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Abstract: Maintaining and rehabilitating pavement in a timely manner is essential for preserving or
improving its condition, with roughness being a critical factor. Accurate prediction of road roughness
is a vital component of sustainable transportation because it helps transportation planners to develop
cost-effective and sustainable pavement maintenance and rehabilitation strategies. Traditional sta-
tistical methods can be less effective for this purpose due to their inherent assumptions, rendering
them inaccurate. Therefore, this study employed explainable and supervised machine learning
algorithms to predict the International Roughness Index (IRI) of asphalt concrete pavement in Sri
Lankan arterial roads from 2013 to 2018. Two predictor variables, pavement age and cumulative
traffic volume, were used in this study. Five machine learning models, namely Random Forest (RF),
Decision Tree (DT), XGBoost (XGB), Support Vector Machine (SVM), and K-Nearest Neighbor (KNN),
were utilized and compared with the statistical model. The study findings revealed that the machine
learning algorithms’ predictions were superior to those of the regression model, with a coefficient
of determination (R2) of more than 0.75, except for SVM. Moreover, RF provided the best predic-
tion among the five machine learning algorithms due to its extrapolation and global optimization
capabilities. Further, SHapley Additive exPlanations (SHAP) analysis showed that both explanatory
variables had positive impacts on IRI progression, with pavement age having the most significant
effect. Providing accurate explanations for the decision-making processes in black box models using
SHAP analysis increases the trust of road users and domain experts in the predictions generated
by machine learning models. Furthermore, this study demonstrates that the use of explainable
AI-based methods was more effective than traditional regression analysis in IRI prediction. Overall,
using this approach, road authorities can plan for timely maintenance to avoid costly and extensive
rehabilitation. Therefore, sustainable transportation can be promoted by extending pavement life
and reducing frequent reconstruction.

Keywords: explainable AI; international roughness index; pavement performance; supervised
machine learning; sustainable transportation

1. Introduction

Pavement condition has a direct impact on user comfort as well as pavement perfor-
mance. Roughness is an indicator that reflects pavement surface conditions and indirectly
reflects pavement structural conditions [1,2]. There are various methods to quantify rough-
ness, and among those, the most common parameter is the International Roughness Index
(IRI), defined as ASTM E1364-95 [3]. The IRI is calculated based on the quarter-car model,
which reflects the vertical acceleration responses due to irregularities on the pavement [4].
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Traffic load, pavement aging, environmental factors, and construction defects are known to
be the main reasons for pavement deterioration [2,5–7].

Generally, IRI prediction has relied on statistical methods such as linear and nonlinear
regression. However, these models have some limitations. This is because the relationships
between the IRI and predictor variables are mostly nonlinear [8,9], and conventional regres-
sion analysis cannot accurately predict these relationships [10,11]. Moreover, additional
assumptions have to be considered in statistical approaches for data preparation [9]. Ad-
ditionally, regression models tend to yield less accurate results when the dataset is larger
and the number of predictor variables is higher [9,12,13]. As a result, machine learning
algorithms have been introduced more recently, and they have been shown to outper-
form regression models in most cases [14,15]. However, machine learning models can be
ineffective in some situations due to the lack of explainability of the generated outputs [16].

To address the limitations associated with regression analysis as well as machine
learning models, this study suggests a novel approach that employs a supervised and
explainable machine learning technique to predict the IRI. The approach involves the use
of five different machine learning models to predict the IRI using two predictor variables,
pavement age and cumulative traffic volume, which are commonly used in predicting
the IRI for long-term performance evaluation. The dataset used in this study comprised
259 road segments of asphalt concrete pavement with IRI values on Sri Lankan arterial
roads. Model fitting was assessed using the coefficient of determination (R2) and the
mean absolute error (MAE). Moreover, to address the lack of explainability in machine
learning models, SHapley Additive exPlanations (SHAP) analysis was used to interpret
factor importance in IRI prediction. Providing accurate explanations for decision-makers
using SHAP analysis would reduce the black box nature of machine learning models, which
will increase the trust of both road users and domain experts in the results generated by
machine learning.

