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A B S T R A C T   

Digital twin, a technology bridging the physical and digital domains, has found extensive application in digitally 
advanced industries. However, its adoption in the construction sector remains limited, hindered by challenges 
related to construction, integration with real-time data capture, and visualisation platforms. This paper presents 
a construction industry digital twin that combines Building Information Modelling-based data visualisation with 
an Internet of Things-driven live data capture platform, outlining a methodology for its development. The digital 
twin was implemented in a university library embodying the ‘Living Lab’ concept to account for the nuances 
associated with live environments. It integrates sensors with Building Information Modelling to offer a semiotic 
representation of the library's internal conditions in digital twin, empowering facility managers to proactively 
optimize thermal, lighting, and air quality.   

1. Introduction 

Conventional facilities management relies on Building Automation 
Systems (BAS) for monitoring and controlling buildings and other fa-
cilities. The coordination of activities depends on human efforts with 
limited automation through the Internet of Things (IoT) devices [17,28]. 
To be able to achieve efficient and reliable management of facilities, 
there is a need to embrace emerging digital technologies. This need has 
given prominence to Building Information Modelling (BIM), which 
provides access to rich semantic information regarding the graphical 
and non-graphical data of the building [23,48]. Notwithstanding, BIM 
works with static data and therefore has limitations regarding access to 
real-time data for building operations [45]. Further, Lu et al. [35] 
mentioned that currently, BIM lacks the capability to completely 
enhance the management of buildings and other facilities. This requires 
the integration of IoT sensor devices to aid in harnessing real-time data 
to provide content-rich BIM models. Further, the data need to be stored 

and securely shared to assist facility managers to make informed de-
cisions in critical situations regarding the operation and maintenance of 
buildings and other facilities. One significant technology that has the 
capability to comprehensively meet and address some of these needs is 
the concept of digital twin (DT). These key needs include access to dy-
namic and real-time data, the current and future status of the facility/ 
building, up-to-date requirements for effective building operation and 
maintenance, energy consumption optimisation, performance manage-
ment, maintenance management, structural health monitoring, and 
continuous provision of updated representation of the current state of 
the building/facility to enhance decision-making among others. DT in-
tegrates other emerging technologies like machine learning, artificial 
intelligence (AI) and data analytics to help in making much more 
informed decisions regarding the operation as well as maintenance of 
buildings and other facilities [46,58]. 

Previous studies within the construction domain have established the 
abilities of DT to enhance the management of buildings and other built 
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environment facilities. For instance, Lu et al. [34] developed a DT at the 
building and city levels and presented a demonstrator of a building DT 
located on the West Cambridge site. The authors established the rele-
vance of DT to facility management. Wang et al. [57] presented a BIM- 
based IoT-driven DT for inspecting environmental conditions during 
COVID time. The authors indicated that DT has the potential to enhance 
indoor health as well as well well-being in COVID situations. In addition, 
Lin and Cheung [32] developed a BIM-based/ wireless sensor networks 
(WSNs) DT for monitoring the environment of an underground parking 
garage in smart cities. The authors also established that the DT system 
offers a platform that is efficient and enhances safety in the monitoring 
of the environmental conditions in garages. Although some works have 
been carried out in the construction industry regarding the adoption of 
DT, the technology has seen minimal adoption and utilisation in the 
industry [45]. This reluctance in embracing DT technology is because of 
the difficulties surrounding the development of DTs. These challenges 
include the requirement for the integration of a visualisation platform 
with a data capture platform, precisely, a live stream data capture 
platform [49,57]. There are also too many available technologies and 
this makes it extremely difficult to select the appropriate technology at 
any given time [32]. Also, the selection of an appropriate digital plat-
form for capturing data dynamically and in real-time presents substan-
tial challenges [32]. Finally, there is also a lack of education, skills and 
standardization regarding the development of DT [46]. This study, 
therefore, aims to provide an indication of how to select an appropriate 
digital platform that captures data dynamically and in real-time, select 
an appropriate visualisation platform and integrate the live data with 
the visualisation platform to build a DT. 

