliary solutions of Eq. (1.48), we get solutions of

Eq. ((4.1) as follows.

d
d; |57 Q(J)
u(@)=S=ap+ % (4.36)
For g; > 0,A= 0,
1 1 .
Pys = (ao - Ea‘tl\/ﬁtanh (F) + Eall,/ﬁl) elf, (4.37)

Ty 1 1 2
b1s = = (o — 5 duyfBrtanh () + 31/ (439)
3



1 1 .
P = (ao -3 dq+/Bicoth (F) + > dlm) el? (4.39)

T, 1 1 2

b1 = 1+ (a0 = 5 d/Prcoth (F) + 5. By ) (4.40)

For 5; > 0,

Y17 = (ao — diy/By)e’® (4.41)
T, 2

b1y = é(ao —dy/By) . (4.42)

FOI‘ ﬂl > O,ﬂz = 0,

11018 = (ao + dl\/ﬁ)eig, (443)
1. 2

P15 = é(ao +diy/B1) (4.44)

Set4 :
ag = 0,a12: al’dl = O’bl = OIﬁl = ﬁlfﬁZ = 01
_ A1 (2
B3 = 2 Az = 7”1( M +,31)-

Substituting these coefficients along with the auxiliary solutions of Eq. (1.48), we get solutions of

Eq. ((4.1) as follows.

u(@) =5 =a;Q(D.
For f; > 0,A> 0,

1’019 _ < al,[i’l 1 )eig ) (4.45)
cosh(y/B1($)) v/—B1Bs
- ( a, By 1 > } (4.46)
73 \cosh (/81 ({)) /=B B3
a, B 1 i
oo = < ) 0 4.47
%7 \sinh (YR @) VBB -
P ( a,p: 1 > _ (4.48)
73 \sinh(y/81(0)) /A1



For 1 < 0,65 >0,

Yoy = < a; B, cosh (G) )eie ’

2cosh (F)2?sinh (G)+/B1B3
b1 = 7 ( a, B, cosh (G) )2

T3

2sinh (F)2cosh (G)v/B1B5
r_4< a,B,sinh (G) )2

T3

b2 =

For f; < 0,A> 0,

a, B1 i
Yoz = ( ) 0 ’
cos(y/B1(9)) v —B1bs )

bys = 7”_4< a By )2
23 — !
3 COS(\/ p1() V—B1B3

a By i
Yoy = ( > 0 ’
sin(y—B1(9) v —B1bBs ’

Bra = 7‘_4( a1 61 )2
“ s \sin(f=Bu(O)) V—BBs)
For, B, < 0,853 > 0,

ys = < —a1$1 )eie
2 sin(y/=B1(0)) /—B1Bs ’

$25 = 7”_4< _alﬁl )2
gs = .

3 \sin(y/=B1(0)) /—B1Bs
For, §; > 0,

4a, 5,0V Oryry 0
Y26 = e’
2B1a:2131; + VA Oy

2cosh (F)2sinh (G)+/B185 '

oy = ( a,B;sinh (G) )ei9 '

2sinh (F)2cosh (G)y/B1Bs)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)



2
by = T, 4a,p,eVFrOrr, (4.60)
2 2B1a.21,1, + ez\/ﬁ@)‘rﬂ1 .

T3
For, B; > 0,8, = 0,

4a,p,eVFrOryr 0
Yo7 = e", (4.61)
2B,a,21,1,e2VF1) 4 1y
2
7 4a1ﬁ1em(<)r3r1 462
$27 = — (4.62)
3\ 2B, a,21,15e2VB1©) 4 1y
SetS :
Ay’1yT
a0=a0,a1=a1,d1=0,b1=0,ﬂ1=—2 0 42,
T3
2
8, = -2 Qoainary , _ 2a,%1,1m, 1= ao’rary — A °1ym3
2 rry ’ rry ’ r3 '

Substituting these coefficients along with the auxiliary solutions of Eq. (1.48), we get solutions of

Eq. ((4.1) as follows.

u(() =5 =ag+a;Q().

For B; > 0,
_ ao(sinh (VA1 (§) = 2cosh(F)* +3) (4.63)
28 —2 cosh(F)? + sinh (\/E(Z)) -1 |
by = r_4<a0(sinh (JB1(D) — 2 cosh(F)? + 3)>2 (4.64)
2\ 2 cosh(F)?2 + sinh (\/E(O) -1/’
inh —2cosh(F)? -1
= (sinh (VB()) — 2 cosh(F) )eiG ’ (4.65)

—2 cosh(F)? + sinh (\/E(Z)) +3

2

1, [ @o (sinh (\/E({)) — 2 cosh(F)? — 1)
o = 2 _ (4.66)
3\ —2cosh(F)?2 + sinh (\/E(()) +3

For f; > 0,A> 0,




Y30 = _aoeig )

Ty
P30 = — (—ao)z-
T3

For 51 > 0,65 > 0,

a0< \/%sinh(G)rgrl cosh(F)?

—aya,1,75c0sh(G)(cosh(F)? — 1)

P31 = —aya;1,1,cosh(G)
cosh(F)?2
+\/% sinh(G)rymy

>ei9’

/ao ( \/%sinh(G)rgrl cosh(F)?

—aga,1,1,cosh(G)(cosh(F)? — 1)) I

P31 = g
cosh(F)?2 (

" (J% cosh(G) (cosh(F)? — Dryry

—aya,1,7,sinh(G) cosh(F)?

—a0a1r4rzcosh(G)>

+\/% sinh(G)r3ry

>ei9

A 74T sinh(G))

Y3, —Qo
. 2
sinh(F) <_|_ /%cosh(G)Tgﬁ

T.

—aya,1,7,sinh(G) cosh(F)?

)

4
Pz = —

73|
\ sinh(F)?

For f; > 0,A= 0,

33 = (—aptanh(F))e®,
T, 2

¢33 = Ti(—aotanh(F)) ,
3

Y3, = (—aocoth(F))eig,

—aya,147,sinh(G)

+\/§ cosh(GQ)ryry

|

)

2

|

(4.67)

(4.68)

(4.69)

(4.70)

4.71)

(4.72)

(4.73)

(4.74)

(4.75)



$zq = :ﬁ(—aocoth(F))z.
3

For f; < 0,A> 0,

. (% sin (V=F:(0)) %)
+aga,ryrysin(F")? i0

—agya,ryr,cos(F")2 ¢
(% + sin (w/ —p1 (O) %)

/ (—ﬂnlv —B1(9) ﬁﬁ)\
+aga,ryr,sin(F')?
T3 | —aga,1yrycos(F")? |
\(’82 + sin ,/ ,31(() r3r1>/
. (% sin (V=F.(©)) %)
i6

+aga rrycos(F)?

—aya,1,1,sin(F)?2 ¢
( —sm (w/ —B1 (O) T3T1)

/ o (ﬁ 2sin ({=F:(9) rﬂl)\
Ty +aya,1,1,c0s(F")? .

36 = 1, a0a1r4r251n(F )?
\( £2 sin \/ ﬁl(Z) Wl)

P35 =

¢35 =

Y36 =

aO (—4a0a17"47"2 + e\/ﬁ(@rlﬁ) io

daga,ryr; + em@rﬂ%

3 daga,mr, + e‘/_l(OT17”3

For ;> 0,6, =0,

2
. 7”4( ( dagairr, + e‘/—(orﬂb))
37 = '

(4.76)

(4.77)

(4.78)

(4.79)

(4.80)

(4.81)

(4.82)



" a, (4(a0a1r4r2)2em@ + 8em(5)a0a1r4r2r1r3 — (r1r3)2) 0 4.83)
38 = e ) .
4(a0a17"47”2)ze‘/E(0 — (ry13)?

2
7, [ Qo0 (4(510‘117”47”2)23@(0 + 89‘/E(Oa0a17”47”27”17”3 - (7”17"3)2)

== , (4.84)
% T3 4(%“1”’"4"’2)2‘?‘/E(O — (ry13)?
Set 6 :
’_%
V2 o1y

ap =O,a1 =a1,d1 -

2 by =0,B; = B1,B2 = Ba,
ﬁ3 — _2@},’{3 = —1/27"1(2/112 + ﬂl)

™3

Substituting these coefficients along with the auxiliary solutions Eq. (1.48), we get solutions of

Eq. ((4.1) as follows.

4 (§700)

u(@) =85 =a,Q(9) + Q)

For ; > 0,

/ ﬁ12(tanh(F)) f3d; + tanh(F) d, (ﬁzzm 25,2 )\
+a,B1B,5ech(F)? — B, *%3d, Ieie (4.85)

Ve = tanh(F)2 B; 5 + 2tanh (F)ByBs + 1 — B2° ,
s 2
—pBy2(tanh(F))?*Bsd,
3
+tanh(F) dy (8% B — 263 )
boy = 1| FUBiBysech()? — B pydy (4.86)

r3| tanh(F)2 BB + 2tanh(F)S.f3 |’
+B1Bs — B,”




Yuo =

s =

/ sinh(F) cosh(F) d4 (ﬁzz\/E - 2'83’81%> \

—a181B, — ﬁ1%ﬁ3d1 - 2,81%((305}1(}7))233511 oif

(2885 — ﬁzz)COSh(F)Z BBz +
sinh(\/B,€)B1Bs — B1Bs + B2”
"2 | —aufuf, = Bi2Bads — 28, 2(cosh(F)*Bsd,
73| (2B, — ﬁzZ)COSh(F)Z BBz +

\

3 2
sinh(F) cosh(F) d, (ﬁzz\/E - 2,83,815) \‘
| .
:

sinh(y/B1€)B1Bs — B1Bs + B2

For f; > 0,A> 0,

Yy =

41

(—dlﬁlg tanh(\/Ef) A+ 2a1ﬁ12590h(\/E5)

i0
(&~ Basech(JBi))Bs ) o

—dl,[i’l% tanh(,/B;¢) A + 2a, 8, °sech({/B;§)

L
T3

2
(4 = Basech(/B1))By ) |

For 51 > 0,65 > 0,

Yur =

sz =

—a, By %sech(F)? + d, ((,/,81,83 tanh(G)? — 1)\/7\

~2tanh(F) (/B:Bs tanh(G) + 1/28,)) B2

L
13 |

(B2 + 24/ B1B3 tanh(G) By

—a, B, %sech(F)? + d, ((1/ﬁ1ﬁ3 tanh(G)? — 1)v2 :

—2tanh(F) (y/B:fs tanh(G) + 1/26,)) B2

(B2 + 24/ B1B3 tanh(G) By

619'

NN

(4.87)

(4.88)

(4.89)

(4.90)

4.91)

(4.92)



ar By esch(F)? + dy ((/B1Bs coth(6)? - DV2)

| —2tanh(F) (B:Bs coth(G) + 1/26,)) fr2 |
(B2 + 24/ B1B3 coth(G) By

619,

Yuz =

a,B1%csch(F)? + d, ((—\/ﬁlﬁ3 coth(G)? — 1)V2 ’

b T —2tanh(F) (/B1Bs coth(G) + 1/2ﬁ2)) 31%
43 15 | (By + 24/ B1B5 coth(G) By |

For f; > 0,A= 0,

" <( d1\/E,32 - 2a1,81)tanh (F) + dl\/E,Bz 2a1,81> oif
44 = ;

2P,

& T <( dl\/E 2 2a1,81)tanh (F) + d1\/E,32 - 2a1,81>2
44 = ,

2P

Yus = 25,

bas = Ty <(_d1\/ BBz — 2a1,81)coth (F) + dy1+\/B1B2 — 2a1,81>2
45 = .
T3

2B,
For f; < 0,A> 0,

/d1\/—ﬂ1 tan(y/—B;¢) A + 2a, B;sec (y —.31()\ o6
\/_4ﬁ1ﬁ3 + B;° — Brsec (V=Bid)

Yue =

Bue = o <d1v —pi tan(y/—B10) A + 2a, By sec (4 .31()>
o A~ Bysec (=Bid)

Yoy = < di+/—B1 COt(\/ ﬁ1() A+ 2a,B;csc (f ﬂl())
Y A — Byesc (=P1§)

<(_d1\/E,82 - 2a1,81)coth (F) + d1\/E,32 - 2a1,81> oif

(4.93)

(4.94)

(4.95)

(4.96)

(4.97)

(4.98)

(4.99)

(4.100)

(4.101)



_d1\/_ﬁ1 COt(\/_ﬂlf) A+ 2a.,¢sc (—PB14)

L

2
o0 = = )
Y T3 A — Byesc (—PB18)

For 1 < 0,63 >0,

(V=P1Bs tan(F")? + tan(F") B
—V=B1B3)d1/ =By — a1 fy sec(F')?
B2 + 2y/—P1P5 tan(F")

i0

o
)

¢48:|

/ (V=F:P5 tan(F)? + tan(F") B, \2
oo = 2 kw‘ﬁlﬁs)dd —B1 — a1y sec(F")? )

B2 + 24/ — P13 tan(F")

/ —(\/=B1Bs cot(F")? + cot(F") B, \
Vo = k_\/_ﬁlﬂ3)d1\/_ﬁl — a,f3; csc(F')? Ji6

B2 + 2/ — P13 cot(F")

/ _(V — 183 cot(F")* + cot(F") B, \2
—V=P1B3)d1 =By — a1 fy csc(F)?
|\ e

SN~—

For ; > 0,

so = (‘4.313/2,33‘11 - \/E(emf)zch + /BB, dy + 4‘11,5'19‘/EE
50 =

(e/Pié)2 — 2eVPiiB, — 4B, B3 + B,

>ei9’

¢5o—g

(eVBi8)2 — 2eVPilg, — 4B, B; + B,°
Forﬁl > 0,ﬁ3 = 0,

b _4ﬁ13/2e2‘/ﬁfﬁ3d1—4alﬁle‘/ﬁf—\/Ed1 6
" 4, Bre2VPiE — 1 ’

ry <—4ﬁ13/2ﬁ3d1 — B @/PE)2d, + JBip d, + 4alﬁle@’>2

(4.102)

(4.103)

(4.104)

(4.105)

(4.106)

(4.107)

(4.108)

(4.109)



2
¢51 — r_4 _4ﬁ13/2e2m$ﬁ3d1 - ‘l'all[;le\/ﬁf - \/Edl (41 10)
E 4ﬁ1ﬁ3e2\/ﬁf -1 ,

4.4 Results and discussion:

This is the important section of a study as it helps us to understand physical importance and
dynamical features of solitons for this model by demonstrating real and imaginary parts of many
useful solutions in the form of 3-D, 2-D and contour plots. The novel generalized auxiliary
equation mapping method successfully generates bright, dark, periodic, and singular soliton
solutions. Bright solitons exhibit high intensity whereas dark solitons have lower intensity than its
background. Kink solitons have permanent profile in medium, while periodic wave have
dynamical profile and can depend on time. Singular solitons are waves with discontinuous
derivatives. Each type of solution has its significance in real life. It is significant to mention that
the obtained soliton solutions are more generalized and newer and might be a good addition in

literature.

In Figure 4.1, graphical profile of Real value of Eq (4.45) expressed as 119 has been exhibit, in
the form of 3-dimensional , and 2-dimensional and contour plot which demonstrates singular bright
soliton by choosing parameters, —10 < x < 10,t =0..10, r, =0.5,1, = 15,13 =151, =
1,,=36,=0,a, =41, =06k, =15k, =09,k; =06,y =2.

Figure 4.1:-graphs of singular bright soliton 19

In Figure 4.2:graphs of singualr bright soliton ¢b¢9 ., graphical depiction of Real value of Eq (4.46)
expressed as ¢19 has been exhibit in the form of 3-dimensional , and 2-dimensional and contour
plot which demonstrates singular bright soliton for —10 < x < 10,t =0..10, r, =0.5,r, =
15,3 =157rn=1,,=3,,=0,a; =44, =0.6,k; =15k, =09,k; = 0.6,y = 2.



Figure 4.2:graphs of singualr bright soliton ¢49 .

Graphical depiction of Real value of Eq (4.64) expressed as 1,g has been exhibit in Figure 4.3, in
the form of 3-dimensional, and 2-dimensional and contour plot which demonstrates as periodic
wave solution by choosing parameters, —10 <x <10,t =0..10, r, =1, = —1.5,13 =
=1k, =09k; =02,y=1.

1,m=16=1F,=3a,=19,1, =0.6,k;

10

0.5

=15

Figure 4.3: graphs of periodic solitary wave solution ,g.

Graphical depiction of Real value of Eq (4.64) expressed as ¢p,g has been exhibit in Figure 4.4, in
the form of 3-dimensional, 2-dimensional and their contour plot which demonstrates singular dark

soliton solution for =10 <x<10,t=0..10, n =1, =-15nr=1n=1,3,=106, =

I\

3, Ay = 1.9,/11 = 06, kl = 1,k2 = 09, k3 = 02,y =1.




Figure 4.4: -graphs of singular dark soliton ¢,g.
Graphical illustration of Real value of Eq (4.102) expressed as ., has been exhibit in Figure 4.5,
in the form of 3-dimensional, and 2-dimensional and contour plot which demonstrates localized
excitation wave pattern as singular periodic soliton by selecting parameters, —10 < x < 10,t =
0.10, n=-1,,=15r=15n=1,5,=-3,,=4,a1 =41, =0.6,k; =1, k, =
09,k; =02,y = 2.

-10 -5 0

Figure 4.5: -graphical simulation of singular periodic solitary wave solution .
Graphical illustration of Real value of Eq (4.102) expressed as ¢, has been exhibit in Figure 4.6,
in the form of 3-dimensional , and 2-dimensional and contour plot which demonstrates localized
excitation wave pattern as periodic soliton for —10 < x < 10,t =0..10, r; = —1,1, = 1.5,13 =

1.5,7”4 = 1,ﬁ1 = _3,ﬁ2 = 4‘, a, = 4,11 = 06, k1 = 1, k2 = 09, k3 = OZ,y = 2.
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Figure 4.6: -graphical simulation of periodic solitary wave solution ¢,;.
4.5 (2 + 1) Darvey-Stewartson (DS) system:
Here, we will investigate the (2 + 1) Davey-Stewartson (DS) system for complex valued function

1 and real valued function ¢ of x, y and t:

0 1 02 02 0
T+50% |5t +0’ 1|+ AT’ — =91 =0,

dt 0x 2 0x? y dx

4.111)
92 , 07 21 0 o2 = 0
0x2® 77 g2 TP T

Where the parameters, 1,0 = 1 establish four possible types of the system. Especially, if o =
1 and o0 = —1, describes well known Davey-Stewartson I (DSI) and Davey-Stewartson II (DSII)
equations respectively. Similarly, the focusing and de-focusing cases are characterized by A =
1,4 = —1. Here, 7(x, y,t) exhibit the amplitude of a surface wave packet whereas, @(x,y,t)

exhibits velocity potential of the mean flow depending on wave surface [162]

The Davey-Stewartson (DSS) equation is a very important model that describes the short wave
and long wave resonance in water exhibiting limited depth. This is an important model in two-
dimensional space that explains higher order generalization of nonlinear Schrodinger equation. To
acquire a better understanding of its applications in real world problems, analytical solutions are
required. Many researchers have solved this model analytically and numerically to generate a
variety of solutions. Such as, HA Zedan [163] established periodic and solitary wave solutions of
DS model by using compound Riccati equation rational expansion method. RF Zinati [164]
investigated DS equation by various techniques. Gaballah.et.al.[165] studied this model by
generalized Jacobi elliptic expansion method to obtain periodic and optical solitons.