This study aimed to evaluate the effectiveness of traditional regression models as well
as machine learning models with post hoc explanations in predicting IRI progression. This
study is unique for several reasons: (a) it is the first study in the Sri Lankan context to use
supervised machine learning with pavement age and traffic data to predict the IRI; (b) it
employs different machine learning algorithms to assess their suitability in predicting the
IRI and compares their performance with that of traditional regression; (c) it uses post hoc
methods or explainable artificial intelligence (AI) to interpret the machine learning models.
Overall, using accurate advanced technologies and the sustainable practices proposed in
this study can effectively contribute to sustainable transportation. Further, they will help to
improve road safety, reduce tire wearing and tearing, and decrease fuel consumption and
emissions, thereby promoting a sustainable transportation system.

2. Background Study
2.1. IRI Prediction Models

In general, pavement condition is primarily assessed by considering pavement distress
and surface roughness. There are various indices available to measure pavement roughness,
such as Ride Number (RN), IRI, Half-car Roughness Index (HRI), Mays Ride Meter (MRM),
Quarter-car Index (QI), and Present Serviceability Index (PSI) [17]. Among these, the IRI is a
widely accepted parameter for measuring pavement roughness, and it is reported in m/km
or inch/mi. The IRI assesses the road surface roughness based on how a vehicle responds to
the actual roughness profile [17]. An algorithm is used to calculate the IRI, which simulates
how a specific vehicle may react to road roughness, as shown in Equation (1) [18].

IRI =
∫ T

0

∣∣ .
zu −

.
zs
∣∣

L
dt (1)

where,
.
zu is the vertical velocity of the axle,

.
zs is the vertical velocity of the vehicle body,

L is the length of the measured distance, and T is the time duration for the roughness
measurement.
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The IRI is one of the most reliable parameters to measure road usability [19,20]. IRI
progression in the long-term is influenced by cumulative traffic load, pavement age, and
the quality of paving materials [21]. Among those, traffic load and pavement age are
considered two critical factors in IRI prediction models since an increase in heavy truck
volume causes higher pavement damage [22]. Further, environmental factors play a signifi-
cant role in long-term performance evaluation, with climate factors such as precipitation,
temperature, air humidity, and moisture deficit affecting IRI progression [9]. Therefore,
pavement age, which reflects long-term performance, is an important factor in predicting
the IRI. To estimate the IRI, regression models have used empirical, mechanistic-empirical,
or probabilistic models [23]. Table 1 provides a summary of IRI prediction models devel-
oped by incorporating several predictor variables such as pavement age, traffic factors,
environmental factors, distress, etc.

Table 1. Summary of IRI prediction models.

Reference Factors Used IRI Prediction Model

Pérez-Acebo et al. [22]
Age, Total thickness of Bituminous layers

(TotBit), Accumulated Total number of Heavy
Vehicles (TotH.Veh)

IRI = 5.353 + 0.68 × e (0.026.R.Age) −
1.411 LnTotBit + 7.941 × 10−8 TotH.Veh2

Ali et al. [24] Age, Distress (X1,. . . , X7) IRI = 0.365Age + a1 × 1 + b1 × 2 + . . . +
a7 × 7

Sigdel and Pradhananga [25]

Commercial Vehicles (CV), Rainfall (RF),
Accumulated low-temperature days (TDl),

Accumulated high-temperature days (TDh),
Initial IRI (IRI0)

IRI = β0 + β1IRI0 + β2CV + β3RF +
β4TDl + β5TDh

Qian et al. [26] Equivalent Single Axle Loads (ESAL), Deflection,
Overlay Thickness, Climate

Several models developed based on
different level of each factor

Soncim et al. [27] Traffic Density, Climate Probability Matrix: Pij(t) = ∑k = 0,
mPik(v). Pjk(t-v)

Albuquerque and
Núñez [28]

Modified Structural Number (S), ESAL (N),
Climate (C)

IRI(HMA) = −173.4 + e (5.177 + 0.001C −
0.002S + 0.005N)

Pérez-Acebo et al. [29]

Age (R.Age), Accumulated Vehicles (TotVeh),
Total thickness of Bituminous layers (TotBit),

Accumulated Total number of Heavy Vehicles
(TotH.Veh), Coefficient that considers the

combinations of materials (BASE), Thickness of
the treated base layer (Bthick)

IRI = 2.223 + 0.221LnR.Age − 1.162 ×
10−6 TotVeh TotBit + 1.87 × 10−4

TotH.Veh + BASE Bthick

2.2. Use of Machine Learning Approach for Predicting IRI

Machine learning models are automated models used in data analysis that are capable
of detecting patterns in data and using them to predict future data or make decisions under
uncertainty [30]. There are two types of machine learning techniques, supervised and
unsupervised learning, which differ in their goals. The objective of supervised learning is
to predict the outcome measure based on several inputs, while in unsupervised learning,
the focus is on describing relationships and patterns among a set of input measures.
Supervised learning can be used in both classification and regression problems. Recently,
researchers have been interested in predicting pavement conditions using machine learning
models [10,14,30]. However, some have also employed metaheuristic algorithms, such as
particle swarm optimization and gene expression programming, fuzzy algorithms [31],
hybrid models, and combined methods with machine learning techniques [11,32].