Further, it is noted from the available literature that little attention 
has been focused on educational buildings regarding the utilisation of 
DT [46]. Educational buildings exhibit constant interactions with their 
occupants and have greater population density compared to commercial 
and residential buildings [16]. One significant building within the 
educational sector that is worth discussing, in terms of usage by its oc-
cupants is the library building. A study in the University of Illinois 
Chicago library revealed that 90% of the students in the University used 
the library [50]. Thus, a much higher percentage of time and in-
teractions are experienced in library buildings. It is worth mentioning 
that the DT of a library building is not different from that of other 
buildings. However, there are significant differences between the re-
quirements and features of a library building and other buildings. This 
study focuses on the interactions in the library to improve occupants' 
comfort and energy consumption. A BIM-based and IoT-driven DT of a 
library building is developed using a system architecture that is imple-
mented through the development of a demonstrator for the John Phillips 
Library building at Western Sydney University in Australia. This 
demonstrator is to experiment with the ‘Living Lab’ concept across 
universities. The developed system supports a synchronous analysis of 
the indoor environmental conditions data and digital description of the 
‘Living Lab’ (geometries and locations) for enhanced automation in 
environmental conditions monitoring for occupants' comfort and energy 
consumption optimisation. The contributions of this study lie in the fact 
it provides an exemplar for similar works to be undertaken in creating a 
DT. The application domain is also unique since it is one of the pio-
neering studies in educational buildings focusing on occupants' comfort 
and energy consumption improvements. Further, the study experiments 
on the ‘Living Lab’ concept across universities and provides DT de-
velopers with an opportunity to determine best practices in DT devel-
opment in the construction industry. Finally, the study provided some 
lessons learnt in DT development, which will be beneficial to researchers 
and industry stakeholders. 

The rest of the paper is organized as follows: Section 2 presents the 
literature review. Section 3 discusses the system architecture for DT 
development. The case study selected for this study and experiment 
detail is discussed in section 4. Section 5 elaborates on the development 
of the DT of the library building. Finally, the paper is concluded with 

implications for practice as well as future research directions in section 
6. 

2. Review of DT for smart facility management in educational 
buildings 

Smart facility management (SFM) refers to the integration of various 
technologies, processes, and systems to enhance the management of a 
particular facility. The fundamental requirements for SFM pitch on the 
access to real-time data that is integrated into a computing platform for 
intelligent analytics and decision-making. With the advent of Industry 
4.0, several cutting-edge technologies including BIM have been intro-
duced in facility management. BIM is a heavily technology-driven 
methodology utilised for improving the performance and efficiency of 
assets during their design, construction, operation, and maintenance 
phases [36]. The National BIM Guide separated the definition of BIM 
into two namely BIM as a product and BIM as a process [42]. As a 
product, BIM denotes a 3D parametric object and functional data. Whilst 
as a process, BIM refers to workflow-based modelling to achieve a crit-
ical collaborative information model. The National Institute of Building 
Science (NIBS) also defined BIM as a “digital representation of the 
physical and functional characteristics of a facility and a shared 
knowledge resource for information about a facility forming a reliable 
basis for decisions during its lifecycle from inception onwards” ([43], 
p.7). Notwithstanding these definitions, Eastman et al. [19] indicated 
that the main idea to enhance the understanding of BIM is the concept of 
parametric objects and how it differs from conventional 2D objects. 
Within the context of this study, BIM is viewed as a digital representa-
tion of the physical and functional characteristics of a facility and shared 
knowledge resources for information about the facility for improved 
decision-making and management. 

Although BIM-enabled facility management presents an object- 
oriented, parametric as well as machine-readable 3D database, the 
focus has mainly been on maintenance management and building op-
erations. However, one key activity of facility managers has to do with 
ensuring the comfort of the facility's occupants [14] and that is difficult 
to manage with BIM. Also, the lack of realistic as-built together with 
outdated and insufficient building information hinders the utilisation of 
BIM for facility management in existing buildings [9]. This unavail-
ability of adequate building information, therefore, results in inefficient 
management of the building, excessive increase in cost and time as well 
as uncertain building management outcomes. 