Frauendiener.et.al. [166] studied this model via hybrid numerical technique. Saima.et.al [167]



finds soliton solutions using three integrating techniques. After careful literature review, we
realized still a lot of work can be done on this model. Motivated by above mentioned work we are
using modified auxiliary equation method on (2 + 1)-dimensional Davey-Stewartson (DS)
equation. It is evident from studies that higher-dimensional nonlinear models exhibit rich

phenomena as compared to one-dimensional models.

Let us use the following complex transformations to solve Eq (4.111)
oy, ) =ul@e’, oy, t) =V(E).

Where,

{ =k(x+ 2y —nt), 0 = kix + kyy + kst,

using the above-mentioned wave transformation in Eq (4.111) , converts the system into the

following nonlinear system of ODE,

2

d
o?k?(1?0% + 1) 3 —u(() + 2ik(kylo* + k0% — n)—u(() -

$ d¢
o*k,? 02k12 q (4.112)
2u({) < 5t (dfv(()> k + k3> +22(u(@®)’ =
Separating Eq. (4.112) into real and imaginary parts we have,
Real part:
o?k?(l*c% + 1 22 -2 % k —

(1’0 + )ng“@” (@)’ < i (c)) u(Q) Wit
(U4k22 + Uzklz + 2k3)u(() = 0,
Imaginary part:
n = kalo® + kyo?. (4.114)

Also, we have, from second equation of (4.111),

k(%62 — 1) (ddfz v(z)) + 4/1u(()3—? =0, (4.115)



integrating Eq (4.115), we get

d V() = 22u(0)” 4.116
'O w1y (0
_2AJu(?®d¢
=> V()= T kEor—1) 4.117)
Substituting Eq (4.116) along with the value of 1 into Eq (4.112) we get
2
o2k2 (1202 + 1);—5211(5) +22(u(®)’
(4.118)
o*k,®  o%k,? 22u(Q)? B
—2u(f)< > + > + (— —(IZO'Z — 1)> + k3> =0,

balancing the highest order of linear term with the nonlinear term in Eq. (4.118) we usually

determine the value of N. Here 3N = N + 2 = N = 1. This gives solution of the form.

d
b, d, (d_( Q) 4.119)
Q) (O] COLI.

replacing Eq. (4.119) into Eq. (4.118) along with Eq. (1.48), we get algebraic system and by

u(@)=S=ay+a,Q()+

equating this system to 0 we get values of coefficients aq, a; , a, b1, d1, B1, B2, B3, k as follows.

Set1 :
_20-4](22 - 20-2k12 - 4‘k3

ap=0,ay =ay,b; =0,k =k,B, = 3,01 = k%202(1%202%2+ 1) '

—[2¢02 +1
420, =T ok

= 'd =
& k202(1262 —1)" " 2

For these set of coefficients, we have following solutions,

4 (§720)

u(@) =S =a,Q() +W,

where,

22 Ju(@)?d{

5@y, 0 =w@e? 9000 =V(Q) =~y



substituting these coefficients along with the auxiliary solutions of Eq. (1.48), we get solutions of

Eq. (4.111) as follows.

Forf; > 0,A> 0,

B.2d,(A)sinh (JBE) + 2aifi’ o (4.120)
(A cosh ({/B:1§) — B2)

T1:

A

¢1 = 3
k(1202 — 1)B,2B5°ET

(8028720 = £ (Buc? - an?)arctan (22220 ﬁ)

—2p3a,d,(A - 2,82),81% +
EBs%In(1 + tanh(F)) d,*B,>
—EB5* In(tanh(F) — 1) d,°B,°
o7 _[S’Z_A((,B3d12 + a,*) tanh(F) ,81>
2 =2y p1a1d1 B>

3 1
_\/Ea1d1ﬂ2 —2 <ﬂ1ﬂ3 - 4[;22)
X By (Bsd,* + a;,?) tanh(F) (4.121)




. <_\/Ed1(A)cosh BiE) + 2alﬁl> ot (4.122)

(A sinh (/B1E) — B2)

o
b2 =Y zez — D

X /B1d,*In(1 + tanh(F)) — /B1d,* In(tanh(F) — 1)
g B tanh(F)z Aa,d, ia Blg,& tanhZ(F) d,*
EB, EB,

3
) /B tanh(F) d,* g B2 tanh(F) a,?
E EB,? (4.123)

i \/Etanh(F) a,? _, \/EAdlz _, \/EAalz
EpB; EpB, EBsp,

2
_BiPad, retanh (tanh(F) B2 + A)
VBiBs 2y B1PBs

+ VBipaai® arctanh (tanh(F) Pat A).
B3/ B1B3 24/ B1Bs3

For g; > 0,A= 0,

_ —\/B1d; tanh(F) B, + %@ﬁz — 2a, B, tanh(F) — 2a, 4, eif (4.124)
2

T3

-
b3 = kzez — D
_ B, tanh(F) a,d;
B
3
\/Etanh(F) d,* 4,815a12 In(tanh(F) — 1)
2 B.* ’
) B,%*tanh (F)a,?
B’

+/B1d,* In(1 + tanh(F))
(4.125)




_ —/B1d; coth(F) B, + di[B1B2 — 2a, 8y coth(F) — 2a, 8, Jio

Ty

2p;
. -u
Y = r@zoer - D
coth(F) a,d
Y [g ) ardy +/B1d,* In(1 + coth(F))
2
3
N \/Ecoth(F) d,* 4ﬁ17a12 In(coth(F) — 1)
2 B’
2,6’13/2coth (F)a,?
B’

For g; < 0,A> 0,

< 20,1, sec(y/—pr§) )
+tan(y/=B1¢) dy/—B1A

eze

T =
; A

— Basec ({ —B1$)

—21

Ps

X (tan(F’)2 -
+ ﬁ1(—ﬁ3d12 + a12)(A — B2)B2V2

" k(1207 — 1)\—B1ps

(,33d12 + alz)(]) tan(F")
(5
V—Praid (206185 + (])ﬁz))
B1Bs3

AB, B )

-1

-1
268, 2B:fs

24T
tan(F') .31.33\5)

VT
d,%arctan (tan(F"))
+ 4

X arctanh <

(4.126)

(4.127)

(4.128)

(4.129)



( 2a, 01 CSC(\/ _ﬁlf) >
—2cot(\/—B.1&)\J—P1A dy
A — Byesc (—P18)
B —2A
P = k(62 — 1)
_ 8B tan(F)Aayd; 8B,% B tan(F") d,* ~ 2B,Ad,>
HB,* J—=B:HB,’ V=B:HpB;
2B, tan(F") d,° _ 8B, % tan(F") a,2 N 2B tan(F") a,?
—p.H V=B:HB,’ V=B:HpBs
2B1Aa;? B1B,d,* (—2 tan(F") B, + 2A>
— + arctan .
V=B1HB2B3 /=By B1B3 4/ 13
BBy a,? Aretan <—2 tan(F") B, + 2A>
v —B1B3+/ B1B3 4/ B1P3
5 B, d,*arctan (tan(F"))
—p1

ei@

Tg =

+

For 1 < 0,63 > 0,

<(\/ —B1 B3 tan(F")* + tan(F") B, — +/ —,31,5'3))
X dy/—f1 — a, By sec(F")?
B2 + 2+/—B1 P53 tan(F")

Tg = ele

. -u
Pe = k(Zoz — D

y 2p, ((2\/ —B1Bsy/—Prardy + B1fsdy” + a12,31) tan(F")
—p1 4B1B3

/(‘8\/ —P1B3\ —B1a1d1B1 B3 + 24/ —P1B3+/ —ﬁ1a1ﬁ22d1>
1

n _4ﬁ12,832d12 + ﬂ1ﬂ3d12,822 - 4a12,812ﬂ3 + a12ﬁ1ﬁ22
4p1Ps k 43, B3 tan(F') — 2/ —B1 B3P

+ iy ﬂ1ﬁ3ﬂ2(—ﬁ3d12 + a12) 1n(—2ﬁ1ﬁ3 tan(F") + 4/ —.31.33ﬁ2)>
B3

—dlz(n/Z — arctan(tan(F’)))),

(4.130)

(4.131)

(4.132)

(4.133)



<_( [=B, B cot(F")? + cot(F") B, — \/—B1ﬁ3)>
X dy/—f1 — a1y csc(F")?
Bo + 2+/—B1 B3 cot(F")

(4.134)

_ i0
T, = e'?,

-2
b7 = ez — D

y 2p, ((2\/ —B1Bsy/—Prardy + B1fsdy” + a12,31) cot(F")
—f1 4B1B3

< 8\ —B1B3y —Br1a1d1$183 — 2y —P1B3/ _,Blahgzzdl >
n 1 —4B, %52 d, % + BiPads’B,° — 4a,2ByBs + a 2B Bo°
4B1Ps \ 43,3 cot(F') — 24/ =135

(4.135)

n Iy ﬁlﬁ3ﬁz(‘ﬂ3d12 + alz) ln(_2ﬂ1ﬂ3 cot(F') + vV _,81,83ﬂ2)>
B3

—d,* (n/Z — arccot(cot(F’)))).

For ; > 0,

_ _4,813/2ﬂ3d1 - \/E (e‘/ﬁf)z d + \/E,Bzzdl + 4a1ﬁle‘/ﬁf

Tg = . eld, (4.136)
(e/Pt) - 2e/Pitp, — ap:ps + B,°

—21
o~ k(1202 — 1).311/2,333/2 (ez\/ﬁg’ - Zemgﬂz — 4B, f3 + ,322)

\/E(ﬂz (—B3di” + a,%) (ez\/ﬁg’ - Zemgﬁz —4B1B5 + ,322)

e\/ES( — '8
z VB1§)e2VBis g, (. 2
Zﬂmg>+dm&0n@ )e2/Pit pd,

X - (4ﬁ1ﬂ3 - ,322 + Ze\/Efﬁz) ,33d12 In (e«/ﬁf)
+(8VB1a1 sty — 25 (Bady® + a,2) ) VP

2
—(8B3d,” + 8a,?) (ﬁ1ﬂ3 - ﬁ%))

arctanh <
(4.137)

For ﬂl > O,ﬂz = 0,



_462‘/—Eﬁ 3/2,33611 4a1ﬁle\/—€_\/_d1 et

o (4.138)
? 4,31,3362‘/—5 -1
3
(48P in (e/7:5) %% - i, n (/7€) |
. " ~8a,Byd; VP By — 2./B (Bady® + a;2) | (4.139)
9 — T ’ .
l\ (207 — 1) (4,280 — ) /l
Set2 :
—(I26%2 - 1)V2 1 l*c* —1
ao _ ( ) ’al — 5 > O'Zﬁzkzl
21 4g4 — 1 (0%ky* + 02ky* + 2k3)A
(0%ky® + 02k, + 2k3)A
_20-4‘](22 — 20’2]{12 - 4‘k3
blzo,k:k,ﬁzzﬁZfﬁlz kzo.z(l20-2+1) !

B,% (1202 + 1)k?c?
ﬂ3 = - 4 2 5 2 ) dl = 0
80%*k,” +80%k,” + 16k,
Substituting these coefficients along with the auxiliary solutions of Eq. (1.48), we get solutions of

Eq. (4.111) as follows.

u(@) =S =ay+ a;Q(). (4.140)

For f; > 0, we have

(—a1,31,32 csch(F)? — a0ﬁ22>
+(coth(F) + 1)?agBifs ) ;

(coth(F) + 1)2B, 85 — B,°

(4.141)

)



P10 =

—21

k(26?2 — 1) ( VBB (tanh 4B, Bs + 4tanhf 3B, B3

a, ﬂ1ﬁzzﬁ33(tanhf4ﬁ1,33 + 4tanhf3B, B;
+(6B1Ps — 4B, )tanhf? + 4P, fstanhf + B, B3)

(aofa — =) 1n (2‘ |815:28: tanhf — B,f; (canhf + 1)2>

—ay, /ﬁ1ﬁzzﬁ33(tanhf4ﬁ1ﬁ3 + 4(tanh(f))* B85
+(6B, 3 — 4B, )tanhf? + 4B, fstanhf + B Bs)

(aofs ~ “Fn 2 [ 15,7 o tanbf

+PB1B5” (tanhf + 1)) — B, (ao?(tanhf*B, s
+4tanhf3B, 5 + (6815 — 4B,°)tanhf?
+4p1Bstanhf + B, B3)Psln (tanhf — 1)
—ay”(tanhf*B; B + 4tanhf>B; B3

+(6B1Bs — 4B, )tanhf? + 4P, fstanhf + B, 53)Bs
In (tanhf + 1) — a,2B; B, tanhf (tanhf — 1)%)B5>

For f; > 0,A> 0,

T11

P11 =

(1262 — 1)V2

619’

0% —1
21 . .
(o%k,* + 02k, + 2k3)A

—2(a*ky? + 0%k, ® + 2ks) A
k(1202 + 1)

For g; > 0,A= 0,

T12 =

P12 =

—a,f; tanh(F) + aof; — a,p; i

B>

(apBs — 2a181)% In(tanhF — 1) + 2B, %a,2tanhF
22 —ao%In (tanhF + 1)B,°

k(1?02 —1) \ [322 By

+(6B,83 — 4B, )tanhf2 + 4B, fstanhf + B f)B5°

(4.142)

(4.143)

(4.144)

(4.145)

(4.146)



T13 =

P13

—ay By coth(F) + agf, — a, b4 oi

For f; < 0,63 >0,

T14 =

P14

=21

T15 =

—a By sec(F)* + 2 tan(F') \/ =1 B30 + aof; 0if

16 (tan(F') —p1Bs + B >ﬂ1a1 <a0,83

B2 + 2tan(F') /=P 3

—8ﬂ3a02(—2 tan(F") B13 + _,81,83,82) arctan(tan(F"))
+2B1a,° <—2(tan(F’))2ﬂ1B3 +tan (F)/—B1B3B2 + 2B183 — =~

2

ﬁz)
2

/(aoﬂz — 2a,81)? In(cothF — 1) — a2 In(1 + cothF) B,°
B 27 +2,%a,%cothF)
k(1202 -1) k JB1B2>

)

) In(B, + 2 tan(F") /—B1s)

k(1202 — 1)\/—B1Bsy/ —B1(8B3+/—B1Bstan (F) + 4B3P,)
—ayf; csc(F')? + 2 cot(F") / —B1B3a0 + aofs; eif

B2 + 2 cot(F") /=13

(4.147)

(4.148)

(4.149)

(4.150)

(4.151)



—2B,%a,>
P15 T B By (B tan(F") + 2 —BaBa)
+ Brai’Ba
2\/—_,81,83(,82 tan(F’) + 2%)
N 2a, B In(B, tan(F) + 2\%) ao
J=BiJ=B1Bs
Bra,? In(B, tan(F) + 2,/—B1B3) B2
2B Bb
N B1a,* ) a, B In(tan(F)) aq N B1a,% In(tan(F)) B,
2J=Bipatan(F)  =Bi/=BiBs  2J=BiJ—PiB:P
402 ()P InL + (an(F)?) B,
V=Bi(B2 + 2B (B2 + =BiBs)’
o 420*\=B1Bs In(1 + (tan(F))?) B1,5
V=Bi(B2 + 2/ (B2 +=BiBs)’
B 24ay%\/— B, B arctan(tan(F)) B 8,55
V=Bi(B2 + 2/=ifs) (B2 +=FiBs)’
N 12a,2,/— B4 B; arctan(tan(F)) S,
V=Bi(B2 + 2/=iBs) (B2 +=FiBs)’
N 8a,? arctan(tan(F)) ;% B5°
V=Bi(B2 + 2/=ifs) (B2 +=FiBs)’
26a,? arctan(tan(F)) B, 8,° B3

VB (o + 2 Bis) (B + BiBs)

2a,%arctan (tan(F))B,"

+ .
V=B1(Bz + 2y =B1B3)* (B2 + \/ —P1B3)?

(4.152)

For 5; > 0,



2 /
(eV ﬁlg) ao — 2eVFi8a,B, + 4a, BeVP18 — 4aoByBs + aopB,” "
eif (4.153)

T16 = >
(emf) — 2eVPiEg, — 4B, By + B)°
Org = 27
16 =
k(l?0% — 1)\/E,83 ((e‘/Ef - ﬂz)z - 4ﬂ1ﬁ3>
X 4a, <((e‘/ﬁf - ,32)2 - 4,31,33) B1
VBiE _
 (aofa — ) arctanh <ﬁ) + (In (@/P%)e VPt g2 (4.154)
2 oVBi§
—4p; (ﬂ1ﬁ3 - ﬁ% + - > ﬁz) ao” In (e‘/ﬁf)
2 oVBid
—8a,? (,31,33 - ﬁ% + - 1 '32),31 >;
Set3 :

ral = 01

(0%, + 0%k + 2k3)(120% — 1)
%o = 221202 + 1)

by =0,k =k,B; = 2,1 = P1,3 = P3,d; =0.

For these set of coefficients, we have following solutions,

u({) =S = ay, (4.155)

ZA(ao)Z(

_ 4.156
(p17 k(lzo_z _ 1)' ( )

T17 = aoelg,



Set4 :

\/(a‘*kzz + 02k, + 2k;) (1202 — 1)
1262 + 1)
V2
by =0,k=kp,=0,=0d, =d;,
(0%ky? + 0%ky® + 2ks)(lo — D (lo + 1)
N 81d,% (1202 + 1) '

ag = ,a1=0,

B1

Substituting these coefficients along with the auxiliary solutions of Eq. (1.48), we get solutions of

Eq. (4.111) as follows.

d
d; |77 Q(J)
u(l@)=5= ao+%,
1 = (ap — /B1dy)e?, (4.157)
2
P15 = “2Ma0 = Vhid) ¢ (4.158)
k(2g2 — 1)
T10 = (ap + /B1d;)e?, (4.159)
2
P19 = 2o+ VB ¢ (4.160)
k(2g2 — 1)

Set5 :
—otk,” — 0%k, — 2k,
2k202(1262 +1) °

aO = 0,a1 = 0,b1 = O,k:k,ﬁz = 0,,81 =

—12¢02 +1
By =Pady = [———ok.

Substituting these coefficients along with the auxiliary solutions of Eq. (1.48), we get solutions of

Eq. (4.111) as follows.

