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Abstract: In this article, we investigate new findings on Boas–Bellman-type inequalities in semi-
Hilbert spaces. These spaces are generated by semi-inner products induced by positive and positive
semidefinite operators. Our objective is to reveal significant properties of such spaces and apply
these results to the field of multivariable operator theory. Specifically, we derive new inequalities that
relate to the joint A-numerical radius, the joint operator A-seminorm, and the Euclidean A-seminorm
of tuples of semi-Hilbert space operators. We assume that A is a nonzero positive operator. Our
discoveries provide insights into the structure of semi-Hilbert spaces and have implications for a
broad range of mathematical applications and beyond.

Keywords: Boas–Bellman inequality; Bessel’s inequality; joint A-numerical radius; Euclidean
A-seminorm

MSC: 47A12; 47B65; 26D15; 47A13; 47A30; 46C05

1. Introduction

Inequalities play a crucial role in analysis and find applications in various areas of
mathematics (see [1–7] and related sources). Among these, Bessel’s inequality and the
Boas–Bellman inequality hold significant importance and are widely used in the study of
operators on Hilbert spaces.

Recently, there has been more interest in studying positive semidefinite inner product
spaces that are induced by positive semidefinite operators. These spaces, also called semi-
Hilbert spaces, are a bit different from Hilbert spaces because they may not always be
complete, but they still have certain rules that make them useful. There is a growing body
of literature on the subject of semi-Hilbert spaces (see [8–14] and other related works) that
explore their properties and potential applications. In this paper, we focus on a specific
positive semidefinite inner product space that is created by a positive semidefinite operator
called A. We call this space (F , 〈·, ·〉A).

Semi-Hilbert spaces are useful in studying different mathematical problems. The objec-
tive of our research paper is to present novel inequalities in semi-Hilbert spaces, specifically
of the Boas–Bellman type. These inequalities serve as valuable tools in enhancing our
comprehension of operator properties. We start by explaining the notation and definitions
of semi-Hilbert spaces and then present our main findings.

Throughout this paper, we focus on a complex Hilbert space F with an inner product
〈·, ·〉 and norm ‖ · ‖. We use L(F ) to denote the set of all bounded linear operators on F
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and T* to represent the adjoint of a bounded linear operator T on F . An operator T ∈ L(F )
is considered positive, denoted as T ≥ 0, if 〈Tx, x〉 ≥ 0 for all x ∈ F . In this work, when we
use the term “operator”, we specifically refer to an element of the set L(F ), and we assume
that A is a nonzero positive operator. For any such A, we define a positive semidefinite
sesquilinear form 〈·, ·〉A : F ×F → C as 〈x, y〉A = 〈Ax, y〉 for all x, y ∈ F . The seminorm
induced by 〈·, ·〉A is denoted by ‖ · ‖A. For any vector x ∈ F , this seminorm is defined as
‖x‖A =

√
〈x, x〉A. It is worth noting that the seminorm ‖ · ‖A vanishes on a vector x ∈ F if

and only if x belongs to the null space N (A) of A. Moreover, the seminorm ‖ · ‖A induces
a norm on F if and only if A is one-to-one. Consequently, the semi-Hilbert space (F , ‖ · ‖A)
is complete if and only if the rangeR(A) of A is closed in F .

First, let us mention some well-established inequalities that apply to both real and
complex inner product spaces. However, in the context of this paper, we can assume that
F is a complex Hilbert space without losing any generality. To begin our discussion, we
introduce Bessel’s inequality (refer to ([15], p. 391) for more information), which asserts
that if we have a set of orthonormal vectors e1, e2, · · · , ed in F , meaning that they satisfy
〈ei, ej〉 = δij (where δij is the Kronecker delta symbol) for all i, j ∈ {1, . . . , d}, then the
following inequality holds for any vector x ∈ F :

d

∑
i=1
|〈x, ei〉|2 ≤ ‖x‖2.

Additional findings linked to Bessel’s inequality can be found in references [16] through
[17], while Chapter XV in the book [15] also provides valuable insights.

In 1941, R.P. Boas [18] and R. Bellman [19] (independently, in 1944) established a
generalized form of Bessel’s inequality, as documented in ([15], p. 392). Specifically, if x
and y1, . . . , yd belong to F , then the subsequent inequality holds:

d

∑
i=1
|〈x, yi〉|2 ≤ ‖x‖2

max
1≤i≤d

‖yi‖2 +

(
∑

1≤i 6=j≤d

∣∣〈yi, yj〉
∣∣2) 1

2
. (1)

Mitrinović–Pečarić–Fink proved a recent extension of the Boas–Bellman result, as
detailed in ([15], p. 392). Specifically, they established an inequality that holds for elements
x and y1, . . . , yd in F and complex numbers θ1, . . . , θd ∈ C. The inequality is as follows:∣∣∣∣∣ d

∑
i=1

θi〈x, yi〉
∣∣∣∣∣
2

≤ ‖x‖2
d

∑
i=1
|θi|2

max
1≤i≤d

‖yi‖2 +

(
∑

1≤i 6=j≤d

∣∣〈yi, yj〉
∣∣2) 1

2
. (2)

Furthermore, the authors observed that choosing θi = 〈x, yi〉 in (2) leads to the Boas–
Bellman inequality (1). Other related results on the Boas–Bellman inequality can be found
in [20].