Most machine learning models employed to predict the IRI rely on supervised learning
for the purpose of regression analysis. To achieve this, supervised learning models utilize
labeled data to predict IRI values where the values already exist. The dataset is partitioned
into two subsets: training and testing sets. Supervised models are developed using the
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training set, and the accuracy of the model is assessed using the testing set. On the other
hand, regression models involve an equation with multiple predictors, including the IRI
as a response variable. The parameter values are estimated using the available data,
and the model is subsequently utilized to make predictions. This approach differs from
supervised machine learning models, which aim to find a function that operates to predict
the response [33].

Random Forest (RF) and Support Vector Machine (SVM) are the two most used
machine learning techniques for predicting the IRI, according to the literature. Tree-based
techniques, gradient boosting, and K-Nearest Neighbor (KNN) have also been used by
researchers for IRI prediction worldwide. Most researchers have relied on the long-term
pavement performance (LTPP) dataset as the primary data source for investigating IRI
prediction. However, researchers from various countries have employed their own collected
data to explore IRI prediction using machine learning techniques. Recent studies focused
on predicting the IRI using machine learning models are presented in Table 2.

Table 2. Several studies that engaged machine learning in IRI prediction in pavement performance analysis.

Reference Data Source
Predictor Variables

Machine Learning Model R2

(Testing)Age Traffic Other

Gong et al. [10] LTPP
√ √ √

RF 0.95

Ali et al. [30] -
√

-
√ RF 0.99

SVM 0.97

Luo et al. [34] LTPP -
√ √ XGBoost 0.93

SVM 0.16

Wang et al. [35] LTPP
√

-
√

RF 0.84

DT 0.53

SVM 0.41

Guo et al. [36] LTPP
√ √ √ RF 0.88

XGBoost 0.90

Damirchilo et al. [37] LTPP
√ √ √

RF 0.66

SVM 0.44

XGBoost 0.70

Bajic et al. [38] Denmark
√

- -

RF 0.58

KNN 0.59

SVM 0.63

Marcelino et al. [39] LTPP -
√ √

RF 0.93

Kargah-Ostadi and Stoffels [40] LTPP
√ √

- SVM 0.90

Ziari et al. [41] LTPP
√ √ √

SVM 0.83

DT—Decision Tree, XGBoost—Extreme Gradient Boosting.

The majority of the previous studies on pavement performance prediction using
machine learning or deep learning did not evaluate their models using feature importance
evaluation methods or post hoc explanation methods. As a result, end-users have limited
knowledge about the importance and interaction of features, the dependencies of features,
and how the machine learning model works. This lack of transparency in machine learning
models is a critical issue, especially in high-stakes contexts such as pavement performance
prediction where errors can lead to significant consequences. Thus, providing explanations
for the results generated by machine learning models is essential due to the absence of
pre-defined relationships between variables in these models.
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3. Materials and Methods
3.1. Study Area

The study area selected was 259 km of arterial road segments in Sri Lanka, all of which
were asphalt concrete roads with different traffic conditions for which the average annual
daily traffic varied from 9000 to 115,000 veh/day. The IRI values and traffic data for this
study were obtained from the Planning Division, Road Development Authority, Sri Lanka.
Moreover, pavement maintenance history data were obtained from the same authority and
road construction company databases [42,43].

The study took into consideration two variables, pavement age and cumulative traffic
volume, to forecast the IRI. During the data analysis phase, pavement age was referred to as
AGE, while cumulative traffic was referred to as CUMTRAF. Table 3 provides the summary
of descriptive statistics of the variables. The independent variables were extracted for all
roadways with asphalt pavement from 2013 to 2018 with IRI values in the database. The
IRI value was taken as the mean roughness index, which was calculated as the average
of the inner and outer lane IRI values. Climate variables were not considered in the IRI
prediction as there was limited climate variation in the study area, which was in line
with previous studies [28,41,44–46]. The histograms of the model’s variables, depicted in
Figure 1, demonstrate that their distributions differed and that most of them were nonlinear.
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Figure 1. Histogram of the variables.