4 (£20)

u({) :S:W'



T20 = —/ ,81d19i9;

_ 28
P20 k'

Ty1 = —/Bitanh (/B &)d e,

<2\/_tanh(\/ﬁf) +/B; In(tanh(y/B,¢) — 1))
P =g —JBiIn (tanh (\/B:8) + 1)

Ty2 = —/Bicoth (/B E)d e,

Gy = _(2\/_ B coth(y/B1€) + /By In(coth(y/B1€) — 1))
Tk —\/Eln (coth (\/Ef) +1)

. l/(tanh( ) - 1>\/7 _\I
e (o)

f23 = 2 tanh(F)

(p23 =T 5 AN
k(?0? —1) +dyIn (e¥2VFE — 1) — B d,&

(o(5 )5

VBids
<2 coth <@>> coth(F)
_ V2 it

24 2 coth(F)

Doa =775 5 a8
k(lf0® —1) +dyln (V2P + 1) — \[Brd, ¢

1 .
Ty5 = 5(1 - tanh(F))\/Edl e'?,

g5 = %(J@n (tanh (F) + 1) — %\/Etanh (F)),

21 (2d1 In(eV%i€ + 1) — dy In (eV2VFif + 1))

21 (2d1 In (V%1 — 1) — d, In (e/2/P:¢ — 1))

(4.161)

(4.162)

(4.163)

(4.164)

(4.165)

(4.166)

(4.167)

(4.168)

(4.169)

(4.170)

(4.171)

4.172)



Tye = %(1 — coth(F))\/B.d; e,
V6 = %(J@n (coth (F) + 1) — %\/Ecoth (F)>,

Ty7 = diy/—Pitan (f—p1&)e’,

927 = J:_;lk (Bitan (J=P18) = Brarctan (tan(y=5:9)))

Tog = diy/—Brcot (—B1é)e’?,

2
P28 = \/—_,31k <.31 COt(\/ _,315) + % + piarccot (COt(v _.315)))
_d/Rilan()? - 1)
t29 = 2 tan(F") ¢
Vi 21 ( tan(F)2% — 1 )
$29 = 3 tan (F")\—4 arctan(tan(F")) tan(F")/’
—dBileotF2 = 1),
ts0 = 2 cot(F") ¢
=B ( cot(F)? -1 )
P30 = ot (F") \—4 arctan(cot(F")) cot(F")/’
_ _(eJEf)Z\/Edl - 4ﬁ13/2,83d1 i0
T3 = e,

(eVPr£)2 — 4p, B,

= /B.In (eVBr§) — F
P31 =7 < 1In (e ) e T?lf)z ) 3>,

B (48P 1)
T 4.31.3392‘/EE -1 ’

— __2 2B _l 2,/B1¢ )
P32 =7 <4ﬂ1ﬂ3e2‘/ﬁf 1 Z\Eln (e ) ),

(4.173)

(4.174)

(4.175)

(4.176)

(4.177)

(4.178)

(4.179)

(4.180)

(4.181)

(4.182)

(4.183)

(4.184)

(4.185)

(4.186)



Set 6 :

ao = 0,a1 =a1,b1 :0,d1 = 0,

O-4k22 + O-Zklz + 2k3 _ —/16112
k202(12062+1) "% k202(120%2 — 1)

k=kp,=0p =

Substituting these coefficients along with the auxiliary solutions of Eq. (1.48), we get solutions of

Eq. (4.111) as follows.

u(@) =S =a,Q(9),

2a1ﬁlsech(\/E€)> 0
_ , 4.187
f33 ( V—4B1Ps3 ’ ( )
2 a,2\/Bitanh (/B,€)
o0 = g () 1
2a1ﬂlcsch(\/Ef)> 0
_ i0 4.189
3 < N i
o2 a,2,/B;coth (\/B1§)
P34 = k(1?02 - 1) < B3 >, o
Ty = <za1ﬂ1s_icﬁtgf>) eif (4.191)
s = 21a,%B tan (V—B1€) (4.192)
S 20— Doy |
2a,;csc (\/ —,31SC)> i
_ ’ 4.193
fa6 ( v —4B1P3 ’ | )
e = —2a,*Bycot (—PB1§) (4.194)
% k(1202 — 1)B3+/—P1 , |
_ [ —a,Bysec(F)? ) 0
T3y = (2 5 F.tan () e (4.195)

_ A a,*By
P37 = 2k(Zo2 = D) <,83 cos(F')2 sin(F’)2>' (4.196)



(.
= <ﬁ?jf_lﬁ(1zsicr? i(:));g- (2))’ (159
T = (4 ” J%lf) Zef;&) eif (4.199)
930 = k(lsz_ 5 < < JB—C?)ZZ[; 1_3;;1 ﬁ3>' (4.200)
T = (4[;1;:5 ;Z_Jf 1) eif (4.201)
$a0 = k(lZ:ZA— 1) <[;3 (431[{6:1;#5115)2 _ 1)>' (4.202)

Set7 :
a,=0,a, =0,
by=0k=kB,=0p;=0,d, =d;,
_(0*ky* + 0%ky® + 2k3)(lo — D) (lo + 1)
21d,* (1202 4+ 1) '

B1

Substituting these coefficients along with the auxiliary solutions of Eq. (1.48), we get solutions of

Eq. (4.111) as follows.

4 (£20)
u(@)=5= o
141 = (+/Brdy)e”, (4.203)
2AB1(d1)?*¢

_ _2Ald)TS 4204
(p41 k(lzo_z _ 1)) ( )



4.6 Results and discussion

In this section, graphical simulation of (2 + 1) Davey-Stewartson (DS) system has been given.
With the assistance of modified auxiliary equation mapping method, we succeed in obtaining
various possible physical wave patterns by choosing appropriate parameters. The obtained soliton
solutions are more generalized and newer and might be good addition in literature. To analyze this
model. 3-D, 2-D and contour plots have been plotted to explain divergence and physics of these

waves by choosing suitable values of parameters included in solutions.

Graphical depiction of Real value of Eq (4.205) expressed as 7, has been exhibit in Figure 4.7, in
the form of 3-dimensional, and 2-dimensional and contour plot which demonstrates as singular
periodic wave solution by choosing parameters, —10 < x < 10,t =0..10,k = 4,¢c, = 1,k; =

3,k2:1’k3:_6.1,l:1.3,0—:1;ﬁ2:31)':1’)/:2'

10

= NWR W ey
o W s el

"
N o

_
o7

Figure 4.7: graphs of solitary wave solution 74
Graphical depiction of Real value of Eq (4.142) expressed as ¢4, has been exhibit in Figure 4.8,
in the form of 3-dimensional, 2-dimensional and their contour plot which demonstrates singular
periodic wave solution by choosing parameters —10 < x < 10,t =0..10,k = 4,¢c, = 1,k; =

3,k2:1’k3:_6.1,l:1.3,0—:1;ﬁ2:31)':1’)/:2'



Figure 4.8: -graphs of singular periodic wave solution @1,
Graphical profile of Real value of Eq (4.206) expressed as T,, has been exhibit in Figure 4.9, in
the form of 3-dimensional , and 2-dimensional and contour plot which demonstrates singular
periodic soliton by choosing parameters, —10 < x < 10,t = 0..10,k = 0.4,c, = 1,k; = 3,k, =
1,k;=-10,l=6,0 =1,,=-2,a, =4,1=5,y=2.

Figure 4.9:-graphs of periodic solitary wave solution 7,;

Graphical depiction of Real value of Eq (4.166) expressed as ¢, has been exhibit in Figure 4.10,
in the form of 3-dimensional , and 2-dimensional and contour plot which demonstrates singular
kink soliton by choosing parameters, —10 < x < 10,t =0..10,k = 0.4,¢c, = 1,k; = 3,k, =
1,k;=-10,l=6,0=1,,=-2,a, =4,A=5,y=2.
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Figure 4.10:graphs of singular kink soliton ¢,

Graphical illustration of imaginary value of Eq (4.188) expressed as 733 has been exhibit in Figure
4.11, in the form of 3-dimensional , and 2-dimensional and contour plot which demonstrates
localized excitation wave pattern as soliton with parameters —10 < x < 10,t =0..10,k =

0.1,C2 = S,kl = 1,k2 = 1,k3 = Ol,l = 2,0' = 1,a1 = 4,/1 = 1,y = 2.

40 20

x o
o
=
=
o

Figure 4.11: -graphical simulation of solitary wave solution 733

Graphical illustration of imaginary value of Eq (4.188) expressed as ¢33 has been exhibit in Figure
4.12, in the form of 3-dimensional , and 2-dimensional and contour plot which demonstrates
localized excitation wave pattern as kink soliton with parameters —10 < x < 10,t =

0.10,k=0.1,c, =5k, =Lk, =1,k;=01,1=2,0=1a, =41=1,y=2.
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Figure 4.12: -graphical simulation of solitary wave solution ¢33.

4.7 Conclusion:

Optical solitons of Fokas system and (2+1)-Dimensional Davey-Stewartson equations have been
investigated and analyzed by generalized auxiliary equation mapping method and thus, numerous
types of exact solutions are obtained which includes hyperbolic, trigonometric, exponential, and
rational solutions that exhibit bright and dark solitons, kink solitons, periodic wave, and singular
solitons profiles. Furthermore, by choosing appropriate parameters in solutions, 3-D, 2-D and
contour plots have been examined graphically to study dynamics and physical behavior of obtained
solitons. Wave velocity and parameters involved in wave number are responsible for the types
and profile of solitons. The applied technique has been recognized as efficient, robust, and useful
in constructing optical solitons as it provides more generalized solutions. This technique has some
advantages over previously studies techniques in literature as it depends on second degree
differential equation and generates fourteen solutions that covers many types of soliton solutions
and still this method is evolving and modifying continuously, also it can be applied on many

nonlinear models to check their physical significance.

4.8 Summary:

In this chapter we have studied Fokas system and (2 + 1) Davey-Stewartson (DS) system via
generalized auxiliary equation mapping method. Obtained solutions are in the form of solitons.
Solutions of both equations provide valuable insights of wave propagation, signal processing in
optical fibers, imaging techniques and have applications in many areas such as mathematical
physics, biology, and oceanography. The accuracy of the obtained results provides the efficiency
of the method. Graphical simulation of these results has been discussed in the form of 3-D, 2-D

and contour plots. This chapter consists of an introduction of governing equations along with main



steps of methods used and derivation of solutions by proposed method. Finally graphical

representation of some results followed by conclusion.

Chapter 5 includes interesting results of some fractional PDEs. FNLPDEs are used to model such

phenomena where the dependent variable is reliant on more than one independent variable.



Chapter 5. Exact solutions of Fractional
nonlinear PDEs by Improved
generalized Riccati Equation mapping

method.



5.1 Introduction:

The use of fractional calculus to model certain real-life phenomena is getting a great attention
nowadays. Nonlinear fractional differential equations (NLFDEs) appear as a direct result of this
attention. Nonlinear fractional partial differential equations (NLFPDESs) cover a major share of
those NLFDESs, and they are used to model such phenomena where the dependent variable is reliant
on more than one independent variable. NLFPDEs are generalizations of nonlinear partial
differential equations (NPDEs) in which the orders of derivatives involved are fractional. These
equations have numerous applications in different fields of engineering and physical sciences such
as in fluid mechanic, fractional dynamics, and wave propagation etc. [168]. It is very important
not only to formulate the governing FPDE of a certain phenomenon but also to find out its exact
solutions. Solutions of an equation, governing a certain real-life phenomenon, give us very useful
details of the phenomenon itself and can be used to understand and predict the variations in the

depended variable (and the quantities driven by it).

In this study we are interested in a special type of exact solutions of NLFPDEs known as solitary
wave solutions. Since solitons have been proved to be the exact solutions of a large class of
NLPDE:s, their complete understanding would lead us to a broad understanding of the real-life
phenomena themselves. Some of the methods that are already being used to find solution of
fractional order nonlinear partial differential equations are Homotopy perturbation method (HPM)

[123], Variational iteration method (VIM) [126, 127], F-expansion method [128], Exp-function

method [129, 130], Fan sub-equation method [131], (%)-expansion method [132], Improved tan

(%)-expansion method [112], Exp (—cp(f)) method [133] and Kudryashov method [134] etc.

Some of these methods provide exact solutions to NLFPDEs (like Exp-function method, Fan sub-

!

equation method, (%)-expansion method etc.) while the others provide series solution (like VIM

and HPM). Nowadays mathematicians are trying to extend conventional methods to make them
capable of solving fractional order partial differential equations. These extended methods would
enable scientists working on fractional models to deal with them more effectively. Finding exact
solutions of NLFPDEs used to be a herculean task, however, modern symbolic computation tools

have made the task relatively easier. In a result of these computational tools, the efforts to extend



the methods used to solve integer order NLPDEs to their fractional counterparts, and apply them

to solve real life fractional models, have gain a tremendous popularity.

5.2 Illustrative Examples:

5.3 Space-time fractional nonlinear DDE for Murnaghan’s rod:
In this section we apply improved generalized Riccati equation mapping method on space-time
fractional nonlinear elastic inhomogeneous double dispersive equation for Murnaghan’s rod

which is given as:
D#%u(x,t) — %D,%“u(x, t)

1
= 2(5 (lﬁfoqu (x,t) + 6v2DE*u(x,t) — bSv2DF%u(x, t))), (5.1)

) ) ) M B ..
where u(x,t) is strain wave function, b = - <1l= - are combinations of the constant scale

factors [169]. Parameter 0 < o < 1, is the order of fractional time and space derivatives. Where
Dfu and DFu are the Caputo fractional derivative [36] of u with respect to t and x respectively.
The doubly dispersive equation (DDE), which is an important nonlinear physical model describing
the nonlinear wave propagation in the elastic inhomogeneous circular cylinder Murnaghan’s rod.
The global existence and blow-up of solutions for doubly dispersive equation was discussed by
Harby et al. [170]. Cattani et al. [169] had used extended Sinh-Gordon equation expansion method
(ShGEEM) and the modified exp(—¢({))-expansion function method, to find the topological, non-
topological, singular, compound topological-non-topological bell-type and compound singular,
soliton-like, singular periodic wave and exponential function solutions to the doubly dispersive
equation for inhomogeneous Murnaghan’s rod. Moreover, Baskonus et al [171] solved
inhomogeneous Murnaghan’s rod by F-expansion method and obtained Jacobi elliptic function
solutions including bright and dark solitons, topological, non-topological, singular, periodic, their

combinations and compound solitons.
Now, by using the following nonlinear fractional order wave transformation:
u(x,t) =U(),

where,



B x& At®
"T(l4+a) TA+a)

$

the above mentioned NLFPDE can be transform into nonlinear ODE as follows:

ev?(—126 + b&) BUE)° 220U (8) EU(#)
; T 202120 + b8) | €02 (=120 + b3) _ ev2(—120 + bd)
1€v2(=226 + b&)U" (§) 220 bs ~
2 6 <_ —J29+ b5 | 120 + b6> T (5.2)

Eq. (5.2) obtained by applying integration process twice to the resulting equation and both of time
consider constant of integration equal to zero. By using homogeneous balance principle between

the highest order derivative and nonlinearity yields N = 2. Therefore, Eq. (5.2) has a solution,

a_
2
(0(®)
Now, substituting Eq.(5.3) along with Eq. (1.68) into Eq. (5.2) after collecting all terms with the

a_q 2
UE) = ot +a,9(8) + az (@) (5.3)

same order in ¢' and ¢~¢, where, (i = 0,1,2, .....). and equating each coefficient to 0, we get a
system of NL algebraic equations. Solving these equations yields the following non-trivial

solutions.

5 v2(p? + 2rq)
BL(2 + e(p? — 4rq)v2)>'

( (12E — 12b8)prv? ) B < (12E — 12b6)r?v? >
) -2 - )

a1:0, a2:0, a0:<_

T\ TR ¥ e —drqwd) TR+ (7 — 4rq)v?)
(5.4)
1 bdep?v? — 4bdeqrv? + 2E
B 0(ep?v? — 4eqrv? +2) |
a_, a_q (5.5)

L=t ert o



qrv?(E — bS) )
B(e(p? —4rq)v* - 2)1)’

_( (A2E — 12b8)prv® _(1; (E — b&)r?v? (5.6)
= (B(E(pz — 4rq)v? — 2)l>’ 2= < B(e(p? — 4rq)v? — 2)l>’ ’

a1 = 0, a2 = 0, aO = <12

1o 2E — bdep?v? + 4bdeqrv?
B 0(ep2v? — 4eqrvz —2) [

a; a1 (5.7)
A T ARIG)

U,(§) = a

Set3 :

_ o — 0 _(_, v2(p? + 2rq)(E — bS)
=% 4270 M= BlL(2 + e(p? — 4rq)v?))’

3 (12E — 12b8)pqv? 3 (12E — 12b6)q?v?
%= <_ BL(2 + e(p? — 4rq)v2)>' 27 <_ BL(2 + e(p? — 4rq)v2)>'

(5.8)
. bSep?v? — 4bSeqrv? + 2E
B 0(ep?v? — 4eqrv® +2) |
U3(§) = ag + a,0(§) + ax(9(§))* (5.9)
Set4 :
3 B 3 qrv?(—bs + E)
a-1=0, a-2=0, o = <12,8(—2 + e(p? — 4rq)v2)l>'
3 (12E — 12b8)pqu? 3 (12E — 12b6)q?v?
%= <ﬂ(—2 + e(p? — 4rq)v2)l>' z <ﬂ(—2 + e(p? — 4rq)v2)l>'
(5.10)
2= 2E — bSep?v? + 4bSeqrv?
“ | o(epv? —4eqrvi-2) |
Us(§) = ag + a10(8) + ax(9(§))* (5.11)

For the case 1, substituting the values from Eq. (5.4) into Eq. (5.5) along with the Riccati equations
solutions, we can get many different types of solutions including solitary wave solutions, periodic

wave solutions and rational solutions. Where,



X

a Atlx

&=

rM+a) T1+a)

Family 1:

When A> 0 and pg # 0 or gr # 0, the hyperbolic function solutions of Eq. (5.1) are as follows,

U1,1 =

U1,2 = -

U1,3 =

U1,4 = -

48(E — b8)r?v?q?
_ 2
(2 + e(DvD)I (P +VAtanh (2x/1£€>>
) 24(E — b8)prv’q —x 4o
(2 + e(DvD)Ip (P +VAtanh (2&5))
48(E — b&)r?v3q?
(2 + e(@)v)IB <P + ‘/—C"th< \/—f>>
) 24(E — b8)prv’q — Ao,
2
(2 + e(A)vD)Ip (P + ‘/ZCOth< \/_€>>
) 48(E — b&)r*vq?
2 (v +/8) x )2
(2 + eI ((tanh (VAE) + isech(VAE))
) 24(E — b8)prvq
i (v +/B) x )
2+ e(@w?)Ip ((tanh (VAE) + isech(VAE))
—A,,
48(E — b&)r2v?q?
(p+ \/_) x
(2 +e(Q?)IB ((coth(\/Zf) + csch(\/zf))>
) 24(E — b8)prvq
(p + \/Z) X
(2 +e()v?)Ip ((coth(\/Zf) + csch(\/zf))>

_AOI

(5.12)

(5.13)

(5.14)

(5.15)



48(E — b&)r?v?q?

(2p +VA) x ’
BL(2 + e(A)v?) <\/‘ 5) + coth (x/&f)

24(E — b&)prv?q (5.16)

(Zp + \/_) X
Al + e(@)v?) tan (\/—S() + coth (\/ZS()

4

U1,5 = -

+

_AO,

V(A% + B%)(B)
48(E — b&)r?v? —AVA cosh(VA?)