This paper introduces new discoveries that expand the Mitrinović–Pečarić–Fink and
Boas–Bellman inequalities to the realm of semi-Hilbert spaces. The research is relevant to
multivariable operator theory, and it presents novel inequalities that relate to tuples of oper-
ators in semi-Hilbert spaces. Specifically, we investigate the joint A-numerical radius, joint
operator A-seminorm, and Euclidean A-seminorm and establish novel connections among
these concepts. These Boas–Bellman-type inequalities offer several advantages, enhancing
our understanding of semi-Hilbert spaces and their applications in multivariable operator
theory. They provide valuable insights into the relationships between different numerical
measures, such as the joint A-numerical radius and the joint operator A-seminorm. Addi-
tionally, these findings have broad implications and can be applied to various mathematical
and scientific contexts. Overall, the Boas–Bellman-type inequalities significantly contribute
to the progress of mathematics and related fields.
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2. Preliminary Results

To establish our main theorem, we introduce a lemma that not only serves as a valuable
tool in our proof but also stands out in its own right. This lemma provides nine upper
bounds for the quantity

∥∥∥∑d
i=1 µiXi

∥∥∥
A

, where Xj ∈ F and µj ∈ C for all j ∈ {1, . . . , d}.

Lemma 1. If X1, . . . , Xd ∈ F and µ1, . . . , µd ∈ C, the following inequality holds:

∥∥∥∥∥ d

∑
i=1

µiXi

∥∥∥∥∥
2

A

≤



max
1≤i 6=j≤d

{∣∣µiµj
∣∣} ∑

1≤i 6=j≤d

∣∣∣〈Xi, Xj
〉

A

∣∣∣;
[(

d
∑

i=1
|µi|α

)2

−
(

d
∑

i=1
|µi|2α

)] 1
α
(

∑
1≤i 6=j≤d

∣∣∣〈Xi, Xj
〉

A

∣∣∣β) 1
β

,

where α > 1, 1
α + 1

β = 1;

[(
d
∑

i=1
|µi|
)2

−
d
∑

i=1
|µi|2

]
max

1≤i 6=j≤d

∣∣∣〈Xi, Xj
〉

A

∣∣∣.

+



max
1≤i≤d

|µi|2
d
∑

i=1
‖Xi‖2

A,

(
d
∑

i=1
|µi|2µ

) 1
µ
(

d
∑

i=1
‖Xi‖2ν

A

) 1
ν

, where µ > 1, 1
µ + 1

ν = 1;

d
∑

i=1
|µi|2 max

1≤i≤d
‖Xi‖2

A,

Proof. Let Xj ∈ F and µj ∈ C for all j ∈ {1, . . . , d}. It can be observed that∥∥∥∥∥ d

∑
i=1

µiXi

∥∥∥∥∥
2

A

=

∣∣∣∣∣〈 d

∑
i=1

µiXi,
d

∑
j=1

µjXj
〉

A

∣∣∣∣∣
=

∣∣∣∣∣ d

∑
i=1

d

∑
j=1

µiµj
〈

Xi, Xj
〉

A

∣∣∣∣∣
≤

d

∑
i=1

d

∑
j=1
|µi|
∣∣µj
∣∣∣∣∣〈Xi, Xj

〉
A

∣∣∣.
Thus, it follows that∥∥∥∥∥ d

∑
i=1

µiXi

∥∥∥∥∥
2

A

≤
d

∑
i=1
|µi|2‖Xi‖2

A + ∑
1≤i 6=j≤d

|µi|
∣∣µj
∣∣∣∣∣〈Xi, Xj

〉
A

∣∣∣. (3)

On the other hand, by applying Hölder’s inequality, we can express that

d

∑
i=1
|µi|2‖Xi‖2

A ≤



max
1≤i≤d

|µi|2
d
∑

i=1
‖Xi‖2

A;

(
d
∑

i=1
|µi|2µ

) 1
µ
(

d
∑

i=1
‖Xi‖2ν

A

) 1
ν

, where µ > 1, 1
µ + 1

ν = 1;

d
∑

i=1
|µi|2 max

1≤i≤d
‖Xi‖2.



Axioms 2023, 12, 638 4 of 15

Using Hölder’s inequality for double sums, we can further obtain

∑
1≤i 6=j≤d

|µi|
∣∣µj
∣∣∣∣∣〈Xi, Xj

〉
A

∣∣∣ ≤



max
1≤i 6=j≤d

∣∣µiµj
∣∣ ∑

1≤i 6=j≤d

∣∣∣〈Xi, Xj
〉

A

∣∣∣;
(

∑
1≤i 6=j≤d

|µi|α
∣∣µj
∣∣α) 1

α
(

∑
1≤i 6=j≤d

∣∣∣〈Xi, Xj
〉

A

∣∣∣β) 1
β

, where α > 1, 1
α + 1

β = 1;

∑
1≤i 6=j≤d

|µi|
∣∣µj
∣∣ max

1≤i 6=j≤d

∣∣∣〈Xi, Xj
〉

A

∣∣∣,

=



max
1≤i 6=j≤d

{∣∣µiµj
∣∣} ∑

1≤i 6=j≤d

∣∣∣〈Xi, Xj
〉

A

∣∣∣;
[(

d
∑

i=1
|µi|α

)2

−
(

d
∑

i=1
|µi|2α

)] 1
α
(

∑
1≤i 6=j≤d

∣∣∣〈Xi, Xj
〉

A

∣∣∣β) 1
β

, where α > 1, 1
α + 1

β = 1;

[(
d
∑

i=1
|µi|
)2

−
d
∑

i=1
|µi|2

]
max

1≤i 6=j≤d

∣∣∣〈Xi, Xj
〉

A

∣∣∣.
The desired result can be deduced by incorporating (3).

