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Abstract: 

One of the most intriguing areas of applied mathematics is the study of non-linear partial 

differential equations (NLPDEs). They play a pivotal role in describing, modelling, and predicting 

many real-life phenomena. Due to the abstract nature, the fundamental problem is to find their 

exact solutions. Several methods have been proposed for this purpose. The study aims to find out 

unexplored exact solitary wave solutions to some NLPDEs arising in the fields of wave 

propagation and optical fiber. We shall be dealing with nonlinear dispersive PDEs. They are the 

ones where we could expect to have special type of exact solutions known as solitary wave 

solutions or solitons. Since solitons have been proven to be the exact solutions of many families 

of NLPDEs, their complete understanding would lead us to a broad understanding of the real-life 

phenomena themselves. In this thesis, modified extended tanh method, improved tanh (
𝝓

𝟐
)-

expansion method, generalized auxiliary equation mapping method, and improved generalized 

Riccati equation method have been used to solve few distinguished NLPDEs and NLFPDEs. The 

results obtained by these methods are new and have not been reported in literature previously 

proves the efficacy and productiveness of these methods. The main objective of this research is to 

find new exact solutions and graphical visualization of these results of PDE of integer and 

fractional order.  This project has two aspects of its significance. One is purely mathematical, and 

the other is its applications in other fields of science and technology. The new solutions would 

help scientists in developing cost-effective simulators to understand complex qualitative features 

of many phenomena in the fields of wave-propagation and signal-processing. 
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Synopsis of Thesis: 

Thesis Title: Exact Solitary Wave Solutions of Some Non-Linear Partial Differential Equations 

arising in Wave Propagation and Optical fibers. 

Partial differential equations play an important role in modelling and analyzing the nonlinear real 

life physical phenomena, as there is an abundance of phenomena around us that can be represented 

by NLPDEs. It is very important to formulate not only the governing PDE of a certain phenomenon 

but also to find out its exact solutions. Since these solutions of the PDE representing a physical 

phenomenon can be used to simulate and replicate the phenomenon itself in a virtual environment. 

These PDEs are naturally abstract, so there is no single general solution-recipe that could work on 

all of them. Usually, each individual equation must be studied as a separate problem. Numerous 

numerical, analytical, and approximate methods have been proposed and implemented to get the 

exact solutions of PDEs. However, in this study we would be interested in a particular type of 

exact solutions known as the solitary wave solutions. For this we will be using such analytical 

methods that are recently developed and have not been applied to most of the PDEs arising in our 

field of interest. This project will go further by applying existing methods to fractional nonlinear 

PDEs. NLFPDEs are generalizations of NLPDEs in which the orders of derivatives involved are 

fractional. Some of the obtained results have been shown graphically in 3-D, 2-D and contour 

graphs to study wave dynamics. 



Thesis outline: 

This thesis includes 6 chapters,  

Chapter-1: This chapter includes literature review including general introduction and 

preliminaries that provides significance of PDEs and FPDEs in different field of sciences along 

with history and background of solitons, which helps readers to understand the context of this 

research. This chapter also comprise basic definitions and brief description of methods used. Then 

it moves to motivation of this study, research objective, significance, and contribution to 

knowledge.  

Chapter-2: The main objective of this chapter is to explore soliton solutions to some nonlinear 

PDEs by employing a very straightforward and robust technique called, modified extended tanh 

expansion method [1]. We have solved the Dodd-Bullough-Mikhailov equation, Sinh-Gordan 

equation, Liouville equation and (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equation. 

We succeed in securing solitary and periodic wave solutions. Which provides deep insights into 

nonlinear phenomena and is helpful in different fields of sciences. Some of the derived solutions 

have been discussed in the form of 2-,3-dimensional graphs and contour plots to exhibit the power 

of proposed method graphically. The results generated by this technique are new and prove that it 

is a very strong and effective method to generate a variety of solutions and can be applied on 

different nonlinear models. All the graphs and solutions obtained in this chapter have been solved 

using computational software Maple. 

Chapter -3: In this chapter, variety of exact wave solutions for recently developed (3 + 1)-

dimensional Boiti-Leon-Manna-Pempinelli equation and fourth order Ablowitz-Kaup-Newell-

Segur water wave (AKNS) equation has been investigated by using the innovative and efficient 

method called improved tanh(
ఝ(క)

ଶ
)-expansion method (IThEM). The exact solutions obtained for 

these equations are in the form of hyperbolic, trigonometric, exponential, logarithmic functions 

which are completely new and distant from previously derived solutions. Their solutions help 

scientists to investigate the dynamics of nonlinear fluids with higher dimensional effects. To 



understand the dynamical physical behavior of this equation some important solutions have been 

discussed graphically in the form of two and three-dimensional along with contour plots by 

selecting suitable parameters with the aid of Maple program. The achieved outcomes exhibit that 

this new method is efficient, direct, and provides different classes of families. This technique can 

solve many nonlinear differential equations having importance in different fields of sciences. All 

the graphs and solutions obtained in this chapter have been solved using computational software 

Maple.  

Chapter-4: In this chapter, a very effective technique called generalized auxiliary equation 

mapping method has been employed to investigate some very important nonlinear equations in 

optical fibers such as Fokas system and (2 + 1) Davey-Stewartson (DS) system. Under different 

situations, the obtained solutions exhibit various wave pattern like bright and dark soliton, kink 

soliton, periodic wave soliton and singular solitons. Solutions of both equations provide valuable 

insights of wave propagation, signal processing in optical fibers, imaging techniques and have 

applications in many areas such as mathematical physics, biology, and oceanography. These 

solutions are novel and interesting and prove the efficiency of the method. The accuracy of the 

obtained results provides the efficiency of the method and ensures that it can be used for other 

mathematical models involved in optical fibers. Graphical simulation of some reported results has 

been discussed here to visualize and support the mathematical results in terms of 3-D, 2-D and 

contour plots. All the graphs and solutions obtained in this chapter have been solved using 

computational software Maple. 

Chapter-5: In this chapter, improved generalized Riccati equation mapping method has been used 

to find some new exact travelling wave solutions to space-time fractional non-liner double 

dispersive equation (DDE), space-time fractional non-liner Telegraph equation for transmission 

lines, space-time fractional (2+1) dimensional Heisenberg ferromagnetic spin chain equation. 

Riccati equation mapping method proves to be very effective tool to find a variety of soliton 

solutions. As a result, we found dark, combined dark-bright, singular periodic wave, combined 

singular periodic wave solutions and rational solutions. These newly discovered solutions would 

help a large community of scientists to understand the phenomenon such as earth sciences and 

shock physics in a more depth also interpretation of these exact solutions can help scientists to 

develop new technologies such as soliton-based communication devices. We have simulated the 



solitons, to check their types, with the help of graphs and all the solutions obtained in this article 

have been verified by back substitution in original equation by using Maple 17. 

Chapter-6: This chapter includes the summary of previous chapters, highlights the significance 

of this research, contribution to the knowledge and conclusions. It also includes limitations of our 

work and scope of further work in this field. 

All the references will be stated in the end of our work. 

 

 

 

 

  



Chapter 1. Introduction, Preliminaries and 

Literature Review 



 

1.1 Introduction: 
A lot of physical phenomena happening around us can be represented by nonlinear partial 

differential equations. The NPDEs arising in optical fibers, plasma and biological sciences will be 

of great interest. It is very important to formulate the governing NPDE of a certain phenomenon 

as well as to find out its exact solutions. We shall be dealing with nonlinear dispersive PDEs. They 

are the ones where we could expect to have solitary wave solutions. First ever discovery of solitons, 

not termed as solitons then, was made in 1834 when the Victorian Engineer John Scott Russell 

observed a solitary wave, travelling along the Scottish canal [2]. The wave was travelling along 

the channel of water for a long period of time while still retaining its original identity. He 

reproduced the phenomenon in a wave tank and named it the "Wave of Translation". 

Unfortunately, his great observation could not get much attention from the scientists of the 

nineteenth and early twentieth century era. In the mid-1960's his work got attention when scientists 

started to use modern digital computers to analyze wave propagation. Nowadays, his ideas are 

used to formulate abstract dynamical behaviors of wave systems in different branches of science 

and engineering. The presence of so-called waves of translation has been already noticed in 

hydrodynamics, nonlinear optics, tornadoes, shock waves, plasma, and the Great Red Spot of 

Jupiter etc.  

A soliton is a nonlinear solitary wave which has an additional property of retaining its permanent 

visual appearance, even if it interacts with another soliton. The difference between solitary waves 

and solitons is not much highlighted in the literature and had been blurred. We may define solitary 

waves to be the soliton like solutions of NPDEs describing the wave processes in dispersive and 

dissipative media. A single soliton solution is commonly referred to as a solitary wave. However, 

when two or more soliton like solutions occur, they are termed as solitons [3] . Since solitons have 

been proved to be the exact solutions of a large class of PDEs that are well accepted as the 

governing equations of many real-life phenomena, it is very important to understand them well. 

Their complete understanding would lead us to a broad understanding of the real-life phenomena 

themselves. Solitons are developed by the balance between nonlinearity and linear dispersion, 

nonlinearity tends to localize the wave while dispersion spreads it out. If we can create this balance, 

then we could expect to have soliton solution of a PDE. Well known example having solitons is, 



Korteweg-de Vries (KdV) equation [4] used to model the shallow water waves. The applications 

of shallow water equations are very vast in the field of ocean modelling and Coriolis forces in 

atmosphere.  Shallow water wave equation is also introduced to examine the characteristic of moist 

convection in atmospheric dynamics [5]. 

Another well-known nonlinear model is Schrödinger equation, is very important equation in 

Physics for some obvious reasons as it describes nonlinear wave propagation in optics, nonlinear 

fluids, rouge ocean waves, it generates exact solitary waves called solitons. Zakharov and Shabat 

solved this equation first time in 1972 [6]. 

Neither the KDV and Schrödinger equation are the only equations, nor shallow water wave or 

optical fibers are the only phenomenon which involves solitary waves and their beneficial uses. 

The applicability of solitary wave solutions covers a broad range of practical problems.  

 As the solution of the NPDE representing a physical phenomenon is used to simulate and replicate 

the phenomenon itself in a virtual environment, therefore, the challenges of solving NPDEs have 

been a subject of interest of many mathematicians. Exact solutions play a very important role in 

the proper understanding of the physical phenomena they correspond to. 

As NPDEs are naturally abstract, there is no single general technique to find out the solution that 

could work on all of them. Usually, each individual equation must be studied as a separate problem. 

Several scientists dedicated their bright minds to working out such methods that could be used to 

find the solutions to NPDEs and FNPDEs (nonlinear fractional partial differential equations). 

Numerous methods have been proposed and implemented to get the exact solutions of NPDEs. 

Such as tanh method [7], this is a powerful technique developed by Willy Malfiet in 1992 to 

compute exact solitary wave solutions in the form of tangent hyperbolic functions. In past many 

modifications had been done on this technique but Fan [8] extended this method using Riccati 

equation to generate different type of solutions along with hyperbolic function solutions. The Sine-

Cosine method [9] developed by A. M Wazwaz, the pioneer of 𝐺ᇱ/𝐺 expansion method was Wang 

et al. [10], introduced this method to solve variety of nonlinear evolution equations, Ansatz method 

[11], R. Hirota introduced new form of Backlund transformation method [12], Painlevé expansion 

[13] was developed to provide unified approach for both nonlinear ordinary and partial differential 

equation, Auxiliary equation method [14] was introduced by Sirendaoreji, Functional variable 



method [15], Hirota method [16] was introduced by R. Hirota as a direct method to generate exact 

solutions and Backlund transformations of certain nonlinear models. Lie symmetry approach[17], 

Generalized Riccati equation mapping method [18] , Variational iteration method [19] to find 

approximate solutions of nonlinear problems, tanh–coth method [20] derived by A. M Wazwaz 

and many more methods. In the recent past, many techniques have modified, extended to improve 

the shortcomings of old methods to get more generalized types of exact solutions of  nonlinear  

Partial differential equations of high order such as, double auxiliary equation method [21], 

modified extended Fan sub-equation method [22], Extended Jacobi’s elliptic function method [23], 

the sardar sub-equation method [24], the generalized 𝐺ᇱ/𝐺 expansion method [25],  Extended trial 

equation method [26], improved tanh (
థ

ଶ
)-expansion method [27], improved generalized Riccati 

equation mapping method [18], Modified extended Tanh Method [1], generalized auxiliary 

equation method [28] and generalized Kudryashov method [29] etc.  

1.2 Research Objectives: 
Prime objective of this study is to investigate and procure novel exact solutions known as the 

solitary wave solutions for some nonlinear PDEs which are prominent in different fields of 

sciences and have numerous applications using few well known analytical methods.  It is very 

important to formulate not only the governing PDE of a certain phenomenon but also to find out 

its exact solutions. I will be dealing with integrable nonlinear dispersive PDEs. They are the ones 

where we could expect to have solitary wave solutions. I handpicked the models that have 

importance in physics, fluid dynamics, plasma physics. Oceanography, biology and many more. 

Having the knowledge of the physical behavior of these nonlinear wave solutions helps scientists 

and Engineers to analyze, predict and control nonlinear phenomena such as rough waves in oceans, 

signal transmission in optical fibers, seismic waves, neural waves in brain, blood pressure, 

population dynamics, fluid flow in pipes, heat transfer. Finding these types of solutions is a 

momentous achievement by the researchers as they provide valuable insights about the behavior 

of nonlinear systems. All the models that are NLPDEs of order integer and fractional have been 

considered in this study and are selected wisely due to having significance in their respective field. 

 My questions of interest would be: 

1. Does a PDE have solitary wave solutions? 



2. What types of solitons we may get after finding the solutions? 

3. Are obtained solutions exact and novel? 

4. What implications would these new solutions have for our understanding of the problem? 

5. Are the obtained results accurate? 

6. What mathematical tools can be developed/modified to get more and new exact solutions? 

7. Where tools for exact solutions fail, can we use alternative approach to find exact solutions 

such as approximate analytical techniques? 

8. Can the existing methods be extended to handle nonlinear partial differential equations of 

non-integer order? 

1.3 Research Methodology:  
This project is very intriguing as well as difficult at the same time. For an organized research effort, 

I had divided my research plan into different stages. Each one of them had its own importance and 

a timeline. The work structure that I followed can be divided in the following parts: 

1.4 Phase 1: 
During the literature review, I selected such PDEs that contain both linear dispersive and nonlinear 

terms. These NLPDEs of order integer and fractional are related to the fields of wave propagation 

and optical fibers. I reviewed several equations and selected those which have some practical 

interest and pointed out the possibility of totally novel solutions to those NPDEs. Some basic steps 

that I followed to get these solutions, and make them presentable to the research community, are 

explained in the subsections as follows. 

1.4.1 Identification of suitable mathematical methods: 

This stage involved the identification of “right tool for the right job”. There are several ways to 

find soliton solutions to a given nonlinear dispersive partial differential equation. Many scientists 

have proposed various effective algorithms and techniques (some of which I have discussed in the 

section Literature Review). Each one of these techniques has its own advantages and 

disadvantages. Some are more generalized than the others and some are only suitable for some 

specific types of NPDEs. So, the selection of appropriate mathematical techniques is very 



important. I have used modified and generalized analytical methods which are new and robust in 

deriving new families of solutions. These methods have not applied previously to these models, 

signifying the importance of this research study.  

1.4.2 Software used:  

As in other fields such as Computer science and Information technology, mathematics and its 

related sciences took a great advantage of the modern technologies and their computational 

capabilities. It really boosted the research both in terms of quality and quantity. Many abstract 

equations and problems nowadays are only a matter of some built-in commands. However, their 

use is not limitless. For the PDEs I solved are of abstract nature and their ready-to-use recipes are 

still a dream. Since the obtainment of exact solutions to these PDEs is not an easy task, calculations 

just by hand is certainly not a good choice. Fortunately, we are blessed with several modern 

mathematical software which would help me to perform certain computational tasks and the 

visualization of the results. I used software named MAPLE and MATHEMATICA. There are 

many others but the reason for choosing these two is my previous familiarity with them.  

1.4.3 Solutions of Equations: 

To find exact solutions, I have taken help from the above-mentioned mathematical software. 

Although the software cannot solve the PDEs directly, they can however be used to perform certain 

tasks which were not possible, or extremely difficult, without them. Major steps to find the 

solutions of these equations is to transform PDEs to required ODEs by using complex wave 

transformation. Then by following the main steps of selected analytical technique I convert 

nonlinear ODE into system of algebraic system.  We solve this system which leads me to the 

families of solutions of our PDE. The coding helped me to get through this stage with ease and at 

a rapid pace.  

1.4.4 Verification of the solutions: 

The next important step in my research was the verification of the obtained solutions. Exact 

solutions are the solutions that satisfy the PDE exactly. Without the verification, we cannot say for 

sure that the obtained mathematical expressions are in fact the solutions of the considered NPDE. 

The verification process again lies on the codes and manual verification is not possible most of the 

time. For verification, I directly substituted expected solutions into the NPDE and if it satisfies the 

differential equation, I considered those expressions to be the exact solutions of the NPDE. 



1.4.5 Graphical simulation of the solution: 

Next step of my research was graphical simulation of solutions. This is the last, but not the least, 

consequent substage of my research. By their simulations we can judge the type of a solitary wave 

(such as kink, periodic, singular, compactons, peakon, dark soliton and bright soliton etc.) and its 

journey across the domain of interest. Again, the illustration of these results is only possible with 

modern computer technology. Without the graphical simulation, it is very hard to explain the 

solutions and their practical uses. These solutions would help engineers and computer scientists to 

make simulators that can directly simulate the waves for practical uses with having too much 

information about the solutions themselves. It will also save them from going too deep into 

mathematical aspects of the equations.   

1.4.6 Write up of the findings: 

Writing the results is a very important part of all the phases throughout my research project. 

Collecting facts is one thing and presenting them in an interesting and self-explanatory way is 

another. Along with my writing skills, and guidance from my supervisors, I used a couple of 

software for the said purpose and performed my write-up in MS-Word and Scientific Workplace 

(a Latex compiler).  

1.5 Phase II: 
The second phase of my research proposal was to extend my project to the nonlinear PDEs of 

fractional integer. Fractional calculus is a branch of mathematical analysis that studies the real or 

complex number order differential or integral operators. It is currently a very active research issue 

among the researchers as a lot of physical phenomena can be modelled by means of fractional 

derivatives in many fields of science and engineering. This phase was conducted simultaneous to 

Phase I. As I mentioned earlier, this field is more open and even some of the very basic methods 

have not yet been extended to these types of PDEs. I hope in future I shall be able to extend several 

already existing methods to make them able to solve NFPDEs. 

Equations studied: 

The PDEs studied in this thesis are, Dodd-Bullough-Mikhailov equation, Sinh-Gordan equation, 

Liouville equation and (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony that plays significant 

role in problems arising in fluid flows, solid state physics, nonlinear optics, quantum field theory 



and chemical kinetics [30]. The (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) 

equation has imperative impact and significance in the wave propagation in incompressible fluids, 

moreover when 𝑧 = 0, it describes the interaction of Riemann wave propagation [31]. Fourth order 

Ablowitz-Kaup-Newell-Segur water wave equation is significant because it can be reduced into 

some very famous nonlinear equations such as KdV equation, mKdV (2 + 1) dimensional 

Boussinesq wave equation, sine-Gordan equation and nonlinear Schrödinger equation has wide 

range of applications in optical physics, quantum mechanics and many more [32]. Fokas system 

is the extension of nonlinear Schrodinger equation in (2 + 1)-dimension. Davey-Stewartson 

(DSS) equation is the generalization of Schrodinger equation. The doubly dispersive equation is 

an important nonlinear physical model describing the nonlinear wave propagation in the elastic 

inhomogeneous circular cylinder Murnaghan’s rod. Nonlinear Telegraph equation is important 

mathematical model to study nonlinear wave propagation in electrical transmission lines, 

Heisenberg ferromagnet model (HFM) is an interesting nonlinear model that exhibits magnetic 

solitons and, also very important to study magnetic behavior in magnetic materials [33].  

1.6 Significance and contribution to knowledge:  
This project has two aspects of its significance. One is purely mathematical, and the other is its 

applications to the other fields of science and technology. The mathematical aspects involve the 

challenges of solving nonlinear PDEs which has been a subject of interest to many great 

mathematicians. This interest is due to the reason that behind almost every nonlinear PDE there 

lies a real-life phenomenon. As the solution of the PDE representing a physical phenomenon is 

used to simulate and replicate the phenomenon itself in a virtual environment, therefore, the exact 

solutions play a pivotal role in the proper understanding of that phenomena. New families of 

solutions for these PDEs provide more valuable information to researchers and scientists in 

expanding their scientific knowledge, studying insights of practical problems and provides new 

directions of research. Researchers working in labs can tally their findings with the exact solutions 

of the models. That would lead us all to more realistic and implementable models. Motivated by 

the significance of these models we are hopeful that our results which are new is a great 

contribution to the knowledge as these results will be beneficial to understand how nonlinearity of 

different models work and changes over time under certain conditions.  



 

1.7 Definitions and properties: 

1.7.1 Partial Differential Equation: 

A partial differential equation is an equation that contains the dependent (the unknown function), 

and its partial derivatives. It is known that in the ordinary equations (ODE) the dependent variable 

𝑢 = 𝑢(𝑥), depends on only one independent variable 𝑥. Whereas, in PDEs the dependent variable 

𝑢 = 𝑢(𝑥, 𝑡), 𝑜𝑟 𝑢 = 𝑢(𝑥, 𝑦, 𝑡), must depend on more than one independent variable. Such as if 

𝑢 = 𝑢(𝑥, 𝑡), than it depends to independent variable 𝑥 and on the time variable 𝑡. 

Partial differential equations are classified as linear and nonlinear [34]. 

1.7.2 Definition and properties of modified Riemann-Liouville derivative:  

 Let us consider continuous (but not necessarily differential) function, 𝑓: 𝑅 → 𝑅, 𝑤 → 𝑓(𝑤),  

then its Jumarie’s modified Riemann-Liouville fractional derivative of order 𝛼 is defined as 

follows [35]: 

𝑓(ఈ)(𝑤) =
1

Γ(−𝛼)
න (w − 𝜉)ିఈିଵ

௪

଴

[𝑓(𝜉) − 𝑓(0)] 𝑑𝜉, 𝛼 < 0. 

For 𝛼 > 0, we have, 

𝑓(ఈ)(𝑤) = (𝑓(ఈିଵ)(𝑤))′, 

                =
1

Γ(1 − 𝛼)

𝑑

𝑑𝑤
න (w − 𝜉)ିఈ

௪

଴

[𝑓(𝜉) − 𝑓(0)] 𝑑𝜉, 0 < 𝛼 < 1. 

And, 

𝑓(ఈ)(𝑤) = (𝑓(௤)(𝑤))ఈି௤ , 𝑞 ≤ 𝛼 < 𝑞 + 1, 𝑞 ≥ 1, 

 

(1.1) 

where Γ(. ) is gamma function defined as: 

Γ(𝛼) = lim
௤→ஶ

𝑞! 𝑞ఈ

𝛼(𝛼 + 1)(𝛼 + 2) … . (𝛼 + 𝑞)
, (1.2) 

some characteristics of modified Riemann–Liouville derivative [35] are given below: 



𝑓௪
(ఈ)

(𝑤ఋ) =  𝐷௪

ఈ
𝑤ఋ =

Γ(1 + δ)

Γ(1 + δ − 𝛼)
𝑤ஔିఈ, δ > 0. (1.3) 

The Jumarie’s modified fractional differentiation is a linear operation: 

 𝐷௪
ఈ൫𝐴𝑓(𝑤) + 𝐵𝑔(𝑤)൯ = 𝐴 𝐷௪

ఈ𝑓(𝑤) + 𝐵 𝐷௪
ఈ𝑔(𝑤),   𝐴 𝑎𝑛𝑑 𝐵 are constants. (1.4) 

 𝐷௪
ఈ𝐶 = 0,   𝐶 is constant. (1.5) 

 𝐷௪
ఈ[𝑓(𝑤) 𝑔(𝑤)] = 𝑔(𝑤)  𝐷௪

ఈ𝑓(𝑤) + 𝑓(𝑤) 𝐷௪
ఈ𝑔(𝑤), (1.6) 

 𝐷௪
ఈ𝑓൫ 𝑔(𝑤)൯ = 𝑓௚

ᇱ൫ 𝑔(𝑤)൯ 𝐷௪
ఈ𝑔(𝑤) =  𝐷௚

ఈ𝑓൫ 𝑔(𝑤)൯(𝑔ᇱ(𝑤))ఈ.  (1.7) 

1.7.3 Properties and Definition of Caputo Derivative: 

Let, 𝑚 to be a smallest integer that is greater than 𝛼 , the Caputo time fractional derivative 

operator of order 𝛼 > 0 of the function 𝑢(𝑡, 𝜏) is defined as follows [36]. 

𝐷௧
ఈ𝑓(𝑡) =

𝜕ఈ𝑢(𝑡, 𝜏)

𝜕𝑡ఈ
, 

=

⎩
⎪
⎨

⎪
⎧ 1

Γ(m − 𝛼)
න (t − s)୫ିఈିଵ

௧

଴

𝜕௠𝑓(𝑠)

𝜕𝑠௠
𝑑𝑠, 𝑚 − 1 < 𝛼 ≤ 𝑚,

𝜕௠𝑢(𝑡, 𝜏)

𝜕𝑡௠
,                                                                     𝛼 = 𝑚 ∈ 𝑁,

 

(1.8) 

some characteristics of Caputo fractional derivative are given below [36]. 

For 𝛼𝜖(𝑚, 𝑚 + 1], the Caputo fractional derivative of the power function 𝑡ఋ , 𝛿 > 1 is given by, 

Dఈ𝑡ఋ = ቐ

0,                                        𝛼 > δ,
Γ(1 + δ)

Γ(1 + δ − 𝛼)
𝑡ஔିఈ, 𝛼 ≤ δ.

 (1.9) 

𝐷ఈ𝐶 = 0,   𝐶 is constant. (1.10) 

Caputo derivative is linear. 

𝐷ఈ൫𝐴𝑓(𝑡) + 𝐵𝑔(𝑡)൯ = 𝐴𝐷ఈ𝑓(𝑡) + 𝐵𝐷ఈ𝑔(𝑡),   𝐴 and 𝐵 are constants. (1.11) 

If 𝑓(𝑡) is continuous in [0,1] and 𝑔(𝑡) has n + 1 continuous derivatives in [0, t]. 
If 𝑓(𝑡) is continuous function in [𝑎, 𝑏], then, 



𝑑

𝑑𝑡
𝐼ఉf(t) = 𝐼ఉ

𝑑

𝑑𝑡
f(t) +

𝑡ఉିଵ

Γ(𝛽)
f(0). (1.12) 

If 𝑓(𝑡) is continuous function in [𝑎, 𝑏], 𝑓ᇱᇱ(𝑡) exists and 𝑓ᇱ(0) = 0, then, 

𝐷ఈ𝐷ఉf(t) = 𝐷ఈାఉf(t), (1.13) 

where 𝛼 + 𝛽𝜖(1,2). 
Lemma 1: If m − 1 < α < m, 𝑚 ∈ 𝑁, then, 

𝐷ఈ𝐼ఈ𝑓(𝑡) = 𝑓(𝑡) and (1.14) 

𝐼ఈ𝐷ఈ𝑓(𝑡) = 𝑓(𝑡) − ෍
𝑡௡

𝑛!
𝑓(௡)(0), 𝑡 > 0

௠ିଵ

௡ୀ଴

.  (1.15) 

Now we are going to address recently derived derivative called the conformable derivative in [37, 

38] and it satisfies all the conditions of the standard derivative. Here, we shall present the definition 

and some properties of this new derivative. 

1.7.4 Definitions and properties of Conformable derivative 

Consider a function 𝑓: [0, ∞) → 𝑅. The conformable derivative of the function 𝑓 (𝑡) of 𝛼௧௛ order 

is defined as[39] 

𝐷௧
ఈ(𝑓)(𝑡) =  lim

ఌ→଴

𝑓(𝑡 + 𝜖𝑡ଵିఈ) − 𝑓(𝑡)

𝜖
, ∀𝑡 > 0, 𝛼 ∈ (0,1).   (1.16) 

If 𝑓(𝑡) is 𝛼 − differentiable in some (0, 𝑎), 𝑎 >  0, and lim
௧→଴శ

𝑓ఈ(𝑡) exists, then, 

𝑓ఈ(0) = lim
௧→଴శ

𝑓ఈ(𝑡). 

Properties of differentiable Conformable derivatives that satisfy following properties: 
i. Conformable derivative is linear. 

            𝐷௧
ఈ൫𝐴𝑓(𝑡) + 𝐵𝑔(𝑡)൯ = 𝐴൫𝐷ఈ𝑓(𝑡)൯ + 𝐵൫𝐷ఈ𝑔(𝑡)൯,   𝐴 𝑎𝑛𝑑 𝐵 are constants. (1.17) 

ii. 𝐷௧
ఈ(𝑡௥) = 𝑟𝑡௥ିଵ,   𝑟 ∈ 𝑅. (1.18) 

iii. 𝐷௧
ఈ𝐶 = 0,   𝐶 is constant. (1.19) 

iv. Leibniz Rule, 𝐷௧
ఈ(𝑓(𝑡). 𝑔(𝑡)) = 𝑔(𝑡)𝐷௧

ఈ𝑓(𝑡) + 𝑓(𝑡)𝐷௧
ఈ𝑔(𝑡). (1.20) 



v. 𝐷௧
ఈ ቀ

௙(௧)

௚(௧)
ቁ =

௚(௧)஽೟
ഀ௙(௧)ି௙(௧)஽೟

ഀ௚(௧)

௚మ(௧)
. (1.21) 

vi. If 𝑓 is differentiable, 𝐷௧
ఈ𝑓(𝑡) = (𝑡)ଵିఈ ௗ௙(௧)

ௗ௧
. (1.22) 

vii. Chain rule: Let 𝑓 be an 𝛼 −differentiable function and 𝑔 is also differentiable defined in 

the range of 𝑓, 

            𝐷௧
ఈ൫𝑔𝑜𝑓(𝑡)൯ = 𝑓ᇱ(𝑡)𝐷௧

ఈ𝑔൫𝑓(𝑡)൯. (1.23) 

 

1.7.5 Definitions and properties of Atangana’s derivative 

Here we review the definition of Atangana’s conformable derivative and its various properties. 

The Atangana’s conformable is defined as [40] 

           𝐷଴
஺

௧
ఈ𝑓(𝑡) = lim

ఢ→଴

𝑓 ቆ𝑡 + 𝜖 ൬𝑡 +
1

𝛤(𝛼)
൰

ଵିఈ

ቇ − 𝑓(𝑡)

𝜖
. 

(1.24) 

Properties of Atangana’s derivative: 

i. Let 𝑓: [𝛼, ∞) → 𝑅 is a differentiable function which is also 𝛼 −differentiable then, 

              𝐷଴
஺

௭
ఉ

൫𝑔𝑜𝑓(𝑧)൯ = 𝑓ᇱ(𝑧) 𝐷଴
஺

௭
ఉ

𝑔൫𝑓(𝑧)൯, (1.25) 

where the function 𝑔 is also differentiable and is defined in the range of 𝑓. 

ii. Assume 𝑓 and 𝑔, are functions, and both are 𝛽 −differentiable then, 

           𝐷଴
஺

௭
ఈ൫𝑎́𝑓(𝑧) + 𝑏ሖ 𝑔(𝑧)൯ = 𝑎́ 𝐷଴

஺
௭
ఈ𝑓(𝑧) + 𝑏ሖ 𝐷଴

஺
௭
ఈ𝑔(𝑧), (1.26) 

𝑎́, 𝑏ሖ  are real numbers and β ∈ (0,1]. 

iii. 𝐷଴
஺

௭
ఈ(C) = 0, C is constant. (1.27) 

iv. Leibniz Rule, 𝐷଴
஺

௭
ఈ(𝑓(𝑧). 𝑔(𝑧)) = 𝑔(𝑧) 𝐷଴

஺
௭
ఈ𝑓(𝑧) + 𝑓(𝑧) 𝐷଴

஺
௭
ఈ𝑔(𝑧), (1.28) 

v. 𝐷଴
஺

௭
ఈ ቀ

௙(௭)

௚(௭)
ቁ =

௚(௭) ஽బ
ಲ

೥
ഀ௙(௭)ି௙(௭) ஽బ

ಲ
೥
ഀ௚(௭)

௚మ(௭)
, provided 𝑔 ≠ 0, (1.29) 



vi. Let us consider eq. (1.24) where 𝜖 = (𝑧 +
ଵ

௰(ఈ)
)ଵିఈℎ, and ℎ → 0, when 𝜖 → 0, [41] 

therefore we get, 

           𝐷଴
஺

௭
ఈ𝑓(𝑧) = (𝑧 +

ଵ

௰(ఈ)
)ଵିఈ ௗ௙(௭)

ௗ௭
, (1.30) 

            𝜉 =
𝜒

𝛼
(𝑧 +

1

𝛤(𝛼)
)ఈ, (1.31) 

where 𝜒 is a constant. Hence, we obtain, 

          𝐷଴
஺

௭
ఈ𝑓(𝜉) = 𝜒

ௗ௙(క)

ௗక
. (1.32) 

Remark: It is worth mentioning here that Ji-Huan He and Zheng-Biao Li [42] proposed an easy 

approach, namely the fractional complex transform[43, 44] which converts the fractional 

differential equations into ordinary differential equations. In Chapter 5 of this thesis, the fractional 

complex transforms and chain rule[45, 46] have been used with Caputo fractional derivative and 

conformable derivative to convert fractional-order partial differential equations, into integer order 

differential equations. The resulting equations are relatively easier to handle. They can be solved 

with different methods to obtain their exact solitary wave solutions. Moreover, we have used a 

recent definition of the comfortable fractional derivative called Atangana’s conformable 

derivative[41, 47]. They have also proposed a transformation which converts the conformable 

fractional differential equation with Atangana’s conformable derivative into a nonlinear 

conformable ordinary differential equation. 

1.8 Modified extended tanh expansion method: 

Let us consider the nonlinear partial differential equation with independent variables 𝑥, 𝑡 and some 

dependent function 𝑢̇: 

Å ቆ𝑢̇,
∂

∂𝑥
𝑢̇,

∂

∂t
𝑢̇,

∂ଶ

∂𝑥ଶ
𝑢̇,

∂ଶ

∂𝑡ଶ
𝑢̇, ….  ቇ = 0,           

(1.33) 

where Å is a polynomial in 𝑢̇ with its various orders of nonlinear partial derivatives. 

Step1. Let  



𝑢̇(𝑥, 𝑡) = 𝑢̇(𝜉 ), (1.34) 

where, 

𝜉 = 𝑘𝑥 + 𝜈𝑡, (1.35) 

is a wave transformation which can convert nonlinear differential Eq.(1.33) into nonlinear ordinary 

differential equation,  

ℋ(𝑢̇, 𝑘𝑢̇ᇱ, 𝜈𝑢̇ᇱ, 𝑘ଶ𝑢̇ᇱᇱ, 𝜈ଶ𝑢̇ᇱᇱ, … ) = 0, (1.36) 

where 𝑘, 𝜈 are nonzero.  

Step2. We suppose that the following series expansion is the solution of Eq.(1.36). 

𝑢̇(𝜉) = 𝑆 = 𝑎଴ + ෌ ൫𝑎௜(Φ(𝜉))௜ + 𝑏௜(Φ(𝜉))ି௜൯
ே

௜ୀଵ
 , (1.37) 

where a଴, a௜ , 𝑏௜(1 ≤ 𝑖 ≤ 𝑁) are constants, which are to be determined provided aே , 𝑏ே ≠ 0. The 

function Φ = Φ(𝜉 ) satisfies the following ordinary differential equation. 

Φᇱ(𝜉 ) = Ω + Φ(𝜉)ଶ,     where Ω is real constant. (1.38) 

The parameter 𝑁 can be found by balancing highest order derivative with nonlinear term. 

Substituting (1.67) and (1.68) into the ordinary differential equation (1.29) will yield a system of 

algebraic equations in terms of 𝑎଴, 𝑎௜ , 𝑏௜ and Ω (where 1 ≤ i ≤ N). Solving the resulting system of 

coefficients, we can then determine 𝑎଴, 𝑎௜ , 𝑏௜ and Ω. General solutions of Riccati differential 

equation (1.68) are as follows: 

If Ω < 0, we have 

𝜙(𝜉) = −√−𝑏 tanh ቀ൫√−𝑏𝜉′൯ቁ, 

or, 

 𝜙(𝜉) = −√−𝑏 coth ቀ൫√−𝑏𝜉′൯ቁ. 

If Ω > 0, we have 



𝜙(𝜉) = √𝑏 tan ቀ൫√𝑏𝜉′൯ቁ, 

or 

 𝜙(𝜉) = −√𝑏 cot ቀ൫√−𝑏𝜉′൯ቁ. 

If Ω = 0, we have 

𝜙(𝜉) = −
1

𝜉ᇱ
. 

Using these general solutions of Riccati equation along with the values of 𝑎଴, 𝑎௜ , 𝑏௜ and Ω in to Eq 

(1.67), we have obtained the solutions of Eq (1.33). 

1.9 Improved tanh (
𝝓

𝟐
)-expansion method: 

Let us consider the nonlinear partial differential equation with independent variables 𝑥, 𝑡 and 

some dependent function 𝑢̇: 

Å(𝑢̇, 𝑢̇௫ , 𝑢̇௧ , 𝑢̇௫௫ , 𝑢̇௧௧ , ….  ) = 0,           (1.39) 

Where Å is a polynomial in 𝑢̇ with its various orders of nonlinear partial derivatives. 

Step1. Let  

𝑢̇(𝑥, 𝑡) = 𝑢̇(𝜉 ), (1.40) 

where, 

𝜉 = 𝑘𝑥 + 𝜈𝑡, (1.41) 

is a wave transformation which can convert nonlinear differential Eq. (1.63) into nonlinear 

ordinary differential equation,  

ℋ(𝑢̇, 𝑘𝑢̇ᇱ, 𝜈𝑢̇ᇱ, 𝑘ଶ𝑢̇ᇱᇱ, 𝜈ଶ𝑢̇ᇱᇱ, … ) = 0, (1.42) 

where 𝑘, 𝜈 are nonzero.  

Step2. We suppose that the following series expansion is the solution of Eq. (1.42) 



𝑢̇(𝜉) = Λ(𝜙) = ෍ Α௞[𝑝 + tanh (𝜙/2)]௞ ,

ே

௞ୀିே

  
(1.43) 

where Α௞(0 ≤ 𝑘 ≤ 𝑁) and Αି௞(1 ≤ 𝑘 ≤ 𝑁) are constants, which are to be determined provided 

Αே ≠ 0, Αିே ≠ 0. The function 𝜙 = 𝜙(𝜉 ) satisfies the following ordinary differential equation. 

𝜙ᇱ(𝜉 ) = 𝑎 sinh൫𝜙(𝜉 )൯ + 𝑏𝑐𝑜𝑠 h൫𝜙(𝜉 )൯ + 𝑐,     where a, b, c are real constants. (1.44) 

Eq. (1.44) has following special type of solutions: 

Family 1: When 𝑎ଶ + 𝑐ଶ − 𝑏ଶ < 0, 𝑏 − 𝑐 ≠ 0 then 

𝜙(𝜉) = 2 arctanh ቎−
𝑎

𝑏 − 𝑐
+

√𝑏ଶ − 𝑎ଶ − 𝑐ଶ

𝑏 − 𝑐
tan ቌ

√𝑏ଶ − 𝑎ଶ − 𝑐ଶ

2
(𝜉′)ቍ቏ . 

Family 2: When 𝑎ଶ + 𝑐ଶ − 𝑏ଶ > 0 and 𝑏 − 𝑐 ≠ 0, then 

𝜙(𝜉) = 2 arctanh ቎−
𝑎

𝑏 − 𝑐
−

√𝑎ଶ + 𝑐ଶ−𝑏ଶ

𝑏 − 𝑐
tanh ቌ

√𝑎ଶ + 𝑐ଶ−𝑏ଶ

2
(𝜉′)ቍ቏ . 

Family 3: When 𝑎ଶ + 𝑐ଶ − 𝑏ଶ < 0 , b≠0 and c=0, then 

𝜙(𝜉) = 2 arctanh ቎−
𝑎

𝑏
+

√𝑏ଶ − 𝑎ଶ

𝑏
tan ቌ

√𝑏ଶ − 𝑎ଶ

2
(𝜉′)ቍ቏ . 

Family 4: When 𝑎ଶ + 𝑐ଶ − 𝑏ଶ > 0, c≠0 and b=0, then 

𝜙(𝜉) = 2 arctanh ቎
𝑎

𝑐
+

√𝑎ଶ + 𝑐ଶ

𝑐
tan ቌ

√𝑎ଶ + 𝑐ଶ

2
(𝜉′)ቍ቏ . 

Family 5: When 𝑎ଶ + 𝑐ଶ − 𝑏ଶ < 0, b-c≠0 and a=0, then 

𝜙(𝜉) = 2 arctanh ቎ඨ
𝑏 + 𝑐

𝑏 − 𝑐
tan ቌ

√𝑏ଶ − 𝑐ଶ

2
(𝜉′)ቍ቏. 



Family 6: When 𝑎 =0 and c=0, then 

𝜙(𝜉) = ln ൥tan ൭
b

2
(𝜉ᇱ)൱൩. 

Family 7: When b=0 and c=0, then  

𝜙(𝜉) = ln ቈ− tanh ቆ
a

2
(𝜉ᇱ)ቇ቉. 

Family 8: When 𝑎ଶ + 𝑏ଶ = 𝑐ଶ, then   

𝜙(𝜉) = 2 arctanh ቎
𝑎

−𝑏 + √𝑎ଶ + 𝑏ଶ
+

√2𝑎

−𝑏 + √𝑎ଶ + 𝑏ଶ
tanh ቌ

√2𝑎

2
(𝜉′)ቍ቏ . 

Family 9: When a=b=c=ka, then 

𝜙(𝜉) = 2a  rctanhൣ𝑒௞௔(కᇱ) − 1൧. 

Family 10: When 𝑎 = 𝑐 = 𝑘𝑎 and 𝑏 = −𝑘𝑎, then 

𝜙(𝜉) = 2arctanh ቈ
𝑒௞௔(కᇱ)

−1 + 𝑒௞௔(కᇱ)
቉ . 

Family 11: When 𝑏 = 𝑎, then 

𝜙(𝜉) = −2 arctanh ቈ
(𝑎 + 𝑐) 𝑒௕(కᇱ) − 1

(𝑎 − 𝑐) 𝑒௕(కᇱ) − 1
቉ . 

Family 12: When 𝑏 = 𝑐, then 

𝜙(𝜉) = 2 arctanh ቈ
𝑒௕൫కᇲ൯ − 𝑐

𝑎
቉ . 

Family 13: When 𝑎 = −𝑐, and 𝑏 = 𝑐 then 

𝜙(𝜉) = 2 arctanhൣ1 + 𝑒ି௖൫కᇲ൯൧. 



Family 14: When 𝑏 = −𝑏, and 𝑐 = −𝑏 then 

𝜙(𝜉) = 2 arctanh ቈ
𝑏 + 𝑒௔൫కᇲ൯

𝑎
቉ . 

Family 15: When 𝑏 = −𝑏 , 𝑎 = −𝑏 and 𝑐 = 𝑏 then 

𝜙(𝜉) = 2 arctanh ൤
1

𝑒௕(కᇲ) − 1
൨ . 

Family 16: When 𝑏 = −𝑐, then 

𝜙(𝜉) = 2 arctanh ቈ
𝑎𝑒௔൫కᇲ൯

𝑐𝑒௔(కᇲ) − 1
቉ . 

Family 17: When 𝑎 = 0  and 𝑏 = 𝑐, then 

𝜙(𝜉) = 2 arctanh [c(𝜉ᇱ)] 

Family 18: When 𝑎 = 0, and 𝑏 = −𝑐, then 

𝜙(𝜉) = 2 arctanh ൤
1

𝑐(𝜉ᇱ)
൨ . 

Family 19: When 𝑏 = 0,and 𝑎 = 𝑐 then 

𝜙(𝜉) = 2 arctanh ቎1 + √2tanh ቌ
√2𝑐

2
(𝜉ᇱ)ቍ቏. 

Family 20: When 𝑎 = 0,and 𝑏 = 0 then 

𝜙(𝜉) = 𝑐𝜉 + 𝐶, 

where 𝜉ᇱ = 𝜉 + 𝐶, Α௞ , Αି௞(𝑘 = 1,2, … , 𝑁), 𝑎, 𝑏, 𝑐 are constants to be determined later. Positive 

integer 𝑁 in Eq. (1.43) can be found by using homogeneous balance principle between the 

derivatives of highest order and the highest power of nonlinear terms in Eq. (1.43)  



Step4. Substituting Eq. (1.43) along with Eq. (1.44) into Eq. (1.42). We get the polynomial 

equations.   Equalizing coefficients of the resulting polynomial to zero, we get over-determined 

system of algebraic equations for Α௜where 𝑖 = 0, ±1, ±2, … . ±𝑁. 

Step5. With the help of Maple, we solve the system described in step 4, provides the values of  

Α଴, Α௞ , Αି௞ where, 𝑖 = 1,2, … . 𝑁, 𝑎, 𝑏, 𝑐. We substitute these values in Eq. (1.43) coupled with 

solutions of Eq. (1.44) and applying the transformation in Eq. (1.42), we construct several exact 

solutions of Eq. (1.39) , establishing twenty families [27]. 

  



1.10 Generalized Auxiliary Equation mapping Method: 
It is now evident that NLPDEs have some amazing applications in different fields of sciences. To 

understand the physical phenomena of these equations some powerful methods are required to 

generate exact solutions. Finding suitable method for its application on PDEs and its interpretation 

is very critical for this research. For this reason, many useful methods have been introduced as 

each PDE is abstract in nature so there is no unified method that can be applicable on all type of 

PDEs. Some well-known methods in literature are Tanh expansion method [48], modified 

extended tanh expansion method [49] , Adomian’s decomposition method [50], Backlund 

transformation method [51], Painlevé expansion [52], Fractional Homotopy analysis method [53], 

Kudryashov’s method [54, 55], Exponential Rational function method [56]., (
ீᇲ

ீమ
)-expansion 

method [57], Khater method[58], Improved generalized Riccati equation mapping method [24]. 

Here we are rewriting famous method called generalized Auxiliary equation mapping method 

developed by Sirendaoreji [61]. By using an appropriate auxiliary equation not only makes 

calculations easy but also, we can find different types of exact solutions. 

To describe the leading steps of the auxiliary equation method [61]. we consider the following 

NLPDE for an unknown function 𝜑(𝑥, 𝑡). 

Μ൫ φ, 𝜑௫ , 𝜑௬ , 𝜑௭ , 𝜑௫௫ , … ൯ = 0. (1.45) 

Step 1. We assume Eq (1.45) has the following wave transformation 𝜉 = 𝑥 − 𝜌𝑡. Substituting 

this wave transformation into Eq (1.45) turns into following ODE: 

Κ(𝑣, 𝑣ᇱ, 𝑣ᇱᇱ, 𝑣ᇱᇱᇱ, … ) = 0. (1.46) 

 Step 2. AEM assumes the solution of Eq. (1.46) is of the form, 

𝑣(𝜉) =  𝑎଴̇ + 𝑎ଵ̇ℚ(𝜉) + ⋯ + 𝑎ℵ̇ ℚℵ(𝜉), (1.47) 

in which  𝑎ప̇ (𝑖 =  1, 2, . . . , ℵ) are all constants to be found.  

Step 3. ℵ is a positive integer which can be computed from the homogeneous balance principle.  

ℚ(𝜉) follows the auxiliary ODE as: 



൬
𝑑ℚ

𝑑𝜉
൰

ଶ

= 𝑎ℚଶ(𝜉) + 𝑏ℚଷ(𝜉) + 𝑐ℚସ(𝜉), 
(1.48) 

here 𝑎, 𝑏, and 𝑐 are real valued parameters. The exact solutions of Eq. (1.48) are as follows. 

Family 1: When 𝒂 > 𝟎, then  

ℚ(𝜉) =

−𝑎𝑏𝑠𝑒𝑐ℎଶ ቆ
√𝑎
2

𝜉ቇ

𝑏ଶ − 𝑎𝑐 ቆ1 + 𝜀 tanh ቆ
√𝑎
2

𝜉ቇቇ

ଶ.        

 

(1.49) 

Family 2: When 𝒂 > 𝟎, then  

ℚ(𝜉) =

𝑎𝑏𝑐𝑠𝑐ℎଶ ቆ
√𝑎
2

𝜉ቇ

𝑏ଶ − 𝑎𝑐 ቆ1 + 𝜀 coth ቆ
√𝑎
2

𝜉ቇቇ

ଶ.  

 

(1.50) 

Family 3: When 𝒂 > 𝟎 𝐚𝐧𝐝  𝚫 > 𝟎  then  

ℚ(𝜉) =
2𝑎𝑠𝑒𝑐ℎ൫√𝑎𝜉൯

𝜀√Δ − 𝑏𝑠𝑒𝑐ℎ(√𝑎𝜉)
. 

(1.51) 

Family 4: When 𝒂 < 𝟎 𝐚𝐧𝐝 𝚫 > 𝟎  then  

ℚ(𝜉) =
2𝑎𝑠𝑒𝑐൫√−𝑎𝜉൯

𝜀√Δ − 𝑏𝑠𝑒𝑐൫√−𝑎𝜉൯
. 

(1.52) 

Family 5: When 𝒂 > 𝟎 𝐚𝐧𝐝 𝚫 < 𝟎  then  

ℚ(𝜉) =
2𝑎𝑐𝑠𝑐ℎ൫√𝑎𝜉൯

𝜀√−Δ − 𝑏𝑐𝑠𝑐ℎ(√𝑎𝜉)
. 

(1.53) 

Family 6: When 𝒂 < 𝟎 𝐚𝐧𝐝 𝚫 > 𝟎  then  

ℚ(𝜉) =
2𝑎𝑐𝑠𝑐൫√−𝑎𝜉൯

𝜀√Δ − 𝑏𝑐𝑠𝑐(√−𝑎𝜉)
. 

(1.54) 



Family 7: When 𝒂 > 𝟎 𝐚𝐧𝐝 𝐜 > 𝟎  then  

ℚ(𝜉) =

− asechଶ  ቆ
√𝑎
2

 𝜉ቇ

𝑏 + 2𝜀√𝑎𝑐 tanh ቆ
√𝑎
2

 𝜉ቇ

. 

 

(1.55) 

Family 8: When  𝐜 > 𝟎 𝐚𝐧𝐝 𝒂 < 𝟎  then  

ℚ(𝜉) =

− asecଶ ቆ
√−𝑎

2
𝜉ቇ

𝑏 + 2𝜀√−𝑎𝑐 tan ቆ
√−𝑎

2
𝜉ቇ

. 

 

(1.56) 

Family 9: When  𝐜 > 𝟎 𝐚𝐧𝐝 𝒂 > 𝟎  then  

ℚ(𝜉) =

acschଶ ቆ
√𝑎
2

𝜉ቇ

𝑏 + 2𝜀√𝑎𝑐 coth ቆ
√𝑎
2

𝜉ቇ

. 

 

(1.57) 

Family 10: When 𝒂 < 𝟎 𝐚𝐧𝐝 𝐜 > 𝟎  then  

ℚ(𝜉) =

− acscଶ ቆ
√−𝑎

2
𝜉ቇ

𝑏 + 2𝜀√−𝑎𝑐 cot ቆ
√−𝑎

2
𝜉ቇ

. 

 

(1.58) 

Family 11: When 𝒂 > 𝟎 𝐚𝐧𝐝 𝚫 = 𝟎  then  

ℚ(𝜉) = −
𝑎

𝑏
ቆ1 + 𝜀 tanh ቆ

√𝑎

2
𝜉ቇቇ. 

(1.59) 

Family 12: When 𝒂 > 𝟎 𝐚𝐧𝐝 𝚫 = 𝟎  then  

ℚ(𝜉) = −
𝑎

𝑏
ቆ1 + 𝜀 coth ቆ

√𝑎

2
𝜉ቇቇ. 

(1.60) 

Family 13: When 𝒂 > 𝟎 then 



ℚ(𝜉) =
4𝑎𝑒ఌ√௔క

(𝑒ఌ√௔క − 𝑏)ଶ − 4𝑎𝑐
. 

(1.61) 

Family 14: When 𝒂 > 𝟎 𝐚𝐧𝐝 𝒃 = 𝟎 then 

ℚ(𝜉) =
±4𝑎𝜀𝑒ఌ√௔క

1 − 4𝑎𝑐𝑒ଶఌ√௔క
. 

(1.62) 

Step 4. We then substitute  Eq. (1.47) and Eq. (1.48) into Eq. (1.46) and gathering all the 

coefficients of (ℚ(𝜉))ூ(ℚᇱ(𝜉))௃(𝐼 = 0,1,2 … . ) and (𝐽 = 0,1) and equating them to zero yields a 
set of algebraic equations for unknowns  𝑎ప̇ (𝑖 = 0, 1, … . , ℵ), 𝑎, 𝑏, 𝑐. We solve this system with the 
aid of computational software Maple. In the end we plug the obtained solutions of the system along 
with the  solutions of Eq. (1.48), we get solutions of Eq. (1.45). 

1.11 Improved Generalized Riccati Equation Mapping Method: 
The improved generalized Riccati equation method (IGREM) is one of the methods to get exact 

traveling wave solutions to the PDEs having both steepening and spreading effects. It is a straight-

forward and easy-to-use method that, by symbolic computation, can generate many different types 

of exact traveling wave solutions. S. Zhu [18] introduced this method with the extended tanh-

function method to solve (2+1) dimensional Boiti-Leon-Pempinelle equation. Cevikel et al. [62] 

used Riccati equation combined with tanh-coth method to solve nonlinear coupled equation in 

mathematical physics. Li et al. [63] used this method to find exact solutions of (3+1)-dimensional 

Jimbo-Miwa equation. Tala-Tebue et al. [64] used this method to solve discrete nonlinear electrical 

transmission lines in (2+1) dimension. Salathiel et al. [65] utilized generalized Riccati equation 

mapping method to construct soliton and travelling wave solutions for discrete electrical lattice. 

Koonprasert et al. [27], implemented this method to find more explicit solitary solutions to the 

space-time fractional fifth order nonlinear Sawada-Kotera equation. Most recently, Bibi. et.al [66] 

has used this method on Caudrey-Dodd-Gibsson equation. Their work shows that the improved 

generalized Riccati equation method has a great protentional for solving partial differential 

equations of integer and fractional order.  

Let us consider the following differential equation with independent variables 𝑥, 𝑡 and some 

dependent function 𝑢: 

𝑀(𝑢, 𝐷௧𝑢, 𝐷௫𝑢, 𝐷௫௫𝑢, 𝐷௫௫௫𝑢, ….  ) = 0,            (1.63) 



where 𝑀 is a polynomial in 𝑢 with its various orders of nonlinear partial derivatives. 

Step1. Let  

𝑢(𝑥, 𝑡) = 𝑈(𝜉 ), (1.64) 

𝜉 = (𝑥 − 𝜆𝑡), (1.65) 

is a complex transformation which can convert nonlinear differential Eq. (1.63)  into nonlinear 

ordinary differential equation, where 𝜆 is a constant which is to be determined, this complex 

transform is an easy transform to convert nonlinear differential equation into ordinary differential 

equation. Hence, we get. 

𝑄′ = 𝑄′(𝑈(𝜉), 𝑈ᇱ(𝜉), 𝑈ᇱᇱ(𝜉), … . , ) = 0, (1.66) 

where, 𝑈ᇱ(𝜉) =
ௗ௎(క)

ௗక
 indicates derivative in term of 𝜉. We integrate Eq. (1.66) as many times as 

we get at least one term without derivative. 

Step2. We suppose that the following series expansion is the solution of Eq. (1.66). 

𝑈(𝜉) = ෍ 𝑎௜𝜙(𝜉)௜ ,

ே

௜ୀିே

  
(1.67) 

where 𝑎௜(𝑖 = 0, ±1, ±2, … . ±𝑁) being constants, which are to be determined provided 𝑎௜ ≠ 0. 

The function 𝜙 = 𝜙(𝜉 ) satisfies the Riccati differential equation. 

𝜙ᇱ(𝜉 ) = 𝑟 + 𝑝𝜙(𝜉 ) + 𝑞𝜙(𝜉 )ଶ,     where 𝑟, 𝑝, 𝑞 are constants. (1.68) 

Step3. Positive integer 𝑁 in Eq. (1.67) can be found by using homogeneous balance between the 

derivatives of highest order and the nonlinear terms in Eq. (1.66) by the following formula. 

Step4. Substituting Eq. (1.67) along with Eq. (1.68) into Eq. (1.66) followed by collecting all the 

same order terms 𝜙௜ together. We get the polynomial equation in 𝜙௜   and 𝜙ି௜, where 

(𝑖 = 0,1,2, … . . ).   Equalizing coefficients of the resulting polynomial to zero, we get over-

determined system of algebraic equations for 𝑎௜where 𝑖 = 0, ±1, ±2, … . ±𝑁. 



Step5. With the help of Maple, we solve the system described in step 4, and obtain 𝑎௜, where, 

𝑖 = 0, ±1, ±2, … . ±𝑁. We substitute these values in Eq. (1.67) coupled with solutions of Eq. 

(1.68) and applying the transformation in Eq. (1.66) we construct several exact solutions of 

Eq.(1.63), establishing four families [27]. 

Family 1: When ∆> 0 and 𝑝𝑞 ≠ 0 or 𝑞𝑟 ≠ 0, the hyperbolic function solutions of Eq. (1.68) are, 

𝜙ଵ(𝜉) = −
1

2𝑞
ቈ 𝑝 + √ ∆ tanh ቆ

√ ∆

2
𝜉ቇ቉, 

 

𝜙ଶ(𝜉) = −
1

2𝑞
ቈ 𝑝 + √ ∆ coth ቆ

√ ∆

2
𝜉ቇ቉, 

 

𝜙ଷ(𝜉) = −
1

2𝑞
ൣ 𝑝 + √ ∆(tanh൫√ ∆𝜉൯ ± 𝑖 sech൫√ ∆𝜉൯)൧,  

𝜙ସ(𝜉) = −
1

2𝑞
ൣ 𝑝 + √ ∆(coth൫√ ∆𝜉൯ ± csch൫√ ∆𝜉൯)൧,  

𝜙ହ(𝜉) = −
1

4𝑞
ቈ2 𝑝 + √ ∆ ቆtanh ቆ

√ ∆

4
𝜉ቇ + coth ቆ

√ ∆

4
𝜉ቇቇ቉,  

𝜙଺(𝜉) =
1

2𝑞
൥−𝑝 +

±ඥ(𝐴ଶ + 𝐵ଶ)( ∆) − 𝐴√ ∆ cosh൫√ ∆𝜉൯

𝐴 sinh൫√ ∆𝜉൯ + 𝐵
൩,   

𝜙଻(𝜉) =
1

2𝑞
൥−𝑝 −

±ඥ(𝐵ଶ − 𝐴ଶ)( ∆) + 𝐴√ ∆ sinh൫√ ∆𝜉൯

𝐴 cosh൫√ ∆𝜉൯ + 𝐵
൩,  

where two non-zero real constants 𝐴 and 𝐵 satisfies 𝐵ଶ − 𝐴ଶ > 0. 

𝜙଼(𝜉) =

2𝑟 cosh ቆ
√ ∆

2
𝜉ቇ

√ ∆ sinh ቆ
√ ∆

2
𝜉ቇ − 𝑝 cosh ቆ

√ ∆
2

𝜉ቇ

,  



𝜙ଽ(𝜉) =
−2𝑟 sinh ቀ

 ∆
2

𝜉ቁ

𝑝 sinh ቆ
√ ∆

2
𝜉ቇ − √ ∆ cosh ቆ

√ ∆
2

𝜉ቇ

,  

𝜙ଵ଴(𝜉) =
2𝑟 cosh൫√ ∆𝜉൯

√ ∆ sinh൫√ ∆𝜉൯ − 𝑝 cosh൫√ ∆𝜉൯ ± 𝑖√ ∆
,  

𝜙ଵଵ(𝜉) =
2𝑟 sinh൫√ ∆𝜉൯

−𝑝 sinh൫√ ∆𝜉൯ + √ ∆ cosh൫√ ∆𝜉൯ ± √ ∆
,  

𝜙ଵଶ(𝜉) =

4𝑟 sinh ቆ
√ ∆

4
𝜉ቇ cosh ቆ

√ ∆
4

𝜉ቇ

ቌ
ିଶ௣ ୱ୧୬୦ቆ

√ ∆
ସ

కቇ ୡ୭ୱ୦ቆ
√ ∆
ସ

కቇ

ାଶ√ ∆ ୡ୭ୱ୦మቆ
√ ∆
ସ

కቇି√ ∆

ቍ

. 
 

Family 2: When  ∆< 0 and 𝑝𝑞 ≠ 0 or 𝑞𝑟 ≠ 0, the trigonometric solutions of Eq. (1.68) are. 

𝜙ଵଷ(𝜉) =
1

2𝑞
ቈ− 𝑝 + √−∆ tan ቆ

√−∆

2
𝜉ቇ቉, 

 

𝜙ଵସ(𝜉) = −
1

2𝑞
ቈ 𝑝 + √−∆ cot ቆ

√−∆

2
𝜉ቇ቉, 

 

𝜙ଵହ(𝜉) =
1

2𝑞
ൣ−𝑝 + √−∆(tan൫√−∆𝜉൯ ± sec൫√−∆𝜉൯)൧,  

𝜙ଵ଺(𝜉) = −
1

2𝑞
ൣ 𝑝 + √−∆(cot൫√−∆𝜉൯ ± csc൫√−∆𝜉൯)൧,  

𝜙ଵ଻(𝜉) =
1

4𝑞
ቈ−2 𝑝 + √−∆ ቆtan ቆ

√−∆

4
𝜉ቇ − cot ቆ

√−∆

4
𝜉ቇቇ቉,  



𝜙ଵ଼(𝜉) =
1

2𝑞
൥−𝑝 +

±ඥ(𝐴ଶ − 𝐵ଶ)(−∆) − 𝐴√−∆ cos൫√−∆𝜉൯

𝐴 sin൫ඥ4𝑞𝑟 − 𝑝ଶ𝜉൯ + 𝐵
൩,   

𝜙ଵଽ(𝜉) =
1

2𝑞
൥−𝑝 −

±ඥ(𝐴ଶ − 𝐵ଶ)(−∆) + 𝐴√−∆ cos൫√−∆𝜉൯

𝐴 sin൫√−∆𝜉൯ + 𝐵
൩,  

where two non-zero real constants 𝐴 and 𝐵 satisfies 𝐴ଶ − 𝐵ଶ > 0. 

𝜙ଶ଴(𝜉) =

−2𝑟 cos ቆ
√−∆

2
𝜉ቇ

√−∆ sin ቆ
√−∆

2
𝜉ቇ + 𝑝 cos ቆ

√−∆
2

𝜉ቇ

,  

𝜙ଶଵ(𝜉) =

2𝑟 sin ቆ
√−∆

2
𝜉ቇ

−𝑝 sin ቆ
√−∆

2
𝜉ቇ + √−∆ cos ቆ

√−∆
2

𝜉ቇ

,  

𝜙ଶଶ(𝜉) =
−2𝑟 cos൫√−∆𝜉൯

√−∆ sin൫√−∆𝜉൯ + 𝑝 cos൫√−∆𝜉൯ ± √−∆
,  

𝜙ଶଷ(𝜉) =
2𝑟 sin൫√−∆𝜉൯

−𝑝 sin൫√−∆𝜉൯ + √−∆ cos൫√−∆𝜉൯ ± √−∆
,  

𝜙ଶସ(𝜉) =

4𝑟 sin ቆ
√−∆

4
𝜉ቇ cos ቆ

√−∆
4

𝜉ቇ

ቌ
ିଶ௣ ୱ୧୬ቆ

√ି∆
ସ

కቇ ୡ୭ୱቆ
√ି∆

ସ
కቇ

ାଶ√ି∆ ୡ୭ୱమቆ
√ି∆

ସ
కቇି√ି∆

ቍ

, 
 

Family 3: When 𝑟 = 0 and 𝑝𝑞 ≠ 0 the solutions of Eq. (1.68) are, 

𝜙ଶହ(𝜉) = −
𝑝𝑑

𝑞(𝑑 + cosh(𝑝𝜉) − sinh(𝑝𝜉))
, 

 



𝜙ଶ଺(𝜉) =
−𝑝 (cosh(𝑝𝜉) + sinh(𝑝𝜉))

𝑞(𝑑 + cosh(𝑝𝜉) + sinh(𝑝𝜉))
, 

 

where 𝑑 in the above solution is an arbitrary constant. 

Family 4: When 𝑟 = 𝑝 = 0 and 𝑞 ≠ 0 the rational solutions of Eq. (1.68) is 

𝜙ଶ଻(𝜉) = −
1

𝑞𝜉 + 𝑐
, 

 

where 𝑐’ in the above solution is an arbitrary constant. 

1.12 Summary:  
In this chapter intensive literature review has been done that comprises important definitions and 

properties that helps reader to get a refresher. It also includes a brief overview, and steps of all the 

methods used in this thesis, along with some background their significance in the real world 

together with the contribution to the knowledge. 

In chapter 2 we will be finding exact solutions of some well-known equations. 

 

 

 

  



Chapter 2. Abundant travelling wave 

solutions of some nonlinear equations 

using modified extended tanh 

expansion method. 



 

2.1 Introduction: 
 In recent decades, to describe and analyze non-linear physical phenomena, partial differential 

equations (PDEs) have been used as the best tool. Seeking exact solutions of partial differential 

equations has been a hot topic. PDEs are abstract in nature and to find their solutions both 

numerically and analytically is a tedious task. To find the exact solutions of these PDEs is the main 

goal of researchers and to achieve their goal they are working hard to develop powerful techniques. 

There is no unified method to solve these equations, so to cope with this situation researchers are 

developing new methods and modifying previous methods such as Adomian’s decomposition 

method [50], Backlund transformation method [51], Painlevé expansion [52], Fractional 

Homotopy analysis method [53], Variational iteration method [67], Sine-Cosine method [68], 

Homogeneous balance method [69], Fan sub-equation method [70], Modified simple equation 

method [71], First integral method [72], Extended trial equation method [73], exp(−𝜙(𝜀))-

expansion method [74], Auxiliary equation method [75], Ansatz method [11], Functional variable 

method [15], improved generalized Riccati equation mapping method [18], tanh expansion method 

[48], modified extended tanh expansion method [1]. 

In this chapter, we will investigate the following nonlinear PDEs: 

∂ଶ

∂𝑡 ∂𝑥
𝑢 + 𝐴e௨ + 𝐵eି௨ + Ceିଶ௨ = 0 , (2.1) 

where A, B, C are arbitrary constants. The above-mentioned equation plays significant role in 

problems arising in fluid flows, solid state physics, nonlinear optics, quantum field theory and 

chemical kinetics [30]. For various values of A, B, C we have the following equations: 

Dodd–Bullough–Mikhailov equation: 

For 𝐴 = 𝐶 = 1, 𝐵 = 0, we have 

∂ଶ

∂𝑡 ∂𝑥
𝑢 + e௨ + eିଶ௨ = 0 , (2.2) 

Dodd-Bullough-Mikhailov equation has significance in fluid flow and quantum field theory. 



Sinh-Gordon equation: 

For  𝐴 = 1, 𝐵 = −1, 𝐶 = 0, we have 

∂ଶ

∂𝑡 ∂𝑥
𝑢 + e௨ − eି௨ = 0 , (2.3) 

The sine-Gordon equation has various applications and been discussed in literature in detail [76], 

some of them mentioned here such as, in one-dimensional crystal dislocation theory, magnetic flux 

propagation in Josephson junctions (gaps between two superconductors), wave propagation in 

ferromagnetic materials such as the motion of rigid pendula attached to a stretched wire, solid state 

physic , nonlinear optics, and dislocations in metals [30] and propagation of deformation along the 

DNA double helix [77]  Exact solutions of considered equation has been obtained in terms of 

hyperbolic and trigonometric solutions using modified tanh method by mean of symbolic software 

Maple. One of the powerful features of this method comes from the fact that it is the generalization 

of many known methods, developed by Malfiet [48] and has been used and modified by many 

renowned researchers.  

 Liouville equation: 

For 𝐴 = 1, 𝐵 = 𝐶 = 0, we have Liouville equation [78] 

∂ଶ

∂𝑡 ∂𝑥
𝑢 + e௨ = 0 , (2.4) 

The motivation of this work is to boost the research related to these equations using powerful 

variation of modified extended tanh function method to provide more precise exact solutions. Tanh 

method was firstly presented by [48], where he introduced tanh as a new variable. This method is 

straight forward, simple, and reliable that has ability to find solutions of variety of NPFDEs 

without reproducing many different forms of the same solution. A lot of work has been done by 

this method with variations discussed in [79]. 



2.2 Illustrative Applications: 

2.3 Dodd–Bullough–Mikhailov equation: 
To use improved tanh expansion method on equation (2.2), first we will use Painlev 

transformation, 

𝑣 = 𝑒௨, so that 𝑢 = ln 𝑣, this transformation will change equation (2.2) into the following ODE, 

𝑣(
∂ଶ

∂𝑥 ∂𝑡
𝑣) − (

∂

∂𝑥
𝑣)(

∂

∂𝑡
𝑣) + 𝑣ଷ + 1 = 0. (2.5) 

 

 

Now using the following wave transformation, 

 𝜉 = 𝑥 − 𝑐𝑡 ,  

in equation (2.5), converts the equation into the ODE, 

−𝑣(
∂ଶ

∂𝜉ଶ
𝑣)𝑐 + ൬

∂

∂𝜉
𝑣൰

ଶ

𝑐 + 𝑣ଷ + 1 = 0. (2.6) 

Balancing the highest order of linear term with the nonlinear term in equation (2.6) we usually 

determine the value of 𝑁. Here 3𝑁 = 2(𝑁 + 1) ⇒ 𝑁 = 2. This gives solution of the form, 

𝑣(𝜉) = 𝑆 = 𝑎଴ + 𝑎ଵΦ(𝜉) +
𝑏ଵ

Φ(𝜉)
+ 𝑎ଶΦ(𝜉)ଶ +

𝑏ଶ

Φ(𝜉)ଶ
.  (2.7) 

Replacing equation (2.7) into equation (2.6) along with equation (1.38), we get algebraic system 

and by equating this system to 0 we get values of coefficients 𝑎଴, 𝑎ଵ , 𝑎ଶ, 𝑏ଵ, 𝑏ଶ, 𝑐, Ω, as follows. 

Set 1 : 

Ω =
3

4𝑐
, 𝑐 = 𝑐, 𝑎଴ =

1

2
, 𝑎ଵ = 0, 𝑎ଶ = 0, 𝑏ଵ = 0, 𝑏ଶ =

9

8𝑐
. 

Substituting these coefficients into equation (2.7) along with the Riccati equation solutions we get 

solutions of equation (2.6) as follows. 

For Ω < 0, we have 



𝑣ଵ =
− tanh൫√3/2√−𝑐ିଵ𝜉൯

ଶ
+ 3

2tanh ൫√3/2√−𝑐ିଵ𝜉൯
ଶ , (2.8) 

in addition, substituting 𝑢 = ln 𝑣 we determine the solution of equation  (2.2) as  

𝑢ଵ = ln
− tanh൫√3/2√−𝑐ିଵ𝜉൯

ଶ
+ 3

2tanh ൫√3/2√−𝑐ିଵ𝜉൯
ଶ . (2.9) 

Similarly, as done previously in equations (2.8)and (2.9) we get remaining solutions of equation 

(2.2) as 

𝑢ଶ = ln
coth൫√3/2√−𝑐ିଵ𝜉൯

ଶ
− 3

2 coth൫√3/2√−𝑐ିଵ𝜉൯
ଶ  . (2.10) 

For Ω > 0, we have 

𝑢ଷ = ln
tan ቀ

1
2

(√3√𝑐ିଵ 𝜉ቁ
ଶ

+ 3

2tan ቀ
1
2

(√3√𝑐ିଵ 𝜉ቁ
ଶ  , (2.11) 

𝑢ସ = ln
cot ቀ

1
2

(√3√𝑐ିଵ 𝜉ቁ
ଶ

+ 3

2cot ቀ
1
2

(√3√𝑐ିଵ 𝜉ቁ
ଶ , (2.12) 

Set 2 : 

Ω = −

3
2

+
3

2𝑖√3
4𝑐

, 𝑐 = 𝑐, 𝑎଴ = −
1

4
− 𝑖

√3

4
, 𝑎ଵ = 0, 𝑎ଶ = 0, 𝑏ଵ = 0, 

𝑏ଶ = 9

ቆ−
1
2

+
𝑖√3

2
ቇ

8𝑐
. 