Ve =~ % e(A)vz)l,B

Asinh(VAE) + B /l

p+

(5.17)

_24(E - b&)prvq
2+ e(A)v?)Ip

—A\/Z cosh(\/ZS) _A
Asinh(VA¢) + B ) o

o
\
/ VA +BHB)
.

/ JEAZEBH@)
U __48(E-b&r*vie*|  +AVAsinh(VAS)
VT BL2 + e(A)v?) k P Acosh(VA¢) + B )

(5.18)

/ JEAZ+BH@)\
24(E b&)prviq +AVA sinh(VA§) _A
BL(2 + e(D)v?) k P Acosh(VA¢) + B ) o

Where two non-zero real constants A and B satisfies A2 — B? > 0.



VA sinh (

3(E — b&)v?
— pcosh(

BL(2 + €(A)v?) cosh (

(\/Zsinh
6(E — b8)pv?

— pcosh

Sk
—

SIS
—

U1,8 = -

S
—

VRS
N|§|
Yy

_/

B JE

)

N|

j— AO;

A

m

BlL(2 + e(A)v?) cosh<

)

( \/—cosh \/_T\‘
3(E — bS)v?
’ _f

2

+ psmh /
- 2

1,9 =~
(2 + e(A)v?)BI <sinh <\/—T>>

—+vA cosh —)
6(E — b&)pv? k )

2
+ psinh <_§>

2
+
(2 + €(A)v?)B Isinh <£>

— AO'

(5.19)

(5.20)



_ (VAsinh (VAE) — 2
o 3(E — b&)v? <p(cosh(\/Z§) 5 h/Z))
1,10 — \/Z >
BlL(2 + e(A)v?) (cosh <T€>> .
_ ,( (VAsinh (VAS) — ) ‘
6(E — b8)pu <p(cosh(\/_§) © E)
_ A
BL(2 + €(A)v?) cosh <\/—€>
(VA cosh(VA¢)) )2
3(E — b&)v? (
Uy = — * \_psinh (V&%) £ V&)
(2 + e(A)v?)pL (smh \/—€>
(5.22)
. (VAcosh(VA§)) )
6(E — bd
( » <—psinh (VAE) + VD)) y
_ A
(2 + e(A)v3)pL (smh \/—Sc)
2
( 2p sinh (f f) (@)\
3(E — b&)v?
\ +2VA cosh (@> _ VA /
U1,12 = - !
(8 + 4€(A)v?)plsinh <\/_€> cos (@)
(5.23)
/_ZP sinh <\/_§> cosh <\/_€>\
6(E — b&)pv?
k +2+v/A cosh <\/_€> —+A )
- — A,.
2(2 + e(A)?)B Isinh <f f) <@>
Family 2:

If A< 0 and pq # 0 (or qr # 0), we have the following trigonometric solutions.



48(E — b8)r2v2q?

U3 = — 2
B2+ e(a)v?)l <—P +y=han (@))
(5.24)
24(E — b&)prv’q A
— e
B2+ e(D)v?)l <—P +-dtan <\/?€>>
48(E — b&)r?v?q?
Up1ea = — 2
B2+ e(@)v?)! <P + = cot (\/?f))
(5.25)
24(E — b&)prv’q
+ e
B2 + ()2l (P +V=Acot (V?f))
o 48(E — b&)r?v?q?
1,15 = 2
, (=p +y-8) x )
B2+ e(d)v?)l ((tan(\/—_Af) + sec(V—-A¢))
_ 24(E — b8)prvq o
(p+V-D % )
2
B2+ e(D)v?)l <(tan(ﬁg) + sec(vV—A¢))
_AO,
48(E — b8)r?v2q?
U6 = — (p +V-4) x 2
2 P -
B2 + e()v?)! (cot(\/—_Af) + csc(\/—_Af)>
+ 24(E — b8)prvq -
] (p+V=2) x >
B(2 + e(D)v?)l ((cot (V=A%) + csc (V=-A§)))

_AO,



192(E — b&)r?v?q?

U1,17 = - 2
( 2p + \/_) X
B2+ e(D)v?)l <tan <\/—_A€> ~ cot <\/—_A§>>
4 4
B 48(E — b8)r?v?q? (5.28)
(—2p +V-A4) x
B(2 + e(A)v?)l (t (\/—_AE> B (\/—_AE»
an|-—— | — cot| ——
—Ay,
/ V(42 =B (1) -
U - _48(E - b&)r?v? | N AV=A cos(V—A¢) |
118 =TT e(A)vz)l \ P psin(V=5¢) + B /
/ J@ =B -\ (5.29)
_24(E - b&)prvq N AV=A cos(V—A¢)
B2+ el k P T Asin(V=h¢) + B )
_AOI
/ J@ =D +\
U - 48(E — b8)r?v?q? AV=A cos(V—A¢)
1,19 = —

B2+ e(D)v?)l k_p " Asin(vV—A¢) + B )

/ JA B0 +\ (5.30)
24(E b&)prvq N AV=A cos(V—-A¢)
B2+ el k P Asin(V=h¢) + B )

_Ao.

Where two non-zero real constants A and B satisfies A> — B? > 0.



(V=3) x ’
3(E — béy* sin <\/__A€> + pcos (—\/__A(’()

2

)

(V=F) x (5.31)
)

_ 2
6(E — bo)pv <si ( >+pcos <\/?§

B(2 + e(A)v?)Icos <

U1,20 =

B2 + e(A)v?)l <cos <

+

_AOI

(V=3) x ’
3(E = boy? cos <\/__A§> — psin (—\/__A(’()

2
1,21 —
B2 + e(A)v?)l <sm( >>
(\/—) % (5.32)
6(E — b&)pv? ( > \/_Af>
oS psin(—

[
)

B2 + e(A)v?) lsm<

_AO,



U1,22 =

U1,23 -

U 1,24 —

2

V—=Asin(vV—-A¢) )
+p cos(\/—_Af) +V-A

2
B2 + e(A)v?)l <cos <\/?€>>

\/—_Asin(\/—_Af) ) (5.33)

+p cos(y/p? — 4qré) £V-A

B2 + e(A)v?)Icos <\/?§>

3(E — b&)v? <

6(E — b&)pv? <
+

_AOI

(V=2 cos(V=2¢)) )2
—psin (V=A&) £ V-A
B(2 + (@) (sin(V=ES))”

_ . (V=Acos(V=4%)) ) (5.34)
6(E — b&)pv <—psin (V=A&) +V-A
B2+ e(A)v?) lsin(\/—_Af)

(o)

3(E —boJ k 2\/_ cos (\/?S()

2
462 + e(A)v?)l (sin( ) ( ( 4Af

< 4A§ \I (5.35)
)

3(E — b&)v? (

_AO,

l>
\__/

6(E — b&)pv? i 2 \/_A<m \/_A€>>
4
B 4qr — p2
2B(2 + €(A)v?) Isin (T > <T€>

_Ao.



v?(p?+2qr)(-bS+E)
(2+e(p2—4aqr)v)ip’

Where Ay = 2

In case 2, substituting values from Eq. (5.6) and Riccati equation solutions in Eq. (5.7) with

x% At®
l+a) TA+a)

&=

Family1:
When A> 0 and pq # 0 or qr # 0, the hyperbolic function solutions of Eq. (5.1) are as follows,

(—48b6 + 48E)r%v?%q?

U2,1 = 2
VA x
—2+
et | P o (42)
(—24b6 + 24E)prv3q 12 qrvi(—=bs + E)
VA X BL(—=2 + e(A)v?)’

Al (6(A2)j)_ ) pt tanh <\/—€>

(5.36)
(—48b8 + 48E)r?v2q?

VA x
Bl(=2+ @) p+| o <@>

Uz,z =

(—24b6 + 24E)prv3q qrv(—bs + E)
_ +12 =,
VA x Bl(=2 + e(A)v?)

Bl=2+e@w) | p+| o <@>

(5.37)



—48b6 + 48E)r2v?q?
( q

(p ++/8) )2
(tanh(VA¢) + isech(VA?))

(—24b6 + 24E)prv3q 12 qrv?(—bsS + E) (5.38)

_ 2 (p +VA) x ) BL(=2 + e(Q)v2)
PL(=2+ e(D)v )<(tanh(\/Zf) + isech(VA¢))

—48b6 + 48E)r2v?q?
( q

(p +VA) x )2
(coth(VAS) + csch(VAS))

(—24b6 + 24E)prv3q 12 qrv*(—bé + E) (5.39)

- 2 (p +VB) x ) BL(=2 + e(B)v?)
BL(—2 + e(M)v?) <(coth(\/Zf) + csch(VAE))

(—48b6 + 48E)r*v?q?
BL(=2 + e(A)v?) X

(2p +VA) x

()

(—24b6 + 24E)prv3q 12 qrvi(—=bs + E)
BI(—2 + e(A)v?) 2 F ey (5.40)

(2p +VB) x )

(o)

Uzz =
BL(—2 + e(A)v?) <

U2,4 =

BL(—2 + e(A)v?) <

Uys =




/ (./(A2 + B2)(A) — \
U - (—48b6 + 48E)r?v?q*? . A\/Zcosh(\/_f)
267 BI(-2 + e(A)v2) P Asinh(VAE) + B )

( V(4% + B?) (1) >\ (5.41)

(—24b6 + 24E)prv3q /_ N —AVA cosh(VA?)
BL(—2 + e(A)v?) k P Asinh(VA¢) + B )

qrv?(—bé + E)

e 2 T ey

U = (—48b6 + 48E)r%v?%q?
27 = BI(—2 + e(p? — 4qrv?)
/ (J(—AZ + B2)(A) +>
AVA sinh(VA§) ( 24b6 + 24E)prv?q

k‘p‘ Acosh(VAE) + B ) BI(=2 + e(@)v?)

(5.42)

/ (J(—AZ + B2)(A) +>
o AVA sinh(VA§) qrvz(—b6 + E)
k P Acosh(VAE) + B ) Bl(—Z + €e(M)v?)

Where two non-zero real constants A and B satisfies A2 — B? > 0.



>

Vae\\
Asth\

(—3bS + 3E)v?
k pcosh @ )
Upg =
BU(=2 + (Av?) (cosh (@
(5.43)
( i (13¢) \
(—=6bS + 6E)pv?
— pcosh <@ / ,
+ , qrv*(=bs + E)
VAS LBz T ey
BI(=2 + €(A)v2) cosh <T>
A cosh <\/—€>\
(=3b8 + 3E)v?
k + psinh <\/_€> )
| BL(=2 + e(d)v?) (smh <\/_€>>
(5.44)

A cosh <\/—f )\

VA¢
+psmh< > )_I_ CITUZ(—b6+E)

BU(=2 + e(A)v?) sinh (V_ f) BI(—2 + e(B)v?)

(—6b5 + 6E)pv? k




2

(—3b6+3E)U2< (VAsinh(VA¢) >

—p(cosh(\/_f) + L\/Z)

2
Bl(—2 + e(A)v?) <cosh (2\/_€>>

(VA sinh(VA¢) )
—p(cosh(\/—f) + i\/Z) +12

Bl(—2 + €(A)v?) cosh <2\/_€>

U2,10 =

(5.45)

—6b8 + 6E)pv?
( » ( qrv?(—bé + E)

BlL(—2 + e(A)v?)’

+

2

(—3b6+3E)U2< VA cosh(VA?) >

—p(sinh(VAE) £ VA)
Bl(—2 + e(A)v?) <smh <\/—€>>

VA cosh(VA?) )
p(sinh(VE?) £ E)

Bl(—2 + €(A)v?) sinh <\/_f>

U2,11 -

(5.46)

—6b6 + 6E)pv?
( » ( qrv*(—bé + E)

BlL(—2 + e(A)v?)’

+

( p sinh (@ >
+2\/—<cosh< \/—5
4p1(-2+ E(A)v2)< sinh (@))

[ G(E) )

(—3b6 + 3E)pv? 5
k+2\/— (cosh <\/Z§>> — VA

(—3b6 + 3E)v? k

v

v
é

SN~

U2,12 =

(5.47)

) 12 qrv?(—=bS + E)
Pl(=2 + e(p? — 4qr)v?) jsinh (@) BL(=2+ e(A)v?)

+



Family2:
If A< 0 and pq # 0 (or qr # 0), we have the following trigonometric solutions:

(—48b6 + 48E)r?v?q?

192+ e(@?) (=p +=Btan| —A€>)2

U2,13 =

2

—24b8 + 24E)prv? rv?(=bS + E
4 ( )prv’q L1 TV )

IB(—2 + e(A)v?) <—p + \/—_Atan< —2A5>> IB(—2+ e()v?)

(—48b5 + 48E)r2v2q?

IB(—2 + e(A)v?) <p + \/—_Acot( _2A€>>2

(—24b§ + 24E)prv’q qrv2(—bs + E)
IB(—2 + e(A)v?) (P + \/—_Acot< _2A5>> IB(=2+ e(D)v?)

U2,14 =

(—48b6 + 48E)r?v2g?
Uz s = 5

R T
1B(—2 + e(A)v?) ((tan(\/—_Af) + sec(vV—=A%))

—24b8 + 24E)prv? rv?(=bS + E
4 ( Jprv’q PP L )

IB(—2 + e(A)v?) ((tan(\/—_Af) + sec(\/—_Af))

(—48b6 + 48E)r*v?q*
(p +V-4) x >2
(cot(\/—_Af) + csc(\/—_Af))

U2,16 =

IB(—2 + e(A)v?) <

(—24b6 + 24E)prviq 12 qrv?(—bS + E)

IB(—2 + e(A)v?) <

(cot(\/—_Af) + csc(\/—_Af))

(—p +V—=24) x ) IB(—2 + e(A)v?)’

(p +V-4) x ) IB(=2 + e(A)v2)

(5.48)

(5.49)

(5.50)

(5.51)



(—192b6 + 192E)1r?v?q?

Uz17 = 2
(~2p +V=E) x
[B(=2 + e(A)?) (tan <v?e> ~cot (@f))
(5.52)

(—48bS + 48E)prvq 12 qrvi(—=bS + E)

(—2p + V=2) x 1B(—2 + e@)v2)
1B(~2 + e(d)v?) (tan <\/—_AE> ot (mg>>
) )

+

/ <ii\/(—A2+BZ)(—A)>\ ’
_ (—48b6 + 48E)r?v?q? N —AV=A cos(N=A¢§) )

Yoo = v e | P T asin(vone) + B

<J_ri\/ (A2 + BZ)(—A)>\ ' (5.53)
. —AV-A cos(\/—_Af)
P Asin(V=5¢) + B )

(—24b6 + 24E)prviq /
MNTIES FT N N k

qrv?(—bs + E)
IB(—2+ e(A)v?)’

+12

/ (iiJ(—AZ + Bz)(—A)>\
- (—48b5 + 48E)r*v?q® | N —AV—=A cos(V—-A%)
2 IB(=2 4 e(M)v?) k P Asin(V—A¢) + B )

(il\/ (A% + BZ)(—M)\ (5.54)
. —AV-A cos(\/—_Af)
P Asin(v=5¢) + B )

(—24b6 + 24E)prviq /
IB(—2 + e(A)v?) k

qrv*(—bS + E)

e T e

Where two non-zero real constants A and B satisfies A2 — B? > 0.



2

V—Asin <\/?€>

(—3b6 + 3E)v?
k + pcos (?5) )
Uz,zo =
Ip(=2 + e()v?) ( (@f))
(5.55)
( V=Esin (V? \
(—6b5 + 6E)pu?
+ pcos / i+
IB(—2 + e(A)v?) cos (\/_€> 1,8(—2 + e(A)v?)
vV—A cos <\/?f> \
— 2
(=3b6 + 3E)v k | <\/W€>)
—psin { +————
U2,21 = _
IB(=2 + e(A)v?) <sin (@f))
(5.56)
/\/—_A cos <\/?€>\
—6b8 + 6E)pv?
( + 6E)pv o (\/__ASC)
+ " 2 qrv?(—bs + E)

+ 12 :
IB(—2 + e(8)v?)sin <@€> (=2 +e@n?



V=4 sin(V=3¢) >2
+p cos(\/ZE) ++/-A

2
IB(—2 + e(A)v?) (cos <\/?E>>

V=Asin(vV—-A¢) )
+p cos(VAE) £ VA qrv?(—=bs + E)

+ )
1B(~2 + e(A)v2) cos <¢—5> B(=2+e(B)?)

(=3b6 + 3E)v? <

Uz,zz =

(5.57)

(—6b6 + 6E)pv? (

2

\/—_Acos(\/—_Af)
—psin(vV=A¢) + \/—_A>
1B(~2 + e(A)v?)(sin(V=4¢))’
\/—_Acos(\/—_Af)
—psin(vV—-A%) + \/—_A> N qrv?(—bé + E)
IB(—2 + e(A)v?) sin(V—A¢) IB(—=2 + e(M)v?2)

(=3b6 + 3E)v? <

U2,23 =
(5.58)

(—6b6 + 6E)pv? (

(e (54))- “\
\ #2478 (os f)
1B(=2 + e(A)v?) <sin< )

(r=( )

\ +2v/—A <cos < >> qrvz(—bS +E)

B2+ (A7) <¢—5> + Lz emnd
2 Sin 2

(—3b6 + 3E)v?

m

(5.59)

(—=3b6 + 3E)pv?