Remark 1. The set of inequalities contained in Lemma 1 actually consists of 9 variations that can
be obtained by combining the first 3 with the last 3.

A particular case that may be related to the Boas–Bellman result is embodied in the
following inequality.

Corollary 1. With the assumptions in Lemma 1, we have∥∥∥∥∥ d

∑
i=1

µiXi

∥∥∥∥∥
2

A

≤
d

∑
i=1
|µi|2

{
max
1≤i≤d

‖Xi‖2
A + Θ

}

≤
d

∑
i=1
|µi|2

max
1≤i≤d

‖Xi‖2
A +

(
∑

1≤i 6=j≤d

∣∣∣〈Xi, Xj
〉

A

∣∣∣2) 1
2
,

where

Θ =

[(
∑d

i=1|µi|2
)2
−∑d

i=1|µi|4
] 1

2

∑d
i=1|µi|2

(
∑

1≤i 6=j≤d

∣∣∣〈Xi, Xj
〉

A

∣∣∣2) 1
2

.

Proof. The first inequality can be obtained by utilizing the second branch in the first curly
bracket for α = β = 2 in combination with the third branch in the second curly bracket.

To prove the second inequality in the corollary, we can rely on the fact that

( d

∑
i=1
|µi|2

)2

−
d

∑
i=1
|µi|4

 1
2

≤
d

∑
i=1
|µi|2.

From here, it is clear that the proof is complete.

In the following, we present coarser upper bounds for
∥∥∥∑d

i=1 µiXi

∥∥∥2

A
that may be of

practical interest in various applications.
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Corollary 2. The inequalities below hold under the assumptions of Lemma 1:

∥∥∥∥∥ d

∑
i=1

µiXi

∥∥∥∥∥
2

A

≤



max
1≤i≤d

|µi|2
d
∑

i=1
‖Xi‖2

A;

(
d
∑

i=1
|µi|2µ

) 1
µ
(

d
∑

i=1
‖Xi‖2ν

A

) 1
ν

, where µ > 1, 1
µ + 1

ν = 1;

d
∑

i=1
|µi|2 max

1≤i≤d
‖Xi‖2

A,

+



max
1≤i≤d

|µi|2 ∑
1≤i 6=j≤d

∣∣∣〈Xi, Xj
〉

A

∣∣∣;

(d− 1)
1
α

(
d
∑

i=1
|µi|2α

) 1
α
(

∑
1≤i 6=j≤d

∣∣∣〈Xi, Xj
〉

A

∣∣∣β) 1
β

, where α > 1, 1
α + 1

β = 1;

(d− 1)
d
∑

i=1
|µi|2 max

1≤i 6=j≤d

∣∣∣〈Xi, Xj
〉

A

∣∣∣.
Proof. Using the Cauchy–Bunyakovsky–Schwarz-type inequality given below,(

d

∑
i=1

ai

)2

≤ d
d

∑
i=1

a2
i , ai ∈ R+, 1 ≤ i ≤ d,

we can rewrite the inequalities as follows:(
d

∑
i=1
|µi|α

)2

−
d

∑
i=1
|µi|2α ≤ (d− 1)

d

∑
i=1
|µi|2α (d ≥ 1)

and (
d

∑
i=1
|µi|
)2

−
d

∑
i=1
|µi|2 ≤ (d− 1)

d

∑
i=1
|µi|2 (d ≥ 1).

Furthermore, it is clear that

max
1≤i 6=j≤d

{∣∣µiµj
∣∣} ≤ max

1≤i≤d
|µi|2.

Therefore, taking Lemma 1 into account, we obtain the desired result.

Remark 2. Corollary 2 incorporates the following noteworthy inequalities:∥∥∥∥∥ d

∑
i=1

µiXi

∥∥∥∥∥
2

A

≤ max
1≤i≤d

|µi|2
[

d

∑
i=1
‖Xi‖2

A + ∑
1≤i 6=j≤d

∣∣∣〈Xi, Xj
〉

A

∣∣∣].

Furthermore, when p > 1 and 1
p + 1

q = 1, we have:

∥∥∥∥∥ d

∑
i=1

µiXi

∥∥∥∥∥
2

A

≤
(

d

∑
i=1
|µi|2p

) 1
p
( d

∑
i=1
‖Xi‖2q

) 1
q

+ (d− 1)
1
p

(
∑

1≤i 6=j≤d

∣∣∣〈Xi, Xj
〉

A

∣∣∣q) 1
q
.
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In addition, we have the following inequality:∥∥∥∥∥ d

∑
i=1

µiXi

∥∥∥∥∥
2

A

≤
d

∑
i=1
|µi|2

[
max
1≤i≤d

‖Xi‖2
A + (d− 1) max

1≤i 6=j≤d

∣∣∣〈Xi, Xj
〉

A

∣∣∣].

Clearly, when p = q = 2, we obtain∥∥∥∥∥ d

∑
i=1

µiXi

∥∥∥∥∥
2

A

≤
(

d

∑
i=1
|µi|4

) 1
2
( d

∑
i=1
‖Xi‖4

A

) 1
2

+ (d− 1)
1
2

(
∑

1≤i 6=j≤d

∣∣∣〈Xi, Xj
〉

A

∣∣∣2) 1
2
.