The available literature has, therefore, acknowledged the need to 
advance the capabilities of BIM to ensure SFM. For instance, Kim et al. 
[30] found out that the information in BIM is not adequately transferred 
from the construction phase to the operational phase to ensure adequate 
facility management. Although, there is a need to present high-quality 
data to facility managers for efficient and effective management. 
Further, the lack of adequate data in the as-built BIM models limits its 
potential in the operation and management of the facility [37]. In 
another study by Shalabi and Turkan [51], it was reported that the data 
gathered from facility management systems such as building manage-
ment systems (BMS) are limited in capabilities regarding visualisation 
and interoperability. A very significant technology that has the potential 
to address most of these issues in facility management is the concept of 
DT. DT possesses the ability to coordinate several models across the 
lifecycle of the system [7]. It can then be used to simulate the character, 
conditions and status of the physical asset for various decision-making 
regarding the management, operation and comfort of the facility's oc-
cupants. To articulate this study, a DT refers to a dynamic digital rep-
resentation of a physical asset, processes as well as systems using IoT 
devices and occupants' feedback information [11,25]. As mentioned by 
Xu et al. [58] and Opoku et al. [45], the technologies that are currently 
supporting the application of DT in the construction industry are WSNs, 
BIM, data analytics and machine learning. 

Further, within the construction industry, Lin and Cheung [32] 
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reported that an application of DT could be derived from the combina-
tion of BIM and WSNs. The authors stated that the combined BIM and 
WSNs present an active real-time model with useful information for the 
operation and management of buildings. BIM offers parameterised and 
digitalised information regarding the building in a 3D illustrative model 
to assist in planning, designing, construction and management through 
visualisation capabilities [3]. Whilst WSNs present a network of sensor 
nodes that is capable of monitoring, communicating, judging and 
reacting to external conditions [15]. 

There have been some studies focusing on the integration of BIM and 
WSNs technologies as applications of DT in the construction industry. 
For instance, Wang et al. [57] presented a BIM-based IoT-driven DT for 
inspecting environmental conditions during the COVID-19 pandemic. 
Tsai et al. [55] proposed a novel approach for corrosion prediction 
under insulation using sensing technology and mathematical modelling 
of corrosion in a BIM-based system. Lin and Cheung [32] developed an 
innovative monitoring as well as a control system for environmental 
management in an underground garage using BIM and WSNs technol-
ogies. Dave et al. [18] presented a platform for integrating the built 
environment data with IoT sensors in a campus-wide deployment to 
provide energy usage, user comfort and occupancy information. Jiang 
et al. [27] presented a DT-enabled smart modular integrated construc-
tion with a robotic demonstration for re-engineered on-site assembly. 
Rao et al. [47] presented an extensive and up-to-date review of the 
available literature on real-time monitoring of construction projects. 
The integration of BIM and sensors have been applied severally in the 
automation of facilities to enhance the intelligence of buildings [32]. 

Notwithstanding the efforts geared towards the integration of WSNs 
and BIM technologies, only a few studies have been directed towards the 
educational sector. It must be noted that the educational sector has a 
highly dynamic environment and presents excellent avenues for active 
utilisation by researchers in developing emerging technologies. This 
study, therefore, focuses on the above-mentioned context for enhancing 
decision-making in managing buildings. 

3. System architecture for DT development 

This research offers a system architecture for developing the digital 
twin of the library building. Several system architectures for developing 
DT have been proposed in the literature. These system architectures 
have been based on either three, four, or five architectural layers or 
components. For instance, Tsai et al. [55] developed a system archi-
tecture for predicting corrosion under insulation using three distinct 
layers comprising a user interface, logic, and data layers. Lin and 
Cheung [32] presented a system architecture for developing an 
advanced monitoring and control system for monitoring an under-
ground parking garage. The authors created a four-layered system ar-
chitecture comprising a sensor layer, database layer, application layer, 
and presentation layer. Lu et al. [34] developed also a system archi-
tecture for DT specifically designed at both the building and city levels. 
The authors presented a five-layered system architecture that comprised 
data acquisition, transmission, digital modelling, data/model integra-
tion, and service layers. Finally, Schweigkofler et al. [49] offered a four- 
layered system architecture for energy management to include data 
acquisition, data integration, data visualisation, and data analysis 
layers. Notwithstanding the diverse presentations of the system archi-
tecture for DT development by different researchers, the key compo-
nents should be a layer for data acquisition, data communication and 
storage, data modelling and integration, and finally, data analysis, and 
visualisation. It was realised that presenting the system architecture in 
five layers was merely separating the modelling and integration com-
ponents, which could be combined to present a more concise and 
focused understanding of the architecture. Also, utilising a three-layered 
system architecture would not present a better understanding of the 
architecture since some of the components would have to be integrated 
thereby, providing limited detail in the architecture. 