For case 3, substituting values from. Eq. (5.8) and Riccati equation solutions in Eq. (5.9) with



Xt At®
“T(l+a) T+a)’

$

Family1:
When p? — 4qr > 0 and pq # 0 or qr # 0, the hyperbolic function solutions of Eq. (5.1) are as

follows,

v2(p? + 2qr)(—=bs + E)
(2 + e(A)v2)BI

U1 = -2

(—6bS + 6E)pv? (p + +v/Atanh (@))

" (2 + e(M)v?)BL (5.60)

2
(—3b6 + 3E)W*? (p + VA tanh (@))
(2 + e(A)v?)Bl

v2(p? + 2qr)(=b8 + E)
2+ e(A)v?)pl

(—6b6 + 6E)puv? <p + /A coth <@>>

* (2 + e(A)v?)BL (5.61)

Usp, = —2

(—3b6 + 3E)? <p + VA coth <@>>
(2 + e(A)v2)BI

v2(p? + 2qr)(—bs + E)
(2 + e(A)v?)pl

Us3 = —2

(p +VA) x
tanh(VA§) + isech(ﬂf)))
(2 + e(A)v2) Bl

(p +VA) x 2
tanh (\/Zf + isech(x/Zf)))
(2 + e(A)v?)pl

(—6b6 + 6E)pv? <
. (

(5.62)

(—3b6 + 3E)v? (




v2(p? + 2qr)(—bS + E)

Van = T g ey DRl

(—6b68 + 6E)pv? < (p+va) x )

(coth(\/ZE) + csch(\/Zf))
(2 + e(A)v?)BI

(p +VA) x )2
(coth(\/—f) +csch(\/—€))
(2 + e(A)v?)BI

+

(—3b6 + 3E)v? (

v2(p? + 2qr)(—bS + E)
2+ e(A)v?)pl

(2p+\/Z)x
—6bS + 6E)pv?
i )

(2 + e(A)v?)BI

(Zp + \/Z) X ’
(=3b8 + 3E)v? (t <\/_st> + coth <\/Z§>>
4

(2 + e(A)v?)pl

U3,5 = -

+

v2(p? + 2qr)(—bS + E)

Use = 2 eawd)pl

/ ( J(A%2 + B2)(n) )
(—6b6 + 6E)pv? | - AVA cosh(VA?)
2+ e(p? — 4qrvd)pl \ Asinh(VAZ) + B

/ J(A42 + B2)(n) )\
_ (=3bs + 3E)v? —AVA cosh(VA§)
(2 + e(Q)v?)Bl \ Asmh(\/_f) + B / '

\
)

(5.63)

(5.64)

(5.65)



v2(A)(~b6 + E)

Us7 = 2 el

/ <J( A? +BZ)<A)>
( 6b5 + 6E)pv? | +AVA sinh(VA¢€)
(2 + e(A)v?)Bl \ P Acosh(VAE) + B

/ <J a7+ BZ)(A)>\2
_(=3b8 +3E)0*|  \+AVAsinh(VAS)
(2 + e(A)v?)pL k P Acosh(VAE) + B ) '

\
)

Where two non-zero real constants A and B satisfies A2 — B? > 0.

v2(A)(—bS + E)
(2 + e(A)v?)pl

U3,8 = -

(—24b6 + 24E)pqu? rcosh <@

A smh \/—S()\‘

\/_€>

(2 + e(Q)v?)Bl (
\— pcosh

(—48b6 + 48E)q*v?r? (cosh <@

( A sinh Tg \‘
(2 + e(A)v?)pl

(5.66)

(5.67)



v2(A) (b6 + E)

Uso = =2 T e@wd)pl

(—24b8 + 24E)pqu? rsinh (J_T>
+

/—\/—cosh \/_T

(2 + e(A)v?)pl
+ psmh

(—48bS + 48E)q*v?r? (smh (\/—f

2

( VA cosh (@)\
(2 + e(A)v?)BI /

\ + psinh <@>

_ v2(A)(—bS + E)
3107 2T ¥ e(M)v?)BI

(—24b6 + 24E)pqu? rcosh <\/_€>

VA sinh(VA¢) >
—p(cosh (VAE) + ivVA

(—48b6 + 48E)q*v?r? (cosh (@))

2+ e(A)vz)ﬂl<

2
(2 +e(@uDhl <—p(cosh (VAE) +ivVA

_ _v*(Q)(=bS +E)
Usi1 = —2 (2 + e(M)vD)BI

VA sinh(VA¢) )2'

(5.68)

(5.69)

(5.70)



(—24b6 + 24E)pqu? rsinh (@)

VA cosh(VA?) )
—p(sinh(\/ZS)i \/Z)

2
(—48b6 + 48E)q*v?r? <sinh (@))

2’

2+ e(A)vz)ﬁl<

VA cosh(VA?) )

(2 + e(@oB! (—p(sinh(\/Zf) +/A)

_ _v*(Q)(=bS +E)
Usi2 == (2 + e(M)vD)BI

24(—b6 + E)pqu? rsinh <
2 2
(2 + el)u)pl L+2\/Z (cosh (—\/4&()) J

VA
96(—bé + E)q?v?r? (sinh (ﬂ(’())

((nl®) ¥

2
e @ a5 o (L))

e )

If A< 0 and pq # 0 (or qr # 0), we have the following trigonometric solutions:

(5.71)

Family2:



U (bs + )
3137 B2 + e(M)v?)]

(—6b6 + 6E)pv? <—p ++/—Atan <—\/?§>>

- L2+ e(A)v?)l (5.72)

2
(—3b5 + 3E)v? <_p +V=Atan <\/?f>>
B2+ e(M)v?)l

U (bs + )
34T B2 + e(M)v?)]

(=6b6 + 6E)pv? (p +v=Acot (\/?f»

v B2+ e(A)v?)l (5.73)

(—3b6 + 3E)v? (p +V—Acot (@f))
L2+ e(A)v?)l

_ v*(Q)(=bS +E)
Usis = — B2+ e)vD)l

2 (—p +V=8) x
(—6b3 + 6E)pv ((tan(\/—_ff) + sec(\/—_Af))>

- L2+ e(A)v?)l (5.74)

(—p +V—-14) x )2
(tan(vV—A¢) + sec(vV—A¢))
L2+ e(A)v?)l ’

(—3h6 + 3E)u2<




_ v2(A)(~b6 + E)
316 7 28 (2 + e(M)v?)l

(p +V—14) x

(—6b5 + 6E)pv ((cot(\/—_Af) + csc(vV—-A¢))

)

+

B2 + e(A)v?)l

(p +V-4) x
(cot(\/—_Ag) + csc(\/—_Af))
B2+ e(A)v?)l

2

)

(—3b6 + 3E)v? <

_ _v*(Q)(=bS +E)
Usa7 = =2 B(2 + e(D)v?)l

(—2p +V=A) x

(=3b8 + 3E)pv? ((m <\/?E> _ cot (@f))

(5.75)

)

|

B2 + e(A)v?)l
(~2p + V=) x

(5.76)

T (AR

482 + e(A)v?)l

_ v2(A)(=bS + E)
3187 T2 B2 + e(A)v)l

+iy/ (=A% + B?)(-4)
—AV-A cos(\/—_AE)
Asin(\/—_Af) +B

(

I\—p
B (=3b8 + 3E)v? /_ N —AV=A cos(V—-A%)
B2 +e<A>v2)z\ P T Asin(V=0¢) + B

(—6b6 + 6E)pv?
- B2 + e(A)v?)l

J

)

+i/(—AZ + BO(-D)\

|

(5.77)



- v2(A)(~b6 + E)
3197 282 + e(A)vR)l

/ tiy/ (=A% + B?)(-4)
(—6b68 + 6E)pv? ot +AV—=A cos(V—-A¢) |

B+ e(A?)l l\ Asin(V-A¢) + B /

/ +i/(—A2 + B2)(=A) ’
_ (=3bs + 3E)v? . +AV—=A cos(V—-A%)
B2 +e@wdl| P Asin(vV—A¢) + B ) '

Where two non-zero real constants A and B satisfies A2 — B? > 0.

U = 21)2(A)(—b5+E)
3207 TR (2 + e(A)v?)l

(—24b6 + 24E)pqu? rcos <\/__A€>

Fm( )
J

+ pcos ( >
2
(—48b6 + 48E)q*v?*r? <cos (\/—_A§>>

(\/—_A sin <\/?€>

+

B2+ G(A)vz)l(

B2 + e(A)v?)l

(5.78)

(5.79)



i v2(A)(—b6 + E)
3217 T2 B2 + e(A)v)l

(—24b6 + 24E)pqu? rsm(

e

2 + e(Mv2)l
B(2 +e(B)v?) \/—Ag
psm 7 (5.80)
A

(—48b6 + 48E)q*v? 2< ( 25

)
>\
=)

=)

—A cos

B2+ G(A)vz)l(

— psm

Ueo = v2(A)(=bS + E)
322 = B2 + e(p? — 4qr)v?)l

(—24b6 + 24E)pqu? rcos ( _2A€>

V=Asin(vV—-A¢) )
+p cos(VAE) +v—-A

(—48b6 + 48E)q*v?r? (cos (J?SC))

V=4 sin(V=3¢) )2 '
+p cos(\/Zf) ++/-A

+

B2+ e(A)vz)l( (5.81)

B2 + e(A)v?)l (

_ P ®Ehs+B)
Usas = =2 e

(5.82)



(—48b6 + 48E)q2v?r?(sin(V=2¢))"
V=A cos(V—A¢) )
—psin(vV=A¢) £ V-A

2 )

B2 + e(A)v?)l (

_ _v*(Q)(=bS +E)
Usza =~ B(2 + e(A)v?)l

24(—b6 + E)pqu? rsin (\/?S()

[ an(TE)
pa E<A>v2>lkm<mg (5E) )

_V=h)
48(—bs + E)q?v? 2< in <\/__A€>>

( -p sm
B2 + e(A)v?)l | (c

\___/

A

Family 3:
When r = 0, and pq # 0, we get soliton like solutions,
v2p2(—bS + E)
U3,25 =-2 2.2

(2 + ep?v?)pl

(—12b6 + 12E)p?qu3X
(2 + ep?v?)Blg(R + cosh(pé) — sinh(pé))

(—12b8 + 12E)q*v?p?N?

- (2+ep vz)ﬂl(q(?{ + cosh(pé) — smh(pf)))2 ,

(5.83)

(5.84)



v2p?(—bS + E)
(ep?v? + 2)p1
(—12b6 + 12E)p?qu?(cosh(pf) + sinh(pé))
(ep?v? + 2)Blg(R + cosh(pé) + sinh(pé))
(—12b6 + 12E)q*v?*p?(cosh(pé) + sinh(pé))?
- (ep2v2 + 2)BL(q(R + cosh(pé) + sinh(pf)))2 ,

Where X is constant.

U3,26 = -

(5.85)

Family 4:
When q # 0, and, r = p = 0, we have following rational solution.

(—6b8 + 6E)q*v?
Bl +C)* '

Where C is an arbitrary constant.

(5.86)

U3,27 = -

In the case 4, substituting values from Eq. (5.10) and Riccati equation solutions in Eq. (5.11) with

_xe At®
"T1l+a) TA+a)’

$

Family1:
When A> 0 and pq # 0 or qr # 0, the hyperbolic function solutions of Eq. (5.1) are as follows,

qrv?(—bs + E)
(-2 4+ e(A)v?)pB

(—6b8 + 6E)pv? (p + vAtanh <@>>

- (=2 + c)vDB (5.87)

U4'1 = 12

(=3b6 + 3E)v? <p ++/Atanh (@))

* (=2 + e(0)v?)B '




qrv?(—bs + E)
U42 = 12
’ (-2 + e(A)v?)p

(—6b8 + 6E)pv? (p + VA coth (@))

(-2 + e(A)v?)p

2
(=3b8 + 3E)v? (p + /A coth (@))

+ (=2 + e)2)B

qrvi(—=bs + E)

iz = B @B

(—6b6 + 6E)pv? ( (p+va) x

tanh(\/Zf) + isech(\/Zf)

)

(-2 +e(A)v?)p

(—3b6 + 3E)? < (p +VB)

+

tanh (WVA) + isech(vA§)

(=2 + e(A)v?)p

qrvi(—=bs + E)

Vas = B e@wnp

(—6b6 + 6E)pv? ( (p+va) x

coth(\/Zf) + csch(\/Zf)

i

)

(=2 +e(A)v?)p

(=3b8 + 3E)? < (@ +VD)

+

coth(v/A8) + csch(VA$)

(=2 + e(A)v?)p

(5.88)

(5.89)

(5.90)



qrv?(—bs + E)

Uas = 21 re@vop
(2p +VA) x
(—6bS + 6E)pv (t <\/_§> + coth (x/}f))
B 1(—2 + e(MvD)B (5.91)
(Zp +/p* —4qr) X i
(=3b5 +3E) <tanh <\/—€> + coth <$>>
* (=2 ¥ e()v?)B
. qrv*(=bs + E)
Use = V21 rewo)p
/ JAZ+B2)(D)
N (—6b6 + 6E)pv? . —AVA cosh(VA§)
(=2 + e(A)v?®)p \ p Asinh(\/Zf) + B / (5.92)
/ V(4% + B2)(4)
N (=3b6 + 3E)v? |+ —AVA cosh(VA§)
I(—2 1 QDB \ P Asinh(VAE) + B / '
. qrv*(=bs + E)
Ve = 2y o re@wop
/ V(=A% + B?)(8)
N (—6b6 + 6E)pv> +AVA sinh(VA?)
(-2 + e(A)vz)ﬁ \ Acosh(\/ZE) + B/ (593
5.93

/ JCAZ B \2
L (=3b8+ 3E)v? +4,/p? — 4qr sinh(VA¢) |
l( 2+ e(A)v?)p l\ P Acosh(VAE) + B / '




. qrv*(=bs + E)
Uss =12 1(=2 + e(Av)B
/ V(=42 + B2)(8)
N (—6b5 + 6E)pv? |y +AVA sinh(VA§)
I(—2 1 QDB \ P Acosh(VAE) + B /

(5.94)

[ CE® :
(—3b6 + 3E)v? _ +4VAsinh(VAS)

+l(—2+e(A)v2)ﬁ\ P Acosh(VAE) + B / |

Where two non-zero real constants A and B satisfies A2 — B? > 0.

qrv?(—bs + E)
(-2 + e(A)v?)pB

U4,8 == 12

(—24b6 + 24E)pqu? rcosh <T€>
/\/Z sinh (@)

(=2 +e(A)v?)p JE
—pCOSh T (595)

+




qrv?(—bs + E)
U49 = 12
’ (-2 + e(A)v?)pB

(—24b6 + 24E)pqu? rsinh <\/_€>

/—\/Z cosh <@>
(=2 +e(A)v?)p k

2
(—48b6 + 48E)q?v?r? <sinh <\/—%>>

(—\/Z cosh (@)\
(-2 + e(A)v?)p
\ + psinh <@> /

qrv?(—bé + E)

Uso = 20 e mvd)p

2
VA sinh(VAE) — )
pcosh(\/ZS) + ivVA

2
(—48b6 + 48E)q*v?r? (cosh <@>>

(—24b6 + 24E)pqu? rcosh <@>

+

I(-2+ E(A)vz)ﬁ(

+

(=2 +e@wp <pcosh (VAE) +ivVA

qrvi(—bS + E)
(=2 + e(Mv3B

U4,11 =

VAsinh (VAE) — >2 '

(5.96)

(5.97)



(—24b6 + 24E)pqu? rsinh <\/_§>

VA cosh(VA?E) — )
p(sinh(VA§) £ VA)

2
(—48b6 + 48E)q?v?r? <sinh <@>>

VA cosh(VAE) — )2’
p(sinh(VAE) £ VA)

(5.98)

+
I(-2+ E(A)vz)ﬁ(

+
I(-2+ e(A)vZ),B<

qrv?(—=bS + E)

Vare = L2 e mvd)B

24(—b6 + E)pqu? rsinh <\/—f

)
[ () )
1(—2 + e(A)v2)B k” Vi (Cosh (@))2)

VA
48(—bs + E)q?v? 2<smh<\/_€>>

( -p smh

(=2 +e(vdB| \/-(Cosh \/‘ f

\

When A< 0 and pg # 0 or qr # 0, the trigonometric solutions are.

(5.99)

+

\___/

Family 2:

U =1 qrv(—bs + E)
13T T2 RI(=2 + e(AW?)




(—6b6 + 6E)pv? <—p ++V—Atan <@>>
Bl(—2 + e(A)v?)

+

2
(=3b5 + 3E)v? <—p ++v/—Atan <\/?E>>

+ Bl(=2 + e(d)v?)

qrv(—bs + E)
Bl(=2 + e(A)v?)

U4_‘14 == 12

(—6b68 + 6E)pv* (p +v/—A cot <\/?€>>
BlL(=2 + e(A)v?)

(=3b6 + 3E)v? (p ++v—Acot <@>>
Bl(—2 + e(A)v?)

+

qrv?(—bS + E)
Upis =1 2
Bl(—2 + e(A)v?)

(—6b3 + 6E)pv? ( (=p ++=20) x )

N (tan(V=A¢) + sec(v—4¢))

Bl(—2 + e(A)v?)

(—=p +V-A) x )2
(tan(\/ —Af) + sec(\/ —AE))
Bl(—2 + e(A)v?)

(=3b6 + 3E)v? (
+

qrv?(—bS + E)
Bl(—2 + e(A)v?)

Up16 = 12

(5.100)

(5.101)

(5.102)



(—=3b6 + 3E)v? <

(p +V=5) )
(cot(\/—_Af) + csc(\/—_Af))

+

U =12 qrv(—bs + E)
17T 2T BI(=2 + e(A)v?)

(—=3b6 + 3E)pv? << <
tan

BlL(=2 + e(A)v?)

)

(—Zp + \/—_A) X )

5. ()

+

BlL(—=2 + e(A)v?)

(—3b8 + 3E)pv? << <
tan

(—2p + V=A) X ’
o)
7 7

+

qrv?(—=bé + E)
Bl(=2 + e(A)v?)

U4-,18 == 12

(—6b6 + 6E)pv? /

T2 reny| 7P

(—=3b5 + 3E)v?

B2+ e@)v?) k_p *

4B1(—2 + e(A)v?)

tiy/(=A? + B?)(-4)
—AV—=A cos(V—-A¢)

Asin(\/—_Af) +B )

+i /(A2 + BO(—D)\
—AV=A cos(V—-A%)

Asin(\/—_A€)+B ) ’

(5.103)

(5.104)

(5.105)



qrv*(—bS + E)

Usio = L2 g e o)

+iy/(=4% + B?)(-4)

N (—6b8 + 6E)pv? |/_ N +AV—=A cos(V—-A¢) |
pl(-2 +€(A)v2)\ P Asin(V-A¢) + B /

+iy/ (A% + BO(—D)\
N (=3b5 + 3E)v? . +AV—=A cos(V—-A%)
Bl(=2 + e(A)vz)\ P Asin(vV-A¢) + B / '

—

Where two non-zero real constants A and B satisfies A2 — B? > 0.

U 12 qrv(—bs + E)
207 7 BI(=2 + e(A)v?)

+

(5.106)

(5.107)



qrv?(—bS + E)

Vs = L2 i v e

(—24b6 + 24E)pqu? r51n< >

=
—

+

/\/_cos
Bl(=2 + e(A)v?) k

- psm (5.108)

(—48b6 + 48E)q*v? 2< <

( A(

— psm

+

Bl(—2 + e(A)v?)

)
=
)
\
)

qrv?(—bS + E)

Usor = 12 s e )

(—24b6 + 24E)pqu? rcos( _2A5>

V=Asin(vV—-A¢) )
+p cos(\/—_Af) +v/=-A

(—48b6 + 48E)q*v?*r? <cos <\/?§>>

V=Asin(V=4¢) )2
+p cos(\/—_Af) +v/-A

BL(—2 + e(D)v?) < (5.109)

+

Bl(—2 + e(A)v?) <

_— 12qrv?(—bé + E) 24(—b6 + E)pqu? rsin(vV—A¢§)
237 BI(=2 + e(A)v?) V=A cos(V—A¢) )
—p sin(\/—_Af) +V-A

Bl(—2 + e(A)v?) <

2 (5.110)
48(=bS + E)q*v*r?(sin(vV=4%))

V=4 cos(V=2¢) )2'
—p sin(\/—_Af) +V-A

Bl(—2 + e(A)v?) (



qrv?(—bS + E)

Usae = 12 s e @)

24(—b6 + E)pqu? rsin <\/?§>

[ ()

PO s ()

|
:

4
\ TR (5.111)
2
48(—b6 + E)q?v?r? (sin <\/?E>>
+ >
ENEER
— 2 2
A2+ e >L+N_—A<COS< 2) J
e,
Family 3:
When r = 0, and pq # 0, the hyperbolic function solutions are,
U - (—12b6 + 12E)p?quX
#2577 (ep?v? — 2)Blq(R + cosh(pé) — sinh(pd)) i)
(—12b8 + 12E)q*v%p?K2 '
" (ep?v? — 2)BI(q(X + cosh (pE) — sinh (PE))?”
U = (—12b6 + 12E)p?qu?(cosh(pé) + sinh(p¢))
426 7 (ep?v? — 2)Blqg(R + cosh(pé) + sinh(pé)) (5.113)

(—12b6 + 12E)q*v*p?(cosh (pé) + sinh (p&))?
" (ep?v? — 2)pl(q(R + cosh (p§) + sinh (p)))?