We can now present an additional result that complements the inequality (2) originally
introduced by Mitrinović, Pečarić, and Fink in ([15], p. 392).

Theorem 1. Consider vectors x, y1, . . . , yd ∈ F and complex numbers θ1, . . . , θd ∈ C. Then, the
following inequalities hold:

∣∣∣∣∣ d

∑
i=1

θi
〈

x, yi
〉

A

∣∣∣∣∣
2

≤ ‖x‖2
A ×



max
1≤i≤d

|θi|2
d
∑

i=1
‖yi‖2

A;

(
d
∑

i=1
|θi|2µ

) 1
µ
(

d
∑

i=1
‖yi‖2ν

A

) 1
ν

, where µ > 1, 1
µ + 1

ν = 1;

d
∑

i=1
|θi|2 max

1≤i≤d
‖yi‖2

A,

+ ‖x‖2
A ×



max
1≤i 6=j≤d

{∣∣θiθj
∣∣} ∑

1≤i 6=j≤d

∣∣∣〈yi, yj
〉

A

∣∣∣;
[(

d
∑

i=1
|θi|α

)2

−
(

d
∑

i=1
|θi|2α

)] 1
α
(

∑
1≤i 6=j≤d

∣∣∣〈yi, yj
〉

A

∣∣∣β) 1
β

,

where α > 1, 1
α + 1

β = 1;

[(
d
∑

i=1
|θi|
)2

−
d
∑

i=1
|θi|2

]
max

1≤i 6=j≤d

∣∣∣〈yi, yj
〉

A

∣∣∣.
Proof. Consider the vectors x, y1, . . . , yd in F and θ1, . . . , θd ∈ C. We observe that

d

∑
i=1

θi
〈

x, yi
〉

A =
〈

x,
d

∑
i=1

θiyi
〉

A.

By applying the Cauchy–Schwarz inequality, we obtain∣∣∣∣∣ d

∑
i=1

θi
〈

x, yi
〉

A

∣∣∣∣∣
2

=

∣∣∣∣∣〈x,
d

∑
i=1

θiyi
〉

A

∣∣∣∣∣
2

≤ ‖x‖2
A

∥∥∥∥∥ d

∑
i=1

θiyi

∥∥∥∥∥
2

A

.

Using Lemma 1 with µi = θi, Xi = yi for all i ∈ {1, . . . , d}, we can obtain the desired
result.

The following specific inequalities are valid.
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Corollary 3. Considering the assumptions in Theorem 1, the following inequalities hold:

∣∣∣∣∣ d

∑
i=1

θi
〈

x, yi
〉

A

∣∣∣∣∣
2

≤



‖x‖2
A

d
∑

i=1
|θi|2

max
1≤i≤d

‖yi‖2
A +

(
∑

1≤i 6=j≤d

∣∣∣〈yi, yj
〉

A

∣∣∣2) 1
2
;

‖x‖2
A max

1≤i≤d
|θi|2

{
d
∑

i=1
‖yi‖2

A + ∑
1≤i 6=j≤d

∣∣∣〈yi, yj
〉

A

∣∣∣}

‖x‖2
A

(
d
∑

i=1
|θi|2p

) 1
p


(

d
∑

i=1
‖yi‖

2q
A

) 1
q

+ (d− 1)
1
p

(
∑

1≤i 6=j≤d

∣∣∣〈yi, yj
〉

A

∣∣∣q) 1
q


where p > 1, 1
p + 1

q = 1;

‖x‖2
A

d
∑

i=1
|θi|2

{
max
1≤i≤d

‖yi‖2
A + (d− 1) max

1≤i 6=j≤d

∣∣∣〈yi, yj
〉

A

∣∣∣}.

Remark 3. It should be noted that the initial inequality presented in Corollary 3 is a general-
ization of a finding originally established by Mitrinović–Pečarić–Fink in [15]. Meanwhile, the
remaining three inequalities offer similar inequalities with regard to the p-norms of the vector(
|θ1|2, . . . , |θd|2

)
.

3. Some Extensions of Boas–Bellman-Type Inequalities

In this section, our objective is to utilize the outcomes from the prior section to derive
various Boas–Bellman-Type inequalities in the context of semi-Hilbert spaces. It is worth
noting that by substituting x with A1/2x and yi with A1/2yi in (1), we can obtain the
following result:

d

∑
i=1

∣∣∣〈x, yi
〉

A

∣∣∣2 ≤ ‖x‖2
A

max
1≤i≤n

‖yi‖2
A +

(
∑

1≤i 6=j≤n

∣∣∣〈x, yi
〉

A

∣∣∣2) 1
2
 (4)

for x, y1, . . . , yd ∈ F .
By choosing θi =

〈
x, yi

〉
A (i ∈ {1, . . . , d}) in Theorem 1, 9 different inequalities can be

obtained. However, we only consider the inequalities that can be derived from Corollary 3.
By applying the second inequality in Corollary 3 with θi =

〈
x, yi

〉
A, we obtain(

d

∑
i=1

∣∣∣〈x, yi
〉

A

∣∣∣2)2

≤ ‖x‖2
A max

1≤i≤d

∣∣∣〈x, yi
〉

A

∣∣∣2{ d

∑
i=1
‖yi‖2

A + ∑
1≤i 6=j≤d

∣∣∣〈yi, yj
〉

A

∣∣∣}.