Based on simplicity, communication efficiency and types of sensor 
devices used, a four-layered system architecture for developing the BIM- 
based and IoT-driven DT system for improving the indoor environmental 
conditions in the “Living Lab” was developed. Although three, four, or 
five-layered system architectures for DT development have been re-
ported by other works, this current study used a four-layered architec-
ture similar to that of Lin and Cheung [32] and Schweigkofler et al. [49] 
since that is more logically representing and better fits the components 
to be presented in this study. As shown in Fig. 1, the architecture is 
composed of four essential components: data acquisition, data commu-
nication and storage, data and model integration, and data analysis and 
visualisation components. These components are discussed in the sub-
sequent subsections to present an overview of the architecture utilised in 
developing the DT of the library building. 

3.1. Data acquisition component 

In developing the DT of the library building, the foundation of the 
system is the data acquisition component. The design and selection of 
the data acquisition mechanism are very essential and challenging. This 
is due to the large volume and complexity of the data. Further, it be-
comes more challenging in terms of the data type, format, source, and 
content. In addition, there are several techniques when considering data 
collection. These include contactless techniques, for instance, distrib-
uted IoT sensor systems, radio-frequency identification (RFID), wireless 
communication, and mobile access (WiFi environment). For instance, 
Tsai et al. [55] utilised RFID readers to read tags on-site and commu-
nicate with a data hub in a local wireless internet environment. The hub 
then integrated all values of the readers and streams these values to the 
system via Hypertext Transfer Protocol (HTTP) request. Another study 
by Lin and Cheung [32] used a WSNs system to collect data and transmit 
it to a router for data storage. Lu et al. [34] also utilised data stored in 
Building Management System (BMS) and Monnit wireless sensors for 
developing a DT. Wang et al. [57] used Arduino-based wireless sensing 
devices to automatically read signal inputs to convert them to digital 
outputs. 

In selecting the data acquisition devices, initial consideration was 
given to using the Raspberry Pi microcomputer. Although connecting 
Raspberry Pi with sensors and deploying a code that uses TCP/IP pro-
tocol was viewed as one of the most cost-efficient methods, the 
complexity of implementing such an architecture was going to be very 
much higher. There is also the need to accurately calibrate the sensors to 
collect the data using Raspberry Pi devices. Furthermore, developing the 
frontend and backend software as well as troubleshooting the issues 
involved in collecting the data on different software layers was going to 
be time-consuming. In addition, a fleet of Raspberry Pi devices requires a 
separate software layer for their management. 

Further, there is also an issue with implementing Raspberry Pi de-
vices on university campuses specifically relating to internet connec-
tivity. To connect to the internet on university campuses, users are 
required to input their student/staff credentials. Alternatively, the uni-
versity could create separate login credentials for all IoT devices. 
However, this comes with a security risk where the credentials are 
subject to compromise with the devices. Due to the constraints associ-
ated with using Raspberry Pi devices, there was the need to resort to an 
alternative approach to address the data acquisition in the library 
building. The LoRa end devices (sensors) were therefore selected for 
data acquisition (see Fig. 1). LoRa, a modulation technology that allows 
the transmission of data over long-range (i.e. up to 20 km) within an 
outdoor environment presented an opportunity for connectivity over 
longer distances [1]. The long-distance connectivity together with the 
low energy consumption of LoRa made it extremely useful for LP-WAN 
technologies applications in IoT [12]. Data was sent from the end de-
vices of LoRa to a gateway via a single wireless hop. Further, the 
gateway was then connected to the network server using a non- 
LoRaWAN network, thereby providing a bidirectional communication 
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protocol [52]. LoRa sensors and LoRaWAN communication can over-
come the issues arising from using Raspberry Pi end devices [59]. More 
specifically, LoRa sensors do not need much calibration relative to the 
sensors connected to the Raspberry Pi. GSM router works as a gateway 
for LoRa sensors that communicates with the Things Network over 
LoRaWAN, thereby implementing a system that becomes independent of 
the university campus' internet connectivity (see Fig. 1). 