Where X is constant.



5.4 Graphical Explanation:

The doubly dispersive equation (DDE) is an important nonlinear model that can be used to define
the nonlinear wave propagation in the elastic inhomogeneous circular cylinder Murnaghan’s rod.
These waves have become important for scientists and engineers in the study of seismology, and
to determine the endurance of elastic materials and structures. These waves can be used in the
studies for the development of non-destructive testing techniques especially for pipelines, and to
understand the physical properties and internal structure of solids like brass, steel, glass and
polymers [172]. It is worth mentioning that the solutions obtained in this study represent certain
real-life situations. For example, the tan-hyperbolic solutions are useful in calculating the magnetic
moment and rapidity of special relativity, cos-hyperbolic solutions represent the shape of hanging
cable, cot-hyperbolic solutions appear in the Langevin function which arise in magnetic
polarization, sec-hyperbolic solutions represent the laminar jet profile [173]. Similarly, exact
solutions with the periodic functions exhibit periodic wave phenomena. It is significant to mention
here that a lot of new solutions have been produced for Murnaghan’s rod, and for the first time this
equation has been solved for space-time fractional order. The reason of using fractional differential
equation is that it is naturally related to physical phenomena with memory. Many well-known
equations can be solved by space-time fractional differential equations to get variety of new
solutions. Graphs of some obtained solutions has been discussed here for the better understanding
of the solitary wave phenomenon. Figure 5.1 depicts 3D-graphs of dark soliton solution generated
by U; ; with fractional order a = 0.7, 1, with some given parameters p = 3,q = 1,r = 2,b =
05p=1L,E=4€e=011=2v =2,6 =6. Figure 5.2, 3D-graphs of solutions U; 5, with
fractional order a = 0.6, 1, exhibits combined singular periodic wave solution by taking
parameters p =2,q=1,r=25b=03,=15F =10,¢ =0.5,l =2,v =3.5,§ =22.5.
Figure 5.3: 3D-graphs depicts dark singular solitons of U, 5 with fractional order a = 0.5, 1 by
choosing parameters p=1,q=5r=4,b=05L=1E=4€=011l=2,v =2, =
6.Figure 5.4,: 3D-graphsexhibits combined dark-bright soliton generated by Uj 3 with fractional
order a = 0.4 ,1, by taking p=3,q=2,r=1,b=03,=15E=10,e=05,l=2,v =
3.5,6 = 22.5.Figure 5.5 shows: 3D-graphs of hyperbolic solutions U, ¢ with fractional order a =
0.5, 1 with parametersp = 5,g =3,r=1,b =09, =5,E =11,e =0.05,l =2,v =5,§ =
33,A=2,B=4.
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Figure 5.1: 3D-graphs of U; ; with fractional ordera = 0.7, 1
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Figure 5.4: 3D-graphs of Uj 3 with fractional order a« = 0.4, 1
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Figure 5.5: 3D-graphs of U, ¢ with fractional order « = 0.5,1

5.5 Conclusions:

Improved generalized Riccati equation mapping method has been applied to secure exact traveling
wave solutions to the space- time fractional Murnaghan’s rod equation. As a result, some totally
new solutions have been obtained. These solutions include several solitary wave solutions: dark,
combined dark-bright, singular periodic wave, combined singular periodic wave solutions and one
rational solution. A back substitution verifies the exactness of the solutions, and their overall
behavior has been highlighted with the help of graphs. These new results might clarify the physical

properties of brass, steel, and new elastic materials like polymers in the study of seismology.

5.6 Space-time conformable Telegraph equation:
In this section we will discuss space-time conformable telegraph equation commonly used to study

to electrical signals in transmission lines [174].



D&*u — D2%u + Dfu + yu + pu =0, (5.114)

where y and f are arbitrary constants to be determined later by proposed method.

B. Gasmi, et. al. [175] implemented generalized Kudryashov method to derive various solitary
wave solutions, in [176] have used Hirota bilinear method to generate N-solitons. Anjali Verma,
et.al. have used tanh method, Mostafa M. A. Khater, et. al.[174] implemented five semi analytical
and numerical simulations to compare results of analytical and approximate solutions. M.
Mirzazadeh, et. al. [177] have applied first integral method in search of new exact solutions.

C.Yue, et. al. [178] examined nonlinear time-space telegraph equation through three schemes.

Motived by a few of the above-mentioned works on telegraph equation we are using time-space
conformable telegraph equation to derive new types of exact solutions using improved generalized

Riccati equation mapping method. For this consider the following conformable fractional wave

transformation,
u(x,t) =U(¢), (5.115)
a ta
where & = ¥ oo T Ay

X, A are arbitrary constant, whereas 0 < a < 1, is the order of derivatives in conformable sense

[39]. Using this transformation in Eq. (5.114), we get following non-linear ODE.

&2 (5.116)

G2 = 2%) gz UE) + AL U(E) +y U + BUG) =0,

2
Now balancing the order between ;—52 U(&) and U(&)3 we get, N + 2 = 3N = N = 1, therefore

series solution (1.67), takes the form,

ui) = +ap + a1(§). (5.117)

¢ (f )
Now, substituting Eq. (5.117) coupling with Eq. (1.68) into Eq. (5.116) after collecting coefficients

of all terms with the same order in ¢‘ and ¢~¢, where, (i = 0,1,2,.....).and setting these
coefficient to 0, we get a system of NL algebraic equations. Solving these equations with the aid

of mathematical software we obtain following non-trivial solutions:



Set1 :
pZ—4rq=A0= g,/9y—2x
V7 (@@ -p)
ag = ’
R IONE
R O N O

2 2

G =0, a=r/r/-(D7

Under these conditions Eq. (5.117), takes the form,

B a_q (5.118)
U = +—
1) = ao NG)
Set 2 :
VY (DY@ +p
g = — ( — >: a, = q\/?\/ —(pa)1
2B(A)y—(BA)T
L R =@ 3@
a1 =0, y= > , A= > .
Under these conditions Eq. (5.117), takes the form,
U2(§) = ap + a19(%), (5.119)
Set3 :
Vrp
=— , a3 =0, a_;=2 —(BA)1,
©= ey T T e
X =2yyy@) A=0,
Under these conditions Eq. (5.117), takes the form,
(5.120)

a—q
Us(§) = ag +@,



Set4 :

___ rp _ TS _
ag = ﬂ(A)\/W ) a zq\/? (BA) ’ a_q 0'

=2./7 /)T, A=0.

Under these conditions Eq. (5.117), takes the form,

Us(§) = ag + a1 (%), (5.121)

for the case 1, substituting the values of coefficients into Eq. (5.118) along with the Riccati
equations solutions, we can get many different types of solutions including solitary wave solutions,

periodic wave solutions and rational solutions.

Family 1:
For case 1, when A> 0 and pq # 0 or gr # 0, the hyperbolic function solutions of Eq.(5.114) are
as follows,
(tamh (24315 1) (VEp - )47 5122
U1,1(f) = 3t
2VAB\-B <p + v/Atanh (Q + Z ))
(coth (Q + 3yt) - 1) (VAp — My (5.123)
Uiz )= 3t
2\/_[3\/ (p + VA coth (Q + 2= ))
i — cosh (ZQ + 3]2/1:) (5.124)
+sinh (ZQ + )
U1,3(sc) = 3yt )
pcosh (ZQ + )
2VA[—-p1

+VA (sinh (ZQ + 3yt) + l)



cosh (ZQ + %) (5.125)
_(\/Zp - A) 3]/t \/?
U o (6) = —sinh(ZQ+T)+1
e psinh (ZQ + %)
2VA =571 3yt B
+VA (cosh (ZQ + T) + 1)
U () = — VY(WAp — D) (5.126)
S S T E
2
cosh (% + %) -1/2
—cosh (% + %) sinh (% + %)
X

< o G+ -F
)

+pcosh (% + %) sinh (% + %

here, A, B are real constants that satisfies B> — 4% > 0,

VY (VAp — )
2VA /-B1B (5.127)

( (cosh (ZQ +%)> )
—VAZ + BZ + A-B

—sinh (% + %)

" (—ﬂm + (asinh (20 + 1Y) + B) p) |

+A+/Acosh (% + M) g

Ul,e(f) = -

8

VY (WAp — D) (5.128)
2VA V=578

( (cosh (ZQ + %)) )
—VB2-AZ + A+B

—sinh (% + %)

" (\/Z\/BZ—AZ + (Acosh (20 + %) +B) p>'

+A+/Asinh (% + %)

U1,7(f) =




=Y (sinh (Q + m) — cosh (Q + m)) (5.129)

_ 4 4
e T T (cosn (a4 210)
—\/7\/? (sinh (Q + %) — cosh (Q + %)) (5.130)
U1,9(€) = . 3yt ’
2 (smh (Q + T))
b () = —\/?(i — cosh (ZQ+%) + sinh (ZQ+%)) (5.131)
B T T (cosh (20 + 219)
N (cosh (ZQ + %) — sinh (ZQ + %) + 1) (5.132)
U1,11(f) = _ 3yt ’
2 (smh (ZQ + T))
2 cosh (% + %) sinh (% + %) (5.133)
- cosh (ZQ + %)2 +1
U = JYV—B" :
1az8) \/; g 4 cosh (% + %) sinh (% + %)

Family 2:
When, A< 0 and pq # 0 (or qr # 0), we have the following trigonometric solutions for Eq.
(5.114),

U, 15(8) = (tanh (0 + %) —1) (VEp - V¥ (5.134)
- 2VABY—B1 <p + /A tanh (Q + %)) ,
Up1a(®) = — (coth (2+ %) —1) (VAp — A)V¥ (5.135)

NIV NE (P + VA coth (Q + %)) ,



U1,15(f) =

U1,16(f) =

U1,17(f) =

i + cosh (ZQ + 3)2/t)

—sinh (ZQ + 3]2/1:)

VB WY(Ap—A)

—2p cosh (ZQ + 3?) + ,
VA 3yt
2<i — sinh (Q+ Z )>\/Z

1 + cosh (ZQ + 3)2/t)

—sinh (ZQ + 3?)

J=BNY(WAp - )

)

2p cosh (ZQ + 3)2/t) +

va 2 <1 + cosh (Q + 3?))\/3

2B~ Wy(VAp —4)
VA

cosh (ZQ + 3yt) _1

2 2

—sinh (ZQ + %) cosh (ZQ + 3)2/t)

)

3]2/1:) cosh (ZQ + 3)2/t) +

2 <2cosh (20+ 3)2/1:) 1) VA

4sinh (2Q +

here two non-zero real constants A and B satisfies 4> — B2 > 0.

U1,1s(f) =

IT.

19

(AN —

2J-B~\y(VAp - 1)

VA
(iAcosh (ZQ + %) — isinh (ZQ + 3yt) — VB2 - 42 —
(21A\/— cosh (ZQ + 3)2/t) + 2iA sinh (ZQ + 3)2/t) p)
—2vVBZ — A2+/A + 2Bp

V-B"Vy(VBp - 8)

)

(5.136)

(5.137)

(5.138)

(5.139)

(5.140)



(iA cosh (ZQ + m) i sinh (ZQ + m) A++VB2 A% —

):

2
<2iA\/Z cosh (20 + %) + 2iAsinh (20 + %) p)
+2VB% — A%JA + 2Bp

\/?(sinh (Q + %) — cosh (Q + %))

U1,20(f) = 3yt
23+/—B~ cosh (Q + L)

—\/7\/? (sinh (Q + %) cosh (Q + %))

U1,21(f) = )

2 sinh (Q + %)

NeG (i + cosh (ZQ + m) — sinh (ZQ + m))

U1228) = ﬁ\/T cosh (ZQ + %)
\/?\/7 (1 + cosh (ZQ + %) sinh (ZQ + %))
Uy 23(8) = 3yt ’
2sinh (20 +25)
1 — 2 cosh (Q 3yt)
_ /_'3—1\/_
<2 cosh ( t) (Q 3Vt)>
U =
1.24(8) 4 cosh ( ) i (% m)
Family 3:

When r = 0, and pq # 0, we get soliton like solutions.

dp*\/p~% _ dp*
ﬁ( 2 2 1
pidp 1
Bp?

U1,25(f) =

(5.141)

(5.142)

(5.143)

(5.144)

(5.145)

(5.146)



(5.147)
Ul,ze(f) = —\/? -

/ (ﬁ p2-L )cosh <29+pF3yt> \

2 2

° Jp 23yt
k (% p~2— pz)smh (ZQ+p 14 ) )
X .
p| cosh (29 + p—vpz3yt> + sinh (29 + p—v%3}/t>

Here, d is arbitrary constant.

Family 2:

When, A < 0 and pg # 0 (or qr # 0), we have the following trigonometric solutions for Eq.
(5.114),

(tanh (2 +31Y) —1) VAP - V¥ (5.148)
Zﬁﬁm (p + +/A'tanh (Q + %)) ,

U1,13(f) = -

(coth (0 +25) ~1) VAP - A)v7 (5.149)
2VAB B (p + VA coth (Q + 3}L’t)>

U1,14(f) = -

/ i + cosh (ZQ + 3]2/1:) (5.150)

V-B"y(VAp—A —
y(VAp )\_Smh (W‘/‘)y 2x+3yt> /

2

U115(8) =

—2p cosh (ZQ + 3)2/t) + ’
va 2 i —si 3yt
<l sinh (ZQ+ 4 ))JZ



U1,16(f) =

U1,17(f) =

VB WY(Ap—A)

1 + cosh (ZQ + 3)2/t)

—sinh (ZQ + 3]2/1:)

)

2p cosh (ZQ + 3)2/t) +

VA
2 (1 + cosh (Q + 3?)) VA
2{-B~'Wy(VAp—1)
VA
cosh (ZQ + 3]2/1:) - %

—sinh (ZQ + m) cosh (ZQ + Syt)

2 2

4sinh (ZQ + 3yt) cosh (ZQ + 3yt) +

)

2 2

2 <2cosh (20+ 3?) 1) VA

here two non-zero real constants A and B satisfies 4> — B2 > 0.

U1,1s(f) =

U1,19(f) =

2{=B~y(VBp - )

VA

(iAcosh (20+ M) — isinh (20 + 3”) VBT A% —

(

2
2iAVA cosh (zn + 3;’ t) + 2iAsinh (29 +

—2vBZ — A2\/A + 2Bp

V=B"WY(VAp - A)

VA

3yt
2

B]

(iA cosh (ZQ + 3yt ) — i sinh (ZQ + 3yt)A +VB2 — 42 —

)

(

2
2iAVE cosh (20 + 3;“) +2iAsinh (20 +

+2VBZ% — A2+/A + 2Bp

3yt
2

w)

)

(5.151)

(5.152)

(5.153)

(5.154)



N (sinh (Q + %) — cosh (Q + %)) (5.155)
Uy20(§) = T
2B+ —B~* cosh (Q + L)
—Yy—B71 (Sinh (Q + 3%) — cosh (Q + %)) (5.156)
U1,21(f) = . Iyt .
2 sinh (Q + T)
U () _\/7(i+cosh(29+%)—sinh(29+%)) (5.157)
) = 2+/—B~1 cosh (ZQ + %)
\/?\/?(1 + cosh (ZQ + %) — sinh (ZQ + %)) (5.158)
Uy23(§) = _ 370 :
2 sinh (ZQ + T)
1 — 2 cosh (Q 37“) (5.159)
— =By
<2 cosh ( t) (Q 3Vt)>
U =
1,24 (E) 4 COSh ( ) . (% m)
Family 3:

When r = 0, and pg # 0, we get soliton like solutions.

dp3\/p=? dp>? (5.160)
W( 2 2 ) 1
Us.5(8) = — _
— 57

[y (5.161)



X

3 2 [—2
2 2 2
3 2 [—2
= . pp 43yt
\ (%,/p 2 —%) sinh <ZQ +T> /
-2 [h—2
p (cosh <ZQ + M) + sinh <ZQ + %))

2

Here, d is arbitrary constant.

Family 1:

For case 3, when p? — 4rq > 0 and pq # 0 or qgr # 0, the hyperbolic function solutions of Eq.
(5.114) are as follows,

U3,1(sc) =

U3,2(f) =

U3,3(sc) =

U3,4(sc) =

<i\/Ktan <@x> p+ A) NG 1

(p +ivAtan <@x>> VAR —F

(iﬁcot(@x)p —A>\/? 1
<i\/Kcot <@x> —p) VA BV -5

(ip(sin (V2yyx) + 1)VA + cos (V24yx) (D)WY 1
VAR ((isin (V2vyx) + i)VA + pcos (\/f\/?x)) J-B1

_ (ip(cos (V2vyx) + 1)VA — sin (V24yx)())Vy 1
VAR ((i cos (VZyyx) + i)VA — psin (ﬁﬁx)) JB

(5.162)

(5.163)

(5.164)

(5.165)



( i<cos <\/§fx>z _%> VA (5.166)
VY
\—cos (ﬁfx) sin (ﬁfx> (A)/ 1

e

U3,5(f) = -

2

\—Pcos <\/§fx> sin <\/§2}/7x> /

here, A, B are real constants that satisfies B> — A% > 0,

Us,6(£) (5.167)
_ ¥(=VAVAZ + B2p + AVAcos (V2yx)p + (idsin (V2vyx) + B)(4)) 1

- VA B(—VAVAZ + BZ + AVAcos (V2+/yx) + (idsin (V2vyx) + B)p) 1/—,8—1'

Us7(§) (5.168)

_ VY (—VAV=4AZ + B?p + iAVAsin (V2yyx)p + (A cos (V2yyx) + B)(8)) 1
- VA B(—VAV—AZ + B2 + iAVAsin (V2+/yx) + (Acos (V2yyx) + B)p) \/?’

U o(6) = —isin (V2yyx)\y (5.169)
e B+/—B~1cos (\/Eﬁx),
Uy o(6) = —isin (V2yyx)Vy/—B1 (5.170)
> cos (V2yyx) '
—i(sin(v2yyx) + 1)\y (5.171)
Us10(8) = — ’
B/ —B~cos (V2+/yx)
0o = Zileos(V2VP) + VT B (5.172)
S sin (\/fﬁx) '
; z (5.173)
—%(2 cos (ﬁﬁx) - 1) V-8t
Us 12 €)=

sin

() )



(i\/Ztan <\/7\2/?x> p+ A) JVy 1 (5-174)
(p +ivAtan (@)) VARV -

U3,13(f) = -

Family 2:
When, < 0 and pq # 0 (or gr # 0), we have the following trigonometric solutions for Eq.
(5.114).