 

For Ω < 0, we have 



𝑢ହ = ln
1 − 𝑖√3

2൫1 + 𝑖√3൯

⎝

⎜
⎛

⎝

⎛tanh

⎝

⎛
√6ට1 + 𝑖√3

𝑐
𝜉

4

⎠

⎞

⎠

⎞

ଶ

− 3

⎠

⎟
⎞

tanh

⎝

⎛
√6ට1 + 𝑖√3

𝑐
𝜉

4

⎠

⎞

ଶ , (2.13) 

𝑢଺ = ln

൫1 + 𝑖√3൯ ൭coth ቆ𝜉√6/4ට1 + 𝑖
𝑐

ቇ

ଶ

− 3൱

2൫1 + 𝑖√3൯coth ቆ𝜉√6/4ට1 + 𝑖
𝑐

ቇ

ଶ  . (2.14) 

For Ω > 0, we have 

𝑢଻ = ln
1 − 𝑖√3

2൫1 + 𝑖√3൯

⎝

⎜
⎛

tan

⎝

⎛
ට−6(𝑖√3 + 1)

𝑐
𝜉

4

⎠

⎞

ଶ

+ 3

⎠

⎟
⎞

tan

⎝

⎛
ට−6(𝑖√3 + 1)

𝑐
𝜉

4

⎠

⎞

ଶ , (2.15) 

𝑢଼ = ln
1 − 𝑖√3

2൫1 + 𝑖√3൯

⎝

⎜
⎛

cot

⎝

⎛
ට−6(𝑖√3 + 1)

𝑐
𝜉

4

⎠

⎞

ଶ

+ 3

⎠

⎟
⎞

cot

⎝

⎛
ට−6(𝑖√3 + 1)

𝑐
𝜉

4

⎠

⎞

ଶ , (2.16) 

Set 3 : 

Ω = Ω, 𝑐 =
3

4Ω
, 𝑎଴ =

1

2
, 𝑎ଵ = 0, 𝑎ଶ =

3

2Ω
, 𝑏ଵ = 0, 𝑏ଶ = 0.  

If Ω < 0, we have 



𝑢 ଽ = ln

−2 cosh ൬
4𝑥Ω − 3𝑡

4√−Ω
൰

ଶ

+ 3

cosh ൬
4𝑥Ω − 3𝑡

4√−Ω
൰

ଶ , (2.17) 

𝑢ଵ଴ = ln

⎝

⎜
⎛1

2
−

3coth ൬
4𝑥Ω − 3𝑡

4√−Ω
൰

ଶ

2

⎠

⎟
⎞

. (2.18) 

For Ω > 0, we have 

𝑢ଵଵ = ln

−2cos ൬
4𝑥Ω − 3𝑡

4√Ω
൰

ଶ

+ 3

2cos ൬
4𝑥Ω − 3𝑡

4√Ω
൰

ଶ , (2.19) 

𝑢ଵଶ = ln

⎝

⎜
⎛1

2
+

3cot ൬
4𝑥Ω − 3𝑡

4√Ω
൰

ଶ

2

⎠

⎟
⎞

, (2.20) 

Set 4 : 

Ω = Ω, 𝑐 =

3 ቆ−
1
2

+
𝑖√3

2 ቇ

4Ω
, 𝑎଴ = −

1

4
+ 𝑖

√3

4
, 𝑎ଵ = 0, 𝑎ଶ =

3 ቆ−
1
2

+
𝑖√3

2 ቇ

2Ω
, 

𝑏ଵ = 0, 𝑏ଶ = 0. 

For Ω < 0, we have 

 

𝑢ଵଷ = ln

൫1 − 𝑖√3൯ ൭cosh ቆ
3𝑖√3𝑡 − 8𝑥Ω − 3𝑡

8√−Ω
ቇ

ଶ

−
3
2

൱

2 cosh ቆ
3𝑖√3𝑡 − 8𝑥Ω − 3𝑡

8√−Ω
ቇ

ଶ , (2.21) 

 

 

𝑢ଵସ = ln

3൫1 − 𝑖√3൯ ൭coth ቆ
3𝑖√3𝑡 − 8𝑥Ω − 3𝑡

8√−Ω
ቇ

ଶ

−
1
2

൱

4
. 

(2.22) 



If Ω > 0, we have 

𝑢ଵହ = ln

൫1 − 𝑖√3൯ ൭cos ቆ
3𝑖√3𝑡 − 8𝑥Ω − 3𝑡

8√Ω
ቇ

ଶ

−
3
2

൱

2 cos ቆ
3𝑖√3𝑡 − 8𝑥Ω − 3𝑡

8√Ω
ቇ

ଶ , (2.23) 

𝑢ଵ଺ = ln

൫−1 + 𝑖√3൯ ൭3 cot ቆ
3𝑖√3𝑡 − 8𝑥Ω − 3𝑡

8√Ω
ቇ

ଶ

+ 1൱

4
, 

(2.24) 

Set 5 : 

Ω =
3

8𝑎ଶ
, 𝑐 =

𝑎ଶ

2
, 𝑎଴ = −

1

4
, 𝑎ଵ = 0, 𝑎ଶ = 𝑎ଶ, 

𝑏ଵ = 0, 𝑏ଶ =
9

64𝑎ଶ
. 

 

For Ω < 0, we have 

𝑢ଵ଻

= ln

−3 tanh ቆ
√6ඥ−𝑎ଶ

ିଵ(𝑎ଶ𝑡 − 2𝑥)
8

ቇ

ସ

− 2 tanh ቆ
√6ඥ−𝑎ଶ

ିଵ(𝑎ଶ𝑡 − 2𝑥)
8

ቇ

ଶ

− 3

8 tanh ቆ
√6ඥ−𝑎ଶ

ିଵ(𝑎ଶ𝑡 − 2𝑥)
8

ቇ

ଶ , 
(2.25) 

𝑢ଵ଼ = ln

−3 coth ቆ
√6ඥ−𝑎ଶ

ିଵ(𝑎ଶ𝑡 − 2𝑥)
8

ቇ

ସ

− 2 coth ቆ
√6ඥ−𝑎ଶ

ିଵ(𝑎ଶ𝑡 − 2𝑥)
8

ቇ

ଶ

− 3

8 coth ቆ
√6ඥ−𝑎ଶ

ିଵ(𝑎ଶ𝑡 − 2𝑥)
8

ቇ

ଶ . (2.26) 

For Ω > 0, we have 

𝑢ଵଽ = ln

3 tan ቆ
(𝑎ଶ𝑡 − 2𝑥)√6ඥ𝑎ଶ

ିଵ

8
ቇ

ସ

− 2 tan ቆ
(𝑎ଶ𝑡 − 2𝑥)√6ඥ𝑎ଶ

ିଵ

8
ቇ

ଶ

+ 3

8 tan ቆ
(𝑎ଶ𝑡 − 2𝑥)√6ඥ𝑎ଶ

ିଵ

8
ቇ

ଶ , (2.27) 



𝑢ଶ଴ = ln

3 cot ቆ
(𝑎ଶ𝑡 − 2𝑥)√6ඥ𝑎ଶ

ିଵ

8
ቇ

ସ

− 2 cot ቆ
(𝑎ଶ𝑡 − 2𝑥)√6ඥ𝑎ଶ

ିଵ

8
ቇ

ଶ

+ 3

8 cot ቆ
(𝑎ଶ𝑡 − 2𝑥)√6ඥ𝑎ଶ

ିଵ

8
ቇ

ଶ , (2.28) 

Set 6 : 

Ω = −

3
2

+
3𝑖√3

2
8𝑎ଶ

, 𝑐 =
𝑎ଶ

2
, 𝑎଴ =

1

8
+ 𝑖

√3

8
, 𝑎ଵ = 0, 𝑎ଶ = 𝑎ଶ, 𝑏ଵ = 0, 

𝑏ଶ = 9

ቆ−
1
2

+
𝑖√3

2
ቇ

64𝑎ଶ
. 

 

For Ω < 0, we have 

𝑢ଶଵ = ln
൫−1 + 𝑖√3൯

൫1 + 𝑖√3൯
 

×
⎝

⎜
⎜
⎛

3 tanh ൭
√3
8

ට൫𝑖√3 + 1൯𝑎ଶ
ିଵ(𝑎ଶ𝑡 − 2𝑥)൱

ସ

+2 tanh ൭
√3
8

ට൫𝑖√3 + 1൯𝑎ଶ
ିଵ(𝑎ଶ𝑡 − 2𝑥)൱

ଶ

+ 3
⎠

⎟
⎟
⎞

8 tanh ൭
√3
8

ට൫𝑖√3 + 1൯𝑎ଶ
ିଵ(𝑎ଶ𝑡 − 2𝑥)൱

ଶ , 

(2.29) 

𝑢ଶଶ = ln
൫−1 + 𝑖√3൯

൫1 + 𝑖√3൯
 

×
⎝

⎜
⎜
⎛

3 coth ൭
√3
8

ට൫𝑖√3 + 1൯𝑎ଶ
ିଵ(𝑎ଶ𝑡 − 2𝑥)൱

ସ

+2 coth ൭
√3
8

ට൫𝑖√3 + 1൯𝑎ଶ
ିଵ(𝑎ଶ𝑡 − 2𝑥)൱

ଶ

+ 3
⎠

⎟
⎟
⎞

8 coth ൭
√3
8

ට൫𝑖√3 + 1൯𝑎ଶ
ିଵ(𝑎ଶ𝑡 − 2𝑥)൱

ଶ . 

(2.30) 

For Ω > 0, we have 

 



𝑢ଶଷ = ln
1 − 𝑖√3

𝑖√3 + 1

⎝

⎜
⎛

3 tan ቆ1/8(𝑎ଶ𝑡 − 2𝑥)ට൫−3𝑖√3 − 3൯𝑎ଶ
ିଵቇ

ସ

−
2
3

tan ቆ1/8(𝑎ଶ𝑡 − 2𝑥)ට൫−3𝑖√3 − 3൯𝑎ଶ
ିଵቇ

ଶ

+ 1
⎠

⎟
⎞

8 tan ቆ1/8(𝑎ଶ𝑡 − 2𝑥)ට൫−3𝑖√3 − 3൯𝑎ଶ
ିଵቇ

ଶ , 

(2.31) 

𝑢ଶସ = ln
1 − 𝑖√3

𝑖√3 + 1

⎝

⎜
⎛

cot ቆ1/8(𝑎ଶ𝑡 − 2𝑥)ට൫−3𝑖√3 − 3൯𝑎ଶ
ିଵቇ

ସ

−
2
3

cot ቆ1/8(𝑎ଶ𝑡 − 2𝑥)ට൫−3𝑖√3 − 3൯𝑎ଶ
ିଵቇ

ଶ

+ 1
⎠

⎟
⎞

8 cot ቆ1/8(𝑎ଶ𝑡 − 2𝑥)ට൫−3𝑖√3 − 3൯𝑎ଶ
ିଵቇ

ଶ . 

(2.32) 

2.4 Sinh-Gordon equation: 

To use improved tanh expansion method on equation (2.3), first we will use Painlevé  

transformation. 𝑣 = 𝑒௨, so that 𝑢 = ln 𝑣, this transformation will change equation (2.3) into the 

following ODE, 

𝑣 ቆ
∂ଶ

∂𝑥 ∂𝑡
𝑣ቇ − ൬

∂

∂𝑥
𝑣൰ ൬

∂

∂𝑡
𝑣൰ + 𝑣ଷ − 𝑣 = 0. (2.33) 

By using the following wave transformation, 

 𝜉 = 𝑥 − 𝑐𝑡 ,  

in equation (2.33), it converts the equation into the following ODE, 

−𝑣 ቆ
∂ଶ

∂𝜉ଶ
𝑣ቇ 𝑐 + ൬

∂

∂𝜉
𝑣൰

ଶ

𝑐 + 𝑣ଷ − 𝑣 = 0, (2.34) 

balancing the highest order of linear term with the nonlinear term in equation (2.34), we usually 

determine the value of 𝑁. Here 3𝑁 = 2(𝑁 + 1) ⇒ 𝑁 = 2. This gives solution of the form, 

𝑣(𝜉) = 𝑆 = 𝑎଴ + 𝑎ଵΦ(𝜉) +
𝑏ଵ

Φ(𝜉)
+ 𝑎ଶΦ(𝜉)ଶ +

𝑏ଶ

Φ(𝜉)ଶ
.  (2.35) 



Replacing equation (2.35) into equation  (2.34) along with equation (1.38), we get algebraic 

system and by equating this system to 0 we get values of coefficients 𝑎଴, 𝑎ଵ , 𝑎ଶ, 𝑏ଵ, 𝑏ଶ, 𝑐, Ω, as 

follows:  

Set 1 : 

Ω =
1

2c
, 𝑐 = c, 𝑎଴ = 0, 𝑎ଵ = 0, 𝑎ଶ = 0, 𝑏ଵ = 0, 𝑏ଶ =

1

2c
. 

Substituting above mentioned coefficients into equation (2.35) along with the Riccati equation 
solutions we get solutions of equation (2.33) as follows: 

For Ω < 0, we have 

𝑣ଵ = − tanh ቌ
1

√2
ඨ

−1

𝑐
𝜉ቍ

ିଶ

, (2.36) 

moreover, substituting 𝑢 = ln 𝑣 we determine the solution of equation (2.3) as  

𝑤ଵ = ln ൮−tanh ቌ
1

√2
ඨ

−1

𝑐
𝜉ቍ

ିଶ

൲. (2.37) 

Adopting the same procedure, we will retrieve the remaining solutions of equation (2.3) as follows, 

𝑤ଶ = ln ൮−coth ቌ
1

√2
ඨ

−1

𝑐
𝜉ቍ

ିଶ

൲. (2.38) 

For Ω > 0, we have 

𝑤ଷ = ln ൮tan ቌ
1

√2
ඨ

1

𝑐
𝜉ቍ

ିଶ

൲, (2.39) 

𝑤ସ = ln ൮cot ቌ
1

√2
ඨ

1

𝑐
𝜉ቍ

ିଶ

൲, (2.40) 



Set 2 : 

Ω = −
1

2c
, 𝑐 = c, 𝑎଴ = 0, 𝑎ଵ = 0, 𝑎ଶ = 0, 𝑏ଵ = 0, 𝑏ଶ =

1

2c
.  

For Ω < 0, we have 

𝑤ହ = ln ൮tanh ቌ
1

√2
ඨ

1

𝑐
𝜉ቍ

ିଶ

൲, (2.41) 

𝑤଺ = ln ൮coth ቌ
1

√2
ඨ

1

𝑐
𝜉ቍ

ିଶ

൲. (2.42) 

For Ω > 0, we have 

𝑤଻ = ln ൮−tan ቌ
1

√2
ඨ

−1

𝑐
𝜉ቍ

ିଶ

൲, (2.43) 

𝑤଼ = ln ൮−cot ቌ
1

√2
ඨ

−1

𝑐
𝜉ቍ

ିଶ

൲, (2.44) 

Set 3 : 

Ω = Ω, 𝑐 =
1

2Ω
, 𝑎଴ = 0, 𝑎ଵ = 0, 𝑎ଶ =

1

Ω
, 𝑏ଵ = 0, 𝑏ଶ = 0.  

For Ω < 0, we have 

𝑤 ଽ = ln ቆ−tanh ൬
−2𝑥Ω + 𝑡

2√−Ω
൰

ଶ

ቇ, (2.45) 

𝑤ଵ଴ = ln ቆ−coth ൬
−2𝑥Ω + 𝑡

2√−Ω
൰

ଶ

ቇ. (2.46) 

For Ω > 0, we have 

𝑤ଵଵ = ln ቆtan ൬
−2𝑥Ω + 𝑡

2√Ω
൰

ଶ

ቇ, (2.47) 



𝑤ଵଶ = ln ቆcot ൬
−2𝑥Ω + 𝑡

2√Ω
൰

ଶ

ቇ. (2.48) 

Set 4 : 

Ω = Ω, 𝑐 = −
1

2Ω
, 𝑎଴ = 0, 𝑎ଵ = 0, 𝑎ଶ = −

1

Ω
, 𝑏ଵ = 0, 𝑏ଶ = 0. 

For Ω < 0, we have 

𝑤 ଵଷ = ln ቆtanh ൬
2𝑥Ω + 𝑡

2√−Ω
൰

ଶ

ቇ, (2.49) 

𝑤ଵସ = ln ቆcoth ൬
2𝑥Ω + 𝑡

2√−Ω
൰

ଶ

ቇ. (2.50) 

For Ω > 0, we have 

𝑤ଵହ = ln ቆ−tan ൬
2𝑥Ω + 𝑡

2√Ω
൰

ଶ

ቇ, (2.51) 

𝑤ଵ଺ = ln ቆ−cot ൬
2𝑥Ω + 𝑡

2√Ω
൰

ଶ

ቇ. (2.52) 

Set 5 : 

Ω = −
1

4𝑎ଶ
, 𝑐 =

𝑎ଶ

2
, 𝑎଴ =

1

2
, 𝑎ଵ = 0, 𝑎ଶ = 𝑎ଶ, 𝑏ଵ = 0, 𝑏ଶ =

1

16𝑎ଶ
. 

For Ω < 0, we have 

𝑤 ଵ଻ = ln

൭tanh ቆ
1
4

ට
1

𝑎ଶ
(𝑡𝑎ଶ − 2𝑥)ቇ

ଶ

+ 1൱

ଶ

4 tanh ቆ
1
4

ට
1

𝑎ଶ
(𝑡𝑎ଶ − 2𝑥)ቇ

ଶ , (2.53) 



𝑤ଵ଼ = ln

൭coth ቆ
1
4

ට
1

𝑎ଶ
(𝑡𝑎ଶ − 2𝑥)ቇ

ଶ

+ 1൱

ଶ

coth ቆ
1
4

ට
1

𝑎ଶ
(𝑡𝑎ଶ − 2𝑥)ቇ

ଶ . (2.54) 

For Ω > 0, we have 

𝑤ଵଽ = ln

− tan ቆ
1
4

ට
−1
𝑎ଶ

(𝑡𝑎ଶ − 2𝑥)ቇ

ସ

+ 2 tan ቆ
1
4

ට
−1
𝑎ଶ

(𝑡𝑎ଶ − 2𝑥)ቇ

ଶ

− 1

4 tan ቆ
1
4

ට
−1
𝑎ଶ

(𝑡𝑎ଶ − 2𝑥)ቇ

ଶ , (2.55) 

𝑤ଶ଴ = ln

− cot ቆ
1
4

ට
−1
𝑎ଶ

(𝑡𝑎ଶ − 2𝑥)ቇ

ସ

+ 2 cot ቆ
1
4

ට
−1
𝑎ଶ

(𝑡𝑎ଶ − 2𝑥)ቇ

ଶ

− 1

4 cot ቆ
1
4

ට
−1
𝑎ଶ

(𝑡𝑎ଶ − 2𝑥)ቇ

ଶ . (2.56) 

Set 6 : 

Ω =
1

4𝑎ଶ
, 𝑐 =

𝑎ଶ

2
, 𝑎଴ = −

1

2
, 𝑎ଵ = 0, 𝑎ଶ = 𝑎ଶ, 𝑏ଵ = 0, 𝑏ଶ =

1

16𝑎ଶ
. 

For Ω < 0, we have 

𝑤 ଶଵ = ln

൭− tanh ቆ
1
4

ට
−1
𝑎ଶ

(𝑡𝑎ଶ − 2𝑥)ቇ

ଶ

+ 1൱

ଶ

4 tanh ቆ
1
4

ට
−1
𝑎ଶ

(𝑡𝑎ଶ − 2𝑥)ቇ

ଶ , (2.57) 

𝑤ଶଶ = ln

൭−coth ቆ
1
4

ට
−1
𝑎ଶ

(𝑡𝑎ଶ − 2𝑥)ቇ

ଶ

+ 1൱

ଶ

4 coth ቆ
1
4

ට
−1
𝑎ଶ

(𝑡𝑎ଶ − 2𝑥)ቇ

ଶ . (2.58) 

For Ω > 0, we have 



𝑤ଶଷ = ln

tan ቆ
1
4

ට
1

𝑎ଶ
(𝑡𝑎ଶ − 2𝑥)ቇ

ସ

− 2 tan ቆ
1
4

ට
1

𝑎ଶ
(𝑡𝑎ଶ − 2𝑥)ቇ

ଶ

+ 1

4 tan ቆ
1
4

ට
1

𝑎ଶ
(𝑡𝑎ଶ − 2𝑥)ቇ

ଶ , (2.59) 

𝑤ଶସ = ln

cot ቆ
1
4

ට
1

𝑎ଶ
(𝑡𝑎ଶ − 2𝑥)ቇ

ସ

− 2 cot ቆ
1
4

ට
1

𝑎ଶ
(𝑡𝑎ଶ − 2𝑥)ቇ

ଶ

+ 1

4 cot ቆ
1
4

ට
1

𝑎ଶ
(𝑡𝑎ଶ − 2𝑥)ቇ

ଶ . (2.60) 

2.5 Liouville equation: 
By choosing transformation 𝑢 = ln 𝑣, we get Eq (2.4)  in the form as: 

𝑣(
∂ଶ

∂𝑥 ∂𝑡
𝑣) − (

∂

∂𝑥
𝑣)(

∂

∂𝑡
𝑣) + 𝑣ଷ = 0. (2.61) 

To investigate the exact solutions of Eq (2.61) we introduce wave transformation 𝜉 = 𝑥 − 𝑐𝑡, to 
get following ODE, 

−𝑣(
∂ଶ

∂𝜉ଶ
𝑣)𝑐 + (

∂

∂𝜉
𝑣)ଶ𝑐 + 𝑣ଷ = 0, (2.62) 

by balancing principle in equation (2.62) we determine the value of 𝑁 = 2. This gives solution of 

the form, 

𝑣(𝜉) = 𝑆 = 𝑎଴ + 𝑎ଵΦ(𝜉) +
𝑏ଵ

Φ(𝜉)
+ 𝑎ଶΦ(𝜉)ଶ +

𝑏ଶ

Φ(𝜉)ଶ
. (2.63) 

Plugging equation (2.63) into equation (2.62)  along with Riccati equation(1.38), we get algebraic 

system and by equating this system to 0 we get values of coefficients 𝑎଴, 𝑎ଵ , 𝑎ଶ, 𝑏ଵ, 𝑏ଶ, 𝑐, Ω, as 

follows: 

Set 1 : 

Ω = Ω, 𝑐 =
𝑎଴

2Ω
, 𝑎଴ = 𝑎଴, 𝑎ଵ = 0, 𝑎ଶ =

𝑎଴

Ω
, 𝑏ଵ = 0, 𝑏ଶ = 0. 

Substituting above mentioned coefficients into equation (2.63) along with the Riccati equation 
solution we get solutions of equation (2.61) as follows: 

For Ω < 0, we have 



𝑣ଵ =
𝑎଴

cosh ൬
−2𝑥Ω + 𝑎଴𝑡

2√−Ω
൰

ଶ, 
(2.64) 

moreover, substituting 𝑢 = ln 𝑣 we determine the solution of Eq (2.4) as  

𝜏ଵ = ln
𝑎଴

cosh ൬
−2𝑥Ω + 𝑎଴𝑡

2√−Ω
൰

ଶ, 
(2.65) 

𝜏ଶ = ln
−𝑎଴

sinh ൬
−2𝑥Ω + 𝑎଴𝑡

2√−Ω
൰

ଶ, 
(2.66) 

𝜏ଷ = ln
𝑎଴

cos ൬
−2𝑥Ω + 𝑎଴𝑡

2√Ω
൰

ଶ, 
(2.67) 

𝜏ସ = ln
𝑎଴

sin ൬
−2𝑥Ω + 𝑎଴𝑡

2√Ω
൰

ଶ. 
(2.68) 

Set 2 : 

Ω = Ω, 𝑐 =
𝑏ଶ

2Ωଶ
, 𝑎଴ =

2𝑏ଶ

Ω
, 𝑎ଵ = 0, 𝑎ଶ =

𝑏ଶ

Ωଶ
, 𝑏ଵ = 0, 𝑏ଶ = 𝑏ଶ.  

𝜏ହ = ln
−𝑏ଶ

Ω cosh ൭
−2𝑥Ωଶ + 𝑏ଶ𝑡

2(−Ω)
ଷ
ଶ

൱

ଶ

sinh ൭
−2𝑥Ωଶ + 𝑏ଶ𝑡

2(−Ω)
ଷ
ଶ

൱

ଶ, 
(2.69) 

𝜏଺ = ln
𝑏ଶ

Ω cos ൭
−2𝑥Ωଶ + 𝑏ଶ𝑡

2(Ω)
ଷ
ଶ

൱

ଶ

sin ൭
−2𝑥Ωଶ + 𝑏ଶ𝑡

2(Ω)
ଷ
ଶ

൱

ଶ, 
(2.70) 

Set 3 : 

Ω = Ω, 𝑐 =
𝑏ଶ

2Ωଶ
, 𝑎଴ =

𝑏ଶ

Ω
, 𝑎ଵ = 0, 𝑎ଶ = 0, 𝑏ଵ = 0, 𝑏ଶ = 𝑏ଶ.  

𝜏 ଻ = ln

𝑏ଶ ቌtanh ൭
−2𝑥Ωଶ + 𝑏ଶ𝑡

2(−Ω)
ଷ
ଶ

൱

ଶ

− 1ቍ

tanh ൭
−2𝑥Ωଶ + 𝑏ଶ𝑡

2(−Ω)
ଷ
ଶ

൱

ଶ

Ω

, (2.71) 



𝜏଼ = ln

𝑏ଶ ቌcoth ൭
−2𝑥Ωଶ + 𝑏ଶ𝑡

2(−Ω)
ଷ
ଶ

൱

ଶ

− 1ቍ

coth ൭
−2𝑥Ωଶ + 𝑏ଶ𝑡

2(−Ω)
ଷ
ଶ

൱

ଶ

Ω

, (2.72) 

𝜏ଽ = ln

𝑏ଶ ቌtan ൭
−2𝑥Ωଶ + 𝑏ଶ𝑡

2(Ω)
ଷ
ଶ

൱

ଶ

+ 1ቍ

tan ൭
−2𝑥Ωଶ + 𝑏ଶ𝑡

2(Ω)
ଷ
ଶ

൱

ଶ

Ω

, (2.73) 

𝜏ଵ଴ = ln

𝑏ଶ ቌcot ൭
−2𝑥Ωଶ + 𝑏ଶ𝑡

2(Ω)
ଷ
ଶ

൱

ଶ

+ 1ቍ

cot ൭
−2𝑥Ωଶ + 𝑏ଶ𝑡

2(Ω)
ଷ
ଶ

൱

ଶ

Ω

. (2.74) 

2.6 Results and discussion 
With the assistance of IThM, along with painleve transformation we accomplished to obtain 

numerous wave patterns for Dodd–Bullough–Mikhailov equation, Sinh-Gordon equation, 

Liouville equation. The obtained solutions are in the form of hyperbolic and trigonometric function 

solutions. All the obtained results are either solitary waves or trigonometric solutions. Different 

wave patterns can be obtained by giving appropriate values to free parameters. We observe the 

shape of the soliton depends on free parameters and it changes when we change the value of the 

parameters.  These models include exponential functions terms which indicate the solutions are in 

logarithmic functions. These answers have not been reported previously, which might be a 

valuable addition in literature to analyze these models. 3-D, 2-D and contour plots explain 

divergence and physics of these waves by choosing suitable values of parameters included in 

solutions. 

 Graphical profile of Real value of Eq (2.10) expressed as 𝑢ଶ has been exhibit in Figure 2.1, in the 

form of 3-dimensional, and 2-dimensional and contour plot which demonstrates W type soliton by 

choosing parameters,   𝑐 = −2, 𝑡 = 1.  



 
 

 
Figure 2.1:-graphs of solitary wave solution 𝒖𝟐for  𝒄 = −𝟐, 𝒕 = 𝟏 

Graphical depiction of Real value of Eq (2.14) expressed as 𝑢଺ has been exhibit in Figure 2.2, in 

the form of 3-dimensional , and 2-dimensional and contour plot which demonstrates bright soliton 

by choosing parameters,  𝑐 = 2, 𝑡 = 1.  

 
 

 
Figure 2.2:graphs of peaked soliton 𝒖𝟔 for 𝒄 = 𝟐, 𝒕 = 𝟏. 

Graphical depiction of Real value of Eq (2.21) expressed as 𝑢ଵଷ has been exhibit in Figure 2.3, in 

the form of 3-dimensional, and 2-dimensional and contour plot which demonstrates as solitary 

wave solution by choosing parameters, Ω = −0.4 , 𝑡 = 2.  

 
 

 
Figure 2.3: graphs of solitary wave solution 𝒖𝟏𝟑.for 𝛀 = −𝟎. 𝟒 , 𝒕 = 𝟐 



Graphical depiction of Real value of Eq (2.32) expressed as 𝑢ଶସ has been exhibit in Figure 2.4, in 

the form of 3-dimensional, 2-dimensional and their contour plot which demonstrates singular 

periodic wave solution by selecting parameters,  𝑎ଶ = −2, 𝑡 = 1. 

 
 

 
Figure 2.4: -graphs of singular periodic wave solution 𝒖𝟐𝟒 for ,  𝒂𝟐 = −𝟐, 𝒕 = 𝟏. 

Graphical illustration of Real value of  Eq (2.37) expressed as 𝑤ଵ has been exhibit in Figure 2.5, 

in the form of 3-dimensional, and 2-dimensional and contour plot which demonstrates localized 

excitation wave pattern as bright soliton by selecting parameters,  𝑐 = 0. −0.005, 𝑡 = 1. Shape of 

solitary wave can be change by varying the value of 𝑐. 

 
 

 
 

Figure 2.5: -graphical simulation of solitary  wave solution 𝒘𝟏for 𝒄 = −𝟎. 𝟎𝟎𝟓, 𝒕 = 𝟏. 

Graphical illustration of Eq (2.42) expressed as 𝑤଺ has been exhibit in Figure 2.6, in the form of 

3-dimensional , and 2-dimensional and contour plot which demonstrates localized excitation wave 

pattern as dark soliton by selecting parameters,  𝑐 = 2, 𝑡 = 1.  



 
 

 
 

Figure 2.6: -graphical simulation of solitary  wave solution 𝒘𝟔 for 𝒄 = 𝟐, 𝒕 = 𝟏. 

Graphical illustration of Real value of Eq (2.51)  expressed as 𝑤ଵହ has been exhibit in Figure 2.7, 

in the form of 3-dimensional, and 2-dimensional and contour plot which demonstrates localized 

excitation wave pattern as periodic wave solution by selecting parameters,  Ω = 1.5, 𝑡 = 1.  

 
 

 
 

Figure 2.7: -graphical simulation of periodic  wave solution 𝒘𝟏𝟓 for 𝛀 = 𝟏. 𝟓, 𝒕 = 𝟏. 

Graphical illustration Real value of Eq (2.54) expressed as 𝑤ଵ଼ has been exhibit in Figure 2.8, in 

the form of 3-dimensional, 2-dimensional and their contour plot which demonstrates localized 

excitation wave pattern as bright soliton by selecting parameters,  𝑎ଶ = 1, 𝑡 = 1, 

 
 

 
 

Figure 2.8: -graphical simulation of peaked soliton 𝒘𝟏𝟖 for 𝒂𝟐 = 𝟏,, 𝒕 = 𝟏. 



Graphical illustration of absolute value of Eq (2.60) expressed as 𝑤ଶସ has been exhibit in Figure 

2.9, in the form of 3 dimensional, and 2 dimensional and contour plot which demonstrates localized 

excitation wave pattern as periodic wave solution by selecting parameters,𝑎ଶ = 1.5, 𝑡 = 1.  

 
 

 
 

Figure 2.9: -graphical simulation of peaked soliton 𝒘𝟐𝟒 for 𝒂𝟐 = 𝟏. 𝟓, 𝒕 = 𝟏. 

Figure 2.10 exhibits graphical analysis of Compacton for Real value of Eq (2.66) expressed as 𝜏ଶ. 
3-dimensional, 2-dimensional, along with contour plots have been presented with selected 
parameters,  𝑎଴ = 0.1, Ω = 0.5, 𝑡 = 2. The shape of the wave depends on these parameters. 

 
 

 
Figure 2.10: -graphical simulation of peaked soliton 𝝉𝟐 for 𝒂𝟎 = 𝟎. 𝟏, 𝛀 = 𝟎. 𝟓, 𝒕 = 𝟐. 

Figure 2.11, exhibits graphical analysis of periodic wave solution for Eq (2.74) expressed as 𝜏ଵ଴. 

The 3, 2-dimensional along with contour plot have been presented with selected parameters,  Ω =

1.5, 𝑏ଶ = 0.5, 𝑡 = 1.  



 
 

 
Figure 2.11: -graphical simulation of periodic wave solution 𝝉𝟏𝟎 for 𝛀 = 𝟏. 𝟓, 𝒃𝟐 = 𝟎. 𝟓, 𝒕 = 𝟏.. 

 

2.7 Conclusions 
Improved tanh expansion method is applied to perceive general solutions of Dodd–Bullough–

Mikhailov equation, Sinh-Gordon equation, and Liouville equation. As conclusion of these 

findings, we succeeded in generating some totally new solutions which are several bright and dark 

solitary wave solutions obtained in the form of hyperbolic wave solutions and periodic wave 

solutions. These new solutions may be worthwhile in the field of fluid flows, solid state physics, 

nonlinear optics, quantum field theory and chemical kinetics. This method is very efficient and 

straight forward to generate general and abundant solutions. Many researchers have applied this 

technique to many nonlinear models due to its effectiveness and still they are improving this 

method to increase its efficiency. The nature of generated solutions has been analyzed physically 

by 2D and 3D graph and contour plot simulation, and all the solutions obtained in this article have 

been verified by using mathematical software Maple. 

2.8  (𝟑 + 𝟏)-dimensional Wazwaz -Benjamin-Bona-Mahony equations: 
 

Benjamin-Bona-Mahony equation (BBM) was derived by Benjamin, Bona and Mahony in 1972, 

which is the improved version of Korteweg-de-Vries (KDV) equation for surfaced water waves in 

uniform channel and regularized version in shallow water waves [80]. A lot of work has been done 

on this equation due to its importance in surface wave water, in nonlinear dispersive system for 

long wave lengths, acoustic gravity waves in compressible liquids, hydromagnetic waves in 

plasma physics and many more. Later in 2017, Wazwaz studied (3+1) dimensional modified BBM 



equation and derived new equation which he named as Wazwaz-Benjamin-Bona-Mahony equation 

(WBBM) [81] as follows: 

∂

∂𝑡
𝑢 +

∂

∂𝑥
𝑢 + 𝑢ଶ ൬

∂

∂𝑦
𝑢൰ − ቆ

∂ଷ

∂𝑥 ∂𝑧 ∂𝑡
𝑢ቇ = 0, (2.75) 

∂

∂𝑡
𝑢 +

∂

∂y
𝑢 + 𝑢ଶ ൬

∂

∂z
𝑢൰ − ቆ

∂ଷ

∂𝑥 ∂x ∂𝑡
𝑢ቇ = 0, (2.76) 

∂

∂𝑡
𝑢 +

∂

∂z
𝑢 + 𝑢ଶ ൬

∂

∂x
𝑢൰ − ቆ

∂ଷ

∂𝑥 ∂y ∂𝑡
𝑢ቇ = 0. (2.77) 

Wazwaz [81] obtained solitons, periodic wave solutions and kink wave solutions using tanh/sech 

method.  Used sardar sub equation method to obtain generalized hyperbolic and trigonometric 

function solutions. Based on these ideas we have used modified extended tanh method to derive 

new generalized solutions of WBBM equation.  

Implementation of METEM 

Here we study first equation of (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equations 

(2.75)-(2.77), using the following travelling wave transformation, 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑈(𝜂),   with 𝜂 = 𝑘𝑥 + 𝜆𝑦 + 𝜇𝑧 − 𝑐𝑡 ,  

equations (2.75)-(2.77) reduces to ODEs and after integrating once we get, 

(𝑘 − 𝑐)𝑈(𝜂) +
𝜆𝑈(𝜂)ଷ

3
+ 𝑐𝜇𝑘 ൭

𝑑ଶ

𝑑𝜂ଶ
𝑈(𝜂)൱  = 0, (2.78) 

(𝜇 − 𝑐)𝑈(𝜂) +
𝑘𝑈(𝜂)ଷ

3
+ 𝑐𝜆𝑘 ൭

𝑑ଶ

𝑑𝜂ଶ
𝑈(𝜂)൱  = 0, (2.79) 

(𝜆 − 𝑐)𝑈(𝜂) +
𝜇𝑈(𝜂)ଷ

3
+ 𝑐𝑘ଶ ൭

𝑑ଶ

𝑑𝜂ଶ
𝑈(𝜂)൱  = 0. (2.80) 

Now applying balancing principle to nonlinear term 𝑈(𝜂)ଷ  with the order to linear term 
ௗమ

ௗఎమ
𝑈(𝜂)  

in equations (2.78)-(2.80) we get 𝑁 = 1. Therefore we get, 



𝑈(𝜂) = Λ(𝑌) = 𝑎଴ + 𝑎ଵΦ(𝜂) +
𝑏ଵ

Φ(𝜂)
 , (2.81) 

now, substituting Eq. (2.81) along with Eq. (1.38) into Eq. (2.78)-(2.80), simultaneously after 

collecting all terms with the same powers of tanh ቀ
థ(క)

ଶ
ቁ  and equating each coefficient to 0, we 

get a system of NL algebraic equations. Solving these equations by using Maple 17, we get the 

following non-trivial solutions. 

2.8.1 Equation 1: 

Solving for the first equation of (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equation, 

we have following set of coefficients.  

Set 1 : 
Substituting these coefficients into equation (2.78) along with the Riccati equation solutions we 
get solutions of equation (2.75) as follows: 

For Ω < 0, we have 

Ω =
𝑐 − 𝑘

2𝑐𝜇𝑘
, 𝑎଴ = 0, 𝑎ଵ = 0, 𝑏ଵ = ඨ−

3

2𝜆𝑐𝜇𝑘
(𝑐 − 𝑘), 

𝑢ଵ,ଵ =
−𝑏ଵ

√−Ωtanh ൫√−Ω𝜂൯
, (2.82) 

𝑢ଵ,ଶ =
−𝑏ଵ

√−Ωcoth ൫√−Ω𝜂൯
. (2.83) 

For Ω > 0, we have 

𝑢ଵ,ଷ =
𝑏ଵ√2

√Ωtan ቆ
√2√Ω𝜂

2
ቇ

, 
(2.84) 

𝑢ଵ,ସ =
−𝑏ଵ√2

√Ω𝑐𝑜𝑡 ቆ
√2√Ω𝜂

2
ቇ

. 
(2.85) 



Set 2 : 
Substituting these coefficients into equation (2.78) along with the Riccati equation solutions we 
get solutions of equation (2.75) as follows: 

For Ω < 0, we have 

Ω =
𝑐 − 𝑘

2𝑐𝜇𝑘
, 𝑎଴ = 0, 𝑎ଵ = ඨ

−6𝑐𝑘𝜇

𝜆
, 𝑏ଵ = 0.  

𝑢ଵ,ହ = −ඨ−
6𝑐𝑘𝜇

𝜆
√−Ωtanh൫√−Ω𝜂൯, (2.86) 

𝑢ଵ,଺ = −ඨ−
6𝑐𝑘𝜇

𝜆
√−Ωcoth൫√−Ω𝜂൯. (2.87) 

For Ω > 0, we have 

 

𝑢ଵ,଻ =

ට−
6𝑐𝑘𝜇

𝜆 √2√Ωtan ቆ
√2√Ω𝜂

2
ቇ

2
, 

(2.88) 

𝑢ଵ,଼ = −

ට−
6𝑐𝑘𝜇

𝜆 √2√Ωcot ቆ
√2√Ω𝜂

2
ቇ

2
. 

(2.89) 

Set 3 : 
Substituting these coefficients into equation (2.78) along with the Riccati equation solutions we 
get solutions of equation (2.75) as follows: 

For Ω < 0, we have 

⎛ −

3𝜆ට−
6𝑐𝑘𝜇

𝜆
ቆ2𝑐𝜇𝑘 + ට−

6𝑐𝑘𝜇
𝜆 ඥ−6𝜆𝑐𝜇𝑘ቇ

16𝑘𝜇ඥ−6𝜆𝑐𝜇𝑘
+ ⎞

 



𝑎଴ = 0, 𝑎ଵ = ඨ−
6𝑐𝑘𝜇

𝜆
, 𝑏ଵ = −

3 ቆ2𝑐𝜇𝑘 + ට−
6𝑐𝑘𝜇

𝜆 ඥ−6𝜆𝑐𝜇𝑘ቇ (𝑐 − 𝑘)

16𝑐𝑘𝜇ඥ−6𝜆𝑐𝜇𝑘
 . 

𝑢 ଵ,ଽ = 

−

⎝

⎜
⎜
⎜
⎛ ඨ−

3𝑐𝑘𝜇

𝜆
√−Ω tanh ቆ

√−Ω𝜂

√2
ቇ

+3 ቌ2𝑐𝜇𝑘 + ඨ−
6𝑐𝑘𝜇

𝜆
ඥ−6𝜆𝑐𝜇𝑘ቍ (𝑐 − 𝑘)√2

⎠

⎟
⎟
⎟
⎞

 

× ൮16𝑐𝑘𝜇ඥ−6𝜆𝑐𝜇𝑘 ቌ√−Ω tanh ቆ
√−Ω𝜂

√2
ቇቍ൲

ିଵ

 , 

 

 

(2.90) 

𝑢ଵ,ଵ଴ = 

−

⎝

⎜
⎜
⎜
⎛ ඨ−

3𝑐𝑘𝜇

𝜆
√−Ω coth ቆ

√−Ω𝜂

√2
ቇ

+3 ቌ2𝑐𝜇𝑘 + ඨ−
6𝑐𝑘𝜇

𝜆
ඥ−6𝜆𝑐𝜇𝑘ቍ (𝑐 − 𝑘)√2

⎠

⎟
⎟
⎟
⎞

 

× ൮16𝑐𝑘𝜇ඥ−6𝜆𝑐𝜇𝑘 ቌ√−Ω coth ቆ
√−Ω𝜂

√2
ቇቍ൲

ିଵ

. 

(2.91) 

For Ω > 0, we have 

𝑢ଵ,ଵଵ =
1

2
ඨ−

6𝑐𝑘𝜇

𝜆
√−𝛺tan ቆ

√−𝛺𝜂

2
ቇ − 3 ቌ2𝑐𝜇𝑘 + ඨ−

6𝑐𝑘𝜇

𝜆
ඥ−6𝜆𝑐𝜇𝑘ቍ (𝑐 − 𝑘) 

× ቀ16𝑐𝑘𝜇ඥ−6𝜆𝑐𝜇𝑘൫√−𝛺 tan (√−𝛺𝜂)൯ቁ
ିଵ

, 

(2.92) 



𝑢ଵ,ଵଶ =
−1

2
ඨ−

6𝑐𝑘𝜇

𝜆
√−𝛺cot ቆ

√−𝛺𝜂

2
ቇ + 3 ቌ2𝑐𝜇𝑘 + ඨ−

6𝑐𝑘𝜇

𝜆
ඥ−6𝜆𝑐𝜇𝑘ቍ (𝑐 − 𝑘) 

× ቀ16𝑐𝑘𝜇ඥ−6𝜆𝑐𝜇𝑘൫√−𝛺 cot (√−𝛺𝜂)൯ቁ
ିଵ

, 

(2.93) 

2.8.2 Equation 2: 

Solving for the second equation of (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equation, 

we have following set of coefficients.  

Set 1 : 
Substituting these coefficients into equation (2.79) along with the Riccati equation solutions we 
get solutions of equation (2.76) as follows: 

For Ω < 0, we have 

Ω =
𝑐 − 𝜇

2𝑐𝑘𝜆
, 𝑎଴ = 0, 𝑎ଵ = √−6𝑐𝜆, 𝑏ଵ = 0, 

𝑢ଶ,ଵ = −√−6𝑐𝜆√−Ω tanh൫√−Ω𝜂൯, (2.94) 

𝑢ଶ,ଶ = −√−6𝑐𝜆√−Ω coth൫√−Ω𝜂൯. (2.95) 

For Ω > 0, we have 

𝑢ଶ,ଷ =
1

2
ቌ√−12𝑐𝜆√Ωtan ቆ

√2√Ω 𝜂

2
ቇቍ, (2.96) 

𝑢ଶ,ସ =
−1

2
ቌ√−12𝑐𝜆√Ωcot ቆ

√2√Ω 𝜂

2
ቇቍ. (2.97) 

Set 2 : 

Substituting these coefficients into equation (2.79) along with the Riccati equation solutions we 

get solutions of equation (2.76) as follows: 

For Ω < 0, we have 



Ω = −
−

𝑐
2

+
𝜇
2

4𝑐𝑘𝜆
, 𝑎଴ = 0, 𝑎ଵ = √−6𝑐𝜆, 𝑏ଵ =

3(𝑐 − 𝜇)

4√−6𝑐𝜆𝑘
.  

𝑢ଶ,ହ = −√6 ⎝

⎜
⎛

tanh

⎝

⎛
ට−2𝑐 + 2𝜇

𝑐𝑘𝜆
𝜂

4

⎠

⎞

ଶ

+ 1

⎠

⎟
⎞

(𝑐 − 𝜇)

2√−𝑐𝜆ට−2𝑐 + 2𝜇
𝑐𝑘𝜆

𝑘 tanh

⎝

⎛
ට−2𝑐 + 2𝜇

𝑐𝑘𝜆
𝜂

4

⎠

⎞

, (2.98) 

𝑢ଶ,଺ = −√6 ⎝

⎜
⎛

coth

⎝

⎛
ට−2𝑐 + 2𝜇

𝑐𝑘𝜆
𝜂

4

⎠

⎞

ଶ

+ 1

⎠

⎟
⎞

(𝑐 − 𝜇)

2√−𝑐𝜆ට−2𝑐 + 2𝜇
𝑐𝑘𝜆

𝑘 coth

⎝

⎛
ට−2𝑐 + 2𝜇

𝑐𝑘𝜆
𝜂

4

⎠

⎞

. (2.99) 

For Ω > 0, we have 

𝑢ଶ,଻ = −√3 ⎝

⎜
⎛

tan

⎝

⎛
ට2𝑐 − 2𝜇

𝑐𝑘𝜆
𝜂

4

⎠

⎞

ଶ

− 1

⎠

⎟
⎞

(𝑐 − 𝜇)

2√−𝑐𝜆ට
𝑐 − 𝜇
𝑐𝑘𝜆

𝑘 tan

⎝

⎛
ට−2𝑐 + 2𝜇

𝑐𝑘𝜆
𝜂

4

⎠

⎞

, (2.100) 

𝑢ଶ,଼ = √3 ⎝

⎜
⎛

cot

⎝

⎛
ට2𝑐 − 2𝜇

𝑐𝑘𝜆
𝜂

4

⎠

⎞

ଶ

− 1

⎠

⎟
⎞

(𝑐 − 𝜇)

2√−𝑐𝜆ට
𝑐 − 𝜇
𝑐𝑘𝜆

𝑘 cot

⎝

⎛
ට−2𝑐 + 2𝜇

𝑐𝑘𝜆
𝜂

4

⎠

⎞

. (2.101) 

 



Set 3 : 

Substituting these coefficients into equation (2.79) along with the Riccati equation solutions we 

get solutions of equation (2.76) as follows:  

For Ω < 0, we have 

Ω =
𝑐 − 𝜇

2𝑐𝑘𝜆
, 𝑎଴ = 0, 𝑎ଵ = 0, 𝑏ଵ =

(𝑐 − 𝜇)

𝑘
ඨ−

3

2𝑐𝜆
. 

𝑢ଶ,ଽ = −

ට−
3

2𝑐𝜆
(𝑐 − 𝜇)

𝑘√−Ω tanh൫√−Ω𝜂൯
, (2.102) 

𝑢ଶ,ଵ଴ = −

ට−
3

2𝑐𝜆
(𝑐 − 𝜇)

𝑘√−Ω coth൫√−Ω 𝜂൯
. (2.103) 

For Ω > 0, we have 

𝑢ଶ,ଵଵ =

ට−
3

2𝑐𝜆
(𝑐 − 𝜇)√2

𝑘√Ω tan ቀ
1
2 √2Ω𝜂ቁ

, (2.104) 

𝑢ଶ,ଵଶ = −

ට−
3

2𝑐𝜆
(𝑐 − 𝜇)√2

𝑘√Ω cot ቀ
1
2 √2Ω𝜂ቁ

. (2.105) 

2.8.3 Equation 3: 

Solving for the third equation of (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equation, 

we have the following set of coefficients.  

Set 1 : 
Substituting these coefficients into equation (2.80) along with the Riccati equation solutions we 
get solutions of equation (2.77) as follows: 

For Ω < 0, we have 



Ω =
𝑐 − 𝜆

2𝑐𝑘ଶ
, 𝑎଴ = 0, 𝑎ଵ = ඨ−

6𝑐

𝜇
𝑘, 𝑏ଵ = 0 

𝑢ଷ,ଵ = −

ට−
6𝑐
𝜇

𝑘√−4Ωtanh൫√−4Ω𝜂൯

2
, 

(2.106) 

𝑢ଷ,ଶ = −

ට−
6𝑐
𝜇

𝑘√−4Ωcoth൫√−4Ω𝜂൯

2
. 

(2.107) 

For Ω > 0, we have 

 

𝑢ଷ,ଷ =
ට−

6𝑐
𝜇 𝑘√2√2Ωtan൫√4Ω𝜂൯

2
, 

(2.108) 

𝑢ଷ,ସ = −

ට−
6𝑐
𝜇

𝑘√2√2Ωcot൫√4Ω𝜂൯

2
. 

(2.109) 

Set 2 : 

Substituting these coefficients into equation (2.80) along with the Riccati equation solutions we 

get solutions of equation (2.77) as follows: 

For Ω < 0, we have 

Ω =
𝑐 − 𝜆

2𝑐𝑘ଶ
, 𝑎଴ = 0, 𝑎ଵ = 0, 𝑏ଵ =

(𝑐 − 𝜆)

𝑘
ඨ−

3

2𝑐𝜇
, 

𝑢ଷ,ହ = −
𝑏ଵ

𝑘√−Ω tanh൫√−Ω𝜂൯
, (2.110) 

𝑢ଷ,଺ = −
𝑏ଵ

𝑘√−Ω coth൫√−Ω𝜂൯
. (2.111) 

For Ω > 0, we have 



𝑢ଷ,଻ =
𝑏ଵ√2

𝑘√2Ω tan ቀ
1
2 √4Ω𝜂ቁ

, (2.112) 

𝑢ଷ,଼ = −
𝑏ଵ√2

𝑘√2Ω cot ቀ
1
2 √4Ω𝜂ቁ

. (2.113) 

Set 3 : 

Substituting these coefficients into equation (2.80) along with the Riccati equation solutions we 

get solutions of equation (2.77) as follows:  

For Ω < 0, we have 

Ω = −

−

3𝜇ට−
6𝑐
𝜇 ቆට−

6𝑐
𝜇 ඥ−6𝑐𝜇 + 2𝑐ቇ

16ඥ−6𝑐𝜇
+

3𝜇ට−
6𝑐
𝜇 ቆට−

6𝑐
𝜇 ඥ−6𝑐𝜇 + 2𝑐ቇ 𝜆

16𝑐ඥ−6𝑐𝜇
− 𝑐 + 𝜆

2𝑐𝑘ଶ
, 

𝑎଴ = 0, 𝑎ଵ = ඨ−
6𝑐

𝜇
𝑘, 𝑏ଵ = −

3 ቆට−
6𝑐
𝜇 ඥ−6𝑐𝜇 + 2𝑐ቇ (𝑐 − 𝜆)

16𝑐ඥ−6𝑐𝜇𝑘
. 

𝑢 ଷ,ଽ = 

− ቌඨ−
3𝑐

𝜇
𝑘√−Ω tanh ቆ

√−Ω𝜂

√2
ቇ + 3 ቌ2𝑐 + ඨ−

6𝑐

𝜇
ඥ−6𝑐𝜇ቍ (𝑐 − 𝜆)√2ቍ 

× ൭16𝑐𝑘ඥ−6𝑐𝜇 ቆ√−Ω tanh ቀ
√ିஐఎ

√ଶ
ቁቇ൱

ିଵ

, 

(2.114) 

 

𝑢ଷ,ଵ଴ = 

3𝑐 √−Ω𝜂 6𝑐

(2.115) 



× ൮16𝑐𝑘ඥ−6𝑐𝜇 ቌ√−Ω coth ቆ
√−Ω𝜂

√2
ቇቍ൲

ିଵ

. 

 

For Ω > 0, we have 

𝑢ଷ,ଵଵ = ඨ−
6𝑐

𝜇
𝑘√−𝛺tan ቆ

√−𝛺𝜂

2
ቇ − 3 ቌ2𝑐 + ඨ−

6𝑐

𝜇
ඥ−6𝑐𝜇ቍ (𝑐 − 𝜆) 

× ቀ16𝑐𝑘ඥ−6𝑐𝜇൫√−𝛺 tan (√−𝛺𝜂)൯ቁ
ିଵ

, 

(2.116) 

𝑢ଷ,ଵଶ = −ඨ−
6𝑐

𝜇
𝑘√−𝛺cot ቆ

√−𝛺𝜂

2
ቇ + 3 ቌ2𝑐 + ඨ−

6𝑐

𝜇
ඥ−6𝑐𝜇ቍ (𝑐 − 𝜆) 

× ቀ16𝑐𝑘ඥ−6𝑐𝜇 ൫√−𝛺 cot (√−𝛺𝜂)൯ቁ
ିଵ

. 

(2.117) 

2.9 Results and discussion: 
In this section we have discussed graphical representation and their physical interpretation of 

various solutions of (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equation. These results 

have been obtained by using the modified extended tanh method. The physical nature and diversity 

of these exact solutions can be well explained and analyzed in Figure (2.12) -(2.18) by 3-D, 2-D 

and contour plots with the appropriate choice of arbitrary constants.  

Graphical depiction of imaginary part of 𝑢ଵ,ଵ expressed in Eq (2.82) has been shown in Figure 

2.12, in the form of 3-dimensional , and 2-dimensional and contour plot which demonstrates 

propagation of singular kink wave soliton for the values of parameters involved as,  𝑦 = 1, 𝑧 =

0.5, 𝑡 = 1, 𝑘 = 1.5, 𝜇 = 0.2, 𝑐 = 1, 𝜆 = 0.1. This type of wave important in carrying 

information. 



 
 

 
Figure 2.12: -graphs of singular anti kink wave soliton for 𝒖𝟏,𝟏 

Figure 2.13 depict wave propagation of periodic wave solution of imaginary value of 𝑢ଵ,଼ 

expressed in Eq (2.89), in the form of 3-dimensional , and 2-dimensional and contour plot by 

selecting arbitrary constant, 𝑦 = 1, 𝑧 = 1, 𝑡 = 0.1, 𝑘 = 1, 𝜇 = 1, 𝑐 = 4, 𝜆 = 5.  

 
 

 
Figure 2.13:-graphs  of periodic wave soliton for 𝒖𝟏,𝟖. 

Figure 2.14 depicts bright solitary wave propagation of absolute value of 𝑢ଵ,ଵ଴ expressed in Eq 

(2.91) in the form of 3-dimensional, and 2-dimensional and contour plot by selecting parameters, 

𝑦 = 1, 𝑧 = −2, 𝑡 = 0.9, 𝑘 = 0.5, 𝜇 = −1, 𝑐 = 1, 𝜆 = 0.5.   

 
 

 
Figure 2.14: graphs of bright solitary wave solution 𝒖𝟏,𝟏𝟎. 



Figure 2.15 depicts the wave propagation of periodic wave solution of imaginary value of 𝑢ଶ,ସ 

expressed in Eq (2.97), in the form of 3-dimensional, 2-dimensional and their contour plot by 

selecting parameters, 𝑦 = 1, 𝑧 = 1, 𝑡 = 1, 𝑘 = 5, 𝜇 = 0.4, 𝑐 = 1.5, 𝜆 = 0.1. 

 
 

 
Figure 2.15: graphs of periodic wave solution 𝒖𝟐,𝟒. 

Figure 2.16 depicts wave propagation of singular kink wave soliton of 𝑢ଶ,଺  expressed in Eq (2.99), 

in the form of 3 dimensional , and 2 dimensional and contour plots by selecting parameters,  𝑦 =

1, 𝑧 = 1, 𝑡 = 2, 𝑘 = 0.5, 𝜇 = 3.5, 𝑐 = 2.5, 𝜆 = 0.1.  

 
 

 
Figure 2.16:graphs of singular kink wave solution 𝒖𝟐,𝟔. 

Figure 2.17 depicts wave propagation of kink wave solution of Real value 𝑢ଶ,ଽ expressed in Eq 

(2.102), in the form of 3 dimensional , and 2 dimensional by selecting parameters,  𝑦 = 1, 𝑧 = −1,

𝑡 = 2, 𝑘 = 0.5, 𝜇 = −1.5, 𝑐 = −0.5, 𝜆 = 0.1.  



 
 

 
Figure 2.17:graphs of singular kink wave solution 𝒖𝟐,𝟗. 

Figure 2.18 depicts wave propagation of periodic wave of absolute value 𝑢ଷ,଼expressed in Eq 

(2.113), in the form of 3-dimensional , and 2 -dimensional and contour plot by selecting 

parameters,  𝑦 = 1, 𝑧 = 1, 𝑡 = 1, 𝑘 = 1, 𝜇 = 0.9, 𝑐 = 6, 𝜆 = 1.  

 
 

 
Figure 2.18:-graphs of singular kink wave solution 𝒖𝟑,𝟖. 

 

2.10 Conclusions: 
Modified extended tanh method successfully employed on (3+1)-dimensional Wazwaz-Benjamin-

Bona-Mahony equation to perceive new general solutions as an outcome of this technique, we 

produced some totally new solutions in the form hyperbolic wave solutions and trigonometric 

wave solutions, which can generate kink, periodic, singular periodic wave, bright solitons by 

appropriate choice of arbitrary constants involved in solutions. These new solutions may be 

worthwhile in the field of ocean engineering, astrophysics, and aerodynamics, plasma physics and 

fluid mechanics to explain wave propagation of incompressible fluids. This technique is very 

effective in generating exact solutions of almost all nonlinear PDEs arising in wave propagation. 

Therefore, this method is modifying and evolving continuously. The physical nature and behavior 



of some of these results has been analyzed by 2D and 3D graph simulation, and contour plots and 

all the solutions obtained in this article have been verified by using Maple 17. 

2.11 Summary: 
 This chapter demonstrated that modified extended tanh expansion method have been employed 

successfully on the Dodd-Bullough-Mikhailov equation, Sinh-Gordan equation, Liouville 

equation and (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equation to extract variety of 

solutions. Main steps of chapter include introduction of governing equations followed by focal 

steps of methods used and derivation of solutions by proposed method. Finally graphical 

representation of some results followed by conclusion. 

All the obtained results are new and maybe beneficial for researchers who are working on these 

models. The significance of a few of these solutions has been shown graphically.  

In next chapter we will be finding exact solutions of few more NLPEDs by another useful method 

called improved tanh(𝝋(𝝃)/𝟐) -expansion method.  

  



Chapter 3. Exact solutions of some nonlinear 

partial differential equations using 

improved tanh  -expansion 

method 



 

 

3.1 Introduction: 
Nonlinear partial differential equations (NLPDEs) play an indispensable role in numerous fields 

of mathematics, physical sciences, and engineering. Integrable differential equations gain much 

attention in the modern era of research for the study of wave propagation especially in plasma 

physics, ocean and rogue waves, optical fibers, incompressible fluids and many more. Traveling 

wave solutions in particular solitary wave solutions which are the exact solutions of some NLPEs 

is the prime objective and most active research area of researchers and scientist to study and   

understand nonlinear complex physical phenomena [82–89]. It is interesting to point out that with 

the evolution of soliton theory, many efficient and robust method have been developed and then 

modified to generate accurate and novel exact solutions of NLPDEs such as Backlund 

transformation method [51], Painlevé expansion [31], Variational iteration method [67], tanh 

method [90], Sine-Cosine method [68],  improved generalized Riccati equation mapping method 

[18], Auxiliary equation method [75], Ansatz method [11], Functional variable method [15], 𝐺ᇱ/𝐺 

expansion method [91] and many more methods.  

3.2 Illustrative Examples: 

3.3  (𝟑 + 𝟏)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) equation: 
In the last decade Boiti-Leon-Manna-Pempinelli (BLMP) equation has gained a lot of attraction 

by researchers due to the uses of this model in plasma physics, fluid dynamics, ocean engineering, 

astrophysics, and aerodynamics to explain wave propagation of incompressible fluids  [31, 88, 92–

96]. The (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) equation has imperative 

impact and significance in the wave propagation in incompressible fluids, moreover when 𝑧 = 0, 

it describes the interaction of Riemann wave propagation [31]. 

Boiti-Leon-Manna-Pempinelli (BLMP) model has been introduced in [97, 98]. Later Wazwaz 

derived new (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) equation with constant 

coefficients in  [31, 99].  



൫𝑢௫ + 𝑢௬ + 𝑢௭൯
௧

+ 𝛼൫𝑢௫ + 𝑢௬ + 𝑢௭൯
௫௫௫

+ 𝛽 ቀ𝑢௫൫𝑢௫ + 𝑢௬ + 𝑢௭൯ቁ
௫

= 0, (3.1) 

where, 𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡), is unknown analytical function with spatial variables 𝑥, 𝑦, 𝑧 and temporal 

variable 𝑡, whereas 𝛼 and 𝛽 are no-zero constants. 

A lot of work has been done on this model. The stair and step solitons of (2 + 1) and (3 + 1) 

dimensional BLMP has been studied in [97]. Bilinear form, lax pairs and Backlund transformation 

are constructed by [100]. The authors in [31], [96] secured multiple solitons and complex multi 

soliton solution by using Painleve test and Hirota’s direct method to generate lump solitons, 

solitary wave solutions and periodic wave solutions and their interactions. New three wave 

solutions and hyperbolic and trigonometric solutions have been generated for and (3 + 1) 

dimensional BLMP in [101, 102]. Moreover, authors in [99]  investigated the interaction solutions 

among lump wave, N-solitons, periodic and breather wave solutions. Solitary wave, periodic wave 

and trigonometric wave solutions has been obtained in  [103] with the aid Sine Gordan expansion 

method and extended tanh function method.  Periodic solitons and periodic type solutions of (3 +

1) dimensional BLMP has been studied in [104]. 

The technique, improved tanh (
థ

ଶ
)-expansion method [105], used here is new and direct and very 

convenient to handle, and no study has not been done so far on this equation by this technique, as 

both equation and method is new. With the aid of mathematical software, we manage to generate 

various interesting types of new exact traveling wave solutions. 

The prime motive here is to thoroughly study newly derived (3 + 1)-dimensional Boiti-Leon-

Manna-Pempinelli (BLMP) equation and concurrently reveals the significance of improved tanh 

(
థ

ଶ
)-expansion method. It’s worth mentioning here that higher dimensional nonlinear models 

generate large number of exact solutions as compared to lower dimensional equations [31]. We 

are hopeful that our new abundant exact solutions which are new and have not been reported in 

literature of this higher dimensional model have great significance for many higher dimensional 

nonlinear problems in various fields of sciences. 

Implementation of IThEM: 

To use improved tanh(
థ(క)

ଶ
)-expansion method on equation (3.1).  



We use following wave transformation, 

𝑢(𝑥, 𝑡) = 𝑢(𝜉),   with 𝜉 = 𝑘ଵ𝑥 + 𝑘ଶ𝑦 + 𝑘ଷ𝑧 + 𝜔𝑡 ,  

in equation(3.1), substituting 𝛼 = 𝛽 = −3 and after integrating by keeping constant of integration 

zero, we get the following nonlinear ODE: 

𝑘ଵ
ଷ(𝑘ଷ + 𝑘ଵ + 𝑘ଶ)

dଷ

d𝜉ଷ
𝑢(𝜉) + 𝜔(𝑘ଷ + 𝑘ଵ + 𝑘ଶ)

d

d𝜉
𝑢(𝜉) 

−
3𝑘ଵ

ଶ(𝑘ଷ + 𝑘ଵ + 𝑘ଶ)

2
൬

d

d𝜉
𝑢(𝜉)൰

ଶ

= 0, 

(3.2) 

using homogeneous balance principle betweenቆ
ୢయ

ୢకయ
𝑢(𝜉)ቇ andቆ

ୢ

ୢక
𝑢(𝜉)ቇ

ଶ

 we get 𝑁 = 1. 