3.2. Data communication and storage 

The data communication and storage component aims at sending the 
data to the gateway and network server. Several data communication 
technologies could be utilised in this component which includes short- 
range coverage access network technologies including WiFi, near-field 
communication (NFC), Zigbee, and Z-Wave [21]. Also, the wider 
coverage access network technologies include low-power wide-area 
networks (LP-WAN), long-term evolution (LTE), 3G, 4G, and 5G [44]. 
Notwithstanding the upsurge in technology developments, the most 
utilised wireless local-area network (WLAN) technology is WiFi. Though 
WiFi is the normally used WLAN technology, there are several security 
issues when developing a DT of a building [31]. Nathali Silva et al. [41] 
however mentioned that LP-WAN and light fidelity (Li-Fi) network 
technologies are good alternatives for wide-range coverage when 
considering transmission speed and energy efficiency of networks in 
developing digital twin of buildings. Wang et al. [57] mentioned that, in 
terms of using Arduino microcontroller boards for data transmission, 
direct connections via wired cables are excessively expensive and inef-
fective. This connectivity would therefore require the programming of 
the microcontrollers to link up with a WiFi network. Subsequently, the 
WiFi network would then transmit the data to a distributed Internet 
Protocol (IP) address [57]. This process is quite laborious and tedious. 
Thus, the current study resorted to using a gateway that uses GSM for 
data communication. 

Additionally, the gateway uses GSM for creating its network specif-
ically for the LoRa end devices (sensors). The LoRa sensors and the 
gateway were located in two different buildings. Since LoRa sensors can 
transmit over long distances, the data collection was continuous and 
uninterrupted. This study used MultiTech Conduit AP, which is the 

Accept Point for LoRa Technology [33]. The Conduit AP access point 
allows the extension of LoRa connectivity and provides coverage in 
hard-to-reach areas [40]. The gateway was set up as Packet Forwarder, 
receiving Lora packets from end devices and forwarding them to a cloud 
network server, “The Things Network” (TTN) using an IP/UDP link (see 
Fig. 1). The gateway also reduces upstream communication and opera-
tional cost while providing Ethernet IP backhaul or optional 4G-LTE IP 
backhaul [40]. The use of GSM ensures that the network is independent 
of the university's network connectivity. In addition, the MultiTech 
Conduit AP is easy to install and deploy in terms of setting up data 
communication and storage. The deployment of the LoRaWAN network, 
gateway, and sensors on the university premises presents a unique 
challenge regarding power availability and the complexity of installa-
tion tasks. MultiTech Conduit AP addresses these challenges by 
providing various models with several power options that include 
powering over Ethernet [40]. Furthermore, TTN provides a set of tools 
and a global network that allows users to build an IoT application at a 
low cost while providing maximum security and scalability [54]. In 
addition, “The Things Stack” provides easy tools to use and set up with 
the LoRa end devices (sensors). It is a LoRaWAN Network Server that 
securely manages applications, end devices, and gateways [54]. Addi-
tionally, the Things Stacks minimizes the time it would have taken to 
build a backend software from scratch instead of collecting the data. 
Furthermore, TTN manages the data collection and the fleet of end de-
vices and transmits the data to the TagoIO platform, which stores the 
time-series data in a database [53]. The platform can then be used to 
create dashboards to observe real-time data. 