(ivAco t (\/—\/—x> — My 1 (-175)
Uz 14(§) = s’
<i\/Zco t <@> - p) VAB -
U6 = (ip( sin(vV2yyx) — VA + cos(V2yyx)A)Vyy/—B 1 (5.176)
e ((i sin(VZvyx) — VA + peos(VZVFx) )VE
. ((cos(\/f\/?x) +1)ipVA — sin(\/fﬁx)A) NN (5.177)
sael®) = ((i sin(VZy7x) — iWVE + peos(VZvFx) )VE
2 5.178
(21’ (cos <—\/§Z}/?x> - %) pVA — sin (\/—\/—x> (A)) VY ( )
Us17(§) = 5 —p7t,
\/Z<<2i cos (@) — i) VA — psin <@>>
here, A, B are real constants that satisfies B> — 4% > 0.
Uz 18($) (5.179)

\/—(—\/—A2+BZ\/—p+lA\/—cos (V2y/¥7x)p — (8)(4sin (V2+/yx) — B))\/—
B VA(—V—=A2 + B2VA + iAVAcos (V24yx) — p(Asin (V2+/yx) — B))



Us,10($) (5.180)

3 VY (V=42 + B2V/Ap + iAvVAcos (V2yx)p — (A)(4sin (V2yyx) — B)) J=BT
~ VB(V=A2 + B2VA + iAVAcos (VZy¥x) — p(Asin (VZy¥x) — B)) ’

—icos (ﬁ;/?x) \/7\/? G.181)

U3,20(f) =
sin (ﬁ;/?x)

—i(sin(vV2vyx) — 1\y (5.182)
Us21(8) = — )

B/—B~cos (V24/yx)
U () = Zeos(V2Vx) + )y —FHy (5.183)

22 sin (V2+/yx) '
Family 3:

When r = 0, and pg # 0, we get soliton like solutions.

\/_ n -1 (5.184)
Y ’
U3,23(f) :ﬁ< —W> )

ey 0 GVT72) o (VT 7)) j e
3,24 B p (COSh (p\/i\/?,/—p—zx) + sinh (p\/i\/? /_p_zx)) ﬁpz .
Family 1:

For case 4, when A > 0 and pq # 0 or gr # 0, the hyperbolic function solutions of Eq. (5.114)

are as follows,

[ tan <—\/§2\/? x) NG (5.186)
e

U4,1(sc) =



i cot (ﬁﬁ x> VY

2

Us2(§) = —

' =
Uss () = i(sin(vV2vyx) + VY

v B~/ —B~1 cos(V2+/yx) ’
U o(6) = i(cos(V2yyx) + 1)y -8~y

4 sin(vV2yyx) '

%<2cos <\/§:}/7x> - 1) J-BWy

U4,5(f) =

sin <@> cos <@>

here, A, B are real constants that satisfies B> — A% > 0,

VY(Acos (V2yyx) —VAZ + BZ) 1

U4,6(§) =

B(idsin (V2yyx)+B) [T

VY (idsin(vV2yyx) + V=42 + B2) 1

U4,8(€) =

B(Acos (V2yyx) + B) V=Bt ’

- <—isin (ﬁ;/?x) VAp + cos (@) p? — 4cos (@) qr> VY

U4,9(f) =

(—isin (@) VA + pcos (@)) \/Zﬂm

— (—cos (\/E\Z/?x> VAp + iAsin (ﬁ;/?x)) VY

U4,10(f) = (

—cos <@> VA + ipsin (@)) VAB/-B1

(5.187)

(5.188)

(5.189)

(5.190)

(5.191)

(5.192)

(5.193)

(5.194)



V¥ (ip((sin (V2yyx) + 1)VA — cos (V2y7x)(8)) 1 (5.195)

Ug11 == / ’
11($) \/Z((isin (ﬁ\/?x) + L)\/Z — pcos (\/Eﬁx))ﬁ —pt
V¥ (=p((cos (V2vyx) + VA +isin(V2yyx) @) 1 (3:196)
U4,12(f) = .. -1
VA ((— cos(V2yyx) — DVA +ip sm(\/ix/?x)) B N-B
Family 2:

When, A < 0 and pg # 0 (or qr # 0), we have the following trigonometric solutions for Eq.
(5.114),

, (5.197)
2.y ((— cos (@) p+ p/2> VA + i(A)sin <@>>
U4,13(f) = - 7 ,
\/Z(ipsin <\/_\/_x> 2vA co <@> + \/Z)ﬁ [—p—1
ey < (GO2TR) ~ 1)V (5.198)
v BJ—B~Tcos(V2vyx)

here, A, B are real constants that satisfies B> — 42 > 0,

Uy 1o (&) = V¥ (idcos (V2yyx) —VAZ+ BZ) 1 (5.199)
e B(Asin(vV2yyx) — B) J=BT
Uy 16(8) = — Vy(iAcos(vV2vyx) + VA* + B2) 1 (5.200)
e B(Asin(v2yyx) — B) J-BT
(i sin (@) VAp — cos (\/—\/—X> )WW (5.201)
U4,17(€) =

(—i sin (@) VA — pcos <@>> VA



<i cos <\/§\2/7x> VAp + sin <\/_\/_x> >\/—\/T (5.202)

U4,18(f) =
<i cos <@> VA + pcos <_\/7\2/?x>> VA
U ro(E) = V¥ (ip((sin(v2yyx) — 1)VA — cos (V2yyx)(4)) 1 (5.203)
4,19 \/Z((l sin(vV2yyx) — i)VA — pcos (\/E\/?x)) B m

V¥ (ip((cos (V2yyx) + VA + sin (V2yyx)(d) 1 (5.204)

U4,20(f) = - _ _ —,
VA (i cos(vV2vyx) + VA +p sin (V2y7x)) B V=B

2V <l <Cos <f VY ") 1/2) pVE + sin (f \/—x> , A)> (5.205)

U4,21(€) - 3 — —1’
\/Z<<2i cos (@) — i) VA + psin <@>>

Us22(§) = [yp (cosh (p\/i\/?\/—p‘zx) — sinh (pﬁﬁ,/ —p-2 x) _ d) (5.206)

/_ﬁ_zlﬂ<d + cosh (p\/i\/?\/?x) — sinh (p\/i\/?\/?x»_l

Family 3:
When r = 0, and pg # 0, we get soliton like solutions.

(Cosh(P\/—\/—w/—p—Zx)—smh(p\/—\/—\/?x) d) \/_ (5.207)
(cosh(pVZyT—p—2%) — sinh(pVZyT/—p2x) + d)

U4,23(f) =

5.7 Graphical Explanation:

In this section we discuss graphical simulation of some of exact solutions of space-time
conformable telegraph equation. 3-Dimensional and 2-Dimensional graphs of various solutions

have been examined by choosing appropriate values of fractional order operator a. In Figure 5.6-



Figure 5.9, it is obvious that for smaller value of fractional order operator & we get shock waves

and by increasing the value of a equals to 1 we get solitary wave.

Figure 5.6: Represents graphical simulation of kink wave soliton for U ; expressed in Eq. (5.122)
by choosing parameters,p = 3,q = 1,r =2, = 2.5,y = 1. Fig (a)-(c) depicts 3D graphs of
abs(U; ;) for @ = 0.1,0.6,1 , while Fig(d) depicts 2D graph for abs(U,;,) for a = 0.1,0.6,1

respectively in the range of —10 < x < 10,t = 1.

X\
BRADCSKD

PSS S
oSS oS osSe

(a) (b)
0.6
0.5+
0.4
.
a 0.3
o
0.2
0.1-
0 : =
-5 0 5
X
© (d

Figure 5.6: Graphical representation of kink wave soliton for Uy ;.

Figure 5.8: Graphical representation of periodic wave solution for Us; Figure 5.7:: Represents
graphical simulation of periodic wave solution for U, 4 expressed in Eq.(5.125) by choosing
parameters, p = 3,q = 0.1, = 0.2, = 5,y = 1. Fig (a)-(c) depicts 3D graphs of Re(U, 4) for
a =0.3,0.7,1, while Fig(d) depicts 2D graph for Re(U, 4) for @ = 0.3,0.7, 1 respectively in the
range of —40 < x < 40,t = 2.
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Figure 5.7: Graphical representation of periodic wave solution for U 4
Figure 5.8:Depicts graphical simulation of periodic wave solution for Us; of Eq.(5.162) by
choosing parameters,p = 4,q = 1,r =2, = 2.5,y = 1. Fig (a)-(c) depicts 3D graphs of
Re(Usz4) for ¢ =0.1,0.5,1 , while Fig(d) depicts 2D graph for Re(U3,) for a = 0.1,0.5,1

respectively in the range of —10 < x < 10.



(b)
0.2 )
0.1
0
DN;
& -0.11
-0.21
-0.31
-10 5 0 5 10
X
(© (d)

Figure 5.8: Graphical representation of periodic wave solution for Us ;
Figure 5.9: Depicts graphical representation of periodic wave solution for Uy ,,, expressed in
Eq.(5.206) by choosing parameters,p = 1,d = 4, = 1,y = 7. Fig (a)-(c) depicts 3D graphs of
Im(Uy 4) for @ = 0.4,0.6,1 , while Fig(d) depicts 2D graph for Im(U,,,) for a = 0.4,0.6,1

respectively in the range of —10 < x < 10.
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)] () 5]

© (d)

Figure 5.9: Graphical representation of periodic wave solution for Uy 3,

5.8 Conclusion:

Improved generalized Riccati equation mapping method has been used to extract exact traveling
wave solutions to the space- time fractional telegraph equation. Numerous travelling wave
solutions have been generated in the form of hyperbolic, periodic wave and rational solutions.
Wave behavior have been studied through 3-D and 2-D graphs by choosing suitable values of o
and free parameters involved. These results might be helpful in the study of electrical signals in

transmission lines.
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5.9 Space-time fractional (2+1)-dimensional Heisenberg Ferromagnet Model:

Another important equation we have considered here is the newly derived variant of Nonlinear
Schrédinger Equation (NLSE) that describes space-time fractional (2+1)-dimensional Heisenberg
ferromagnetic spin chains with bilinear and anisotropic interactions in the semi classical limit

derive by M. Latha and C. Vasanthi [179].

i9Dfu + ay 5DE%u + a {D%u + az9DEu — agulul* = 0, (5.208)

where u =u(x,y,t), ¢Df, 4DF, 4Dy are Atangana’s conformable derivatives [40], ¥; =

viJ +12), Yo =y (L + 1), W5 = 2y*%),, W, = 2y*A, parameter y is lattice parameter,
J, Jirepresents bilinear exchange interaction coefficients with respect to x and y respectively. J, is
the neighboring interaction on the diagonal, whereas uniaxial crystal field anisotropy parameter is
denoted by A [33]. Heisenberg ferromagnet model (HFM) is an interesting nonlinear model that
exhibits magnetic solitons and, also very important to study magnetic behavior in magnetic
materials [33]. Finding the new exact solutions for this model will help scientists to understand
nonlinear behaviour of ferromagnetic substances. Now a days the new technology magneto-optical
recording is gaining popularity for higher storage and fast reading [180]. Also, the magnetization
reversal in ferromagnetic medium due to the occurrence of spin soliton flipping has an application
in magnetic memories and recording [181]. Baskonus et. al [182, 183] studied (2+1)-dimensional
Heisenberg ferromagnetic spin chains and construct dark, bright, combined dark-bright, singular,
and combined singular soliton solutions. H. Triki and M. Wazwaz [33] find out bright and dark
solitons and periodic wave solutions for this equation. Liu et al [ 184, 185] studied bright and dark
soliton for Heisenberg model. Baleanu et al. [ 186] studied optical soliton for this model. A. Kundu
et al. [187] applied modified Kudryashov method on (2 + 1)-dimensional Heisenberg
ferromagnetic spin chain equation. In [188] authors investigate Heisenberg model with the of

modified extended tanh expansion method using Riccati equation.

To solve Eq. (5.208) we use the following transformation:

u(x,y,t) = U(E)e™. (5.209)

where,



£= X1< +%)a+£(y+%)“_g<t+%>“’

2ol St o)

where 1 is the phase component, Y represents wave number, w is the soliton frequency, A is the
velocity of soliton and y is the width of soliton. Now substituting Eq. (5.209) and Eq. (5.210) into
Eq. (5.208) and separating the obtained ODE into real and imaginary components we get real part

as:

(5.211)
(t12aq + X203 + X2 az) az? U(f) — U@V ay + o Yhas + YiPay + w)
3
—a4(U(f)) =
and imaginary component gives:
/1 = X1Y20{3 + zal)(lYl + 20(2)(2Y2 + X2Y1a3. (5.212)

Eq. (5.211) and Eq. (5.212) obtained by applying the properties of Atangana’s conformable
derivative explained in Eq. (1.25) - (1.32). By using homogeneous balance principle between the

highest order derivative and nonlinearity yields M = 1. Therefore, Eq. (1.67) has a solution.

uE) = + by + b1¢($). (5.213)

¢(€ )
Now, substituting Eq. (5.213) along with Eq. (1.68) into Eq. (5.211) after collecting all terms with

the same order in ql)i and ql)_i, where, (i = 0,1,2, .....). and equating each coefficient to 0, we
obtain a system of NL algebraic equations. Solving these equations yields following cases and

non-trivial solutions:

Set1 :

\/E\/)ﬁzoﬁ + X1)0({2053 + X%, I
4

2 )

24 + as + y,%a
b_lzkﬁ\/)ﬁ 1 T X1X2a3 T X2

b1=0, bO:

s ' (5.214)



az(lz - 4mk))(22 a3)(1(lz — 4mk)x, al(lz - 4‘mk))(12
w = 2 2 2 )
Y Y05 — Y%, — Y,y

b by (5.215)
U:(§) =
' ¢(€)
Set 2 :
b = L2y + XX s + x22a)V2
0=
2 % JX12a1 +X1)é2“3 + X%, a,
4
(5.216)
2aq + as + y2%a
b, =\/§\/X1 1T X1X2Q3 T X2 zm, b, =0,
22
_ (1> — 4mk) x,° _ asx1(I? — 4mk)x, _ ai (17 — 4mk) x,*
w = 2 2 2 )
“YiYoa3 — Y, a, — Y ay,
Uy(§) = by + bi¢(E). (5.217)

Please note, the following substitutions have been made in the following solutions to make the

results more elegant.

Y ey g S ey
with
1 \“ 1\ 2 1
=l Yebrrm) 2l
A= 1 Yoaz + 201 1 Y1 + 2a20, Y, + xoYqa3,

a

a a a

Y =— (x+%) +Y2(y+%) +%<t+%>.

For the case 1, substituting the values from Eq. (5.214) into Eq.(5.215) along with the Riccati

equations solutions, we get.

Family 1:
When [? — 4mk > 0 and Im # 0 or mk # 0, the hyperbolic function solutions of Eq.(5.208) are

as follows:



Upy = by — 2m(b_1) o el
(L + Q) tanh (=)

Uiz = bo — Zm(b_l)ﬂ eV,
(I + Q)coth (TE)

i
s +./(42 + BHQ — AQ cosh(Qf)) .

Asinh(Q¢) + B

< 2m(b_y) ) .
Uiz =|by— _ e,
' 1+ 9 (tanh(ﬂf) + lsech(Qf))
_ _ Zm(b—l) iy

V14 = (b" (U + Q) (coth(0f) + csch(QE))) “r
Uys =| by — mba) eV,

21 + Q) <2coth (%))
U1'6 — kbo + zm(b—l)

2m(b_4)

Uiy =1 by + e,
v k ° _,_E/CA+BHa+ A0 sinh(ﬂf))

Acosh(Qé) + B

where two non-zero real constants A and B satisfies 4> — B2 > 0.

[ ) asimn () - cosn (%))

o = kbo * 2 cosh (975)

(5.218)

(5.219)

(5.220)

(5.221)

(5.222)

(5.223)

(5.224)

(5.225)



—) < —Qcosh ( + lsmh

(—) (Qsinh(Q&) — L cosh(Q€) +iQ)

2 sinh ( E)

( 1) (Qcosh(Q) —

2 cosh(Q&)

[sinh(Q&) £ Q)

(%) ( Isinh (Qz ) + 2Qcosh? (

2 sinh(Q€)

Q8N _
4

#))..
|
)

)

szh( )

(5.226)

(5.227)

(5.228)

(5.229)



1.541103500;
:_1.54].103499:
1.541103498:
1.541103497+

1.541103496
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©
Figure 5.10: (a)-(c) 3D illustration of Re(Uy1),Im(Uy,),abs(Uy ) withl=3,m=1k=2,a; =1.5a, =1.5,a3 =
1.5a,=1.5Y,=13Y,=12,x, =15, =1,a=0.5t=1.5,x=0..15,y = 0..15, and, (d) 2D illustration of

Re(U, )with,a =0.3,0.5,0.7, 1atx=—10...10,y = 3,t = 1.5

Family 2:

03— =) 5 o071

(@)

If 12 — 4mk < 0 and Im # 0 (or mk # 0), we have the following trigonometric solutions for Eq.

(5.208),

2m(b_y)

et
(=1 + Q)tan <QT,§)

U1,13 =1 by +

)

2m(b_ )
Ujis = <b0 + (0-1) )elw ,

(-1+ Q) (tan(ﬂ’f) + sec(Q’f))

zm(b—l) >ei‘p

Ui16 = <b° (1 + ) (cot(Q8) £ csc (')

4m(b_,)

eV,
(=21 + Q) (—Zcot (%)))

U1,17 = kbo +

(5.230)

(5.231)

(5.232)

(5.233)

(5.234)



Zm(b—l) e“l’
oy EV A+ BH - A cos(Q’f)/ '

(
\ Asin(Q'é) + B
:
\

bo +

U1,18 =

Zm(b—l) i

e,
- +i/(—A2%2 + B2)Q' + AQ/ cos(Q'f)/

Asin(Q'é) + B

by +

U1,19 =

where two non-zero real constants A and B satisfies 4% — B% > 0.

( (%) (Q’sin (%f) + lcos (%’f))\ .
Ui20 = | bo — > cos (QTISC) /elw,

() (oreos () - n ()
o)

( Ey@sin@§) + leos(@'§) + Q’)) |
Uiz2 = | bo — e,
(

e,

U1 = (bo +

2 cos(Q'¢)

%)(Q’cos(n’f) —1sin(Q'¢) £ Q) "
Upas = | bo + 2 sin(Q'8) .