Therefore, the exact series solution has the form, 

𝑢(𝜉) = Λ(𝑌) =
Αିଵ

𝑝 + tanh ൬
𝜙(𝜉)

2
൰

+ Α଴ + Αଵ ቆ𝑝 + tanh ቆ
𝜙(𝜉)

2
ቇቇ , (3.3) 

now, substituting Eq.(3.3) along with Eq.Error! Reference source not found. into Eq.(3.2) after 

collecting all terms with the same powers of  tanh ቀ
థ(క)

ଶ
ቁ  and equating each coefficient to zero, 

we obtain a system of nonlinear algebraic equations. Solving these equations by using Maple 17, 

we get the following non-trivial solutions. All the abbreviations used in the below mentioned 

solutions have been expressed in table: 

𝐷 = 𝑎ଶ − 𝑏ଶ + 𝑐ଶ Ω = 𝑥𝑘ଵ + 𝑧𝑘ଷ + 𝑦𝑘ଶ 

𝐸 = (𝑏 − 𝑐)൫(𝑏 − 𝑐)𝑝ଶ − 𝑏 − 𝑐൯ 𝐹 = −𝑎ଶ + 𝑏ଶ 

𝐹′ = 𝑎ଶ + 𝑐ଶ 𝐺 = 𝑏ଶ−𝑐ଶ 

Family 1: 

Some trigonometric function solutions are formulated for BLMP equation for 𝑎ଶ + 𝑐ଶ − 𝑏ଶ <

0, 𝑏 − 𝑐 ≠ 0: 

𝑎 = 𝑎, 𝑏 = 𝑐, 𝑐 = 𝑐, 𝜔 = −𝑘ଵ
ଷD, 𝑝 = 𝑝, 



𝐴ିଵ = 2𝑘ଵ(−(𝑏 − 𝑐)𝑝ଶ + 2𝑝𝑎 − 𝑏 − 𝑐), 𝐴ଵ = 0, 

𝑢ଵ = ൭
√−D𝐴଴ tan ቀ൫𝑡𝐷𝑘ଵ

ଷ − Ω൯√−𝐷ቁ + 2𝑘ଵ(𝑏 − 𝑐)ଶ𝑝ଶ

−4(𝑎𝑘ଵ + 𝐴଴/4)(𝑏 − 𝑐)𝑝 + 2(𝑏ଶ − 𝑐ଶ)𝑘ଵ + 𝑎𝐴଴

൱ 

× ቀ√−D tan ቀ൫𝑡𝐷𝑘ଵ
ଷ − Ω൯√−𝐷ቁ + (−𝑏 + 𝑐)𝑝 + 𝑎ቁ

ିଵ

, 

(3.4) 

 𝑎 = 𝑎, 𝑏 = 𝑏, 𝑐 = 𝑐, 𝜔 = −𝐷𝑘ଵ
ଷ, 𝑝 = 𝑝, 

𝐴ିଵ = 0, 𝐴ଵ = 2𝑘ଵ(𝑏 − 𝑐), 
 

𝑢ଶ = ቀ−2√−𝐷 tan ቀ൫𝑡𝐷𝑘ଵ
ଷ − Ω൯√−𝐷/2ቁ + 2(𝑝𝑏 − 𝑝𝑐 − 𝑎)ቁ 𝑘ଵ + 𝐴଴, (3.5) 

𝑎 = 𝑝(𝑏 − c), 𝑏 = 𝑏, 𝑐 = 𝑐, 𝜔 = −4𝐸𝑘ଵ
ଷ, 

𝑝 = 𝑝, 𝐴ିଵ = 2𝑘ଵ൫(𝑏 − 𝑐)𝑝ଶ − 𝑏 − 𝑐൯, 𝐴ଵ = 2𝑘ଵ(𝑏 − 𝑐), 
 

𝑢ଷ

= ቌ
𝐴଴/2√−𝐸tan ቀ2√−𝐸൫𝑡𝑘ଵ

ଷ(2(𝑝ଶ − 1)𝑏ଶ − 2𝑏𝑐𝑝ଶ + (𝑝ଶ + 1)𝑐ଶ) − Ω/4൯ቁ

−𝑘ଵ𝐸 ൬tan ቀ2√−𝐸൫𝑡𝑘ଵ
ଷ(2(𝑝ଶ − 1)𝑏ଶ − 2𝑏𝑐𝑝ଶ + (𝑝ଶ + 1)𝑐ଶ) − Ω/4൯ቁ

ଶ

− 1൰
ቍ 

× ൬√−𝐸tan ቀ2√−𝐸൫𝑡𝑘ଵ
ଷ(2(𝑝ଶ − 1)𝑏ଶ − 2𝑏𝑐𝑝ଶ + (𝑝ଶ + 1)𝑐ଶ) − Ω/4൯ቁ൰

ିଵ

, 

(3.6) 

Family 2: 
The hyperbolic function solutions can be derive as using the following conditions: 

For 𝑎ଶ + 𝑐ଶ − 𝑏ଶ > 0 and 𝑏 − 𝑐 ≠ 0: 

𝑎 = 𝑎, 𝑏 = 𝑏, 𝑐 = 𝑐, 𝜔 = −𝐷𝑘ଵ
ଷ, 𝑝 = 𝑝, 𝐴ଵ = 0, 

𝐴ିଵ = 2𝑘ଵ(−(𝑏 − 𝑐)𝑝ଶ + 2𝑝𝑎 − 𝑏 − 𝑐), 
 

𝑢ସ = ቌ
− tanh ቆ

൫𝑡(𝐷)𝑘ଵ
ଷ − Ω൯√𝐷

2
ቇ √𝐷𝐴଴ + 2𝑘ଵ(𝑏 − 𝑐)ଶ𝑝ଶ

−(4𝑎𝑘ଵ + 𝐴଴)(𝑏 − 𝑐)𝑝 + 2(𝑏ଶ − 𝑐ଶ)𝑘ଵ + 𝑎𝐴଴

ቍ 

× ቀ−tanh ቀ൫𝑡(𝐷)𝑘ଵ
ଷ − Ω൯√𝐷/2ቁ √𝐷 + (−𝑏 + 𝑐)𝑝 + 𝑎ቁ

ିଵ

, 

(3.7) 

𝑎 = 𝑎, 𝑏 = 𝑏, 𝑐 = 𝑐, 𝜔 = −𝐷𝑘ଵ
ଷ, 𝑝 = 𝑝, 𝐴ିଵ = 0, 

𝐴ଵ = 2𝑘ଵ(𝑏 − 𝑐), 

𝑢ହ = ቆ2 tanh ቆ
1

2൫𝑡(𝐷)𝑘ଵ
ଷ − Ω൯√𝐷

ቇ √𝐷 + 2𝑝𝑏 − 2𝑝𝑐 − 2𝑎ቇ 𝑘ଵ + 𝐴଴, (3.8) 



Family 3: 
When 𝑎ଶ + 𝑐ଶ − 𝑏ଶ < 0 , b≠0 and c=0, the trigonometric function solutions generated as: 

𝑎 = 𝑎, 𝑏 = 𝑏, 𝑐 = 0, 𝜔 = 4𝑘ଵ
ଷ𝐹, 𝑝 =

𝑎

𝑏
, 

𝐴ିଵ = −2𝑘ଵ𝐹/𝑏, 𝐴ଵ = 2𝑏𝑘ଵ, 
 

𝑢଺ = ൫−2𝑘ଵ√𝐹 tan൫−√𝐹൫4𝑡𝐹𝑘ଵ
ଷ + Ω൯/2൯ + 𝐴଴ + 2𝑘ଵ√𝐹൯ 

× ൫tan൫√𝐹൫4𝑡𝐹𝑘ଵ
ଷ − Ω൯/2൯൯

ିଵ
, 

(3.9) 

𝑎 = 𝑎, 𝑏 = 𝑏, 𝑐 = 0, 𝜔 = 4𝑘ଵ
ଷ𝐹, 𝑝 =

𝑎

𝑏
, 𝐴ିଵ = −2𝑘ଵ

ଷ𝐹/𝑏, 𝐴ଵ = 2𝑏𝑘ଵ,  

𝑢଻ = ൭
−2𝐹 ቀtan൫√𝐹൫−4𝑡𝐹𝑘ଵ

ଷ − Ω൯/2൯
ଶ

− 1ቁ 𝑘ଵ

+𝐴଴tan൫√𝐹൫−4𝑡𝐹𝑘ଵ
ଷ − Ω൯/2൯√𝐹

൱ 

× ൫𝐴଴tan൫√𝐹(−4𝑡𝐹𝑘ଵ
ଷ − Ω)/2൯√𝐹൯

ିଵ
, 

(3.10) 

𝑎 = 𝑎, 𝑏 = 𝑏, 𝑐 = 0, 𝜔 = 𝑘ଵ
ଷ𝐹, 𝑝 = 𝑝, 𝐴ିଵ = 0, 𝐴ଵ = 2𝑏𝑘ଵ,  

𝑢଼ = ൫−2tan ൫√𝐹(−𝑡𝐹𝑘ଵ
ଷ − Ω)/2൯√𝐹 + 2𝑝𝑏 − 2𝑎൯𝑘ଵ + 𝐴଴, (3.11) 

Family 4: 

Another choice of hyperbolic function solutions for 𝑎ଶ + 𝑐ଶ − 𝑏ଶ > 0, c≠0 and b=0: 

𝑎 = 𝑎, 𝑏 = 0, 𝑐 = 𝑐, 𝜔 = −𝑘ଵ
ଷ𝐹′, 𝑝 = 𝑝, 𝐴ଵ = 0, 

𝐴ିଵ = 2𝑘ଵ(𝑝𝑎 − (−𝑝ଶ + 1)𝑐, 
 

𝑢 ଽ = ൭
ቀtanh ቀ൫𝑡𝑘ଵ

ଷ𝐹ᇱ − Ω൯√𝐹ᇱ/2ቁ √𝐹ᇱ − 𝑎ቁ 𝐴଴ +

2(−𝑝ଶ + 1)𝑘ଵ𝑐ଶ − 𝑝(4𝑎𝑘ଵ + 𝐴଴)𝑐
൱ 

× ቀtanh ቀ൫𝑡𝑘ଵ
ଷ𝐹ᇱ − Ω൯√𝐹ᇱ/2ቁ ඥ𝐹′ − 𝑐𝑝 − 𝑎ቁ

ିଵ

, 

(3.12) 

 

𝑎 = 𝑎, 𝑏 = 0, 𝑐 = 𝑐, 𝜔 = −F′𝑘ଵ
ଷ, 𝑝 = 𝑝, 𝐴ିଵ = 2𝑘ଵ(2𝑝𝑎 − (−𝑝ଶ + 1)𝑐), 

𝐴ଵ = 0, 
 

𝑢ଵ଴ = ൭
ቀtanh ቀ൫𝑡𝑘ଵ

ଷ𝐹ᇱ − Ω൯√𝐹ᇱ/2ቁ √𝐹ᇱ − 𝑎ቁ 𝐴଴ +

2(−𝑝ଶ + 1)𝑘ଵ𝑐ଶ − 𝑝(4𝑎𝑘ଵ + 𝐴଴)𝑐
൱ 

× ቀtanh ቀ൫𝑡𝑘ଵ
ଷ𝐹ᇱ − Ω൯√𝐹ᇱ/2ቁ ඥ𝐹′ − 𝑐𝑝 − 𝑎ቁ

ିଵ

, 

(3.13) 

𝑎 = 𝑎, 𝑏 = 0, 𝑐 = 𝑐, 𝜔 = −𝑘ଵ
ଷF′, 𝑝 = 𝑝, 𝐴ିଵ = 0, 𝐴ଵ = −2𝑐𝑘ଵ,  



𝑢ଵଵ = ቀtanh ቀ(𝑡𝐹′𝑘ଵ
ଷ − Ω)ඥ𝐹′ቁ ඥ𝐹′ − 4𝑝𝑐 − 4𝑎ቁ 𝑘ଵ + 𝐴଴, (3.14) 

Family 5: 
For 𝑎ଶ + 𝑐ଶ − 𝑏ଶ < 0, b-c≠0 and a=0, trigonometric function solutions has been generated as: 

𝑎 = 0, 𝑏 = 𝑏, 𝑐 = 𝑐, 𝜔 = G𝑘ଵ
ଷ, 𝑝 = 𝑝, 

𝐴ିଵ = 2𝑘ଵ(−𝑏𝑝ଶ + 𝑐𝑝ଶ − 𝑏 − 𝑐), 𝐴ଵ = 0, 
 

𝑢ଵଶ = ൭
𝐴଴√G tan ቀ൫G𝑡𝑘ଵ

ଷ + Ω൯√G/2ቁ /2

−2(𝑘ଵ(𝑏 − 𝑐)ଶ𝑝ଶ − 𝐴଴𝑝/2 + 𝑘ଵG)
൱ 

× ቀ√G tan ቀ൫G𝑡𝑘ଵ
ଷ + Ω൯√G/2ቁ + 𝑝(𝑏 − 𝑐)ቁ

ିଵ

, 

(3.15) 

𝑎 = 0, 𝑏 = 𝑏, 𝑐 = 𝑐, 𝜔 = G𝑘ଵ
ଷ, 𝑝 = 𝑝, 𝐴ିଵ = 0, 𝐴ଵ = 2𝑏𝑘ଵ − 2𝑐𝑘ଵ,   

𝑢ଵଷ = 2 tan ቀ൫G𝑡𝑘ଵ
ଷ + Ω൯√G/2ቁ 𝑘ଵ√G + 2𝑝(𝑏 − 𝑐)𝑘ଵ + 𝐴଴, (3.16) 

Family 6: 
Mix soliton solution, hyperbolic function solutions have been acquired for a=0 and c=0: 

𝑏 = 𝑏, 𝜔 = 𝑏ଶ𝑘ଵ
ଷ, 𝑝 = 𝑝, 𝐴ଵ = 0, 𝐴ିଵ = −2𝑏𝑘ଵ(𝑝ଶ + 1),  

𝑢ଵସ = −
2𝑏𝑘ଵ(𝑝ଶ + 1)

𝑝 + tanh ቆ
1
2

𝑙𝑛 ቀtan ቀ𝑏ଶ൫𝑏ଶ𝑘ଵ
ଷ𝑡 + Ω൯ቁቁቇ

+ 𝐴଴, 
(3.17) 

𝑎 = 0, 𝑏 = 𝑏, 𝑐 = 0, 𝜔 = 𝑏ଶ𝑘ଵ
ଷ, 𝑝 = 𝑝, 𝐴ଵ = 2𝑏𝑘ଵ, 𝐴ିଵ = 0,  

𝑢ଵହ = 𝐴଴ + 2𝑏𝑘ଵ ൭𝑝 + tanh ቆ
1

2
𝑙𝑛 ቀtan ቀ𝑏ଶ൫𝑏ଶ𝑘ଵ

ଷ𝑡 + Ω൯ቁቁቇ൱, (3.18) 

𝑎 = 0, 𝑏 = 𝑏, 𝑐 = 0, 𝜔 = 4𝑏ଶ𝑘ଵ
ଷ, 𝑝 = 0, 𝐴ଵ = 2𝑏𝑘ଵ, 𝐴ିଵ = −2𝑏𝑘ଵ,  

𝑢ଵ଺ = 𝐴଴ + 2𝑏𝑘ଵ ൭tanh ቆ
1

2
𝑙𝑛൫tan൫𝑏ଶ൫𝑏ଶ𝑘ଵ

ଷ𝑡 + Ω൯/2൯൯ቇ൱ 

−
2𝑏𝑘ଵ

tanh ቆ
1
2

𝑙𝑛൫tan൫𝑏൫4𝑏ଶ𝑘ଵ
ଷ𝑡 + Ω൯𝑏/2൯൯ቇ

, 
(3.19) 

Family 7: 
The hyperbolic function solution for b=0 and c=0, along with the following conditions: 



𝑎 = 𝑎, 𝜔 = −𝑎ଶ𝑘ଵ
ଷ, 𝑝 = 𝑝, 𝐴ିଵ = 4𝑝𝑎𝑘ଵ, 𝐴ଵ = 0, 

𝑢ଵ଻ =
4𝑝𝑎𝑘ଵ

𝑝 + tanh ቆ
1
2

𝑙𝑛൫tanh൫𝑎൫𝑎ଶ𝑘ଵ
ଷ𝑡 − Ω൯𝑏/2൯൯ቇ

+ 𝐴଴, 
(3.20) 

 

 

Family 8: 
We get mix solutions, trigonometric and hyperbolic function solutions respectively for 𝑎ଶ +

𝑏ଶ = 𝑐ଶ,  

𝑎 = 𝐼𝑏, 𝑏 = 𝑏, 𝑐 = 0, 𝜔 = 8𝑏ଶ𝑘ଵ
ଷ, 𝑝 = 𝐼, 𝐴ିଵ = −4𝑏𝑘ଵ, 𝐴ଵ = 2𝑏𝑘ଵ,  

𝑢ଵ଼ =

√2 ൭
4𝑏𝑘ଵtan൫𝑏√2൫8𝑏ଶ𝑘ଵ

ଷ𝑡 + Ω൯𝑏/2൯
ଶ

+

𝐴଴tan൫𝑏√2൫8𝑏ଶ𝑘ଵ
ଷ𝑡 + Ω൯𝑏/2൯√2 − 4𝑘ଵ𝑏

൱

tan൫𝑏√2൫8𝑏ଶ𝑘ଵ
ଷ𝑡 + Ω൯𝑏/2൯√2

, 
(3.21) 

Family 11: 
Exponential function solutions for 𝑎 = 𝑏, we get as: 

𝑏 = 𝑏, 𝑐 = 𝑐, 𝜔 = −𝑐ଶ𝑘ଵ
ଷ, 𝑝 = 𝑝, 𝐴ିଵ = 0, 𝐴ଵ = 2𝑏𝑘ଵ − 2𝑐𝑘ଵ,  

𝑢ଵଽ = ቆ
2(𝑏 − 𝑐) ቀ൫(𝑝 − 1)𝑏 − 𝑐(𝑝 + 1)൯𝑘ଵ + 𝐴଴/2ቁ eି௖൫௖మ௞భ

య௧ିஐ൯

−2(𝑝 − 1)(𝑏 − 𝑐)𝑘ଵ − 𝐴଴

ቇ 

× ቀ−1 + (𝑏 − 𝑐)eି௖൫௖మ௞భ
య௧ିஐ൯ቁ

ିଵ

, 

(3.22) 

𝑎 = 0, 𝑏 = 0, 𝑐 = 𝑐, 𝜔 = −4𝑐ଶ𝑘ଵ
ଷ, 𝑝 = 0, 𝐴ିଵ = −2𝑐𝑘ଵ, 𝐴ଵ = −2𝑐𝑘ଵ, 

𝑢ଶ଴ = ቆ
−4e൫ି଼௖య௞భ

య௧ାଶ௖ஐ൯𝑐ଷ𝑘ଵ − 𝐴଴

+e൫ି଼௖య௞భ
య௧ାଶ௖ஐ൯𝑐ଶ𝐴଴ − 4𝑐𝑘ଵ

ቇ ቀe൫ି଼௖య௞భ
య௧ାଶ௖ஐ൯𝑐ଶ − 1ቁ

ିଵ

, (3.23) 

Family 12: 
For 𝑏 = 𝑐, we get exponential function solution as follows: 

𝑎 = 1/𝑘ଵඥ−𝜔/𝑘ଵ, 𝑐 = 𝑐, 𝜔 = 𝜔, 𝑝 =
4𝑐𝑘ଵ + 𝐴ିଵ

4ඥ−𝜔/𝑘ଵ

, 𝐴ଵ = 0, 𝐴ିଵ = 𝐴ିଵ,  

𝑢ଶଵ =
4eଵ/௞భඥିఠ/௞భక𝐴଴𝑘ଵ + 4൫ඥ−𝜔/𝑘ଵ + 𝐴଴/4൯𝐴ିଵ

4eଵ/௞భඥିఠ/௞భక𝑘ଵ + 𝐴ିଵ

, (3.24) 

Family 13: 
For 𝑎 = −𝑐, and 𝑏 = 𝑐 we get another type of exponential function solution: 



𝑐 = 𝑐, 𝜔 = −𝑐ଶ𝑘ଵ
ଷ, 𝑝 = 𝑝, 𝐴ିଵ = −4𝑝𝑘ଵ𝑐 − 4𝑘ଵ𝑐, 𝐴ଵ = 0,  

𝑢ଶଶ =
ቀ𝐴଴e௖൫௖మ௞భ

య௧ିஐ൯ − 4(𝑝 + 1)(𝑘ଵ𝑐 − 𝐴଴/4)ቁ

൫𝑝 + e௖൫௖మ௞భ
య௧ିஐ൯ + 1൯

, (3.25) 

Family 14: 
For 𝑏 = −𝑏, and 𝑐 = −𝑏 we get another type of exponential function solution: 

𝑎 = 𝑎, 𝑏 = 0, 𝑐 = 0, 𝜔 = −𝑎ଶ𝑘ଵ
ଷ, 𝑝 = 𝑝, 𝐴ିଵ = 4𝑝𝑎𝑘ଵ, 𝐴ଵ = 0,  

𝑢ଶଷ =
ቀ𝐴଴eି௔మ൫௔మ௞భ

య௧ିஐ൯ + 𝑎𝑝𝐴଴ + 4𝑝𝑎ଶ𝑘ଵቁ

൫𝑎𝑝 + eି௔మ൫௔మ௞భ
య௧ିஐ൯൯

, (3.26) 

Family 16: 
For  𝑏 = −𝑐, then we different types of exponential function solutions: 

𝑎 = 𝑎, 𝑐 = 𝑐, 𝜔 = −𝑎ଶ𝑘ଵ
ଷ, 𝑝 = 𝑝, 𝐴ିଵ = 0, 𝐴ଵ = −4𝑐𝑘ଵ, 

𝑢ଶସ =
ቀ4𝑐𝑝𝑘ଵ − 𝐴଴ − 4𝑐(𝑐𝑝𝑘ଵ + 𝑎𝑘ଵ − 𝐴଴/4)eି௔మ൫௔మ௞భ

య௧ିஐ൯ቁ

൫𝑐eି௔మ൫௔మ௞భ
య௧ିஐ൯ − 1൯

, (3.27) 

𝑎 = 𝑎, 𝑐 = 𝑐, 𝜔 = −𝑎ଶ𝑘ଵ
ଷ, 𝑝 = 𝑝, 𝐴ିଵ = 4𝑝𝑎𝑘ଵ + 4𝑝ଶ𝑐𝑘ଵ, 𝐴ଵ = 0,  

𝑢ଶହ = ቆ
−4(𝑐𝑝𝑘ଵ + 𝑎𝑘ଵ + 𝐴଴/4)𝑝

+4(𝑐𝑝𝑘ଵ + 𝐴଴/4)(𝑐𝑝 + 𝑎)eିୟ൫௔మ௞భ
య௧ିஐ൯

ቇ 

× ቀ(𝑐𝑝 + 𝑎)eିୟ൫௔మ௞భ
య௧ିஐ൯ − 𝑝ቁ

ିଵ

, 

(3.28) 

𝑎 = −2𝑐𝑝, 𝑐 = 𝑐, 𝜔 = −16𝑐ଶ𝑝ଶ𝑘ଵ
ଷ, 𝑝 = 𝑝, 𝐴ିଵ = −4𝑝ଶ𝑐𝑘ଵ, 𝐴ଵ = −4𝑐𝑘ଵ, 

𝑢ଶ଺ = ቆ
−𝐴଴ + 8𝑐ଷ𝑝𝑘ଵeସ௖௣൫ଵ଺௖మ௣మ௞భ

య௧ିஐ൯

+𝑐ଶ𝐴଴eସ௖௣൫ଵ଺௖మ௣మ௞భ
య௧ିஐ൯ + 8𝑐𝑝𝑘ଵ

ቇ ቀ𝑐ଶeସ௖௣൫ଵ଺௖మ௣మ௞భ
య௧ିஐ൯ − 1ቁ

ିଵ

, (3.29) 

Family 17: 
For 𝑎 = 0  and 𝑏 = 𝑐, we get various wave solutions given as follows: 

𝑐 = 𝑐, 𝜔 = 𝜔, 𝑝 = 𝑝, 𝐴ିଵ = 0, 𝐴ଵ = 𝐴ଵ,   

𝑢ଶ଻ = 𝐴଴ + 𝐴ଵ(𝑝 + 𝑐𝜉), (3.30) 



Family 18: 
When 𝑎 = 0, and 𝑏 = −𝑐, we get various rational function solutions as follows: 

𝑐 = 𝑐, 𝜔 = 0, 𝑝 = 𝑝, 𝐴ିଵ = 0, 𝐴ଵ = −4𝑐𝑘ଵ,  

𝑢ଶ଼ =
−4𝑐𝑝𝑘ଵΩ + (𝑥𝐴଴ − 4)𝑘ଵ + 𝐴଴(𝑦𝑘ଶ + 𝑧𝑘ଷ)

Ω
, (3.31) 

𝑎 = 0, 𝑏 = −𝑐, 𝑐 = 𝑐, 𝜔 = 0, 𝑝 = 𝑝, 𝐴ିଵ = 4𝑐𝑝ଶ𝑘ଵ, 𝐴ଵ = 0,  

𝑢ଶଽ =
4𝑐ଶ𝑝ଶ𝑘ଵΩ + 𝑝𝐴଴Ω𝑐 + 𝐴଴

𝑝𝑐Ω + 1
, (3.32) 

𝑎 = 0, 𝑏 = −𝑐, 𝑐 = 𝑐, 𝜔 = 𝜔, 𝑝 = 0, 𝐴ଵ = 0, 𝐴ିଵ =
2𝜔

3𝑐𝑘ଵ
ଶ,  

𝑢ଷ଴ =
2𝜔ଶ𝑡 + 2Ω𝜔 + 3𝐴଴𝑘ଵ

ଶ

3𝑘ଵ
ଶ , (3.33) 

Family 19: 
When 𝑏 = 0, and 𝑎 = 𝑐 we get dark solitons: 

𝑐 = 𝑐, 𝜔 = −2𝑐ଶ𝑘ଵ
ଷ, 𝑝 = 𝑝, 𝐴ିଵ = 2𝑐𝑘ଵ(𝑝ଶ + 2𝑝 − 1), 𝐴ଵ = 0,  

𝑢ଷଵ =

ቆ
tanh൫𝑐√2൫2𝑐ଶ𝑡𝑘ଵ

ଷ − Ω൯/2൯ √2𝐴଴

−2𝑐𝑝ଶ𝑘ଵ + (−4𝑐𝑘ଵ − 𝐴଴)𝑝 + 2𝑐𝑘ଵ − 𝐴଴

ቇ

tanh൫𝑐√2൫2𝑐ଶ𝑡𝑘ଵ
ଷ − Ω൯/2൯√2 − 𝑝 − 1

, 
(3.34) 

𝑐 = 𝑐, 𝜔 = −2𝑐ଶ𝑘ଵ
ଷ, 𝑝 = 𝑝, 𝐴ିଵ = 0, 𝐴ଵ = −2𝑐𝑘ଵ,  

𝑢ଷଶ = 2√2 tanh൫𝑐√2൫2𝑐ଶ𝑡𝑘ଵ
ଷ − Ω൯/2൯ 𝑐𝑘ଵ − 2𝑐(𝑝 + 1)𝑘ଵ + 𝐴଴, (3.35) 

Family 20: 
we get hyperbolic function solutions for 𝑎 = 0,and 𝑏 = 0, 

𝑐 = 𝑐, 𝜔 = −𝑐ଶ𝑘ଵ
ଷ, 𝑝 = 𝑝, 𝐴ିଵ = 2𝑐𝑘ଵ(𝑝ଶ − 1), 𝐴ଵ = 0, 

𝑢ଷଷ =
2𝑘1(𝑝2 − 1)𝑐

𝑝 − tanh ൬ቀ𝑐2𝑡𝑘1
3

− Ωቁ 𝑐/2൰
+ 𝐴0, (3.36) 

𝑐 = 𝑐, 𝜔 = −𝑐ଶ𝑘ଵ
ଷ, 𝑝 = 𝑝, 𝐴ିଵ = 0, 𝐴ଵ = −2𝑐𝑘ଵ, 

𝑢ଷସ = −2𝑐𝑘ଵ ൬𝑝 − tanh ቀ൫𝑐ଶ𝑡𝑘ଵ
ଷ − Ω൯𝑐/2ቁ൰ + 𝐴଴,, (3.37) 

𝑐 = 𝑐, 𝜔 = −4𝑐ଶ𝑘ଵ
ଷ, 𝑝 = 0, 𝐴ିଵ = −2𝑐𝑘ଵ, 𝐴ଵ = −2𝑐𝑘ଵ, 



𝑢ଷହ =
2𝑐𝑘ଵ

tanh ቀ൫4𝑐ଶ𝑡𝑘ଵ
ଷ − Ω൯𝑐/2ቁ

+ 𝐴଴ + 2𝑐𝑘ଵ tanh ቆ
൫4𝑐ଶ𝑡𝑘ଵ

ଷ − Ω൯𝑐

2
ቇ. (3.38) 

3.4 Results and discussion: 

With the help of IThEM, we secured different wave structures of newly derived equation,  (3 + 1)-

BLMP that includes hyperbolic, trigonometric, exponential, and rational function solutions. All 

the obtained results are new and generalized solitary waves that comprise kink waves, periodic 

waves, solitons, singular solitons with suitable choice of free parameters. The uniqueness of our 

work is evident as we successfully acquired 42 different types of wave solutions. However, 

keeping in view the length of the article, we only present some selective ones. These solutions are 

more generalized and novel and had not been reported in literature previously as we compared 

with  published results[103], it is worth mentioning our few solutions have similarity with them 

but most of the solutions are new, and we were able to derive various periodic wave solutions, 

singular periodic wave solutions, exponential function solutions and rational solutions other than 

solitons, kink solitons and singular kink solitons, which have not been explained before. Diverse 

wave structure of various solutions has been well characterized by 3-D, 2-D and their contour plots 

and we found out that the existence of periodic wave solutions, kink wave solutions and other 

solitons depends on free parameters. As these answers have not been reported so far, we are sure 

our work would be a valuable addition in literature to analyze this new model.  The diversity and 

dynamic characteristics of these exact solutions can be well explained by 3-D, and 2-D and their 

contour plots with the appropriate choice of parameters. Figure 1- 6 shows 3-D, and 2-D graphs 

and their contour plots of some obtained results of (3 + 1)- BLMP equation to have a good grasp 

of physical phenomena of these solutions under appropriate choice of free parameters. 

Graphical depiction of Eq (3.6) expressed as 𝑢ଷ has been exhibit in Figure 3.1, in the form of 3-

dimensional , and 2-dimensional and contour plot which demonstrates localized excitation wave 

pattern as singular kink wave soliton by selecting appropriate parameters. The dynamic behavior 

of singular kink type solution of Eq (3.6) is revealed well by suitable parameters.  



Figure 3.1: Graphical evolution of singular kink wave soliton for 𝒖𝟑 using parameters, 𝒃 = 𝟎. 𝟗, 𝒄 = 𝟏. 𝟓, 𝒑 = 𝟎. 𝟎𝟐, 𝒌𝟏 =
𝟎. 𝟓, 𝒌𝟐 = 𝟎. 𝟓, 𝒌𝟑 = 𝟎. 𝟏, 𝑨𝟎 = 𝟎. 𝟓𝟓, 𝒚 =  𝟐, 𝒛 = 𝟏, 𝒕 = 𝟐. 

Graphical depiction of Eq (3.9) expressed as 𝑢଺ has been exhibit in Figure 3.2, in the form of 3-

dimensional, and 2-dimensional and contour plot which demonstrates localized excitation wave 

pattern as singular kink soliton by selecting suitable parameters.  

 
 

 
Figure 3.2: Graphical evolution of singular kink wave soliton for 𝒖𝟔.using parameters 𝒂 = 𝟎. 𝟐, 𝒃 = 𝟎. 𝟏, 𝒌𝟏 = 𝟎. 𝟏, 𝒌𝟐 =

𝟎. 𝟐𝟏, 𝒌𝟑 = 𝟎. 𝟐, 𝑨𝟎 = 𝟎. 𝟏, 𝒚 =  𝟏, 𝒛 = 𝟏, 𝒕 = 𝟐. 

Graphical depiction of Eq (3.19) expressed as 𝑢ଵ଺ has been exhibit in Figure 3.3, in the form of 3-

dimensional, and 2-dimensional and their contour plot which demonstrates localized excitation 

wave pattern as singular periodic wave soliton by selecting appropriate parameters. 

 
 

 



Figure 3.3: Graphical evolution of  singular periodic wave soliton for 𝒖𝟏𝟔 using parameters 𝒃 = 𝟎. 𝟓, 𝒌𝟏 = 𝟎. 𝟐, 𝒌𝟐 =
−𝟎. 𝟏, 𝒌𝟑 = 𝟎. 𝟑, 𝑨𝟎 = 𝟏. 𝟓, 𝒚 =  −𝟏, 𝒛 = −𝟏, 𝒕 = 𝟒.. 

Graphical depiction of Eq (3.22) expressed as 𝑢ଵଽ has been exhibit in Figure 3.4, in the form of 3-

dimensional, 2-dimensional and their contour plot which demonstrates localized excitation wave 

pattern as singular kink soliton by selecting suitable parameters. 

 
 

 
Figure 3.4: Graphical evolution of singular kink wave soliton for 𝒖𝟏𝟗.using parameters 𝒃 = 𝟎. 𝟏, 𝒄 = 𝟎. 𝟗, 𝒑 = 𝟎. 𝟐, 𝒌𝟏 =

𝟎. 𝟓, 𝒌𝟐 = 𝟎. 𝟏, 𝒌𝟑 = 𝟎. 𝟖, 𝑨𝟎 = 𝟎. 𝟕, 𝒚 = 𝟏, 𝒛 = 𝟏, 𝒕 = 𝟏. 

Graphical depiction of Eq (3.24) expressed as 𝑢ଶଵ has been exhibit in Figure 3.5 , in the form of 3 

dimensional , and 2 dimensional and their contour plot which demonstrates localized excitation 

wave pattern as periodic wave solution by selecting suitable parameters  

 
 

Figure 3.5: 3D and 2D-graphs of periodic wave solution for 𝒖𝟐𝟏.using parameters .  𝒄 = 𝟐, 𝒌𝟏 = 𝟓, 𝒌𝟐 = 𝟏, 𝒌𝟑 = 𝟐, 𝑨𝟎 =
𝟎. 𝟓, 𝑨ି𝟏 = 𝟎. 𝟗, 𝒑 = 𝟐, 𝒚 =  𝟏, 𝒛 = 𝟏, 𝒕 = 𝟐. 

Graphical depiction of Eq (3.35) expressed as 𝑢ଷଶ has been exhibit in Figure 3.6 , in the form of 3 

dimensional , and 2 dimensional and their contour plot which demonstrates localized excitation 

wave pattern as kink shape soliton by selecting appropriate parameters.  



Figure 3.6: graphical evolution of kink wave soliton for 𝒖𝟑𝟐 using parameters 𝒄 = 𝟑, 𝒌𝟏 = 𝟎. 𝟏, 𝒌𝟐 = 𝟎. 𝟓, 𝒌𝟑 = 𝟏, 𝑨𝟎 =
𝟎. 𝟓, 𝒑 = 𝟎. 𝟖, 𝒚 =  𝟏, 𝒛 = −𝟏, 𝒕 = 𝟎. 𝟓. 

 

3.5 Conclusions: 

Improved tanh (
థ

ଶ
)-expansion method is applied to perceive general solutions of newly derived 

(3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation. As a result, some totally new 

solutions have been obtained which are several solitary wave solutions including hyperbolic wave 

solutions, periodic wave solutions, exponential solutions. These new solutions may be worthwhile 

in the field of ocean engineering, astrophysics, and aerodynamics, plasma physics and fluid 

mechanics to explain wave propagation of incompressible fluids. Each type of solitary wave has 

its importance in nonlinear media such as kink solitons which propagates in nonlinear physical 

phenomena having high order nonlinearity, high order nonlinear effects and self-steepening. These 

solitons have been studied extensively due to its perfect propagation through nonlinear media 

[106]. Singular solitons are also very important types of solitons that appear with singularity. These 

solitons likely provide information about formation of rouge waves, also another type of solitary 

waves are periodic wave solutions that plays notable role in the study of chemistry, physics, 

biology and many more [107]. This newly derived method, IThEM is more effective than many 

other techniques such as tanh method and extended tanh method [108, 109], sine-cosine method 

[110], ansatz method [111], Improved tan(
థ

ଶ
)-expansion method [112] to generate more general 

and abundant solutions. This technique has developed recently and has not been used much 

previously, results show that this scheme is robust and effective to find plenty of new solutions of 

different types. It can be applied to many nonlinear PDEs arising in different fields of sciences to 

generate new types of solutions. The nature of these results has been analyzed physically by 2D 



and 3D graph simulation and their corresponding contour plots with the aid of computational 

software. 

3.6 Nonlinear fourth order Ablowitz-Kaup-Newell-Segur Water Wave 
equation: 

Higher order nonlinear PDEs are considered very valuable to describe physical mechanism and a 

lot of useful work have been done to extract exact solutions of PDEs arising in various fields such 

as engineering, medicine, plasma physics, nonlinear optics, earth sciences [56, 113–117]. 

Moreover, fractional calculus has become a compelling field for the study of many important 

phenomena. Many researchers have worked in this field to exhibit its usefulness [118–122].  

To find the solutions of these equations various powerful analytical and numerical methods have 

been derived over the years some of them are, Homotopy perturbation method (HPM) [123], Lie 

algebra method [124, 125], Variational iteration method (VIM) [126, 127], tanh method and 

extended tanh method[108, 109], F-expansion method [128], Exp-function method [129, 130], Fan 

sub-equation method [131], ቀ
ீᇲ

ீ
ቁ-expansion method [132], sine-cosine method[110], Improved 

tan(
థ

ଶ
)-expansion method [112], Exp ൫−𝜙(𝜉)൯ method [133], and  Kudryashov method [134], 

auxiliary equation method [135]. The idea of improved tanh(
ఝ(క)

ଶ
)-expansion method has been 

provided by [105] where authors have established exact solutions of some fifth order PDEs. 

(3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation has been solved in[136] by using 

same scheme. This technique is new and generate different solution from improved tan(
ఝ

ଶ
) - 

expansion method. 

Motivated by these studies we applied innovative IThEM [105] to construct different wave 

structures of exact solutions of fourth order nonlinear AKNS water wave equation [137, 138]. This 

novel approach has been practiced on AKNS equation for the first time. IThEM is a direct and 

convenient computational method and can handle a wide range of PDEs. This technique generates 

a variety of exact solutions and hence by applying this procedure we succeed in exploring various 

interesting families of exact wave solutions for under investigated model. These reported results 

might help in the study of shock waves, water wave phenomena, especially in ocean waves and 

other fields of physics and engineering. Accuracy of obtained results have been verified by back 



substitution.  AKNS equations are considered very important in nonlinear physics and have been 

introduced by Albowitz, Kaup, Newell and Seguer for the first time in [139, 140].  

4𝑢௫௧ + 𝑢௫௫௫௧ + 8𝑢௫𝑢௫௬ + 4𝑢௫௫𝑢௬ − 𝛾𝑢௫௫ = 0, (3.39) 

these equations are  significant because it can be reduce into some very famous nonlinear equations 

such as KdV equation, mKdV equation which are used for the study of shallow water waves and 

wave propagation in plasma, (2 + 1) dimensional Boussinesq wave equation which is used for the 

investigation of nonlinear wave effect on shallow water, sine-Gordan equation have application in 

different fields of physics and nonlinear Schrödinger equation has wide range of applications in 

optical physics, quantum mechanics and many more [32]. Several studies has been done on these 

equations, [141] studied conformable (2+1)-dimensional AKNS equation by using sine-Gordan 

expansion method, [142] obtained new hyperbolic solutions, [137] solved AKNS equation by 

simple equation method and modified simple equation method, [143] construct new solutions of 

this equation by (
ீᇲ

ீ
) expansion method and [144] solved AKNS equation by modified exponential 

function method. Recently, [145] have used ቀ
ீᇲ

ீ
,

ଵ

ீ
ቁ-expansion method on fractional AKNS 

equation to derive various type of solutions. In our research article we are using improved 

tanh(
ఝ(క)

ଶ
)-expansion method to generate contemporary and unique solutions to make addition to 

already present literature on model. 

Implementation of IThEM: 

Here, we implement improved tanh(
ఝ(క)

ଶ
)-expansion method to extract travelling wave solutions 

of fourth order Ablowitz-Kaup-Newell-Segur water wave (AKNS) Eq. (3.39).  

After applying the following wave transformation, 

𝑢(𝑥, 𝑡) = 𝑢(𝜉),   with 𝜉 = 𝑥 + 𝑦 + 𝜔𝑡 ,  

in Eq. (3.39) and integrating twice by assuming constant of integration zero, we acquire the 

following nonlinear ordinary differential equation: 



൭
dଷ

d𝜉ଷ
𝑢(𝜉)൱ 𝜔 + (4𝜔 − 𝛾)

d

d𝜉
𝑢(𝜉) + 6 ൭

d

d𝜉
𝑢(𝜉)൱

ଶ

= 0, (3.40) 

using homogeneous balance principle betweenቆ
ୢయ

ୢకయ
𝑢(𝜉)ቇ andቆ

ୢ

ୢక
𝑢(𝜉)ቇ

ଶ

 we get 𝑛 = 1. Hence 

we get exact series solution in the form, 

𝑢(𝜉) = 𝑆(𝜑) =
𝐴ሚିଵ

𝑝̇ + tanh ൬
𝜑(𝜉)

2
൰

+ 𝐴ሚ଴ + 𝐴ሚଵ ቆ𝑝̇ + tanh ቆ
𝜑(𝜉)

2
ቇቇ , (3.41) 

now, substituting Eq. (3.41) along with Eq. Error! Reference source not found.  into Eq. (3.40) 

and by accumulating all terms having the similar powers of  tanh ቀ
ఝ(క)

ଶ
ቁ  and then equate these 

coefficient to zero, we get a system of NL algebraic equations. Next by solving these equations 

the help of mathematical software, we get following solutions: 

Family 1: 
For this family we get periodic and singular periodic wave solitons as follows: 

𝑎 = 𝑎, 𝑏 = 𝑏, 𝑐 = 𝑐, 𝜔 =
𝛾

𝑎ଶ − 𝑏ଶ + 𝑐ଶ + 4
, 𝑝̇ = 𝑝̇, 

𝐴ሚିଵ = −
1

6(𝑏 + 𝑐)
ቆ

൫(−2𝑎ଶ − 𝑏ଶ + 𝑐ଶ − 8)𝑝ଶ + 6(𝑏 + 𝑐)𝑎𝑝 − 3(𝑏ଶ − 2𝑏𝑐 − 𝑐ଶ)൯𝛾

𝑎ଶ − 𝑏ଶ + 𝑐ଶ + 4
+ 2𝛾𝑝ଶቇ , 

𝐴ሚଵ = 0, 𝐷 = 𝑎ଶ − 𝑏ଶ + 𝑐ଶ, 

𝑢ଵ =
⎝

⎜
⎜
⎛

−2√−𝐷𝐴଴(D + 4) ×

tan ቆ
൫(𝑥 + 𝑦)𝑎ଶ − (𝑥 + 𝑦)𝑏ଶ + (𝑥 + 𝑦)𝑐ଶ + 𝛾𝑡 + 4𝑥 + 4𝑦൯√−D

2(D + 4)
ቇ

+2(D + 4)൫(−𝑏 + 𝑐)𝑝 + 𝑎൯𝐴଴

+((−𝑏 + 𝑐)𝑝ଶ + 2𝑝𝑎 − 𝑏 − 𝑐)𝛾(𝑏 − 𝑐) ⎠

⎟
⎟
⎞

⎝

⎜
⎛

2(D + 4) ×

ቊ− tan ቆ
൫(𝑥 + 𝑦)𝑎ଶ − (𝑥 + 𝑦)𝑏ଶ + (𝑥 + 𝑦)𝑐ଶ + 𝛾𝑡 + 4𝑥 + 4𝑦൯√−D

2(𝑎ଶ − 𝑏ଶ + 𝑐ଶ + 4)
ቇ

√−D + (−𝑏 + 𝑐)𝑝 + 𝑎)ൟ ⎠

⎟
⎞

, 
(3.42) 

𝑎 = ඨ−
−𝜔𝑏ଶ + 𝜔𝑐ଶ − 𝛾 + 4𝜔

𝜔
, 𝑏 = 𝑏, 𝑐 = 𝑐, 𝜔 = 𝜔, 

 



𝑝̇ =

ට−
−𝜔𝑏ଶ + 𝜔𝑐ଶ − 𝛾 + 4𝜔

𝜔

𝑏 − 𝑐
, 𝐴ሚିଵ = 0, 

𝐴ሚଵ = −
1

2
𝑏𝜔 +

1

2
𝑐𝜔, 𝐸 =

𝛾 − 4𝜔

𝜔
, 

𝑢ଶ = 𝐴ሚ଴ −
1

2
𝜔tan ൫1/2√−𝐸𝜉൯√−E, (3.43) 

 

𝑎 = ඨ−
−4𝜔𝑏ଶ + 4𝜔𝑐ଶ − 𝛾 + 4𝜔

4𝜔
, 𝑏 = 𝑏, 𝑐 = 𝑐, 𝜔 = 𝜔, 

𝑝̇ =

ට−
−𝜔𝑏ଶ + 𝜔𝑐ଶ − 𝛾 + 4𝜔

𝜔

𝑏 − 𝑐
, 

𝐴ሚିଵ = −
−4𝜔 + 𝛾

8(𝑏 − 𝑐)
, 𝐴ሚଵ = −

1

2
𝑏𝜔 +

1

2
𝑐𝜔, 𝐸 =

𝛾 − 4𝜔

𝜔
, 

 

𝑢ଷ =

𝜔𝐸 tan ቆ
√−E𝜉

4
ቇ

ଶ

+ 4𝐴ሚ଴ tan൫√−E𝜉൯√−E − 𝜔𝐸

4√−Etan ൫√−E𝜉൯
, 

(3.44) 

 

 

𝑎 = 𝑎, 𝑏 = 𝑏, 𝑐 = 𝑐, 𝜔 =
𝛾

𝑎ଶ − 𝑏ଶ + 𝑐ଶ + 4
, 𝑝̇ = 𝑝̇, 𝐴ሚିଵ = 0, 

𝐴ሚଵ =
−𝛾(𝑏 − 𝑐)

2(𝑎ଶ − 𝑏ଶ + 𝑐ଶ + 4)
, 𝐷 = 𝑎ଶ − 𝑏ଶ + 𝑐ଶ, 

 

𝑢ସ =
⎝

⎜
⎜
⎛

− tan

⎝

⎜
⎛

((𝑥 + 𝑦)𝑎ଶ + (−𝑥 − 𝑦)𝑏ଶ + (𝑥 + 𝑦)𝑐ଶ

+𝛾𝑡 + 4𝑥 + 4𝑦)√−D
2(D + 4)

⎠

⎟
⎞

×

√−D𝛾 + 2(D + 4)𝐴ሚ଴ + 𝛾(−𝑝𝑏 + 𝑝𝑐 + 𝑎) ⎠

⎟
⎟
⎞

2(D + 4)
. 

(3.45) 

Family 2: 
The kink and singular kink wave solutions are as follows: 

𝑎 = 𝑎, 𝑏 = 𝑏, 𝑐 = 𝑐, 𝜔 =
𝛾

𝑎ଶ − 𝑏ଶ + 𝑐ଶ + 4
, 𝑝̇ = 𝑝̇, 𝐴ሚିଵ = 0, 

 



𝐴ሚଵ = −
𝛾(𝑏 − 𝑐)

2(𝑎ଶ − 𝑏ଶ + 𝑐ଶ + 4)
, 𝐷 = 𝑎ଶ − 𝑏ଶ + 𝑐ଶ, 

𝑢ହ =
⎝

⎜
⎜
⎛

tanh

⎝

⎜
⎛

((𝑥 + 𝑦)𝑎ଶ + (−𝑥 − 𝑦)𝑏ଶ + (𝑥 + 𝑦)𝑐ଶ

+𝛾𝑡 + 4𝑥 + 4𝑦)√D
2(D + 4)

⎠

⎟
⎞

×

√D𝛾 + 2(D + 4)𝐴ሚ଴ + 𝛾(−𝑝𝑏 + 𝑝𝑐 + 𝑎) ⎠

⎟
⎟
⎞

2(D + 4)
, 

(3.46) 

𝑎 = 𝑎, 𝑏 = 𝑏, 𝑐 = 𝑐, 𝜔 =
𝛾

𝑎ଶ − 𝑏ଶ + 𝑐ଶ + 4
, 𝑝̇ = 𝑝̇, 𝐴ଵ = 0, 

𝐴ሚିଵ = −

((2𝑎ଶ − 𝑏ଶ + 𝑐ଶ − 8)𝑝ଶ + (6𝑏 + 6𝑐)𝑎𝑝 − 3𝑏ଶ − 6𝑏𝑐 − 3𝑐ଶ)𝛾
(𝑎ଶ − 𝑏ଶ + 𝑐ଶ + 4)

+ 2𝛾𝑝ଶ

6𝑏 + 6𝑐
, 

𝐷 = 𝑎ଶ − 𝑏ଶ + 𝑐ଶ, 

𝑢଺ =
⎝

⎜
⎜
⎜
⎜
⎜
⎛

tanh

⎝

⎜
⎛

((𝑥 + 𝑦)𝑎ଶ + (−𝑥 − 𝑦)𝑏ଶ + (𝑥 + 𝑦)𝑐ଶ

+𝛾𝑡 + 4𝑥 + 4𝑦)√D
2(D + 4)

⎠

⎟
⎞

×

2𝐴ሚ଴(D + 4)√D + 2(D + 4)൫(𝑏 − 𝑐)𝑝 + 𝑎൯𝐴଴ +

2𝛾 ቆቀ
𝑐
2

−
𝑏
2

ቁ 𝑝ଶ + 𝑝𝑎 −
𝑐
2

−
𝑏
2

ቇ (𝑏 − 𝑐)𝛾
⎠

⎟
⎟
⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎛

tanh

⎝

⎜
⎛

((𝑥 + 𝑦)𝑎ଶ + (−𝑥 − 𝑦)𝑏ଶ + (𝑥 + 𝑦)𝑐ଶ

+𝛾𝑡 + 4𝑥 + 4𝑦)√D
2(D + 4)

⎠

⎟
⎞

√D + (𝑐 − 𝑏)𝑝 + 𝑎

×

⎠

⎟
⎟
⎞

2(D + 4)

. 

(3.47) 

 

Family 3: 
Another set of periodic wave solutions for the following conditions: 

𝑎 = 0, 𝑏 = 𝑏, 𝑐 = 0, 𝜔 = −
𝛾

𝑏ଶ − 4
, 𝑝̇ = 1, 𝐴ሚିଵ = −

𝛾𝑏

𝑏ଶ − 4
, 𝐴ሚଵ = 0,  



𝑢଻ = ⎝

⎜
⎛

𝐴ሚ଴ ቆtan ቆ
𝑏൫(𝑥 + 𝑦)𝑏ଶ − 𝛾𝑡 − 4𝑥 − 4𝑦൯

2𝑏ଶ − 8
ቇ + 1ቇ 𝑏ଶ

−𝛾𝑏 − 4𝐴ሚ଴ ቆtan ቆ
𝑏൫(𝑥 + 𝑦)𝑏ଶ − 𝛾𝑡 − 4𝑥 − 4𝑦൯

2𝑏ଶ − 8
ቇ + 1ቇ

⎠

⎟
⎞

ቆtan ቆ
𝑏൫(𝑥 + 𝑦)𝑏ଶ − 𝛾𝑡 − 4𝑥 − 4𝑦൯

2𝑏ଶ − 8
ቇ + 1ቇ 𝑏ଶ − 4

, 

(3.48) 

𝑎 = 𝑎, 𝑏 = 𝑏, 𝑐 = 0, 𝜔 =
𝛾

𝑎ଶ − 𝑏ଶ + 4
, 𝑝̇ = 𝑝̇, 𝐴ሚିଵ = −

𝛾(𝑏𝑝ଶ + 2𝑎𝑏 − 𝑏)

2(𝑎ଶ − 𝑏ଶ + 4)
, 𝐴ሚଵ = 0, 

𝐷ᇱ = 𝑎ଶ − 𝑏ଶ, 

 

𝑢଼ =
⎝

⎜
⎜
⎜
⎛

−2𝐴ሚ଴√−𝐷ᇱ(𝐷ᇱ + 4)

tan ቆ
൫(𝑦 + 𝑥)𝑎ଶ + (−𝑥 − 𝑦)𝑏ଶ + 𝛾𝑡 + 4𝑥 + 4𝑦൯√−𝐷ᇱ

2(𝐷ᇱ + 4)
ቇ +

2𝑏ଷ𝑝𝐴ሚ଴ + ൫−𝛾𝑝ଶ − 2𝑎𝐴ሚ଴ − 𝛾൯𝑏ଶ − 2𝑝 ቀ(𝑎ଶ + 4)𝐴ሚ଴ − 𝑎𝛾ቁ 𝑏

+2𝑎𝐴ሚ଴(𝑎ଶ + 4) ⎠

⎟
⎟
⎟
⎞

2(𝐷ᇱ + 4)

⎝

⎜
⎛

−tan 

⎝

⎜
⎛

((𝑦 + 𝑥)𝑎ଶ + (−𝑥 − 𝑦)𝑏ଶ

+𝛾𝑡 + 4𝑥 + 4𝑦)√−𝐷ᇱ

2(𝐷ᇱ + 4)

⎠

⎟
⎞

√−𝐷ᇱ − 𝑝𝑏 + 𝑎

⎠

⎟
⎞

, 
(3.49) 

𝑎 = 0, 𝑏 = 𝑏, 𝑐 = 0, 𝜔 = −
𝛾

𝑏ଶ − 4
, 𝑝̇ = −1, 𝐴ሚିଵ = −

𝛾𝑏

𝑏ଶ − 4
, 𝐴ሚଵ = 0,  

𝑢ଽ =
⎝

⎛
𝐴ሚ଴ ቆtan ቆ

𝑏൫(𝑦 + 𝑥)𝑏ଶ − 𝛾𝑡 − 4𝑥 − 4𝑦൯

2𝑏ଶ − 8
ቇ − 1ቇ 𝑏ଶ

−𝛾𝑏 − 4𝐴ሚ଴(tan (
𝑏((𝑦 + 𝑥)𝑏ଶ − 𝛾𝑡 − 4𝑥 − 4𝑦)

2𝑏ଶ − 8
) − 1)⎠

⎞

ቆtan ቆ
𝑏൫(𝑦 + 𝑥)𝑏ଶ − 𝛾𝑡 − 4𝑥 − 4𝑦൯

𝐴ሚ଴
ቇ − 1ቇ (𝑏ଶ − 4)

, 
(3.50) 

𝑎 = 0, 𝑏 = 𝑏, 𝑐 = 0, 𝜔 = −
𝛾

𝑏ଶ − 4
, 𝑝̇ = 0, 𝐴ሚଵ =

𝛾𝑏

2(𝑏ଶ − 4)
, 𝐴ሚିଵ = 0,  

𝑢ଵ଴ =

𝛾 tan ቆ
𝑏൫(𝑦 + 𝑥)𝑏ଶ − 𝛾𝑡 − 4𝑥 − 4𝑦൯

2𝑏ଶ − 8
ቇ 𝑏 + 2𝑏ଶ𝐴ሚ଴ − 8𝐴ሚ଴

2𝑏ଶ − 8
, 

(3.51) 

𝑎 = 𝑎, 𝑏 = 𝑏, 𝑐 = 0, 𝜔 =
𝛾

𝑎ଶ − 𝑏ଶ + 4
, 𝑝̇ = 𝑝̇, 𝐴ሚଵ = −

𝛾𝑏

2(𝑎ଶ − 𝑏ଶ + 4)
, 𝐴ሚିଵ = 0, 

𝐷ᇱ = 𝑎ଶ − 𝑏ଶ, 
 



𝑢ଵଵ =
−1

2(𝐷ᇱ + 4)
൮

tan ቆ
൫(𝑦 + 𝑥)𝑎ଶ − (𝑥 + 𝑦)𝑏ଶ + 𝛾𝑡 + 4(𝑥 + 𝑦)൯√−𝐷ᇱ

2(𝐷ᇱ + 4)
ቇ

× √−𝐷ᇱ𝛾 + 2(𝐷ᇱ + 4)𝐴ሚ଴ + 𝛾(𝑎 − 𝑝𝑏)

൲, (3.52) 

𝑎 = 0, 𝑏 = 𝑏, 𝑐 = 0, 𝜔 = −
𝛾

4(𝑏ଶ − 1)
, 𝑝̇ = 0, 𝐴ሚଵ =

𝛾𝑏

8(𝑏ଶ − 1)
, 𝐴ሚିଵ =

−𝛾𝑏

8(𝑏ଶ − 1)
,  

𝑢ଵଶ =
⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ 8𝐴ሚ଴ ൮tan ൮

4𝑏 ൬(𝑦 + 𝑥)𝑏ଶ −
𝛾𝑡
4

− 𝑥 − 𝑦൰

8𝑏ଶ − 8
൲൲ 𝑏ଶ +

γ

⎝

⎛tan ൮
4𝑏 ൬(𝑦 + 𝑥)𝑏ଶ −

𝛾𝑡
4

− 𝑥 − 𝑦൰

8𝑏ଶ − 8
൲

ଶ

− 1

⎠

⎞ 𝑏 −

8𝐴ሚ଴ ቆtan ቆ
4𝑏൫(𝑦 + 𝑥)𝑏ଶ − 𝛾𝑡/4 − 𝑥 − 𝑦൯

8𝑏ଶ − 8
ቇቇ

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

tan ቆ
4𝑏൫(𝑦 + 𝑥)𝑏ଶ − 𝛾𝑡/4 − 𝑥 − 𝑦൯

2𝑏ଶ − 8
ቇ (𝑏ଶ − 1)

, 

(3.53) 

𝑎 = 𝑏𝑝, 𝑏 = 𝑏, 𝑐 = 0, 𝜔 =
𝛾

4(𝑏ଶ𝑝ଶ − 𝑏ଶ + 1)
, 𝑝̇ = 𝑝̇, 𝐴ሚିଵ = −

𝛾𝑏(𝑝ଶ − 1)

8(𝑏ଶ𝑝ଶ − 𝑏ଶ + 1)
, 

𝐴ሚଵ = −
𝛾𝑏

8(𝑏ଶ𝑝ଶ − 𝑏ଶ + 1)
, 

 

𝑢ଵଷ =

൫8(𝑏ଶ𝑝ଶ − 𝑏ଶ + 1)𝐴ሚ଴ඥ(−𝑝ଶ + 1)𝑏ଶ൯ ×

tan ൮
4 ൬(𝑝ଶ − 1)(𝑦 + 𝑥)𝑏ଶ +

𝛾𝑡
4

+ 𝑥 + 𝑦൰ ඥ(−𝑝ଶ + 1)𝑏ଶ

8 + (8𝑝ଶ − 8)𝑏ଶ ൲ +

𝑏ଶ𝛾(𝑝ଶ − 1)

⎝

⎜
⎜
⎜
⎛

tan

⎝

⎜
⎜
⎜
⎛

4 ൬(𝑝ଶ − 1)(𝑦 + 𝑥)𝑏ଶ +
𝛾𝑡
4

+ 𝑥 + 𝑦൰

ඥ(−𝑝ଶ + 1)𝑏ଶ

8 + (8𝑝ଶ − 8)𝑏ଶ

⎠

⎟
⎟
⎟
⎞

ଶ

− 1

⎠

⎟
⎟
⎟
⎞

tan ൮
4 ൬(𝑝ଶ − 1)(𝑦 + 𝑥)𝑏ଶ +

𝛾𝑡
4

+ 𝑥 + 𝑦൰ ඥ(−𝑝ଶ + 1)𝑏ଶ

8 + (8𝑝ଶ − 8)𝑏ଶ ൲

8(𝑏ଶ𝑝ଶ − 𝑏ଶ + 1)ඥ(−𝑝ଶ + 1)𝑏ଶ

×

. 

(3.54) 

Family 4: 
We generate more kink wave solutions for the following conditions: 



𝑎 = 𝑎, 𝑏 = 0, 𝑐 = 𝑐, 𝜔 =
𝛾

𝑎ଶ + 𝑐ଶ + 4
, 𝑝̇ = 𝑝̇, 𝐴ሚଵ = 0, 

𝐴ሚିଵ = −
𝛾(𝑐𝑝ଶ + 2𝑎𝑝 − 𝑐)

2(𝑎ଶ + 𝑐ଶ + 4)
, 𝐹 = 𝑎ଶ + 𝑐ଶ, 

 

𝑢 ଵସ =
⎝

⎜
⎜
⎜
⎜
⎛

2𝐴ሚ଴√F(F + 4) tanh

⎝

⎜
⎛

((𝑦 + 𝑥)𝑎ଶ + (𝑦 + 𝑥)𝑐ଶ + 𝛾𝑡

+4𝑥 + 4𝑦)√F
2(F + 4)

⎠

⎟
⎞

+

2𝑐ଷ𝑝𝐴ሚ଴ + ൫−𝛾𝑝ଶ + 2𝑎𝐴ሚ଴ + 𝛾൯𝑐ଶ + 2𝑝 ቀ(𝑎ଶ + 4)𝐴ሚ଴ − 𝑎𝛾ቁ 𝑐

+2𝑎𝐴଴(𝑎ଶ + 4) ⎠

⎟
⎟
⎟
⎟
⎞

൮
2(F + 4) ቆtanh ቆ

൫(𝑦 + 𝑥)𝑎ଶ + (𝑦 + 𝑥)𝑐ଶ + 𝛾𝑡 + 4(𝑥 + 𝑦)൯√F

2(𝑎ଶ + 𝑐ଶ + 4)
ቇ

√F + 𝑝𝑐 + 𝑎)൯

൲

, 

(3.55) 

𝑎 = 𝑎, 𝑏 = 0, 𝑐 = 𝑐, 𝜔 =
𝛾

𝑎ଶ + 𝑐ଶ + 4
, 𝑝̇ = 𝐼, 𝐴ሚଵ = 0, 

𝐴ሚିଵ =
𝛾(𝐼𝑎 − 𝑐)

𝑎ଶ + 𝑐ଶ + 4
, 𝐹 = 𝑎ଶ + 𝑐ଶ, 

 

𝑢ଵହ =
⎝

⎜
⎜
⎛

𝐴ሚ଴√𝐹(F + 4) tanh

⎝

⎜
⎛

((𝑦 + 𝑥)𝑎ଶ + (𝑦 + 𝑥)𝑐ଶ

+𝛾𝑡 + 4𝑥 + 4𝑦)√F
2(F + 4)

⎠

⎟
⎞

+(𝐼𝑐 + 𝑎)(F + 4)𝐴ሚ଴ − 𝑐𝛾(𝐼𝑎 − 𝑐) ⎠

⎟
⎟
⎞

(F + 4)(𝐼𝑐 + tanh 

⎝

⎜
⎛

((𝑦 + 𝑥)𝑎ଶ + (𝑦 + 𝑥)𝑐ଶ

+𝛾𝑡 + 4𝑥 + 4𝑦)√F
2(F + 4)

⎠

⎟
⎞

√F + 𝑎)

, 
(3.56) 

𝑎 = −𝑝̇𝑐, 𝑏 = 0, 𝑐 = 𝑐, 𝜔 =
𝛾

4(𝑐ଶ𝑝̇ଶ + 𝑐ଶ + 1)
, 𝑝̇ = 𝑝̇, 𝐴ିଵ =

𝛾𝑐(𝑝̇ଶ + 1)

8(𝑐ଶ𝑝̇ଶ + 𝑐ଶ + 1)
, 

𝐴ଵ =
𝑐𝛾

8(𝑐ଶ𝑝̇ଶ + 𝑐ଶ + 1)
, 𝑃 = 𝑝̇ଶ + 1, 

 

 



𝑢ଵ଺ =
⎝

⎜
⎜
⎜
⎛

𝑐ଶ𝛾𝑃tanh ቆ
(4𝑃(𝑦 + 𝑥)𝑐ଶ + 𝛾𝑡 + 4𝑥 + 4𝑦)√𝑐ଶ𝑃

8 + (8𝑝̇ଶ + 8)𝑐ଶ ቇ

ଶ

+8√𝑐ଶ𝑃(1 + 𝑐ଶ𝑃) ×

𝐴ሚ଴tanh
(4𝑃(𝑦 + 𝑥)𝑐ଶ + 𝛾𝑡 + 4𝑥 + 4𝑦)√𝑐ଶ𝑃

8 + (8P)𝑐ଶ

+𝛾𝑐ଶ𝑃 ⎠

⎟
⎟
⎟
⎞

ቌ

8√𝑐ଶ𝑃(1 + 𝑐ଶ𝑃)

tanh ቆ
(4𝑃(𝑦 + 𝑥)𝑐ଶ + 𝛾𝑡 + 4𝑥 + 4𝑦)√𝑐ଶ𝑃

8 + (8P)𝑐ଶ ቇ
ቍ

, 

(3.57) 

𝑎 = 𝑎, 𝑏 = 0, 𝑐 = 𝑐, 𝜔 =
𝛾

𝑎ଶ + 𝑐ଶ + 4
, 𝑝̇ = 𝑝̇, 𝐴ሚିଵ = 0, 

𝐴ሚଵ =
𝑐𝛾

2(𝑎ଶ + 𝑐ଶ + 4)
, 𝐹 = 𝑎ଶ + 𝑐ଶ, 

 

𝑢ଵ଻ =
1

2(F + 4)
൮

𝛾 tanh ቆ
൫(𝑦 + 𝑥)𝑎ଶ + (𝑦 + 𝑥)𝑐ଶ + 𝛾𝑡 + 4𝑥 + 4𝑦൯√F

2(F + 4)
ቇ

× √F + (2F + 8)𝐴ሚ଴ + 𝛾(𝑝̇𝑐 + 𝑎)

൲. (3.58) 

Family 5: 
More periodic wave solutions for the given conditions: 

𝑎 = 0, 𝑏 = 𝑏, 𝑐 = 𝑐, 𝜔 =
𝛾

−𝑐ଶ + 𝑏ଶ − 4
, 𝑝̇ = 0, 𝐴ሚିଵ =

𝛾(−𝑏 − 𝑐)

2(−𝑐ଶ + 𝑏ଶ − 4)
, 𝐴ሚଵ = 0, 

𝐺 = −𝑐ଶ + 𝑏ଶ, 
 

𝑢ଵ଼ =

ቌ
tan ቆ

൫(𝑦 + 𝑥)𝑏ଶ + (−𝑥 − 𝑦)𝑐ଶ − 𝛾𝑡 − 4𝑥 − 4𝑦൯√G
2(G − 4)

ቇ

× (G − 4)𝐴ሚ଴√G − (𝛾𝑏ଶ)/2 + (𝑐ଶ𝛾)/2

ቍ

൮

ቀ√G(G − 4)ቁ ×

tan ቆ
((𝑦 + 𝑥)𝑏ଶ + (−𝑥 − 𝑦)𝑐ଶ − 𝛾𝑡 − 4𝑥 − 4𝑦)√G

2(G − 4)
ቇ

൲

, (3.59) 

𝑎 = 0, 𝑏 = 𝑏, 𝑐 = 𝑐, 𝜔 =
𝛾

4(−𝑐ଶ + 𝑏ଶ − 1)
, 𝑝̇ = 0, 𝐴ሚିଵ =

𝛾(−𝑏 − 𝑐)

8(−𝑐ଶ + 𝑏ଶ − 1)
, 

𝐴ଵ =
𝛾(𝑏 − 𝑐)

8(−𝑐ଶ + 𝑏ଶ − 1)
, 𝐺 = −𝑐ଶ + 𝑏ଶ, 

 



𝑢ଵଽ =
⎝

⎜
⎜
⎜
⎛

8(G − 1) tan ቆ
(4(𝑦 + 𝑥)𝑏ଶ − 4(𝑥 + 𝑦)𝑐ଶ − 𝛾𝑡 − 4𝑥 − 4𝑦)√G

8(G − 1)
ቇ

𝐴ሚ଴√G + 𝛾(G) ×

൭tan ቆ
(4(𝑦 + 𝑥)𝑏ଶ − 4(𝑥 + 𝑦)𝑐ଶ − 𝛾𝑡 − 4𝑥 − 4𝑦)√G

8(G − 1)
ቇ

ଶ

− 1൱
⎠

⎟
⎟
⎟
⎞

ቌ

8√G(G − 1) ×

tan ቆ
(4(𝑦 + 𝑥)𝑏ଶ + 4(−𝑥 − 𝑦)𝑐ଶ − 𝛾𝑡 − 4𝑥 − 4𝑦)√G

8(G − 1)
ቇ

ቍ

, 

(3.60) 

𝑎 = 0, 𝑏 = 𝑏, 𝑐 = 𝑐, 𝜔 =
𝛾

−𝑐ଶ + 𝑏ଶ − 4
, 𝑝̇ = 𝑝̇, 𝐴ሚିଵ = −

(−𝑝̇ଶ𝑏 − 𝑝̇ଶ𝑐 + 𝑏 + 𝑐)

2(−𝑐ଶ + 𝑏ଶ − 4)
, 

𝐴ሚଵ = 0, 𝐺 = −𝑐ଶ + 𝑏ଶ, 𝑃 = 𝑝̇ଶ + 1, 

 

𝑢ଶ଴ = ⎝

⎜
⎛

2 tan ቆ
൫(𝑦 + 𝑥)𝑏ଶ + (−𝑥 − 𝑦)𝑐ଶ − 𝛾𝑡 − 4𝑥 − 4𝑦൯√𝐺

2(G − 4)
ቇ

× (G − 4)𝐴ሚ଴√G + (2𝑝̇𝐴ሚ଴𝑏ଶ − 𝛾(P)𝑏

−2𝑐ଶ𝑝̇𝐴ሚ଴ + 2((𝛾𝑝̇ଶ)/2 − 𝛾/2)𝑐 − 8𝑝̇𝐴଴)(𝑏 − 𝑐) ⎠

⎟
⎞

൮
2 ቆtan ቆ

൫(𝑦 + 𝑥)𝑏ଶ + (−𝑥 − 𝑦)𝑐ଶ − 𝛾𝑡 − 4𝑥 − 4𝑦൯√G
2(G − 4)

ቇ

× √G + 𝑝̇(𝑏 − 𝑐)ቁ (G − 4)

൲

, (3.61) 

𝑎 = 0, 𝑏 = 𝑏, 𝑐 = 𝑐, 𝜔 = −
𝛾

−𝑐ଶ + 𝑏ଶ − 4
, 𝑝̇ = 𝑝̇, 𝐴ଵ =

𝛾(𝑏 − 𝑐)

2(−𝑐ଶ + 𝑏ଶ − 4)
, 

𝐴ିଵ = 0, 𝐺 = −𝑐ଶ + 𝑏ଶ, 
 

𝑢ଶଵ =
1

2(G − 4)

⎝

⎜
⎛√G𝛾 tan

⎝

⎛
൬

(𝑦 + 𝑥)𝑏ଶ + (−𝑥 − 𝑦)𝑐ଶ

−𝛾𝑡 − 4𝑥 − 4𝑦
൰ √G

2(G − 4)

⎠

⎞

+𝑝(−𝑐 + 𝑏)𝛾 + 2(G − 4)𝐴ሚ଴ ⎠

⎟
⎞

. (3.62) 

Family 6: 
Here we get mix soliton under following conditions: 

𝑎 = 0, 𝑏 = 𝑏, 𝑐 = 0, 𝜔 = −
𝛾

𝑏ଶ − 4
, 𝑝̇ = 𝑝̇, 𝐴ଵ = 0, 

𝐴ିଵ = −
𝛾𝑏(𝑝̇ଶ + 1)

2(𝑏ଶ − 4)
, 𝑃 = 𝑝̇ଶ + 1, 

 



𝑢ଶଶ = −
𝛾𝑃𝑏

2(𝑏ଶ − 4)
× 

⎝

⎜
⎛

𝑝̇ + tanh ൮
𝑙𝑛 ൬tan ൬

((𝑦 + 𝑥)𝑏ଶ − 𝛾𝑡 − 4𝑥 − 4𝑦)𝑏
(𝑏ଶ − 4)

൰൰

2
൲

⎠

⎟
⎞

ିଵ

+ 𝐴ሚ଴, 

(3.63) 

𝑎 = 0, 𝑏 = 𝑏, 𝑐 = 0, 𝜔 = −
𝛾

4(𝑏ଶ − 4)
, 𝑝̇ = 0, 𝐴ሚଵ =

𝑏𝛾

8(𝑏ଶ − 1)
, 

𝐴ሚିଵ = −
𝑏𝛾

8(𝑏ଶ − 1)
, 

 

𝑢ଶଷ = −
𝑏𝛾

8(𝑏ଶ − 1) tanh

⎝

⎜
⎛

𝑙𝑛 ቆtan ቆ
൫(𝑦 + 𝑥)𝑏ଶ − 𝛾𝑡/2 − 𝑥 − 𝑦൯𝑏

2(𝑏ଶ − 1)
ቇቇ

2

⎠

⎟
⎞

 

+𝐴ሚ଴ +

𝑏𝛾tanh

⎝

⎜
⎛

𝑙𝑛 ቆtan ቆ
൫(𝑦 + 𝑥)𝑏ଶ − 𝛾𝑡/4 − 𝑥 − 𝑦൯𝑏

2(𝑏ଶ − 1)
ቇቇ

2

⎠

⎟
⎞

8(𝑏ଶ − 1)
, 

(3.64) 

𝑎 = 0, 𝑏 = 𝑏, 𝑐 = 0, 𝜔 = −
𝛾

(𝑏ଶ − 4)
, 𝑝̇ = 𝑝̇, 𝐴ሚଵ =

𝑏𝛾

2(𝑏ଶ − 4)
, 

𝐴ሚିଵ = 0, 
 

𝑢ଶସ = 𝐴ሚ଴ +
𝛾𝑏

2(𝑏ଶ − 4)
× 

⎝

⎜
⎛

𝑝̇ + tanh ൮
ln ൬tan ൬

((𝑦 + 𝑥)𝑏ଶ − 𝛾𝑡 − 4𝑥 − 4𝑦)𝑏
2(𝑏ଶ − 4)

൰൰

2
൲

⎠

⎟
⎞

. 

(3.65) 

Family 7: 
We get singular kink soliton: 

𝑎 = 𝑎, 𝑏 = 0, 𝑐 = 0, 𝜔 =
𝛾

(𝑎ଶ + 4)
, 𝑝̇ = 𝑝̇, 𝐴ሚିଵ = −

𝑝̇𝛾𝑎

(𝑎ଶ + 4)
, 𝐴ሚଵ = 0,  



𝑢ଶହ = 𝐴ሚ଴ −
𝑝̇𝛾𝑎

2(𝑎ଶ + 4)
× 

⎝

⎜
⎛

𝑝̇ + tanh ൮
ln ൬−tanh ൬

((𝑦 + 𝑥)𝑎ଶ + 𝛾𝑡 + 4𝑥 + 4𝑦)𝑎
2(𝑎ଶ + 4)

൰൰

2
൲

⎠

⎟
⎞

ିଵ

. 

(3.66) 

 

Family 8: 
Set of mix solitons are as follows: 

𝑎 = 𝐼𝑏, 𝑏 = 𝑏, 𝑐 = 0, 𝜔 = −
𝛾

2(𝑏ଶ − 2)
, 𝑝̇ = 𝐼, 𝐴ሚିଵ =

𝑏𝛾

2(𝑏ଶ − 2)
, 𝐴ሚଵ = 0,  

𝑢ଶ଺ =

√2 ൮(𝑏ଶ − 2)𝐴ሚ଴tan ൮
2√2 ൬(𝑥 + 𝑦)𝑏ଶ −

𝛾𝑡
2

− 2𝑥 − 2𝑦൰ 𝑏

4𝑏ଶ − 8
൲ √2 − 𝑏𝛾/2൲

2(𝑏ଶ − 2)tan ൮
2√2 ൬(𝑥 + 𝑦)𝑏ଶ −

𝛾𝑡
2

− 2𝑥 − 2𝑦൰ 𝑏

4𝑏ଶ − 8
൲

, 
 

(3.67) 

𝑎 = −2ඨ−
−𝛾 + 4𝜔

8𝜔
, 𝑏 =

ට−
−𝛾 + 4𝜔

8𝜔

𝑝
(𝑝ଶ − 1), 𝑐 =

ට−
−𝛾 + 4𝜔

8𝜔

𝑝
(𝑝ଶ + 1), 

𝜔 = 𝜔, 𝑝 = 𝑝, 𝐴ሚିଵ = 0, 𝐴ሚଵ =
𝜔ට−

−𝛾 + 4𝜔
8𝜔

𝑝
, 𝐸 =

𝛾 − 4𝜔

𝜔
, 𝑃 = 𝑝ଶ + 1, 

 

𝑢ଶ଻ =
1

4√𝐸𝑝ଶ − 4ඨ𝐸
(𝑃)ଶ

𝑝ଶ 𝑝 − 4√𝐸

× 

⎝

⎜
⎜
⎜
⎛−𝑝൫𝜔√2√𝐸 + 4𝐴ሚ଴൯ඨ𝐸

(𝑃)ଶ

𝑝ଶ
−

4(𝐸𝜔) tanh ቆ
1

2√𝐸(𝜉)
ቇ +

(4𝑝ଶ𝐴ሚ଴ − 4𝐴ሚ଴)√𝐸 + √2𝑃(𝐸𝜔)⎠

⎟
⎟
⎟
⎞

, 

(3.68) 

𝑎 = −2ඨ−
−𝛾 + 4𝜔

32𝜔
, 𝑏 =

ට−
−𝛾 + 4𝜔

32𝜔

𝑝
(𝑝ଶ − 1), 𝑐 =

ට−
−𝛾 + 4𝜔

32𝜔

𝑝
(𝑝ଶ + 1), 𝜔 = 𝜔, 



𝑝 = 𝑝, 𝐴ሚିଵ =
𝑝(𝛾 − 4𝜔)

16ට−
−𝛾 + 4𝜔

32𝜔

, 𝐴ሚଵ =
𝜔ට−

−𝛾 + 4𝜔
32𝜔

𝑝
, 𝐸 =

𝛾 − 4𝜔

𝜔
, 𝑃 = 𝑝ଶ + 1, 

 

𝑢ଶ଼

=

𝐸𝜔

⎝

⎜
⎜
⎜
⎜
⎜
⎛ −3𝑝

8

⎝

⎜
⎛ቆ−

4

3√𝐸𝜔
−

8

3√2𝐴଴

ቇ tanh ቆ
√𝐸𝜉

4
ቇ

+3√2𝜔 ቀ𝑝ଶ −
1
3

ቁ √𝐸 +
8

3𝑝ଶ𝐴ሚ଴ ⎠

⎟
⎞

ඨ𝐸
(𝑃)2

𝑝ଶ

+
√2
2

(𝐸𝜔)tanh ቆ
√𝐸𝜉

4
ቇ

ଶ

− 1/2(𝑝ଶ + 1)(𝐸𝜔))tanh ቆ
√𝐸𝜉

4
ቇ + 𝐴ሚ଴𝑝ଶ(𝑃)

3/8√𝐸(𝐸𝜔)(𝑝ସ + 2/3𝑝ଶ + 1)√2 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

√𝐸 ൮−ඨ𝐸
(𝑃)2

𝑝ଶ 𝑝 + √𝐸(𝑝ଶ − 1)൲ ×

൮−ඨ𝐸
(𝑃)2

𝑝ଶ 𝑝 + √𝐸 ቆ𝑝ଶ − 2tanh ቆ
√𝐸𝜉

4
ቇ √2 + 1ቇ൲ 𝜔

, 

(3.69) 

𝑎 = 𝐼𝑏, 𝑏 = 𝑏, 𝑐 = 0, 𝜔 = −
𝛾

2(𝑏ଶ − 2)
, 𝑝 = 𝐼, 𝐴ሚଵ =

𝑏𝛾

4(𝑏ଶ − 2)
, 𝐴ሚିଵ = 0,  

𝑢ଶଽ =

√2 ൮𝑏𝛾tan ൮
2√2 ൬(𝑥 + 𝑦)𝑏ଶ −

𝛾𝑡
2

− 2𝑥 − 2𝑦൰ 𝑏

4𝑏ଶ − 8
൲ + 4𝑏ଶ𝐴ሚ଴ − 8𝐴ሚ଴൲

4𝑏ଶ − 8
, 

(3.70) 

𝑎 = 𝐼𝑏, 𝑏 = 𝑏, 𝑐 = 0, 𝜔 = −
𝛾

4(2𝑏ଶ − 1)
, 𝑝 = 𝐼, 𝐴ሚିଵ = −

𝑏𝛾

4(2𝑏ଶ − 1)
, 

𝐴ሚଵ =
𝑏𝛾

8(2𝑏ଶ − 1)
 

 



𝑢ଷ଴ = ඥ2
⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛8tan

⎝

⎜
⎛

8√2 ቆ(𝑥 + 𝑦)𝑏2 −
𝛾𝑡
8

−
𝑥
2

−
𝑦
2ቇ 𝑏

16𝑏2 − 8

⎠

⎟
⎞

𝐴෩0 ൬𝑏2 −
1
2

൰ √2

+𝑏𝛾

⎝

⎜⎜
⎛

tan

⎝

⎜
⎛

8√2 ቆ(𝑥 + 𝑦)𝑏2 −
𝛾𝑡
8

−
𝑥
2

−
𝑦
2ቇ 𝑏

16𝑏2 − 8

⎠

⎟
⎞

2

− 1

⎠

⎟⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

8 ቀ2𝑏2 − 1ቁ tan

⎝

⎜
⎛

8√2 ቆ(𝑥 + 𝑦)𝑏2 −
𝛾𝑡
8

−
𝑥
2

−
𝑦
2ቇ 𝑏

16𝑏2 − 8

⎠

⎟
⎞

+ 𝐴෩0. 