3.2. Data Processing

Python version 3.7 was used for data analysis, and the machine learning models were
implemented using the scikit-learn library, a Python-based machine learning toolkit [47]. A
total of 259 data points, in which each section was 1 km long, were included in the analysis.
To train and test the models, the dataset was divided 70% for training and 30% for testing.
A correlation analysis was conducted and the correlation coefficient between pavement
age and cumulative traffic volume was found to be 0.57, indicating a moderate correlation
between the two variables. A higher correlation between predictors can lead to inaccurate
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parameter estimation and large standard error [2,48]. This discussion on IRI prediction
using regression analysis can be inaccurate if the predictor variables are dependent on each
other, leading to violation of the regression analysis. Thus, to eliminate this issue and to
explore the relationships between pavement age and cumulative traffic with the IRI, we
used five machine learning models.

Table 3. Descriptive statistics of variables used in the study.

Variable Description Mean Standard Deviation Minimum Maximum

IRI Average IRI value in a road per
direction (m/km) 2.59 1.37 1.51 9.09

AGE

Time since the latest
rehabilitation/reconstruction activity
(years) e.g., 0.5 refers to half of a year

(six months).

2.75 3.37 0.5 16.5

CUMTRAF

Cumulative number of vehicles that
travelled on the road segment since
latest rehabilitation/reconstruction

activity (number of vehicles in millions)

20.04 18.89 1.28 97.95

3.3. Machine Learning Models
3.3.1. Extreme Gradient Boosting

Extreme Gradient Boosting (XGB) is a highly effective method for data classifica-
tion [49]. It is one of the highly scalable, end-to-end tree-boosting systems used in machine
learning [50]. The workflow of XGB can be explained as follows.

Consider a Classification And Regression Tree (CART) model with a set of Ki
E

∣∣∣ i ∈ 1 . . . K

nodes. For each tree, kth total prediction scores at leaf node fk are predicted to obtain the final
prediction output of class label ŷi, as expressed in Equation (2).

ŷi = ϕ(xi) = ∑k
k=1 fk(xi), fk ∈ F (2)

Equation (3) gives a regularization step that improves the validity of the results. Where
the K score for all charts is represented by set F and xi denotes the training set.

L(ϕ) = ∑i l(ŷi, yi) + ∑k Ω(fk), (3)

where l represents the differentiable loss function, defined by computing the error dif-
ference between the target yi and the predicted class label ŷi. The second part performs
a penalization, Ω, on model complexity to avoid the overfitting problem. The penalty
function Ω is calculated by Equation (4).

Ω(f) = γT +
1
2
λ∑T

j=1 w2
j (4)

Here, w stores the value of weights for each leaf, whereas T represents the leaves in the
tree. γ and λ are known as configurable parameters that control the level of regularization.

3.3.2. Decision Tree

Decision Tree analysis is an established analytical method in data mining, which
generates a tree-based model to predict the values of a dependent variable based on inde-
pendent variables. Compared to traditional regression modeling, Decision Tree analysis
excels at identifying determinants. One of its strengths is that it does not require specific
data format rules and can analyze continuous independent variables, categorical variables,
and multivariate, unordered categorical variables [51]. Decision Tree analysis is a non-
parametric statistical technique that does not make assumptions about the functional form



Sustainability 2023, 15, 9617 7 of 17

or distribution of data [52]. It can also explore interaction effects between independent
variables and address multicollinearity issues [53].

The decision tree-building process involves two stages: tree building and tree pruning.
The tree-building process involves classifying the preliminary record level by level until
it is no longer possible or necessary to split based on certain criteria to generate the
tree. Tree models can be classified into two categories based on the dependent variable:
classification and regression trees. Commonly used algorithms include CHAID (Chi-square
Automatic Interaction Detector), CRT (Classification and Regression Tree), and QUEST
(Quick, Unbiased, Efficient, and Statistical Tree). The CRT algorithm segments the data and
constructs a tree model that maximizes the homogeneity of the values of the dependent
variable within the nodes [53].