Uy = <b0 (%) (—lsin (QTISC) + 20 cos? (QTIS> - Q’)) "

2sin (QTISC)

(5.235)

(5.236)

(5.237)

(5.238)

(5.239)

(5.240)

(5.241)
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Figure 5.11: (a)-(c) 3D illustration of Re(Uy 15), Im(Uy 15),abs(Uy15) withp =l m =1,k =2,a; = 1.5,a; =
1.5a5=15a,=15Y;=13Y,=1.2,y;, =15, =1,a=0.8,t =1.5x=0..15,y = 0..15, and (d) 2D
illustration of Re(U_ , )by choosing,a = 0.4,0.6,0.8,1at-10 <x <10,t =1.5,y =2
Family 3:
When k = 0, and Im # 0 the solutions of Eq. (5.208) are as follows:

Uy 25 = (by)e', here (5.242)
(2% (lz))(zz _ 0‘3)(1(12)){2 _ 0—’1(12))(12

w= 2 2 2
—Y}Y§a3——Y§2a2——Y12a1,




In case 2, we have following families of solutions:

Family1:
When [? — 4mk > 0 and Im # 0 or mk # 0, the hyperbolic function solutions for Eq. (5.208) are
as follows:
(073 ,
Uyp = (l + Q)tanh( > ) e, (5.243)
(013 .
Usz = (l + Q)coth( 5 ) eV, (5.244)
Uyz = (bo ) (I + Q) (tanh(Q&) + Lsech(Qg))) (5.245)
Uyy = (bo - (2—1) (I + Q)(coth(Q§) + csch(Qf))) (5.246)
Q .
Uys = ( - 4—1 221 + Q)coth ({)) ', (5.247)
U - +,/(A2 + B2)Q) — AQ cosh(Q¢) i 5948
26 Asinh(Qé) + B ¢ (5.248)
T ( b, ) ] +./ (=A% + B%2)Q + AQsinh(Q¢) " 5949
27770 \2m Acosh(Qé) + B ¢ (5.249)
where two non-zero real constants A and B satisfies A% — B? > 0.
2bikcosh (%) "
— A
e Qsinh (%) — lcosh (%) o (230
2 2
2b, ksinh (975) _
Uzo =| bo — e, (5.251)

—Qcosh (975) + [sinh (975)
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2b,ksinh(Q§) .
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2b, ksinh (975)
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)
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Figure 5.12: (a)-(c) 3D illustration of Re(U, ,), Im(UZ’Z), abs(U,,) with arbitrary parameters Ll =2,m =3,k =2,a, =

1.5, =1.5,a3=1.5a,=1.5p=2, p=1.2, f=1.5y=2,a=0.5t=0.5,x=0..15,y = 0..15, and (d) 2D
illustraion of Re(U; ;) with,a« = 0.3,0.5,0.7,1atx =-3..3, t = 0.5,y = 3.

Family2:
If 1?2 — 4mk < 0 and Im # 0 (or mk # 0), we have the following trigonometric solutions for Eq.
(5.208):

b , Q' .
Uy13=| bo + <ﬁ> (—=l+ Q)tan <T§) eV, (5.255)

b Q' .
Upia =| bo— <ﬁ> I+ Q)cot (é) e, (5.256)



U5 = (bo + <2b—71n> (=1 + Q) (tan(Q'$) £ Sec(Q’f))) el

b )
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where two non-zero real constants A and B satisfies A> — B? > 0.
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where,

Q=+vI%2—4mk, Q) =Vamk — 12

g:%(x+%a)>a+%<y+%a)>a—%(t+ﬁ) :

A=y Yoas + 2a. 01 Yy + 2a,x,Y; + xo Vs,
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Figure 5.13: (a)-(c) 3D illustrarion of Re(Uz,lg), Im(Uz‘ls), abs(U;1g) by choosing arbitrary parameters l = 2,m =
3,k = 2,“1 = 1.5,“2 = 1.5,“3 = 1.5,“4 = 1.5,Y1 = Z,YZ = 1.5,X1 = 1.5,X2 = 2,0{ = 03,A = 3,B = 2, t=
1.5,x =0..15,y = 0..15, and (d) 2D illustrartion of Re(U, , ) with,a =0.3,0.5,0.7,1at-3 <x<3, t=15y=
2.



Family3:
When k = 0, and Im # 0 the solutions for Eq. (5.208) are as follows:

yo (b ~ b;ld )eiw (5.268)
2,25 % m (d + cosh(I§) — sinh(l§)) ' |

where d is the arbitrary constant and

_ az(lz))(zz _ 053)(1(12))(2 _ al(lz))hz
w = 2 2 2
Y Y,a5 — Y%, — Y, .

Family4:
When k =1 = 0, and m # O the rational solution of Eq. (5.208) is as follows:

U, 6 = ( b )e“P (5.269)
’ mé + ¢ ’

In this case,
— 2 2
w = —Y1Y20{3 - YZ 0{2 - Yl 0(1.

5.10 Graphical Explanation:

In this section, obtained results for conformable (2+1) dimensional Heisenberg ferromagnetic spin
chain equation (HFM) is investigated. The graphs of some of the reported solutions that have been
discussed here to have a good understanding of the physical properties of these types of solutions.
We have constructed 3D graphs for the real, imaginary, and absolute values of some of obtained
solutions such as dark, bright solitons, periodic wave solutions, singular periodic wave solutions,
kink soliton solutions. Whereas 2D graphs have been plotted for real values of solutions to show
pattern of wave propagation along x — axis for choosing different values of « including classical
and fractional order and we can see from these graphs that amplitude of wave increases with the
increase in values of x for fractional values of @, and when a = 1, we get complete wave with

high amplitude for all values of x. Hence, amplitude of wave increases when x increases.

Figure 5.10 exhibits graphical representation of U;;, where 3D graphs (a), (b) represents

Re(U; ;) and Im(Uy ;) which are periodic in nature and figure (c) represents dark soliton for



abs(U;;) by taking parameters [=3,m=1k=2,a;, =15a, =15,a;3 =15,a, =
1.5, =13, =12, xy;, =15, =1,a =0.5,x =0..15,y = 0..15 and figure (d) represents
2D graphs of Re(U; ;) with different values of fractional order « = 0.3,0.5,0.7,1 at =10 < x <
10,y = 3,t =1.5.

Figure 5.11 exhibits periodic solution of U;;5, 3D graphs (a)-(c) represents
Re(U; 15),Im(Uy 15) and abs(Uy 15) with l=3m=1k=2,a, =15a,=15a; =
15 a,=15Y=13Y, =12,y =15y, =1,a=0.8, x =0..15,y =0..15,t =15 and
figure 2D- (d) represents Re(U; ;5) with,a = 0.4,0.6,0.8,1at —10 <x < 10,t =15,y =2

Figure 5.12 shows singular periodic wave solutions of U,, where 3D graphs (a)-(c) exhibits
Re(U;;),Im(U, ;) and abs(U,,) with =2, m=3, k=2, a; =15, a, =15, a3 = 1.5,
a,=15Y,=2,Y,=12, yy =15, y=2, a=05,x=0..15, y =0..15, and 2D graph
(d) represents Re(U, ;) with,& = 0.3,0.5,0.7,1at—-3 <x <3, y =3, t = 0.5.

Figure 5.13 exhibits the graph of singular periodic travelling wave solution of U, ;g, figures (a)-
(c) exhibits 3D graphs of Re(U; 15),Im(U; 1g) and abs(U, 1) withl =2,m =3, k=2, a; =
15 a, =15 a3=15, a, =15 Y, =2, Y,=15, yy =15, y, =2, a =03, A=3,B =
2,x =0..15, y = 0..15, and figure (d) shows 2D graphs of Re(U; ;) for various values of a =
0.3,0.507,1at—-3<x<3, y=2,t=15.

Figure 5.14 represents graphs of solution U; s where, 3D:(a)-(b) exhibits periodic pattern of
Re(U; 5),Im(U; 5) whereas figure (c) exhibits singular soliton for abs(U;5) for [ =4,m =
02, k=4 a; =15, a, =15, a3=2, a, =15 Y, =13, ¥, =12, y; =15, y, =15,
a=02x=0.15 y=0..15, and figure 2D (d) exhibits Re(U;s)by choosing a =
0.3,0.5,0.7,1at-10<x <10,y =5,t = 2

Figure 5.15 3D(a)-(c) exhibits graphs of periodic wave solution
Re(U;24),Im(Uy 54) and abs(Uy 54) withl=2,m=-1, k=3,a; =2, a, =2, a3 = 2,
a,=2,Y1=13,Y,=12, yy =15, yp =15 a=02,x=0..15 y=0..15t =1, and
figure (d) represents 2D graphs Re(U;,,) of with ,a =0.2,0.6,0.8,1 at —10 <x <10,y =
1,t =1.



Figure 5.15 3D (a)-(b) shows graphs of solutions
Re(U;34),Im(U;,,4) and are periodic in nature whereas figure (c) depicts graph of abs(U, ,4)
which is kink soliton solution for parameters [ =5 m=-1, k=2, a; = 1.5, a, =15, a3 =
15 a,=15 Y,=2,Y,=15, yy=15, y,p=2,a =08,x = -15..15, y =-15..15,t =

3 ,whereas figure 2D- (d) shows Re(U,4) with ,a =0.2,0.6,0.8,1 and —10 <x <10,y =
5¢t=3.

Figure 5.16 3D (a)-(b) exhibits periodic wave solutions of
Re(U; 5), Im(U; 5) while figure (c) exhibits kink soliton solution for abs(U; ;5) with 1=
5m=1k=0,a, =15a,=15a3=15a, =15, 1V, =2, Y, =15, y; =15, y, =
2,a =08, d=1,x=-15..15, y = —15..15, and figure 2D- (d) with Re(U;,5) witha =
04,06,08,1 -10<x<10, y=-1, t =0.5.

From these graphs, we can see that the shapes of the solutions change with by choosing different
values of parameters and by slightly different values of the fractional derivative a behavior of

wave changes.

(@ (b)
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Figure 5.14: (a)-(c) 3D illustration of Re(ULs),Im(Ul_s),abs(Ul_s) by choosing parameters | =4,m =0.2, k=4,a; =
1.5a, =1.5a;=2,a,=1.5p=1.3,u=1.2,=15y=15a=0.2t=2x=0..15y = 0..15, and (d) 2D
illustration of Re(U, ) with, @ =0.3,0.5,0.7,1at-10 <x <10, t =2,y = 5.
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Figure 5.15: (a)-(c) 3D illustration Re(U ,,), Im(ULM), abs(U, 4)with suitable parameters,l = 2,m = -1,k =

301 =20, =2,a;=2,a,=2,p=1.3,4=1.2,8=15y=15a=02x=0..15y=0..15,¢t = 1, and (d) 2D
illustration of Re(Uy 4) with,@ = 0.2,0.6,0.8,1atx=—10..10, t =1,y =1
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Figure 5.16(a)-(c) 3D illustration of Re(U, ), Im(U, ), abs(Uy,,) with = 5,m = -1,k = 2,a; = 1.5, =
1.5 03 =1.5a,=1.5p=2,u=1.5=1.5y=2,a=0.8x=-15..15, y =—15..15, and (d) 2D illustration of

Re(U,,,) with,a = 0.2,0.6,0.8,1 x=-10..10,y =5, t=3
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Figure 5.17 (a)-(c) 3D illustration of Re(U, ,.), Im(ULZS), abs(Uy,5) by choosingl =5 m=1,k=0,a; =1.5,a;, =
1.5,a3 =1.5,a,=1.5p=2,u=1.5=15y=2,a=0.8,d=1,x =-15..15, y = —15..15, and (d) 2D
illustration of Re(U_,.) with,« =0.4,0.6,0.8,1 x=-10..10, y=-1, t=0.5

5.11 Conclusions:

We successfully derived exact solutions of conformable (2+1) dimensional Heisenberg
ferromagnetic spin chain equation with the improved generalized Riccati mapping method. As a
result, we established different solitary wave solution including dark and bright solitons, periodic
wave solutions, singular solution, kink solitons and rational solution which have not been reported
in literature previously. Moreover, this model has not been solved before using Antangan’s
fractional derivative. Computation software Maple has used to facilitate tedious algebraic
calculations and all the results have been verified by backward substitution. We concluded that for
different values of a including classical and fractional order, the graph represents wave solutions
with high amplitude as @ — 1. for fractional order the amplitude of the wave gradually increases
with increase in values of x. Therefore this method is very effective technique in generating
abundant solutions of various types. These results might be helpful in the study magnetic behavior

in ferro-magnetic materials.

5.12 Summary:

This chapter incorporates with the well-known nonlinear PDEs in fractional order such as space-
time fractional non-liner double dispersive equation (DDE), space-time fractional non-liner
Telegraph equation, space-time fractional (2+1) dimensional Heisenberg ferromagnetic spin chain
equation with the help of improved generalized Riccati equation mapping method. The efforts to

extend the existing methods used to solve integer order NLPDEs to their fractional counterparts,



and apply them to solve real life fractional models, have gained tremendous popularity. We
succeed in generating many interesting types of solitary wave solutions that might be helpful in
the study of these models. This chapter includes introduction of governing equations followed by
main steps of methods used and derivation of solutions by proposed method. Finally graphical

representation of some results followed by conclusion.

Chapter 6 includes the summary of previous chapters, significance of this research, contribution
to the knowledge and conclusions. It also highlights limitations of our work and future

recommendations to work in this field.



Chapter 6. Conclusions and Future

recommendations



6.1 Conclusions:

This chapter discusses the overall conclusions of our work presented in this thesis.

The objective of this research work is to discover exact solitary wave solutions to nonlinear
differential equations including integer order (NLPDEs) and non-integer order (NFPDEs) arising
in various fields of science and technology for wave propagation. We have successfully found
exact traveling wave solutions including solitons, periodic waves, kink wave solutions to several
nonlinear partial differential equations representing real-life phenomena. These new solutions may
be worthwhile in the field of ocean engineering, astrophysics, and aerodynamics, plasma physics
and fluid mechanics to explain wave propagation of incompressible fluids. Each type of solitary
wave has its importance in nonlinear media such as kink solitons which propagates in nonlinear
physical phenomena having high order nonlinearity, high order nonlinear effects and self-
steepening. These solitons have been studied extensively due to its perfect propagation through
nonlinear media [106]. Singular solitons are also very important types of solitons that appear with
singularity. These solitons likely provide information about formation of rouge waves, also another
type of solitary waves are periodic wave solutions that plays notable role in the study of chemistry,
physics, biology and many more [107]. The formation of solitary waves has been captured in the
solution to NLPDEs corresponding to models of practical interest involving optic fiber signal

transmission and wave propagation in different media.

Here we have used Tanh method, which was firstly presented by [48]. This method is straight
forward, simple, and reliable that has ability to find solutions of variety of NPFDEs without
reproducing many different forms of the same solution. We applied this method to a few well-
known models, having applications in various fields such as Dodd-Bullough-Mikhailov equation,
Sinh-Gordan equation, Liouville equation. The mentioned equation plays significant role in
problems arising in fluid flows, solid state physics, nonlinear optics, quantum field theory and
chemical kinetics [30]. We have also used this method on modified version of Benjamin-Bona-
Mahony equation (BBM) called, (3 + 1)-Wazwaz-Benjamin-Bona-Mahony equation (WBBM)
named by Wazwaz in 2017 [81]. BBM equation was derived by Benjamin, Bona and Mahony in
1972, which is also the improved version of Korteweg-de-Vries (KDV) equation for surfaced

water waves in uniform channel and regularized version in shallow water waves [80]. A fair



amount of work has been done on this equation due to its importance in surface wave water, in
nonlinear dispersive system for long wave lengths, acoustic gravity waves in compressible liquids,

hydromagnetic waves in plasma physics and many more.

Next, we have utilized innovative and efficient method called improved tanh(@)-expamsion

method (IThEM) for recently developed (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli
equation. This model has applications in plasma physics, fluid dynamics, ocean engineering,
astrophysics, and aerodynamics to explain wave propagation of incompressible fluids [31, 88, 92—
96]. and, on fourth order Ablowitz-Kaup-Newell-Segur water wave (AKNS) equation. This
equation is remarkable due to the fact that it can be reduce into some very prominent nonlinear
equations such as KdV equation, mKdV equation which are used for the study of shallow water
waves and wave propagation in plasma, (2 + 1) dimensional Boussinesq wave equation which is
used for the investigation of nonlinear wave effect on shallow water, sine-Gordan equation have
application in different fields of physics and nonlinear Schrédinger equation has wide range of

applications in optical physics, quantum mechanics and many more [32].

We have also used Auxiliary equation method (AEM) developed by Sirendaoreji [61] on Fokas
system and (2 + 1) Davey-Stewartson (DS) system which is the generalization of nonlinear
Schrodinger equation used as governing equation to generate optical solitons that have showed
significant effect in telecommunication field because of its key role in data transmission through

optical fibers over large distances.

Moreover, we have utilized improved generalized Riccati equation mapping method on some
fractional nonlinear models. The use of fractional calculus to model certain real-life phenomena is
getting a great attention nowadays. NLFPDEs are generalizations of nonlinear partial differential
equations (NPDEs) in which the orders of derivatives involved are fractional. We have studied
space-time fractional nonlinear elastic inhomogeneous double dispersive equation for
Murnaghan’s rod. The doubly dispersive equation (DDE), which is an important nonlinear
physical model describing the nonlinear wave propagation in the elastic inhomogeneous circular
cylinder Murnaghan’s rod. Space-time conformable telegraph equation commonly used to study
electrical signals in transmission lines. And another important equation we have studied is the

newly derived variant of Nonlinear Schrodinger Equation (NLSE) that describes time-space



fractional (2+1)-dimensional Heisenberg ferromagnetic spin chains with bilinear and anisotropic
interactions in the semi classical limit. Heisenberg ferromagnet model (HFM) is an interesting
nonlinear model that exhibits magnetic solitons and, also very important to study magnetic

behavior in magnetic materials [33]

The concluded wave structures can be helpful to understand the characteristics of nonlinear
phenomena that develop in various realms of nonlinear sciences. Moreover, the outcome of this
research can predict that this method is suitable to apply on various higher order nonlinear models
to produce many interesting solutions involve in engineering, nonlinear optics, physics, and other

life sciences.

6.2 Limitations:

Although analytical methods are powerful tool to generate exact solutions of numerous nonlinear
PDEs and to understand the nonlinear behaviour of physical phenomena but still they have their
weaknesses. These methods are applicable to many nonlinear systems but certain complex
nonlinear PDEs are not solvable by these techniques alternatively these models have approximate
or numerical solutions. These methods need clearly defined initial or boundary value problems.
These types of techniques require a lot of computational work. Mostly computational software
such as Maple/Mathematica used to intricate mathematical calculations. Which requires a lot of
programming to extract solutions and for graphical representation of these results. Sometimes
software gives up on solving long and complex system of linear systems. Finding coefficients of
these linear systems are important step in finding the solutions of PDEs. Which is time consuming
and tedious. Researchers need to derive methods that requires less computational work. Also, they
can work on how to combine analytical and numerical methods to create a unified methods that

can cater major portion of nonlinear systems.

6.3 Future Recommendations:

For future recommendations, we can modify some techniques used in this manuscript or in
literature to improve their performance to get new types of solutions. There exist many NFPDEs
in different fields of science and engineering which are still posed and unanswered in literature.
We can increase the order of equations to make them integrable with higher order equations.
Higher order nonlinear PDEs are considered very beneficial to describe physical mechanism.

Multiple auxiliary equations methods are some other avenues for future endeavors. We can also



use numerical methods along with analytical in our future work to check the accuracy of our
results, as these solutions can help us to validate analytical solutions when complex partial
differential equations are involved. Numerical solutions help us to analyze the behavior of

solutions under certain parameters in a nice manner.

There is a recent growing trend to use artificial neural networks and machine learning to simulate
certain real-life phenomena, the same can be used to simulate solitary motion of different traveling
waves. It can be achieved both by data driven training networks or physics informed neural
networks. We see a great potential in using deep learning to mimic solitary waves as well.
Experimenting can be done with different learning and optimizing algorithms. We are hopeful

these recommendations will be useful for anyone interested in working in this field in future.
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