(3.71) 

Family 11: 
For this family we get exponential function solutions as: 

𝑏 = 𝑎, 𝑏 = 𝑏, 𝑐 = 𝑐, 𝜔 =
𝛾

𝑐ଶ + 4
, 𝑝 = 𝑝, 𝐴ሚିଵ =

𝛾(𝑏𝑝ଶ − 𝑐𝑝ଶ − 2𝑝𝑏 + 𝑏 + 𝑐)

2(𝑐ଶ + 4)
, 𝐴ሚଵ

= 0, 
 

𝑢ଷଵ = ⎝

⎜
⎛

((−𝑝 − 1)𝑐 + (𝑝 − 1)𝑏)(2𝑐ଶ𝐴ሚ଴ − 𝛾(𝑝 − 1)𝑐

+𝑏𝛾𝑝 − 𝑏𝛾 + 8𝐴ሚ଴)e
௖ቀ(௫ା௬)௖మାఊ௧ାସ௫ାସ௬ቁ

௖మାସ

−(2𝑐ଶ𝐴ሚ଴ − 𝛾(𝑝 + 1)𝑐 + 𝑏𝛾𝑝 − 𝑏𝛾 + 8𝐴ሚ଴)(𝑝 − 1)⎠

⎟
⎞

(2((−𝑝 − 1)𝑐 + (𝑝 − 1)𝑏)e
௖((௫ା௬)௖మାఊ௧ାସ௫ାସ௬)

௖మାସ − 2𝑝 + 2)(𝑐ଶ + 4)

, 

(3.72) 

𝑎 = 𝑏, 𝑏 = 𝑏, 𝑐 = −𝑏, 𝜔 =
𝛾

4(𝑏ଶ + 1)
, 𝑝 =

1

2
, 𝐴ሚିଵ = −

𝛾𝑏

16(𝑏ଶ + 1)
, 𝐴ሚଵ =

𝛾𝑏

4(𝑏ଶ + 1)
,  

𝑢ଷଶ =

ቆ(16𝑏ସ𝐴ሚ଴ − 4𝛾𝑏ଷ + 16𝑏ଶ𝐴ሚ଴)e
ି

(ସ(௫ା௬)௕మାఊ௧ାସ௫ାସ௬)௕
ଶ௕మାଶ − 4𝑏ଶ𝐴ሚ଴ − 𝑏𝛾 − 4𝐴ሚ଴ቇ

(16𝑏ଶ + 16)𝑏ଶe
ି

(ସ(௫ା௬)௕మାఊ௧ାସ௫ାସ௬)௕
ଶ௕మାଶ − 4𝑏ଶ − 4

, (3.73) 

𝑎 = 𝑏, 𝑏 = 𝑏, 𝑐 = 𝑐, 𝜔 =
𝛾

(𝑐ଶ + 4)
, 𝑝 = 𝑝, 𝐴ሚିଵ = 0, 𝐴ሚଵ = −

𝛾(𝑏 − 𝑐)

2(𝑐ଶ + 4)
, 

 
 

𝑢ଷଷ =

ቌ−(𝑏 − 𝑐)൫−2𝑐ଶ𝐴ሚ଴ − 𝛾(𝑝 + 1)𝑐 + (𝑝 − 1)𝑏𝛾 − 8𝐴ሚ଴൯e
௖ቀ(௫ା௬)௖మାఊ௧ାସ௫ାସ௬ቁ

௖మାସ

−2𝑐ଶ𝐴ሚ଴ − 𝛾(𝑝 − 1)𝑐 + (𝑝 − 1)𝑏𝛾 − 8𝐴ሚ଴

ቍ

(−2 + 2(𝑏 − 𝑐)e
௖((௫ା௬)௖మାఊ௧ାସ௫ାସ௬)

௖మାସ )(𝑐ଶ + 4)

, 
(3.74) 



𝑎 = 𝑏 =
𝑐𝑝

𝑝 − 1
, 𝑐 = 𝑐, 𝜔 =

𝛾

4(𝑐ଶ + 1)
, 𝑝 = 𝑝, 𝐴ሚିଵ = −

𝛾𝑐(𝑝 − 1)

8(𝑐ଶ + 1)
, 

𝐴ሚଵ = −
𝛾𝑐

8(𝑐ଶ + 1)(𝑝 − 1)
, 

 

𝑢ଷସ =

ቌ൫4𝑐ସ𝐴ሚ଴ + 𝑐ଷ𝛾 + 4𝑐ଶ𝐴ሚ଴൯e
௖൫ସ௖మ௫ାସ௖మ௬ାఊ௧ାସ௫ାସ௬൯

ଶ௖మାଶ

−4(𝑝 − 1)ଶ(𝑐ଶ𝐴ሚ଴ − 𝑐𝛾/4 + 𝐴ሚ଴)
ቍ

ቆ4𝑐e
௖(ସ௖మ௫ାସ௖మ௬ାఊ௧ାସ௫ାସ௬)

ସ௖మାସ − 4𝑝 + 4ቇ ቆ𝑐e
௖(ସ௖మ௫ାସ௖మ௬ାఊ௧ାସ௫ାସ )

ସ௖మାସ + 𝑝 − 1ቇ

× (𝑐ଶ + 1)

. (3.75) 

Family 12: 
Another exponential function solution: 

𝑎 = 𝑎, 𝑏 = 𝑐, 𝑐 = 𝑐, 𝜔 =
𝛾

𝑎ଶ + 4
, 𝑝 = 𝑝, 𝐴ሚିଵ = −

𝛾(𝑎𝑝 − 𝑐)

(𝑎ଶ + 4)
, 𝐴ሚଵ = 0,  

𝑢ଷହ =

ቌ𝐴ሚ଴(𝑎ଶ + 4)e
ቀ(௫ା௬)௔మାఊ௧ାସ௫ାସ௬ቁ௔

௔మାସ + (𝑎ଶ𝐴ሚ଴ − 𝑎𝛾 + 4𝐴ሚ଴)(𝑎𝑝 − 𝑐))ቍ

(𝑎ଶ + 4) ቆ𝑎𝑝 + e
൫(௫ା௬)௔మାఊ௧ାସ௫ାସ௬൯௔

௔మାସ − 𝑐ቇ

. (3.76) 

Family 13: 
More set of exponential function solutions 

𝑎 = −𝑐, 𝑏 = 𝑐, 𝑐 = 𝑐, 𝜔 =
𝛾

𝑎ଶ + 4
, 𝑝 = 𝑝, 𝐴ሚିଵ =

𝛾𝑐(𝑝 + 1)

(𝑐ଶ + 4)
, 𝐴ሚଵ = 0,  

𝑢ଷ଺ =

ቌ𝐴ሚ଴(𝑐ଶ + 4)e
ି௖ቀ(௫ା௬)௖మାఊ௧ାସ௫ାସ௬ቁ

௖మାସ + ((𝑐ଶ + 4)𝐴ሚ଴ + 𝑐𝛾)(𝑝 + 1))ቍ

(𝑐ଶ + 4) ቆ𝑝 + e
ି

௖((௫ା௬)௖మାఊ௧ାସ௫ାସ௬)
௖మାସ + 1ቇ

. 
(3.77) 

Family 14: 

𝑎 = 𝑎, 𝑏 = 0, 𝑐 = 0, 𝜔 =
𝛾

𝑎ଶ + 4
, 𝑝 = 𝑝, 𝐴ሚିଵ = −

𝑝𝛾𝑎

𝑎ଶ + 4
, 𝐴ሚଵ = 0,  



𝑢ଷ଻ =

ቌ𝐴ሚ଴(𝑎ଶ + 4)e
௔ቀ(௫ା௬)௔మାఊ௧ାସ௫ାସ௬ቁ

௔మାସ + 𝑎𝑝(𝑎ଶ𝐴ሚ଴ − 𝑎𝛾 + 4𝐴ሚ଴ቍ

𝑎ଶ + 4 ቆ𝑎𝑝 + e
௔((௫ା௬)௔మାఊ௧ାସ௫ାସ௬)

௔మାସ ቇ

. 
(3.78) 

 Family 16: 

𝑎 = 𝑎, 𝑏 = −𝑐, 𝑐 = 𝑐, 𝜔 =
𝛾

𝑎ଶ + 4
, 𝑝 = 𝑝, 𝐴ሚିଵ = −

𝑝𝛾(𝑐𝑝 + 𝑎)

𝑎ଶ + 4
, 𝐴ሚଵ = 0, 

𝑢ଷ଼ =

ቌቀ−𝑐𝛾𝑝 + 𝐴ሚ଴(𝑎ଶ + 4)ቁ (𝑐𝑝 + 𝑎)e
ቀ(௫ା௬)௔మାఊ௧ାସ௫ାସ௬ቁ௔

௔మାସ

−𝑝(𝑎ଶ𝐴ሚ଴ − 𝑐𝛾𝑝 − 𝑎𝛾 + 4𝐴ሚ଴)

ቍ

(𝑎ଶ + 4) ቆ(𝑐𝑝 + 𝑎)e
((௫ା௬)௔మାఊ௧ାସ௫ାସ )௔

௔మାସ − 𝑝ቇ

, 
(3.79) 

𝑎 = 𝑎, 𝑏 = −𝑐, 𝑐 = 𝑐, 𝜔 =
𝛾

𝑎ଶ + 4
, 𝑝 = 𝑝, 𝐴ሚିଵ = 0, 𝐴ሚଵ =

𝑐𝛾

𝑎ଶ + 4
,  

𝑢ଷଽ =

ቆ𝑐(𝑎ଶ𝐴ሚ଴ + 𝑐𝛾𝑝 + 𝑎𝛾 + 4𝐴ሚ଴)e
௔((௫ା௬)௔మାఊ௧ାସ௫ାସ௬)

௔మାସ − 𝑎ଶ𝐴ሚ଴ − 𝑐𝛾𝑝 − 4𝐴ሚ଴ቇ

(𝑎ଶ + 4) ቆ−1 + e
௔((௫ା௬)௔మାఊ௧ାସ௫ାସ௬)

௔మାସ 𝑐ቇ

, (3.80) 

𝑎 = 𝑎, 𝑏 =
𝑎

2𝑝
, 𝑐 = −

𝑎

2𝑝
, 𝜔 =

𝛾

4(𝑎ଶ + 1)
, 𝑝 = 𝑝, 𝐴ሚିଵ = −

𝑝𝑎𝛾

8(𝑎ଶ + 1)
, 𝐴ሚଵ = −

𝑎𝛾

8𝑝(𝑎ଶ + 1)
, 

𝑢ସ଴ =

ቌ൫4𝑎ସ𝐴଴ + 𝛾𝑎ଷ + 4𝑎ଶ𝐴ሚ଴൯e
௔൫ସ௔మ௫ାସ௔మ௬ାఊ௧ାସ௫ାସ௬൯

ଶ௔మାଶ

−16𝑝ଶ(𝑎ଶ𝐴ሚ଴ − 𝑎𝛾/4 + 𝐴ሚ଴)
ቍ

4(𝑎ଶ + 1) ቆe
௔(ସ௔మ௫ାସ௔మ௬ାఊ௧ାସ௫ାସ )

ଶ௔మାଶ 𝑎ଶ − 4𝑝ଶቇ

. 
(3.81) 

Family 17: 
We get plane wave solutions: 

𝑎 = 0, 𝑏 = 𝑐, 𝑐 = 𝑐, 𝜔 = 𝜔, 𝑝 = 0, 𝐴ሚିଵ = 0, 𝐴ሚଵ =
𝛾 − 4𝜔

6𝑐
,   

𝑢ସଵ = 𝐴ሚ଴ +
(𝛾 − 4𝜔)𝜉

6
, (3.82) 

𝑎 = 0, 𝑏 = 𝑐, 𝑐 = 𝑐, 𝜔 =
𝛾

4
, 𝑝 = 𝑝, 𝐴ሚିଵ =

𝑐𝛾

4
, 𝐴ሚଵ = 0,  



𝑢ସଶ =
𝑐𝛾

(𝛾𝑡 + 4𝑥 + 4𝑦)𝑐 + 4𝑝
+ 𝐴ሚ଴, (3.83) 

𝑎 = 0, 𝑏 = 𝑐, 𝑐 = 𝑐, 𝜔 = −
3𝑐𝐴ሚଵ

2
+

𝛾

4
, 𝑝 = 𝑝, 𝐴ሚିଵ = 0, 𝐴ሚଵ = 𝐴ሚଵ,  

𝑢ସଷ = −
3

2𝑡𝑐ଶ𝐴ሚଵ
ଶ +

൫(𝛾𝑡 + 4𝑥 + 4𝑦)𝑐 + 4𝑝൯𝐴ଵ

4
+ 𝐴ሚ଴. (3.84) 

Family 18: 

𝑎 = 0, 𝑏 = −𝑐, 𝑐 = 𝑐, 𝜔 = 𝜔, 𝑝 = 0, 𝐴ሚିଵ =
𝛾 − 4𝜔

6𝑐
, 𝐴ሚଵ = 0,  

𝑢ସସ =
(𝛾 − 4𝜔)𝜉

6
+ 𝐴ሚ଴, (3.85) 

𝑎 = 0, 𝑏 = −𝑐, 𝑐 = 𝑐, 𝜔 =
𝛾

4
, 𝑝 = 𝑝, 𝐴ሚିଵ = −

𝑐𝛾𝑝ଶ

4
, 𝐴ሚଵ = 0,  

𝑢ସହ = −
𝑐ଶ𝛾𝑝ଶ(𝛾𝑡 + 4𝑥 + 4𝑦)

16 + 16𝑝 ቀ
𝛾𝑡
4

+ 𝑥 + 𝑦ቁ 𝑐
+ 𝐴ሚ଴, (3.86) 

𝑎 = 0, 𝑏 = −𝑐, 𝑐 = 𝑐, 𝜔 =
𝛾

4
, 𝑝 = 𝑝, 𝐴ሚିଵ = 0, 𝐴ሚଵ =

𝑐𝛾

4
,  

𝑢ସ଺ = 𝐴ሚ଴ +

𝑐𝛾 ቌ𝑝 +
1

𝑐 ቀ
𝛾𝑡
4

+ 𝑥 + 𝑦ቁ
ቍ

4
. 

(3.87) 

Family 19: 
More kink wave type of solutions for these families: 

𝑎 = 𝑐, 𝑏 = 0, 𝑐 = 𝑐, 𝜔 =
𝛾

2(𝑐ଶ + 2)
, 𝑝 = 𝑝, 𝐴ሚିଵ = −

𝛾𝑐(𝑝ଶ + 2𝑝 − 1)

4(𝑐ଶ + 2)
, 𝐴ሚଵ = 0,  

𝑢ସ଻ =

ቌ
4𝐴ሚ଴√2(𝑐ଶ + 2) tanh ቆ

𝑐√2(2𝑐ଶ𝑥 + 2𝑐ଶ𝑦 + 𝛾𝑡 + 4𝑥 + 4𝑦)
4𝑐ଶ + 8

ቇ

+4𝐴ሚ଴(𝑝 + 1)𝑐ଶ − 𝛾𝑐(𝑝ଶ + 2𝑝 − 1) + 8𝐴ሚ଴(𝑝 + 1)

ቍ

(4𝑐ଶ + 8) ቆ𝑝 + √2tanh ቆ
𝑐√2(2𝑐ଶ𝑥 + 2𝑐ଶ𝑦 + 𝛾𝑡 + 4𝑥 + 4𝑦)

4𝑐ଶ + 8
ቇ + 1ቇ

, 
(3.88) 

𝑎 = 𝑐, 𝑏 = 0, 𝑐 = 𝑐, 𝜔 =
𝛾

4(2𝑐ଶ + 1)
, 𝑝 = −1, 𝐴ሚିଵ =

𝛾𝑐

4(2𝑐ଶ + 1)
, 𝐴ሚଵ =

𝛾𝑐

8(2𝑐ଶ + 1)
,  



𝑢ସ଼ =
⎝

⎜
⎛

𝛾𝑐√2 tanh ቆ
𝑐√2൫(8𝑥 + 8𝑦)𝑐ଶ + 𝛾𝑡 + 4𝑥 + 4𝑦൯

16𝑐ଶ + 8
ቇ

ଶ

+

(16𝐴ሚ଴𝑐ଶ + 8𝐴ሚ଴)tanh ቆ
𝑐√2((8𝑥 + 8𝑦)𝑐ଶ + 𝛾𝑡 + 4𝑥 + 4𝑦)

16𝑐ଶ + 8
ቇ + 𝛾𝑐√2

⎠

⎟
⎞

(16𝑐ଶ + 8)tanh ቆ
𝑐√2((8𝑥 + 8𝑦)𝑐ଶ + 𝛾𝑡 + 4𝑥 + 4𝑦)

16𝑐ଶ + 8
ቇ

, 

(3.89) 

𝑎 = 𝑐, 𝑏 = 0, 𝑐 = 𝑐, 𝜔 =
𝛾

2(𝑐ଶ + 2)
, 𝑝 = 𝑝, 𝐴ሚିଵ = 0, 𝐴ሚଵ =

𝛾𝑐

4(𝑐ଶ + 2)
  

𝑢ସଽ =
1

4𝑐ଶ + 8
ቌ

√2𝛾 tanh ቆ
𝑐√2(2𝑐ଶ𝑥 + 2𝑐ଶ𝑦 + 𝛾𝑡 + 4𝑥 + 4𝑦)

4𝑐ଶ + 8
ቇ 𝑐

+4𝐴ሚ଴𝑐ଶ + 𝛾(𝑝 + 1)𝑐 + 8𝐴ሚ଴

ቍ. (3.90) 

Family 20: 

𝑎 = 0, 𝑏 = 0, 𝑐 = 𝑐, 𝜔 =
𝛾

𝑐ଶ + 4
, 𝑝 = 𝑝, 𝐴ሚିଵ = −

𝛾𝑐(𝑝ଶ − 1)

2(𝑐ଶ + 4)
, 𝐴ሚଵ = 0, 

𝑢ହ଴ = −
𝛾𝑐(𝑝2 − 1)

2𝑐2 + 8
ቌ𝑝 + tanh ቆ

((𝑥 + 𝑦)𝑐2 + 𝛾𝑡 + 4𝑥 + 4𝑦)𝑐

2𝑐2 + 8
ቇቍ

−1

+ 𝐴෩0, (3.91) 

𝑎 = 0, 𝑏 = 0, 𝑐 = 𝑐, 𝜔 =
𝛾

4(𝑐ଶ + 1)
, 𝐴ሚିଵ =

𝛾𝑐

8(𝑐ଶ + 1)
, 𝐴ሚଵ =

𝛾𝑐

8(𝑐ଶ + 1)
 ,  

 

𝑢ହଵ =
𝛾𝑐

8𝑐ଶ + 8
ቆtanh ቆ

(4𝑐ଶ𝑥 + 4𝑐ଶ𝑦 + 𝛾𝑡 + 4𝑥 + 4𝑦)𝑐

8𝑐ଶ + 8
ቇቇ

ିଵ

+ 𝐴ሚ଴ 

+
𝛾𝑐

8𝑐ଶ + 8
tanh ൬1/2 ൬(

𝛾𝑡

4𝑐ଶ + 4
+ 𝑥 + 𝑦)൰ 𝑐൰, 

(3.92) 

𝑎 = 0, 𝑏 = 0, 𝑐 = 𝑐, 𝜔 =
𝛾

𝑐ଶ + 4
, 𝑝 = 𝑝, 𝐴ሚିଵ = 0, 𝐴ሚଵ =

𝛾𝑐

2(𝑐ଶ + 4)
,  

𝑢ହଶ = 𝐴ሚ଴ +
𝛾𝑐

2𝑐ଶ + 8
ቆ(𝑝 + tanh ൬1/2 ൬

𝛾𝑡

𝑐ଶ + 4
+ 𝑥 + 𝑦൰ 𝑐൰ቇ.  (3.93) 

3.7 Results and discussion 
In this part of chapter, we derived exact solitary wave solutions of AKNS equation by IThEM with 

the help of symbolic computation. To understand the physical dynamics of these waves, 3D and 

2D graphs and contour plots have been plotted to demonstrate the behavior of acquired solutions 

by choosing appropriate values of parameters. These results will be beneficial for researchers to 



acknowledge the application of this model in different fields of sciences as to best of knowledge 

no study has been done on this equation by using proposed method. Many solutions AKNS of 

various types have been reported in literature, by comparing our results with recently derived 

solutions in [144], the authors have used modified exponential function method to derive 

hyperbolic, periodic, exponential function solutions however, we succeed to generate more than 

50 solutions in the form of hyperbolic, trigonometric, and rational solutions, all the results are new 

and have not been reported before. Similarly, most recently authors in [145] have used ቀ
ீᇲ

ீ
,

ଵ

ீ
ቁ-

expansion method on fractional AKNS equation to derive various type of solutions but we found 

that we established comprehensive results which are distant and novel from others. For the better 

understanding of these results physical analysis of some of the solutions has been depicted through 

3D, 2D and contour plots. Fig (3.7) -(3.12) shows graphical behavior of some solutions of AKNS 

equation by choosing appropriate parameters. 

In Figure 3.7: Represents dynamical behavior of singular periodic wave solution of 𝑢଼ mentioned 

in Eq (3.94), for 3D fig (a) and (b) we used a = −2, a = −3, respectively. For 2 D fig (c) and (d) 

we used for 𝑎 = −1, 𝑎 = −2, 𝑎 = −3, respectively, with −10 ≤ 𝑥 ≤ 10, 𝑦 =  2, 𝑡 = 1, . For 

contour plot we used parameters −30 ≤ 𝑥 ≤ 30, 𝑡 = 0. .20, and − 40 ≤ 𝑥 ≤ 40, 𝑡 = 0. .20 with 

𝑎 = −3 𝑝 = 0.3, 𝑏 = 3.5, 𝐴଴ = 0.5, 𝛾 = 0.2, 𝑦 = 2. 

(a) (b) 



 
(c) (d) 

 

Figure 3.7:For 𝒖𝟖 graphs exhibits periodic wave solution. 

In Figure 3.8: 3D, 2D graphs and contour plot represents kink solitary wave solution of 𝑢ଵସ 

mentioned in Eq (3.95), by choosing parameters,𝑝 = 2, 𝑎 = 0.5, 𝑐 = 0.5, 𝐴଴ = 0.5, 𝑦 = 1. For 3D 

fig(a) and fig(b) we choose γ = 1. γ = 10 , For 2D fig(c)  we choose γ = 1, γ = 5, γ = 10, with 

−15 ≤ x ≤ 15, and for contour plot fig(d) we have values −30 ≤ 𝑥 ≤ 30, 𝑡 = 0. .20, and −40 ≤

𝑥 ≤ 40, 𝑡 = 0. .20, for 𝛾 = 1. 

(a) (b) 



 
(c) (d) 

 

Figure 3.8: :For 𝒖𝟏𝟒 graphs exhibits kink wave solution  

In Figure 3.9: shows 3D and 2D graphs and contour plot of periodic solitary wave solution of 𝑢ଶଷ 

mentioned in equation (3.64) by choosing parameters 𝑏 = 0.5, 𝐴଴ = 1.5, 𝑦 = −1. For 3D fig(a) 

and fig(b) we choose γ = 1, γ = 5, and for 2D fig(c) we choose  γ = 1, γ = 3, γ = 5, 

respectively, and for contour plot fig(d) we have values −30 ≤ x ≤ 30, t = 0. .20, and −40 ≤ x ≤

40, t = 0. .20 , respectively for γ = 1. 

(a) (b) 



 
(c) (d) 

Figure 3.10::For 𝒖𝟐𝟑 graphs exhibits periodic wave solution. 

In Figure 3.11, 3D, 2D and contour plot exhibits graphical nature of singular kink solitary wave 

uଶହ mentioned in equation (3.96) for the values p = 1.5, A଴ = 0.5, γ = 3.5, y = 2. For 3D fig(a) 

and fig(b) we choose a = 0.1, a = 0.3, for 2D fig(c) we choose a = 0.1, a = 0.2, a = 0.3,  

respectively with parameters −15 ≤ x ≤ 15, y = 2, t = 1, for contour plot  fig(d) we have 

values−30 ≤ x ≤ 30, t = 0. .20, and −40 ≤ x ≤ 40, t = 0. .20, a = 0.3 respectively. 

(a) (b) 



 
(c) (d) 

 

Figure 3.11: :For 𝒖𝟐𝟓 graphs exhibits singular kink wave solution. 

In Figure 3.12,  3D, 2D graphs and contour plot of kink solitary wave, uଷଽ mentioned in Eq (3.97)  

by choosing parameters p = 2, a = −3, A଴ = 0.5, γ = 1, y = −2. For 3D fig(a) and fig(b) we 

choose c = 0.1, c = 1, for 2D fig(c) we choose c = 01, c = 0.5, c = 1, respectively with −15 ≤

x ≤ 15, y = − 2, t = 1, and for contour plot fig(d) we have −30 ≤ x ≤ 30, t = 0. .20, and 

−40 ≤ x ≤ 40, t = 0. .20 respectively for c = 1. 

(a) (b) 



 
(c) (d) 

 

Figure 3.12: For 𝒖𝟑𝟗graphs exhibits kink wave solution. 

3.8 Conclusion: 

Improved tanh (
థ

ଶ
)-expansion method has been successfully administered to achieve new and 

general solutions to fourth order Ablowitz-Kaup-Newell-Segur water wave (AKNS) equation. As 

an outcome of this technique, abundant new solutions have been derived including solitons which 

can be classified into distinct types specified by their profiles such as, periodic, kink solitons. Each 

solution has some physical interpretation like kink solitons have permanent profile that it remains 

same over time while periodic wave solitons show dynamical profile and can depend on time. Kink 

solitons have applications in almost all nonlinear phenomena as it propagates in high nonlinear 

media with self-steeping effect such as in nonlinear fibers, singular solitons are one with 

singularity and have applications in the study of rouge waves whereas periodic waves are also very 

important and have many applications in various fields. These newly derived solutions may have 

valuable scope for future study of the shock waves, water wave phenomena especially in ocean 

waves. IThEM is more effective than tanh method and extended tanh method[108, 109], sine-

cosine method[110], ansatz method[111], Improved tan(
థ

ଶ
)-expansion method [112] in producing 

different types of solutions which are more general and abundant. This is a new method and has 

not been implemented much recently. The efficiency of this method can be predicted easily by the 

rich variety of obtained results. This scheme is applicable to a variety of nonlinear PDEs. The 

concluded wave structures can be helpful to understand the characteristics of nonlinear phenomena 

that develop in various realms of nonlinear sciences. Moreover, the outcome of this article can 



predict that this method is suitable to apply on various higher order nonlinear models to produce 

many interesting solutions involved in engineering, nonlinear optics, physics and other life 

sciences. In future we will be using this technique to other higher PDEs and on nonlinear fractional 

PDEs.  

3.8.1 Remark: 

Since improved tan(
థ

ଶ
)-expansion method and improved tanh(

ఝ(క)

ଶ
)-expansion method looks 

similar, but their results are totally different. Improved tan(
థ

ଶ
)-expansion method produces 

seventeen families whereas improved tanh(
ఝ(క)

ଶ
)-expansion method produces twenty families that 

generate abundant solutions in the form of hyperbolic, periodic, exponential, logarithmic 

functions. 

3.9 Summary: 

 In this chapter we have solved recently developed (3 + 1)-dimensional Boiti-Leon-Manna-

Pempinelli equation and fourth order Ablowitz-Kaup-Newell-Segur water wave (AKNS) equation 

by using the innovative and efficient method called improved tanh(
ఝ(క)

ଶ
)-expansion method 

(IThEM). A lot of solitary wave solutions have been generated that prove the efficiency of 

methods. The results are new and had not been reported in literature previously. Important steps 

of the chapter include introduction of governing equations followed by focal steps of methods used 

and derivation of solutions by proposed method. Finally graphical representation of some results 

followed by conclusion. 

Chapter 4 investigates two more important models which are the generalization of nonlinear 

Schrodinger equation using generalized auxiliary mapping method.  

 



Chapter 4. Optical soliton solutions of some 

nonlinear equations using versatile 

technique. 



 

4.1 Introduction: 
Exact solutions of complex nonlinear differential equations especially solitons have been studied 

actively by researchers due to its numerous characteristics. Optical solitons have showed 

significant effect in telecommunication field because of its key role in data transmission through 

optical fibers over large distances, such passing through oceans and from one continent to other 

without loss of data [146–149]. Therefore, to find optical solitons and other exact solutions many 

powerful analytical methods have been developed [127, 133, 150–156].  

The prime objective of this chapter is to study certain optical solitons using generalized auxiliary 

mapping method developed by Sirendaoreji [61]. This method is very effective in extracting a 

variety of exact solutions with the aid of mathematical symbolic computation. The optical solitons 

will be studied through a supportive illustration. 

4.2 Illustrative Applications: 
In this section, optical solitons solutions of two renowned nonlinear partial differential equations 

will be constructed using the above-mentioned method.  

4.3 Fokas System: 

We will first investigate the Fokas system for complex valued function 𝜓 and real valued function 

𝜙 representing pulse propagation in monomode optical fibers [157]. 

𝑖
∂

∂𝑡
𝜓 + 𝑟ଵ

∂ଶ

∂𝑥ଶ
𝜓 + 𝑟ଶ𝜓𝜙 = 0 , 

𝑟ଷ

∂

𝜕𝑦
𝜙 − 𝑟ସ

∂

∂𝑥
(|𝜙|ଶ) = 0. 

(4.1) 

Where the parameters, 𝑟ଵ, 𝑟ଶ, 𝑟ଷ, 𝑟ସ ≠ 0, are arbitrary constants. Fokas system is the extension of 

nonlinear Schrodinger equation in (2 + 1)-dimension. A S Fokas [158] and Shulman [159] 

derived this model to study nonlinear Schrodinger equation in multiple dimensions. Chakravarty 

et.al [159] reduced the dual Yang-Mills equation into Fokas equation. Due to the importance of 

this model in many fields, researchers are interested in deriving solutions of this model. K. J Wang 

employed Exp-function to construct exact solutions of Fokas system [160]. S. Tarla et.al. [161] 



investigated model via Jacobi elliptic function expansion method. J.Rao et.al. investigated doubly 

localized rogue waves and lump solitons. 

 Let us use the following complex transformations to solve Eq. ((4.1). 

𝜓(𝑥, 𝑦, 𝑡) = 𝑢(𝜁)𝑒௜ఏ ,           𝜙(𝑥, 𝑦, 𝑡) = 𝑉(𝜁), 

 where, 

𝜁 = (𝑥 + 𝑦 − 𝜂𝑡),           𝜃 = 𝜆ଵ𝑥 + 𝜆ଶ𝑦 + 𝜆ଷ𝑡 + 𝜆ସ. 

Using the above-mentioned wave transformation in Eq. ((4.1) , converts the system into the 

following nonlinear system of ODE, 

 

𝑖(−2𝑟ଵ𝜆ଵ + 𝜈)
d

d𝜉
𝑢(𝜁) + 𝑢(𝜁)𝜆ଷ − 𝑟ଵ

dଶ

d𝜉ଶ
𝑢(𝜁) + 𝑟ଵ𝑢(𝜁)𝜆ଵ

ଶ − 𝑟ଶ𝑢(𝜁)𝑉(𝜉) = 0, 

𝑟ଷ

d

d𝜉
𝑉(𝜁) − 2𝑟ସ𝑢(𝜁)

d

d𝜉
𝑢(𝜁) = 0, 

(4.2) 

separating real and imaginary parts of first equation of Eq. (4.2) we get, 

𝑢(𝜁)𝜆ଷ − 𝑟ଵ

dଶ

d𝜉ଶ
𝑢(𝜁) + 𝑟ଵ𝑢(𝜁)𝜆ଵ

ଶ − 𝑟ଶ𝑢(𝜁)𝑉(𝜁) = 0, 

𝜈 = 2𝑟ଵ𝜆ଵ. 

(4.3) 

Integrating second equation in Eq. (4.2) we get, 

𝑉(𝜉) =
𝑟ସ𝑢ଶ(𝜁)

𝑟ଷ
, (4.4) 

substituting equation (4.3) in the first equation of Eq. (4.2) we get,  

𝑢(𝜁)𝜆ଷ − 𝑟ଵ

dଶ

d𝜉ଶ
𝑢(𝜁) + 𝑟ଵ𝑢(𝜁)𝜆ଵ

ଶ −
𝑟ଶ𝑟ସ𝑢ଷ(𝜁)

𝑟ଷ
= 0. (4.5) 

Balancing the highest order of linear term 
ୢమ

ୢకమ
𝑢(𝜁) with the nonlinear term 𝑢ଷ(𝜁) in Eq. (4.5) 

determine the value of 𝑁. Here 3𝑁 = 𝑁 + 2 ⇒ 𝑁 = 1. This gives solution of the form. 



𝑢(𝜁) = 𝑆 = 𝑎଴ + 𝑎ଵℚ(𝜁) +
𝑏ଵ

ℚ(𝜁)
+

𝑑ଵ ቀ
𝑑

𝑑𝜁
ℚ(𝜁)ቁ

ℚ(𝜁)ଶ
. (4.6) 

Replacing Eq. (4.6) into Eq. (4.5) along with Eq. (1.48), we get algebraic system and by equating 

this system to 0 we get values of coefficients 𝑎଴, 𝑎ଵ , 𝑏ଵ, 𝑑ଵ, 𝜆ଵ, 𝜆ଶ, 𝜆ଷ as follows:  

To make this manuscript nice and simple we are assuming,  

∆= ට𝛽ଶ
ଶ − 4𝛽ଵ𝛽ଷ,  𝐸 = (tanh(𝑓))ଶ +

(୼)ఉమ

ଶఉభఉయ
+ 1 −

ఉమ
మ

ଶఉభఉయ
, 

𝑇 = ට(Δ𝛽ଶ + 2𝛽ଵ𝛽ଷ − 𝛽ଶ
ଶ)𝛽ଵ𝛽ଷ, 

𝐽 = Δ𝛽ଶ + 2𝛽ଵ𝛽ଷ − 𝛽ଶ
ଶ, 𝐻 = (tan(𝑓))ଶ −

ଶ୼ ୲ୟ୬(௙)

ఉమ
+ 1, 

𝐹 = ቆ
ඥ𝛽ଵ𝜁

2
ቇ , 𝐹ᇱ = ቆ

ඥ−𝛽ଵ𝜁

2
ቇ , 𝑓 = ቆ

ඥ𝛽ଵ𝜁

4
ቇ,  

𝑮 = ට
ఉభ

ଶ
(𝜁). 

 

Set 1 : 

𝑎଴ = 0, 𝑎ଵ = 0, 𝑑ଵ = √2ඨ−
𝑟ଵ𝑟ଷ

𝑟ଶ𝑟ସ
, 𝑏ଵ = 0, 𝛽ଵ = 𝛽ଵ, 𝛽ଶ = 0,  

𝛽ଷ = 𝛽ଷ, 𝜆ଷ = −𝜆ଵ
ଶ𝑟ଵ − 2𝛽ଵ𝑟ଵ, 𝜆ଵ = 𝜆ଵ. 

Substituting these coefficients along with the auxiliary solutions of Eq. (1.48), we get solutions of 

Eq. ((4.1) as follows. 

𝜓௝(𝑥, 𝑦, 𝑡) = 𝑢௝(𝜁)𝑒௜ఏ ,           𝜙௝(𝑥, 𝑦, 𝑡) = 𝑉௝(𝜁) =
𝑟ସ𝑢௝

ଶ(𝜁)

𝑟ଷ
, 



𝑢(𝜁) = 𝑆 =
𝑑ଵ ቀ

𝑑
𝑑𝜁

ℚ(𝜁)ቁ

ℚ(𝜁)
.  

For 𝛽ଵ > 0,  

𝜓ଵ = ൫−ඥ𝛽ଵ𝑑ଵ൯𝑒௜ఏ , (4.7) 

𝜙ଵ =
𝑟ସ

𝑟ଷ
൫−ඥ𝛽ଵ𝑑ଵ൯

ଶ
. (4.8) 

For 𝛽ଵ > 0, ∆> 0, 

 

𝜓ଶ = ൫−𝑑ଵඥ𝛽ଵtanh (ඥ𝛽ଵ𝜁)൯𝑒௜ఏ , (4.9) 

𝜙ଶ =
𝑟ସ

𝑟ଷ
൫−𝑑ଵඥ𝛽ଵtanh (ඥ𝛽ଵ𝜁)൯

ଶ
, (4.10) 

𝜓ଷ = ቆ
−ඥ𝛽ଵcosh (ඥ𝛽ଵ𝜁)

sinh(ඥ𝛽ଵ𝜁)
𝑑ଵቇ 𝑒௜ఏ , (4.11) 

𝜙ଷ =
𝑟ସ

𝑟ଷ
ቆ

−ඥ𝛽ଵcosh (ඥ𝛽ଵ𝜁)

sinh(ඥ𝛽ଵ𝜁)
𝑑ଵቇ

ଶ

. (4.12) 

 

For, 𝛽ଵ > 0, 𝛽ଷ > 0, 

 

𝜓ସ =

⎝

⎜
⎜
⎛

−ඥ𝛽ଵ(sinh(2𝐺) sinh(𝐹)

+√2cosh (𝐹)ቁ 𝑑ଵ

sinh (2𝐺)cosh (𝐹)

⎠

⎟
⎟
⎞

𝑒௜ఏ , (4.13) 

𝜙ସ =
𝑟ସ

𝑟ଷ

⎝

⎜
⎜
⎛

−ඥ𝛽ଵ(sinh(2𝐺) sinh(𝐹)

+√2cosh (𝐹)ቁ 𝑑ଵ

sinh (2𝐺)cosh (𝐹)

⎠

⎟
⎟
⎞

ଶ

, (4.14) 



 

𝜓ହ =

⎝

⎜
⎜
⎛

ඥ𝛽ଵ(−2 cosh(𝐹) sinh(2𝐺)

+√2sinh (𝐹)ቁ 𝑑ଵ

sinh (2𝐺)sinh (𝐹)

⎠

⎟
⎟
⎞

𝑒௜ఏ , (4.15) 

 

𝜙ହ =
𝑟ସ

𝑟ଷ

⎝

⎜
⎜
⎛

ඥ𝛽ଵ(−2 cosh(𝐹) sinh(2𝐺)

+√2sinh (𝐹)ቁ 𝑑ଵ

sinh (2𝐺)sinh (𝐹)

⎠

⎟
⎟
⎞

ଶ

 . (4.16) 

For 𝛽ଵ > 0, ∆= 0, 

 

𝜓଺ = 𝑒௜ఏ ቌ𝑑ଵ

ඥ𝛽ଵ

2
൫1 − tanh (𝐹)൯ቍ, (4.17) 

𝜙଺ =
𝑟ସ

𝑟ଷ
ቌ𝑑ଵ

ඥ𝛽ଵ

2
൫1 − tanh (𝐹)൯ቍ

ଶ

, (4.18) 

𝜓଻ = 𝑒௜ఏ ቌ𝑑ଵ

ඥ𝛽ଵ

2
൫1 − coth (𝐹)൯ቍ, (4.19) 

𝜙଻ =
𝑟ସ

𝑟ଷ
ቌ𝑑ଵ

ඥ𝛽ଵ

2
൫1 − coth (𝐹)൯ቍ

ଶ

. (4.20) 

For 𝛽ଵ < 0, ∆> 0, 

𝜓଼ = 𝑒௜ఏ ቌ𝑑ଵ

ඥ−𝛽ଵ

2
ቀtan ൫ඥ𝛽ଵ𝜁൯ቁቍ, (4.21) 



𝜙଼ =
𝑟ସ

𝑟ଷ
ቌ𝑑ଵ

ඥ−𝛽ଵ

2
ቀtan ൫ඥ𝛽ଵ𝜁൯ቁቍ

ଶ

, (4.22) 

𝜓ଽ = 𝑒௜ఏ ൬−𝑑ଵඥ−𝛽ଵ ቀcot ൫ඥ−𝛽ଵ𝜁൯ቁ൰, (4.23) 

𝜙ଽ =
𝑟ସ

𝑟ଷ
൬−𝑑ଵඥ−𝛽ଵ ቀcot ൫ඥ−𝛽ଵ𝜁൯ቁ൰

ଶ

. (4.24) 

For 𝛽ଵ < 0, 𝛽ଷ > 0 

𝜓ଵ଴ = ቌ−
ቀcos(𝐹′)ଶ −

1
2

ቁ ඥ−𝛽ଵ

sin (𝐹′)cos (𝐹′)
𝑑ଵቍ 𝑒௜ఏ , (4.25) 

𝜙ଵ଴ =
𝑟ସ

𝑟ଷ
ቌ−

ቀcos(𝐹′)ଶ −
1
2

ቁ ඥ−𝛽ଵ

sin (𝐹′)cos (𝐹′)
𝑑ଵቍ

ଶ

, (4.26) 

𝜓ଵଵ = ቌ
ቀ

1
2

− cos(𝐹′)ଶቁ ඥ−𝛽ଵ

sin (𝐹′)cos (𝐹′)
𝑑ଵቍ 𝑒௜ఏ , (4.27) 

𝜙ଵଵ =
𝑟ସ

𝑟ଷ
ቌ

ቀ
1
2

− cos(𝐹′)ଶቁ ඥ−𝛽ଵ

sin (𝐹′)cos (𝐹′)
𝑑ଵቍ

ଶ

. (4.28) 

For 𝛽ଵ > 0, 

𝜓ଵଶ = ൭
−(4𝛽ଵ𝛽ଷ + eଶඥఉభ(఍))ඥ𝛽ଵ

eଶඥఉభ(఍) − 4𝛽ଵ𝛽ଷ

𝑑ଵ൱ 𝑒௜ఏ , 
(4.29) 

𝜙ଵଶ =
𝑟ସ

𝑟ଷ
൭

−(4𝛽ଵ𝛽ଷ + eଶඥఉభ(఍))ඥ𝛽ଵ

eଶඥఉభ(఍) − 4𝛽ଵ𝛽ଷ

𝑑ଵ൱

ଶ

. (4.30) 

For 𝛽ଵ > 0, 𝛽ଶ = 0, 

𝜓ଵଷ = ൭
−(4𝛽ଵ𝛽ଷeଶඥఉభ(఍) + 1)ඥ𝛽ଵ

4𝛽ଵ𝛽ଷeଶඥఉభ(఍) − 1
𝑑ଵ൱ 𝑒௜ఏ , (4.31) 



𝜙ଵଷ =
𝑟ସ

𝑟ଷ
൭

−(4𝛽ଵ𝛽ଷeଶඥఉభ(఍) + 1)ඥ𝛽ଵ

4𝛽ଵ𝛽ଷeଶඥఉభ(఍) − 1
𝑑ଵ൱

ଶ

, (4.32) 

Set 2 : 
𝑎଴ = 𝑎଴, 𝑎ଵ = 0, 𝑑ଵ = 0, 𝑏ଵ = 0, 𝛽ଵ = 𝛽ଵ, 𝛽ଶ = 𝛽ଶ,  

𝛽ଷ = 𝛽ଷ, 𝜆ଷ =
௔బ

మ௥మ௥రିఒభ
మ௥భ௥య

௥య
, 𝜆ଵ = 𝜆ଵ. 

Substituting these coefficients along with the auxiliary solutions of Eq. (1.48), we get solutions of 

Eq. ((4.1) as follows. 

𝑢(𝜁) = 𝑆 = 𝑎଴.  (4.33) 

For 𝛽ଵ > 0, 

𝜓ଵସ = 𝑎଴𝑒௜ఏ , (4.34) 

𝜙ଵସ =
𝑟ସ

𝑟ଷ
൫𝑎଴𝑒௜ఏ൯

ଶ
, (4.35) 

Set 3 : 

𝑎଴ = 𝑎଴, 𝑎ଵ = 0, 𝑑ଵ = 𝑑ଵ, 𝑏ଵ = 0, 𝛽ଵ =
𝑎଴

ଶ

𝑑ଵ
ଶ , 𝛽ଶ = 0,  

𝛽ଷ = 0, 𝜆ଷ =
ସ௔బ

మ௥మ௥రିఒభ
మ௥భ௥య

௥య
, 𝜆ଵ = 𝜆ଵ. 

Substituting these coefficients along with the auxiliary solutions of Eq. (1.48), we get solutions of 

Eq. ((4.1) as follows. 

𝑢(𝜁) = 𝑆 = 𝑎଴ +
𝑑ଵ ቀ

𝑑
𝑑𝜁

ℚ(𝜁)ቁ

ℚ(𝜁)
. (4.36) 

For 𝛽ଵ > 0, ∆= 0, 

𝜓ଵହ = ൬𝑎଴ −
1

2
𝑑ଵඥ𝛽ଵtanh (𝐹) +

1

2
𝑑ଵඥ𝛽ଵ൰ 𝑒௜ఏ , (4.37) 

𝜙ଵହ =
𝑟ସ

𝑟ଷ
൬𝑎଴ −

1

2
𝑑ଵඥ𝛽ଵtanh (𝐹) +

1

2
𝑑ଵඥ𝛽ଵ൰

ଶ

, (4.38) 



𝜓ଵ଺ = ൬𝑎଴ −
1

2
𝑑ଵඥ𝛽ଵcoth (𝐹) +

1

2
𝑑ଵඥ𝛽ଵ൰ 𝑒௜ఏ , (4.39) 

𝜙ଵ଺ =
𝑟ସ

𝑟ଷ
൬𝑎଴ −

1

2
𝑑ଵඥ𝛽ଵcoth (𝐹) +

1

2
𝑑ଵඥ𝛽ଵ൰

ଶ

. (4.40) 

For 𝛽ଵ > 0, 

𝜓ଵ଻ = ൫𝑎଴ − 𝑑ଵඥ𝛽ଵ൯𝑒௜ఏ (4.41) 

𝜙ଵ଻ =
𝑟ସ

𝑟ଷ
൫𝑎଴ − 𝑑ଵඥ𝛽ଵ൯

ଶ
. (4.42) 

For 𝛽ଵ > 0, 𝛽ଶ = 0, 

𝜓ଵ଼ = ൫𝑎଴ + 𝑑ଵඥ𝛽ଵ൯𝑒௜ఏ , (4.43) 

𝜙ଵ଼ =
𝑟ସ

𝑟ଷ
൫𝑎଴ + 𝑑ଵඥ𝛽ଵ൯

ଶ
, (4.44) 

Set 4 : 
𝑎଴ = 0, 𝑎ଵ = 𝑎ଵ, 𝑑ଵ = 0, 𝑏ଵ = 0, 𝛽ଵ = 𝛽ଵ, 𝛽ଶ = 0, 

𝛽ଷ = −
𝑎ଵ

ଶ𝑟ସ𝑟ଶ

2𝑟ଵ𝑟ଷ
, 𝜆ଷ = 𝑟ଵ൫−𝜆ଵ

ଶ + 𝛽ଵ൯. 
 

Substituting these coefficients along with the auxiliary solutions of Eq. (1.48), we get solutions of 

Eq. ((4.1) as follows. 

𝑢(𝜁) = 𝑆 = 𝑎ଵℚ(𝜁). 

For 𝛽ଵ > 0, ∆> 0, 

𝜓ଵଽ = ቆ
𝑎ଵ𝛽ଵ

cosh(ඥ𝛽ଵ(𝜁))

1

ඥ−𝛽ଵ𝛽ଷ

ቇ 𝑒௜ఏ , (4.45) 

𝜙ଵଽ =
𝑟ସ

𝑟ଷ
ቆ

𝑎ଵ𝛽ଵ

cosh(ඥ𝛽ଵ(𝜁))

1

ඥ−𝛽ଵ𝛽ଷ

ቇ

ଶ

, (4.46) 

𝜓ଶ଴ = ቆ
𝑎ଵ𝛽ଵ

sinh(ඥ𝛽ଵ(𝜁))

1

ඥ𝛽ଵ𝛽ଷ

ቇ 𝑒௜ఏ , (4.47) 

𝜙ଶ଴ =
𝑟ସ

𝑟ଷ
ቆ

𝑎ଵ𝛽ଵ

sinh(ඥ𝛽ଵ(𝜁))

1

ඥ𝛽ଵ𝛽ଷ

ቇ

ଶ

. (4.48) 



For 𝛽ଵ < 0, 𝛽ଷ > 0, 

𝜓ଶଵ = ቆ
𝑎ଵ𝛽ଵcosh (𝐺)

2cosh (𝐹)ଶsinh (𝐺)ඥ𝛽ଵ𝛽ଷ

ቇ 𝑒௜ఏ , (4.49) 

𝜙ଶଵ =
𝑟ସ

𝑟ଷ
ቆ

𝑎ଵ𝛽ଵcosh (𝐺)

2cosh (𝐹)ଶsinh (𝐺)ඥ𝛽ଵ𝛽ଷ

ቇ

ଶ

, (4.50) 

𝜓ଶଶ = ቆ
𝑎ଵ𝛽ଵsinh (𝐺)

2sinh (𝐹)ଶcosh (𝐺)ඥ𝛽ଵ𝛽ଷ

ቇ 𝑒௜ఏ , (4.51) 

𝜙ଶଶ =
𝑟ସ

𝑟ଷ
ቆ

𝑎ଵ𝛽ଵsinh (𝐺)

2sinh (𝐹)ଶcosh (𝐺)ඥ𝛽ଵ𝛽ଷ

ቇ

ଶ

. (4.52) 

For 𝛽ଵ < 0, ∆> 0, 

𝜓ଶଷ = ቆ
𝑎ଵ𝛽ଵ

cos(ඥ𝛽ଵ(𝜁)) ඥ−𝛽ଵ𝛽ଷ

ቇ 𝑒௜ఏ , (4.53) 

𝜙ଶଷ =
𝑟ସ

𝑟ଷ
ቆ

𝑎ଵ𝛽ଵ

cos(ඥ𝛽ଵ(𝜁)) ඥ−𝛽ଵ𝛽ଷ

ቇ

ଶ

, (4.54) 

𝜓ଶସ = ቆ
𝑎ଵ𝛽ଵ

sin(ඥ−𝛽ଵ(𝜁)) ඥ−𝛽ଵ𝛽ଷ

ቇ 𝑒௜ఏ , (4.55) 

𝜙ଶସ =
𝑟ସ

𝑟ଷ
ቆ

𝑎ଵ𝛽ଵ

sin(ඥ−𝛽ଵ(𝜁)) ඥ−𝛽ଵ𝛽ଷ

ቇ

ଶ

. (4.56) 

For, 𝛽ଵ < 0, 𝛽ଷ > 0, 

𝜓ଶହ = ቆ
−𝑎ଵ𝛽ଵ

sin൫ඥ−𝛽ଵ(𝜁)൯ ඥ−𝛽ଵ𝛽ଷ

ቇ 𝑒௜ఏ , (4.57) 

𝜙ଶହ =
𝑟ସ

𝑟ଷ
ቆ

−𝑎ଵ𝛽ଵ

sin൫ඥ−𝛽ଵ(𝜁)൯ ඥ−𝛽ଵ𝛽ଷ

ቇ

ଶ

. (4.58) 

For, 𝛽ଵ > 0, 

𝜓ଶ଺ = ൭
4𝑎ଵ𝛽ଵeඥఉభ(఍)𝑟ଷ𝑟ଵ

2𝛽ଵ𝑎ଵ
ଶ𝑟ସ𝑟ଶ + eଶඥఉభ(఍)𝑟ଷ𝑟ଵ

൱ 𝑒௜ఏ , (4.59) 



𝜙ଶ଺ =
𝑟ସ

𝑟ଷ
൭

4𝑎ଵ𝛽ଵeඥఉభ(఍)𝑟ଷ𝑟ଵ

2𝛽ଵ𝑎ଵ
ଶ𝑟ସ𝑟ଶ + eଶඥఉభ(఍)𝑟ଷ𝑟ଵ

൱

ଶ

. (4.60) 

For, 𝛽ଵ > 0, 𝛽ଶ = 0, 

𝜓ଶ଻ = ൭
4𝑎ଵ𝛽ଵeඥఉభ(఍)𝑟ଷ𝑟ଵ

2𝛽ଵ𝑎ଵ
ଶ𝑟ସ𝑟ଶeଶඥఉభ(఍) + 𝑟ଷ𝑟ଵ

൱ 𝑒௜ఏ , (4.61) 

𝜙ଶ଻ =
𝑟ସ

𝑟ଷ
൭

4𝑎ଵ𝛽ଵeඥఉభ(఍)𝑟ଷ𝑟ଵ

2𝛽ଵ𝑎ଵ
ଶ𝑟ସ𝑟ଶeଶඥఉభ(఍) + 𝑟ଷ𝑟ଵ

൱

ଶ

, (4.62) 

Set 5 : 

𝑎଴ = 𝑎଴, 𝑎ଵ = 𝑎ଵ, 𝑑ଵ = 0, 𝑏ଵ = 0, 𝛽ଵ = −2
𝑎଴

ଶ𝑟ସ𝑟ଶ

𝑟ଵ𝑟ଷ
, 

𝛽ଶ = −2
𝑎଴𝑎ଵ𝑟ସ𝑟ଶ

𝑟ଵ𝑟ଷ
, 𝛽ଷ = −

2𝑎ଵ
ଶ𝑟ସ𝑟ଶ

𝑟ଵ𝑟ଷ
, 𝜆ଷ =

𝑎଴
ଶ𝑟ସ𝑟ଶ − 𝜆ଵ

ଶ𝑟ଵ𝑟ଷ

𝑟ଷ
. 

Substituting these coefficients along with the auxiliary solutions of Eq. (1.48), we get solutions of 

Eq. ((4.1) as follows. 

𝑢(𝜁) = 𝑆 = 𝑎଴ + 𝑎ଵℚ(𝜁). 

For 𝛽ଵ > 0, 

𝜓ଶ଼ =
𝑎଴൫sinh (ඥ𝛽ଵ(𝜁)) − 2 cosh(𝐹)ଶ + 3൯

−2 cosh(F)ଶ + sinh (ඥ𝛽ଵ(𝜁)) − 1
𝑒௜ఏ , (4.63) 

𝜙ଶ଼ =
𝑟ସ

𝑟ଷ
ቆ

𝑎଴൫sinh (ඥ𝛽ଵ(𝜁)) − 2 cosh(𝐹)ଶ + 3൯

−2 cosh(F)ଶ + sinh (ඥ𝛽ଵ(𝜁)) − 1
ቇ

ଶ

, (4.64) 

𝜓ଶଽ =
𝑎଴ ቀsinh ቀඥ𝛽ଵ(𝜁)ቁ − 2 cosh(𝐹)ଶ − 1ቁ

−2 cosh(F)ଶ + sinh ቀඥ𝛽ଵ(𝜁)ቁ + 3
𝑒௜ఏ , (4.65) 

𝜙ଶଽ =
𝑟ସ

𝑟ଷ
ቌ

𝑎଴ ቀsinh ቀඥ𝛽ଵ(𝜁)ቁ − 2 cosh(𝐹)ଶ − 1ቁ

−2 cosh(F)ଶ + sinh ቀඥ𝛽ଵ(𝜁)ቁ + 3
ቍ

ଶ

. (4.66) 

For 𝛽ଵ > 0, ∆> 0, 



𝜓ଷ଴ = −𝑎଴𝑒௜ఏ , (4.67) 

𝜙ଷ଴ =
𝑟ସ

𝑟ଷ

(−𝑎଴)ଶ. (4.68) 

For 𝛽ଵ > 0, 𝛽ଷ > 0, 

𝜓ଷଵ =

𝑎଴ ቌ
ට𝛽ଶ

2
sinh(𝐺)𝑟ଷ𝑟ଵ cosh(𝐹)ଶ

−𝑎଴𝑎ଵ𝑟ସ𝑟ଶcosh(G)(cosh(F)ଶ − 1)

ቍ

cosh(F)ଶ ቌ

−𝑎଴𝑎ଵ𝑟ସ𝑟ଶcosh(G)

+ට𝛽ଶ

2
sinh(G)𝑟ଷ𝑟ଵ

ቍ

𝑒௜ఏ , (4.69) 

𝜙ଷଵ =
𝑟ସ

𝑟ଷ

⎝

⎜
⎜
⎜
⎛𝑎଴ ቌ

ට𝛽ଶ

2
sinh(𝐺)𝑟ଷ𝑟ଵ cosh(𝐹)ଶ

−𝑎଴𝑎ଵ𝑟ସ𝑟ଶcosh(G)(cosh(F)ଶ − 1)

ቍ

cosh(F)ଶ ቌ

−𝑎଴𝑎ଵ𝑟ସ𝑟ଶcosh(G)

+ට𝛽ଶ

2
sinh(G)𝑟ଷ𝑟ଵ

ቍ

⎠

⎟
⎟
⎟
⎞

ଶ

, (4.70) 

𝜓ଷଶ =

𝑎଴ ቌ
ට𝛽ଶ

2
cosh(𝐺)(cosh(𝐹)ଶ − 1)𝑟ଷ𝑟ଵ

−𝑎଴𝑎ଵ𝑟ସ𝑟ଶsinh(G) cosh(F)ଶ

ቍ

sinh(F)ଶ ቌ

−𝑎଴𝑎ଵ𝑟ସ𝑟ଶsinh(G)

+ට𝛽ଶ

2
cosh(G)𝑟ଷ𝑟ଵ

ቍ

𝑒௜ఏ , (4.71) 

𝜙ଷଶ =
𝑟ସ

𝑟ଷ

⎝

⎜
⎜
⎜
⎛𝑎଴ ቌ

ට𝛽ଶ

2
cosh(𝐺)(cosh(𝐹)ଶ − 1)𝑟ଷ𝑟ଵ

−𝑎଴𝑎ଵ𝑟ସ𝑟ଶsinh(G) cosh(F)ଶ

ቍ

sinh(F)ଶ ቌ

−𝑎଴𝑎ଵ𝑟ସ𝑟ଶsinh(G)

+ට𝛽ଶ

2
cosh(G)𝑟ଷ𝑟ଵ

ቍ

⎠

⎟
⎟
⎟
⎞

ଶ

. (4.72) 

For 𝛽ଵ > 0, ∆= 0, 

𝜓ଷଷ = ൫−𝑎଴tanh(𝐹)൯𝑒௜ఏ , (4.73) 

𝜙ଷଷ =
𝑟ସ

𝑟ଷ
൫−𝑎଴tanh(𝐹)൯

ଶ
, (4.74) 

𝜓ଷସ = ൫−𝑎଴coth(𝐹)൯𝑒௜ఏ , (4.75) 



𝜙ଷସ =
𝑟ସ

𝑟ଷ
൫−𝑎଴coth(𝐹)൯

ଶ
. (4.76) 

For 𝛽ଵ < 0, ∆> 0, 

𝜓ଷହ =

𝑎଴ ൭
𝛽ଶ

2
sin ቀඥ−𝛽ଵ(𝜁)ቁ

𝑟ଷ𝑟ଵ

2
+𝑎଴𝑎ଵ𝑟ସ𝑟ଶsin(𝐹′)ଶ

൱

൭
−𝑎଴𝑎ଵ𝑟ସ𝑟ଶcos(F′)ଶ

𝛽ଶ

2
+ sin ቀඥ−𝛽ଵ(𝜁)ቁ

𝑟ଷ𝑟ଵ

2
൱

𝑒௜ఏ , (4.77) 

𝜙ଷହ =
𝑟ସ

𝑟ଷ

⎝

⎜
⎜
⎛

𝑎଴ ൭
𝛽ଶ

2
sin ቀඥ−𝛽ଵ(𝜁)ቁ

𝑟ଷ𝑟ଵ

2
+𝑎଴𝑎ଵ𝑟ସ𝑟ଶsin(𝐹′)ଶ

൱

൭
−𝑎଴𝑎ଵ𝑟ସ𝑟ଶcos(F′)ଶ

𝛽ଶ

2
+ sin ቀඥ−𝛽ଵ(𝜁)ቁ

𝑟ଷ𝑟ଵ

2
൱

⎠

⎟
⎟
⎞

ଶ

, (4.78) 

𝜓ଷ଺ =

𝑎଴ ൭
𝛽ଶ

2
sin ቀඥ−𝛽ଵ(𝜁)ቁ

𝑟ଷ𝑟ଵ

2
+𝑎଴𝑎ଵ𝑟ସ𝑟ଶcos(𝐹′)ଶ

൱

൭
−𝑎଴𝑎ଵ𝑟ସ𝑟ଶsin(F′)ଶ

+
𝛽ଶ

2
sin ቀඥ−𝛽ଵ(𝜁)ቁ

𝑟ଷ𝑟ଵ

2
൱

𝑒௜ఏ (4.79) 

𝜙ଷ଺ =
𝑟ସ

𝑟ଷ

⎝

⎜
⎜
⎛

𝑎଴ ൭
𝛽ଶ

2
sin ቀඥ−𝛽ଵ(𝜁)ቁ

𝑟ଷ𝑟ଵ

2
+𝑎଴𝑎ଵ𝑟ସ𝑟ଶcos(𝐹′)ଶ

൱

൭
−𝑎଴𝑎ଵ𝑟ସ𝑟ଶsin(F′)ଶ

+
𝛽ଶ

2
sin ቀඥ−𝛽ଵ(𝜁)ቁ

𝑟ଷ𝑟ଵ

2
൱

⎠

⎟
⎟
⎞

ଶ

. (4.80) 

For 𝛽ଵ > 0, 

𝜓ଷ଻ =
𝑎଴ ቀ−4𝑎଴𝑎ଵ𝑟ସ𝑟ଶ + eඥఉభ(఍)𝑟ଵ𝑟ଷቁ

4𝑎଴𝑎ଵ𝑟ସ𝑟ଶ + eඥఉభ(఍)𝑟ଵ𝑟ଷ

𝑒௜ఏ , (4.81) 

𝜙ଷ଻ =
𝑟ସ

𝑟ଷ
ቌ

𝑎଴ ቀ−4𝑎଴𝑎ଵ𝑟ସ𝑟ଶ + eඥఉభ(఍)𝑟ଵ𝑟ଷቁ

4𝑎଴𝑎ଵ𝑟ସ𝑟ଶ + eඥఉభ(఍)𝑟ଵ𝑟ଷ

ቍ

ଶ

. (4.82) 

For 𝛽ଵ > 0, 𝛽ଶ = 0, 



𝜓ଷ଼ =
𝑎଴ ቀ4(𝑎଴𝑎ଵ𝑟ସ𝑟ଶ)ଶeඥఉభ(఍) + 8eඥఉభ(఍)𝑎଴𝑎ଵ𝑟ସ𝑟ଶ𝑟ଵ𝑟ଷ − (𝑟ଵ𝑟ଷ)ଶቁ

4(𝑎଴𝑎ଵ𝑟ସ𝑟ଶ)ଶeඥఉభ(఍) − (𝑟ଵ𝑟ଷ)ଶ
𝑒௜ఏ , (4.83) 

𝜙ଷ଼ =
𝑟ସ

𝑟ଷ
ቌ

𝑎଴ ቀ4(𝑎଴𝑎ଵ𝑟ସ𝑟ଶ)ଶeඥఉభ(఍) + 8eඥఉభ(఍)𝑎଴𝑎ଵ𝑟ସ𝑟ଶ𝑟ଵ𝑟ଷ − (𝑟ଵ𝑟ଷ)ଶቁ

4(𝑎଴𝑎ଵ𝑟ସ𝑟ଶ)ଶeඥఉభ(఍) − (𝑟ଵ𝑟ଷ)ଶ
ቍ

ଶ

, (4.84) 

Set 6 : 

𝑎଴ = 0, 𝑎ଵ = 𝑎ଵ, 𝑑ଵ =

√2ට−
𝑟ଵ𝑟ଷ
𝑟ଶ𝑟ସ

2
, 𝑏ଵ = 0, 𝛽ଵ = 𝛽ଵ, 𝛽ଶ = 𝛽ଶ, 

𝛽ଷ = −2
௔భ

మ௥ర௥మ

௥భ௥య
, 𝜆ଷ = −1/2𝑟ଵ(2𝜆ଵ

ଶ + 𝛽ଵ). 

Substituting these coefficients along with the auxiliary solutions Eq. (1.48), we get solutions of 

Eq. ((4.1) as follows. 

𝑢(𝜁) = 𝑆 = 𝑎ଵℚ(𝜁) +
𝑑ଵ ቀ

𝑑
𝑑𝜁

ℚ(𝜁)ቁ

ℚ(𝜁)
. 