By taking the square root of this inequality, we obtain

d

∑
i=1

∣∣∣〈x, yi
〉

A

∣∣∣2 ≤ ‖x‖A max
1≤i≤d

∣∣∣〈x, yi
〉

A

∣∣∣{ d

∑
i=1
‖yi‖2

A + ∑
1≤i 6=j≤n

∣∣∣〈yi, yj
〉

A

∣∣∣} 1
2

, (5)

where x, y1, . . . , yd are vectors in F .
Assuming that (ei)1≤i≤d forms an A-orthonormal family in F (meaning that〈

ei, ej
〉

A = δij for all i, j ∈ {1, . . . , d}, where δij denotes the Kronecker symbol), we can
use (5) to obtain

d

∑
i=1

∣∣∣〈x, ei
〉

A

∣∣∣2 ≤ √d‖x‖A max
1≤i≤d

∣∣∣〈x, ei
〉

A

∣∣∣, x ∈ F .
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By applying the third inequality in Corollary 3 with θi =
〈

x, yi
〉

A, we can infer(
d

∑
i=1

∣∣∣〈x, yi
〉

A

∣∣∣2)2

≤ ‖x‖2
A

(
d

∑
i=1

∣∣∣〈x, yi
〉

A

∣∣∣2p
) 1

p

(

d

∑
i=1
‖yi‖

2q
A

) 1
q

+ (d− 1)
1
p

(
∑

1≤i 6=j≤d

∣∣∣〈yi, yj
〉

A

∣∣∣q) 1
q
,

for p > 1 and 1
p + 1

q = 1. Upon taking the square root of this inequality, we arrive at the
following expression:

d

∑
i=1

∣∣∣〈x, yi
〉

A

∣∣∣2 ≤ ‖x‖A

(
d

∑
i=1

∣∣∣〈x, yi
〉

A

∣∣∣2p
) 1

2p

×


(

d

∑
i=1
‖yi‖

2q
A

) 1
q

+ (d− 1)
1
p

(
∑

1≤i 6=j≤d

∣∣∣〈yi, yj
〉

A

∣∣∣q) 1
q


1
2

, (6)

for all x, y1, . . . , yd ∈ F , p > 1, and 1
p + 1

q = 1.
The above inequality (6) becomes, for an A-orthornormal family (ei)1≤i≤d,

d

∑
i=1

∣∣∣〈x, ei
〉

A

∣∣∣2 ≤ d
1
q ‖x‖A

(
d

∑
i=1

∣∣∣〈x, ei
〉

A

∣∣∣2p
) 1

2p

, x ∈ F .

Substituting θi =
〈

x, yi
〉

A for i ∈ {1, . . . , d} into the last inequality of Corollary 3
yields(

d

∑
i=1

∣∣∣〈x, yi
〉

A

∣∣∣2)2

≤ ‖x‖2
A

d

∑
i=1

∣∣∣〈x, yi
〉

A

∣∣∣2{max
1≤i≤d

‖yi‖2
A + (d− 1) max

1≤i 6=j≤d

∣∣∣〈yi, yj
〉

A

∣∣∣}.

So, we obtain the following generalized Boas–Bellman-type inequality:

d

∑
i=1

∣∣∣〈x, yi
〉

A

∣∣∣2 ≤ ‖x‖2
A

{
max

1≤i≤n
‖yi‖2

A + (d− 1) max
1≤i 6=j≤d

∣∣∣〈yi, yj
〉

A

∣∣∣}, (7)

for all vectors x, y1, . . . , yd ∈ F .

Remark 4. For A-orthonormal families of vectors, it is clear that (7) provides an extension of the
Bessel inequality in the context of semi-Hilbert spaces.

Remark 5. To compare (4), which represents the Boas–Bellman result in the context of semi-Hilbert
spaces, with (7), we can examine the following quantities.

∆ :=

(
∑

1≤i 6=j≤d

∣∣∣〈yi, yj
〉

A

∣∣∣2) 1
2

and
Γ := (d− 1) max

1≤i 6=j≤d

∣∣∣〈yi, yj
〉

A

∣∣∣.
If we consider A to be the identity operator and use the same example as in [21], we find that ∆ and
Γ are not comparable. Therefore, in general, it is not possible to compare (4), which represents the
Boas–Bellman result in the context of semi-Hilbert spaces, with (7).

4. Inequalities for Operators

In this section, we utilize the inequalities derived in the previous section to establish
various inequalities for operators that act on semi-Hilbert spaces. We specifically use
Bombieri-type inequalities in the context of semi-Hilbert spaces to derive bounds for the
joint A-numerical radius and the Euclidean A-seminorm of operator tuples.
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We begin by introducing some concepts and definitions related to operator theory
in semi-Hilbert spaces. Firstly, we define the A-adjoint of an operator T ∈ L(F ) as an
operator R ∈ L(F ) such that for every x, y ∈ F , 〈Tx, y〉A = 〈x, Ry〉A, or equivalently,
AR = T∗A (see [22]). It is important to note that not every operator has an A-adjoint.
The set of operators that admit A-adjoints is denoted by LA(F ). According to Douglas’
theorem [23], an operator T belongs to LA(F ) if and only if R(T∗A) ⊆ R(A). In the
case that T ∈ LA(F ), the “reduced” solution of the equation AX = T∗A is called the
distinguished A-adjoint operator of T, denoted by T]A . Additionally, T]A is also in LA(F ),
and (T]A)]A = PR(A)

TPR(A)
, where PR(A)

is the orthogonal projection onto the closure of
the range of A.