3.3. Data and model integration component 

BIM applications allow the user to visualise the sensor data via a 3D 
BIM model and create user-defined extensions that aid the achievement 
of specific functions and objectives [55]. The data and model integration 
component aims at integrating real-time data with the 3D BIM model. 
For instance, Lu et al. [34] and Schweigkofler et al. [49] developed 3D 
BIM models using Autodesk Revit software (.rvt) and utilised Autodesk 
Forge Application Programming Interface (API) for visualisation. 
Particularly, the authors utilised a web-based program design using Java 

Fig. 1. System architecture for DT development.  
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script and C# programming language. However, Schweigkofler et al. 
[49] utilised Visual Studio Code for the integration. Moreover, Lin and 
Cheung [32] used Autodesk Revit software for developing the 3D BIM 
model and adopted a Navisworks API for the visualisation of the data. 
The authors then integrated the model and sensor data using C# ap-
plications. Another study by Tsai et al. [55] utilised a web-based 3D BIM 
model and used Autodesk Forge API for data visualisation. Wang et al. 
[57] developed a 3D BIM model in Autodesk Revit software and used 
Autodesk Dynamo Studio and Python scripting for the integration of the 
model and sensor data. 

This study, therefore, used the TTN database, 3D BIM model, WSNs, 
and C# applications for their integration. Thus, the component has a 
dynamic 3D BIM model for integrating the location-specific conditions 
of the six selected group study rooms in the library. The measured 
temperature, humidity, light, carbon dioxide (Co2), and total volatile 
organic compounds (TVOC) values together with their corresponding X- 
Y curve diagrams are shown in real-time on a specific window. When a 
specific date and time are selected, the conditions of the selected room 
are displayed in both the data blocks and X-Y curve diagrams. To do this, 
a 3D BIM model was created using version 2020 of the Autodesk Revit 
software. The sensor devices were represented by creating a unique 
family. This unique family represented the real position of the sensors in 
the university library. The sensors installed in the library were devel-
oped as types under the sensor family with variable type and instance 
properties. A parameter was created for the sensor family and catego-
rized under Identity Data. The Identity Data is a section in the Type 
Properties window that has the family type's identification parameters. 
Thus, it contains the parameters for the name, location as well as the 
sensor's activation state. Another parameter was also created to cater for 
the indoor environmental parameters being measured. A unique al-
phanumeric ID was used to define each of the virtual sensors that were 
created in the 3D model. These unique alphanumeric IDs correspond to 
the specific locations and positions of the various sensor devices in the 
physical library building. The ID is generated automatically and has the 
group study room's number to uniquely and accurately identify the 
various sensor devices. Subsequently, the created 3D BIM was uploaded 
to the Autodesk Revit software to display the model content in 3D 
viewer. The sensor data was then read using the created Revit plug-in 
from the TagoIO server via the API. Further, the data ID was linked 
with the corresponding rooms in the Revit model and the volume of each 
room was configured. Following that, each of the rooms was divided 
according to the number of data types (i.e. divide each room into six 
equal parts to visualise the six measured data types or parameters from 
the sensors). Finally, the created individual volumes were colorized to 
represent the data retrieved from the sensors. 

Further, to achieve the data and model integration, a dynamic data 
integration process was created between the 3D BIM model (.rvt) and 
IoT sensor devices. This was done by mapping and connecting the sensor 
data from the TagoIO database to the sensor family in the model created 
in Autodesk Revit software. The software possesses an API service that 
allows the development of scalable and customised solutions to solve 
problems relating to the design and engineering of assets. The sensor 
data was extracted from a commercial platform (i.e. TagoIO database) 
using Restful API via HTTP requests in JSON format. In addition, 
Autodesk Revit API was used to create a plug-in that was written in C# 
programming language (i.e.,.NET framework). The C# programming 
language was chosen based on its object-oriented as well as component- 
oriented nature. Autodesk Revit C# SDK (i.e. from Autodesk developer 
centre) was used to create a panel layout contained in the plug-in. 
Further, a controller was then created using Autodesk Revit API to ac-
cess the BIM data loaded in Revit. Following that, another controller was 
created using TagoIO API to access the sensor data. TagoIO provides an 
API that enables the usage of C# with web request for accessing the 
sensor data. 