For 𝛽ଵ > 0, 

𝜓ଷଽ =

⎝

⎜
⎜
⎜
⎛

−𝛽ଵ

ଷ
ଶ(tanh(𝐹))ଶ𝛽ଷ𝑑ଵ + tanh(𝐹) 𝑑ଵ ൬𝛽ଶ

ଶ
ඥ𝛽ଵ − 2𝛽ଷ𝛽ଵ

ଷ
ଶ൰

+𝑎ଵ𝛽ଵ𝛽ଶsech(𝐹)ଶ − 𝛽ଵ
ଷ/ଶ𝛽ଷ𝑑ଵ

tanh(𝐹)ଶ 𝛽ଵ𝛽ଷ + 2tanh (𝐹)𝛽ଵ𝛽ଷ + 𝛽ଵ𝛽ଷ − 𝛽ଶ
ଶ

⎠

⎟
⎟
⎟
⎞

𝑒௜ఏ , (4.85) 

𝜙ଷଽ =
𝑟ସ

𝑟ଷ

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

−𝛽ଵ

ଷ
ଶ(tanh(𝐹))ଶ𝛽ଷ𝑑ଵ

+ tanh(𝐹) 𝑑ଵ ൬𝛽ଶ
ଶ

ඥ𝛽ଵ − 2𝛽ଷ𝛽ଵ

ଷ
ଶ൰

+𝑎ଵ𝛽ଵ𝛽ଶsech(𝐹)ଶ − 𝛽ଵ
ଷ/ଶ𝛽ଷ𝑑ଵ

tanh(𝐹)ଶ 𝛽ଵ𝛽ଷ + 2 tanh(𝐹)𝛽ଵ𝛽ଷ

+𝛽ଵ𝛽ଷ − 𝛽ଶ
ଶ

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

ଶ

, (4.86) 



𝜓ସ଴ =

⎝

⎜
⎜
⎜
⎛

sinh(𝐹) cosh(𝐹) 𝑑ଵ ൬𝛽ଶ
ଶ

ඥ𝛽ଵ − 2𝛽ଷ𝛽ଵ

ଷ
ଶ൰

−𝑎ଵ𝛽ଵ𝛽ଶ − 𝛽ଵ

ଷ
ଶ𝛽ଷ𝑑ଵ − 2𝛽ଵ

ଷ
ଶ(cosh(𝐹))ଶ𝛽ଷ𝑑ଵ

൫2𝛽ଵ𝛽ଷ − 𝛽ଶ
ଶ൯cosh(𝐹)ଶ 𝛽ଵ𝛽ଷ +

sinh൫ඥ𝛽ଵ𝜉൯𝛽ଵ𝛽ଷ − 𝛽ଵ𝛽ଷ + 𝛽ଶ
ଶ

⎠

⎟
⎟
⎟
⎞

𝑒௜ఏ , (4.87) 

𝜙ସ଴ =
𝑟ସ

𝑟ଷ

⎝

⎜
⎜
⎜
⎛

sinh(𝐹) cosh(𝐹) 𝑑ଵ ൬𝛽ଶ
ଶ

ඥ𝛽ଵ − 2𝛽ଷ𝛽ଵ

ଷ
ଶ൰

−𝑎ଵ𝛽ଵ𝛽ଶ − 𝛽ଵ

ଷ
ଶ𝛽ଷ𝑑ଵ − 2𝛽ଵ

ଷ
ଶ(cosh(𝐹))ଶ𝛽ଷ𝑑ଵ

൫2𝛽ଵ𝛽ଷ − 𝛽ଶ
ଶ൯cosh(𝐹)ଶ 𝛽ଵ𝛽ଷ +

sinh൫ඥ𝛽ଵ𝜉൯𝛽ଵ𝛽ଷ − 𝛽ଵ𝛽ଷ + 𝛽ଶ
ଶ

⎠

⎟
⎟
⎟
⎞

ଶ

. (4.88) 

For 𝛽ଵ > 0, ∆> 0, 

𝜓ସଵ = ቌ
−𝑑ଵ𝛽ଵ

ଷ
ଶ tanh൫ඥ𝛽ଵ𝜉൯ Δ + 2𝑎ଵ𝛽ଵ

ଶsech(ඥ𝛽ଵ𝜉)

൫Δ − 𝛽ଶsech(ඥ𝛽ଵ𝜉)൯𝛽ଵ

ቍ 𝑒௜ఏ , (4.89) 

𝜙ସଵ =
𝑟ସ

𝑟ଷ
ቌ

−𝑑ଵ𝛽ଵ

ଷ
ଶ tanh൫ඥ𝛽ଵ𝜉൯ Δ + 2𝑎ଵ𝛽ଵ

ଶsech(ඥ𝛽ଵ𝜉)

൫Δ − 𝛽ଶsech(ඥ𝛽ଵ𝜉)൯𝛽ଵ

ቍ

ଶ

. (4.90) 

For 𝛽ଵ > 0, 𝛽ଷ > 0, 

 

𝜓ସଶ =

⎝

⎜
⎜
⎜
⎛

−𝑎ଵ𝛽ଵ
ଶsech(𝐹)ଶ + 𝑑ଵ ቀ൫ඥ𝛽ଵ𝛽ଷ tanh(𝐺)ଶ − 1൯√2

−2 tanh(𝐹) ൫ඥ𝛽ଵ𝛽ଷ tanh(𝐺) + 1/2𝛽ଶ൯ቁ 𝛽ଵ

ଷ
ଶ

(𝛽ଶ + 2ඥ𝛽ଵ𝛽ଷ tanh(𝐺) 𝛽ଵ

⎠

⎟
⎟
⎟
⎞

𝑒௜ఏ , (4.91) 

𝜙ସଶ =
𝑟ସ

𝑟ଷ

⎝

⎜
⎜
⎜
⎛

−𝑎ଵ𝛽ଵ
ଶsech(𝐹)ଶ + 𝑑ଵ ቀ൫ඥ𝛽ଵ𝛽ଷ tanh(𝐺)ଶ − 1൯√2

−2 tanh(𝐹) ൫ඥ𝛽ଵ𝛽ଷ tanh(𝐺) + 1/2𝛽ଶ൯ቁ 𝛽ଵ

ଷ
ଶ

(𝛽ଶ + 2ඥ𝛽ଵ𝛽ଷ tanh(𝐺) 𝛽ଵ

⎠

⎟
⎟
⎟
⎞

ଶ

, (4.92) 



𝜓ସଷ =

⎝

⎜
⎜
⎜
⎛

𝑎ଵ𝛽ଵ
ଶcsch(𝐹)ଶ + 𝑑ଵ ቀ൫ඥ𝛽ଵ𝛽ଷ coth(𝐺)ଶ − 1൯√2

−2 tanh(𝐹) ൫ඥ𝛽ଵ𝛽ଷ coth(𝐺) + 1/2𝛽ଶ൯ቁ 𝛽ଵ

ଷ
ଶ

(𝛽ଶ + 2ඥ𝛽ଵ𝛽ଷ coth(𝐺) 𝛽ଵ

⎠

⎟
⎟
⎟
⎞

𝑒௜ఏ , (4.93) 

𝜙ସଷ =
𝑟ସ

𝑟ଷ

⎝

⎜
⎜
⎜
⎛

𝑎ଵ𝛽ଵ
ଶcsch(𝐹)ଶ + 𝑑ଵ ቀ൫ඥ𝛽ଵ𝛽ଷ coth(𝐺)ଶ − 1൯√2

−2 tanh(𝐹) ൫ඥ𝛽ଵ𝛽ଷ coth(𝐺) + 1/2𝛽ଶ൯ቁ 𝛽ଵ

ଷ
ଶ

(𝛽ଶ + 2ඥ𝛽ଵ𝛽ଷ coth(𝐺) 𝛽ଵ

⎠

⎟
⎟
⎟
⎞

ଶ

. (4.94) 

For 𝛽ଵ > 0, ∆= 0, 

𝜓ସସ = ቆ
൫−𝑑ଵඥ𝛽ଵ𝛽ଶ − 2𝑎ଵ𝛽ଵ൯tanh (𝐹) + 𝑑ଵඥ𝛽ଵ𝛽ଶ − 2𝑎ଵ𝛽ଵ

2𝛽ଶ
ቇ 𝑒௜ఏ , (4.95) 

𝜙ସସ =
𝑟ସ

𝑟ଷ
ቆ

൫−𝑑ଵඥ𝛽ଵ𝛽ଶ − 2𝑎ଵ𝛽ଵ൯tanh (𝐹) + 𝑑ଵඥ𝛽ଵ𝛽ଶ − 2𝑎ଵ𝛽ଵ

2𝛽ଶ
ቇ

ଶ

, (4.96) 

𝜓ସହ = ቆ
൫−𝑑ଵඥ𝛽ଵ𝛽ଶ − 2𝑎ଵ𝛽ଵ൯coth (𝐹) + 𝑑ଵඥ𝛽ଵ𝛽ଶ − 2𝑎ଵ𝛽ଵ

2𝛽ଶ
ቇ 𝑒௜ఏ , (4.97) 

𝜙ସହ =
𝑟ସ

𝑟ଷ
ቆ

൫−𝑑ଵඥ𝛽ଵ𝛽ଶ − 2𝑎ଵ𝛽ଵ൯coth (𝐹) + 𝑑ଵඥ𝛽ଵ𝛽ଶ − 2𝑎ଵ𝛽ଵ

2𝛽ଶ
ቇ

ଶ

. (4.98) 

For 𝛽ଵ < 0, ∆> 0, 

𝜓ସ଺ =

⎝

⎛
𝑑ଵඥ−𝛽ଵ tan൫ඥ−𝛽ଵ𝜁൯ Δ + 2𝑎ଵ𝛽ଵsec (ඥ−𝛽ଵ𝜁)

ට−4𝛽ଵ𝛽ଷ + 𝛽ଶ
ଶ − 𝛽ଶsec (ඥ−𝛽ଵ𝜁) ⎠

⎞ 𝑒௜ఏ , (4.99) 

𝜙ସ଺ =
𝑟ସ

𝑟ଷ
ቆ

𝑑ଵඥ−𝛽ଵ tan൫ඥ−𝛽ଵ𝜁൯ Δ + 2𝑎ଵ𝛽ଵsec (ඥ−𝛽ଵ𝜁)

Δ − 𝛽ଶsec (ඥ−𝛽ଵ𝜁)
ቇ

ଶ

, (4.100) 

𝜓ସ଻ = ቆ
−𝑑ଵඥ−𝛽ଵ cot൫ඥ−𝛽ଵ𝜁൯ Δ + 2𝑎ଵ𝛽ଵcsc (ඥ−𝛽ଵ𝜁)

Δ − 𝛽ଶcsc (ඥ−𝛽ଵ𝜁)
ቇ 𝑒௜ఏ , (4.101) 



𝜙ସ଻ =
𝑟ସ

𝑟ଷ
ቆ

−𝑑ଵඥ−𝛽ଵ cot൫ඥ−𝛽ଵ𝜁൯ Δ + 2𝑎ଵ𝛽ଵcsc (ඥ−𝛽ଵ𝜁)

Δ − 𝛽ଶcsc (ඥ−𝛽ଵ𝜁)
ቇ

ଶ

. (4.102) 

For 𝛽ଵ < 0, 𝛽ଷ > 0, 

𝜓ସ଼ =

⎝

⎜⎜
⎛

൫ඥ−𝛽ଵ𝛽ଷ tan(𝐹′)ଶ + tan(𝐹′) 𝛽ଶ

−ඥ−𝛽ଵ𝛽ଷ൯𝑑ଵඥ−𝛽ଵ − 𝑎ଵ𝛽ଵ sec(𝐹′)ଶ

𝛽ଶ + 2ඥ−𝛽ଵ𝛽ଷ tan(𝐹′)

⎠

⎟⎟
⎞

𝑒௜ఏ , (4.103) 

𝜙ସ଼ =
𝑟ସ

𝑟ଷ

⎝

⎜⎜
⎛

൫ඥ−𝛽ଵ𝛽ଷ tan(𝐹′)ଶ + tan(𝐹′) 𝛽ଶ

−ඥ−𝛽ଵ𝛽ଷ൯𝑑ଵඥ−𝛽ଵ − 𝑎ଵ𝛽ଵ sec(𝐹′)ଶ

𝛽ଶ + 2ඥ−𝛽ଵ𝛽ଷ tan(𝐹′)

⎠

⎟⎟
⎞

ଶ

, (4.104) 

𝜓ସଽ =

⎝

⎜⎜
⎛

−൫ඥ−𝛽ଵ𝛽ଷ cot(𝐹′)ଶ + cot(𝐹′) 𝛽ଶ

−ඥ−𝛽ଵ𝛽ଷ൯𝑑ଵඥ−𝛽ଵ − 𝑎ଵ𝛽ଵ csc(𝐹′)ଶ

𝛽ଶ + 2ඥ−𝛽ଵ𝛽ଷ cot(𝐹′)

⎠

⎟⎟
⎞

𝑒௜ఏ , (4.105) 

𝜙ସଽ =
𝑟ସ

𝑟ଷ

⎝

⎜⎜
⎛

−൫ඥ−𝛽ଵ𝛽ଷ cot(𝐹′)ଶ + cot(𝐹′) 𝛽ଶ

−ඥ−𝛽ଵ𝛽ଷ൯𝑑ଵඥ−𝛽ଵ − 𝑎ଵ𝛽ଵ csc(𝐹′)ଶ

𝛽ଶ + 2ඥ−𝛽ଵ𝛽ଷ cot(𝐹′)

⎠

⎟⎟
⎞

ଶ

. (4.106) 

For 𝛽ଵ > 0, 

𝜓ହ଴ = ൭
−4𝛽ଵ

ଷ/ଶ𝛽ଷ𝑑ଵ − ඥ𝛽ଵ(eඥఉభక)ଶ𝑑ଵ + ඥ𝛽ଵ𝛽ଶ
ଶ𝑑ଵ + 4𝑎ଵ𝛽ଵeඥఉభక

(eඥఉభక)ଶ − 2eඥఉభక𝛽ଶ − 4𝛽ଵ𝛽ଷ + 𝛽ଶ
ଶ

൱ 𝑒௜ఏ , (4.107) 

𝜙ହ଴ =
𝑟ସ

𝑟ଷ
൭

−4𝛽ଵ
ଷ/ଶ𝛽ଷ𝑑ଵ − ඥ𝛽ଵ(eඥఉభక)ଶ𝑑ଵ + ඥ𝛽ଵ𝛽ଶ

ଶ𝑑ଵ + 4𝑎ଵ𝛽ଵeඥఉభక

(eඥఉభక)ଶ − 2eඥఉభక𝛽ଶ − 4𝛽ଵ𝛽ଷ + 𝛽ଶ
ଶ

൱

ଶ

. (4.108) 

For 𝛽ଵ > 0, 𝛽ଷ = 0, 

𝜓ହଵ = ൭
−4𝛽ଵ

ଷ/ଶeଶඥఉభక𝛽ଷ𝑑ଵ − 4𝑎ଵ𝛽ଵeඥఉభక − ඥ𝛽ଵ𝑑ଵ

4𝛽ଵ𝛽ଷeଶඥఉభక − 1
൱ 𝑒௜ఏ , (4.109) 



𝜙ହଵ =
𝑟ସ

𝑟ଷ
൭

−4𝛽ଵ
ଷ/ଶeଶඥఉభక𝛽ଷ𝑑ଵ − 4𝑎ଵ𝛽ଵeඥఉభక − ඥ𝛽ଵ𝑑ଵ

4𝛽ଵ𝛽ଷeଶඥఉభక − 1
൱

ଶ

, (4.110) 

4.4 Results and discussion: 
This is the important section of a study as it helps us to understand physical importance and 

dynamical features of solitons for this model by demonstrating real and imaginary parts of many 

useful solutions in the form of 3-D, 2-D and contour plots. The novel generalized auxiliary 

equation mapping method successfully generates bright, dark, periodic, and singular soliton 

solutions. Bright solitons exhibit high intensity whereas dark solitons have lower intensity than its 

background. Kink solitons have permanent profile in medium, while periodic wave have 

dynamical profile and can depend on time. Singular solitons are waves with discontinuous 

derivatives.  Each type of solution has its significance in real life. It is significant to mention that 

the obtained soliton solutions are more generalized and newer and might be a good addition in 

literature.  

In Figure 4.1, graphical profile of Real value of Eq (4.45) expressed as 𝜓ଵଽ has been exhibit, in 

the form of 3-dimensional , and 2-dimensional and contour plot which demonstrates singular bright 

soliton by choosing parameters, −10 ≤ 𝑥 ≤ 10, 𝑡 = 0. .10, 𝑟ଵ = 0.5, 𝑟ଶ = 1.5, 𝑟ଷ = 1.5, 𝑟ସ =

1, 𝛽ଵ = 3, 𝛽ଶ = 0, 𝑎ଵ = 4, 𝜆ଵ = 0.6, 𝑘ଵ = 1.5, 𝑘ଶ = 0.9, 𝑘ଷ = 0.6, 𝑦 = 2 . 

 
 

 
Figure 4.1:-graphs of singular bright soliton 𝝍𝟏𝟗 

In Figure 4.2:graphs of singualr bright  soliton 𝝓𝟏𝟗 ., graphical depiction of Real value of Eq (4.46) 

expressed as 𝜙ଵଽ has been exhibit in the form of 3-dimensional , and 2-dimensional and contour 

plot which demonstrates singular bright soliton for −10 ≤ 𝑥 ≤ 10, 𝑡 = 0. .10, 𝑟ଵ = 0.5, 𝑟ଶ =

1.5, 𝑟ଷ = 1.5, 𝑟ସ = 1, 𝛽ଵ = 3, 𝛽ଶ = 0, 𝑎ଵ = 4, 𝜆ଵ = 0.6, 𝑘ଵ = 1.5, 𝑘ଶ = 0.9, 𝑘ଷ = 0.6, 𝑦 = 2. 



 
 

 
Figure 4.2:graphs of singualr bright  soliton 𝝓𝟏𝟗 . 

Graphical depiction of Real value of Eq (4.64) expressed as 𝜓ଶ଼ has been exhibit in Figure 4.3, in 

the form of 3-dimensional, and 2-dimensional and contour plot which demonstrates as  periodic 

wave solution by choosing parameters, −10 ≤ 𝑥 ≤ 10, 𝑡 = 0. .10, 𝑟ଵ = 1, 𝑟ଶ = −1.5, 𝑟ଷ =

1, 𝑟ସ = 1, 𝛽ଵ = 1, 𝛽ଶ = 3, 𝑎଴ = 1.9, 𝜆ଵ = 0.6, 𝑘ଵ = 1, 𝑘ଶ = 0.9, 𝑘ଷ = 0.2, 𝑦 = 1 . 

 
 

 
Figure 4.3: graphs of periodic solitary wave solution 𝝍𝟐𝟖.  

Graphical depiction of Real value of Eq (4.64) expressed as 𝜙ଶ଼ has been exhibit in Figure 4.4, in 

the form of 3-dimensional, 2-dimensional and their contour plot which demonstrates singular dark 

soliton solution for −10 ≤ 𝑥 ≤ 10, 𝑡 = 0. .10, 𝑟ଵ = 1, 𝑟ଶ = −1.5, 𝑟ଷ = 1, 𝑟ସ = 1, 𝛽ଵ = 1, 𝛽ଶ =

3, 𝑎଴ = 1.9, 𝜆ଵ = 0.6, 𝑘ଵ = 1, 𝑘ଶ = 0.9, 𝑘ଷ = 0.2, 𝑦 = 1 . 



 
 

 
Figure 4.4: -graphs of singular dark soliton  𝝓𝟐𝟖. 

Graphical illustration of Real value of  Eq (4.102) expressed as 𝜓ସ଻ has been exhibit in Figure 4.5, 

in the form of 3-dimensional, and 2-dimensional and contour plot which demonstrates localized 

excitation wave pattern as singular periodic soliton by selecting parameters, −10 ≤ 𝑥 ≤ 10, 𝑡 =

0. .10, 𝑟ଵ = −1, 𝑟ଶ = 1.5, 𝑟ଷ = 1.5, 𝑟ସ = 1, 𝛽ଵ = −3, 𝛽ଶ = 4, 𝑎ଵ = 4, 𝜆ଵ = 0.6, 𝑘ଵ = 1, 𝑘ଶ =

0.9, 𝑘ଷ = 0.2, 𝑦 = 2. 

 
 

 
 

Figure 4.5: -graphical simulation of singular periodic solitary  wave solution 𝝍𝟒𝟕. 

Graphical illustration of Real value of  Eq (4.102) expressed as 𝜙ସ଻ has been exhibit in Figure 4.6, 

in the form of 3-dimensional , and 2-dimensional and contour plot which demonstrates localized 

excitation wave pattern as periodic soliton for  −10 ≤ 𝑥 ≤ 10, 𝑡 = 0. .10, 𝑟ଵ = −1, 𝑟ଶ = 1.5, 𝑟ଷ =

1.5, 𝑟ସ = 1, 𝛽ଵ = −3, 𝛽ଶ = 4, 𝑎ଵ = 4, 𝜆ଵ = 0.6, 𝑘ଵ = 1, 𝑘ଶ = 0.9, 𝑘ଷ = 0.2, 𝑦 = 2. 



 
 

 
 

Figure 4.6: -graphical simulation of periodic solitary  wave solution  𝝓𝟒𝟕 . 

4.5 (𝟐 + 𝟏) Darvey-Stewartson (DS) system: 

Here, we will investigate the (2 + 1) Davey-Stewartson (DS) system for complex valued function 

𝜓 and real valued function 𝜙 of 𝑥, 𝑦 and 𝑡: 

∂

∂𝑡 ∂𝑥
𝜏 +

1

2
𝜎ଶ ቆ

∂ଶ

∂𝑥ଶ
𝜏 + 𝜎ଶ

∂ଶ

∂yଶ
𝜏ቇ + 𝜆|𝜏|ଶ𝜏 −

∂

∂𝑥
𝜑𝜏 = 0 , 

∂ଶ

∂𝑥ଶ
𝜑 − 𝜎ଶ

∂ଶ

∂yଶ
𝜑 − 2𝜆

∂

∂𝑥
|𝜑|ଶ = 0. 

(4.111) 

Where the parameters, 𝜆, 𝜎 = ±1 establish four possible types of the system. Especially, if  𝜎 =

1 and 𝜎 = −1, describes well known Davey-Stewartson I (DSI) and Davey-Stewartson II (DSII) 

equations respectively. Similarly, the focusing and de-focusing cases are characterized by 𝜆 =

1, 𝜆 = −1. Here, 𝜏(𝑥, 𝑦, 𝑡) exhibit the amplitude of a surface wave packet whereas, 𝜑(𝑥, 𝑦, 𝑡) 

exhibits velocity potential of the mean flow depending on wave surface [162] 

The Davey-Stewartson (DSS) equation is a very important model that describes the short wave 

and long wave resonance in water exhibiting limited depth. This is an important model in two-

dimensional space that explains higher order generalization of nonlinear Schrodinger equation. To 

acquire a better understanding of its applications in real world problems, analytical solutions are 

required. Many researchers have solved this model analytically and numerically to generate a 

variety of solutions. Such as, HA Zedan [163] established periodic and solitary wave solutions of 

DS model by using compound Riccati equation rational expansion method.  RF Zinati [164] 

investigated DS equation by various techniques. Gaballah.et.al.[165] studied this model by 

generalized Jacobi elliptic expansion method to obtain periodic and optical solitons. 

Frauendiener.et.al. [166] studied this model via hybrid numerical technique. Saima.et.al [167] 



finds soliton solutions using three integrating techniques. After careful literature review, we 

realized still a lot of work can be done on this model. Motivated by above mentioned work we are 

using modified auxiliary equation method on (2 + 1)-dimensional Davey-Stewartson (DS) 

equation. It is evident from studies that higher-dimensional nonlinear models exhibit rich 

phenomena as compared to one-dimensional models.   

Let us use the following complex transformations to solve Eq (4.111)  

𝜏(𝑥, 𝑦, 𝑡) = 𝑢(𝜁)𝑒௜ఏ ,           𝜑(𝑥, 𝑦, 𝑡) = 𝑉(𝜁). 

 Where, 

𝜁 = 𝑘(𝑥 + ℓ𝑦 − 𝜂𝑡),           𝜃 = 𝑘ଵ𝑥 + 𝑘ଶ𝑦 + 𝑘ଷ𝑡, 

using the above-mentioned wave transformation in Eq (4.111) , converts the system into the 

following nonlinear system of ODE, 

𝜎ଶ𝑘ଶ(𝑙ଶ𝜎ଶ + 1)
dଶ

d𝜉ଶ
𝑢(𝜁) + 2𝑖𝑘(𝑘ଶ𝑙𝜎ସ + 𝑘ଵ𝜎ଶ − 𝜂)

d

d𝜉
𝑢(𝜁) − 

2𝑢(𝜁) ቆ
𝜎ସ𝑘ଶ

ଶ

2
+

𝜎ଶ𝑘ଵ
ଶ

2
+ ൭

d

d𝜉
𝑉(𝜁)൱ 𝑘 + 𝑘ଷቇ + 2𝜆൫𝑢(𝜁)൯

ଷ
= 0. 

(4.112) 

Separating Eq. (4.112) into real and imaginary parts we have, 

Real part: 

𝜎ଶ𝑘ଶ(𝑙ଶ𝜎ଶ + 1)
dଶ

d𝜉ଶ
𝑢(𝜁) + 2𝜆൫𝑢(𝜁)൯

ଷ
− 2 ൭

d

d𝜉
𝑉(𝜁)൱ 𝑘𝑢(𝜁) − 

൫𝜎ସ𝑘ଶ
ଶ + 𝜎ଶ𝑘ଵ

ଶ + 2𝑘ଷ൯𝑢(𝜁) = 0, 

(4.113) 

Imaginary part: 

𝜂 = 𝑘ଶ𝑙𝜎ସ + 𝑘ଵ𝜎ଶ. (4.114) 

Also, we have, from second equation of (4.111), 

𝑘(𝑙ଶ𝜎ଶ − 1) ൭
dଶ

d𝜉ଶ
𝑉(𝜁)൱ + 4𝜆𝑢(𝜁)

𝑑𝑢

𝑑𝜁
= 0, (4.115) 



integrating Eq (4.115), we get 

d

d𝜉
𝑉(𝜁) = −

2𝜆𝑢(𝜁)ଶ

𝑘(𝑙ଶ𝜎ଶ − 1)
, (4.116) 

⇒ 𝑉(𝜁) = −
2𝜆 ∫ 𝑢(𝜁)ଶ𝑑 𝜁

𝑘(𝑙ଶ𝜎ଶ − 1)
. (4.117) 

Substituting Eq (4.116) along with the value of 𝜂 into Eq (4.112) we get 

𝜎ଶ𝑘ଶ(𝑙ଶ𝜎ଶ + 1)
dଶ

d𝜉ଶ
𝑢(𝜉) + 2𝜆൫𝑢(𝜉)൯

ଷ
 

−2𝑢(𝜉) ቆ
𝜎ସ𝑘ଶ

ଶ

2
+

𝜎ଶ𝑘ଵ
ଶ

2
+ ቆ−

2𝜆𝑢(𝜁)ଶ

(𝑙ଶ𝜎ଶ − 1)
ቇ + 𝑘ଷቇ = 0, 

(4.118) 

balancing the highest order of linear term with the nonlinear term in Eq. (4.118) we usually 

determine the value of 𝑁. Here 3𝑁 = 𝑁 + 2 ⇒ 𝑁 = 1. This gives solution of the form. 

𝑢(𝜁) = 𝑆 = 𝑎଴ + 𝑎ଵℚ(𝜁) +
𝑏ଵ

ℚ(𝜁)
+

𝑑ଵ ቀ
𝑑

𝑑𝜁
ℚ(𝜁)ቁ

ℚ(𝜁)ଶ
,  (4.119) 

replacing Eq. (4.119) into Eq. (4.118) along with Eq. (1.48), we get algebraic system and by 

equating this system to 0 we get values of coefficients 𝑎଴, 𝑎ଵ , 𝑎ଶ, 𝑏ଵ, 𝑑ଵ, 𝛽ଵ, 𝛽ଶ, 𝛽ଷ, 𝑘 as follows. 

Set 1 : 

𝑎଴ = 0, 𝑎ଵ = 𝑎ଵ, 𝑏ଵ = 0, 𝑘 = 𝑘, 𝛽ଶ = 𝛽ଶ, 𝛽ଵ =
−2𝜎ସ𝑘ଶ

ଶ − 2𝜎ଶ𝑘ଵ
ଶ − 4𝑘ଷ

𝑘ଶ𝜎ଶ(𝑙ଶ𝜎ଶ + 1)
, 

𝛽ଷ =
−4𝜆𝑎ଵ

ଶ

𝑘ଶ𝜎ଶ(𝑙ଶ𝜎ଶ − 1)
, 𝑑ଵ =

ට−𝑙ଶ𝜎ଶ + 1
𝜆

𝜎𝑘

2
. 

For these set of coefficients, we have following solutions,  

𝑢(𝜁) = 𝑆 = 𝑎ଵℚ(𝜁) +
𝑑ଵ ቀ

𝑑
𝑑𝜁

ℚ(𝜁)ቁ

ℚ(𝜁)
,   

where, 

𝜏௝(𝑥, 𝑦, 𝑡) = 𝑢௝(𝜁)𝑒௜ఏ ,           𝜑௝(𝑥, 𝑦, 𝑡) = 𝑉௝(𝜁) = −
2𝜆 ∫ 𝑢(𝜁)ଶ𝑑 𝜁

𝑘(𝑙ଶ𝜎ଶ − 1)
, 



substituting these coefficients along with the auxiliary solutions of Eq. (1.48), we get solutions of 

Eq. (4.111) as follows. 

F or 𝛽ଵ > 0, ∆> 0, 

𝜏ଵ = ቌ
−𝛽ଵ

ଵ
ଶ𝑑ଵ(∆ )sinh (ඥ𝛽ଵ𝜉) + 2𝑎ଵ𝛽ଵ

ଶ

൫∆ cosh (ඥ𝛽ଵ𝜉) − 𝛽ଶ൯
ቍ 𝑒௜ఏ , (4.120) 

 

𝜙ଵ =
𝜆

𝑘(𝑙ଶ𝜎ଶ − 1)𝛽ଵ

ଷ
ଶ𝛽ଷ

ଶ𝐸𝑇
 

× ቆ𝐸𝛽ଷ√2𝛽ଵ
ଶ𝛽ଶ(∆ − 𝛽ଶ)൫𝛽ଷ𝑑ଵ

ଶ − 𝑎ଵ
ଶ൯ arctan ቆ

𝛽ଵ𝛽ଷ tanh(𝐹) √2

𝑇
ቇ 

−2𝑇

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

−2𝛽ଷ𝑎ଵ𝑑ଵ(∆ − 2𝛽ଶ)𝛽ଵ

ଷ
ଶ +

𝐸𝛽ଷ
ଶln(1 + tanh(𝐹)) 𝑑ଵ

ଶ𝛽ଵ
ଶ

−𝐸𝛽ଷ
ଶ ln(tanh(𝐹) − 1) 𝑑ଵ

ଶ𝛽ଵ
ଶ

−
𝛽ଶ∆

2
ቆ

൫𝛽ଷ𝑑ଵ
ଶ + 𝑎ଵ

ଶ൯ tanh(𝐹) 𝛽ଵ

−2ඥ𝛽ଵ𝑎ଵ𝑑ଵ𝛽ଶ

ቇ

−ඥ𝛽ଵ𝑎ଵ𝑑ଵ𝛽ଶ
ଷ − 2 ቆ𝛽ଵ𝛽ଷ −

1

4𝛽ଶ
ଶቇ

× 𝛽ଵ൫𝛽ଷ𝑑ଵ
ଶ + 𝑎ଵ

ଶ൯ tanh(𝐹) ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

, 

 

 

 

 

 

 

 

 

(4.121) 



𝜏ଶ = ቆ
−ඥ𝛽ଵ𝑑ଵ(∆)cosh (ඥ𝛽ଵ𝜉) + 2𝑎ଵ𝛽ଵ

൫∆ sinh (ඥ𝛽ଵ𝜉) − 𝛽ଶ൯
ቇ 𝑒௜ఏ , (4.122) 

𝜑ଶ =
−2𝜆

𝑘(𝑙ଶ𝜎ଶ − 1)
× 

× ඥ𝛽ଵ𝑑ଵ
ଶ ln(1 + tanh(𝐹)) − ඥ𝛽ଵ𝑑ଵ

ଶ ln(tanh(𝐹) − 1) 

+8
𝛽ଵ tanh(𝐹) Δ𝑎ଵ𝑑ଵ

𝐸𝛽ଶ
ଶ + 8

𝛽ଵ

ଷ
ଶ𝛽ଷ tanh(𝐹) 𝑑ଵ

ଶ

𝐸𝛽ଶ
ଶ  

−2
ඥ𝛽ଵ tanh(𝐹) 𝑑ଵ

ଶ

𝐸
+ 8

𝛽ଵ

ଷ
ଶ tanh(𝐹) 𝑎ଵ

ଶ

𝐸𝛽ଶ
ଶ  

−2
ඥ𝛽ଵ tanh(𝐹) 𝑎ଵ

ଶ

𝐸𝛽ଷ
− 2

ඥ𝛽ଵΔ𝑑ଵ
ଶ

𝐸𝛽ଶ
− 2

ඥ𝛽ଵΔ𝑎ଵ
ଶ

𝐸𝛽ଷ𝛽ଶ
 

−
ඥ𝛽ଵ𝛽ଶ𝑑ଵ

ଶ

ඥ𝛽ଵ𝛽ଷ

arctanh ቆ
tanh(𝐹) 𝛽ଶ + Δ

2ඥ𝛽ଵ𝛽ଷ

ቇ 

+
ඥ𝛽ଵ𝛽ଶ𝑎ଵ

ଶ

𝛽ଷඥ𝛽ଵ𝛽ଷ

arctanh ቆ
tanh(𝐹) 𝛽ଶ + Δ

2ඥ𝛽ଵ𝛽ଷ

ቇ. 

(4.123) 

 

For 𝛽ଵ > 0, ∆= 0, 

𝜏ଷ =
−ඥ𝛽ଵ𝑑ଵ tanh(𝐹) 𝛽ଶ + 𝑑ଵඥ𝛽ଵ𝛽ଶ − 2𝑎ଵ𝛽ଵ tanh(𝐹) − 2𝑎ଵ𝛽ଵ

2𝛽ଶ
𝑒௜ఏ , (4.124) 

𝜑ଷ =
−2𝜆

𝑘(𝑙ଶ𝜎ଶ − 1)
 

×

⎝

⎜
⎜
⎜
⎜
⎛

−2
𝛽ଵ tanh(𝐹) 𝑎ଵ𝑑ଵ

𝛽ଶ
+ ඥ𝛽ଵ𝑑ଵ

ଶ ln(1 + tanh(𝐹))

−
ඥ𝛽ଵ tanh(𝐹) 𝑑ଵ

ଶ

2
− 4

𝛽ଵ

ଷ
ଶ𝑎ଵ

ଶ ln(tanh(𝐹) − 1)

𝛽ଶ
ଶ

−2
𝛽ଵ

ଷ/ଶtanh (𝐹)𝑎ଵ
ଶ

𝛽ଶ
ଶ ⎠

⎟
⎟
⎟
⎟
⎞

, 

(4.125) 

 



𝜏ସ =
−ඥ𝛽ଵ𝑑ଵ coth(𝐹) 𝛽ଶ + 𝑑ଵඥ𝛽ଵ𝛽ଶ − 2𝑎ଵ𝛽ଵ coth(𝐹) − 2𝑎ଵ𝛽ଵ

2𝛽ଶ
𝑒௜ఏ , (4.126) 

𝜑ସ =
−2𝜆

𝑘(𝑙ଶ𝜎ଶ − 1)
 

×

⎝

⎜
⎜
⎜
⎜
⎛

−2
𝛽ଵ coth(𝐹) 𝑎ଵ𝑑ଵ

𝛽ଶ
+ ඥ𝛽ଵ𝑑ଵ

ଶ ln(1 + coth(𝐹))

−
ඥ𝛽ଵ coth(𝐹) 𝑑ଵ

ଶ

2
− 4

𝛽ଵ

ଷ
ଶ𝑎ଵ

ଶ ln(coth(𝐹) − 1)

𝛽ଶ
ଶ

−2
𝛽ଵ

ଷ/ଶcoth (𝐹)𝑎ଵ
ଶ

𝛽ଶ
ଶ ⎠

⎟
⎟
⎟
⎟
⎞

. 

(4.127) 

 

For 𝛽ଵ < 0, ∆> 0, 

𝜏ହ =

ቆ
2𝑎ଵ𝛽ଵ sec൫ඥ−𝛽ଵ𝜉൯

+ tan൫ඥ−𝛽ଵ𝜉൯ 𝑑ଵඥ−𝛽ଵ∆
ቇ

∆ − 𝛽ଶsec (ඥ−𝛽ଵ𝜉)
𝑒௜ఏ , 

(4.128) 

 

 

𝜑ହ =
−2𝜆

𝑘(𝑙ଶ𝜎ଶ − 1)ඥ−𝛽ଵ𝛽ଷ

 

×

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

ቆ
൫𝛽ଷ𝑑ଵ

ଶ + 𝑎ଵ
ଶ൯(J) tan(𝐹′)

2𝛽ଷ

−
ඥ−𝛽ଵ𝑎ଵ𝑑ଵ(−2Δ𝛽ଵ𝛽ଷ + (J)𝛽ଶ)

𝛽ଵ𝛽ଷ
ቇ

× ቆtan(𝐹′)ଶ −
Δ𝛽ଶ

2𝛽ଵ𝛽ଷ
− 1 +

𝛽ଶ
ଶ

2𝛽ଵ𝛽ଷ
ቇ

ିଵ

+
𝛽ଵ൫−𝛽ଷ𝑑ଵ

ଶ + 𝑎ଵ
ଶ൯(Δ − 𝛽ଶ)𝛽ଶ√2

2√𝑇

× arctanh ቆ
tan(𝐹′) 𝛽ଵ𝛽ଷ√2

√𝑇
ቇ

+
𝑑ଵ

ଶarctan (tan(𝐹′))

4 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

, 

(4.129) 



𝜏଺ =

ቆ
2𝑎ଵ𝛽ଵ csc൫ඥ−𝛽ଵ𝜉൯

−2𝑐𝑜 t൫ඥ−𝛽ଵ𝜉൯ ඥ−𝛽ଵ∆ 𝑑ଵ

ቇ

∆ − 𝛽ଶcsc (ඥ−𝛽ଵ𝜉)
𝑒௜ఏ , 

(4.130) 

𝜑଺ =
−2𝜆

𝑘(𝑙ଶ𝜎ଶ − 1)
 

×

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

−
8𝛽ଵ tan(𝐹′) Δ𝑎ଵ𝑑ଵ

𝐻𝛽ଶ
ଶ −

8𝛽ଵ
ଶ𝛽ଷ tan(𝐹′) 𝑑ଵ

ଶ

ඥ−𝛽ଵ𝐻𝛽ଶ
ଶ

−
2𝛽ଵΔ𝑑ଵ

ଶ

ඥ−𝛽ଵ𝐻𝛽ଶ

+
2𝛽ଵ tan(𝐹′) 𝑑ଵ

ଶ

ඥ−𝛽ଵ𝐻
−

8𝛽ଵ
ଶ tan(𝐹′) 𝑎ଵ

ଶ

ඥ−𝛽ଵ𝐻𝛽ଶ
ଶ

+
2𝛽ଵ tan(𝐹′) 𝑎ଵ

ଶ

ඥ−𝛽ଵ𝐻𝛽ଷ

−
2𝛽ଵΔ𝑎ଵ

ଶ

ඥ−𝛽ଵ𝐻𝛽ଶ𝛽ଷ

+
𝛽ଵ𝛽ଶ𝑑ଵ

ଶ

ඥ−𝛽ଵඥ𝛽ଵ𝛽ଷ

arctan ቆ
−2 tan(𝐹′) 𝛽ଶ + 2Δ

4ඥ𝛽ଵ𝛽ଷ

ቇ

−
𝛽ଵ𝛽ଶ𝑎ଵ

ଶ

ඥ−𝛽ଵ𝛽ଷඥ𝛽ଵ𝛽ଷ

arctan ቆ
−2 tan(𝐹′) 𝛽ଶ + 2Δ

4ඥ𝛽ଵ𝛽ଷ

ቇ

+2
𝛽ଵ𝑑ଵ

ଶarctan (tan(𝐹′))

ඥ−𝛽ଵ ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

. 

(4.131) 

For 𝛽ଵ < 0, 𝛽ଷ > 0, 

𝜏଺ =

ቆ
൫ඥ−𝛽ଵ𝛽ଷ tan(𝐹′)ଶ + tan(𝐹′) 𝛽ଶ − ඥ−𝛽ଵ𝛽ଷ൯

× 𝑑ଵඥ−𝛽ଵ − 𝑎ଵ𝛽ଵ sec(𝐹′)ଶ
ቇ

𝛽ଶ + 2ඥ−𝛽ଵ𝛽ଷ tan(𝐹′)
𝑒௜ఏ , 

(4.132) 

𝜑଺ =
−2𝜆

𝑘(𝑙ଶ𝜎ଶ − 1)
 

×
2𝛽ଵ

ඥ−𝛽ଵ

ቆ
൫2ඥ−𝛽ଵ𝛽ଷඥ−𝛽ଵ𝑎ଵ𝑑ଵ + 𝛽ଵ𝛽ଷ𝑑ଵ

ଶ + 𝑎ଵ
ଶ𝛽ଵ൯ tan(𝐹′)

4𝛽ଵ𝛽ଷ
 

+
1

4𝛽ଵ𝛽ଷ

⎝

⎜
⎛

ቆ
−8ඥ−𝛽ଵ𝛽ଷඥ−𝛽ଵ𝑎ଵ𝑑ଵ𝛽ଵ𝛽ଷ + 2ඥ−𝛽ଵ𝛽ଷඥ−𝛽ଵ𝑎ଵ𝛽ଶ

ଶ𝑑ଵ

−4𝛽ଵ
ଶ𝛽ଷ

ଶ𝑑ଵ
ଶ + 𝛽ଵ𝛽ଷ𝑑ଵ

ଶ𝛽ଶ
ଶ − 4𝑎ଵ

ଶ𝛽ଵ
ଶ𝛽ଷ + 𝑎ଵ

ଶ𝛽ଵ𝛽ଶ
ଶ

ቇ

4𝛽ଵ𝛽ଷ tan(𝐹′) − 2ඥ−𝛽ଵ𝛽ଷ𝛽ଶ

 

+
𝑖ඥ𝛽ଵ𝛽ଷ𝛽ଶ൫−𝛽ଷ𝑑ଵ

ଶ + 𝑎ଵ
ଶ൯ ln൫−2𝛽ଵ𝛽ଷ tan(𝐹′) + ඥ−𝛽ଵ𝛽ଷ𝛽ଶ൯

𝛽ଷ
ቇ 

−𝑑ଵ
ଶ൫𝜋/2 − arctan(tan(𝐹′))൯ቁ, 

(4.133) 

 



𝜏଻ =

ቆ
−൫ඥ−𝛽ଵ𝛽ଷ cot(𝐹′)ଶ + cot(𝐹′) 𝛽ଶ − ඥ−𝛽ଵ𝛽ଷ൯

× 𝑑ଵඥ−𝛽ଵ − 𝑎ଵ𝛽ଵ csc(𝐹′)ଶ
ቇ

𝛽ଶ + 2ඥ−𝛽ଵ𝛽ଷ cot(𝐹′)
𝑒௜ఏ , 

(4.134) 

 

 

𝜑଻ =
−2𝜆

𝑘(𝑙ଶ𝜎ଶ − 1)
 

×
2𝛽ଵ

ඥ−𝛽ଵ

ቆ
൫2ඥ−𝛽ଵ𝛽ଷඥ−𝛽ଵ𝑎ଵ𝑑ଵ + 𝛽ଵ𝛽ଷ𝑑ଵ

ଶ + 𝑎ଵ
ଶ𝛽ଵ൯ cot(𝐹′)

4𝛽ଵ𝛽ଷ
 

+
1

4𝛽ଵ𝛽ଷ

⎝

⎜
⎛

ቆ
8ඥ−𝛽ଵ𝛽ଷඥ−𝛽ଵ𝑎ଵ𝑑ଵ𝛽ଵ𝛽ଷ − 2ඥ−𝛽ଵ𝛽ଷඥ−𝛽ଵ𝑎ଵ𝛽ଶ

ଶ𝑑ଵ

−4𝛽ଵ
ଶ𝛽ଷ

ଶ𝑑ଵ
ଶ + 𝛽ଵ𝛽ଷ𝑑ଵ

ଶ𝛽ଶ
ଶ − 4𝑎ଵ

ଶ𝛽ଵ
ଶ𝛽ଷ + 𝑎ଵ

ଶ𝛽ଵ𝛽ଶ
ଶ

ቇ

4𝛽ଵ𝛽ଷ cot(𝐹′) − 2ඥ−𝛽ଵ𝛽ଷ𝛽ଶ

 

+
𝑖ඥ𝛽ଵ𝛽ଷ𝛽ଶ൫−𝛽ଷ𝑑ଵ

ଶ + 𝑎ଵ
ଶ൯ ln൫−2𝛽ଵ𝛽ଷ cot(𝐹′) + ඥ−𝛽ଵ𝛽ଷ𝛽ଶ൯

𝛽ଷ
ቇ 

−𝑑ଵ
ଶ൫𝜋/2 − arccot(cot(𝐹′))൯ቁ. 

(4.135) 

For 𝛽ଵ > 0, 

𝜏଼ =
−4𝛽ଵ

ଷ/ଶ𝛽ଷ𝑑ଵ − ඥ𝛽ଵ ቀeඥఉభకቁ
ଶ

𝑑ଵ + ඥ𝛽ଵ𝛽ଶ
ଶ𝑑ଵ + 4𝑎ଵ𝛽ଵeඥఉభక

ቀeඥఉభకቁ
ଶ

− 2eඥఉభక𝛽ଶ − 4𝛽ଵ𝛽ଷ + 𝛽ଶ
ଶ

𝑒௜ఏ , (4.136) 

𝜑଼ =
−2𝜆

𝑘(𝑙ଶ𝜎ଶ − 1)𝛽ଵ
ଵ/ଶ𝛽ଷ

ଷ/ଶ ቀeଶඥఉభక − 2eඥఉభక𝛽ଶ − 4𝛽ଵ𝛽ଷ + 𝛽ଶ
ଶቁ

 

×

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

ඥ𝛽ଵ ቀ𝛽ଶ(−𝛽ଷ𝑑ଵ
ଶ + 𝑎ଵ

ଶ) ቀeଶඥఉభక − 2eඥఉభక𝛽ଶ − 4𝛽ଵ𝛽ଷ + 𝛽ଶ
ଶቁ

arctanh ൭
eඥఉభక − 𝛽ଶ

2ඥ𝛽ଵ𝛽ଷ

൱ + ඥ𝛽ଵ𝛽ଷ ቀln (eඥఉభక)eଶඥఉభక𝛽ଷ𝑑ଵ
ଶ

− ቀ4𝛽ଵ𝛽ଷ − 𝛽ଶ
ଶ + 2eඥఉభక𝛽ଶቁ 𝛽ଷ𝑑ଵ

ଶ ln ቀeඥఉభకቁ

+ ቀ8ඥ𝛽ଵ𝑎ଵ𝛽ଷ𝑑ଵ − 2𝛽ଶ൫𝛽ଷ𝑑ଵ
ଶ + 𝑎ଵ

ଶ൯ቁ eඥఉభక

−൫8𝛽ଷ𝑑ଵ
ଶ + 8𝑎ଵ

ଶ൯ ቆ𝛽ଵ𝛽ଷ −
𝛽ଶ

ଶ

4
ቇቍ

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

. 

(4.137) 

For 𝛽ଵ > 0, 𝛽ଶ = 0, 



𝜏ଽ =
−4eଶඥఉభక𝛽ଵ

ଷ/ଶ𝛽ଷ𝑑ଵ − 4𝑎ଵ𝛽ଵeඥఉభక − ඥ𝛽ଵ𝑑ଵ

4𝛽ଵ𝛽ଷeଶඥఉభక − 1
𝑒௜ఏ , (4.138) 

𝜑ଽ = −2𝜆

⎝

⎜
⎜
⎜
⎛

4𝛽ଵ

ଷ
ଶeଶඥఉభక ln ቀeඥఉభకቁ 𝛽ଷ

ଶ𝑑ଵ
ଶ − ඥ𝛽ଵ𝑑ଵ

ଶ ln ቀeඥఉభకቁ 𝛽ଷ

−8𝑎ଵ𝛽ଵ𝑑ଵeඥఉభక𝛽ଷ − 2ඥ𝛽ଵ(𝛽ଷ𝑑ଵ
ଶ + 𝑎ଵ

ଶ)

𝑘(𝑙ଶ𝜎ଶ − 1) ቀ4𝛽ଷ
ଶ𝛽ଵeଶඥఉభక − 𝛽ଷቁ

⎠

⎟
⎟
⎟
⎞

, (4.139) 

 

Set 2 : 

𝑎଴ =
−(𝑙ଶ𝜎ଶ − 1)√2

2𝜆ඨ
𝑙ସ𝜎ସ − 1

൫𝜎ସ𝑘ଶ
ଶ + 𝜎ଶ𝑘ଵ

ଶ + 2𝑘ଷ൯𝜆

 , 𝑎ଵ =
1

2√2
ඨ

𝑙ସ𝜎ସ − 1

൫𝜎ସ𝑘ଶ
ଶ + 𝜎ଶ𝑘ଵ

ଶ + 2𝑘ଷ൯𝜆
𝜎ଶ𝛽ଶ𝑘ଶ, 

𝑏ଵ = 0, 𝑘 = 𝑘, 𝛽ଶ = 𝛽ଶ, 𝛽ଵ =
−2𝜎ସ𝑘ଶ

ଶ − 2𝜎ଶ𝑘ଵ
ଶ − 4𝑘ଷ

𝑘ଶ𝜎ଶ(𝑙ଶ𝜎ଶ + 1)
, 

𝛽ଷ = −
𝛽ଶ

ଶ(𝑙ଶ𝜎ଶ + 1)𝑘ଶ𝜎ଶ

8𝜎ସ𝑘ଶ
ଶ + 8𝜎ଶ𝑘ଵ

ଶ + 16𝑘ଷ

, 𝑑ଵ = 0. 

Substituting these coefficients along with the auxiliary solutions of Eq. (1.48), we get solutions of 

Eq. (4.111) as follows. 

𝑢(𝜁) = 𝑆 = 𝑎଴ + 𝑎ଵℚ(𝜁). (4.140) 

 

For 𝛽ଵ > 0, we have 

𝜏ଵ଴ =

ቆ
−𝑎ଵ𝛽ଵ𝛽ଶ csch(𝐹)ଶ − 𝑎଴𝛽ଶ

ଶ

+(coth(𝐹) + 1)ଶ𝑎଴𝛽ଵ𝛽ଷ

ቇ

(coth(𝐹) + 1)ଶ𝛽ଵ𝛽ଷ − 𝛽ଶ
ଶ 𝑒௜ఏ , 

(4.141) 

 



𝜑ଵ଴ =
−2𝜆

𝑘(𝑙ଶ𝜎ଶ − 1) ቆ
ඥ𝛽ଵ𝛽ଶ(tanh𝑓ସ𝛽ଵ𝛽ଷ + 4tanh𝑓ଷ𝛽ଵ𝛽ଷ

+(6𝛽ଵ𝛽ଷ − 4𝛽ଶ
ଶ)tanh𝑓ଶ + 4𝛽ଵ𝛽ଷtanh𝑓 + 𝛽ଵ𝛽ଷ)𝛽ଷ

ଷ
ቇ

 

×

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑎ଵට𝛽ଵ𝛽ଶ
ଶ𝛽ଷ

ଷ(tanh𝑓ସ𝛽ଵ𝛽ଷ + 4tanh𝑓ଷ𝛽ଵ𝛽ଷ

+(6𝛽ଵ𝛽ଷ − 4𝛽ଶ
ଶ)tanh𝑓ଶ + 4𝛽ଵ𝛽ଷtanh𝑓 + 𝛽ଵ𝛽ଷ)

൬𝑎଴𝛽ଷ −
𝑎ଵ𝛽ଶ

4
൰ ln ቆ2ට𝛽ଵ𝛽ଶ

ଶ𝛽ଷ
ଷtanh𝑓 − 𝛽ଵ𝛽ଷ

ଶ(tanh𝑓 + 1)ଶቇ

−𝑎ଵට𝛽ଵ𝛽ଶ
ଶ𝛽ଷ

ଷ(tanh𝑓ସ𝛽ଵ𝛽ଷ + 4(tanh(𝑓))ଷ𝛽ଵ𝛽ଷ

+(6𝛽ଵ𝛽ଷ − 4𝛽ଶ
ଶ)tanh𝑓ଶ + 4𝛽ଵ𝛽ଷtanh𝑓 + 𝛽ଵ𝛽ଷ)

(𝑎଴𝛽ଷ −
𝑎ଵ𝛽ଶ

4
)ln (2ට𝛽ଵ𝛽ଶ

ଶ𝛽ଷ
ଷ tanh𝑓

+𝛽ଵ𝛽ଷ
ଶ(tanh𝑓 + 1)ଶ) − 𝛽ଶ(𝑎଴

ଶ(tanh𝑓ସ𝛽ଵ𝛽ଷ

+4tanh𝑓ଷ𝛽ଵ𝛽ଷ + ൫6𝛽ଵ𝛽ଷ − 4𝛽ଶ
ଶ൯tanh𝑓ଶ

+4𝛽ଵ𝛽ଷtanh𝑓 + 𝛽ଵ𝛽ଷ)𝛽ଷln (tanh𝑓 − 1)

−𝑎଴
ଶ(tanh𝑓ସ𝛽ଵ𝛽ଷ + 4tanh𝑓ଷ𝛽ଵ𝛽ଷ

+(6𝛽ଵ𝛽ଷ − 4𝛽ଶ
ଶ)tanh𝑓ଶ + 4𝛽ଵ𝛽ଷtanh𝑓 + 𝛽ଵ𝛽ଷ)𝛽ଷ

ln (tanh𝑓 + 1) − 𝑎ଵ
ଶ𝛽ଵ𝛽ଶ

ଶtanh𝑓(tanh𝑓 − 1)ଶ)𝛽ଷ
ଶ ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

. 

(4.142) 

For 𝛽ଵ > 0, ∆> 0, 

𝜏ଵଵ =
(𝑙ଶ𝜎ଶ − 1)√2

2𝜆ඨ
𝑙ସ𝜎ସ − 1

൫𝜎ସ𝑘ଶ
ଶ + 𝜎ଶ𝑘ଵ

ଶ + 2𝑘ଷ൯𝜆

𝑒௜ఏ , 
(4.143) 

𝜑ଵଵ =
−2൫𝜎ସ𝑘ଶ

ଶ + 𝜎ଶ𝑘ଵ
ଶ + 2𝑘ଷ൯𝜆

𝑘(𝑙ଶ𝜎ଶ + 1)
𝜉. (4.144) 

For 𝛽ଵ > 0, ∆= 0, 

𝜏ଵଶ =
−𝑎ଵ𝛽ଵ tanh(𝐹) + 𝑎଴𝛽ଶ − 𝑎ଵ𝛽ଵ

𝛽ଶ
𝑒௜ఏ , (4.145) 

𝜑ଵଶ =
2𝜆

𝑘(𝑙ଶ𝜎ଶ − 1)

⎝

⎜
⎛

(𝑎଴𝛽ଶ − 2𝑎ଵ𝛽ଵ)ଶ ln(tanh𝐹 − 1) + 2𝛽ଵ
ଶ𝑎ଵ

ଶtanh𝐹

−𝑎଴
ଶln (tanh𝐹 + 1)𝛽ଶ

ଶ

𝛽ଶ
ଶ

ඥ𝛽ଵ

⎠

⎟
⎞

, (4.146) 

 



 

𝜏ଵଷ =
−𝑎ଵ𝛽ଵ coth(𝐹) + 𝑎଴𝛽ଶ − 𝑎ଵ𝛽ଵ

𝛽ଶ
𝑒௜ఏ , (4.147) 

𝜑ଵଷ =
2𝜆

𝑘(𝑙ଶ𝜎ଶ − 1)

⎝

⎜
⎛

(𝑎଴𝛽ଶ − 2𝑎ଵ𝛽ଵ)ଶ ln(cothF − 1) − 𝑎଴
ଶ ln(1 + cothF) 𝛽ଶ

ଶ

+2𝛽ଵ
ଶ𝑎ଵ

ଶcothF)

ඥ𝛽ଵ𝛽ଶ
ଶ

⎠

⎟
⎞

. (4.148) 

 

For 𝛽ଵ < 0, 𝛽ଷ > 0, 

 

𝜏ଵସ =
−𝑎ଵ𝛽ଵ sec(𝐹′)ଶ + 2 tan(𝐹′) ඥ−𝛽ଵ𝛽ଷ𝑎଴ + 𝑎଴𝛽ଶ

𝛽ଶ + 2 tan(𝐹′) ඥ−𝛽ଵ𝛽ଷ

𝑒௜ఏ , (4.149) 

𝜑ଵସ

= 2𝜆

16 ൬tan(𝐹′) ඥ−𝛽ଵ𝛽ଷ +
𝛽ଶ

2
൰ 𝛽ଵ𝑎ଵ ൬𝑎଴𝛽ଷ −

𝑎ଵ𝛽ଶ

4
൰ ln൫𝛽ଶ + 2 tan(𝐹′) ඥ−𝛽ଵ𝛽ଷ൯

−8𝛽ଷ𝑎଴
ଶ൫−2 tan(𝐹′) 𝛽ଵ𝛽ଷ + ඥ−𝛽ଵ𝛽ଷ𝛽ଶ൯ arctan(tan(𝐹′))

+2𝛽ଵ𝑎ଵ
ଶ ቆ−2(tan(𝐹ᇱ))ଶ𝛽ଵ𝛽ଷ + tan (𝐹′)ඥ−𝛽ଵ𝛽ଷ𝛽ଶ + 2𝛽ଵ𝛽ଷ −

𝛽ଶ
ଶ

2
ቇ

𝑘(𝑙ଶ𝜎ଶ − 1)ඥ−𝛽ଵ𝛽ଷඥ−𝛽ଵ(8𝛽ଷඥ−𝛽ଵ𝛽ଷtan (𝐹′) + 4𝛽ଷ𝛽ଶ)
, 

(4.150) 

𝜏ଵହ =
−𝑎ଵ𝛽ଵ csc(𝐹′)ଶ + 2 cot(𝐹′) ඥ−𝛽ଵ𝛽ଷ𝑎଴ + 𝑎଴𝛽ଶ

𝛽ଶ + 2 cot(𝐹′) ඥ−𝛽ଵ𝛽ଷ

𝑒௜ఏ , (4.151) 

 

 

 

 

 

 

 

 



𝜑ଵହ =
−2𝛽ଵ

ଶ𝑎ଵ
ଶ

ඥ−𝛽ଵ𝛽ଶ൫𝛽ଶ tan(𝐹ᇱ) + 2ඥ−𝛽ଵ𝛽ଷ൯
 

+
𝛽ଵ𝑎ଵ

ଶ𝛽ଶ

2ඥ−𝛽ଵ𝛽ଷ൫𝛽ଶ tan(𝐹ᇱ) + 2ඥ−𝛽ଵ𝛽ଷ൯
 

+
2𝑎ଵ𝛽ଵ ln൫𝛽ଶ tan(𝐹) + 2ඥ−𝛽ଵ𝛽ଷ൯ 𝑎଴

ඥ−𝛽ଵඥ−𝛽ଵ𝛽ଷ

 

−
𝛽ଵ𝑎ଵ

ଶ ln൫𝛽ଶ tan(𝐹) + 2ඥ−𝛽ଵ𝛽ଷ൯ 𝛽ଶ

2ඥ−𝛽ଵඥ−𝛽ଵ𝛽ଷ𝛽ଷ

 

+
𝛽ଵ𝑎ଵ

ଶ

2ඥ−𝛽ଵ𝛽ଷ tan(𝐹)
− 2

𝑎ଵ𝛽ଵ ln(tan(𝐹)) 𝑎଴

ඥ−𝛽ଵඥ−𝛽ଵ𝛽ଷ

+
𝛽ଵ𝑎ଵ

ଶ ln(tan(𝐹)) 𝛽ଶ

2ඥ−𝛽ଵඥ−𝛽ଵ𝛽ଷ𝛽ଷ

 

+
4𝑎଴

ଶ(−𝛽ଵ𝛽ଷ)
ଷ
ଶ ln(1 + (tan(𝐹))ଶ) 𝛽ଶ

ඥ−𝛽ଵ൫𝛽ଶ + 2ඥ−𝛽ଵ𝛽ଷ൯
ଶ

൫𝛽ଶ + ඥ−𝛽ଵ𝛽ଷ൯
ଶ 

+
4𝑎଴

ଶඥ−𝛽ଵ𝛽ଷ ln(1 + (tan(𝐹))ଶ) 𝛽ଵ𝛽ଶ𝛽ଷ

ඥ−𝛽ଵ൫𝛽ଶ + 2ඥ−𝛽ଵ𝛽ଷ൯
ଶ

൫𝛽ଶ + ඥ−𝛽ଵ𝛽ଷ൯
ଶ 

−
24𝑎଴

ଶඥ−𝛽ଵ𝛽ଷ arctan(tan(𝐹)) 𝛽ଵ𝛽ଶ𝛽ଷ

ඥ−𝛽ଵ൫𝛽ଶ + 2ඥ−𝛽ଵ𝛽ଷ൯
ଶ

൫𝛽ଶ + ඥ−𝛽ଵ𝛽ଷ൯
ଶ 

+
12𝑎଴

ଶඥ−𝛽ଵ𝛽ଷ arctan(tan(𝐹)) 𝛽ଶ
ଷ

ඥ−𝛽ଵ൫𝛽ଶ + 2ඥ−𝛽ଵ𝛽ଷ൯
ଶ

൫𝛽ଶ + ඥ−𝛽ଵ𝛽ଷ൯
ଶ 

+
8𝑎଴

ଶ arctan(tan(𝐹)) 𝛽ଵ
ଶ𝛽ଷ

ଶ

ඥ−𝛽ଵ൫𝛽ଶ + 2ඥ−𝛽ଵ𝛽ଷ൯
ଶ

൫𝛽ଶ + ඥ−𝛽ଵ𝛽ଷ൯
ଶ 

−
26𝑎଴

ଶ arctan(tan(𝐹)) 𝛽ଵ𝛽ଶ
ଶ𝛽ଷ

ඥ−𝛽ଵ൫𝛽ଶ + 2ඥ−𝛽ଵ𝛽ଷ൯
ଶ

൫𝛽ଶ + ඥ−𝛽ଵ𝛽ଷ൯
ଶ 

+
2𝑎଴

ଶarctan (tan(𝐹))𝛽ଶ
ସ

ඥ−𝛽ଵ(𝛽ଶ + 2ඥ−𝛽ଵ𝛽ଷ)ଶ(𝛽ଶ + ඥ−𝛽ଵ𝛽ଷ)ଶ
 . 

(4.152) 

 

For 𝛽ଵ > 0, 



𝜏ଵ଺ =
ቀeඥఉభకቁ

ଶ

𝑎଴ − 2eඥఉభక𝑎଴𝛽ଶ + 4𝑎ଵ𝛽ଵeඥఉభక − 4𝑎଴𝛽ଵ𝛽ଷ + 𝑎଴𝛽ଶ
ଶ

ቀeඥఉభకቁ
ଶ

− 2eඥఉభక𝛽ଶ − 4𝛽ଵ𝛽ଷ + 𝛽ଶ
ଶ

𝑒௜ఏ , (4.153) 

𝜑ଵ଺ =
2𝜆

𝑘(𝑙ଶ𝜎ଶ − 1)ඥ𝛽ଵ𝛽ଷ ൬ቀeඥఉభక − 𝛽ଶቁ
ଶ

− 4𝛽ଵ𝛽ଷ൰
 

× 4𝑎ଵ ቆ൬ቀeඥఉభక − 𝛽ଶቁ
ଶ

− 4𝛽ଵ𝛽ଷ൰ 𝛽ଵ 

× ൬𝑎଴𝛽ଷ −
𝑎ଵ𝛽ଶ

4
൰ arctanh ൭

eඥఉభక − 𝛽ଶ

2ඥ𝛽ଵ𝛽ଷ

൱ + (ln (eඥఉభక)eଶඥఉభక𝑎଴
ଶ𝛽ଷ 

−4𝛽ଷ ൭𝛽ଵ𝛽ଷ −
𝛽ଶ

ଶ

4
+

eඥఉభక𝛽ଶ

2
൱ 𝑎଴

ଶ ln ቀeඥఉభకቁ 

−8𝑎ଵ
ଶ ൭𝛽ଵ𝛽ଷ −

𝛽ଶ
ଶ

4
+

eඥఉభక𝛽ଶ

4
൱ 𝛽ଵ ൱, 

(4.154) 

Set 3 : 

𝑎଴ = ඨ
(𝜎ସ𝑘ଶ

ଶ + 𝜎ଶ𝑘ଵ
ଶ + 2𝑘ଷ)(𝑙ଶ𝜎ଶ − 1)

2𝜆(𝑙ଶ𝜎ଶ + 1)
 , 𝑎ଵ = 0, 

𝑏ଵ = 0, 𝑘 = 𝑘, 𝛽ଶ = 𝛽ଶ, 𝛽ଵ = 𝛽ଵ, 𝛽ଷ = 𝛽ଷ, 𝑑ଵ = 0 . 

For these set of coefficients, we have following solutions, 

𝑢(𝜁) = 𝑆 = 𝑎଴, (4.155) 

𝜏ଵ଻ = 𝑎଴𝑒௜ఏ ,           𝜑ଵ଻ = −
2𝜆(𝑎଴)ଶ𝜁

𝑘(𝑙ଶ𝜎ଶ − 1)
, (4.156) 

 

 



Set 4 : 

𝑎଴ =

ඨ
൫𝜎ସ𝑘ଶ

ଶ + 𝜎ଶ𝑘ଵ
ଶ + 2𝑘ଷ൯(𝑙ଶ𝜎ଶ − 1)

𝜆(𝑙ଶ𝜎ଶ + 1)

√2
, 𝑎ଵ = 0, 

𝑏ଵ = 0, 𝑘 = 𝑘, 𝛽ଶ = 0, 𝛽ଷ = 0, 𝑑ଵ = 𝑑ଵ , 

𝛽ଵ =
൫𝜎ସ𝑘ଶ

ଶ + 𝜎ଶ𝑘ଵ
ଶ + 2𝑘ଷ൯(𝑙𝜎 − 1)(𝑙𝜎 + 1)

8𝜆𝑑ଵ
ଶ(𝑙ଶ𝜎ଶ + 1)

. 

 

Substituting these coefficients along with the auxiliary solutions of Eq. (1.48), we get solutions of 

Eq. (4.111) as follows. 

𝑢(𝜁) = 𝑆 = 𝑎଴ +
𝑑ଵ ቀ

𝑑
𝑑𝜁

ℚ(𝜁)ቁ

ℚ(𝜁)
, 

𝜏ଵ଼ = ൫𝑎଴ − ඥ𝛽ଵ𝑑ଵ൯𝑒௜ఏ , (4.157) 

𝜑ଵ଼ =
−2𝜆൫𝑎଴ − ඥ𝛽ଵ𝑑ଵ൯

ଶ
𝜁

𝑘(𝑙ଶ𝜎ଶ − 1)
, (4.158) 

𝜏ଵଽ = ൫𝑎଴ + ඥ𝛽ଵ𝑑ଵ൯𝑒௜ఏ , (4.159) 

𝜑ଵଽ =
−2𝜆൫𝑎଴ + ඥ𝛽ଵ𝑑ଵ൯

ଶ
𝜁

𝑘(𝑙ଶ𝜎ଶ − 1)
, (4.160) 

Set 5 : 

𝑎଴ = 0, 𝑎ଵ = 0, 𝑏ଵ = 0, 𝑘 = 𝑘, 𝛽ଶ = 0, 𝛽ଵ =
−𝜎ସ𝑘ଶ

ଶ − 𝜎ଶ𝑘ଵ
ଶ − 2𝑘ଷ

2𝑘ଶ𝜎ଶ(𝑙ଶ𝜎ଶ + 1)
, 

𝛽ଷ = 𝛽ଷ, 𝑑ଵ = ඨ
−𝑙ଶ𝜎ଶ + 1

𝜆
𝜎𝑘 . 

Substituting these coefficients along with the auxiliary solutions of Eq. (1.48), we get solutions of 

Eq. (4.111) as follows. 

𝑢(𝜁) = 𝑆 =
𝑑ଵ ቀ

𝑑
𝑑𝜁

ℚ(𝜁)ቁ

ℚ(𝜁)
, 



𝜏ଶ଴ = −ඥ𝛽ଵ𝑑ଵ𝑒௜ఏ , (4.161) 

𝜑ଶ଴ =
2𝛽ଵ𝜁

𝑘
, (4.162) 

𝜏ଶଵ = −ඥ𝛽ଵtanh (ඥ𝛽ଵ𝜉)𝑑ଵ𝑒௜ఏ , (4.163) 

𝜑ଶଵ =
1

𝑘
ቆ

2ඥ𝛽ଵ tanh൫ඥ𝛽ଵ𝜉൯ + ඥ𝛽ଵ ln൫tanh൫ඥ𝛽ଵ𝜉൯ − 1൯

−ඥ𝛽ଵln (tanh (ඥ𝛽ଵ𝜉) + 1)
ቇ, (4.164) 

𝜏ଶଶ = −ඥ𝛽ଵcoth (ඥ𝛽ଵ𝜉)𝑑ଵ𝑒௜ఏ , (4.165) 

𝜑ଶଶ =
1

𝑘
ቆ

2ඥ𝛽ଵ coth൫ඥ𝛽ଵ𝜉൯ + ඥ𝛽ଵ ln൫coth൫ඥ𝛽ଵ𝜉൯ − 1൯

−ඥ𝛽ଵln (𝑐𝑜th (ඥ𝛽ଵ𝜉) + 1)
ቇ, (4.166) 

𝜏ଶଷ =

ඥ𝛽ଵ𝑑ଵ

⎝

⎜⎜
⎛

൭tanh ቆ
ඥ𝛽ଵ𝜉

√2
ቇ

ଶ

− 1൱ √2 −

ቆ2 tanh ቆ
ඥ𝛽ଵ𝜉

√2
ቇቇ tanh(𝐹)

⎠

⎟⎟
⎞

2 tanh(𝐹)
𝑒௜ఏ , 

(4.167) 

𝜑ଶଷ =
2𝜆

𝑘(𝑙ଶ𝜎ଶ − 1)
൭

2𝑑ଵ ln ቀeඥఉభక + 1ቁ − 𝑑ଵ ln ቀe√ଶඥఉభక + 1ቁ

+𝑑ଵln (e√ଶඥఉభక − 1) − ඥ𝛽ଵ𝑑ଵ𝜉
൱, (4.168) 

𝜏ଶସ =

ඥ𝛽ଵ𝑑ଵ

⎝

⎜⎜
⎛

൭coth ቆ
ඥ𝛽ଵ𝜉

√2
ቇ

ଶ

− 1൱ √2 −

ቆ2 coth ቆ
ඥ𝛽ଵ𝜉

√2
ቇቇ coth(𝐹)

⎠

⎟⎟
⎞

2 coth(𝐹)
𝑒௜ఏ , 

(4.169) 

𝜑ଶସ =
2𝜆

𝑘(𝑙ଶ𝜎ଶ − 1)
൭

2𝑑ଵ ln ቀeඥఉభక − 1ቁ − 𝑑ଵ ln ቀe√ଶඥఉభక − 1ቁ

+𝑑ଵln (e√ଶඥఉభక + 1) − ඥ𝛽ଵ𝑑ଵ𝜉
൱, (4.170) 

𝜏ଶହ =
1

2
(1 − tanh(𝐹))ඥ𝛽ଵ𝑑ଵ 𝑒௜ఏ , (4.171) 

𝜑ଶହ =
2

𝑘
ቆඥ𝛽ଵln (tanh (𝐹) + 1) −

1

2
ඥ𝛽ଵtanh (F)ቇ, (4.172) 



𝜏ଶ଺ =
1

2
(1 − coth(𝐹))ඥ𝛽ଵ𝑑ଵ 𝑒௜ఏ , (4.173) 

𝜑ଶ଺ =
2

𝑘
ቆඥ𝛽ଵln (coth (𝐹) + 1) −

1

2
ඥ𝛽ଵcoth (F)ቇ, (4.174) 

𝜏ଶ଻ = 𝑑ଵඥ−𝛽ଵtan (ඥ−𝛽ଵ𝜉)𝑒௜ఏ , (4.175) 

𝜑ଶ଻ =
−2

ඥ−𝛽ଵ𝑘
ቀ𝛽ଵtan (ඥ−𝛽ଵ𝜉) − 𝛽ଵarctan ൫tan(ඥ−𝛽ଵ𝜉)൯ቁ, (4.176) 

𝜏ଶ଼ = 𝑑ଵඥ−𝛽ଵcot (ඥ−𝛽ଵ𝜉)𝑒௜ఏ , (4.177) 

𝜑ଶ଼ =
2

ඥ−𝛽ଵ𝑘
ቆ𝛽ଵ cot൫ඥ−𝛽ଵ𝜉൯ +

𝜋

2
+ 𝛽ଵarccot ൫cot(ඥ−𝛽ଵ𝜉)൯ቇ, (4.178) 

𝜏ଶଽ =
𝑑ଵඥ−𝛽ଵ(tan(𝐹′)ଶ − 1)

2 tan(𝐹′)
𝑒௜ఏ , (4.179) 

𝜑ଶଽ =
−ඥ−𝛽ଵ

𝑘 tan (F′)
൬

tan(𝐹′)ଶ − 1

−4 arctan(tan(F′)) tan(F′)
൰, (4.180) 

𝜏ଷ଴ =
−𝑑ଵඥ−𝛽ଵ(cot(𝐹′)ଶ − 1)

2 cot(𝐹′)
𝑒௜ఏ , (4.181) 

𝜑ଷ଴ =
−ඥ−𝛽ଵ

𝑘 𝑐𝑜t (F′)
൬

cot(𝐹′)ଶ − 1

−4 arctan(cot(F′)) cot(F′)
൰, (4.182) 

𝜏ଷଵ =
−(eඥఉభక)ଶඥ𝛽ଵ𝑑ଵ − 4𝛽ଵ

ଷ/ଶ𝛽ଷ𝑑ଵ

(eඥఉభక)ଶ − 4𝛽ଵ𝛽ଷ

𝑒௜ఏ , (4.183) 

𝜑ଷଵ =
2

𝑘
ቆඥ𝛽ଵln (eඥఉభక) −

8𝛽ଵ
ଷ/ଶ𝛽ଷ

(eඥఉభక)ଶ − 4𝛽ଵ𝛽ଷ

ቇ, (4.184) 

𝜏ଷଶ = −
𝑑ଵඥ𝛽ଵ ቀ4𝛽ଵ𝛽ଷeଶඥఉభక + 1ቁ

4𝛽ଵ𝛽ଷeଶඥఉభక − 1
𝑒௜ఏ , (4.185) 

𝜑ଷଶ =
−2

𝑘
ቆ

2ඥ𝛽ଵ

4𝛽ଵ𝛽ଷeଶඥఉభక − 1
−

1

2
ඥ𝛽ଵln (eଶඥఉభక)ቇ, (4.186) 



Set 6 : 

𝑎଴ = 0, 𝑎ଵ = 𝑎ଵ, 𝑏ଵ = 0, 𝑑ଵ = 0,  

𝑘 = 𝑘, 𝛽ଶ = 0, 𝛽ଵ =
𝜎ସ𝑘ଶ

ଶ + 𝜎ଶ𝑘ଵ
ଶ + 2𝑘ଷ

𝑘ଶ𝜎ଶ(𝑙ଶ𝜎ଶ + 1)
, 𝛽ଷ =

−𝜆𝑎ଵ
ଶ

𝑘ଶ𝜎ଶ(𝑙ଶ𝜎ଶ − 1)
. 

Substituting these coefficients along with the auxiliary solutions of Eq. (1.48), we get solutions of 

Eq. (4.111) as follows. 

𝑢(𝜁) = 𝑆 = 𝑎ଵℚ(𝜁),   

𝜏ଷଷ = ቆ
2𝑎ଵ𝛽ଵsech(ඥ𝛽ଵ𝜉)

ඥ−4𝛽ଵ𝛽ଷ

ቇ 𝑒௜ఏ , (4.187) 

𝜑ଷଷ =
2𝜆

𝑘(𝑙ଶ𝜎ଶ − 1)
ቆ

𝑎ଵ
ଶඥ𝛽ଵtanh (ඥ𝛽ଵ𝜉)

𝛽ଷ
ቇ, (4.188) 

𝜏ଷସ = ቆ
2𝑎ଵ𝛽ଵcsch(ඥ𝛽ଵ𝜉)

ඥ4𝛽ଵ𝛽ଷ

ቇ 𝑒௜ఏ , (4.189) 

𝜑ଷସ =
2𝜆

𝑘(𝑙ଶ𝜎ଶ − 1)
ቆ

𝑎ଵ
ଶඥ𝛽ଵcoth (ඥ𝛽ଵ𝜉)

𝛽ଷ
ቇ, (4.190) 

  𝜏ଷହ = ൬
ଶ௔భఉభୱୣୡ (ඥିఉభక)

ඥିସఉభఉయ
൰ 𝑒௜ఏ , (4.191) 

𝜑ଷହ =
2𝜆𝑎ଵ

ଶ𝛽ଵtan (ඥ−𝛽ଵ𝜉)

𝑘(𝑙ଶ𝜎ଶ − 1)𝛽ଷඥ−𝛽ଵ

, (4.192) 

𝜏ଷ଺ = ቆ
2𝑎ଵ𝛽ଵcsc (ඥ−𝛽ଵ𝜉)

ඥ−4𝛽ଵ𝛽ଷ

ቇ 𝑒௜ఏ , (4.193) 

𝜑ଷ଺ =
−2𝜆𝑎ଵ

ଶ𝛽ଵcot (ඥ−𝛽ଵ𝜉)

𝑘(𝑙ଶ𝜎ଶ − 1)𝛽ଷඥ−𝛽ଵ

, (4.194) 

𝜏ଷ଻ = ቆ
−𝑎ଵ𝛽ଵ sec(𝐹′)ଶ

2ඥ−𝛽ଵ𝛽ଷtan (𝐹′)
ቇ 𝑒௜ఏ , (4.195) 

𝜑ଷ଻ =
𝜆

2𝑘(𝑙ଶ𝜎ଶ − 1)
ቆ

𝑎ଵ
ଶ𝛽ଵ

𝛽ଷ cos(𝐹′)ଶ sin(F′)ଶ
ቇ, (4.196) 



 

𝜏ଷ଼ = ቆ
−𝑎ଵ𝛽ଵ csc(𝐹′)ଶ

2ඥ−𝛽ଵ𝛽ଷcot (𝐹′)
ቇ 𝑒௜ఏ , (4.197) 

𝜑ଷ଼ =
−𝜆

𝑘(𝑙ଶ𝜎ଶ − 1)
ቆ

𝑎ଵ
ଶ𝛽ଵ(2 cos(𝐹′)ଶ − 1)

𝛽ଷඥ−𝛽ଵsin (𝐹′)cos (𝐹′)
ቇ, (4.198) 

𝜏ଷଽ = ൭4
𝑎ଵ𝛽ଵeඥఉభక

(eඥఉభక)ଶ − 4𝛽ଵ𝛽ଷ

൱ 𝑒௜ఏ , (4.199) 

𝜑ଷଽ =
16𝜆

𝑘(𝑙ଶ𝜎ଶ − 1)
ቆ

𝑎ଵ
ଶ𝛽ଵ

ଷ/ଶ

(eඥఉభక)ଶ − 4𝛽ଵ𝛽ଷ

ቇ, (4.200) 

𝜏ସ଴ = ൭
−4𝑎ଵ𝛽ଵeඥఉభక

4𝛽ଵ𝛽ଷeଶඥఉభక − 1
൱ 𝑒௜ఏ , (4.201) 

𝜑ସ଴ =
4𝜆

𝑘(𝑙ଶ𝜎ଶ − 1)
ቆ

𝑎ଵ
ଶඥ𝛽ଵ

𝛽ଷ(4𝛽ଵ𝛽ଷ(eඥఉభక)ଶ − 1)
ቇ, (4.202) 

Set 7 : 

𝑎଴ = 0, 𝑎ଵ = 0, 

𝑏ଵ = 0, 𝑘 = 𝑘, 𝛽ଶ = 0, 𝛽ଷ = 0, 𝑑ଵ = 𝑑ଵ , 

𝛽ଵ =
൫𝜎ସ𝑘ଶ

ଶ + 𝜎ଶ𝑘ଵ
ଶ + 2𝑘ଷ൯(𝑙𝜎 − 1)(𝑙𝜎 + 1)

2𝜆𝑑ଵ
ଶ(𝑙ଶ𝜎ଶ + 1)

. 