3.3.3. K-Nearest Neighbor

Introduced in 1951, the KNN rule is a distribution-free, statistical pattern classification
method that has gained popularity since the 1960s due to the advancement of computational
power [38]. The KNN algorithm compares a given testing tuple to a set of similar training
tuples and learns by determining the class based on the K number of nearest neighbors [48].
Although statisticians have adopted KNN as a machine learning approach for 50 years, it is
still widely used in pattern recognition and classification due to its unique features.

KNN is considered a “lazy learner” or “instance-based learner” because it stores
the given training tuple and waits until it receives a testing tuple to perform a gen-
eralization based on similarity or distance, unlike other models that use the predic-
tion model to predict the testing tuples they receive. Generally, KNN uses either Eu-
clidean distance or cosine similarity methods to compare the training and testing tuples
while this study used the Euclidean distance [54]. Considering two tuples for example,
X1 = (x11, x12, . . . . . . , x1n) and X2 = (x21, x22, . . . . . . , x2n), the Euclidean distance of two
tuples can be obtained from Equation (5).

dist (x1, x2) =
√

∑n
i=1(x1i − x2i)

2 (5)

3.3.4. Random Forest

RF is an ensemble learning method that uses decision trees and is known to be a
meta-estimator-based algorithm. RF fits multiple decision trees for different subsamples
for a given dataset and averages the results to increase the accuracy of predictions by
avoiding overfitting [55]. Moreover, RF can be used for both classification and regression
modeling because of the higher performance level compared to decision trees. RF is easy to
conceptualize and implement since it can handle a large number of input variables [55].
However, one of its main limitations is that the internal decision logic can be difficult to
understand when many decision trees are involved. Additionally, the ensemble approach
is computationally expensive, which can reduce the algorithm’s efficiency when time is a
constraint. RF is versatile and has been utilized in various domains.

3.3.5. Support Vector Machine

SVM is a popular algorithm used for predicting the IRI. Even with a small number of
training data points, SVM can approximate a nonlinear relationship [8]. SVM is applied to
both classification and regression problems, and it was first introduced by Boser et al. in
1992 [8]. In Support Vector Regression (SVR), which is used in SVM’s regression analysis,
the objective is to fit the model to the dataset by defining an acceptable error in the model,
known as the margin, and minimizing that margin. If some points in the dataset fall outside
the margin, the algorithm assigns a penalty to these points, controlled by parameter C
in the model. Regularization is the process of adding a penalty term to the cost function.
C is the complexity parameter that controls the trade-off between having a big margin
versus correctly classifying all the training data. If C has a small value, there will be a larger
margin with more error in the training dataset, but a more robust fit. Conversely, if C has
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a large value, there will be a smaller margin with less error in the training dataset, but a
less robust model. While linear regression aims to minimize the sum of squares error, SVR
aims to minimize the coefficients. The error term is controlled by constraints, and a slack
variable is considered for the data points outside the epsilon. The SVR objective function is
given in Equation (6) and the SVR constraints are shown in Equation (7).

min
1
2
|w|2 + C ∑n

i=1|∈i| (6)

|yi − wixi| ≤ ∈ +|∈i|, ∈i ≥ 0 (7)

Here, w stores the value of weights for each leaf whereas T represents the leaves in the
tree. γ and λ are known as configurable parameters that control the level of regularization. To
effectively use SVR, it is important to normalize the features and impute missing values. In
contrast, ensemble models do not require filling in missing values. Nonetheless, by utilizing
the Lagrangian method, SVR can efficiently solve this quadratic optimization problem.

3.4. Explainable Artificial Intelligence

Explainable AI aims to enhance the confidence of domain experts and machine learn-
ing users by providing an understanding of the causality behind machine learning [56,57].
Intrinsic explanations are typically sufficient for simple models such as decision trees, but
extrinsic (post hoc) interpretations are needed for more complex models (e.g., LIME [58],
RISE [59], SHAP [60], etc.). These explanations are essential to provide transparency and
visibility to ML predictions by revealing hidden reasoning.