3.4. Data analysis and visualisation component 

The data analysis and visualisation component is the implementation 
phase of the DT's system architecture. This phase allows the interaction 
between the user and the data and model integration of the DT. The user 
can analyse and visualise the conditions of the physical asset in this 
phase. Lin and Cheung [32] referred to this component as the presen-
tation layer, which visualises the dynamic model with the conditions 
data. The authors further mentioned that the component provides a user 
interface developed for managing the facility efficiently. Lu et al. [34] 
also referred to this component as the service layer, which interprets the 
data and enables interactions between the DT system and its users. The 
authors developed dashboards that could inform decision-making on 
services, such as the detection of anomalies in pumps, optimisation and 
prioritisation of maintenance activities, ambient environmental moni-
toring, and environmentally friendly urban energy planning. Wang et al. 
[57] in this phase presented dashboards to monitor the environmental 
conditions during the outbreak of the COVID-19 pandemic. Schweig-
kofler et al. [49] utilised the Autodesk Forge platform for visualising the 
monitored environmental conditions. 

In this study, the designed DT's system architecture was targeted at 
building and facilities management professionals to assist them in 
decision-making. In order to ensure that operation performances are not 
compromised, it is important to ensure that the optimised decisions are 
verified and manually confirmed in practice before implementation. 
This is a key requirement in the initial implementation phase of the DT 
[34]. The proof of concept of the DT was implemented using a university 
library building. The outputs of the combined 3D BIM model and the 
environmental conditions data are visualised in the professional BIM 
platform (i.e. Autodesk Revit). The platform enables the user to interact 
with the application and access spatial information in real-time on a 
dashboard. In order to visualise the data in a line chart, each line/ 
parameter with its assigned colour (see Fig. 5 and Fig. 9) was a type of 
data. The X-axis presented the time when the data collected and the Y- 
axis presented the value of the data. Thus, the presented graphs showed 
the real-time changes of the data on a specified date and time. In 
addition, the real-time data was reflected in the 3D volumes in the model 
using the volume transparency. This was to show the concentration of 
the data in each room once a specific room was selected. Subsequently, 
the indoor environmental conditions data retrieved from the IoT sensor 
equipment were analysed and compared with the recommended stan-
dards for an office space like the library. The developed system provides 
an option for retrieving monitored outputs in CSV file format for per-
forming further analysis. 

4. Case study for the development of the DT system 

This section presents the methodology for developing the DT system 
of the “Living Lab”. The study offers a flexible and scalable workflow for 
enabling the integration of IoT-BIM in a DT. This study developed and 
validated the new system using an experiment intended to collect, 
process and visualise real-time data for improved decision-making in 
facility management. The details of the methodology are presented in 
the following sub-sections. 

4.1. Overview of the building selected for the case study 

An existing University library building located on the Kingswood 
campus of Western Sydney University (WSU), Australia was chosen as 
the case study for this research. The library building was selected based 
on its constant interaction with its occupants. Furthermore, the case 
study was chosen in keeping with experimenting on the ‘Living Lab’ 
concept factoring in all nuances associated with live environments. The 
building is a five-storey building, has a total floor area of 6700m2 and a 
north-south orientation. The library building includes several spaces for 
the day-to-day running of the facility and includes; study spaces (open 

D.-G.J. Opoku et al.                                                                                                                                                                                                                            



Automation in Construction 157 (2024) 105188

6

study areas, student group study rooms, quiet study areas, silent study 
areas, and access rooms), printing areas, collection areas, and office 
spaces. There are several critical stakeholders of the library, which 
include library managers, librarians, students, and the University's Of-
fice of Estate and Commercial (OEC), which is responsible for the 
operation and maintenance requirements for the entire university. In 
addition, the stakeholders also include the University Facility Manage-
ment Team, which is responsible for the day-to-day operation and 
maintenance of specific buildings (in this case, the library building) on 
campus. 

Additionally, this study has narrowed its focus to the group study 
rooms on level 01 due to the extensive floor area, research limitations, 
and practicality. Furthermore, the choice of the group study rooms was a 
result of their constant interactions with the occupants of the library. 
There are six (6) group study rooms, which have a total floor area of 
86m2, and each room measures approximately 4 m × 3.5 m. The 
maximum capacity of each of the six group study rooms is between 6 and 
8 persons at any given time. Fig. 2 shows the selected library building 
utilised as the case study for this research. 

4.2. Model development and sensor deployment 

4.2.1. BIM model development 
The 3D model of the university library was designed within the BIM 

environment using the existing documentation available to the re-
searchers. Autodesk Revit 2020 software (.rvt file) was used as the 
modelling tool. The general overview of the model is presented in Fig. 3. 