Substituting these coefficients along with the auxiliary solutions of Eq. (1.48), we get solutions of 

Eq. (4.111) as follows. 

𝑢(𝜁) = 𝑆 =
𝑑ଵ ቀ

𝑑
𝑑𝜁

ℚ(𝜁)ቁ

ℚ(𝜁)
,   

𝜏ସଵ = ൫±ඥ𝛽ଵ𝑑ଵ൯𝑒௜ఏ , (4.203) 

𝜑ସଵ = −
2𝜆𝛽ଵ(𝑑ଵ)ଶ𝜁

𝑘(𝑙ଶ𝜎ଶ − 1)
, (4.204) 



4.6 Results and discussion 

In this section, graphical simulation of (2 + 1) Davey-Stewartson (DS) system has been given. 

With the assistance of modified auxiliary equation mapping method, we succeed in obtaining 

various possible physical wave patterns by choosing appropriate parameters. The obtained soliton 

solutions are more generalized and newer and might be good addition in literature. To analyze this 

model. 3-D, 2-D and contour plots have been plotted to explain divergence and physics of these 

waves by choosing suitable values of parameters included in solutions. 

Graphical depiction of Real value of Eq (4.205) expressed as 𝜏ଵ଴ has been exhibit in Figure 4.7, in 

the form of 3-dimensional, and 2-dimensional and contour plot which demonstrates as singular 

periodic wave solution by choosing parameters, −10 ≤ 𝑥 ≤ 10, 𝑡 = 0. .10, 𝑘 = 4, 𝑐ଶ = 1, 𝑘ଵ =

3, 𝑘ଶ = 1, 𝑘ଷ = −6.1, 𝑙 = 1.3, 𝜎 = 1, 𝛽ଶ = 3, 𝜆 = 1, 𝑦 = 2 . 

 
 

 
Figure 4.7: graphs of solitary wave solution 𝝉𝟏𝟎 

Graphical depiction of Real value of Eq (4.142) expressed as 𝜑ଵ଴ has been exhibit in Figure 4.8, 

in the form of 3-dimensional, 2-dimensional and their contour plot which demonstrates singular 

periodic wave solution by choosing parameters −10 ≤ 𝑥 ≤ 10, 𝑡 = 0. .10, 𝑘 = 4, 𝑐ଶ = 1, 𝑘ଵ =

3, 𝑘ଶ = 1, 𝑘ଷ = −6.1, 𝑙 = 1.3, 𝜎 = 1, 𝛽ଶ = 3, 𝜆 = 1, 𝑦 = 2. 



 
 

 
Figure 4.8: -graphs of singular periodic wave solution 𝝋𝟏𝟎 

Graphical profile of Real value of Eq (4.206) expressed as 𝜏ଶଶ has been exhibit in Figure 4.9, in 

the form of 3-dimensional , and 2-dimensional and contour plot which demonstrates singular 

periodic soliton by choosing parameters, −10 ≤ 𝑥 ≤ 10, 𝑡 = 0. .10, 𝑘 = 0.4, 𝑐ଶ = 1, 𝑘ଵ = 3, 𝑘ଶ =

1, 𝑘ଷ = −10, 𝑙 = 6, 𝜎 = 1, 𝛽ଶ = −2, 𝑎ଵ = 4, 𝜆 = 5, 𝑦 = 2 . 

 
 

 
Figure 4.9:-graphs of periodic solitary wave solution 𝝉𝟐𝟐 

Graphical depiction of Real value of Eq (4.166) expressed as 𝜑ଶଶ has been exhibit in Figure 4.10, 

in the form of 3-dimensional , and 2-dimensional and contour plot which demonstrates singular 

kink soliton by choosing parameters, −10 ≤ 𝑥 ≤ 10, 𝑡 = 0. .10, 𝑘 = 0.4, 𝑐ଶ = 1, 𝑘ଵ = 3, 𝑘ଶ =

1, 𝑘ଷ = −10, 𝑙 = 6, 𝜎 = 1, 𝛽ଶ = −2, 𝑎ଵ = 4, 𝜆 = 5, 𝑦 = 2 . 



 
 

 
Figure 4.10:graphs of singular kink soliton 𝝋𝟐𝟐 

Graphical illustration of imaginary value of  Eq (4.188) expressed as 𝜏ଷଷ has been exhibit in Figure 

4.11, in the form of 3-dimensional , and 2-dimensional and contour plot which demonstrates 

localized excitation wave pattern as soliton with parameters −10 ≤ 𝑥 ≤ 10, 𝑡 = 0. .10, 𝑘 =

0.1, 𝑐ଶ = 5, 𝑘ଵ = 1, 𝑘ଶ = 1, 𝑘ଷ = 0.1, 𝑙 = 2, 𝜎 = 1, 𝑎ଵ = 4, 𝜆 = 1, 𝑦 = 2. 

 

 
 

 
 

Figure 4.11: -graphical simulation of solitary  wave solution 𝝉𝟑𝟑 

Graphical illustration of imaginary value of  Eq (4.188) expressed as 𝜑ଷଷ has been exhibit in Figure 

4.12, in the form of 3-dimensional , and 2-dimensional and contour plot which demonstrates 

localized excitation wave pattern as kink soliton with parameters −10 ≤ 𝑥 ≤ 10, 𝑡 =

0. .10, 𝑘 = 0.1, 𝑐ଶ = 5, 𝑘ଵ = 1, 𝑘ଶ = 1, 𝑘ଷ = 0.1, 𝑙 = 2, 𝜎 = 1, 𝑎ଵ = 4, 𝜆 = 1, 𝑦 = 2. 



 
 

 
 

Figure 4.12: -graphical simulation of solitary  wave solution 𝝋𝟑𝟑. 

4.7 Conclusion: 
Optical solitons of Fokas system and (2+1)-Dimensional Davey-Stewartson equations have been 

investigated and analyzed by generalized auxiliary equation mapping method and thus, numerous 

types of exact solutions are obtained which includes hyperbolic, trigonometric, exponential, and 

rational solutions that exhibit bright and dark solitons, kink solitons, periodic wave, and singular 

solitons profiles. Furthermore, by choosing appropriate parameters in solutions, 3-D, 2-D and 

contour plots have been examined graphically to study dynamics and physical behavior of obtained 

solitons.  Wave velocity and parameters involved in wave number are responsible for the types 

and profile of solitons. The applied technique has been recognized as efficient, robust, and useful 

in constructing optical solitons as it provides more generalized solutions. This technique has some 

advantages over previously studies techniques in literature as it depends on second degree 

differential equation and generates fourteen solutions that covers many types of soliton solutions 

and still this method is evolving and modifying continuously, also it can be applied on many 

nonlinear models to check their physical significance. 

4.8 Summary: 

In this chapter we have studied Fokas system and (2 + 1) Davey-Stewartson (DS) system via 

generalized auxiliary equation mapping method. Obtained solutions are in the form of solitons. 

Solutions of both equations provide valuable insights of wave propagation, signal processing in 

optical fibers, imaging techniques and have applications in many areas such as mathematical 

physics, biology, and oceanography. The accuracy of the obtained results provides the efficiency 

of the method. Graphical simulation of these results has been discussed in the form of 3-D, 2-D 

and contour plots. This chapter consists of an introduction of governing equations along with main 



steps of methods used and derivation of solutions by proposed method. Finally graphical 

representation of some results followed by conclusion. 

Chapter 5 includes interesting results of some fractional PDEs. FNLPDEs are used to model such 

phenomena where the dependent variable is reliant on more than one independent variable. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5. Exact solutions of Fractional 

nonlinear PDEs by Improved 

generalized Riccati Equation mapping 

method. 



 

5.1 Introduction: 
The use of fractional calculus to model certain real-life phenomena is getting a great attention 

nowadays. Nonlinear fractional differential equations (NLFDEs) appear as a direct result of this 

attention. Nonlinear fractional partial differential equations (NLFPDEs) cover a major share of 

those NLFDEs, and they are used to model such phenomena where the dependent variable is reliant 

on more than one independent variable. NLFPDEs are generalizations of nonlinear partial 

differential equations (NPDEs) in which the orders of derivatives involved are fractional. These 

equations have numerous applications in different fields of engineering and physical sciences such 

as in fluid mechanic, fractional dynamics, and wave propagation etc. [168]. It is very important 

not only to formulate the governing FPDE of a certain phenomenon but also to find out its exact 

solutions. Solutions of an equation, governing a certain real-life phenomenon, give us very useful 

details of the phenomenon itself and can be used to understand and predict the variations in the 

depended variable (and the quantities driven by it).  

In this study we are interested in a special type of exact solutions of NLFPDEs known as solitary 

wave solutions. Since solitons have been proved to be the exact solutions of a large class of 

NLPDEs, their complete understanding would lead us to a broad understanding of the real-life 

phenomena themselves. Some of the methods that are already being used to find solution of 

fractional order nonlinear partial differential equations are Homotopy perturbation method (HPM) 

[123], Variational iteration method (VIM) [126, 127], F-expansion method [128], Exp-function 

method [129, 130], Fan sub-equation method [131], ቀ
ீᇲ

ீ
ቁ-expansion method [132], Improved tan 

(
థ

ଶ
)-expansion method [112], Exp ൫−𝜙(𝜉)൯ method [133] and  Kudryashov method [134] etc. 

Some of these methods provide exact solutions to NLFPDEs (like Exp-function method, Fan sub-

equation method, ቀ
ீᇲ

ீ
ቁ-expansion method etc.) while the others provide series solution (like VIM 

and HPM). Nowadays mathematicians are trying to extend conventional methods to make them 

capable of solving fractional order partial differential equations. These extended methods would 

enable scientists working on fractional models to deal with them more effectively. Finding exact 

solutions of NLFPDEs used to be a herculean task, however, modern symbolic computation tools 

have made the task relatively easier. In a result of these computational tools, the efforts to extend 



the methods used to solve integer order NLPDEs to their fractional counterparts, and apply them 

to solve real life fractional models, have gain a tremendous popularity. 

5.2 Illustrative Examples: 

5.3 Space-time fractional nonlinear DDE for Murnaghan’s rod: 
In this section we apply improved generalized Riccati equation mapping method on space-time 

fractional nonlinear elastic inhomogeneous double dispersive equation for Murnaghan’s rod 

which is given as: 

𝐷௧
ଶఈ𝑢(𝑥, 𝑡) −

ா

ఘ
𝐷௫

ଶఈ𝑢(𝑥, 𝑡)  

=
𝜖

2
ቆ

1

𝜃
൫𝑙𝛽𝐷௫

ଶఈ𝑢ଶ(𝑥, 𝑡) + 𝜃𝜈ଶ𝐷௧௫
ସఈ𝑢(𝑥, 𝑡) − 𝑏𝛿𝜈ଶ𝐷௫

ସఈ𝑢(𝑥, 𝑡)൯ቇ,  

 

(5.1) 

where 𝑢(𝑥, 𝑡) is strain wave function, 𝑏 =
ெ

ா
< 1, 𝑙 =

஻

ா
 are combinations of the constant scale 

factors [169]. Parameter 0 < 𝛼 ≤ 1, is the order of fractional time and space derivatives. Where 

𝐷௧
ఈ𝑢 and 𝐷௫

ఈ𝑢 are the Caputo fractional derivative [36] of 𝑢 with respect to 𝑡 and 𝑥 respectively. 

The doubly dispersive equation (DDE), which is an important nonlinear physical model describing 

the nonlinear wave propagation in the elastic inhomogeneous circular cylinder Murnaghan’s rod. 

The global existence and blow-up of solutions for doubly dispersive equation was discussed by 

Harby et al. [170]. Cattani et al. [169] had used extended Sinh-Gordon equation expansion method 

(ShGEEM) and the modified exp(−ϕ(ζ))-expansion function method, to find the topological, non-

topological, singular, compound topological-non-topological bell-type and compound singular, 

soliton-like, singular periodic wave and exponential function solutions to the doubly dispersive 

equation for inhomogeneous Murnaghan’s rod. Moreover, Baskonus et al [171] solved 

inhomogeneous Murnaghan’s rod by F-expansion method and obtained Jacobi elliptic function 

solutions including bright and dark solitons, topological, non-topological, singular, periodic, their 

combinations and compound solitons. 

Now, by using the following nonlinear fractional order wave transformation: 

𝑢(𝑥, 𝑡) = 𝑈(𝜉),  

where, 



𝜉 =
𝑥ఈ

Γ(1 + 𝛼)
−

𝜆𝑡ఈ

Γ(1 + 𝛼)
, 

the above mentioned NLFPDE can be transform into nonlinear ODE as follows: 

𝜖𝜐ଶ(−𝜆ଶ𝜃 + 𝑏𝛿)

𝜃
൭−

𝑙𝛽൫𝑈(𝜉)൯
ଶ

2𝜐ଶ(−𝜆ଶ𝜃 + 𝑏𝛿)
+

𝜆ଶ𝜃𝑈(𝜉)

𝜖𝜐ଶ(−𝜆ଶ𝜃 + 𝑏𝛿)
−

𝐸𝑈(𝜉)

𝜖𝜐ଶ(−𝜆ଶ𝜃 + 𝑏𝛿)
൱ 

+
1

2

𝜖𝜐ଶ(−𝜆ଶ𝜃 + 𝑏𝛿)𝑈ᇱᇱ(𝜉)

𝜃
ቆ−

𝜆ଶ𝜃

−𝜆ଶ𝜃 + 𝑏𝛿
+

𝑏𝛿

−𝜆ଶ𝜃 + 𝑏𝛿
ቇ = 0, 

 

 

 

(5.2) 

Eq. (5.2) obtained by applying integration process twice to the resulting equation and both of time 

consider constant of integration equal to zero. By using homogeneous balance principle between 

the highest order derivative and nonlinearity yields 𝑁 = 2. Therefore, Eq.  (5.2) has a solution, 

𝑈(𝜉 ) =
𝑎ିଶ

൫𝜑(𝜉)൯
ଶ +

𝑎ିଵ

𝜑(𝜉)
+ 𝑎଴ + 𝑎ଵ𝜑(𝜉) + 𝑎ଶ൫𝜑(𝜉)൯

ଶ
. (5.3) 

Now, substituting Eq.(5.3) along with Eq. (1.68) into Eq. (5.2) after collecting all terms with the 

same order in 𝜙௜   and 𝜙ି௜, where, (𝑖 = 0,1,2, … . . ). and equating each coefficient to 0, we get a 

system of NL algebraic equations. Solving these equations yields the following non-trivial 

solutions.  

Set 1 : 

𝑎ଵ = 0, 𝑎ଶ = 0, 𝑎଴ = ቆ−2
𝜐ଶ(𝑝ଶ + 2𝑟𝑞)

𝛽𝑙(2 + 𝜖(𝑝ଶ − 4𝑟𝑞)𝜐ଶ)
ቇ , 

𝑎ିଵ = ቆ−
(12𝐸 − 12𝑏𝛿)𝑝𝑟𝜐ଶ

𝛽𝑙(2 + 𝜖(𝑝ଶ − 4𝑟𝑞)𝜐ଶ)
ቇ , 𝑎ିଶ = ቆ−

(12𝐸 − 12𝑏𝛿)𝑟ଶ𝜐ଶ

𝛽𝑙(2 + 𝜖(𝑝ଶ − 4𝑟𝑞)𝜐ଶ)
ቇ , 

𝜆 = ቌඨ
𝑏𝛿𝜖𝑝ଶ𝜐ଶ − 4𝑏𝛿𝜖𝑞𝑟𝜐ଶ + 2𝐸

𝜃(𝜖𝑝ଶ𝜐ଶ − 4𝜖𝑞𝑟𝜐ଶ + 2)
ቍ, 

 

 

 

(5.4) 

𝑈ଵ(𝜉) =  𝑎଴ +
𝑎ିଶ

(𝜑(𝜉))ଶ
+

𝑎ିଵ

𝜑(𝜉)
. (5.5) 

 



Set 2 : 

𝑎ଵ = 0, 𝑎ଶ = 0, 𝑎଴ = ቆ12
𝑞𝑟𝜐ଶ(𝐸 − 𝑏𝛿)

𝛽(𝜖(𝑝ଶ − 4𝑟𝑞)𝜐ଶ − 2)𝑙
ቇ , 

𝑎ିଵ = ቆ
(12𝐸 − 12𝑏𝛿)𝑝𝑟𝜐ଶ

𝛽(𝜖(𝑝ଶ − 4𝑟𝑞)𝜐ଶ − 2)𝑙
ቇ , 𝑎ିଶ = ቆ12

(𝐸 − 𝑏𝛿)𝑟ଶ𝜐ଶ

𝛽(𝜖(𝑝ଶ − 4𝑟𝑞)𝜐ଶ − 2)𝑙
ቇ , 

𝜆 = ቌඨ−
2𝐸 − 𝑏𝛿𝜖𝑝ଶ𝜐ଶ + 4𝑏𝛿𝜖𝑞𝑟𝜐ଶ

𝜃(𝜖𝑝ଶ𝜐ଶ − 4𝜖𝑞𝑟𝜐ଶ − 2)
ቍ, 

 

 

(5.6) 

𝑈ଶ(𝜉) =  𝑎଴ +
𝑎ିଶ

(𝜑(𝜉))ଶ
+

𝑎ିଵ

𝜑(𝜉)
. (5.7) 

Set 3 : 

𝑎ିଵ = 0, 𝑎ିଶ = 0, 𝑎଴ = ቆ−2
𝜐ଶ(𝑝ଶ + 2𝑟𝑞)(𝐸 − 𝑏𝛿)

𝛽𝑙(2 + 𝜖(𝑝ଶ − 4𝑟𝑞)𝜐ଶ)
ቇ , 

𝑎ଵ = ቆ−
(12𝐸 − 12𝑏𝛿)𝑝𝑞𝜐ଶ

𝛽𝑙(2 + 𝜖(𝑝ଶ − 4𝑟𝑞)𝜐ଶ)
ቇ , 𝑎ଶ = ቆ−

(12𝐸 − 12𝑏𝛿)𝑞ଶ𝜐ଶ

𝛽𝑙(2 + 𝜖(𝑝ଶ − 4𝑟𝑞)𝜐ଶ)
ቇ , 

 𝜆 = ቌඨ
𝑏𝛿𝜖𝑝ଶ𝜐ଶ − 4𝑏𝛿𝜖𝑞𝑟𝜐ଶ + 2𝐸

𝜃(𝜖𝑝ଶ𝜐ଶ − 4𝜖𝑞𝑟𝜐ଶ + 2)
ቍ, 

 

 

 

(5.8) 

𝑈ଷ(𝜉) =  𝑎଴ + 𝑎ଵ𝜑(𝜉) + 𝑎ଶ(𝜑(𝜉))ଶ. (5.9) 

Set 4 : 

𝑎ିଵ = 0, 𝑎ିଶ = 0, 𝑎଴ = ቆ12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝛽(−2 + 𝜖(𝑝ଶ − 4𝑟𝑞)𝜐ଶ)𝑙
ቇ , 

𝑎ଵ = ቆ
(12𝐸 − 12𝑏𝛿)𝑝𝑞𝜐ଶ

𝛽(−2 + 𝜖(𝑝ଶ − 4𝑟𝑞)𝜐ଶ)𝑙
ቇ , 𝑎ଶ = ቆ

(12𝐸 − 12𝑏𝛿)𝑞ଶ𝜐ଶ

𝛽(−2 + 𝜖(𝑝ଶ − 4𝑟𝑞)𝜐ଶ)𝑙
ቇ , 

 𝜆 = ቌඨ−
2𝐸 − 𝑏𝛿𝜖𝑝ଶ𝜐ଶ + 4𝑏𝛿𝜖𝑞𝑟𝜐ଶ

𝜃(𝜖𝑝ଶ𝜐ଶ − 4𝜖𝑞𝑟𝜐ଶ − 2)
ቍ, 

 

 

 

(5.10) 

𝑈ସ(𝜉) =  𝑎଴ + 𝑎ଵ𝜑(𝜉) + 𝑎ଶ(𝜑(𝜉))ଶ. (5.11) 

For the case 1, substituting the values from Eq. (5.4) into Eq. (5.5) along with the Riccati equations 

solutions, we can get many different types of solutions including solitary wave solutions, periodic 

wave solutions and rational solutions. Where,  



𝜉 =
𝑥ఈ

Γ(1 + 𝛼)
−

𝜆𝑡ఈ

Γ(1 + 𝛼)
. 

Family 1: 

When ∆> 0 and 𝑝𝑞 ≠ 0 or 𝑞𝑟 ≠ 0, the hyperbolic function solutions of Eq. (5.1) are as follows, 

𝑈ଵ,ଵ = −
48(𝐸 − 𝑏𝛿)𝑟ଶ𝜐ଶ𝑞ଶ

(2 + 𝜖(∆)𝜐ଶ)𝑙𝛽 ቆ𝑝 + √∆ tanh ቆ
1

2√∆𝜉
ቇቇ

ଶ 

+
24(𝐸 − 𝑏𝛿)𝑝𝑟𝜐ଶ𝑞

(2 + 𝜖(∆)𝜐ଶ)𝑙𝛽 ቆ𝑝 + √∆ tanh ቆ
1

2√∆𝜉
ቇቇ

− 𝐴଴, 

(5.12) 

𝑈ଵ,ଶ = −
48(𝐸 − 𝑏𝛿)𝑟ଶ𝜐ଶ𝑞ଶ

(2 + 𝜖(∆)𝜐ଶ)𝑙𝛽 ቆ𝑝 + √∆ coth ቆ
1

2√∆𝜉
ቇቇ

ଶ 

+
24(𝐸 − 𝑏𝛿)𝑝𝑟𝜐ଶ𝑞

(2 + 𝜖(∆)𝜐ଶ)𝑙𝛽 ቆ𝑝 + √∆ coth ቆ
1

2√∆𝜉
ቇቇ

− 𝐴଴, 

(5.13) 

𝑈ଵ,ଷ = −
48(𝐸 − 𝑏𝛿)𝑟ଶ𝜐ଶ𝑞ଶ

(2 + 𝜖(∆)𝜐ଶ)𝑙𝛽 ቆ
(𝑝 + ඥ∆) ×

(tanh (√∆𝜉) ± 𝑖sech(√∆𝜉))
ቇ

ଶ 

+
24(𝐸 − 𝑏𝛿)𝑝𝑟𝜐ଶ𝑞

(2 + 𝜖(∆)𝜐ଶ)𝑙𝛽 ቆ
(𝑝 + ඥ∆) ×

(tanh (√∆𝜉) ± 𝑖sech(√∆𝜉))
ቇ

 

−𝐴଴, 

(5.14) 

𝑈ଵ,ସ = −
48(𝐸 − 𝑏𝛿)𝑟ଶ𝜐ଶ𝑞ଶ

(2 + 𝜖(∆)𝜐ଶ)𝑙𝛽 ቆ
(𝑝 + √∆) ×

൫coth൫√∆𝜉൯ ± csch൫√∆𝜉൯൯
ቇ

ଶ 

+
24(𝐸 − 𝑏𝛿)𝑝𝑟𝜐ଶ𝑞

(2 + 𝜖(∆)𝜐ଶ)𝑙𝛽 ቆ
(𝑝 + √∆) ×

൫coth൫√∆𝜉൯ ± csch൫√∆𝜉൯൯
ቇ

 

−𝐴଴, 

(5.15) 

 



𝑈ଵ,ହ = −
48(𝐸 − 𝑏𝛿)𝑟ଶ𝜐ଶ𝑞ଶ

𝛽𝑙(2 + 𝜖(∆)𝜐ଶ) ൮

൫2𝑝 + √∆൯ ×

tanh ቆ
√∆𝜉

4
ቇ + coth ቆ

√∆𝜉
4

ቇ
൲

ଶ 

+
24(𝐸 − 𝑏𝛿)𝑝𝑟𝜐ଶ𝑞

𝛽𝑙(2 + 𝜖(∆)𝜐ଶ) ൮

൫2𝑝 + √∆൯ ×

tanh ቆ
√∆𝜉

4
ቇ + coth ቆ

√∆𝜉
4

ቇ
൲

 

−𝐴଴, 

(5.16) 

 

𝑈ଵ,଺ = −
48(𝐸 − 𝑏𝛿)𝑟ଶ𝜐ଶ𝑞ଶ

(2 + 𝜖(∆)𝜐ଶ)𝑙𝛽

⎝

⎜⎜
⎛

−𝑝 +

ඥ(𝐴ଶ + 𝐵ଶ)(∆)

−𝐴√∆ cosh൫√∆𝜉൯

Asinh൫√∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

ିଶ

 

−
24(𝐸 − 𝑏𝛿)𝑝𝑟𝜐ଶ𝑞

(2 + 𝜖(∆)𝜐ଶ)𝑙𝛽

⎝

⎜⎜
⎛

−𝑝 +

ඥ(𝐴ଶ + 𝐵ଶ)(∆)

−𝐴√∆ cosh൫√∆𝜉൯

Asinh൫√∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

ିଵ

− 𝐴଴, 

(5.17) 

 

𝑈ଵ,଻ = −
48(𝐸 − 𝑏𝛿)𝑟ଶ𝜐ଶ𝑞ଶ

𝛽𝑙(2 + 𝜖(∆)𝜐ଶ)

⎝

⎜⎜
⎛

−𝑝 −

ඥ(−𝐴ଶ + 𝐵ଶ)(∆)

+𝐴√∆ sinh൫√∆𝜉൯

Acosh൫√∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

ିଶ

 

−
24(𝐸 − 𝑏𝛿)𝑝𝑟𝜐ଶ𝑞

𝛽𝑙(2 + 𝜖(∆)𝜐ଶ)

⎝

⎜⎜
⎛

−𝑝 −

ඥ(−𝐴ଶ + 𝐵ଶ)(∆)

+𝐴√∆ sinh൫√∆𝜉൯

Acosh൫√∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

ିଵ

− 𝐴଴. 

(5.18) 

Where two non-zero real constants A and B satisfies  𝐴ଶ − 𝐵ଶ > 0. 



𝑈ଵ,଼ = −

3(𝐸 − 𝑏𝛿)𝜐ଶ

⎝

⎜
⎛

√∆ sinh ቆ
√∆𝜉

2
ቇ

− pcosh ቆ
√∆𝜉

2
ቇ

⎠

⎟
⎞

ଶ

𝛽𝑙(2 + 𝜖(∆)𝜐ଶ) cosh ቆ
√∆𝜉

2
ቇ

ଶ  

−

6(𝐸 − 𝑏𝛿)𝑝𝜐ଶ

⎝

⎜
⎛

√∆ sinh ቆ
√∆𝜉

2
ቇ

− pcosh ቆ
√∆𝜉

2
ቇ

⎠

⎟
⎞

𝛽𝑙(2 + 𝜖(∆)𝜐ଶ) cosh ቆ
√∆𝜉

2
ቇ

− 𝐴଴, 

(5.19) 

 

𝑈ଵ,ଽ = −

3(𝐸 − 𝑏𝛿)𝜐ଶ

⎝

⎜
⎛

−√∆ cosh ቆ
√∆𝜉

2
ቇ

+ psinh ቆ
√∆𝜉

2
ቇ

⎠

⎟
⎞

ଶ

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙 ቆsinh ቆ
√∆𝜉

2
ቇቇ

ଶ  

+

6(𝐸 − 𝑏𝛿)𝑝𝜐ଶ

⎝

⎜
⎛

−√∆ cosh ቆ
√∆𝜉

2
ቇ

+ psinh ቆ
√∆𝜉

2
ቇ

⎠

⎟
⎞

(2 + 𝜖(∆)𝜐ଶ)𝛽 lsinh ቆ
√∆𝜉

2
ቇ

− 𝐴଴, 

 

(5.20) 

 

 

 



𝑈ଵ,ଵ଴ = −

3(𝐸 − 𝑏𝛿)𝜐2 ቆ
(√∆sinh (√∆𝜉) −

𝑝൫cosh൫√∆𝜉൯ ± 𝑖√∆൯
ቇ

2

𝛽𝑙(2 + 𝜖(∆)𝜐2) ቆcosh ቆ
√∆𝜉

2 ቇቇ

2
 

−

6(𝐸 − 𝑏𝛿)𝑝𝜐ଶ ቆ
(√∆sinh (√∆𝜉) −

𝑝൫cosh൫√∆𝜉൯ ± 𝑖√∆൯
ቇ

𝛽𝑙(2 + 𝜖(∆)𝜐ଶ) cosh ቆ
√∆𝜉

2
ቇ

− 𝐴଴, 

(5.21) 

 

𝑈ଵ,ଵଵ = −

3(𝐸 − 𝑏𝛿)𝜐ଶ ቆ
൫√∆ cosh൫√∆𝜉൯൯

−psinh (√∆𝜉) ± √∆))
ቇ

ଶ

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙 ቆsinh
√∆𝜉

2
ቇ

ଶ  

−

6(𝐸 − 𝑏𝛿)𝑝𝜐ଶ ቆ
൫√∆ cosh൫√∆𝜉൯൯

−psinh (√∆𝜉) ± √∆))
ቇ

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙 ቆsinh
√∆𝜉

2
ቇ

− 𝐴଴, 

(5.22) 

 

𝑈ଵ,ଵଶ = −

3(𝐸 − 𝑏𝛿)𝜐ଶ

⎝

⎜
⎛

−2𝑝 sinh ቆ
√∆𝜉

4
ቇ cosh ቆ

√∆𝜉
4

ቇ

+2√∆ cosh ቆ
√∆𝜉

4
ቇ

ଶ

− √∆
⎠

⎟
⎞

ଶ

(8 + 4𝜖(∆)𝜐ଶ)𝛽𝑙 sinh ቆ
√∆𝜉

4
ቇ

ଶ

cosh ቆ
√∆𝜉

4
ቇ

ଶ  

−

6(𝐸 − 𝑏𝛿)𝑝𝜐ଶ

⎝

⎜
⎛

−2𝑝 sinh ቆ
√∆𝜉

4
ቇ cosh ቆ

√∆𝜉
4

ቇ

+2√∆ cosh ቆ
√∆𝜉

4
ቇ

ଶ

− √∆
⎠

⎟
⎞

2(2 + 𝜖(∆)𝜐ଶ)𝛽 lsinh ቆ
√∆𝜉

4
ቇ cosh ቆ

√∆𝜉
4

ቇ

− 𝐴଴. 

(5.23) 

Family 2: 

If ∆< 0 and 𝑝𝑞 ≠ 0 (𝑜𝑟 𝑞𝑟 ≠ 0), we have the following trigonometric solutions. 



𝑈ଵ,ଵଷ = −
48(𝐸 − 𝑏𝛿)𝑟ଶ𝜐ଶ𝑞ଶ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙 ቆ−𝑝 + √−∆ tan ቆ
√−∆𝜉

2
ቇቇ

ଶ 

−
24(𝐸 − 𝑏𝛿)𝑝𝑟𝜐ଶ𝑞

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙 ቆ−𝑝 + √−∆ tan ቆ
√−∆𝜉

2
ቇቇ

− A଴, 

(5.24) 

 

𝑈ଵ,ଵସ = −
48(𝐸 − 𝑏𝛿)𝑟ଶ𝜐ଶ𝑞ଶ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙 ቆ𝑝 + √−∆ cot ቆ
√−∆𝜉

2
ቇቇ

ଶ 

+
24(𝐸 − 𝑏𝛿)𝑝𝑟𝜐ଶ𝑞

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙 ቆ𝑝 + √−∆ cot ቆ
√−∆𝜉

2
ቇቇ

− A଴, 

(5.25) 

 

𝑈ଵ,ଵହ = −
48(𝐸 − 𝑏𝛿)𝑟ଶ𝜐ଶ𝑞ଶ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙 ቆ
(−𝑝 + ඥ−∆) ×

൫tan൫√−∆𝜉൯ ± sec൫√−∆𝜉൯൯
ቇ

ଶ 

−
24(𝐸 − 𝑏𝛿)𝑝𝑟𝜐ଶ𝑞

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙 ቆ
(−𝑝 + ඥ−∆) ×

൫tan൫√−∆𝜉൯ ± sec൫√−∆𝜉൯൯
ቇ

 

−A଴, 

(5.26) 

 

𝑈ଵ,ଵ଺ = −
48(𝐸 − 𝑏𝛿)𝑟ଶ𝜐ଶ𝑞ଶ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙 ቆ
൫𝑝 + √−∆൯ ×

cot൫√−∆𝜉൯ ± csc൫√−∆𝜉൯
ቇ

ଶ 

+
24(𝐸 − 𝑏𝛿)𝑝𝑟𝜐ଶ𝑞

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙 ቆ
൫𝑝 + √−∆൯ ×

(cot (√−∆𝜉) ± csc (√−∆𝜉)))
ቇ

 

−A଴, 

(5.27) 

 



 

𝑈ଵ,ଵ଻ = −
192(𝐸 − 𝑏𝛿)𝑟ଶ𝜐ଶ𝑞ଶ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙 ൮

൫−2𝑝 + √−∆൯ ×

ቆtan ቆ
√−∆𝜉

4
ቇ − cot ቆ

√−∆𝜉
4

ቇቇ
൲

ଶ 

−
48(𝐸 − 𝑏𝛿)𝑟ଶ𝜐ଶ𝑞ଶ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙 ൮

൫−2𝑝 + √−∆൯ ×

ቆtan ቆ
√−∆𝜉

4
ቇ − cot ቆ

√−∆𝜉
4

ቇቇ
൲

 

−A଴, 

(5.28) 

𝑈ଵ,ଵ଼ = −
48(𝐸 − 𝑏𝛿)𝑟ଶ𝜐ଶ𝑞ଶ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙

⎝

⎜⎜
⎛

−𝑝 +

ඥ(𝐴ଶ − 𝐵ଶ)(−∆) −

𝐴√−∆ cos൫√−∆𝜉൯

Asin൫√−∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

ିଶ

 

−
24(𝐸 − 𝑏𝛿)𝑝𝑟𝜐ଶ𝑞

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙

⎝

⎜⎜
⎛

−𝑝 +

ඥ(𝐴ଶ − 𝐵ଶ)(−∆) −

𝐴√−∆ cos൫√−∆𝜉൯

Asin൫√−∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

ିଵ

 

−A଴, 

(5.29) 

𝑈ଵ,ଵଽ = −
48(𝐸 − 𝑏𝛿)𝑟ଶ𝜐ଶ𝑞ଶ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙

⎝

⎜⎜
⎛

−𝑝 +

ඥ(𝐴ଶ − 𝐵ଶ)(−∆) +

𝐴√−∆ cos൫√−∆𝜉൯

Asin൫√−∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

ିଶ

 

−
24(𝐸 − 𝑏𝛿)𝑝𝑟𝜐ଶ𝑞

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙

⎝

⎜⎜
⎛

−𝑝 +

ඥ(𝐴ଶ − 𝐵ଶ)(−∆) +

𝐴√−∆ cos൫√−∆𝜉൯

Asin൫√−∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

ିଵ

 

−A଴. 

(5.30) 

Where two non-zero real constants A and B satisfies  𝐴ଶ − 𝐵ଶ > 0. 



𝑈ଵ,ଶ଴ = −

3(𝐸 − 𝑏𝛿)𝜐ଶ ൮

൫√−∆൯ ×

sin ቆ
√−∆𝜉

2
ቇ + pcos ቆ

√−∆𝜉
2

ቇ
൲

ଶ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙 ቆcos ቆ
√−∆𝜉

2
ቇቇ

ଶ  

+

6(𝐸 − 𝑏𝛿)𝑝𝜐ଶ ൮

൫√−∆൯ ×

sin ቆ
√−∆𝜉

2
ቇ + pcos ቆ

√−∆𝜉
2

ቇ
൲

𝛽(2 + 𝜖(∆)𝜐ଶ) lcos ቆ
√−∆𝜉

2
ቇ

 

−A଴, 

(5.31) 

𝑈ଵ,ଶଵ = −

3(𝐸 − 𝑏𝛿)𝜐ଶ ൮

൫√−∆൯ ×

cos ቆ
√−∆𝜉

2
ቇ − psin ቆ

√−∆𝜉
2

ቇ
൲

ଶ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙 ቆsin ቆ
√−∆𝜉

2
ቇቇ

ଶ  

−

6(𝐸 − 𝑏𝛿)𝑝𝜐ଶ ൮

൫√−∆൯ ×

cos ቆ
√−∆𝜉

2
ቇ − psin ቆ

√−∆𝜉
2

ቇ
൲

𝛽(2 + 𝜖(∆)𝜐ଶ) lsin ቆ
√−∆𝜉

2
ቇ

 

−A଴, 

(5.32) 

 



𝑈ଵ,ଶଶ = −

3(𝐸 − 𝑏𝛿)𝜐ଶ ቆ
√−∆ sin൫√−∆𝜉൯

+𝑝 cos൫√−∆𝜉൯ ± √−∆
ቇ

ଶ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙 ቆcos ቆ
√−∆𝜉

2
ቇቇ

ଶ  

+

6(𝐸 − 𝑏𝛿)𝑝𝜐ଶ ቆ
√−∆ sin൫√−∆𝜉൯

+𝑝 cos൫ඥ𝑝ଶ − 4𝑞𝑟𝜉൯ ± √−∆
ቇ

𝛽(2 + 𝜖(∆)𝜐ଶ) lcos ቆ
√−∆𝜉

2
ቇ

 

−A଴, 

(5.33) 

𝑈ଵ,ଶଷ = −

3(𝐸 − 𝑏𝛿)𝜐ଶ ቆ
൫√−∆ cos൫√−∆𝜉൯൯

−𝑝sin (√−∆𝜉) ± √−∆
ቇ

ଶ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙൫sin൫√−∆𝜉൯൯
ଶ  

−

6(𝐸 − 𝑏𝛿)𝑝𝜐ଶ ቆ
൫√−∆ cos൫√−∆𝜉൯൯

−𝑝sin (√−∆𝜉) ± √−∆
ቇ

𝛽(2 + 𝜖(∆)𝜐ଶ) lsin൫√−∆𝜉൯
 

−A଴, 

(5.34) 

𝑈ଵ,ଶସ = −

3(𝐸 − 𝑏𝛿)𝜐ଶ

⎝

⎜
⎜
⎛

ቆ−2𝑝 sin ቆ
√−∆𝜉

4
ቇ cos ቆ

√−∆𝜉
4

ቇቇ

+2√−∆ ቆcos ቆ
√−∆𝜉

4
ቇቇ

ଶ

−√−∆ ⎠

⎟
⎟
⎞

ଶ

4𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙 ቆsin ቆ
√−∆𝜉

4
ቇቇ

ଶ

ቆcos ቆ
√−∆𝜉

4
ቇቇ

ଶ  

−

6(𝐸 − 𝑏𝛿)𝑝𝜐ଶ

⎝

⎜
⎜
⎜
⎛

ቆ−2𝑝 sin ቆ
√−∆𝜉

4
ቇ cos ቆ

√−∆𝜉
4

ቇቇ

+2√−∆ ቆcos ቆ
√−∆𝜉

4
ቇቇ

ଶ

−ඥ4𝑞𝑟 − 𝑝ଶ ⎠

⎟
⎟
⎟
⎞

2𝛽(2 + 𝜖(∆)𝜐ଶ) lsin ቆ
√−∆𝜉

4
ቇ cos ቆ

√−∆𝜉
4

ቇ

 

−A଴. 

(5.35) 



Where A଴ = 2
జమ൫௣మାଶ௤௥൯(ି௕ఋାா)

(ଶାఢ(௣మିସ௤௥)జమ)௟ఉ
. 

In case 2, substituting values from Eq. (5.6) and Riccati equation solutions in Eq. (5.7) with 

𝜉 =
𝑥ఈ

Γ(1 + 𝛼)
−

𝜆𝑡ఈ

Γ(1 + 𝛼)
, 

Family1: 

When ∆> 0 and 𝑝𝑞 ≠ 0 or 𝑞𝑟 ≠ 0, the hyperbolic function solutions of Eq. (5.1) are as follows, 

𝑈ଶ,ଵ =
(−48𝑏𝛿 + 48𝐸)𝑟ଶ𝜐ଶ𝑞ଶ

𝛽𝑙 ൬
−2 +

𝜖(∆)𝜐ଶ൰ ൮𝑝 + ቌ
√∆ ×

tanh ቆ
√∆𝜉

2
ቇ

ቍ൲

ଶ 

−
(−24𝑏𝛿 + 24𝐸)𝑝𝑟𝜐ଶ𝑞

𝛽𝑙 ൬
−2 +

𝜖(∆)𝜐ଶ൰ ൮𝑝 + ቌ
√∆ ×

tanh ቆ
√∆𝜉

2
ቇ

ቍ൲

+ 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
 , 

 

 

 

 

 

 

 

 

 

(5.36) 

𝑈ଶ,ଶ =
(−48𝑏𝛿 + 48𝐸)𝑟ଶ𝜐ଶ𝑞ଶ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ) ൮𝑝 + ቌ
√∆ ×

coth ቆ
√∆𝜉

2
ቇ

ቍ൲

ଶ 

−
(−24𝑏𝛿 + 24𝐸)𝑝𝑟𝜐ଶ𝑞

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ) ൮𝑝 + ቌ
√∆ ×

coth ቆ
√∆𝜉

2
ቇ

ቍ൲

+ 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
 , 

 

 

 

 

 

 

(5.37) 

 



𝑈ଶ,ଷ =
(−48𝑏𝛿 + 48𝐸)𝑟ଶ𝜐ଶ𝑞ଶ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ) ቆ
(𝑝 + ඥ∆) ×

൫tanh൫√∆𝜉൯ ± isech൫√∆𝜉൯൯
ቇ

ଶ 

−
(−24𝑏𝛿 + 24𝐸)𝑝𝑟𝜐ଶ𝑞

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ) ቆ
൫𝑝 + √∆൯ ×

൫tanh൫√∆𝜉൯ ± isech൫√∆𝜉൯൯
ቇ

+ 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
, 

 

(5.38) 

𝑈ଶ,ସ =
(−48𝑏𝛿 + 48𝐸)𝑟ଶ𝜐ଶ𝑞ଶ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ) ቆ
൫𝑝 + √∆൯ ×

൫coth൫√∆𝜉൯ ± csch൫√∆𝜉൯൯
ቇ

ଶ 

−
(−24𝑏𝛿 + 24𝐸)𝑝𝑟𝜐ଶ𝑞

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ) ቆ
൫𝑝 + √∆൯ ×

൫coth൫√∆𝜉൯ ± csch൫√∆𝜉൯൯
ቇ

+ 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
, 

 

(5.39) 

𝑈ଶ,ହ =
(−48𝑏𝛿 + 48𝐸)𝑟ଶ𝜐ଶ𝑞ଶ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ) ×

൮

൫2𝑝 + √∆൯ ×

ቆtanh ቆ
√∆𝜉

4
ቇ + coth ቆ

√∆𝜉
4

ቇቇ
൲

ଶ

 

−
(−24𝑏𝛿 + 24𝐸)𝑝𝑟𝜐ଶ𝑞

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)

൮

൫2𝑝 + √∆൯ ×

ቆtanh ቆ
√∆𝜉

4
ቇ + coth ቆ

√∆𝜉
4

ቇቇ
൲

+ 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
, 

 

 

(5.40) 

 

 

 

 

 



𝑈ଶ,଺ =
(−48𝑏𝛿 + 48𝐸)𝑟ଶ𝜐ଶ𝑞ଶ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)

⎝

⎜⎜
⎛

−𝑝 +

ቆ
ඥ(𝐴ଶ + 𝐵ଶ)(∆) −

𝐴√∆ cosh൫√∆𝜉൯
ቇ

Asinh൫√∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

ିଶ

 

+
(−24𝑏𝛿 + 24𝐸)𝑝𝑟𝜐ଶ𝑞

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)

⎝

⎜⎜
⎛

−𝑝 +

ቆ
ඥ(𝐴ଶ + 𝐵ଶ)(∆)

−𝐴√∆ cosh൫√∆𝜉൯
ቇ

Asinh൫√∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

ିଵ

 

+12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
, 

(5.41) 

 

𝑈ଶ,଻ =
(−48𝑏𝛿 + 48𝐸)𝑟ଶ𝜐ଶ𝑞ଶ

𝛽𝑙(−2 + 𝜖(𝑝ଶ − 4𝑞𝑟)𝜐ଶ)
× 

⎝

⎜⎜
⎛

−𝑝 −

ቆ
ඥ(−𝐴ଶ + 𝐵ଶ)(∆) +

𝐴√∆ sinh൫√∆𝜉൯
ቇ

Acosh൫√∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

ିଶ

+
(−24𝑏𝛿 + 24𝐸)𝑝𝑟𝜐ଶ𝑞

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
× 

⎝

⎜⎜
⎛

−𝑝 −

ቆ
ඥ(−𝐴ଶ + 𝐵ଶ)(∆) +

𝐴√∆ sinh൫√∆𝜉൯
ቇ

Acosh൫√∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

ିଵ

+ 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
. 

(5.42) 

Where two non-zero real constants A and B satisfies  𝐴ଶ − 𝐵ଶ > 0. 

 

 



𝑈ଶ,଼ =

(−3𝑏𝛿 + 3𝐸)𝜐ଶ

⎝

⎜
⎛

√∆ sinh ቆ
√∆𝜉

2
ቇ

− pcosh ቆ
√∆𝜉

2
ቇ

⎠

⎟
⎞

ଶ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ) ቆcosh ቆ
√∆𝜉

2
ቇቇ

ଶ  

+

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ

⎝

⎜
⎛

√∆ sinh ቆ
√∆𝜉

2
ቇ

− pcosh ቆ
√∆𝜉

2
ቇ

⎠

⎟
⎞

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ) cosh ቆ
√∆𝜉

2
ቇ

+ 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
, 

(5.43) 

 

𝑈ଶ,ଽ =

(−3𝑏𝛿 + 3𝐸)𝜐ଶ

⎝

⎜
⎛

−√∆ cosh ቆ
√∆𝜉

2
ቇ

+ psinh ቆ
√∆𝜉

2
ቇ

⎠

⎟
⎞

ଶ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ) ቆsinh ቆ
√∆𝜉

2
ቇቇ

ଶ  

−

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ

⎝

⎜
⎛

−√∆ cosh ቆ
√∆𝜉

2
ቇ

+ psinh ቆ
√∆𝜉

2
ቇ

⎠

⎟
⎞

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ) sinh ቆ
√∆𝜉

2
ቇ

+ 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
, 

(5.44) 

 

 



𝑈ଶ,ଵ଴ =

(−3𝑏𝛿 + 3𝐸)𝜐ଶ ቆ
(√∆ sinh൫√∆𝜉൯

−𝑝൫cosh൫√∆𝜉൯ ± 𝑖√∆൯
ቇ

ଶ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ) ቆcosh ቆ
1

2√∆𝜉
ቇቇ

ଶ  

+

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ ቆ
(√∆ sinh൫√∆𝜉൯

−𝑝൫cosh൫√∆𝜉൯ ± 𝑖√∆൯
ቇ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ) cosh ቆ
1

2√∆𝜉
ቇ

+ 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
 , 

(5.45) 

 

𝑈ଶ,ଵଵ =

(−3𝑏𝛿 + 3𝐸)𝜐ଶ ቆ
√∆ cosh൫√∆𝜉൯

−𝑝൫sinh൫√∆𝜉൯ ± √∆൯
ቇ

ଶ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ) ቆsinh ቆ
√∆𝜉

2
ቇቇ

ଶ  

+

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ ቆ
√∆ cosh൫√∆𝜉൯

−𝑝൫sinh൫√∆𝜉൯ ± √∆൯
ቇ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ) sinh ቆ
√∆𝜉

2
ቇ

+ 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
 , 

(5.46) 

 

𝑈ଶ,ଵଶ =

(−3𝑏𝛿 + 3𝐸)𝜐ଶ

⎝

⎜
⎛

ቆ−𝑝 sinh ቆ
√∆𝜉

2
ቇቇ

+2√∆ ቆcosh ቆ
1

4√∆𝜉
ቇቇ

ଶ

− √∆
⎠

⎟
⎞

ଶ

4 𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ) ቆ
1
2

sinh ቆ
√∆𝜉

2
ቇቇ

ଶ  

+

(−3𝑏𝛿 + 3𝐸)𝑝𝜐ଶ

⎝

⎜
⎛

ቆ−𝑝 sinh ቆ
√∆𝜉

2
ቇቇ

+2√∆ ቆcosh ቆ
√∆𝜉

4
ቇቇ

ଶ

− √∆
⎠

⎟
⎞

𝛽𝑙(−2 + 𝜖(𝑝ଶ − 4𝑞𝑟)𝜐ଶ)
1
2

sinh ቆ
√∆𝜉

4
ቇ

+ 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
. 

(5.47) 



Family2: 

If ∆< 0 and 𝑝𝑞 ≠ 0 (𝑜𝑟 𝑞𝑟 ≠ 0), we have the following trigonometric solutions: 

𝑈ଶ,ଵଷ =
(−48𝑏𝛿 + 48𝐸)𝑟2𝜐2𝑞2

𝑙𝛽൫−2 + 𝜖(∆)𝜐2൯ ቆ−𝑝 + √−∆ tan ቆ
√−∆𝜉

2
ቇቇ

2
 

+
(−24𝑏𝛿 + 24𝐸)𝑝𝑟𝜐ଶ𝑞

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ) ቆ−𝑝 + √−∆ tan ቆ
√−∆𝜉

2
ቇቇ

+ 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ)
, 

(5.48) 

 

𝑈ଶ,ଵସ =
(−48𝑏𝛿 + 48𝐸)𝑟2𝜐2𝑞2

𝑙𝛽൫−2 + 𝜖(∆)𝜐2൯ ቆ𝑝 + √−∆ cot ቆ
√−∆𝜉

2
ቇቇ

2
 

−
(−24𝑏𝛿 + 24𝐸)𝑝𝑟𝜐ଶ𝑞

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ) ቆ𝑝 + √−∆ cot ቆ
√−∆𝜉

2
ቇቇ

+ 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ)
, 

(5.49) 

 

𝑈ଶ,ଵହ =
(−48𝑏𝛿 + 48𝐸)𝑟ଶ𝜐ଶ𝑞ଶ

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ) ቆ
൫−𝑝 + √−∆൯ ×

൫tan൫√−∆𝜉൯ ± sec൫√−∆𝜉൯൯
ቇ

ଶ 

+
(−24𝑏𝛿 + 24𝐸)𝑝𝑟𝜐ଶ𝑞

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ) ቆ
൫−𝑝 + √−∆൯ ×

൫tan൫√−∆𝜉൯ ± sec൫√−∆𝜉൯൯
ቇ

+ 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ)
 , 

(5.50) 

 

𝑈ଶ,ଵ଺ =
(−48𝑏𝛿 + 48𝐸)𝑟ଶ𝜐ଶ𝑞ଶ

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ) ቆ
൫𝑝 + √−∆൯ ×

൫cot൫√−∆𝜉൯ ± csc൫√−∆𝜉൯൯
ቇ

ଶ 

−
(−24𝑏𝛿 + 24𝐸)𝑝𝑟𝜐ଶ𝑞

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ) ቆ
൫𝑝 + √−∆൯ ×

൫cot൫√−∆𝜉൯ ± csc൫√−∆𝜉൯൯
ቇ

+ 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ)
, 

(5.51) 



𝑈ଶ,ଵ଻ =
(−192𝑏𝛿 + 192𝐸)𝑟ଶ𝜐ଶ𝑞ଶ

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ) ൮

൫−2𝑝 + √−∆൯ ×

ቆtan ቆ
√−∆𝜉

4
ቇ − cot ቆ

√−∆𝜉
4

ቇቇ
൲

ଶ 

+
(−48𝑏𝛿 + 48𝐸)𝑝𝑟𝜐ଶ𝑞

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ) ൮

൫−2𝑝 + √−∆൯ ×

ቆtan ቆ
√−∆𝜉

4
ቇ − cot ቆ

√−∆𝜉
4

ቇቇ
൲

+ 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ)
, 

(5.52) 

 

𝑈ଶ,ଵ଼ =
(−48𝑏𝛿 + 48𝐸)𝑟ଶ𝜐ଶ𝑞ଶ

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ)
×

⎝

⎜⎜
⎛

−𝑝 +

ቆ
±𝑖ඥ(−𝐴ଶ + 𝐵ଶ)(−∆)

−𝐴√−∆ cos൫√−∆𝜉൯
ቇ

Asin൫√−∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

ିଶ

 

+
(−24𝑏𝛿 + 24𝐸)𝑝𝑟𝜐ଶ𝑞

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ)
×

⎝

⎜⎜
⎛

−𝑝 +

ቆ
±𝑖ඥ(−𝐴ଶ + 𝐵ଶ)(−∆)

−𝐴√−∆ cos൫√−∆𝜉൯
ቇ

Asin൫√−∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

ିଵ

 

+12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ)
 , 

(5.53) 

𝑈ଶ,ଵଽ =
(−48𝑏𝛿 + 48𝐸)𝑟ଶ𝜐ଶ𝑞ଶ

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ)

⎝

⎜⎜
⎛

−𝑝 +

ቆ
±𝑖ඥ(−𝐴ଶ + 𝐵ଶ)(−∆)

−𝐴√−∆ cos൫√−∆𝜉൯
ቇ

Asin൫√−∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

ିଶ

 

+
(−24𝑏𝛿 + 24𝐸)𝑝𝑟𝜐ଶ𝑞

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ)

⎝

⎜⎜
⎛

−𝑝 +

ቆ
±𝑖ඥ(−𝐴ଶ + 𝐵ଶ)(−∆)

−𝐴√−∆ cos൫√−∆𝜉൯
ቇ

Asin൫√−∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

ିଵ

 

+12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ)
 . 

(5.54) 

Where two non-zero real constants A and B satisfies  𝐴ଶ − 𝐵ଶ > 0. 



𝑈ଶ,ଶ଴ =

(−3𝑏𝛿 + 3𝐸)𝜐ଶ

⎝

⎜
⎛

√−∆ sin ቆ
√−∆𝜉

2
ቇ

+ pcos ቆ
√−∆𝜉

2
ቇ

⎠

⎟
⎞

ଶ

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ) ቆcos ቆ
√−∆𝜉

2
ቇቇ

ଶ  

−

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ

⎝

⎜
⎛

√−∆ sin ቆ
√−∆𝜉

2
ቇ

+ pcos ቆ
√−∆𝜉

2
ቇ

⎠

⎟
⎞

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ) cos ቆ
√−∆𝜉

2
ቇ

+ 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ)
 , 

(5.55) 

 

𝑈ଶ,ଶଵ =

(−3𝑏𝛿 + 3𝐸)𝜐ଶ

⎝

⎜
⎛

√−∆ cos ቆ
√−∆𝜉

2
ቇ

− psin ቆ
ඥ−𝑝ଶ + 4𝑞𝑟𝜉

2
ቇ

⎠

⎟
⎞

ଶ

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ) ቆsin ቆ
√−∆𝜉

2
ቇቇ

ଶ  

+

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ

⎝

⎜
⎛

√−∆ cos ቆ
√−∆𝜉

2
ቇ

− psin ቆ
√−∆𝜉

2
ቇ

⎠

⎟
⎞

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ) sin ቆ
√−∆𝜉

2
ቇ

+ 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ)
, 

(5.56) 

 

 



𝑈ଶ,ଶଶ =

(−3𝑏𝛿 + 3𝐸)𝜐ଶ ቆ
√−∆ sin൫√−∆𝜉൯

+𝑝 cos൫√∆𝜉൯ ± √−∆
ቇ

ଶ

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ) ቆcos ቆ
√−∆𝜉

2
ቇቇ

ଶ  

−

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ ቆ
√−∆ sin൫√−∆𝜉൯

+𝑝 cos൫√∆𝜉൯ ± √−∆
ቇ

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ) cos ቆ
√−∆𝜉

2
ቇ

+ 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ)
 , 

(5.57) 

 

𝑈ଶ,ଶଷ =

(−3𝑏𝛿 + 3𝐸)𝜐ଶ ቆ
√−∆ cos൫√−∆𝜉൯

−𝑝 sin൫√−∆𝜉൯ ± √−∆
ቇ

ଶ

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ)൫sin൫√−∆𝜉൯൯
ଶ  

+

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ ቆ
√−∆ cos൫√−∆𝜉൯

−𝑝 sin൫√−∆𝜉൯ ± √−∆
ቇ

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ) sin൫√−∆𝜉൯
+ 12

𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ)
, 

(5.58) 

 

𝑈ଶ,ଶସ =

(−3𝑏𝛿 + 3𝐸)𝜐ଶ

⎝

⎜
⎛

ቆ−𝑝 sin ቆ
√−∆𝜉

2
ቇቇ − √−∆

+2√−∆ ቆcos ቆ
√−∆𝜉

4
ቇቇ

ଶ

⎠

⎟
⎞

ଶ

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ) ቆsin ቆ
√−∆𝜉

2
ቇቇ

ଶ  

+

(−3𝑏𝛿 + 3𝐸)𝑝𝜐ଶ

⎝

⎜
⎛

ቆ−𝑝 sin ቆ
√−∆𝜉

2
ቇቇ − √−∆

+2√−∆ ቆcos ቆ
√−∆𝜉

4
ቇቇ

ଶ

⎠

⎟
⎞

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ)
2

sin ቆ
√−∆𝜉

2
ቇ

+ 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝑙𝛽(−2 + 𝜖(∆)𝜐ଶ)
 . 

(5.59) 

For case 3, substituting values from. Eq. (5.8) and Riccati equation solutions in Eq. (5.9) with 



𝜉 =
𝑥ఈ

Γ(1 + 𝛼)
−

𝜆𝑡ఈ

Γ(1 + 𝛼)
 , 

Family1: 

When 𝑝ଶ − 4𝑞𝑟 > 0 and 𝑝𝑞 ≠ 0 or 𝑞𝑟 ≠ 0, the hyperbolic function solutions of Eq. (5.1) are as 

follows, 

𝑈ଷ,ଵ = −2
𝜐ଶ(𝑝ଶ + 2𝑞𝑟)(−𝑏𝛿 + 𝐸)

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙
 

+

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ ቆ𝑝 + √∆ tanh ቆ
√∆𝜉

2
ቇቇ

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙
 

−

(−3𝑏𝛿 + 3𝐸)𝜐ଶ ቆ𝑝 + √∆ tanh ቆ
√∆𝜉

2
ቇቇ

ଶ

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙
 , 

(5.60) 

 

𝑈ଷ,ଶ = −2
𝜐ଶ(𝑝ଶ + 2𝑞𝑟)(−𝑏𝛿 + 𝐸)

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙
 

+

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ ቆ𝑝 + √∆ coth ቆ
√∆𝜉

2
ቇቇ

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙
 

−

(−3𝑏𝛿 + 3𝐸)𝜐ଶ ቆ𝑝 + √∆ coth ቆ
√∆𝜉

2
ቇቇ

ଶ

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙
, 

(5.61) 

𝑈ଷ,ଷ = −2
𝜐ଶ(𝑝ଶ + 2𝑞𝑟)(−𝑏𝛿 + 𝐸)

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙
 

+

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ ൭
൫𝑝 + √∆൯ ×

ቀtanh൫√∆𝜉൯ ± 𝑖sech൫√∆𝜉൯ቁ
൱

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙
 

−

(−3𝑏𝛿 + 3𝐸)𝜐ଶ ൭
൫𝑝 + √∆൯ ×

tanh ቀ√∆𝜉 ± 𝑖sech൫√∆𝜉൯ቁ
൱

ଶ

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙
 , 

(5.62) 



 

𝑈ଷ,ସ = −2
𝜐ଶ(𝑝ଶ + 2𝑞𝑟)(−𝑏𝛿 + 𝐸)

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙
 

+

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ ቆ
൫𝑝 + √∆൯ ×

൫coth൫√∆𝜉൯ ± csch൫√∆𝜉൯൯
ቇ

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙
 

−

(−3𝑏𝛿 + 3𝐸)𝜐ଶ ቆ
൫𝑝 + √∆൯ ×

൫coth൫√∆𝜉൯ ± csch൫√∆𝜉൯൯
ቇ

ଶ

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙
 , 

(5.63) 

 

𝑈ଷ,ହ = −2
𝜐ଶ(𝑝ଶ + 2𝑞𝑟)(−𝑏𝛿 + 𝐸)

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙
 

+

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ ൮

൫2𝑝 + √∆൯ ×

ቆtanh ቆ
√∆𝜉

4
ቇ + coth ቆ

√∆𝜉
4

ቇቇ
൲

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙
 

−

(−3𝑏𝛿 + 3𝐸)𝜐ଶ ൮

൫2𝑝 + √∆൯ ×

ቆtanh ቆ
√∆𝜉

4
ቇ + coth ቆ

√∆𝜉
4

ቇቇ
൲

ଶ

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙
, 

(5.64) 

𝑈ଷ,଺ = −2
𝜐ଶ(𝑝ଶ + 2𝑞𝑟)(−𝑏𝛿 + 𝐸)

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙
 

−
(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ

(2 + 𝜖(𝑝ଶ − 4𝑞𝑟)𝜐ଶ)𝛽𝑙

⎝

⎜⎜
⎛

−𝑝 +

ቆ
ඥ(𝐴ଶ + 𝐵ଶ)(∆)

−𝐴√∆ cosh൫√∆𝜉൯
ቇ

Asinh൫√∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

 

−
(−3𝑏𝛿 + 3𝐸)𝜐ଶ

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙

⎝

⎜⎜
⎛

−𝑝 +

ቆ
ඥ(𝐴ଶ + 𝐵ଶ)(∆)

−𝐴√∆ cosh൫√∆𝜉൯
ቇ

Asinh൫√∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

ଶ

 , 

(5.65) 



 

𝑈ଷ,଻ = −2
𝜐ଶ(∆)(−𝑏𝛿 + 𝐸)

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙
 

−
(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙

⎝

⎜⎜
⎛

−𝑝 −

ቆ
ඥ(−𝐴ଶ + 𝐵ଶ)(∆)

+𝐴√∆ sinh൫√∆𝜉൯
ቇ

Acosh൫√∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

 

−
(−3𝑏𝛿 + 3𝐸)𝜐ଶ

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙

⎝

⎜⎜
⎛

−𝑝 −

ቆ
ඥ(−𝐴ଶ + 𝐵ଶ)(∆)

+𝐴√∆ sinh൫√∆𝜉൯
ቇ

Acosh൫√∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

ଶ

 . 

(5.66) 

Where two non-zero real constants A and B satisfies  𝐴ଶ − 𝐵ଶ > 0. 

𝑈ଷ,଼ = −2
𝜐ଶ(∆)(−𝑏𝛿 + 𝐸)

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙
 

−

(−24𝑏𝛿 + 24𝐸)𝑝𝑞𝜐ଶ rcosh ቆ
√∆𝜉

2
ቇ

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙

⎝

⎜
⎛

√∆ sinh ቆ
√∆𝜉

2
ቇ

− pcosh ቆ
√∆𝜉

2
ቇ

⎠

⎟
⎞

 

−

(−48𝑏𝛿 + 48𝐸)𝑞ଶ𝜐ଶ𝑟ଶ ቆcosh ቆ
√∆𝜉

2
ቇቇ

ଶ

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙

⎝

⎜
⎛

√∆ sinh ቆ
√∆𝜉

2
ቇ

− pcosh ቆ
√∆𝜉

2
ቇ

⎠

⎟
⎞

ଶ  , 

(5.67) 

 

 



𝑈ଷ,ଽ = −2
𝜐ଶ(∆)(−𝑏𝛿 + 𝐸)

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙
 

+

(−24𝑏𝛿 + 24𝐸)𝑝𝑞𝜐ଶ rsinh ቆ
√∆𝜉

2
ቇ

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙

⎝

⎜
⎛

−√∆ cosh ቆ
√∆𝜉

2
ቇ

+ psinh ቆ
√∆𝜉

2
ቇ

⎠

⎟
⎞

 

−

(−48𝑏𝛿 + 48𝐸)𝑞ଶ𝜐ଶ𝑟ଶ ቆsinh ቆ
√∆𝜉

2
ቇቇ

ଶ

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙

⎝

⎜
⎛

−√∆ cosh ቆ
√∆𝜉

2
ቇ

+ psinh ቆ
√∆𝜉

2
ቇ

⎠

⎟
⎞

ଶ , 

(5.68) 

 

𝑈ଷ,ଵ଴ = −2
𝜐ଶ(∆)(−𝑏𝛿 + 𝐸)

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙
 

−

(−24𝑏𝛿 + 24𝐸)𝑝𝑞𝜐ଶ rcosh ቆ
√∆𝜉

2
ቇ

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙 ቆ
√∆ sinh൫√∆𝜉൯

−𝑝(cosh (√∆𝜉) ± 𝑖√∆
ቇ

 

−

(−48𝑏𝛿 + 48𝐸)𝑞ଶ𝜐ଶ𝑟ଶ ቆcosh ቆ
√∆𝜉

2
ቇቇ

ଶ

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙 ቆ
√∆ sinh൫√∆𝜉൯

−𝑝(cosh (√∆𝜉) ± 𝑖√∆
ቇ

ଶ , 

(5.69) 

 

𝑈ଷ,ଵଵ = −2
𝜐ଶ(∆)(−𝑏𝛿 + 𝐸)

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙
 

 

 

(5.70) 



−

(−24𝑏𝛿 + 24𝐸)𝑝𝑞𝜐ଶ rsinh ቆ
√∆𝜉

2
ቇ

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙 ቆ
√∆ cosh൫√∆𝜉൯

−𝑝൫sinh൫√∆𝜉൯± √∆൯
ቇ

 

−

(−48𝑏𝛿 + 48𝐸)𝑞ଶ𝜐ଶ𝑟ଶ ቆsinh ቆ
√∆𝜉

2
ቇቇ

ଶ

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙 ቆ
√∆ cosh൫√∆𝜉൯

−𝑝൫sinh൫√∆𝜉൯ ±√∆൯
ቇ

ଶ, 

 

𝑈ଷ,ଵଶ = −2
𝜐ଶ(∆)(−𝑏𝛿 + 𝐸)

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙
 

−

24(−𝑏𝛿 + 𝐸)𝑝𝑞𝜐ଶ rsinh ቆ
√∆𝜉

2
ቇ

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙

⎝

⎜
⎜
⎛

ቆ−𝑝 sinh ቆ
√∆𝜉

2
ቇቇ

+2√∆ ቆcosh ቆ
√∆𝜉

4
ቇቇ

ଶ

−√∆ ⎠

⎟
⎟
⎞

 

−

96(−𝑏𝛿 + 𝐸)𝑞ଶ𝜐ଶ𝑟ଶ ቆsinh ቆ
√∆𝜉

2
ቇቇ

ଶ

(2 + 𝜖(∆)𝜐ଶ)𝛽𝑙

⎝

⎜
⎜
⎜
⎛

ቆ−𝑝 sinh ቆ
√∆𝜉

2
ቇቇ

+2√∆ ቆcosh ቆ
√∆𝜉

4
ቇቇ

ଶ

−√∆
⎠

⎟
⎟
⎟
⎞

ଶ . 

(5.71) 

Family2: 

If ∆< 0 and 𝑝𝑞 ≠ 0 (𝑜𝑟 𝑞𝑟 ≠ 0), we have the following trigonometric solutions: 

 

 



𝑈ଷ,ଵଷ = −2
𝜐ଶ(∆)(−𝑏𝛿 + 𝐸)

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙
 

−

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ ቆ−𝑝 + √−∆ tan ቆ
√−∆𝜉

2
ቇቇ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙
 

−

(−3𝑏𝛿 + 3𝐸)𝜐ଶ ቆ−𝑝 + √−∆ tan ቆ
√−∆𝜉

2
ቇቇ

ଶ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙
 , 

(5.72) 

𝑈ଷ,ଵସ = −2
𝜐ଶ(∆)(−𝑏𝛿 + 𝐸)

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙
 

+

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ ቆ𝑝 + √−∆ cot ቆ
√−∆𝜉

2
ቇቇ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙
 

−

(−3𝑏𝛿 + 3𝐸)𝜐ଶ ቆ𝑝 + √−∆ cot ቆ
√−∆𝜉

2
ቇቇ

ଶ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙
, 

(5.73) 

 

𝑈ଷ,ଵହ = −2
𝜐ଶ(∆)(−𝑏𝛿 + 𝐸)

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙
 

−

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ ቆ
൫−𝑝 + √−∆൯ ×

൫tan൫√−∆𝜉൯ ± sec൫√−∆𝜉൯൯
ቇ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙
 

−

(−3𝑏𝛿 + 3𝐸)𝜐ଶ ቆ
൫−𝑝 + √−∆൯ ×

൫tan൫√−∆𝜉൯ ± sec൫√−∆𝜉൯൯
ቇ

ଶ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙
 , 

(5.74) 

 

 

 



𝑈ଷ,ଵ଺ = −2
𝜐ଶ(∆)(−𝑏𝛿 + 𝐸)

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙
 

+

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ ቆ
൫𝑝 + √−∆൯ ×

൫cot൫√−∆𝜉൯ ± csc൫√−∆𝜉൯൯
ቇ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙
 

−

(−3𝑏𝛿 + 3𝐸)𝜐ଶ ቆ
൫𝑝 + √−∆൯ ×

൫cot൫√−∆𝜉൯ ± csc൫√−∆𝜉൯൯
ቇ

ଶ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙
 , 

(5.75) 

 

𝑈ଷ,ଵ଻ = −2
𝜐ଶ(∆)(−𝑏𝛿 + 𝐸)

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙
 

−

(−3𝑏𝛿 + 3𝐸)𝑝𝜐ଶ ቌ

(−2𝑝 + √−∆) ×

ቆtan ቆ
√−∆𝜉

4
ቇ − cot ቆ

√−∆𝜉
4

ቇቇ
ቍ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙
 

−

(−3𝑏𝛿 + 3𝐸)𝜐ଶ ൮

൫−2𝑝 + √−∆൯ ×

ቆtan ቆ
√−∆𝜉

4
ቇ − cot ቆ

√−∆𝜉
4

ቇቇ
൲

ଶ

4𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙
 , 

(5.76) 

 

𝑈ଷ,ଵ଼ = −2
𝜐ଶ(∆)(−𝑏𝛿 + 𝐸)

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙
 

−
(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙

⎝

⎜⎜
⎛

−𝑝 +

±𝑖ඥ(−𝐴ଶ + 𝐵ଶ)(−∆)

−𝐴√−∆ cos൫√−∆𝜉൯

Asin൫√−∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

 

−
(−3𝑏𝛿 + 3𝐸)𝜐ଶ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙

⎝

⎜⎜
⎛

−𝑝 +

±𝑖ඥ(−𝐴ଶ + 𝐵ଶ)(−∆)

−𝐴√−∆ cos൫√−∆𝜉൯

Asin൫√−∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

ଶ

 , 

(5.77) 



 

𝑈ଷ,ଵଽ = −2
𝜐ଶ(∆)(−𝑏𝛿 + 𝐸)

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙
 

−
(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙

⎝

⎜⎜
⎛

−𝑝 +

±𝑖ඥ(−𝐴ଶ + 𝐵ଶ)(−∆)

+𝐴√−∆ cos൫√−∆𝜉൯

Asin൫√−∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

 

−
(−3𝑏𝛿 + 3𝐸)𝜐ଶ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙

⎝

⎜⎜
⎛

−𝑝 +

±𝑖ඥ(−𝐴ଶ + 𝐵ଶ)(−∆)

+𝐴√−∆ cos൫√−∆𝜉൯

Asin൫√−∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

ଶ

 . 

(5.78) 

Where two non-zero real constants A and B satisfies  𝐴ଶ − 𝐵ଶ > 0. 