SHAP (SHapley Additive exPlanations)

SHAP analysis was introduced by Lundberg and Lee in 2017 and it can provide
explanations for a model as a whole or for each individual instance [60]. The fundamental
principle behind SHAP is based on game theory, which associates the contribution of
a player to the game. One of the main applications of SHAP is to obtain a single and
consistent measure of feature importance. We used Tree-SHAP for the present study, using
Equation (8) to compute the Shapley value.

f
(
y′
)
= φo + ∑N

i=1φiy
′
i (8)

where f is the explanation model, N is the maximum size of coalition, and φ ∈ R denotes
the feature attribution. Equations (9) and (10) are used to calculate the feature attribution.

φi = ∑S ⊆{1,...,p}\{i}
|S|!(p− |S| − 1)!

p!
[gx(S∪ {i})− gx(S)] (9)

where; gx(S) = E[g(x)|xS] (10)

The term S denotes a subset of input features and x is a vector of feature values of
instance (the instance needs to be interpreted). The Shapley value is obtained through the
value function (gx), p is the number of features, and E[g(x)|xK ] expresses the expected
value of the function on subset S.

4. Results
4.1. Multiple Regression Analysis

The estimation of the IRI involved utilizing pavement age and cumulative traffic
volume as variables. Firstly, the correlations between both independent variables and the
IRI were assessed using Pearson coefficients (Table 4). AGE showed a high correlation of
0.83 while CUMTRAF showed a low correlation of 0.58. Secondly, the relationship between
the IRI and each predicting variable was evaluated to determine the model that best fit
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the data (Table 5). Different types of models were used to fit the data, including cubic,
quadratic, linear, exponential, logarithmic, and logistic, with different evolution trends.
From the results, it was observed that both AGE and CUMTRAF had the best correlations
in the cubic model, followed by the quadratic and linear models. Even though the cubic
model had the highest R2 value, the model shape was not matched with IRI progression in
general. Thus, the quadratic equation was selected as the best representative model. For the
multiple regression analysis, both variables were converted into quadratic transformation
components as AGE2 and CUMTRAF2.

Table 4. Correlations between IRI and independent variables.

Independent Variable Correlation with IRI Significance (p-Value)

AGE 0.83 <0.001

CUMTRAF 0.58 <0.001

Table 5. Equations describing relationship between each independent variable and IRI.

Independent
Variable

Type of
Equation

Model Accuracy Parameter Estimates

R2 F Value Significance Intercept Coefficient b1 Coefficient b2 Coefficient b3

AGE Cubic 0.76 193.92 <0.001 2.525 −0.506 0.147 −0.006

AGE Quadratic 0.69 205.17 <0.001 1.856 0.206 0.009 -

AGE Linear 0.67 392.78 <0.001 1.668 0.336 - -

AGE Exponential 0.63 309.89 <0.001 1.890 0.085 - -

AGE Logistic 0.63 309.89 <0.001 0.529 0.919 - -

AGE Logarithm 0.42 134.46 <0.001 2.038 1.001 - -

CUMTRAF Cubic 0.44 47.34 <0.001 1.662 0.103 −0.003 <0.001

CUMTRAF Quadratic 0.41 62.37 <0.001 2.234 −0.002 0.001 -

CUMTRAF Linear 0.34 92.75 <0.001 1.752 0.042 - -

CUMTRAF Exponential 0.29 74.38 <0.001 1.945 0.010 - -

CUMTRAF Logistic 0.29 74.38 <0.001 0.514 0.990 - -

CUMTRAF Logarithm 0.16 35.53 <0.001 1.085 0.582 - -

Firstly, the multiple linear regression model without transformed variables (AGE and
CUMTRAF only) achieved an R2 value of 0.69 for the training dataset. To verify the training
model, a testing dataset (30% of the data) was utilized and a corresponding R2 value of
0.53 and MAE value of 0.73 were obtained, as depicted in Figure 2. The training regression
model as a function of pavement age and cumulative traffic for the training dataset is
shown in Equation (11).

IRIt = 1.569 + 0.305×AGE + 0.010×CUMTRAF
[
R2 = 0.69

]
(11)

where IRIt is the IRI of road segment after ‘t’ number of years, AGE is the pavement age
after the latest rehabilitation/reconstruction in years, and CUMTRAF is the cumulative
traffic volume in number of vehicles in millions after ‘t’ number of years.
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Moreover, the coefficients of the regression model variables are presented in Table 6.
All the coefficients had p-values less than 0.05, indicating that the dependent variables’
effects were statistically significant.

IRIt = 1.668 + 0.336×AGE
[
R2 = 0.67

]
(12)

Table 6. Statistical summary of the multiple linear regression model.