In the context of operator theory in semi-Hilbert spaces, an important result, known
as the Douglas theorem, states that if T is an operator in LA(F ), thenR(T∗A) ⊆ R(A) is a
necessary and sufficient condition for T to belong to the space LA(F ). Another consequence
of the Douglas theorem is that operators in LA1/2(F ), referred to as A-bounded operators,
can be identified by the existence of a constant c > 0 such that ‖Tx‖A < c‖x‖A for all
x ∈ F . It is worth noting that LA(F ) and LA1/2(F ) are subalgebras of L(F ), but they
are neither closed nor dense in L(F ). The inclusions LA(F ) ⊆ LA1/2(F ) ⊆ L(F ) are
generally strict, although if A is one-to-one and has a closed range, these inclusions hold
with equality. For further information on results related to operator theory in semi-Hilbert
spaces, a number of references are recommended, including [8,12,22,24].

For the following discussion, we define L(F )d as the set of all d-tuples of operators. Let
S = (S1, . . . , Sd) ∈ L(F )d be a d-tuple of operators. The two quantities ωA(S) and ‖S‖A
are introduced in [25]. Specifically, for a d-tuple of operators S = (S1, . . . , Sd) ∈ L(F )d, we
define

ωA(S) := sup
x∈SA

F

√√√√ d

∑
k=1

∣∣〈Skx, x〉A
∣∣2 and ‖S‖A = sup

x∈SA
F

√√√√ d

∑
k=1
‖Skx‖2

A, (8)

where SA
F denotes the unit sphere of F with respect to the norm ‖ · ‖A. That is, SA

F is the
set of all vectors x ∈ F such that ‖x‖A = 1.

It should be noted that the definitions of ωA(S) and ‖S‖A, which were introduced
in [25], can result in infinity even when d = 1, as pointed out in various sources, such as [26].
However, if S = (S1, . . . , Sd) ∈ LA1/2(F )d, then they become two equivalent seminorms,
as shown in [25]. In this case, ωA(S) is known as the joint A-numerical radius of S, while
‖S‖A is referred to as the joint operator A-seminorm of S.

When T ∈ LA1/2(F ), we can define the A-numerical radius and the operator
A-seminorm of T by substituting d = 1 in (8). The A-numerical radius of T is the supre-
mum of |〈Tx, x〉A| over all x ∈ SA

F , while the operator A-seminorm of T is the supremum
of ‖Tx‖A over all x ∈ SA

F . These quantities have been extensively studied in the literature,
as evidenced by various works, such as [9,25] and their references.

The open unit ball Bd in Cd is defined as

Bd :=

{
η = (η1, . . . , ηd) ∈ Cd ; ‖η‖2

2 :=
d

∑
k=1
|ηk|2 < 1

}
.

An alternative joint A-seminorm for S = (S1, . . . , Sd) ∈ LA1/2(F )d was introduced
in [27]. This joint A-seminorm is called the Euclidean A-seminorm. It is denoted by ‖S‖A
and defined as follows:

‖S‖e,A = sup
(η1,...,ηd)∈Bd

‖η1S1 + . . . + ηdSd‖A.

Below is a description of the first result we obtained in this section.
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Theorem 2. For any S = (S1, . . . , Sd) ∈ LA1/2(F )d and µ1, . . . , µd ∈ C, the following result
holds:

∥∥∥∥∥ d

∑
i=1

µiSi

∥∥∥∥∥
2

A

≤



max
1≤i≤d

|µi|2‖S‖2
A;

(
d
∑

i=1
|µi|2µ

) 1
µ
(

d
∑

i=1
‖Si‖2ν

A

) 1
ν

, where µ > 1, 1
µ + 1

ν = 1;

d
∑

i=1
|µi|2 max

1≤i≤d
‖Si‖2

A,

+



max
1≤i≤d

|µi|2 ∑
1≤i 6=j≤d

ωA

(
S]A

j Si

)
;

(d− 1)
1
α

(
d
∑

i=1
|µi|2α

) 1
α
(

∑
1≤i 6=j≤d

ω
β
A

(
S]A

j Si

)) 1
β

,

where α > 1, 1
α + 1

β = 1;

(d− 1)
d
∑

i=1
|µi|2 max

1≤i 6=j≤d
ωA

(
S]A

j Si

)
.

Proof. By applying Corollary 2 to Xi = Six, we obtain the following result:

∥∥∥∥∥ d

∑
i=1

µiSix

∥∥∥∥∥
2

A

≤



max
1≤i≤d

|µi|2
d
∑

i=1
‖Six‖2

A;

(
d
∑

i=1
|µi|2µ

) 1
µ
(

d
∑

i=1
‖Six‖2ν

A

) 1
ν

, where µ > 1, 1
µ + 1

ν = 1;

d
∑

i=1
|µi|2 max

1≤i≤d
‖Six‖2

A,

(9)

+



max
1≤i≤d

|µi|2 ∑
1≤i 6=j≤d

∣∣∣〈S]A
j Six, x

〉
A

∣∣∣;

(d− 1)
1
α

(
d
∑

i=1
|µi|2α

) 1
α
(

∑
1≤i 6=j≤d

∣∣∣〈S]A
j Six, x

〉
A

∣∣∣β) 1
β

,

where α > 1, 1
α + 1

β = 1;

(d− 1)
d
∑

i=1
|µi|2 max

1≤i 6=j≤d

∣∣∣〈S]A
j Six, x

〉
A

∣∣∣
for x ∈ F .