𝑈ଷ,ଶ଴ = −2
𝜐ଶ(∆)(−𝑏𝛿 + 𝐸)

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙
 

+

(−24𝑏𝛿 + 24𝐸)𝑝𝑞𝜐ଶ rcos ቆ
√−∆𝜉

2
ቇ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙

⎝

⎜
⎛

√−∆ sin ቆ
√−∆𝜉

2
ቇ

+ pcos ቆ
√−∆𝜉

2
ቇ

⎠

⎟
⎞

 

−

(−48𝑏𝛿 + 48𝐸)𝑞ଶ𝜐ଶ𝑟ଶ ቆcos ቆ
√−∆𝜉

2
ቇቇ

ଶ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙

⎝

⎜
⎛

√−∆ sin ቆ
√−∆𝜉

2
ቇ

+ pcos ቆ
√−∆𝜉

2
ቇ

⎠

⎟
⎞

ଶ , 

(5.79) 

 

 



𝑈ଷ,ଶଵ = −2
𝜐ଶ(∆)(−𝑏𝛿 + 𝐸)

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙
 

−

(−24𝑏𝛿 + 24𝐸)𝑝𝑞𝜐ଶ rsin ቆ
√−∆𝜉

2
ቇ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙

⎝

⎜
⎛

√−∆ cos ቆ
√−∆𝜉

2
ቇ

− psin ቆ
√−∆𝜉

2
ቇ

⎠

⎟
⎞

 

−

(−48𝑏𝛿 + 48𝐸)𝑞ଶ𝜐ଶ𝑟ଶ ቆsin ቆ
√−∆𝜉

2
ቇቇ

ଶ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙

⎝

⎜
⎛

√−∆ cos ቆ
√−∆𝜉

2
ቇ

− psin ቆ
√−∆𝜉

2
ቇ

⎠

⎟
⎞

ଶ  , 

(5.80) 

 

𝑈ଷ,ଶଶ = −2
𝜐ଶ(∆)(−𝑏𝛿 + 𝐸)

𝛽(2 + 𝜖(𝑝ଶ − 4𝑞𝑟)𝜐ଶ)𝑙
 

+

(−24𝑏𝛿 + 24𝐸)𝑝𝑞𝜐ଶ rcos ቆ
√−∆𝜉

2
ቇ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙 ቆ
√−∆ sin൫√−∆𝜉൯

+𝑝 cos൫√∆𝜉൯ ± √−∆
ቇ

 

−

(−48𝑏𝛿 + 48𝐸)𝑞ଶ𝜐ଶ𝑟ଶ ቆcos ቆ
√−∆𝜉

2
ቇቇ

ଶ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙 ቆ
√−∆ sin൫√−∆𝜉൯

+𝑝 cos൫√∆𝜉൯ ± √−∆
ቇ

ଶ , 

(5.81) 

𝑈ଷ,ଶଷ = −2
𝜐ଶ(∆)(−𝑏𝛿 + 𝐸)

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙
 

−
(−24𝑏𝛿 + 24𝐸)𝑝𝑞𝜐ଶ rsin൫ඥ−𝑝ଶ + 4𝑞𝑟𝜉൯

 

 

 

(5.82) 



−
(−48𝑏𝛿 + 48𝐸)𝑞ଶ𝜐ଶ𝑟ଶ൫sin൫√−∆𝜉൯൯

ଶ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙 ቆ
√−∆ cos൫√−∆𝜉൯

−𝑝 sin൫√−∆𝜉൯ ± √−∆
ቇ

ଶ , 

 

𝑈ଷ,ଶସ = −2
𝜐ଶ(∆)(−𝑏𝛿 + 𝐸)

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙
 

−

24(−𝑏𝛿 + 𝐸)𝑝𝑞𝜐ଶ rsin ቆ
√−∆𝜉

2
ቇ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙

⎝

⎜
⎜
⎛

−𝑝 sin ቆ
√−∆𝜉

4
ቇ

+2√−∆ ቆcos ቆ
√−∆𝜉

4
ቇቇ

ଶ

−√−∆) ⎠

⎟
⎟
⎞

 

−

48(−𝑏𝛿 + 𝐸)𝑞ଶ𝜐ଶ𝑟ଶ ቆsin ቆ
√−∆𝜉

2
ቇቇ

ଶ

𝛽(2 + 𝜖(∆)𝜐ଶ)𝑙

⎝

⎜
⎜
⎛

−𝑝 sin ቆ
√−∆𝜉

4
ቇ

+2√−∆ ቆcos ቆ
√−∆𝜉

4
ቇቇ

ଶ

−√−∆) ⎠

⎟
⎟
⎞

ଶ . 

(5.83) 

 

Family 3: 
When 𝑟 = 0, and 𝑝𝑞 ≠ 0, we get soliton like solutions, 

𝑈ଷ,ଶହ = −2
𝜐ଶ𝑝ଶ(−𝑏𝛿 + 𝐸)

(2 + 𝜖𝑝ଶ𝜐ଶ)𝛽𝑙
 

+
(−12𝑏𝛿 + 12𝐸)𝑝ଶ𝑞𝜐ଶℵ

(2 + 𝜖𝑝ଶ𝜐ଶ)𝛽𝑙𝑞(ℵ + cosh(𝑝𝜉) − sinh(𝑝𝜉))
 

−
(−12𝑏𝛿 + 12𝐸)𝑞ଶ𝜐ଶ𝑝ଶℵଶ

(2 + 𝜖𝑝ଶ𝜐ଶ)𝛽𝑙൫𝑞(ℵ + cosh(𝑝𝜉) − sinh(𝑝𝜉))൯
ଶ , 

(5.84) 

 



𝑈ଷ,ଶ଺ = −2
𝜐ଶ𝑝ଶ(−𝑏𝛿 + 𝐸)

(𝜖𝑝ଶ𝜐ଶ + 2)𝛽𝑙
 

+
(−12𝑏𝛿 + 12𝐸)𝑝ଶ𝑞𝜐ଶ(cosh(𝑝𝜉) + sinh(𝑝𝜉))

(𝜖𝑝ଶ𝜐ଶ + 2)𝛽𝑙𝑞(ℵ + cosh(𝑝𝜉) + sinh(𝑝𝜉))
 

−
(−12𝑏𝛿 + 12𝐸)𝑞ଶ𝜐ଶ𝑝ଶ(cosh(𝑝𝜉) + sinh(𝑝𝜉))ଶ

(𝜖𝑝ଶ𝜐ଶ + 2)𝛽𝑙൫𝑞(ℵ + cosh(𝑝𝜉) + sinh(𝑝𝜉))൯
ଶ  , 

(5.85) 

Where ℵ is constant. 

Family 4: 
When 𝑞 ≠ 0, and,  𝑟 = 𝑝 = 0, we have following rational solution. 

𝑈ଷ,ଶ଻ = −
(−6𝑏𝛿 + 6𝐸)𝑞ଶ𝜐ଶ

𝛽𝑙(𝑞𝜉 + 𝐶)ଶ
 , (5.86) 

Where C is an arbitrary constant. 

In the case 4, substituting values from Eq. (5.10) and Riccati equation solutions in Eq. (5.11) with 

𝜉 =
𝑥ఈ

Γ(1 + 𝛼)
−

𝜆𝑡ఈ

Γ(1 + 𝛼)
 , 

Family1: 

When ∆> 0 and 𝑝𝑞 ≠ 0 or 𝑞𝑟 ≠ 0, the hyperbolic function solutions of Eq. (5.1) are as follows, 

 

𝑈ସ,ଵ = 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽
 

−

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ ቆ𝑝 + √∆ tanh ቆ
√∆𝜉

2
ቇቇ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽
 

+

(−3𝑏𝛿 + 3𝐸)𝜐ଶ ቆ𝑝 + √∆ tanh ቆ
√∆𝜉

2
ቇቇ

ଶ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽
, 

(5.87) 

 



𝑈ସ,ଶ = 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽
 

−

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ ቆ𝑝 + √∆ coth ቆ
√∆𝜉

2
ቇቇ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽
 

+

(−3𝑏𝛿 + 3𝐸)𝜐ଶ ቆ𝑝 + √∆ coth ቆ
√∆𝜉

2
ቇቇ

ଶ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽
 , 

(5.88) 

 

𝑈ସ,ଷ = 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽
 

−

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ ቆ
൫𝑝 + √∆൯ ×

tanh൫√∆𝜉൯ ± 𝑖sech൫√∆𝜉൯
ቇ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽
 

+

(−3𝑏𝛿 + 3𝐸)𝜐ଶ ቆ
(𝑝 + √∆) ×

tanh (√∆𝜉) ± 𝑖sech(√∆𝜉)
ቇ

ଶ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽
 , 

(5.89) 

 

𝑈ସ,ସ = 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽
 

−

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ ቆ
൫𝑝 + √∆൯ ×

coth൫√∆𝜉൯ ± csch൫√∆𝜉൯
ቇ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽
 

+

(−3𝑏𝛿 + 3𝐸)𝜐ଶ ቆ
(𝑝 + √∆)

coth(√∆𝜉) ± csch(√∆𝜉)
ቇ

ଶ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽
 , 

(5.90) 

 

 

 



𝑈ସ,ହ = 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽
 

−

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ ቌ

(2𝑝 + √∆) ×

ቆtanh ቆ
√∆𝜉

4
ቇ + coth ቆ

√∆𝜉
4

ቇቇ
ቍ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽
 

+

(−3𝑏𝛿 + 3𝐸)𝜐ଶ ൮

(2𝑝 + ඥ𝑝ଶ − 4𝑞𝑟) ×

ቆtanh ቆ
√∆𝜉

4
ቇ + coth ቆ

√∆𝜉
4

ቇቇ
൲

ଶ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽
 , 

(5.91) 

 

𝑈ସ,଺ = 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽
 

+
(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽

⎝

⎜⎜
⎛

−𝑝 +

ඥ(𝐴ଶ + 𝐵ଶ)(∆)

−𝐴√∆ cosh൫√∆𝜉൯

Asinh൫√∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

 

+
(−3𝑏𝛿 + 3𝐸)𝜐ଶ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽

⎝

⎜⎜
⎛

−𝑝 +

ඥ(𝐴ଶ + 𝐵ଶ)(∆)

−𝐴√∆ cosh൫√∆𝜉൯

Asinh൫√∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

ଶ

 , 

(5.92) 

𝑈ସ,଻ = 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽
 

+
(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽

⎝

⎜⎜
⎛

−𝑝 −

ඥ(−𝐴ଶ + 𝐵ଶ)(∆)

+𝐴√∆ sinh൫√∆𝜉൯

Acosh൫√∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

 

+
(−3𝑏𝛿 + 3𝐸)𝜐ଶ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽

⎝

⎜⎜
⎛

−𝑝 −

ඥ(−𝐴ଶ + 𝐵ଶ)(∆)

+𝐴ඥ𝑝ଶ − 4𝑞𝑟 sinh൫√∆𝜉൯

Acosh൫√∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

ଶ

 , 

(5.93) 



𝑈ସ,଻ = 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽
 

+
(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽

⎝

⎜⎜
⎛

−𝑝 −

ඥ(−𝐴ଶ + 𝐵ଶ)(∆)

+𝐴√∆ sinh൫√∆𝜉൯

Acosh൫√∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

 

+
(−3𝑏𝛿 + 3𝐸)𝜐ଶ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽

⎝

⎜⎜
⎛

−𝑝 −

ඥ(−𝐴ଶ + 𝐵ଶ)(∆)

+𝐴√∆ sinh൫√∆𝜉൯

Acosh൫√∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

ଶ

 . 

  

(5.94) 

Where two non-zero real constants A and B satisfies  𝐴ଶ − 𝐵ଶ > 0. 

 

𝑈ସ,଼ = 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽
 

+

(−24𝑏𝛿 + 24𝐸)𝑝𝑞𝜐ଶ rcosh ቆ
√∆𝜉

2
ቇ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽

⎝

⎜
⎛

√∆ sinh ቆ
√∆𝜉

2
ቇ

− pcosh ቆ
√∆𝜉

2
ቇ

⎠

⎟
⎞

 

+

(−48𝑏𝛿 + 48𝐸)𝑞ଶ𝜐ଶ𝑟ଶ ቆcosh ቆ
√∆𝜉

2
ቇቇ

ଶ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽

⎝

⎜
⎛

√∆ sinh ቆ
√∆𝜉

2
ቇ

− pcosh ቆ
√∆𝜉

2
ቇ

⎠

⎟
⎞

ଶ  , 

(5.95) 

 

 



𝑈ସ,ଽ = 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽
 

−

(−24𝑏𝛿 + 24𝐸)𝑝𝑞𝜐ଶ rsinh ቆ
√∆𝜉

2
ቇ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽

⎝

⎜
⎛

−√∆ cosh ቆ
√∆𝜉

2
ቇ

+ psinh ቆ
√∆𝜉

2
ቇ

⎠

⎟
⎞

 

+

(−48𝑏𝛿 + 48𝐸)𝑞ଶ𝜐ଶ𝑟ଶ ቆsinh ቆ
√∆𝜉

2
ቇቇ

ଶ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽

⎝

⎜
⎛

−√∆ cosh ቆ
√∆𝜉

2
ቇ

+ psinh ቆ
√∆𝜉

2
ቇ

⎠

⎟
⎞

ଶ , 

(5.96) 

 

𝑈ସ,ଵ଴ = 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽
 

+

(−24𝑏𝛿 + 24𝐸)𝑝𝑞𝜐ଶ rcosh ቆ
√∆𝜉

2
ቇ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽 ቆ
√∆ sinh൫√∆𝜉൯ −

pcosh൫√∆𝜉൯ ± 𝑖√∆
ቇ

 

+

(−48𝑏𝛿 + 48𝐸)𝑞ଶ𝜐ଶ𝑟ଶ ቆcosh ቆ
√∆𝜉

2
ቇቇ

ଶ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽 ቆ
√∆sinh (√∆𝜉) −

𝑝cosh (√∆𝜉) ± 𝑖√∆
ቇ

ଶ , 

(5.97) 

 

𝑈ସ,ଵଵ = 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽
 

 

 

 



+

(−24𝑏𝛿 + 24𝐸)𝑝𝑞𝜐ଶ rsinh ቆ
√∆𝜉

2
ቇ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽 ቆ
√∆ cosh൫√∆𝜉൯ −

𝑝൫sinh൫√∆𝜉൯ ± √∆൯
ቇ

 

+

(−48𝑏𝛿 + 48𝐸)𝑞ଶ𝜐ଶ𝑟ଶ ቆsinh ቆ
√∆𝜉

2
ቇቇ

ଶ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽 ቆ
√∆ cosh൫√∆𝜉൯ −

𝑝൫sinh൫√∆𝜉൯ ± √∆൯
ቇ

ଶ, 

 

(5.98) 

 

𝑈ସ,ଵଶ = 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽
 

+

24(−𝑏𝛿 + 𝐸)𝑝𝑞𝜐ଶ rsinh ቆ
√∆𝜉

2
ቇ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽

⎝

⎜
⎜
⎛

−𝑝 sinh ቆ
√∆𝜉

2
ቇ

+2√∆ ቆcosh ቆ
√∆𝜉

4
ቇቇ

ଶ

−√∆ ⎠

⎟
⎟
⎞

 

+

48(−𝑏𝛿 + 𝐸)𝑞ଶ𝜐ଶ𝑟ଶ ቆsinh ቆ
√∆𝜉

4
ቇቇ

ଶ

𝑙(−2 + 𝜖(∆)𝜐ଶ)𝛽

⎝

⎜
⎜
⎛

−𝑝 sinh ቆ
√∆𝜉

2
ቇ

+2√∆ ቆcosh ቆ
√∆𝜉

4
ቇቇ

ଶ

−√∆ ⎠

⎟
⎟
⎞

ଶ . 

(5.99) 

Family 2:  

When ∆< 0 and 𝑝𝑞 ≠ 0 or 𝑞𝑟 ≠ 0, the trigonometric solutions are. 

𝑈ସ,ଵଷ = 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
 

 

 

 



+

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ ቆ−𝑝 + √−∆ tan ቆ
√−∆𝜉

2
ቇቇ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
 

+

(−3𝑏𝛿 + 3𝐸)𝜐ଶ ቆ−𝑝 + √−∆ tan ቆ
√−∆𝜉

2
ቇቇ

ଶ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
 , 

 

(5.100) 

 

𝑈ସ,ଵସ = 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
 

−

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ ቆ𝑝 + √−∆ cot ቆ
√−∆𝜉

2
ቇቇ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
 

+

(−3𝑏𝛿 + 3𝐸)𝜐ଶ ቆ𝑝 + √−∆ cot ቆ
√−∆𝜉

2
ቇቇ

ଶ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
 , 

(5.101) 

 

𝑈ସ,ଵହ = 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
 

+

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ ቆ
൫−𝑝 + √−∆൯ ×

൫tan൫√−∆𝜉൯ ± sec൫√−∆𝜉൯൯
ቇ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
 

+

(−3𝑏𝛿 + 3𝐸)𝜐ଶ ቆ
(−𝑝 + √−∆) ×

൫tan൫√−∆𝜉൯ ± sec൫√−∆𝜉൯൯
ቇ

ଶ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
 , 

(5.102) 

 

𝑈ସ,ଵ଺ = 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
 

(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ ൭
൫𝑝 + ඥ−𝑝ଶ + 4𝑞𝑟൯ ×

൫cot൫ඥ−𝑝 + 4𝑞𝑟𝜉൯ ± csc൫ඥ−𝑝 + 4𝑞𝑟𝜉൯൯
൱

 

 

 

 



+

(−3𝑏𝛿 + 3𝐸)𝜐ଶ ቆ
(𝑝 + √−∆) ×

൫cot൫√−∆𝜉൯ ± csc൫√−∆𝜉൯൯
ቇ

ଶ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
 , 

(5.103) 

 

𝑈ସ,ଵ଻ = 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
 

+

(−3𝑏𝛿 + 3𝐸)𝑝𝜐ଶ ൮

൫−2𝑝 + √−∆൯ ×

ቆtan ቆ
√−∆𝜉

4
ቇ − cot ቆ

√−∆𝜉
4

ቇቇ
൲

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
 

+

(−3𝑏𝛿 + 3𝐸)𝑝𝜐ଶ ቌ

(−2𝑝 + √−∆) ×

ቆtan ቆ
√−∆𝜉

4
ቇ − cot ቆ

√−∆𝜉
4

ቇቇ
ቍ

ଶ

4𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
, 

(5.104) 

 

𝑈ସ,ଵ଼ = 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
 

+
(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)

⎝

⎜⎜
⎛

−𝑝 +

±𝑖ඥ(−𝐴ଶ + 𝐵ଶ)(−∆)

−𝐴√−∆ cos൫√−∆𝜉൯

Asin൫√−∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

 

+
(−3𝑏𝛿 + 3𝐸)𝜐ଶ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)

⎝

⎜⎜
⎛

−𝑝 +

±𝑖ඥ(−𝐴ଶ + 𝐵ଶ)(−∆)

−𝐴√−∆ cos൫√−∆𝜉൯

Asin൫√−∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

ଶ

 , 

(5.105) 

 

 

 



𝑈ସ,ଵଽ = 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
 

+
(−6𝑏𝛿 + 6𝐸)𝑝𝜐ଶ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)

⎝

⎜⎜
⎛

−𝑝 +

±𝑖ඥ(−𝐴ଶ + 𝐵ଶ)(−∆)

+𝐴√−∆ cos൫√−∆𝜉൯

Asin൫√−∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

 

+
(−3𝑏𝛿 + 3𝐸)𝜐ଶ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)

⎝

⎜⎜
⎛

−𝑝 +

±𝑖ඥ(−𝐴ଶ + 𝐵ଶ)(−∆)

+𝐴√−∆ cos൫√−∆𝜉൯

Asin൫√−∆𝜉൯ + 𝐵

⎠

⎟⎟
⎞

ଶ

 . 

(5.106) 

Where two non-zero real constants A and B satisfies  𝐴ଶ − 𝐵ଶ > 0. 

 

𝑈ସ,ଶ଴ = 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
 

−

(−24𝑏𝛿 + 24𝐸)𝑝𝑞𝜐ଶ rcos ቆ
√−∆𝜉

2
ቇ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)

⎝

⎜
⎛

√−∆ sin ቆ
√−∆𝜉

2
ቇ

+ pcos ቆ
√−∆𝜉

2
ቇ

⎠

⎟
⎞

 

+

(−48𝑏𝛿 + 48𝐸)𝑞ଶ𝜐ଶ𝑟ଶ ቆcos ቆ
√−∆𝜉

2
ቇቇ

ଶ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)

⎝

⎜
⎛

√−∆ sin ቆ
√−∆𝜉

2
ቇ

+ pcos ቆ
√−∆𝜉

2
ቇ

⎠

⎟
⎞

ଶ  , 

(5.107) 

 

 



𝑈ସ,ଶଵ = 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
 

+

(−24𝑏𝛿 + 24𝐸)𝑝𝑞𝜐ଶ rsin ቆ
√−∆𝜉

2
ቇ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)

⎝

⎜
⎛

√−∆ cos ቆ
√−∆𝜉

2
ቇ

− psin ቆ
√−∆𝜉

2
ቇ

⎠

⎟
⎞

 

+

(−48𝑏𝛿 + 48𝐸)𝑞ଶ𝜐ଶ𝑟ଶ ቆsin ቆ
√−∆𝜉

2
ቇቇ

ଶ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)

⎝

⎜
⎛

√−∆ cos ቆ
√−∆𝜉

2
ቇ

− psin ቆ
√−∆𝜉

2
ቇ

⎠

⎟
⎞

ଶ , 

(5.108) 

 

𝑈ସ,ଶଶ = 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
 

−

(−24𝑏𝛿 + 24𝐸)𝑝𝑞𝜐ଶ rcos ቆ
√−∆𝜉

2
ቇ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ) ቆ
√−∆ sin൫√−∆𝜉൯

+𝑝 cos൫√−∆𝜉൯ ± √−∆
ቇ

 

+

(−48𝑏𝛿 + 48𝐸)𝑞ଶ𝜐ଶ𝑟ଶ ቆcos ቆ
√−∆𝜉

2
ቇቇ

ଶ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ) ቆ
√−∆ sin൫√−∆𝜉൯

+𝑝 cos൫√−∆𝜉൯ ± √−∆
ቇ

ଶ 

(5.109) 

𝑈ସ,ଶଷ =
12𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
+

24(−𝑏𝛿 + 𝐸)𝑝𝑞𝜐ଶ rsin൫√−∆𝜉൯

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ) ቆ
√−∆ cos൫√−∆𝜉൯

−𝑝 sin൫√−∆𝜉൯ ± √−∆
ቇ

 

+
48(−𝑏𝛿 + 𝐸)𝑞ଶ𝜐ଶ𝑟ଶ൫sin൫√−∆𝜉൯൯

ଶ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ) ቆ
√−∆ cos൫√−∆𝜉൯

−𝑝 sin൫√−∆𝜉൯ ± √−∆
ቇ

ଶ, 

(5.110) 



𝑈ସ,ଶସ = 12
𝑞𝑟𝜐ଶ(−𝑏𝛿 + 𝐸)

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)
 

+

24(−𝑏𝛿 + 𝐸)𝑝𝑞𝜐ଶ rsin ቆ
√−∆𝜉

2
ቇ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)

⎝

⎜
⎜
⎛

−𝑝 sin ቆ
√−∆𝜉

2
ቇ

+2√−∆ ቆcos ቆ
√−∆𝜉

4
ቇቇ

ଶ

−√−∆ ⎠

⎟
⎟
⎞

 

+

48(−𝑏𝛿 + 𝐸)𝑞ଶ𝜐ଶ𝑟ଶ ቆsin ቆ
√−∆𝜉

4
ቇቇ

ଶ

𝛽𝑙(−2 + 𝜖(∆)𝜐ଶ)

⎝

⎜
⎜
⎛

−𝑝 sin ቆ
√−∆𝜉

2
ቇ

+2√−∆ ቆcos ቆ
√−∆𝜉

4
ቇቇ

ଶ

−√−∆ ⎠

⎟
⎟
⎞

ଶ . 

(5.111) 

Family 3: 

When 𝑟 = 0, and 𝑝𝑞 ≠ 0, the hyperbolic function solutions are, 

 

𝑈ସ,ଶହ = −
(−12𝑏𝛿 + 12𝐸)𝑝ଶ𝑞𝜐ଶℵ

(𝜖𝑝ଶ𝜐ଶ − 2)𝛽𝑙𝑞(ℵ + cosh(𝑝𝜉) − sinh(𝑝𝜉))
 

+
(−12𝑏𝛿 + 12𝐸)𝑞ଶ𝜐ଶ𝑝ଶℵଶ

(𝜖𝑝ଶ𝜐ଶ − 2)𝛽𝑙(𝑞(ℵ + cosh (𝑝𝜉) − sinh (𝑝𝜉)))ଶ
 , 

(5.112) 

𝑈ସ,ଶ଺ = −
(−12𝑏𝛿 + 12𝐸)𝑝ଶ𝑞𝜐ଶ(cosh(𝑝𝜉) + sinh(𝑝𝜉))

(𝜖𝑝ଶ𝜐ଶ − 2)𝛽𝑙𝑞(ℵ + cosh(𝑝𝜉) + sinh(𝑝𝜉))
 

+
(−12𝑏𝛿 + 12𝐸)𝑞ଶ𝜐ଶ𝑝ଶ(cosh (𝑝𝜉) + sinh (𝑝𝜉))ଶ

(𝜖𝑝ଶ𝜐ଶ − 2)𝛽𝑙(𝑞(ℵ + cosh (𝑝𝜉) + sinh (𝑝𝜉)))ଶ
 . 

(5.113) 

 

Where ℵ is constant. 



5.4 Graphical Explanation: 
The doubly dispersive equation (DDE) is an important nonlinear model that can be used to define 

the nonlinear wave propagation in the elastic inhomogeneous circular cylinder Murnaghan’s rod.  

These waves have become important for scientists and engineers in the study of seismology, and 

to determine the endurance of elastic materials and structures. These waves can be used in the 

studies for the development of non-destructive testing techniques especially for pipelines, and to 

understand the physical properties and internal structure of solids like brass, steel, glass and 

polymers [172]. It is worth mentioning that the solutions obtained in this study represent certain 

real-life situations. For example, the tan-hyperbolic solutions are useful in calculating the magnetic 

moment and rapidity of special relativity, cos-hyperbolic solutions represent the shape of hanging 

cable, cot-hyperbolic solutions appear in the Langevin function which arise in magnetic 

polarization, sec-hyperbolic solutions represent the laminar jet profile [173]. Similarly, exact 

solutions with the periodic functions exhibit periodic wave phenomena. It is significant to mention 

here that a lot of new solutions have been produced for Murnaghan’s rod, and for the first time this 

equation has been solved for space-time fractional order. The reason of using fractional differential 

equation is that it is naturally related to physical phenomena with memory. Many well-known 

equations can be solved by space-time fractional differential equations to get variety of new 

solutions. Graphs of some obtained solutions has been discussed here for the better understanding 

of the solitary wave phenomenon. Figure 5.1 depicts 3D-graphs of dark soliton solution generated 

by Uଵ,ଵ with fractional order α =  0.7, 1, with some given parameters 𝑝 = 3, 𝑞 = 1, 𝑟 = 2, 𝑏 =

0.5, 𝛽 = 1, 𝐸 = 4, 𝜖 = 0.1, 𝑙 = 2, 𝜐 = 2, 𝛿 = 6. Figure 5.2, 3D-graphs of solutions Uଵ,ଶ଴ with 

fractional order α =  0.6,   1, exhibits combined singular periodic wave solution by taking 

parameters 𝑝 = 2, 𝑞 = 1, 𝑟 = 2.5, 𝑏 = 0.3, 𝛽 = 1.5, 𝐸 = 10, 𝜖 = 0.5, 𝑙 = 2, 𝜐 = 3.5, 𝛿 = 22.5. 

Figure 5.3: 3D-graphs depicts dark singular solitons of Uଶ,ହ with fractional order α = 0.5, 1 by 

choosing parameters 𝑝 = 1, 𝑞 = 5, 𝑟 = 4, 𝑏 = 0.5, 𝛽 = 1, 𝐸 = 4, 𝜖 = 0.1, 𝑙 = 2, 𝜐 = 2, 𝛿 =

6.Figure 5.4,: 3D-graphsexhibits combined dark-bright soliton generated by Uଷ,ଷ with fractional 

order α =  0.4  ,1, by taking 𝑝 = 3, 𝑞 = 2, 𝑟 = 1, 𝑏 = 0.3, 𝛽 = 1.5, 𝐸 = 10, 𝜖 = 0.5, 𝑙 = 2, 𝜐 =

3.5, 𝛿 = 22.5.Figure 5.5 shows: 3D-graphs of hyperbolic solutions Uସ,଺ with fractional order α =

 0.5 , 1 with parameters 𝑝 = 5, 𝑞 = 3, 𝑟 = 1, 𝑏 = 0.9, 𝛽 = 5, 𝐸 = 11, 𝜖 = 0.05, 𝑙 = 2, 𝜐 = 5, 𝛿 =

33, 𝐴 = 2, 𝐵 = 4. 



 

(a) (b) 
Figure 5.1: 3D-graphs of 𝑼𝟏,𝟏 with fractional order 𝜶 =  𝟎. 𝟕, 𝟏 

(a) (b) 
Figure 5.2: 3D-graphs of 𝑼𝟏,𝟐𝟎 with fractional order 𝜶 =  𝟎. 𝟔, 𝟏 

(a) (b) 
Figure 5.3: 3D-graphs of 𝑼𝟐,𝟓 with fractional order 𝜶 =  𝟎. 𝟓, 𝟏 



(a) (b) 
Figure 5.4: 3D-graphs of  𝑼𝟑,𝟑 with fractional order 𝜶 =  𝟎. 𝟒, 𝟏 

(a) (b) 
Figure 5.5: 3D-graphs of  𝑼𝟒,𝟔 with fractional order 𝜶 =  𝟎. 𝟓 , 𝟏 

5.5 Conclusions: 
Improved generalized Riccati equation mapping method has been applied to secure exact traveling 

wave solutions to the space- time fractional Murnaghan’s rod equation. As a result, some totally 

new solutions have been obtained. These solutions include several solitary wave solutions: dark, 

combined dark-bright, singular periodic wave, combined singular periodic wave solutions and one 

rational solution. A back substitution verifies the exactness of the solutions, and their overall 

behavior has been highlighted with the help of graphs. These new results might clarify the physical 

properties of brass, steel, and new elastic materials like polymers in the study of seismology. 

5.6 Space-time conformable Telegraph equation: 
In this section we will discuss space-time conformable telegraph equation commonly used to study 

to electrical signals in transmission lines [174]. 



𝐷௧௧
ଶఈ𝑢 − 𝐷௫௫

ଶఈ𝑢 + 𝐷௧
ఈ𝑢 + 𝛾𝑢 + 𝛽𝑢ଷ = 0, (5.114) 

where 𝛾 and 𝛽 are arbitrary constants to be determined later by proposed method.  

B. Gasmi, et. al. [175] implemented generalized Kudryashov method to derive various solitary 

wave solutions, in [176] have used Hirota bilinear method to generate N-solitons. Anjali Verma, 

et.al. have used tanh method, Mostafa M. A. Khater, et. al.[174] implemented five semi analytical 

and numerical simulations to compare results of analytical and approximate solutions. M. 

Mirzazadeh, et. al. [177] have applied first integral method in search of new exact solutions. 

C.Yue, et. al. [178] examined nonlinear time-space telegraph equation through three schemes. 

Motived by a few of the above-mentioned works on telegraph equation we are using time-space 

conformable telegraph equation to derive new types of exact solutions using improved generalized 

Riccati equation mapping method. For this consider the following conformable fractional wave 

transformation, 

𝑢(𝑥, 𝑡) = 𝑈(𝜉 ), (5.115) 

where 𝜉 = 𝜒
௫ഀ

୻(ଵାఈ)
+ 𝜆

௧ഀ

୻(ଵାఈ)
, 

𝜒, 𝜆 are arbitrary constant, whereas 0 < 𝛼 ≤ 1, is the order of derivatives in conformable sense 

[39]. Using this transformation in Eq. (5.114), we get following non-linear ODE. 

(𝜆ଶ − 𝜒ଶ)
dଶ

d𝜉ଶ
𝑈(𝜉) + 𝜆

𝑑

𝑑𝜉
𝑈(𝜉) + 𝛾 𝑈(𝜉) + β 𝑈(𝜉)ଷ = 0. 

(5.116) 

Now balancing the order between 
ୢమ

ୢకమ
𝑈(𝜉) and 𝑈(𝜉)ଷ we get, 𝑁 + 2 = 3𝑁 ⇒ 𝑁 = 1, therefore 

series solution (1.67), takes the form, 

𝑈(𝜉 ) =
𝑎ିଵ

𝜙(𝜉)
+ 𝑎଴ + 𝑎ଵ𝜙(𝜉). (5.117) 

Now, substituting Eq. (5.117) coupling with Eq. (1.68) into Eq. (5.116) after collecting coefficients 

of all terms with the same order in 𝜙௜  and 𝜙ି௜, where, (𝑖 = 0,1,2, … . . ). and setting these 

coefficient to 0, we get a system of NL algebraic equations. Solving these equations with the aid 

of mathematical software we obtain following non-trivial solutions: 



 

Set 1 : 

𝑝ଶ − 4𝑟𝑞 = Δ, Ω = √ఊ

ସ
ඥ9𝛾 − 2𝑥 

𝑎଴ =
√𝛾 ൬(Δ)ඥ(Δ)ିଵ − 𝑝൰

2𝛽(Δ)ඥ−(𝛽Δ)ିଵ
, 𝑎ଵ = 0, 𝑎ିଵ = 𝑟ඥ𝛾ඥ−(𝛽Δ)ିଵ,  

𝜒 =
√𝛾ඥ9𝛾 − 2ඥ(Δ)ିଵ

2
,    𝜆 =

3𝛾ඥ(Δ)ିଵ

2
 . 

Under these conditions Eq. (5.117), takes the form, 

𝑈ଵ(𝜉) =  𝑎଴ +
𝑎ିଵ

𝜙(𝜉)
, (5.118) 

 

Set 2 : 
 

𝑎଴ = −
√𝛾 ൬(Δ)ඥ(Δ)ିଵ + 𝑝൰

2𝛽(Δ)ඥ−(𝛽Δ)ିଵ
,   𝑎ଵ = 𝑞ඥ𝛾ඥ−(𝛽Δ)ିଵ 

𝑎ିଵ = 0,   𝜒 =
√𝛾ඥ9𝛾 − 2ඥ(Δ)ିଵ

2
,    𝜆 =

3𝛾ඥ(Δ)ିଵ

2
 . 

Under these conditions Eq. (5.117), takes the form, 

𝑈ଶ(𝜉) =  𝑎଴ + 𝑎ଵ𝜙(𝜉), (5.119) 

Set 3 : 
 

𝑎଴ = −
√𝛾 𝑝

𝛽(Δ)ඥ−(𝛽Δ)ିଵ
 ,    𝑎ଵ = 0,      𝑎ିଵ =  2𝑟ඥ𝛾ඥ−(𝛽Δ)ିଵ, 

 𝜒 = 2ඥ𝛾ඥ(Δ)ିଵ,                  𝜆 = 0, 

Under these conditions Eq. (5.117), takes the form, 

𝑈ଷ(𝜉) =  𝑎଴ +
𝑎ିଵ

𝜙(𝜉)
, (5.120) 



Set 4 : 
 

𝑎଴ = −
√𝛾 𝑝

𝛽(Δ)ඥ−(𝛽Δ)ିଵ
 ,      𝑎ଵ =  2𝑞ඥ𝛾ඥ−(𝛽Δ)ିଵ,      𝑎ିଵ = 0, 

𝜒 = 2ඥ𝛾ඥ(Δ)ିଵ,                     𝜆 = 0. 

Under these conditions Eq. (5.117), takes the form, 

𝑈ସ(𝜉) =  𝑎଴ + 𝑎ଵ𝜙(𝜉), (5.121) 

for the case 1, substituting the values of coefficients into Eq. (5.118) along with the Riccati 

equations solutions, we can get many different types of solutions including solitary wave solutions, 

periodic wave solutions and rational solutions. 

Family 1: 

For case 1, when ∆> 0 and  𝑝𝑞 ≠ 0 or 𝑞𝑟 ≠ 0, the hyperbolic function solutions of Eq.(5.114) are 

as follows,   

 

𝑈ଵ,ଵ(𝜉) = −
ቀtanh ቀΩ +

3𝛾𝑡
4

ቁ − 1ቁ (√Δ 𝑝 − Δ)√𝛾

2√Δ𝛽ඥ−𝛽ିଵ ቆ𝑝 + √Δ tanh ቀΩ +
3𝛾𝑡

4
ቁቇ

 , 

(5.122) 

𝑈ଵ,ଶ(𝜉) = −
ቀcoth ቀΩ +

3𝛾𝑡
4

ቁ − 1ቁ (√Δ 𝑝 − Δ)√𝛾

2√Δ𝛽ඥ−𝛽ିଵ ቆ𝑝 + √Δ coth ቀΩ +
3𝛾𝑡

4
ቁቇ

 , 

(5.123) 

 

𝑈ଵ,ଷ(𝜉) =

−(√Δ𝑝 − Δ) ቌ
𝑖 − cosh ቀ2Ω +

3𝛾𝑡
2

ቁ

+sinh ቀ2Ω +
3𝛾𝑡

2
ቁ

ቍ √𝛾

2√Δ ඥ−𝛽ିଵ ቌ
pcosh ቀ2Ω +

3𝛾𝑡
2

ቁ

+√Δ ቀsinh ቀ2Ω +
3𝛾𝑡

2
ቁ + 𝑖ቁ

ቍ 𝛽

, 

(5.124) 

 



𝑈ଵ,ସ(𝜉) =

−(√Δ𝑝 − Δ) ቌ
cosh ቀ2Ω +

3𝛾𝑡
2

ቁ

− sinh ቀ2Ω +
3𝛾𝑡

2
ቁ + 1

ቍ √𝛾

2√Δ ඥ−𝛽ିଵ ቌ
psinh ቀ2Ω +

3𝛾𝑡
2

ቁ

+√Δ ቀcosh ቀ2Ω +
3𝛾𝑡

2
ቁ + 1ቁ

ቍ 𝛽

, 

(5.125) 

𝑈ଵ,ହ(𝜉) = −
√𝛾(√Δ𝑝 − Δ)

2√Δ ඥ−𝛽ିଵ𝛽
 

×

൮
cosh ቀ

Ω
2

+
3𝛾𝑡

8
ቁ

ଶ

− 1/2

−cosh ቀ
Ω
2

+
3𝛾𝑡

8
ቁ sinh ቀ

Ω
2

+
3𝛾𝑡

8
ቁ

൲

൮
√Δ(cosh ቀ

Ω
2

+
3𝛾𝑡

8
ቁ

ଶ

−
√∆
2

+𝑝cosh ቀ
Ω
2

+
3𝛾𝑡

8
ቁ sinh ቀ

Ω
2

+
3𝛾𝑡

8
ቁ

൲

, 

(5.126) 

here, 𝐴, 𝐵 are real constants that satisfies 𝐵ଶ − 𝐴ଶ > 0, 

𝑈ଵ,଺(𝜉) = −
√𝛾(√Δ𝑝 − Δ)

2√Δ ඥ−𝛽ିଵ𝛽
 

×

ቌ−√𝐴ଶ + 𝐵ଶ + ቌ
cosh ቀ2Ω +

3𝛾𝑡
2

ቁ

−sinh ቀ
Ω
2

+
3𝛾𝑡

8
ቁ

ቍ 𝐴 − 𝐵ቍ

ቌ
−√∆√𝐴ଶ + 𝐵ଶ + ቀAsinh ቀ2Ω +

3𝛾𝑡
2

ቁ + 𝐵ቁ 𝑝

+𝐴√∆cosh ቀ
Ω
2

+
3𝛾𝑡

8
ቁ

ቍ 𝛽

, 

 

(5.127) 

 

𝑈ଵ,଻(𝜉) =
√𝛾(√Δ𝑝 − Δ)

2√Δ ඥ−𝛽ିଵ𝛽
 

×

ቌ−√𝐵ଶ−𝐴ଶ + ቌ
cosh ቀ2Ω +

3𝛾𝑡
2

ቁ

− sinh ቀ
Ω
2

+
3𝛾𝑡

8
ቁ

ቍ 𝐴 + 𝐵ቍ

ቌ
√∆√𝐵ଶ−𝐴ଶ + ቀAcosh ቀ2Ω +

3𝛾𝑡
2

ቁ + 𝐵ቁ 𝑝

+𝐴√∆sinh ቀ
Ω
2

+
3𝛾𝑡

8
ቁ

ቍ

, 

(5.128) 



𝑈ଵ,଼(𝜉) =
−√𝛾 ቀsinh ቀΩ +

3𝛾𝑡
4

ቁ − cosh ቀΩ +
3𝛾𝑡

4
ቁቁ

2ඥ−𝛽ିଵ𝛽 ቀcosh ቀΩ +
3𝛾𝑡

4
ቁቁ

 , 

(5.129) 

𝑈ଵ,ଽ(𝜉) =
−√𝛾ඥ−𝛽ିଵ ቀsinh ቀΩ +

3𝛾𝑡
4

ቁ − cosh ቀΩ +
3𝛾𝑡

4
ቁቁ

2 ቀsinh ቀΩ +
3𝛾𝑡

4
ቁቁ

 , 

(5.130) 

𝑈ଵ,ଵ଴(𝜉) =
−√𝛾 ቀ𝑖 − cosh ቀ2Ω +

3𝛾𝑡
2

ቁ + sinh ቀ2Ω +
3𝛾𝑡

2
ቁቁ

2ඥ−𝛽ିଵ𝛽 ቀcosh ቀ2Ω +
3𝛾𝑡

2
ቁቁ

, 

(5.131) 

𝑈ଵ,ଵଵ(𝜉) =
−√𝛾ඥ−𝛽ିଵ ቀcosh ቀ2Ω +

3𝛾𝑡
2

ቁ − sinh ቀ2Ω +
3𝛾𝑡

2
ቁ + 1ቁ

2 ቀsinh ቀ2Ω +
3𝛾𝑡

2
ቁቁ

 , 

(5.132) 

𝑈ଵ,ଵଶ(𝜉) = ඥ𝛾ඥ−𝛽ିଵ

൮
2 cosh ቀ

Ω
2

+
3𝛾𝑡

8
ቁ sinh ቀ

Ω
2

+
3𝛾𝑡

8
ቁ

 cosh ቀ2Ω +
3𝛾𝑡

2
ቁ

ଶ

+ 1

൲

4 cosh ቀ
Ω
2

+
3𝛾𝑡

8
ቁ sinh ቀ

Ω
2

+
3𝛾𝑡

8
ቁ

. 

(5.133) 

 

Family 2: 

When, ∆< 0 and 𝑝𝑞 ≠ 0 (𝑜𝑟 𝑞𝑟 ≠ 0), we have the following trigonometric solutions for Eq. 

(5.114), 

𝑈ଵ,ଵଷ(𝜉) = −
ቀtanh ቀΩ +

3𝛾𝑡
4

ቁ − 1ቁ (√∆ 𝑝 − ∆)√𝛾

2√∆𝛽ඥ−𝛽ିଵ ቆ𝑝 + √∆ tanh ቀΩ +
3𝛾𝑡

4
ቁቇ

 , 

(5.134) 

𝑈ଵ,ଵସ(𝜉) = −
ቀcoth ቀΩ +

3𝛾𝑡
4

ቁ − 1ቁ (√∆ 𝑝 − ∆)√𝛾

2√∆𝛽ඥ−𝛽ିଵ ቆ𝑝 + √∆ coth ቀΩ +
3𝛾𝑡

4
ቁቇ

 , 

(5.135) 

 



𝑈ଵ,ଵହ(𝜉) =

ඥ−𝛽ିଵ√𝛾(√∆ 𝑝 − ∆) ቌ
𝑖 + cosh ቀ2Ω +

3𝛾𝑡
2

ቁ

−sinh ቀ2Ω +
3𝛾𝑡

2
ቁ

ቍ

√∆ ൮

−2𝑝 cosh ቀ2Ω +
3𝛾𝑡

2
ቁ +

2 ቆ𝑖 − sinh ቀΩ +
3𝛾𝑡

4
ቁቇ √∆

൲

,  

(5.136) 

 

𝑈ଵ,ଵ଺(𝜉) =

ඥ−𝛽ିଵ√𝛾(√∆ 𝑝 − ∆) ቌ
1 + cosh ቀ2Ω +

3𝛾𝑡
2

ቁ

−sinh ቀ2Ω +
3𝛾𝑡

2
ቁ

ቍ

√∆ ൮

2𝑝 cosh ቀ2Ω +
3𝛾𝑡

2
ቁ +

2 ቆ1 + cosh ቀΩ +
3𝛾𝑡

4
ቁቇ √∆

൲

,  

(5.137) 

𝑈ଵ,ଵ଻(𝜉) =  
2ඥ−𝛽ିଵ√𝛾(√∆ 𝑝 − ∆)

√∆
 

×

൮
cosh ቀ2Ω +

3𝛾𝑡
2

ቁ
ଶ

−
1
2

−sinh ቀ2Ω +
3𝛾𝑡

2
ቁ cosh ቀ2Ω +

3𝛾𝑡
2

ቁ

൲

൮

4sinh ቀ2Ω +
3𝛾𝑡

2
ቁ cosh ቀ2Ω +

3𝛾𝑡
2

ቁ +

2 ቆ2cosh ቀ2Ω +
3𝛾𝑡

2
ቁ

ଶ

− 1ቇ √∆
൲

,  

(5.138) 

here two non-zero real constants A and B satisfies  𝐴ଶ − 𝐵ଶ > 0. 

𝑈ଵ,ଵ଼(𝜉) =  
2ඥ−𝛽ିଵ√𝛾൫√∆ 𝑝 − ∆൯

√∆
 

×
ቀ𝑖𝐴cosh ቀ2Ω +

3𝛾𝑡
2

ቁ − 𝑖sinh ቀ2Ω +
3𝛾𝑡

2
ቁ 𝐴 − √𝐵ଶ − 𝐴ଶ − 𝐵ቁ

൭
2𝑖𝐴√∆ cosh ቀ2Ω +

3𝛾𝑡
2

ቁ + 2𝑖𝐴 sinh ቀ2Ω +
3𝛾𝑡

2
ቁ 𝑝

−2√𝐵ଶ − 𝐴ଶ√∆ + 2𝐵𝑝
൱

,  

 

(5.139) 

𝑈ଵ,ଵଽ(𝜉) =
ඥ−𝛽ିଵ√𝛾൫√∆ 𝑝 − ∆൯

√∆
 

(5.140) 



×
ቀ𝑖𝐴 cosh ቀ2Ω +

3𝛾𝑡
2

ቁ − 𝑖 sinh ቀ2Ω +
3𝛾𝑡

2
ቁ 𝐴 + √𝐵ଶ − 𝐴ଶ − 𝐵ቁ

൭
2𝑖𝐴√∆ cosh ቀ2Ω +

3𝛾𝑡
2

ቁ + 2𝑖𝐴 sinh ቀ2Ω +
3𝛾𝑡

2
ቁ 𝑝

+2√𝐵ଶ − 𝐴ଶ√∆ + 2𝐵𝑝
൱

,  

𝑈ଵ,ଶ଴(𝜉) =  
√𝛾 ቀsinh ቀΩ +

3𝛾𝑡
4

ቁ − cosh ቀΩ +
3𝛾𝑡

4
ቁቁ

2𝛽ඥ−𝛽ିଵ cosh ቀΩ +
3𝛾𝑡

4
ቁ

, 

(5.141) 

𝑈ଵ,ଶଵ(𝜉) =
−√𝛾ඥ−𝛽ିଵ ቀsinh ቀΩ +

3𝛾𝑡
4

ቁ − cosh ቀΩ +
3𝛾𝑡

4
ቁቁ

2 sinh ቀΩ +
3𝛾𝑡

4
ቁ

,  

(5.142) 

𝑈ଵ,ଶଶ(𝜉) =
√𝛾 ቀ𝑖 + cosh ቀ2Ω +

3𝛾𝑡
2

ቁ − sinh ቀ2Ω +
3𝛾𝑡

2
ቁቁ

2𝛽ඥ−𝛽ିଵ cosh ቀ2Ω +
3𝛾𝑡

2
ቁ

 , 

(5.143) 

 

𝑈ଵ,ଶଷ(𝜉) =
ඥ−𝛽ିଵ√𝛾 ቀ1 + cosh ቀ2Ω +

3𝛾𝑡
2

ቁ − sinh ቀ2Ω +
3𝛾𝑡

2
ቁቁ

2 sinh ቀ2Ω +
3𝛾𝑡

2
ቁ

, 

(5.144) 

𝑈ଵ,ଶସ(𝜉) =

−ඥ−𝛽ିଵ√𝛾 ൮
1 − 2 cosh ቀ

Ω
2

+
3𝛾𝑡

8
ቁ

ଶ

+

2 cosh ቀ
Ω
2

+
3𝛾𝑡

8
ቁ sinh ቀ

Ω
2

+
3𝛾𝑡

8
ቁ

൲

4 cosh ቀ
Ω
2

+
3𝛾𝑡

8
ቁ sinh ቀ

Ω
2

+
3𝛾𝑡

8
ቁ

. 

(5.145) 

 

Family 3: 

When 𝑟 = 0, and 𝑝𝑞 ≠ 0, we get soliton like solutions.  

𝑈ଵ,ଶହ(𝜉) =

√𝛾 ቆ
𝑑𝑝ଷඥ𝑝ିଶ

2
−

𝑑𝑝ଶ

2
ቇ

𝑝ଷ𝑑𝛽

1

ට−
1

𝛽𝑝ଶ

 , 

(5.146) 

 



𝑈ଵ,ଶ଺(𝜉) = −ඥ𝛾ඨ−
1

𝛽𝑝ଶ
 

×
⎝

⎜
⎛

൬
𝑝ଷ

2
ඥ𝑝ିଶ −

𝑝ଶ

2
൰ cosh ቆ2Ω +

𝑝ඥ𝑝ିଶ3𝛾𝑡
2

ቇ +

൬
𝑝ଷ

2
ඥ𝑝ିଶ −

𝑝ଶ

2
൰ sinh ቆ2Ω +

𝑝ඥ𝑝ିଶ3𝛾𝑡
2

ቇ
⎠

⎟
⎞

𝑝 ቌcosh ቆ2Ω +
𝑝ඥ𝑝ିଶ3𝛾𝑡

2
ቇ + sinh ቆ2Ω +

𝑝ඥ𝑝ିଶ3𝛾𝑡
2

ቇቍ

. 

(5.147) 

Here, 𝑑 is arbitrary constant. 

Family 2: 
 

When, Δ < 0 and 𝑝𝑞 ≠ 0 (𝑜𝑟 𝑞𝑟 ≠ 0), we have the following trigonometric solutions for Eq. 

(5.114), 

𝑈ଵ,ଵଷ(𝜉) = −
ቀtanh ቀΩ +

3𝛾𝑡
4

ቁ − 1ቁ (√∆ 𝑝 − ∆)√𝛾

2√∆𝛽ඥ−𝛽ିଵ ቆ𝑝 + √∆ tanh ቀΩ +
3𝛾𝑡

4
ቁቇ

 , 

(5.148) 

𝑈ଵ,ଵସ(𝜉) = −
ቀcoth ቀΩ +

3𝛾𝑡
4

ቁ − 1ቁ (√∆ 𝑝 − ∆)√𝛾

2√∆𝛽ඥ−𝛽ିଵ ቆ𝑝 + √∆ coth ቀΩ +
3𝛾𝑡

4
ቁቇ

 , 

(5.149) 

 

𝑈ଵ,ଵହ(𝜉) =

ඥ−𝛽ିଵ√𝛾(√∆ 𝑝 − ∆)

⎝

⎛
𝑖 + cosh ቀ2Ω +

3𝛾𝑡
2

ቁ

−sinh ቆ
√𝛾ඥ9𝛾 − 2𝑥

2
+

3𝛾𝑡
2

ቇ
⎠

⎞

√∆ ൮

−2𝑝 cosh ቀ2Ω +
3𝛾𝑡

2
ቁ +

2 ቆ𝑖 − sinh ቀ2Ω +
3𝛾𝑡

4
ቁቇ √∆

൲

,  

(5.150) 

 



𝑈ଵ,ଵ଺(𝜉) =

ඥ−𝛽ିଵ√𝛾(√∆ 𝑝 − ∆) ቌ
1 + cosh ቀ2Ω +

3𝛾𝑡
2

ቁ

−sinh ቀ2Ω +
3𝛾𝑡

2
ቁ

ቍ

√∆ ൮

2𝑝 cosh ቀ2Ω +
3𝛾𝑡

2
ቁ +

2 ቆ1 + cosh ቀΩ +
3𝛾𝑡

4
ቁቇ √∆

൲

,  

(5.151) 

𝑈ଵ,ଵ଻(𝜉) =  
2ඥ−𝛽ିଵ√𝛾(√∆ 𝑝 − ∆)

√∆
 

×

൮
cosh ቀ2Ω +

3𝛾𝑡
2

ቁ
ଶ

−
1
2

−sinh ቀ2Ω +
3𝛾𝑡

2
ቁ cosh ቀ2Ω +

3𝛾𝑡
2

ቁ

൲

൮

4sinh ቀ2Ω +
3𝛾𝑡

2
ቁ cosh ቀ2Ω +

3𝛾𝑡
2

ቁ +

2 ቆ2cosh ቀ2Ω +
3𝛾𝑡

2
ቁ

ଶ

− 1ቇ √∆
൲

,  

(5.152) 

here two non-zero real constants A and B satisfies  𝐴ଶ − 𝐵ଶ > 0. 

 

𝑈ଵ,ଵ଼(𝜉) =  
2ඥ−𝛽ିଵ√𝛾൫√∆ 𝑝 − ∆൯

√∆
 

×
ቀ𝑖𝐴cosh ቀ2Ω +

3𝛾𝑡
2

ቁ − 𝑖sinh ቀ2Ω +
3𝛾𝑡

2
ቁ 𝐴 − √𝐵ଶ − 𝐴ଶ − 𝐵ቁ

൭
2𝑖𝐴√∆ cosh ቀ2Ω +

3𝛾𝑡
2

ቁ + 2𝑖𝐴 sinh ቀ2Ω +
3𝛾𝑡

2
ቁ 𝑝

−2√𝐵ଶ − 𝐴ଶ√∆ + 2𝐵𝑝
൱

,  

(5.153) 

𝑈ଵ,ଵଽ(𝜉) =
ඥ−𝛽ିଵ√𝛾൫√∆ 𝑝 − ∆൯

√∆
 

×
ቀ𝑖𝐴 cosh ቀ2Ω +

3𝛾𝑡
2

ቁ − 𝑖 sinh ቀ2Ω +
3𝛾𝑡

2
ቁ 𝐴 + √𝐵ଶ − 𝐴ଶ − 𝐵ቁ

൭
2𝑖𝐴√∆ cosh ቀ2Ω +

3𝛾𝑡
2

ቁ + 2𝑖𝐴 sinh ቀ2Ω +
3𝛾𝑡

2
ቁ 𝑝

+2√𝐵ଶ − 𝐴ଶ√∆ + 2𝐵𝑝
൱

,  

(5.154) 



𝑈ଵ,ଶ଴(𝜉) =  
√𝛾 ቀsinh ቀΩ +

3𝛾𝑡
4

ቁ − cosh ቀΩ +
3𝛾𝑡

4
ቁቁ

2𝛽ඥ−𝛽ିଵ cosh ቀΩ +
3𝛾𝑡

4
ቁ

, 

(5.155) 

𝑈ଵ,ଶଵ(𝜉) =
−√𝛾ඥ−𝛽ିଵ ቀsinh ቀΩ +

3𝛾𝑡
4

ቁ − cosh ቀΩ +
3𝛾𝑡

4
ቁቁ

2 sinh ቀΩ +
3𝛾𝑡

4
ቁ

,  

(5.156) 

𝑈ଵ,ଶଶ(𝜉) =
√𝛾 ቀ𝑖 + cosh ቀ2Ω +

3𝛾𝑡
2

ቁ − sinh ቀ2Ω +
3𝛾𝑡

2
ቁቁ

2𝛽ඥ−𝛽ିଵ cosh ቀ2Ω +
3𝛾𝑡

2
ቁ

 , 

(5.157) 

𝑈ଵ,ଶଷ(𝜉) =
ඥ−𝛽ିଵ√𝛾 ቀ1 + cosh ቀ2Ω +

3𝛾𝑡
2

ቁ − sinh ቀ2Ω +
3𝛾𝑡

2
ቁቁ

2 sinh ቀ2Ω +
3𝛾𝑡

2
ቁ

,  

(5.158) 

𝑈ଵ,ଶସ(𝜉) =

−ඥ−𝛽ିଵ√𝛾 ൮
1 − 2 cosh ቀ

Ω
2

+
3𝛾𝑡

8
ቁ

ଶ

+

2 cosh ቀ
Ω
2

+
3𝛾𝑡

8
ቁ sinh ቀ

Ω
2

+
3𝛾𝑡

8
ቁ

൲

4 cosh ቀ
Ω
2

+
3𝛾𝑡

8
ቁ sinh ቀ

Ω
2

+
3𝛾𝑡

8
ቁ

.  

(5.159) 

Family 3: 
 

When 𝑟 = 0, and 𝑝𝑞 ≠ 0, we get soliton like solutions. 

𝑈ଵ,ଶହ(𝜉) =

√𝛾 ቆ
𝑑𝑝ଷඥ𝑝ିଶ

2
−

𝑑𝑝ଶ

2
ቇ

𝑝ଷ𝑑𝛽

1

ට−
1

𝛽𝑝ଶ

 , 

(5.160) 

𝑈ଵ,ଶ଺(𝜉) = −ඨ−
𝛾

𝛽𝑝ଶ
 

(5.161) 



×
⎝

⎜
⎛

൬
𝑝ଷ

2
ඥ𝑝ିଶ −

𝑝ଶ

2
൰ cosh ቆ2Ω +

𝑝ඥ𝑝ିଶ + 3𝛾𝑡
2

ቇ +

൬
𝑝ଷ

2
ඥ𝑝ିଶ −

𝑝ଶ

2
൰ sinh ቆ2Ω +

𝑝ඥ𝑝ିଶ3𝛾𝑡
2

ቇ
⎠

⎟
⎞

𝑝 ቌcosh ቆ2Ω +
𝑝ඥ𝑝ିଶ3𝛾𝑡

2
ቇ + sinh ቆ2Ω +

𝑝ඥ𝑝ିଶ3𝛾𝑡
2

ቇቍ

. 

Here, 𝑑 is arbitrary constant. 

Family 1: 
 

For case 3, when 𝑝ଶ − 4𝑟𝑞 > 0 and  𝑝𝑞 ≠ 0 or 𝑞𝑟 ≠ 0, the hyperbolic function solutions of Eq. 

(5.114) are as follows,   

 

𝑈ଷ,ଵ(𝜉) =  −

ቆ𝑖√∆ tan ቆ
√2√𝛾

2
𝑥ቇ 𝑝 + ∆ቇ √𝛾

൭𝑝 + 𝑖√∆ tan ቆ
√2√𝛾

2
𝑥ቇ൱ √∆ 𝛽

1

ඥ−𝛽ିଵ
, 

(5.162) 

 

𝑈ଷ,ଶ(𝜉) =  −

ቆ𝑖√∆ cot ቆ
√2√𝛾

2
𝑥ቇ 𝑝 − ∆ቇ √𝛾

ቆ𝑖√∆ cot ቆ
√2√𝛾

2
𝑥ቇ − 𝑝ቇ √∆ 𝛽

1

ඥ−𝛽ିଵ
, 

(5.163) 

𝑈ଷ,ଷ(𝜉) = −
൫𝑖𝑝൫sin ൫√2√𝛾𝑥൯ + 1൯√∆ + cos ൫√2√𝛾𝑥൯(∆)൯√𝛾

√∆𝛽 ቀ൫𝑖sin ൫√2√𝛾𝑥൯ + 𝑖൯√∆ + 𝑝cos ൫√2√𝛾𝑥൯ቁ

1

ඥ−𝛽ିଵ
 , 

(5.164) 

 

𝑈ଷ,ସ(𝜉) = −
൫𝑖𝑝൫cos ൫√2√𝛾𝑥൯ + 1൯√∆ − sin ൫√2√𝛾𝑥൯(∆)൯√𝛾

√∆𝛽 ቀ൫𝑖 𝑐𝑜s ൫√2√𝛾𝑥൯ + 𝑖൯√∆ − 𝑝sin ൫√2√𝛾𝑥൯ቁ

1

ඥ−𝛽ିଵ
 , 

(5.165) 

 



𝑈ଷ,ହ(𝜉) = −
⎝

⎜
⎛

𝑖 ൭cos ቆ
√2√𝛾𝑥

4
ቇ

ଶ

−
1
2

൱ 𝑝√∆

−cos ቆ
√2√𝛾𝑥

4
ቇ sin ቆ

√2√𝛾𝑥
4

ቇ (∆)
⎠

⎟
⎞

√𝛾

√∆

⎝

⎜
⎛

𝑖 ൭cos ቆ
√2√𝛾𝑥

4
ቇ

ଶ

−
𝑖
2

൱ √∆

−𝑝cos ቆ
√2√𝛾𝑥

4
ቇ sin ቆ

√2√𝛾𝑥
4

ቇ
⎠

⎟
⎞

𝛽

1

ඥ−𝛽ିଵ
 , 

(5.166) 

here, 𝐴, 𝐵 are real constants that satisfies 𝐵ଶ − 𝐴ଶ > 0, 

 

𝑈ଷ,଺(𝜉)

= −
√𝛾൫−√∆√𝐴ଶ + 𝐵ଶ𝑝 + 𝐴√∆cos ൫√2√𝛾𝑥൯𝑝 + (𝑖𝐴sin ൫√2√𝛾𝑥൯ + 𝐵)(∆)൯

√∆ 𝛽൫−√∆√𝐴ଶ + 𝐵ଶ + 𝐴√∆cos ൫√2√𝛾𝑥൯ + (𝑖𝐴sin ൫√2√𝛾𝑥൯ + 𝐵)𝑝൯

1

ඥ−𝛽ିଵ
, 

(5.167) 

𝑈ଷ,଻(𝜉)

= −
√𝛾൫−√∆√−𝐴ଶ + 𝐵ଶ𝑝 + 𝑖𝐴√∆sin ൫√2√𝛾𝑥൯𝑝 + (𝐴 cos ൫√2√𝛾𝑥൯ + 𝐵)(∆)൯

√∆ 𝛽൫−√∆√−𝐴ଶ + 𝐵ଶ + 𝑖𝐴√∆sin ൫√2√𝛾𝑥൯ + (𝐴𝑐𝑜s ൫√2√𝛾𝑥൯ + 𝐵)𝑝൯

1

ඥ−𝛽ିଵ
, 

(5.168) 

𝑈ଷ,଼(𝜉) =
−𝑖sin ൫√2√𝛾𝑥൯√𝛾

𝛽ඥ−𝛽ିଵ𝑐𝑜s ൫√2√𝛾𝑥൯
, 

(5.169) 

𝑈ଷ,ଽ(𝜉) =
−𝑖sin ൫√2√𝛾𝑥൯√𝛾ඥ−𝛽ିଵ

𝑐𝑜s ൫√2√𝛾𝑥൯
 , 

(5.170) 

𝑈ଷ,ଵ଴(𝜉) =
−𝑖൫sin൫√2√𝛾𝑥൯ + 1൯√𝛾

𝛽ඥ−𝛽ିଵ𝑐𝑜s ൫√2√𝛾𝑥൯
 , 

(5.171) 

𝑈ଷ,ଵଵ(𝜉) =
−𝑖൫cos൫√2√𝛾𝑥൯ + 1൯√𝛾ඥ−𝛽ିଵ

sin ൫√2√𝛾𝑥൯
, 

(5.172) 

𝑈ଷ,ଵଶ(𝜉) =

−
𝑖
2

൭2 cos ቆ
√2√𝛾𝑥

4
ቇ

ଶ

− 1൱ √𝛾ඥ−𝛽ିଵ

sin ቆ
√2√𝛾𝑥

4
ቇ cos ቆ

√2√𝛾𝑥
4

ቇ

 , 

(5.173) 



𝑈ଷ,ଵଷ(𝜉) = −

ቆ𝑖√∆ tan ቆ
√2√𝛾𝑥

2
ቇ 𝑝 + ∆ቇ √𝛾

ቆ𝑝 + 𝑖√∆ tan ቆ
√2√𝛾𝑥

2
ቇቇ √∆𝛽

1

ඥ−𝛽ିଵ
. 

(5.174) 

 

Family 2: 

When, < 0 and 𝑝𝑞 ≠ 0 (𝑜𝑟 𝑞𝑟 ≠ 0), we have the following trigonometric solutions for Eq. 

(5.114). 

𝑈ଷ,ଵସ(𝜉) = −

(𝑖√∆𝑐𝑜 𝑡 ቆ
√2√𝛾𝑥

2
ቇ 𝑝 − ∆)√𝛾

ቆ𝑖√∆𝑐𝑜 𝑡 ቆ
√2√𝛾𝑥

2
ቇ − 𝑝ቇ √∆𝛽

1

ඥ−𝛽ିଵ
 , 

(5.175) 

𝑈ଷ,ଵହ(𝜉) = −
൫𝑖𝑝൫ 𝑠𝑖𝑛൫√2√𝛾𝑥൯ − 1൯√∆ + 𝑐𝑜𝑠൫√2√𝛾𝑥൯∆൯√𝛾ඥ−𝛽ିଵ

ቀ൫𝑖 𝑠𝑖𝑛൫√2√𝛾𝑥൯ − 𝑖൯√∆ + 𝑝𝑐𝑜𝑠൫√2√𝛾𝑥൯ቁ √∆
 , 

(5.176) 

 

𝑈ଷ,ଵ଺(𝜉) = −
ቀ൫𝑐𝑜𝑠൫√2√𝛾𝑥൯ + 1൯𝑖𝑝√∆ − 𝑠𝑖𝑛൫√2√𝛾𝑥൯∆ቁ √𝛾ඥ−𝛽ିଵ

ቀ൫𝑖 𝑠𝑖𝑛൫√2√𝛾𝑥൯ − 𝑖൯√∆ + 𝑝𝑐𝑜𝑠൫√2√𝛾𝑥൯ቁ √∆
,  

(5.177) 

 

𝑈ଷ,ଵ଻(𝜉) =

൭2𝑖 ൭cos ቆ
√2√𝛾𝑥

4
ቇ

ଶ

−
1
2

൱ 𝑝√∆ − sin ቆ
√2√𝛾𝑥

2
ቇ (∆)൱ √𝛾

√∆ ቌ൭2𝑖 cos ቆ
√2√𝛾𝑥

4
ቇ

ଶ

− 𝑖൱ √∆ − 𝑝sin ቆ
√2√𝛾𝑥

2
ቇቍ

ඥ−𝛽ିଵ ,  

(5.178) 

here, 𝐴, 𝐵 are real constants that satisfies 𝐵ଶ − 𝐴ଶ > 0. 

 

𝑈ଷ,ଵ଼(𝜉)

=
√𝛾൫−√−𝐴ଶ + 𝐵ଶ√∆𝑝 + 𝑖𝐴√∆cos (√2√𝛾𝑥)𝑝 − (∆)(𝐴sin (√2√𝛾𝑥) − 𝐵)൯

√∆൫−√−𝐴ଶ + 𝐵ଶ√∆ + 𝑖𝐴√∆cos (√2√𝛾𝑥) − 𝑝(𝐴sin (√2√𝛾𝑥) − 𝐵)൯
ඥ−𝛽ିଵ,  

(5.179) 



𝑈ଷ,ଵଽ(𝜉)

=
√𝛾൫√−𝐴ଶ + 𝐵ଶ√∆𝑝 + 𝑖𝐴√∆cos (√2√𝛾𝑥)𝑝 − (∆)(𝐴sin (√2√𝛾𝑥) − 𝐵)൯

√∆൫√−𝐴ଶ + 𝐵ଶ√∆ + 𝑖𝐴√∆cos (√2√𝛾𝑥) − 𝑝(𝐴sin (√2√𝛾𝑥) − 𝐵)൯
ඥ−𝛽ିଵ,  

(5.180) 

𝑈ଷ,ଶ଴(𝜉) =

−𝑖𝑐𝑜s ቆ
√2√𝛾𝑥

2
ቇ √𝛾ඥ−𝛽ିଵ

sin ቆ
√2√𝛾𝑥

2
ቇ

,  

(5.181) 

𝑈ଷ,ଶଵ(𝜉) =
−𝑖൫sin൫√2√𝛾𝑥൯ − 1൯√𝛾

𝛽ඥ−𝛽ିଵ𝑐𝑜s ൫√2√𝛾𝑥൯
,  

(5.182) 

𝑈ଷ,ଶଶ(𝜉) =  
−𝑖൫cos൫√2√𝛾𝑥൯ + 1൯ඥ−𝛽ିଵ√𝛾

sin ൫√2√𝛾𝑥൯
. 

(5.183) 

 

Family 3: 

When 𝑟 = 0, and 𝑝𝑞 ≠ 0, we get soliton like solutions.  

𝑈ଷ,ଶଷ(𝜉) =
√𝛾

𝑝𝛽
ቌඨ−

1

𝛽𝑝ଶ
ቍ

ିଵ

 , 

(5.184) 

𝑈ଷ,ଶସ(𝜉) =
√𝛾

𝑝

ቀ𝑝ଶcosh ൫𝑝√2√𝛾ඥ−𝑝ିଶ𝑥൯ + 𝑝ଶsinh ൫𝑝√2√𝛾ඥ−𝑝ିଶ𝑥൯ቁ

ቀcosh ൫𝑝√2√𝛾ඥ−𝑝ିଶ𝑥൯ + sinh ൫𝑝√2√𝛾ඥ−𝑝ିଶ𝑥൯ቁ
ඨ−

1

𝛽𝑝ଶ
 . 

(5.185) 

 

Family 1: 

For case 4, when Δ > 0 and  𝑝𝑞 ≠ 0 or 𝑞𝑟 ≠ 0, the hyperbolic function solutions of Eq. (5.114) 

are as follows,   

𝑈ସ,ଵ(𝜉) =

𝑖 tan ቆ
√2√𝛾

2
𝑥ቇ √𝛾

𝛽ඥ−𝛽ିଵ
, 

(5.186) 



𝑈ସ,ଶ(𝜉) = −

𝑖 cot ቆ
√2√𝛾

2
𝑥ቇ √𝛾

𝛽ඥ−𝛽ିଵ
 , 

(5.187) 

 

𝑈ସ,ଷ(𝜉) =
𝑖൫sin൫√2√𝛾𝑥൯ + 1൯√𝛾

𝛽ඥ−𝛽ିଵ cos൫√2√𝛾𝑥൯
 , 

(5.188) 

 

𝑈ସ,ସ(𝜉) =
𝑖൫cos൫√2√𝛾𝑥൯ + 1൯ඥ−𝛽ିଵ√𝛾

sin൫√2√𝛾𝑥൯
 , 

(5.189) 

𝑈ସ,ହ(𝜉) =

𝑖
2

൭2cos ቆ
√2√𝛾𝑥

4
ቇ

ଶ

− 1൱ ඥ−𝛽ିଵ√𝛾

sin ቆ
√2√𝛾𝑥

4
ቇ cos ቆ

√2√𝛾𝑥
4

ቇ

, 

(5.190) 

here, 𝐴, 𝐵 are real constants that satisfies 𝐵ଶ − 𝐴ଶ > 0, 

 

𝑈ସ,଺(𝜉) =
√𝛾൫𝐴cos ൫√2√𝛾𝑥൯ − √𝐴ଶ + 𝐵ଶ൯

𝛽൫𝑖𝐴sin ൫√2√𝛾𝑥൯ + 𝐵൯

1

ඥ−𝛽ିଵ
, 

(5.191) 

𝑈ସ,଼(𝜉) =
√𝛾൫𝑖𝐴 sin൫√2√𝛾𝑥൯ + √−𝐴ଶ + 𝐵ଶ൯

𝛽൫𝐴𝑐𝑜𝑠 ൫√2√𝛾𝑥൯ + 𝐵൯

1

ඥ−𝛽ିଵ
 , 

(5.192) 

𝑈ସ,ଽ(𝜉) =

− ቆ−𝑖sin ቆ
√2√𝛾𝑥

2
ቇ √∆𝑝 + cos ቆ

√2√𝛾𝑥
2

ቇ 𝑝ଶ − 4cos ቆ
√2√𝛾𝑥

2
ቇ 𝑞𝑟ቇ √𝛾

൭−𝑖sin ቆ
√2√𝛾𝑥

2
ቇ √∆ + 𝑝cos ቆ

√2√𝛾𝑥
2

ቇ൱ √∆𝛽ඥ−𝛽ିଵ

 , 

(5.193) 

𝑈ସ,ଵ଴(𝜉) =

− ൭−𝑐𝑜s ቆ
√2√𝛾𝑥

2
ቇ √∆𝑝 + 𝑖∆sin ቆ

√2√𝛾𝑥
2

ቇ൱ √𝛾

൭−𝑐𝑜s ቆ
√2√𝛾𝑥

2
ቇ √∆ + 𝑖𝑝sin ቆ

√2√𝛾𝑥
2

ቇ൱ √∆𝛽ඥ−𝛽ିଵ

, 

(5.194) 



𝑈ସ,ଵଵ(𝜉) = −
√𝛾൫𝑖𝑝൫(sin ൫√2√𝛾𝑥൯ + 1൯√∆ − cos ൫√2√𝛾𝑥൯(∆)൯

√∆ ቀ൫𝑖sin ൫√2√𝛾𝑥൯ + 𝑖൯√∆ − 𝑝cos ൫√2√𝛾𝑥൯ቁ 𝛽

1

ඥ−𝛽ିଵ
 , 

(5.195) 

𝑈ସ,ଵଶ(𝜉) = −
√𝛾൫−𝑝൫(cos ൫√2√𝛾𝑥൯ + 1൯√∆ + i sin൫√2√𝛾𝑥൯(∆)൯

√∆ ቀ൫− cos൫√2√𝛾𝑥൯ − 1൯√∆ + 𝑖𝑝 sin൫√2√𝛾𝑥൯ቁ 𝛽

1

ඥ−𝛽ିଵ
. 