Parameter Coefficient Standard Error p-Value 95% CI

Intercept 1.569 0.083 <0.001 [1.410, 1.733]

Pavement age 0.305 0.021 <0.001 [0.263, 0.346]

Cumulative traffic 0.010 0.003 0.013 [0.002, 0.017]

As in Figure 2 and Table 6, it was observed that both pavement age and cumulative
traffic had positive relationships with the IRI, which indicated that when the traffic and age
increased, the IRI tended to increase. Moreover, the initial IRI value varied between 1.410
and 1.733 m/km at a 95% confidence interval, which agreed with most of the initial IRI
values in the Asian context. Further, a sensitivity analysis was conducted using backward
elimination criteria. It revealed that removing the cumulative traffic variable would only
reduce the model accuracy by 2%, as in Equation (12). The sensitivity analysis showed
that the IRI value increased by about 0.336 m/km per year, since the impact of cumulative
traffic was much less than that of pavement age. Furthermore, Figure 2 shows that lower
IRI values of less than 5 m/km were accurately predicted by the multiple regression model.
However, when the IRI value was more than 5 m/km, the predictability was much less
than at lower IRI values.

Secondly, additional multiple regression models were tested by combining different
variables alongside their quadratic transformations (AGE2, CUMTRAF2). Apart from
the R2 values, the significance of the variables in the analyzed models is presented in
Table 7. From the results in Table 7 it can be observed that introduction of quadratic
transformations (AGE2, CUMTRAF2) significantly enhanced the model accuracy compared
to the linear models. Moreover, the last model in Table 7 was found to have the best fit.
However, the significance of AGE in that model was low, which implied that the second
model with AGE, CUMTRAF, and CUMTRAF2 as components was the best representative
model. Comparing the linear regression model described by Equation (11) and the second
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model showed that the R2 value drastically increased due to the inclusion of quadratic
transformed CUMTRAF2. Overall, it could be observed that pavement age and cumulative
traffic volume significantly contributed to IRI progression, while better predictions could
be obtained with the inclusion of quadratic-transformed variables. However, to further
improve IRI predictability, the study focused on using machine learning models with
explainable AI to explain the feature importance.

Table 7. Analyzed multiple regression models with variable transformations for IRI performance.

Proposed Model R2 Standard Error F Value Comments

IRI = Intercept + AGE + CUMTRAF2 0.75 0.69 271.83 All variables significant (p < 0.001)

IRI = Intercept + AGE + CUMTRAF + CUMTRAF2 0.83 0.57 294.80 All variables significant (p < 0.001)

IRI = Intercept + AGE + AGE2 + CUMTRAF 0.76 0.69 186.64 All variables significant (p < 0.006)

IRI = Intercept + AGE2 + CUMTRAF2 0.81 0.60 400.34 All variables significant (p < 0.001)

IRI = Intercept + AGE + AGE2 + CUMTRAF2 0.82 0.58 284.68 All variables significant (p < 0.002)

IRI = Intercept + AGE + AGE2 + CUMTRAF + CUMTRAF2 0.84 0.55 243.19 Low significance of AGE (p = 0.379)

4.2. Machine Learning Models

The research used 181 instances for training and 78 for testing, using AGE and CUM-
TRAF as independent variables. Figure 3 illustrates how well the five models predicted the
actual IRI values, with 20 random testing points selected from the 78 testing data points.
The predicted IRI values from all five machine learning models were compared with the
actual IRI values. The models with closer predicted values to the actual IRI values were
considered to have better predictions. For instance, the SVM model had a less accurate
prediction for testing data point 4, with the maximum distance to the actual point. As an
example, all five machine learning models accurately predicted testing data points 19 and
20. However, it should be noted that Figure 3 only represents 25% of the testing set, while
individual behaviors varied based on their predictability.
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Table 8 presents the predictability statistics of the IRI for each machine learning regres-
sor. Among the models, the RF model was found to be the best model with an R2 value of
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0.906 and MAE value of 0.310 for the testing dataset. The R2 value explains the proportion
of variance in the IRI that is accounted by AGE and CUMTRAF. Moreover, the MAE value
represents the average absolute difference between the actual and observed IRI, regardless
of the direction of error. Additionally, the DT, XGB, and KNN models performed better than
the LR model, with R2 values greater than 0.75. However, the SVM model showed poor
predictability compared to all the other machine learning models as well as the LR model.
Therefore, it could be concluded that all of the machine learning models, except for SVM,
exhibited versatility and efficiency in predicting the IRI from AGE and CUMTRAF and
performed better than traditional regression methods. Further, Figure 4 shows the model
validation results on the testing dataset for all five machine learning models.
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Table 8. Comparison of model accuracy of different machine learning models.