Keep in mind that

sup
x∈SA

F

∥∥∥∥∥ d

∑
i=1

µiSix

∥∥∥∥∥
2

A

=

∥∥∥∥∥ d

∑
i=1

µiSi

∥∥∥∥∥
2

A

,

sup
x∈SA

F

d

∑
i=1
‖Six‖2

A = ‖S‖2
A,

sup
x∈SA

F

(
d

∑
i=1
‖Six‖2ν

A

) 1
ν

≤
(

d

∑
i=1
‖Si‖2ν

A

) 1
ν
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and
sup
x∈SA

F

max
1≤i≤d

‖Six‖2
A = max

1≤i≤d
‖Si‖2

A.

Moreover, it is clear that

sup
x∈SA

F

∑
1≤i 6=j≤d

∣∣∣〈S]A
j Six, x

〉
A

∣∣∣ ≤ ∑
1≤i 6=j≤d

ωA

(
S]A

j Si

)
,

sup
x∈SA

F

(
∑

1≤i 6=j≤d

∣∣∣〈S]A
j Six, x

〉
A

∣∣∣β) 1
β

≤
(

∑
1≤i 6=j≤d

ω
β
A

(
S]A

j Si

)) 1
β

and
sup
x∈SA

F

max
1≤i 6=j≤d

∣∣∣〈S]A
j Six, x

〉
A

∣∣∣ = max
1≤i 6=j≤d

ωA

(
S]A

j Si

)
.

By computing the supremum over all x ∈ SA
F in the inequality (9) and then utilizing its

subadditivity property, we are able to obtain the desired result.

Corollary 4. Let S = (S1, . . . , Sd) ∈ LA1/2(F )d. Then

‖S‖2
e,A ≤ max

1≤i≤d
‖Si‖2

A + (d− 1) max
1≤i 6=j≤d

ωA

(
S]A

j Si

)
. (10)

Proof. We obtain from Theorem 2:∥∥∥∥∥ d

∑
i=1

µiSi

∥∥∥∥∥
2

A

≤
d

∑
i=1
|µi|2

[
max
1≤i≤d

‖Si‖2
A + (d− 1) max

1≤i 6=j≤d
ωA

(
S]A

j Si

)]
.

Taking the supremum over the set Bd for (µ1, . . . , µd) yields that

‖S‖2
e,A = sup

(µ1,...,µd)∈Bd

∥∥∥∥∥ d

∑
i=1

µiSi

∥∥∥∥∥
2

A

≤ sup
(µ1,...,µd)∈Bd

d

∑
i=1
|µi|2

[
max
1≤i≤d

‖Si‖2
A + (d− 1) max

1≤i 6=j≤d
ωA

(
S]A

j Si

)]
= max

1≤i≤d
‖Si‖2

A + (d− 1) max
1≤i 6=j≤d

ωA

(
S]A

j Si

)
.

The desired result (10) is thereby proven.

Theorem 3. Suppose that S = (S1, . . . , Sd) ∈ LA1/2(F )d. Then,

ω2
A(S) ≤ max

1≤i≤d
{ωA(Si)}

{
‖S‖2

A + ∑
1≤i 6=j≤d

ωA

(
S]A

j Si

)} 1
2

. (11)

Moreover, we have

ω2
A(S) ≤

(
d

∑
i=1

ω
2p
A (Si)

) 1
2p

(

d

∑
i=1
‖Si‖

2q
A

) 1
q

+ (d− 1)
1
p

(
∑

1≤i 6=j≤d
ω

q
A

(
S]A

j Si

)) 1
q


1
2

for p, q > 1, 1
p + 1

q = 1.
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Proof. Based on inequality (5), we can conclude that for yi = Six, the following estimate is
satisfied:

d

∑
i=1

∣∣∣〈x, Six
〉

A

∣∣∣2 ≤ ‖x‖A max
1≤i≤d

∣∣∣〈x, Six
〉

A

∣∣∣{ d

∑
i=1
‖Six‖2

A + ∑
1≤i 6=j≤d

∣∣∣〈S]A
j Six, x

〉
A

∣∣∣} 1
2

,

for x ∈ F .
If we take the supremum over x ∈ SA

F , then we obtain

ω2
A(S) = sup

x∈SA
F

(
d

∑
i=1

∣∣∣〈x, Six
〉

A

∣∣∣2)