(5.196) 

Family 2: 
 

When, Δ < 0 and 𝑝𝑞 ≠ 0 (𝑜𝑟 𝑞𝑟 ≠ 0), we have the following trigonometric solutions for Eq. 

(5.114), 

𝑈ସ,ଵଷ(𝜉) = −

2√𝛾 ቌ൭− cos ቆ
√2√𝛾𝑥

4
ቇ

ଶ

𝑝 + 𝑝/2൱ √∆ + 𝑖(∆)sin ቆ
√2√𝛾𝑥

2
ቇቍ

√∆ ൭𝑖𝑝sin ቆ
√2√𝛾𝑥

2
ቇ − 2√∆ cos ቆ

√2√𝛾𝑥
4

ቇ

ଶ

+ √∆൱ 𝛽ඥ−𝛽ିଵ

 , 

(5.197) 

𝑈ସ,ଵସ(𝜉) =
𝑖൫sin൫√2√𝛾𝑥൯ − 1൯√𝛾

𝛽ඥ−𝛽ିଵ cos൫√2√𝛾𝑥൯
 , 

(5.198) 

here, 𝐴, 𝐵 are real constants that satisfies 𝐵ଶ − 𝐴ଶ > 0, 

 

𝑈ସ,ଵହ(𝜉) =
√𝛾൫𝑖𝐴cos ൫√2√𝛾𝑥൯ − √𝐴ଶ + 𝐵ଶ൯

𝛽൫𝐴 sin൫√2√𝛾𝑥൯ − 𝐵൯

1

ඥ−𝛽ିଵ
,  

(5.199) 

 

𝑈ସ,ଵ଺(𝜉) = −
√𝛾൫𝑖𝐴 cos൫√2√𝛾𝑥൯ + √𝐴ଶ + 𝐵ଶ൯

𝛽൫𝐴 sin൫√2√𝛾𝑥൯ − 𝐵൯

1

ඥ−𝛽ିଵ
,  

(5.200) 

𝑈ସ,ଵ଻(𝜉) =

ቆ𝑖 sin ቆ
√2√𝛾𝑥

2
ቇ √∆𝑝 − cos ቆ

√2√𝛾𝑥
2

ቇ ∆ቇ √𝛾ඥ−𝛽ିଵ

൭−𝑖 sin ቆ
√2√𝛾𝑥

2
ቇ √∆ − 𝑝cos ቆ

√2√𝛾𝑥
2

ቇ൱ √∆

,  

(5.201) 



𝑈ସ,ଵ଼(𝜉) =

ቆ𝑖 cos ቆ
√2√𝛾𝑥

2
ቇ √∆𝑝 + sin ቆ

√2√𝛾𝑥
2

ቇ ∆ቇ √𝛾ඥ−𝛽ିଵ

൭𝑖 cos ቆ
√2√𝛾𝑥

2
ቇ √∆ + 𝑝cos ቆ

√2√𝛾𝑥
2

ቇ൱ √∆

,  

(5.202) 

𝑈ସ,ଵଽ(𝜉) =
√𝛾൫𝑖𝑝൫(sin൫√2√𝛾𝑥൯ − 1൯√∆ − cos ൫√2√𝛾𝑥൯(∆)൯

√∆ ቀ൫𝑖 sin൫√2√𝛾𝑥൯ − 𝑖൯√∆ − 𝑝cos ൫√2√𝛾𝑥൯ቁ 𝛽

1

ඥ−𝛽ିଵ
,  

(5.203) 

𝑈ସ,ଶ଴(𝜉) =
√𝛾൫𝑖𝑝൫(cos ൫√2√𝛾𝑥൯ + 1൯√∆ +  sin ൫√2√𝛾𝑥൯(∆)൯

√∆ ቀ൫𝑖 cos൫√2√𝛾𝑥൯ + 𝑖൯√∆ + 𝑝 sin ൫√2√𝛾𝑥൯ቁ 𝛽

1

ඥ−𝛽ିଵ
,  

(5.204) 

𝑈ସ,ଶଵ(𝜉) =

2√𝛾 ൭𝑖 ൭cos ቆ
√2√𝛾𝑥

4
ቇ

ଶ

− 1/2൱ 𝑝√∆ + sin ቆ
√2√𝛾𝑥

2
ቇ (∆)൱

√∆ ቌ൭2𝑖 cos ቆ
√2√𝛾𝑥

4
ቇ

ଶ

− 𝑖൱ √∆ + 𝑝sin ቆ
√2√𝛾𝑥

2
ቇቍ

ඥ−𝛽ିଵ,  

(5.205) 

𝑈ସ,ଶଶ(𝜉) = ඥ𝛾𝑝 ቀcosh ቀ𝑝√2ඥ𝛾ඥ−𝑝ିଶ𝑥ቁ − sinh ቀ𝑝√2ඥ𝛾ඥ−𝑝ିଶ𝑥ቁ − 𝑑ቁ 

ඨ−
1

𝛽𝑝ଶ
൬𝑑 + cosh ቀ𝑝√2ඥ𝛾ඥ−𝑝ିଶ𝑥ቁ − sinh ቀ𝑝√2ඥ𝛾ඥ−𝑝ିଶ𝑥ቁ൰

ିଵ

 . 

(5.206) 

 

 

Family 3: 

When 𝑟 = 0, and 𝑝𝑞 ≠ 0, we get soliton like solutions.  

𝑈ସ,ଶଷ(𝜉) =
൫cosh൫𝑝√2√𝛾ඥ−𝑝ିଶ𝑥൯ − sinh൫𝑝√2√𝛾ඥ−𝑝ିଶ𝑥൯ − 𝑑൯

൫cosh൫𝑝√2√𝛾ඥ−𝑝ିଶ𝑥൯ − sinh൫𝑝√2√𝛾ඥ−𝑝ିଶ𝑥൯ + 𝑑൯
𝑝ඥ𝛾ඨ−

1

𝛽𝑝ଶ
 . 

(5.207) 

5.7 Graphical Explanation: 
 

In this section we discuss graphical simulation of some of exact solutions of space-time 

conformable telegraph equation. 3-Dimensional and 2-Dimensional graphs of various solutions 

have been examined by choosing appropriate values of fractional order operator 𝛼. In Figure 5.6-



Figure 5.9, it is obvious that for smaller value of fractional order operator 𝛼 we get shock waves 

and by increasing the value of 𝛼 equals to 1 we get solitary wave. 

Figure 5.6: Represents graphical simulation of kink wave soliton for 𝑈ଵ,ଵ expressed in Eq. (5.122) 

by choosing parameters, 𝑝 = 3, 𝑞 = 1, 𝑟 = 2, 𝛽 = 2.5, 𝛾 = 1. Fig (a)-(c) depicts 3D graphs of 

abs(𝑈ଵ,ଵ) for 𝛼 = 0.1, 0.6, 1 , while Fig(d) depicts 2D graph for  abs(𝑈ଵ,ଵ) for 𝛼 = 0.1, 0.6, 1 

respectively in the range of −10 ≤ 𝑥 ≤ 10, 𝑡 = 1. 

  
(a) (b) 

  
(c) (d) 

Figure 5.6: Graphical representation of  kink wave soliton for 𝑼𝟏,𝟏. 

Figure 5.8: Graphical representation of periodic wave solution for 𝑼𝟑,𝟏 Figure 5.7:: Represents 

graphical simulation of periodic wave solution for 𝑈ଵ,ସ expressed in Eq.(5.125) by choosing 

parameters, 𝑝 = 3, 𝑞 = 0.1, 𝑟 = 0.2, 𝛽 = 5, 𝛾 = 1. Fig (a)-(c) depicts 3D graphs of Re(𝑈ଵ,ସ) for 

𝛼 = 0.3, 0.7, 1 , while Fig(d) depicts 2D graph for  Re(𝑈ଵ,ସ) for 𝛼 = 0.3, 0.7, 1 respectively in the 

range of −40 ≤ 𝑥 ≤ 40, 𝑡 = 2. 



  
(a) (b) 

  
(c) (d) 

Figure 5.7: Graphical representation of periodic wave solution for 𝑼𝟏,𝟒  

Figure 5.8:Depicts graphical simulation of periodic wave solution for 𝑈ଷ,ଵ of Eq.(5.162) by 

choosing parameters, 𝑝 = 4, 𝑞 = 1, 𝑟 = 2, 𝛽 = 2.5, 𝛾 = 1. Fig (a)-(c) depicts 3D graphs of 

Re(𝑈ଷ,ଵ) for 𝛼 = 0.1, 0.5, 1 , while Fig(d) depicts 2D graph for  Re(𝑈ଷ,ଵ) for 𝛼 = 0.1, 0.5, 1 

respectively in the range of −10 ≤ 𝑥 ≤ 10. 



  
(a) (b) 

  
(c) (d) 

Figure 5.8: Graphical representation of periodic wave solution for 𝑼𝟑,𝟏  

Figure 5.9: Depicts graphical representation of periodic wave solution for 𝑈ସ,ଶଶ, expressed in 

Eq.(5.206) by choosing parameters, 𝑝 = 1, 𝑑 = 4, 𝛽 = 1, 𝛾 = 7. Fig (a)-(c) depicts 3D graphs of 

Im(𝑈ଵ,ସ) for 𝛼 = 0.4, 0.6, 1 , while Fig(d) depicts 2D graph for  Im(𝑈ସ,ଶଶ) for 𝛼 = 0.4, 0.6, 1 

respectively in the range of −10 ≤ 𝑥 ≤ 10. 

 



  
(a) (b) 

  
(c) (d) 

Figure 5.9: Graphical representation of periodic wave solution for 𝑼𝟒,𝟐𝟐 

 

5.8 Conclusion:  
 

Improved generalized Riccati equation mapping method has been used to extract exact traveling 

wave solutions to the space- time fractional telegraph equation. Numerous travelling wave 

solutions have been generated in the form of hyperbolic, periodic wave and rational solutions. 

Wave behavior have been studied through 3-D and 2-D graphs by choosing suitable values of 𝛼 

and free parameters involved. These results might be helpful in the study of electrical signals in 

transmission lines. 



5.9 Space-time fractional (2+1)-dimensional Heisenberg Ferromagnet Model:  
Another important equation we have considered here is the newly derived variant of Nonlinear 

Schrödinger Equation (NLSE) that describes space-time fractional (2+1)-dimensional Heisenberg 

ferromagnetic spin chains with bilinear and anisotropic interactions in the semi classical limit 

derive by M. Latha and C. Vasanthi [179]. 

𝑖 𝐷௧
ఈ𝑢 + 𝛼ଵ 𝐷௫

ଶఈ𝑢 +଴
஺

଴
஺ 𝛼ଶ 𝐷௬

ଶఈ𝑢 +଴
஺ 𝛼ଷ 𝐷௫௬

ଶఈ𝑢 − 𝛼ସ𝑢଴
஺ |𝑢|ଶ = 0, (5.208) 

where 𝑢 = 𝑢(𝑥, 𝑦, 𝑡), 𝐷௧
ఈ

଴
஺ , 𝐷௫

ఈ
଴
஺ , 𝐷௬

ఈ
଴
஺  are Atangana’s conformable derivatives [40], Ψଵ =

𝛾ସ(𝐽 + 𝐽ଶ), Ψଶ = 𝛾ସ(𝐽ଵ + 𝐽ଶ), Ψଷ = 2𝛾ସ𝐽ଶ, Ψସ = 2𝛾ସ𝐴, parameter 𝛾 is lattice parameter, 

𝐽, 𝐽ଵrepresents bilinear exchange interaction coefficients with respect to 𝑥 and 𝑦 respectively. 𝐽ଶ is 

the neighboring interaction on the diagonal, whereas uniaxial crystal field anisotropy parameter is 

denoted by A [33]. Heisenberg ferromagnet model (HFM) is an interesting nonlinear model that 

exhibits magnetic solitons and, also very important to study magnetic behavior in magnetic 

materials [33]. Finding the new exact solutions for this model will help scientists to understand 

nonlinear behaviour of ferromagnetic substances. Now a days the new technology magneto-optical 

recording is gaining popularity for higher storage and fast reading [180]. Also, the magnetization 

reversal in ferromagnetic medium due to the occurrence of spin soliton flipping has an application 

in magnetic memories and recording [181]. Baskonus et. al [182, 183] studied (2+1)-dimensional 

Heisenberg ferromagnetic spin chains and construct dark, bright, combined dark-bright, singular, 

and combined singular soliton solutions. H. Triki and M. Wazwaz [33] find out bright and dark 

solitons and periodic wave solutions for this equation. Liu et al [184, 185] studied bright and dark 

soliton for Heisenberg model.  Baleanu et al. [186] studied optical soliton for this model.  A. Kundu 

et al. [187] applied modified Kudryashov method on (2 + 1)-dimensional Heisenberg 

ferromagnetic spin chain equation. In [188] authors investigate Heisenberg model with the of 

modified extended tanh expansion method using Riccati equation. 

To solve Eq. (5.208) we use the following transformation: 

𝑢(𝑥, 𝑦, 𝑡) = 𝑈(𝜉 )𝑒௜ట. (5.209) 

where, 



𝜉 =
𝜒ଵ

𝛼
൬𝑥 +

1

𝛤(𝛼)
൰

ఈ

+
𝜒ଶ

𝛼
൬𝑦 +

1

𝛤(𝛼)
൰

ఈ

−
𝜆

𝛼
൬𝑡 +

1

𝛤(𝛼)
൰

ఈ

, 

 𝜓 =
Υଵ

𝛼
൬𝑥 +

1

𝛤(𝛼)
൰

ఈ

+
Υଶ

𝛼
൬𝑦 +

1

𝛤(𝛼)
൰

ఈ

+
𝜔

𝛼
൬𝑡 +

1

𝛤(𝛼)
൰

ఈ

. 

 

(5.210) 

where 𝜓 is the phase component, Υ represents wave number, 𝜔 is the soliton frequency, 𝜆 is the 

velocity of soliton and 𝜒 is the width of soliton. Now substituting Eq. (5.209) and Eq. (5.210) into 

Eq. (5.208) and separating the obtained ODE into real and imaginary components we get real part 

as: 

(𝜒ଵ
ଶ𝛼ଵ + 𝜒ଵ𝜒ଶ𝛼ଷ + 𝜒ଶ

ଶ𝛼ଶ)
dଶ

d𝜉ଶ
𝑈(𝜉) − 𝑈(𝜉)൫Υଶ

ଶ𝛼ଶ + ΥଶΥଵ𝛼ଷ + Υଵ
ଶ𝛼ଵ + 𝜔൯ 

−𝛼ସ൫𝑈(𝜉)൯
ଷ

= 0, 

(5.211) 

and imaginary component gives: 

𝜆 = 𝜒ଵΥଶ𝛼ଷ + 2𝛼ଵ𝜒ଵΥଵ + 2𝛼ଶ𝜒ଶΥଶ + 𝜒ଶΥଵ𝛼ଷ. (5.212) 

Eq. (5.211) and Eq. (5.212) obtained by applying the properties of Atangana’s conformable 

derivative explained in Eq. (1.25) - (1.32). By using homogeneous balance principle between the 

highest order derivative and nonlinearity yields 𝑀 = 1. Therefore, Eq. (1.67) has a solution. 

𝑈(𝜉 ) =
𝑏ିଵ

𝜙(𝜉)
+ 𝑏଴ + 𝑏ଵ𝜙(𝜉). (5.213) 

Now, substituting Eq. (5.213) along with Eq. (1.68) into Eq. (5.211) after collecting all terms with 

the same order in 𝜙௜   and 𝜙ି௜, where, (𝑖 = 0,1,2, … . . ). and equating each coefficient to 0, we 

obtain a system of NL algebraic equations. Solving these equations yields following cases and 

non-trivial solutions: 

Set 1 : 

𝑏ଵ = 0,    𝑏଴ =
√2ට

𝜒ଵ
ଶ𝛼ଵ + 𝜒ଵ𝜒ଶ𝛼ଷ + 𝜒ଶ

ଶ𝛼ଶ

𝛼ସ
𝑙

2
, 

𝑏ିଵ = 𝑘√2ඨ
𝜒ଵ

ଶ𝛼ଵ + 𝜒ଵ𝜒ଶ𝛼ଷ + 𝜒ଶ
ଶ𝛼ଶ

𝛼ସ
, 

 

 

 

(5.214) 



𝜔 =
−

𝛼ଶ(𝑙ଶ − 4𝑚𝑘)𝜒ଶ
ଶ

2
−

𝛼ଷ𝜒ଵ(𝑙ଶ − 4𝑚𝑘)𝜒ଶ

2
−

𝛼ଵ(𝑙ଶ − 4𝑚𝑘)𝜒ଵ
ଶ

2
−ΥଵΥଶ𝛼ଷ − Υଶ

ଶ𝛼ଶ − Υଵ
ଶ𝛼ଵ

, 

𝑈ଵ(𝜉) =  𝑏଴ +
𝑏ିଵ

𝜙(𝜉)
. 

(5.215) 

Set 2 : 

𝑏଴ =
𝑙(𝜒ଵ

ଶ𝛼ଵ + 𝜒ଵ𝜒ଶ𝛼ଷ + 𝜒ଶ
ଶ𝛼ଶ)√2

2 × ට
𝜒ଵ

ଶ𝛼ଵ + 𝜒ଵ𝜒ଶ𝛼ଷ + 𝜒ଶ
ଶ𝛼ଶ

𝛼ସ
𝛼ସ

, 

𝑏ଵ = √2ඨ
𝜒ଵ

ଶ𝛼ଵ + 𝜒ଵ𝜒ଶ𝛼ଷ + 𝜒ଶ
ଶ𝛼ଶ

𝛼ସ
𝑚,   𝑏ିଵ = 0, 

𝜔 =
−

𝛼ଶ(𝑙ଶ − 4𝑚𝑘)𝜒ଶ
ଶ

2
−

𝛼ଷ𝜒ଵ(𝑙ଶ − 4𝑚𝑘)𝜒ଶ

2
−

𝛼ଵ(𝑙ଶ − 4𝑚𝑘)𝜒ଵ
ଶ

2
−ΥଵΥଶ𝛼ଷ − Υଶ

ଶ𝛼ଶ − Υଵ
ଶ𝛼ଵ,

, 

 

 

(5.216) 

𝑈ଶ(𝜉) =  𝑏଴ + 𝑏ଵ𝜙(𝜉). (5.217) 

Please note, the following substitutions have been made in the following solutions to make the 

results more elegant. 

Ω = ඥ𝑙ଶ − 4𝑚𝑘, Ωᇱ = ඥ4𝑚𝑘 − 𝑙ଶ, 

with 

𝜉 =
𝜒ଵ

𝛼
൬𝑥 +

1

𝛤(𝛼)
൰

ఈ

+
𝜒ଶ

𝛼
൬𝑦 +

1

𝛤(𝛼)
൰

ఈ

−
𝜆

𝛼
൬𝑡 +

1

𝛤(𝛼)
൰

ఈ

, 

𝜆 = 𝜒ଵΥଶ𝛼ଷ + 2𝛼ଵ𝜒ଵΥଵ + 2𝛼ଶ𝜒ଶΥଶ + 𝜒ଶΥଵ𝛼ଷ, 

𝜓 =
Υଵ

𝛼
൬𝑥 +

1

𝛤(𝛼)
൰

ఈ

+
Υଶ

𝛼
൬𝑦 +

1

𝛤(𝛼)
൰

ఈ

+
𝜔

𝛼
൬𝑡 +

1

𝛤(𝛼)
൰

ఈ

. 

For the case 1, substituting the values from Eq. (5.214) into Eq.(5.215) along with the Riccati 

equations solutions, we get. 

Family 1: 

When 𝑙ଶ − 4𝑚𝑘 > 0 and 𝑙𝑚 ≠ 0 or 𝑚𝑘 ≠ 0, the hyperbolic function solutions of Eq.(5.208) are 

as follows:  



𝑈ଵ,ଵ = ቌ𝑏଴ −
2𝑚(𝑏ିଵ)

(𝑙 + Ω) tanh ቀ
Ω𝜉
2

ቁ
ቍ 𝑒௜ట , (5.218) 

𝑈ଵ,ଶ = ቌ𝑏଴ −
2𝑚(𝑏ିଵ)

(𝑙 + Ω)coth ቀ
Ω𝜉
2

ቁ
ቍ 𝑒௜ట , (5.219) 

𝑈ଵ,ଷ = ቆ𝑏଴ −
2𝑚(𝑏ିଵ)

(𝑙 + Ω)൫tanh(Ω𝜉) ± 𝑖𝑠𝑒𝑐ℎ(Ω𝜉)൯
ቇ 𝑒௜ట, (5.220) 

𝑈ଵ,ସ = ቆ𝑏଴ −
2𝑚(𝑏ିଵ)

(𝑙 + Ω)൫𝑐𝑜𝑡ℎ(Ω𝜉) ± 𝑐𝑠𝑐ℎ(Ω𝜉)൯
ቇ 𝑒௜ట , (5.221) 

𝑈ଵ,ହ =

⎝

⎜
⎛

𝑏଴ −
4𝑚(𝑏ିଵ)

(2𝑙 + Ω) ቆ2𝑐𝑜𝑡ℎ ቀ
Ω𝜉
2

ቁቇ
⎠

⎟
⎞

𝑒௜ట, (5.222) 

𝑈ଵ,଺ =

⎝

⎜
⎛

𝑏଴ +
2𝑚(𝑏ିଵ)

−𝑙 +
±ඥ(𝐴ଶ + 𝐵ଶ)Ω − 𝐴Ω 𝑐𝑜𝑠ℎ(Ω𝜉)

𝐴sinh(Ω𝜉) + 𝐵 ⎠

⎟
⎞

𝑒௜ట, (5.223) 

𝑈ଵ,଻ =

⎝

⎜
⎛

𝑏଴ +
2𝑚(𝑏ିଵ)

−𝑙 −
±ඥ(−𝐴ଶ + 𝐵ଶ)Ω + 𝐴Ω 𝑠𝑖𝑛ℎ(Ω𝜉)

𝐴cosh(Ω𝜉) + 𝐵 ⎠

⎟
⎞

𝑒௜ట, (5.224) 

where two non-zero real constants A and B satisfies  𝐴ଶ − 𝐵ଶ > 0. 

𝑈ଵ,଼ =

⎝

⎜
⎛

𝑏଴ +

ቀ
𝑏ିଵ

𝑘
ቁ ቆΩ𝑠𝑖𝑛ℎ ቀ

Ω𝜉
2

ቁ − 𝑙𝑐𝑜𝑠ℎ ቀ
Ω𝜉
2

ቁቇ

2 𝑐𝑜𝑠ℎ ቀ
Ω𝜉
2

ቁ

⎠

⎟
⎞

𝑒௜ట, (5.225) 



𝑈ଵ,ଽ =

⎝

⎜
⎛

𝑏଴ −

ቀ
𝑏ିଵ

𝑘
ቁ ቆ−Ω𝑐𝑜𝑠ℎ ቀ

Ω𝜉
2

ቁ + 𝑙𝑠𝑖𝑛ℎ ቀ
Ω𝜉
2

ቁቇ

2 𝑠𝑖𝑛ℎ ቀ
Ω𝜉
2

ቁ

⎠

⎟
⎞

𝑒௜ట, (5.226) 

𝑈ଵ,ଵ଴ = ൮𝑏0 +
(
𝑏−1

𝑘
)(Ω𝑠𝑖𝑛ℎ(Ω𝜉) − 𝑙 𝑐𝑜𝑠ℎ(Ω𝜉) ± 𝑖Ω)

2 𝑐𝑜𝑠ℎ(Ω𝜉)
൲ 𝑒𝑖𝜓 , (5.227) 

𝑈ଵ,ଵଵ = ቌ𝑏଴ +
(
𝑏ିଵ

𝑘
)(Ω𝑐𝑜𝑠ℎ(Ω𝜉) − 𝑙𝑠𝑖𝑛ℎ(Ω𝜉) ± Ω)

2 𝑠𝑖𝑛ℎ(Ω𝜉)
ቍ 𝑒௜ట, (5.228) 

𝑈ଵ,ଵଶ = ቌ𝑏଴ +
ቀ

𝑏ିଵ

𝑘
ቁ ቀ−𝑙𝑠𝑖𝑛ℎ ቀ

Ω𝜉
2

ቁ + 2Ω𝑐𝑜𝑠ℎଶ ቀ
Ω𝜉
4

ቁ − Ωቁ

2sinh ቀ
Ω𝜉
2

ቁ
ቍ 𝑒௜ట, (5.229) 

 

(a) (b) 



 

(c) (d) 
Figure 5.10: (a)-(c) 3D illustration of 𝑹𝒆൫𝑼𝟏,𝟏൯, 𝑰𝒎൫𝑼𝟏,𝟏൯, 𝒂𝒃𝒔(𝑼𝟏,𝟏) with 𝒍 = 𝟑, 𝒎 = 𝟏, 𝒌 = 𝟐, 𝜶𝟏 = 𝟏. 𝟓, 𝜶𝟐 = 𝟏. 𝟓, 𝜶𝟑 =

𝟏. 𝟓, 𝜶𝟒 = 𝟏. 𝟓, 𝜰𝟏 = 𝟏. 𝟑, 𝜰𝟐 = 𝟏. 𝟐, 𝝌𝟏 = 𝟏. 𝟓, 𝝌𝟐 = 𝟏, 𝜶 = 𝟎. 𝟓, 𝒕 = 𝟏. 𝟓 , 𝒙 = 𝟎. . 𝟏𝟓, 𝒚 = 𝟎. . 𝟏𝟓, and, (d) 2D illustration of 

𝑹𝒆(𝑼
𝟏,𝟏

)with , 𝜶 = 𝟎. 𝟑, 𝟎. 𝟓, 𝟎. 𝟕, 𝟏 at 𝐱 = −𝟏𝟎. . . 𝟏𝟎, 𝐲 = 𝟑, 𝐭 = 𝟏. 𝟓 

Family 2: 

If 𝑙ଶ − 4𝑚𝑘 < 0 and 𝑙𝑚 ≠ 0 (𝑜𝑟 𝑚𝑘 ≠ 0), we have the following trigonometric solutions for Eq. 

(5.208), 

𝑈ଵ,ଵଷ = ൮𝑏଴ +
2𝑚(𝑏ିଵ)

(−𝑙 + Ω′)𝑡𝑎𝑛 ൬
Ω′𝜉

2
൰

൲ 𝑒௜ట, (5.230) 

𝑈ଵ,ଵସ = ൮𝑏଴ −
2𝑚(𝑏ିଵ)

(𝑙 + Ω′)𝑐𝑜𝑡 ൬
Ω′𝜉

2
൰

൲ 𝑒௜ట , (5.231) 

𝑈ଵ,ଵହ = ቆ𝑏଴ +
2𝑚(𝑏ିଵ)

(−𝑙 + Ω′)൫tan(Ω′𝜉) ± 𝑠𝑒𝑐(Ω′𝜉)൯
ቇ 𝑒௜ట , (5.232) 

𝑈ଵ,ଵ଺ = ቆ𝑏଴ −
2𝑚(𝑏ିଵ)

(𝑙 + Ω′)൫𝑐𝑜𝑡(Ω′𝜉) ± 𝑐𝑠𝑐(Ω′𝜉)൯
ቇ 𝑒௜ట , (5.233) 

𝑈ଵ,ଵ଻ =

⎝

⎜
⎛

𝑏଴ +
4𝑚(𝑏ିଵ)

(−2𝑙 + Ω′) ቆ−2𝑐𝑜𝑡 ቀ
Ωᇱ𝜉

2
ቁቇ

⎠

⎟
⎞

𝑒௜ట , (5.234) 



𝑈ଵ,ଵ଼ =

⎝

⎜
⎛

𝑏଴ +
2𝑚(𝑏ିଵ)

−𝑙 +
±𝑖ඥ(−𝐴ଶ + 𝐵ଶ)Ω′ − 𝐴Ω′ 𝑐𝑜𝑠(Ω′𝜉)

𝐴𝑠𝑖𝑛(Ω′𝜉) + 𝐵 ⎠

⎟
⎞

𝑒௜ట, (5.235) 

𝑈ଵ,ଵଽ =

⎝

⎜
⎛

𝑏଴ +
2𝑚(𝑏ିଵ)

−𝑙 −
±𝑖ඥ(−𝐴ଶ + 𝐵ଶ)Ω′ + 𝐴Ω′ 𝑐𝑜𝑠(Ω′𝜉)

𝐴𝑠𝑖𝑛(Ω′𝜉) + 𝐵 ⎠

⎟
⎞

𝑒௜ట, (5.236) 

where two non-zero real constants A and B satisfies  𝐴ଶ − 𝐵ଶ > 0. 

𝑈ଵ,ଶ଴ =

⎝

⎜
⎛

𝑏଴ −

ቀ
𝑏ିଵ

𝑘
ቁ ቆΩ′𝑠𝑖𝑛 ൬

Ω′𝜉
2

൰ + 𝑙𝑐𝑜𝑠 ൬
Ω′𝜉

2
൰ቇ

2 𝑐𝑜𝑠 ൬
Ω′𝜉

2
൰

⎠

⎟
⎞

𝑒௜ట, (5.237) 

𝑈ଵ,ଶଵ =

⎝

⎜
⎛

𝑏଴ +

ቀ
𝑏ିଵ

𝑘
ቁ ቆΩ′𝑐𝑜𝑠 ൬

Ω′𝜉
2

൰ − 𝑙𝑠𝑖𝑛 ൬
Ω′𝜉

2
൰ቇ

2 𝑠𝑖𝑛 ൬
Ω′𝜉

2
൰

⎠

⎟
⎞

𝑒௜ట, (5.238) 

𝑈ଵ,ଶଶ = ቌ𝑏଴ −
(
𝑏ିଵ

𝑘
)(Ω′sin(Ωᇱ𝜉) + 𝑙cos(Ωᇱ𝜉) ± Ω′)

2 𝑐𝑜𝑠(Ω′𝜉)
ቍ 𝑒௜ట, (5.239) 

𝑈ଵ,ଶଷ = ቌ𝑏଴ +
(
𝑏ିଵ

𝑘
)(Ω′cos(Ωᇱ𝜉) − 𝑙 sin(Ωᇱ𝜉) ± Ω′)

2 𝑠𝑖𝑛(Ω′𝜉)
ቍ 𝑒௜ట, (5.240) 

𝑈ଵ,ଶସ = ൮𝑏଴ +
(
𝑏ିଵ

𝑘
) ൬−𝑙𝑠𝑖𝑛 ൬

Ω′𝜉
2

൰ + 2Ω′𝑐𝑜𝑠ଶ ൬
Ω′𝜉

4
൰ − Ω′൰

2sin ൬
Ω′𝜉

2
൰

൲ 𝑒௜ట, (5.241) 

where, 

Ω = ඥ𝑙ଶ − 4𝑚𝑘, Ωᇱ = ඥ4𝑚𝑘 − 𝑙ଶ , 

𝜉 =
𝜒ଵ

𝛼
൬𝑥 +

1

𝛤(𝛼)
൰

ఈ

+
𝜒ଶ

𝛼
൬𝑦 +

1

𝛤(𝛼)
൰

ఈ

−
𝜆

𝛼
൬𝑡 +

1

𝛤(𝛼)
൰

ఈ

 , 



𝜆 = 𝜒ଵΥଶ𝛼ଷ + 2𝛼ଵ𝜒ଵΥଵ + 2𝛼ଶ𝜒ଶΥଶ + 𝜒ଶΥଵ𝛼ଷ , 

𝜓 =
Υଵ

𝛼
൬𝑥 +

1

𝛤(𝛼)
൰

ఈ

+
Υଶ

𝛼
൬𝑦 +

1

𝛤(𝛼)
൰

ఈ

+
𝜔

𝛼
൬𝑡 +

1

𝛤(𝛼)
൰

ఈ

. 

(a) (b) 

(c) (d) 
Figure 5.11: (a)-(c) 3D illustration of 𝑹𝒆൫𝑼𝟏,𝟏𝟓൯, 𝑰𝒎൫𝑼𝟏,𝟏𝟓൯, 𝒂𝒃𝒔(𝑼𝟏,𝟏𝟓) with 𝒑 = 𝒍, 𝒎 = 𝟏, 𝒌 = 𝟐, 𝜶𝟏 = 𝟏. 𝟓, 𝜶𝟐 =

𝟏. 𝟓, 𝜶𝟑 = 𝟏. 𝟓, 𝜶𝟒 = 𝟏. 𝟓, 𝜰𝟏 = 𝟏. 𝟑, 𝜰𝟐 = 𝟏. 𝟐, 𝝌𝟏 = 𝟏. 𝟓, 𝝌𝟐 = 𝟏, 𝜶 = 𝟎. 𝟖 , 𝒕 = 𝟏. 𝟓, 𝒙 = 𝟎. . 𝟏𝟓, 𝒚 = 𝟎. . 𝟏𝟓, and (d) 2D 

illustration of 𝑹𝒆(𝑼
𝟏,𝟏𝟓

)by choosing , 𝜶 = 𝟎. 𝟒, 𝟎. 𝟔, 𝟎. 𝟖, 𝟏 at −𝟏𝟎 ≤ 𝒙 ≤ 𝟏𝟎, 𝒕 = 𝟏. 𝟓, 𝒚 = 𝟐 

Family 3: 

When 𝑘 = 0, and 𝑙𝑚 ≠ 0 the solutions of Eq. (5.208) are as follows: 

𝑈ଵ,ଶହ = (𝑏଴)𝑒௜ట,          here (5.242) 

𝜔 =
−

𝛼ଶ(𝑙ଶ)𝜒ଶ
ଶ

2
−

𝛼ଷ𝜒ଵ(𝑙ଶ)𝜒ଶ

2
−

𝛼ଵ(𝑙ଶ)𝜒ଵ
ଶ

2
−ΥଵΥଶ𝛼ଷ − Υଶ

ଶ𝛼ଶ − Υଵ
ଶ𝛼ଵ ,

 



In case 2, we have following families of solutions: 

Family1: 

When 𝑙ଶ − 4𝑚𝑘 > 0 and 𝑙𝑚 ≠ 0 or 𝑚𝑘 ≠ 0, the hyperbolic function solutions for Eq. (5.208) are 

as follows: 

𝑈ଶ,ଵ = ቌ𝑏଴ − ൬
𝑏ଵ

2𝑚
൰ ൭(𝑙 + Ω)tanh ൬

Ω𝜉

2
൰൱ቍ 𝑒௜ట, (5.243) 

𝑈ଶ,ଶ = ቌ𝑏଴ − ൬
𝑏ଵ

2𝑚
൰ ൭(𝑙 + Ω)𝑐𝑜𝑡ℎ ൬

Ω𝜉

2
൰൱ቍ 𝑒௜ట, (5.244) 

𝑈ଶ,ଷ = ൬𝑏଴ − ൬
𝑏ଵ

2𝑚
൰ (𝑙 + Ω)(tanh(Ω𝜉) ± 𝑖𝑠𝑒𝑐ℎ(Ω𝜉))൰ 𝑒௜ట, (5.245) 

𝑈ଶ,ସ = ൬𝑏଴ − ൬
𝑏ଵ

2𝑚
൰ (𝑙 + Ω)(coth(Ω𝜉) ± 𝑐𝑠𝑐ℎ(Ω𝜉))൰ 𝑒௜ట, (5.246) 

𝑈ଶ,ହ = ቌ𝑏଴ − ൬
𝑏ଵ

4𝑚
൰ ൭2(2𝑙 + Ω)𝑐𝑜𝑡ℎ ൬

Ω𝜉

2
൰൱ቍ 𝑒௜ట, (5.247) 

𝑈ଶ,଺ = ቌ𝑏଴ − ൬
𝑏ଵ

2𝑚
൰ ൭−𝑙 +

±ඥ(𝐴ଶ + 𝐵ଶ)Ω − 𝐴Ω 𝑐𝑜𝑠ℎ(Ω𝜉)

𝐴sinh(Ω𝜉) + 𝐵
൱ቍ 𝑒௜ట, (5.248) 

𝑈ଶ,଻ = ቌ𝑏଴ − ൬
𝑏ଵ

2𝑚
൰ ൭−𝑙 −

±ඥ(−𝐴ଶ + 𝐵ଶ)Ω + 𝐴Ω𝑠𝑖𝑛ℎ(Ω𝜉)

𝐴𝑐𝑜𝑠ℎ(Ω𝜉) + 𝐵
൱ቍ 𝑒௜ట, (5.249) 

where two non-zero real constants 𝐴 and 𝐵 satisfies  𝐴ଶ − 𝐵ଶ > 0. 

𝑈ଶ,଼ = ቌ𝑏଴ +
2𝑏ଵ𝑘𝑐𝑜𝑠ℎ ቀ

Ω𝜉
2

ቁ

Ω𝑠𝑖𝑛ℎ ቀ
Ω𝜉
2

ቁ − 𝑙𝑐𝑜𝑠ℎ ቀ
Ω𝜉
2

ቁ
ቍ 𝑒௜ట, (5.250) 

𝑈ଶ,ଽ = ቌ𝑏଴ −
2𝑏ଵ𝑘𝑠𝑖𝑛ℎ ቀ

Ω𝜉
2

ቁ

−Ω𝑐𝑜𝑠ℎ ቀ
Ω𝜉
2

ቁ + 𝑙𝑠𝑖𝑛ℎ ቀ
Ω𝜉
2

ቁ
ቍ 𝑒௜ట, (5.251) 



𝑈ଶ,ଵ଴ = ቆ𝑏଴ +
2𝑏ଵ𝑘𝑐𝑜𝑠ℎ(Ω𝜉)

Ω𝑠𝑖𝑛ℎ(Ω𝜉) − 𝑙𝑐𝑜𝑠ℎ(Ω𝜉) ± 𝑖Ω
ቇ 𝑒௜ట, (5.252) 

𝑈ଶ,ଵଵ = ቆ𝑏଴ +
2𝑏ଵ𝑘𝑠𝑖𝑛ℎ(Ω𝜉)

Ω𝑐𝑜𝑠ℎ(Ω𝜉) − 𝑙𝑠𝑖𝑛ℎ(Ω𝜉) ± Ω
ቇ 𝑒௜ట, (5.253) 

𝑈ଶ,ଵଶ = ൮𝑏଴ +
2𝑏ଵ𝑘𝑠𝑖𝑛ℎ ቀ

Ω𝜉
2

ቁ

−𝑙𝑠𝑖𝑛ℎ ቀ
Ω𝜉
2

ቁ + 2Ω𝑐𝑜𝑠ℎ ቀ
Ω𝜉
4

ቁ
ଶ

− Ω

൲ 𝑒௜ట, (5.254) 



 

(a) (b) 

(c) (d) 

Figure 5.12: (a)-(c) 3D illustration of 𝑹𝒆(𝑼
𝟐,𝟐

), 𝑰𝒎(𝑼𝟐,𝟐), 𝒂𝒃𝒔(𝑼𝟐,𝟐) with arbitrary parameters 𝒍 = 𝟐, 𝒎 = 𝟑, 𝒌 = 𝟐, 𝜶𝟏 =

𝟏. 𝟓, 𝜶𝟐 = 𝟏. 𝟓, 𝜶𝟑 = 𝟏. 𝟓, 𝜶𝟒 = 𝟏. 𝟓, 𝝆 = 𝟐, 𝝁 = 𝟏. 𝟐, 𝜷 = 𝟏. 𝟓, 𝜸 = 𝟐, 𝜶 = 𝟎. 𝟓, 𝒕 = 𝟎. 𝟓, 𝒙 = 𝟎. . 𝟏𝟓, 𝒚 = 𝟎. . 𝟏𝟓 , and (d) 2D 
illustraion of 𝑹𝒆(𝑼𝟐,𝟐) with , 𝜶 = 𝟎. 𝟑, 𝟎. 𝟓, 𝟎. 𝟕, 𝟏 at 𝒙 = −𝟑. . 𝟑, 𝒕 = 𝟎. 𝟓, 𝒚 = 𝟑. 

Family2: 

If 𝑙ଶ − 4𝑚𝑘 < 0 and 𝑙𝑚 ≠ 0 (𝑜𝑟 𝑚𝑘 ≠ 0), we have the following trigonometric solutions for Eq. 

(5.208): 

𝑈ଶ,ଵଷ = ൮𝑏0 + ቆ
𝑏1

2𝑚
ቇ ቌ(−𝑙 + Ω′)tan ቆ

Ω′𝜉

2
ቇቍ൲ 𝑒𝑖𝜓, (5.255) 

𝑈ଶ,ଵସ = ൮𝑏0 − ቆ
𝑏1

2𝑚
ቇ ቌ(𝑙 + Ω′)𝑐𝑜𝑡 ቆ

Ω′𝜉

2
ቇቍ൲ 𝑒𝑖𝜓, (5.256) 



𝑈ଶ,ଵହ = ൬𝑏଴ + ൬
𝑏ଵ

2𝑚
൰ (−𝑙 + Ω′)(tan(Ωᇱ𝜉) ± 𝑠𝑒𝑐(Ωᇱ𝜉))൰ 𝑒௜ట, (5.257) 

𝑈ଶ,ଵ଺ = ൬𝑏଴ − ൬
𝑏ଵ

2𝑚
൰ (𝑙 + Ω′)(cot(Ωᇱ𝜉) ± 𝑐𝑠𝑐(Ωᇱ𝜉))൰ 𝑒௜ట, (5.258) 

𝑈ଶ,ଵ଻ = ቌ𝑏଴ + ൬
𝑏ଵ

4𝑚
൰ (−2𝑙 + Ω′) ൭−2𝑐𝑜𝑡 ቆ

Ω′𝜉

2
ቇ൱ቍ 𝑒௜ట , (5.259) 

𝑈ଶ,ଵ଼ = ቌ𝑏଴ + ൬
𝑏ଵ

2𝑚
൰ ൭−𝑙 +

±ඥ(−𝐴ଶ + 𝐵ଶ)Ω′ − 𝐴Ω′𝑐𝑜𝑠(Ω′𝜉)

𝐴sin(Ω′𝜉) + 𝐵
൱ቍ 𝑒௜ట, (5.260) 

𝑈ଶ,ଵଽ = ቌ𝑏଴ + ൬
𝑏ଵ

2𝑚
൰ ൭−𝑙 −

±ඥ(−𝐴ଶ + 𝐵ଶ)Ω′ + 𝐴Ω′𝑐𝑜𝑠(Ω′𝜉)

𝐴𝑠𝑖𝑛(Ω′𝜉) + 𝐵
൱ቍ 𝑒௜ట , (5.261) 

where two non-zero real constants 𝐴 and 𝐵 satisfies 𝐴ଶ − 𝐵ଶ > 0. 

𝑈ଶ,ଶ଴ = ൮𝑏଴ −
2𝑏ଵ𝑘𝑐𝑜𝑠 ൬

Ω′𝜉
2

൰

Ω′𝑠𝑖𝑛 ൬
Ω′𝜉

2
൰ + 𝑙𝑐𝑜𝑠 ൬

Ω′𝜉
2

൰
൲ 𝑒௜ట, (5.262) 

𝑈ଶ,ଶଵ =

⎝

⎜
⎛

𝑏଴ +
2𝑏ଵ𝑘𝑠𝑖𝑛 ൬

Ω′𝜉
2

൰

Ω′ ቆ𝑐𝑜𝑠 ൬
Ω′𝜉

2
൰ − 𝑙𝑠𝑖𝑛 ൬

Ω′𝜉
2

൰ቇ
⎠

⎟
⎞

𝑒௜ట, (5.263) 

𝑈ଶ,ଶଶ = ቆ𝑏଴ −
2𝑏ଵ𝑘𝑐𝑜𝑠(Ω′𝜉)

Ωᇱ൫𝑠𝑖𝑛(Ωᇱ𝜉) + 𝑙𝑐𝑜𝑠(Ωᇱ𝜉)൯ ± Ω′
ቇ 𝑒௜ట, (5.264) 

𝑈ଶ,ଶଷ = ቆ𝑏଴ +
൫2𝑏ଵ𝑘𝑠𝑖𝑛(Ω′𝜉)൯

Ω′(𝑐𝑜𝑠(Ω′𝜉) − 𝑙𝑠𝑖𝑛(Ωᇱ𝜉)) ± Ω′
ቇ 𝑒௜ట, (5.265) 

𝑈ଶ,ଶସ =

⎝

⎛𝑏଴ +
2𝑏ଵ𝑘𝑠𝑖𝑛 ൬

Ω′𝜉
2

൰

−𝑙𝑠𝑖𝑛 ൬
Ω′𝜉

2
൰ + 2Ω′𝑐𝑜𝑠ℎ ൬

Ω′𝜉
4

൰
ଶ

− Ω′⎠

⎞ 𝑒௜ట, (5.266) 

 



where,  

Ω = √𝑙ଶ − 4𝑚𝑘, Ωᇱ = √4𝑚𝑘 − 𝑙ଶ  

𝜉 =
𝜒ଵ

𝛼
൬𝑥 +

1

𝛤(𝛼)
൰

ఈ

+
𝜒ଶ

𝛼
൬𝑦 +

1

𝛤(𝛼)
൰

ఈ

−
𝜆

𝛼
൬𝑡 +

1

𝛤(𝛼)
൰

ఈ

, 

𝜆 = 𝜒ଵΥଶ𝛼ଷ + 2𝛼ଵ𝜒ଵΥଵ + 2𝛼ଶ𝜒ଶΥଶ + 𝜒ଶΥଵ𝛼ଷ, 

𝜓 =
஌భ

ఈ
ቀ𝑥 +

ଵ

௰(ఈ)
ቁ

ఈ

+
஌మ

ఈ
ቀ𝑦 +

ଵ

௰(ఈ)
ቁ

ఈ

+
ఠ

ఈ
ቀ𝑡 +

ଵ

௰(ఈ)
ቁ

ఈ

, 

(5.267) 

(a) (b) 

(c) (d) 
Figure 5.13: (a)-(c) 3D illustrarion of 𝑹𝒆൫𝑼𝟐,𝟏𝟖൯, 𝑰𝒎൫𝑼𝟐,𝟏𝟖൯, 𝒂𝒃𝒔(𝑼𝟐,𝟏𝟖) by choosing arbitrary parameters 𝒍 = 𝟐, 𝒎 =

𝟑, 𝒌 = 𝟐, 𝜶𝟏 = 𝟏. 𝟓, 𝜶𝟐 = 𝟏. 𝟓, 𝜶𝟑 = 𝟏. 𝟓, 𝜶𝟒 = 𝟏. 𝟓, 𝚼𝟏 = 𝟐, 𝚼𝟐 = 𝟏. 𝟓, 𝝌𝟏 = 𝟏. 𝟓, 𝝌𝟐 = 𝟐, 𝜶 = 𝟎. 𝟑, 𝑨 = 𝟑, 𝑩 = 𝟐, 𝒕 =

𝟏. 𝟓, 𝒙 = 𝟎. . 𝟏𝟓, 𝒚 = 𝟎. . 𝟏𝟓, and (d) 2D illustrartion of 𝑹𝒆(𝑼
𝟐,𝟏𝟖

)  with , 𝜶 = 𝟎. 𝟑, 𝟎. 𝟓, 𝟎. 𝟕, 𝟏 at −𝟑 ≤ 𝒙 ≤ 𝟑, 𝒕 = 𝟏. 𝟓, 𝒚 =

𝟐. 

 

 



Family3: 

When 𝑘 = 0, and 𝑙𝑚 ≠ 0 the solutions for Eq. (5.208) are as follows: 

𝑈ଶ,ଶହ = ൬𝑏଴ −
𝑏ଵ𝑙𝑑

𝑚 (𝑑 + cosh(𝑙𝜉) − sinh(𝑙𝜉))
൰ 𝑒௜ట, (5.268) 

where 𝑑 is the arbitrary constant and  

𝜔 =
−

𝛼ଶ(𝑙ଶ)𝜒ଶ
ଶ

2
−

𝛼ଷ𝜒ଵ(𝑙ଶ)𝜒ଶ

2
−

𝛼ଵ(𝑙ଶ)𝜒ଵ
ଶ

2
−ΥଵΥଶ𝛼ଷ − Υଶ

ଶ𝛼ଶ − Υଵ
ଶ𝛼ଵ.

 

Family4: 

When 𝑘 = 𝑙 = 0, and 𝑚 ≠ 0 the rational solution of Eq. (5.208) is as follows: 

𝑈ଶ,ଶ଺ = ൬
−𝑏ଵ

𝑚𝜉 + 𝑐
൰ 𝑒௜ట , (5.269) 

In this case, 

  𝜔 = −ΥଵΥଶ𝛼ଷ − Υଶ
ଶ𝛼ଶ − Υଵ

ଶ𝛼ଵ. 

5.10 Graphical Explanation: 
In this section, obtained results for conformable (2+1) dimensional Heisenberg ferromagnetic spin 

chain equation (HFM) is investigated. The graphs of some of the reported solutions that have been 

discussed here to have a good understanding of the physical properties of these types of solutions. 

We have constructed 3D graphs for the real, imaginary, and absolute values of some of obtained 

solutions such as dark, bright solitons, periodic wave solutions, singular periodic wave solutions, 

kink soliton solutions. Whereas 2D graphs have been plotted for real values of solutions to show 

pattern of wave propagation along 𝑥 − 𝑎𝑥𝑖𝑠  for choosing different values of  α including classical 

and fractional order and we can see from these graphs that amplitude of wave increases with the 

increase in values of 𝑥 for fractional values of 𝛼, and when 𝛼 = 1, we get complete wave with 

high amplitude for all values of 𝑥. Hence, amplitude of wave increases when 𝑥 increases.  

Figure 5.10 exhibits graphical representation of Uଵ,ଵ, where 3D graphs (a), (b) represents 

Re(Uଵ,ଵ) and  Im(Uଵ,ଵ) which are periodic in nature and figure (c) represents dark soliton for 



abs(Uଵ,ଵ) by taking parameters 𝑙 = 3, 𝑚 = 1, 𝑘 = 2, 𝛼ଵ = 1.5, 𝛼ଶ = 1.5, 𝛼ଷ = 1.5, 𝛼ସ =

1.5, 𝛶ଵ = 1.3, 𝛶ଶ = 1.2, 𝜒ଵ = 1.5, 𝜒ଶ = 1, 𝛼 = 0.5, 𝑥 = 0. .15, 𝑦 = 0. .15 and figure (d) represents 

2D graphs of Re(Uଵ,ଵ) with different values of fractional order 𝛼 = 0.3, 0.5, 0.7, 1 at −10 ≤ 𝑥 ≤

10, 𝑦 = 3, 𝑡 =1.5. 

Figure 5.11 exhibits periodic solution of Uଵ,ଵହ, 3D graphs (a)-(c) represents 

Re(Uଵ,ଵହ), Im(Uଵ,ଵହ) and abs(Uଵ,ଵହ) with 𝑙 = 3, 𝑚 = 1, 𝑘 = 2, 𝛼ଵ = 1.5, 𝛼ଶ = 1.5, 𝛼ଷ =

1.5, 𝛼ସ = 1.5, 𝛶ଵ = 1.3, 𝛶ଶ = 1.2, 𝜒ଵ = 1.5, 𝜒ଶ = 1, 𝛼 = 0.8, 𝑥 = 0. .15, 𝑦 = 0. .15, 𝑡 = 1.5   and 

figure 2D- (d) represents  Re(Uଵ,ଵହ) with , 𝛼 = 0.4, 0.6, 0.8, 1 at −10 ≤ 𝑥 ≤ 10, 𝑡 = 1.5, 𝑦 = 2  

Figure 5.12 shows  singular periodic wave solutions of Uଶ,ଶ where 3D graphs (a)-(c) exhibits 

Re(Uଶ,ଶ), Im(Uଶ,ଶ) and abs(Uଶ,ଶ) with 𝑙 = 2, 𝑚 = 3, 𝑘 = 2, 𝛼ଵ = 1.5, 𝛼ଶ = 1.5, 𝛼ଷ = 1.5,

𝛼ସ = 1.5, 𝛶ଵ = 2, 𝛶ଶ = 1.2, 𝜒ଵ = 1.5, 𝜒ଶ = 2, 𝛼 = 0.5, 𝑥 = 0. .15, 𝑦 = 0. .15 , and 2D graph 

(d) represents Re(Uଶ,ଶ) with , 𝛼 = 0.3, 0.5, 0.7, 1 at −3 ≤ 𝑥 ≤ 3, 𝑦 = 3, 𝑡 = 0.5. 

Figure 5.13 exhibits the graph of singular periodic travelling wave solution of Uଶ,ଵ଼, figures (a)-

(c) exhibits 3D graphs of Re(Uଶ,ଵ଼), Im(Uଶ,ଵ଼) and abs(Uଶ,ଵ଼) with 𝑙 = 2, 𝑚 = 3, 𝑘 = 2, 𝛼ଵ =

1.5, 𝛼ଶ = 1.5, 𝛼ଷ = 1.5, 𝛼ସ = 1.5, 𝛶ଵ = 2, 𝛶ଶ = 1.5, 𝜒ଵ = 1.5, 𝜒ଶ = 2, 𝛼 = 0.3, 𝐴 = 3, 𝐵 =

2, 𝑥 = 0. .15, 𝑦 = 0. .15, and figure (d) shows 2D graphs of Re(Uଶ,ଵ଼)  for various values of 𝛼 =

0.3, 0.5, 0.7, 1 at −3 ≤ 𝑥 ≤ 3, 𝑦 = 2, 𝑡 = 1.5. 

Figure 5.14 represents graphs of solution Uଵ,ହ where,  3D:(a)-(b) exhibits periodic pattern of 

Re(Uଵ,ହ), Im(Uଵ,ହ) whereas figure (c) exhibits singular soliton for abs(Uଵ,ହ) for 𝑙 = 4, 𝑚 =

0.2, 𝑘 = 4, 𝛼ଵ = 1.5, 𝛼ଶ = 1.5, 𝛼ଷ = 2, 𝛼ସ = 1.5, 𝛶ଵ = 1.3, 𝛶ଶ = 1.2, 𝜒ଵ = 1.5, 𝜒ଶ = 1.5,

𝛼 = 0.2, 𝑥 = 0. .15, 𝑦 = 0. .15 , and figure 2D (d) exhibits  Re(Uଵ,ହ) by choosing 𝛼 =

0.3, 0.5, 0.7, 1 at −10 ≤ 𝑥 ≤ 10, 𝑦 = 5, 𝑡 = 2 

Figure 5.15 3D(a)-(c) exhibits graphs of periodic wave solution 

Re(Uଵ,ଶସ), Im(Uଵ,ଶସ) and abs(Uଵ,ଶସ)  with 𝑙 = 2, 𝑚 = −1, 𝑘 = 3, 𝛼ଵ = 2, 𝛼ଶ = 2, 𝛼ଷ = 2,

𝛼ସ = 2, 𝛶ଵ = 1.3, 𝛶ଶ = 1.2, 𝜒ଵ = 1.5, 𝜒ଶ = 1.5, 𝛼 = 0.2, 𝑥 = 0. .15,   𝑦 = 0. .15, 𝑡 = 1 , and 

figure (d) represents 2D graphs Re(Uଵ,ଶସ) of with , 𝛼 = 0.2, 0.6, 0.8, 1 at −10 ≤ 𝑥 ≤ 10, 𝑦 =

1, 𝑡 = 1. 



Figure 5.15 3D (a)-(b) shows graphs of solutions 

Re(Uଶ,ଶସ), Im(Uଶ,ଶସ)  and are periodic in nature whereas figure (c) depicts graph of abs(Uଶ,ଶସ) 

which is kink soliton solution  for parameters 𝑙 = 5, 𝑚 = −1, 𝑘 = 2,  𝛼ଵ = 1.5, 𝛼ଶ = 1.5, 𝛼ଷ =

1.5, 𝛼ସ = 1.5, 𝛶ଵ = 2, 𝛶ଶ = 1.5, 𝜒ଵ = 1.5, 𝜒ଶ = 2, 𝛼 = 0.8, 𝑥 = −15. .15, 𝑦 = −15. .15, 𝑡 =

3 ,whereas figure 2D- (d) shows  Re(Uଶ,ଶସ) with , 𝛼 = 0.2, 0.6, 0.8, 1 and −10 ≤ 𝑥 ≤ 10, 𝑦 =

5, 𝑡 = 3. 

Figure 5.16 3D (a)-(b) exhibits periodic wave solutions of  

Re(Uଵ,ଶହ), Im(Uଵ,ଶହ) while figure (c) exhibits kink soliton solution for abs(Uଵ,ଶହ) with l=

5, 𝑚 = 1, 𝑘 = 0, 𝛼ଵ = 1.5, 𝛼ଶ = 1.5, 𝛼ଷ = 1.5, 𝛼ସ = 1.5, 𝛶ଵ = 2, 𝛶ଶ = 1.5, 𝜒ଵ = 1.5, 𝜒ଶ =

2, 𝛼 = 0.8, 𝑑 = 1, 𝑥 = −15. .15, 𝑦 = −15. .15 , and figure 2D- (d) with Re(Uଵ,ଶହ) with 𝛼 =

0.4, 0.6, 0.8, 1   −10 ≤ 𝑥 ≤ 10, 𝑦 = −1, 𝑡 = 0.5. 

From these graphs, we can see that the shapes of the solutions change with by choosing different 

values of parameters and by slightly different values of the fractional derivative 𝛼 behavior of 

wave changes. 

(a) (b) 



(c) (d) 
Figure 5.14: (a)-(c) 3D illustration of 𝑹𝒆൫𝑼𝟏,𝟓൯, 𝑰𝒎൫𝑼𝟏,𝟓൯, 𝒂𝒃𝒔(𝑼𝟏,𝟓) by choosing parameters  𝒍 = 𝟒, 𝒎 = 𝟎. 𝟐, 𝒌 = 𝟒, 𝜶𝟏 =

𝟏. 𝟓, 𝜶𝟐 = 𝟏. 𝟓, 𝜶𝟑 = 𝟐, 𝜶𝟒 = 𝟏. 𝟓, 𝝆 = 𝟏. 𝟑, 𝝁 = 𝟏. 𝟐, 𝜷 = 𝟏. 𝟓, 𝜸 = 𝟏. 𝟓, 𝜶 = 𝟎. 𝟐, 𝒕 = 𝟐, 𝒙 = 𝟎. . 𝟏𝟓, 𝒚 = 𝟎. . 𝟏𝟓, and (d) 2D 

illustration of 𝑹𝒆(𝑼
𝟏,𝟓

) with , 𝜶 = 𝟎. 𝟑, 𝟎. 𝟓, 𝟎. 𝟕, 𝟏 at −𝟏𝟎 ≤ 𝒙 ≤ 𝟏𝟎, 𝒕 = 𝟐, 𝒚 = 𝟓.   

(a) (b) 

(c) (d) 

Figure 5.15: (a)-(c) 3D illustration 𝑹𝒆(𝑼
𝟏,𝟐𝟒

), 𝑰𝒎(𝑼𝟏,𝟐𝟒), 𝒂𝒃𝒔(𝑼𝟏,𝟐𝟒)with suitable parameters, 𝒍 = 𝟐, 𝒎 = −𝟏, 𝒌 =

𝟑, 𝜶𝟏 = 𝟐, 𝜶𝟐 = 𝟐, 𝜶𝟑 = 𝟐, 𝜶𝟒 = 𝟐, 𝝆 = 𝟏. 𝟑, 𝝁 = 𝟏. 𝟐, 𝜷 = 𝟏. 𝟓, 𝜸 = 𝟏. 𝟓, 𝜶 = 𝟎. 𝟐, 𝒙 = 𝟎. . 𝟏𝟓, 𝒚 = 𝟎. . 𝟏𝟓, 𝒕 = 𝟏 , and (d) 2D 
illustration of 𝑹𝒆(𝑼𝟏,𝟐𝟒)  with , 𝜶 = 𝟎. 𝟐, 𝟎. 𝟔, 𝟎. 𝟖, 𝟏 at 𝒙 = −𝟏𝟎. . 𝟏𝟎, 𝒕 = 𝟏, 𝒚 = 𝟏 



(a) (b) 

(c) (d) 

Figure 5.16(a)-(c) 3D illustration of 𝑹𝒆(𝑼
𝟐,𝟐𝟒

), 𝑰𝒎(𝑼𝟐,𝟐𝟒), 𝒂𝒃𝒔(𝑼𝟐,𝟐𝟒) with 𝒍 = 𝟓, 𝒎 = −𝟏, 𝒌 = 𝟐, 𝜶𝟏 = 𝟏. 𝟓, 𝜶𝟐 =

𝟏. 𝟓, 𝜶𝟑 = 𝟏. 𝟓, 𝜶𝟒 = 𝟏. 𝟓, 𝝆 = 𝟐, 𝝁 = 𝟏. 𝟓, 𝜷 = 𝟏. 𝟓, 𝜸 = 𝟐, 𝜶 = 𝟎. 𝟖, 𝒙 = −𝟏𝟓. . 𝟏𝟓, 𝒚 = −𝟏𝟓. . 𝟏𝟓 , and (d) 2D illustration of 

𝑹𝒆(𝑼
𝟐,𝟐𝟒

) with , 𝜶 = 𝟎. 𝟐, 𝟎. 𝟔, 𝟎. 𝟖, 𝟏   𝒙 = −𝟏𝟎. . 𝟏𝟎, 𝒚 = 𝟓, 𝒕 = 𝟑 

(a) (b) 



(c) (d) 

Figure 5.17 (a)-(c) 3D illustration of 𝑹𝒆(𝑼
𝟏,𝟐𝟓

), 𝑰𝒎(𝑼𝟏,𝟐𝟓), 𝒂𝒃𝒔(𝑼𝟏,𝟐𝟓) by choosing 𝒍 = 𝟓, 𝒎 = 𝟏, 𝒌 = 𝟎, 𝜶𝟏 = 𝟏. 𝟓, 𝜶𝟐 =

𝟏. 𝟓, 𝜶𝟑 = 𝟏. 𝟓, 𝜶𝟒 = 𝟏. 𝟓, 𝝆 = 𝟐, 𝝁 = 𝟏. 𝟓, 𝜷 = 𝟏. 𝟓, 𝜸 = 𝟐, 𝜶 = 𝟎. 𝟖, 𝒅 = 𝟏, 𝒙 = −𝟏𝟓. . 𝟏𝟓, 𝒚 = −𝟏𝟓. . 𝟏𝟓 , and (d) 2D 

illustration of 𝑹𝒆(𝑼
𝟏,𝟐𝟓

) with , 𝜶 = 𝟎. 𝟒, 𝟎. 𝟔, 𝟎. 𝟖, 𝟏   𝒙 = −𝟏𝟎. . 𝟏𝟎, 𝒚 = −𝟏, 𝒕 = 𝟎. 𝟓 

5.11 Conclusions: 
We successfully derived exact solutions of conformable (2+1) dimensional Heisenberg 

ferromagnetic spin chain equation with the improved generalized Riccati mapping method. As a 

result, we established different solitary wave solution including dark and bright solitons, periodic 

wave solutions, singular solution, kink solitons and rational solution which have not been reported 

in literature previously. Moreover, this model has not been solved before using Antangan’s 

fractional derivative. Computation software Maple has used to facilitate tedious algebraic 

calculations and all the results have been verified by backward substitution. We concluded that for 

different values of α including classical and fractional order, the graph represents wave solutions 

with high amplitude as 𝛼 → 1. for fractional order the amplitude of the wave gradually increases 

with increase in values of 𝑥. Therefore this method is very effective technique in generating 

abundant solutions of various types. These results might be helpful in the study magnetic behavior 

in ferro-magnetic materials. 

5.12 Summary: 
This chapter incorporates with the well-known nonlinear PDEs in fractional order such as space-

time fractional non-liner double dispersive equation (DDE), space-time fractional non-liner 

Telegraph equation, space-time fractional (2+1) dimensional Heisenberg ferromagnetic spin chain 

equation with the help of improved generalized Riccati equation mapping method. The efforts to 

extend the existing methods used to solve integer order NLPDEs to their fractional counterparts, 



and apply them to solve real life fractional models, have gained tremendous popularity. We 

succeed in generating many interesting types of solitary wave solutions that might be helpful in 

the study of these models. This chapter includes introduction of governing equations followed by 

main steps of methods used and derivation of solutions by proposed method. Finally graphical 

representation of some results followed by conclusion. 

Chapter 6 includes the summary of previous chapters, significance of this research, contribution 

to the knowledge and conclusions. It also highlights limitations of our work and future 

recommendations to work in this field. 

 

 

 



Chapter 6. Conclusions and Future 

recommendations 



 

6.1 Conclusions: 
This chapter discusses the overall conclusions of our work presented in this thesis. 

The objective of this research work is to discover exact solitary wave solutions to nonlinear 

differential equations including integer order (NLPDEs) and non-integer order (NFPDEs) arising 

in various fields of science and technology for wave propagation. We have successfully found 

exact traveling wave solutions including solitons, periodic waves, kink wave solutions to several 

nonlinear partial differential equations representing real-life phenomena. These new solutions may 

be worthwhile in the field of ocean engineering, astrophysics, and aerodynamics, plasma physics 

and fluid mechanics to explain wave propagation of incompressible fluids. Each type of solitary 

wave has its importance in nonlinear media such as kink solitons which propagates in nonlinear 

physical phenomena having high order nonlinearity, high order nonlinear effects and self-

steepening. These solitons have been studied extensively due to its perfect propagation through 

nonlinear media [106]. Singular solitons are also very important types of solitons that appear with 

singularity. These solitons likely provide information about formation of rouge waves, also another 

type of solitary waves are periodic wave solutions that plays notable role in the study of chemistry, 

physics, biology and many more [107]. The formation of solitary waves has been captured in the 

solution to NLPDEs corresponding to models of practical interest involving optic fiber signal 

transmission and wave propagation in different media.  

Here we have used Tanh method, which was firstly presented by [48]. This method is straight 

forward, simple, and reliable that has ability to find solutions of variety of NPFDEs without 

reproducing many different forms of the same solution. We applied this method to a few well-

known models, having applications in various fields such as Dodd-Bullough-Mikhailov equation, 

Sinh-Gordan equation, Liouville equation. The mentioned equation plays significant role in 

problems arising in fluid flows, solid state physics, nonlinear optics, quantum field theory and 

chemical kinetics [30]. We have also used this method on modified version of Benjamin-Bona-

Mahony equation (BBM) called, (3 + 1)-Wazwaz-Benjamin-Bona-Mahony equation (WBBM) 

named by Wazwaz in 2017 [81]. BBM equation was derived by Benjamin, Bona and Mahony in 

1972, which is also the improved version of Korteweg-de-Vries (KDV) equation for surfaced 

water waves in uniform channel and regularized version in shallow water waves [80]. A fair 



amount of work has been done on this equation due to its importance in surface wave water, in 

nonlinear dispersive system for long wave lengths, acoustic gravity waves in compressible liquids, 

hydromagnetic waves in plasma physics and many more.  

Next, we have utilized innovative and efficient method called improved tanh(
ఝ(క)

ଶ
)-expansion 

method (IThEM) for recently developed (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli 

equation. This model has applications in plasma physics, fluid dynamics, ocean engineering, 

astrophysics, and aerodynamics to explain wave propagation of incompressible fluids  [31, 88, 92–

96]. and, on fourth order Ablowitz-Kaup-Newell-Segur water wave (AKNS) equation. This 

equation is remarkable due to the fact that it can be reduce into some very prominent nonlinear 

equations such as KdV equation, mKdV equation which are used for the study of shallow water 

waves and wave propagation in plasma, (2 + 1) dimensional Boussinesq wave equation which is 

used for the investigation of nonlinear wave effect on shallow water, sine-Gordan equation have 

application in different fields of physics and nonlinear Schrödinger equation has wide range of 

applications in optical physics, quantum mechanics and many more [32]. 

We have also used Auxiliary equation method (AEM) developed by Sirendaoreji [61] on Fokas 

system and (2 + 1) Davey-Stewartson (DS) system which is the generalization of nonlinear 

Schrodinger equation used as governing equation to generate optical solitons that have showed 

significant effect in telecommunication field because of its key role in data transmission through 

optical fibers over large distances. 

Moreover, we have utilized improved generalized Riccati equation mapping method on some 

fractional nonlinear models. The use of fractional calculus to model certain real-life phenomena is 

getting a great attention nowadays. NLFPDEs are generalizations of nonlinear partial differential 

equations (NPDEs) in which the orders of derivatives involved are fractional. We have studied 

space-time fractional nonlinear elastic inhomogeneous double dispersive equation for 

Murnaghan’s rod. The doubly dispersive equation (DDE), which is an important nonlinear 

physical model describing the nonlinear wave propagation in the elastic inhomogeneous circular 

cylinder Murnaghan’s rod. Space-time conformable telegraph equation commonly used to study 

electrical signals in transmission lines. And another important equation we have studied is the 

newly derived variant of Nonlinear Schrödinger Equation (NLSE) that describes time-space 



fractional (2+1)-dimensional Heisenberg ferromagnetic spin chains with bilinear and anisotropic 

interactions in the semi classical limit. Heisenberg ferromagnet model (HFM) is an interesting 

nonlinear model that exhibits magnetic solitons and, also very important to study magnetic 

behavior in magnetic materials [33] 

The concluded wave structures can be helpful to understand the characteristics of nonlinear 

phenomena that develop in various realms of nonlinear sciences. Moreover, the outcome of this 

research can predict that this method is suitable to apply on various higher order nonlinear models 

to produce many interesting solutions involve in engineering, nonlinear optics, physics, and other 

life sciences.  

6.2 Limitations: 
Although analytical methods are powerful tool to generate exact solutions of numerous nonlinear 

PDEs and to understand the nonlinear behaviour of physical phenomena but still they have their 

weaknesses. These methods are applicable to many nonlinear systems but certain complex 

nonlinear PDEs are not solvable by these techniques alternatively these models have approximate 

or numerical solutions. These methods need clearly defined initial or boundary value problems. 

These types of techniques require a lot of computational work. Mostly computational software 

such as Maple/Mathematica used to intricate mathematical calculations. Which requires a lot of 

programming to extract solutions and for graphical representation of these results. Sometimes 

software gives up on solving long and complex system of linear systems. Finding coefficients of 

these linear systems are important step in finding the solutions of PDEs. Which is time consuming 

and tedious. Researchers need to derive methods that requires less computational work. Also, they 

can work on how to combine analytical and numerical methods to create a unified methods that 

can cater major portion of nonlinear systems. 

6.3 Future Recommendations:  
For future recommendations, we can modify some techniques used in this manuscript or in 

literature to improve their performance to get new types of solutions. There exist many NFPDEs 

in different fields of science and engineering which are still posed and unanswered in literature. 

We can increase the order of equations to make them integrable with higher order equations. 

Higher order nonlinear PDEs are considered very beneficial to describe physical mechanism. 

Multiple auxiliary equations methods are some other avenues for future endeavors. We can also 



use numerical methods along with analytical in our future work to check the accuracy of our 

results, as these solutions can help us to validate analytical solutions when complex partial 

differential equations are involved. Numerical solutions help us to analyze the behavior of 

solutions under certain parameters in a nice manner.  

There is a recent growing trend to use artificial neural networks and machine learning to simulate 

certain real-life phenomena, the same can be used to simulate solitary motion of different traveling 

waves. It can be achieved both by data driven training networks or physics informed neural 

networks. We see a great potential in using deep learning to mimic solitary waves as well. 

Experimenting can be done with different learning and optimizing algorithms. We are hopeful 

these recommendations will be useful for anyone interested in working in this field in future. 
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