Machine Learning Model R2 MAE

Random Forest (RF) 0.906 0.310

Decision Tree (DT) 0.870 0.309

Extreme Gradient Boosting (XGB) 0.809 0.309

K-Nearest Neighbor (KNN) 0.787 0.385

Support Vector Machine (SVM) 0.503 0.579

4.3. Machine Learning Global Explanation

Further, SHAP analysis was used to analyze the output of the RF model and predict
the global behavior of the IRI with respect to AGE and CUMTRAF. The global explanation
obtained from SHAP analysis is presented in Figure 5, where blue and red colors are used
to represent low and high values of each feature, respectively. The features are ranked
according to their importance, and AGE was found to have the most significant impact on
the IRI. From Figure 5 it was observed that when pavement age increased, the IRI value
drastically increased. However, both low and high values for CUMTRAF were clustered
around zero, which indicated that the importance of CUMTRAF was not significant in the
model output. This provided sufficient evidence that cumulative traffic had a low impact
on IRI progression compared to pavement age. Moreover, this feature behavior followed
the same trend as in the multiple regression model. Figure 6 explains the feature importance
using a horizontal bar chart. The plot consists of a horizontal bar, where each bar represents
a feature in the dataset. The bar length indicates the magnitude of the Shapley value for
that feature. As in Figure 6, AGE and CUMTRAF had mean Shapley values of 0.7, and 0.1,
respectively. This result indicated that pavement age was highly important, about seven
times more important than cumulative traffic, in IRI prediction for the given data. However,
there can be some inaccuracy in SHAP analysis results due to its assumption of additivity
when analyzing complex nonlinear relationships [61]. Since the data used in this study did
not have a complex nonlinear relationship, the SHAP analysis results were acceptable.
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Overall, these results highlighted the importance of incorporating multiple contribut-
ing factors to IRI progression and the potential of explainable AI to improve model ex-
planations. According to the results, the explainable AI approach provided a deeper
understanding of IRI progression and revealed hidden sensitive behavior based on ma-
chine learning predictions.
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5. Summary and Conclusions

It is important to consider the impact of pavement age and cumulative traffic on long-
term IRI prediction modeling while most of the previous studies used statistical models
to predict pavement performance. Even though machine learning models can be used in
such predictions due to the complexity of the analysis, the black box nature of these models
has limited their use. To address both issues, the researchers in this study showed the
applicability of explainable AI in IRI prediction compared with regression-based modeling
using 259 arterial road segments in the Sri Lankan national road network.

The study used five machine learning techniques, RF, DT, XGB, KNN, SVM, and
the traditional LR model, to predict the IRI while using cumulative traffic and pavement
age as predictor variables. The researchers evaluated the models using performance
metrics R2 and MAE, with the LR model achieving R2 and MAE values of 0.530 and 0.732,
respectively, for the testing dataset. Moreover, various nonlinear models were used to
improve the predictability of the regression models using quadratic transformations of
AGE and CUMTRAF. It was found that the R2 value increased to 0.830 in the regression
model including AGE2 and CUMTRAF2 as predictor variables. The results showed that
the machine learning methods were more effective than the LR model in predicting the IRI,
with the RF model having the highest prediction performance with an R2 value of 0.906,
followed by DT with an R2 value of 0.870 and XGB with an R2 value of 0.809. The global
explanation of the data models was performed using SHAP analysis, which revealed that
pavement age was the most dominant predictor for Sri Lankan arterial roads.

In conclusion, explainable AI is a preferable approach for domain experts such as
highway engineers when working with large amounts of roadway data. Moreover, the high-
stakes and sensitive factors affecting IRI progression require accurate prediction models,
and explainable AI offers a better platform with accurate and robust techniques compared
to traditional statistical approaches that have limitations in their analysis features. Finally,
accurate IRI prediction is essential for sustainable transportation as it helps to extend the
service life of pavement by minimizing the frequency of extensive maintenance while
minimizing the overall environmental impact of road infrastructure.
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