≤ sup
x∈SA

F

‖x‖A max
1≤i≤d

∣∣∣〈x, Six
〉

A

∣∣∣{ d

∑
i=1
‖Six‖2

A + ∑
1≤i 6=j≤d

∣∣∣〈S]A
j Six, x

〉
A

∣∣∣} 1
2


≤ sup
x∈SA

F

(
max
1≤i≤d

∣∣∣〈x, Six
〉

A

∣∣∣) sup
x∈SA

F

{
d

∑
i=1
‖Six‖2

A + ∑
1≤i 6=j≤d

∣∣∣〈S]A
j Six, x

〉
A

∣∣∣} 1
2

≤ max
1≤i≤d

{ωA(Si)}

 sup
x∈SA

F

d

∑
i=1
‖Six‖2

A + sup
x∈SA

F

∑
1≤i 6=j≤d

∣∣∣〈S]A
j Six, x

〉
A

∣∣∣


1
2

≤ max
1≤i≤d

{ωA(Si)}

‖S‖2
A + ∑

1≤i 6=j≤d
sup
x∈SA

F

∣∣∣〈S]A
j Six, x

〉
A

∣∣∣


1
2

= max
1≤i≤d

{ωA(Si)}
{
‖S‖2

A + ∑
1≤i 6=j≤d

ωA

(
S]A

j Si

)} 1
2

,

which proves (11).
By employing (6), we can deduce that for yi = Six, the following inequality holds:

d

∑
i=1

∣∣∣〈x, Six
〉

A

∣∣∣2 ≤ ‖x‖A

(
d

∑
i=1

∣∣∣〈x, Six
〉

A

∣∣∣2p
) 1

2p

×


(

d

∑
i=1
‖Six ‖

2q
A

) 1
q

+ (d− 1)
1
p

(
∑

1≤i 6=j≤d

∣∣∣〈S]A
j Six, x

〉
A

∣∣∣q) 1
q


1
2

,

for x ∈ F and p > 1, 1
p + 1

q = 1. So, the second inequality in Theorem 3 can be obtained by

taking the supremum over x belonging to SA
F .

Remark 6. For p = q = 2, in Theorem 3, we obtain

ω2
A(S) ≤

(
d

∑
i=1

ω4
A(Si)

) 1
4

(

d

∑
i=1
‖Si‖4

A

) 1
2

+ (d− 1)
1
2

(
∑

1≤i 6=j≤d
ω2

A

(
S]A

j Si

)) 1
2


1
2

.
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Theorem 4. Assuming the conditions of Theorem 2, we obtain the following:

‖S‖4
A ≤



d
∑

i=1
‖Si‖4

A;

d
1
µ

(
d
∑

i=1
‖Si‖4ν

A

) 1
ν

, where µ > 1, 1
µ + 1

ν = 1;

d max
1≤i≤d

‖Si‖4
A,

(12)

+



∑
1≤i 6=j≤d

ωA

(
S]A

j SjS
]A
i Si

)
;

[d(d− 1)]
1
α

(
∑

1≤i 6=j≤d
ω

β
A

(
S]A

j SjS
]A
i Si

)) 1
β

, where α > 1, 1
α + 1

β = 1;

d(d− 1) max
1≤i 6=j≤d

ωA

(
S]A

j SjS
]A
i Si

)
.

Proof. If we substitute θi = 1 and yi = S]A
i Six in Theorem 1, then

(
d

∑
i=1
‖Six‖2

A

)2

≤ ‖x‖2
A ×



d
∑

i=1

∥∥∥S]A
i Six

∥∥∥2

A
;

d
1
µ

(
d
∑

i=1

∥∥∥S]A
i Six

∥∥∥2ν

A

) 1
ν

, where µ > 1, 1
µ + 1

ν = 1;

n max
1≤i≤d

∥∥∥S]A
i Six

∥∥∥2

A
,

(13)

+ ‖x‖2
A ×



∑
1≤i 6=j≤d

∣∣∣〈S]A
j SjS

]A
i Six, x

〉
A

∣∣∣;

[n(d− 1)]
1
α

(
∑

1≤i 6=j≤d

∣∣∣〈S]A
j SjS

]A
i Six, x

〉
A

∣∣∣β) 1
β

,

where α > 1, 1
α + 1

β = 1;

n(d− 1) max
1≤i 6=j≤d

∣∣∣〈S]A
j SjS

]A
i Six, x

〉
A

∣∣∣
for x ∈ F .

Observe that
sup
x∈SA

F

∥∥∥S]A
i Six

∥∥∥2

A
=
∥∥∥S]A

i Si

∥∥∥2

A
= ‖Si‖4

A,

sup
x∈SA

F

∥∥∥S]A
i Six

∥∥∥2ν

A
= ‖Si‖4ν

A

and
sup
x∈SA

F

∣∣∣〈S]A
j SjS

]A
i Six, x

〉
A

∣∣∣ = ωA

(
S]A

j SjS
]A
i Si

)
.

The desired result (12) can be obtained by taking the supremum in (13) over x ∈ SA
F and

using the subadditivity property of the supremum.
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5. Conclusions

In conclusion, this article presents new findings on Boas–Bellman-type inequalities in
semi-Hilbert spaces, offering valuable insights into their properties and applications. These
spaces are generated by semi-inner products induced by positive and positive semidefinite
operators. By deriving novel inequalities relating to the joint A-numerical radius, joint
operator A-seminorm, and Euclidean A-seminorm of tuples of semi-Hilbert space operators,
we establish connections that enhance our understanding of these measures. Furthermore,
assuming A as a non-zero positive operator adds applicability to our results.

This work not only contributes to the understanding of semi-Hilbert spaces and
their implications in multivariable operator theory but also provides a starting point for
future research. It opens up possibilities for exploring new results and other types of
inequalities in semi-Hilbert spaces, which can advance the field and provide insights into
functional analysis and operator theory. The findings presented here lay the foundation for
further investigations and offer researchers the opportunity to delve into the intricacies of
semi-Hilbert spaces, ultimately advancing the knowledge and application of these spaces.
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