The accuracy of the geometric representation of the library building 
and the positions of the sensors depends on the level of information 
needed. In this study, the geometrical information for most of the ele-
ments is mainly represented on a generic level whilst some elements like 
walls, doors, windows and sensors are represented in detail. The BIM 
environment has the advantage of being able to integrate different in-
formation types in a single model. For instance, the sensors possess in-
formation regarding real-time data on the indoor environmental 
parameters in the DT. Fig. 4 presents an example of the chosen group 
study rooms on level 01 utilised for the study. 

4.2.2. Semiotic representation of the indoor conditions of the building 
The visualisation of information and design of the user interface are 

essential components for enhanced building and facility management. 
The way and how information is represented and visualised presents a 
forelead in managing various conditions [22]. In the development of a 
DT of a building, the representation of the physical building's indoor 
environmental conditions is essential to present a clear picture for both 

the building or facility manager and the occupants of the building or 
facility. A clear distinction of how the conditions are represented 
together with the process of representation ultimately affects the man-
agement of the building's internal conditions. The meaning of signs and 
symbols is significantly dependent on the expectations of the sender of 
the information as well as the recipient of those signs and symbols [13]. 
A collective expectation is therefore highly important in enhancing the 
understanding of the various parties to the communication [10]. Semi-
otics, a concept that provides meaning and significance to a particular 
phenomenon using signs and symbols is utilised in developing the DT of 
the library building. The concept is employed in providing meaning to 
the indoor conditions and assisting in the visualisation of both the real- 
time and historical data on the measured parameters [20,38]. Semiotic 
representations therefore enhance the ability to efficiently and effec-
tively visualise, understand and manage the indoor conditions of the 
building. In this study, colour-coded data blocks are used to visualise, 
communicate and understand the conditions in the various rooms under 
consideration. 

Practically, the top shield of the BIM model structure would have to 
be modified, clipped or truncated to ensure that, the interior conditions 
and assets can be shown when operating the model. Furthermore, room 
components associated with the locations being monitored were created 
for the purpose of displaying the indoor environmental conditions and 
parameters. For example, a component added for temperature variations 
was altered to show the temperature difference in real-time through an 
indication of a colour-coded data block. The method is adopted to show 
the temperature, humidity, light (illumination), Co2, TVOC and motion 
(activity level) statuses in the six group study rooms (See Fig. 5). 

4.2.3. IoT sensor devices 
Several factors including the communication protocol, accuracy and 

aesthetics due to the delicate nature of the location for the sensor 
deployment were considered in selecting the sensors for the study. The 
planned location for the deployment was the university's library. Thus, 
wired sensors were ruled out because of the exorbitant cost of making 
them look good aesthetically. The study therefore considered Bluetooth- 
based sensors using Raspberry Pi or Arduino. Notwithstanding, these 
sensors were also ruled out due to their limited distance of operation. 
Additionally, the study considered WiFi-based sensors, however, they 
were also ruled out because of the Information Technology (IT) network 
security protocols of the university. The study therefore explored LoRa 
sensors that utilise GSM routers as gateways that communicate with the 
Things Network over LoRaWAN protocol. This eliminates the need to 
connect to the university network and allows for an independent 
collection of data. LoRaWAN is cost-effective both in terms of hardware 

Fig. 2. John Phillips Library on the Kingswood campus at WSU.  
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and operational expenses. The technology's long-range capabilities 
meant fewer gateways were needed to cover a large area, thereby, 
reducing infrastructure costs. It is worth mentioning that, this study used 
only one gateway (i.e. MultiTech Conduit® AP). The study opted for 
LoRa sensors (i.e. Milesight IoT sensors AM107 and AM307) that had 
multiple sensing capabilities in a single sensor providing the needed 
aesthetics. The configuration of the Milesight IoT sensors AM107 and 
AM307 via NFC also provided the easiness of maintenance and cali-
bration. Finally, the low power consumption of the Milesight IoT sensors 
AM107 and AM307 ensured the ease of maintenance for a considerable 
period of data collection. These cost and technical characteristics of the 
Milesight IoT sensors AM107 and AM307 met the requirements and 
thus, were selected for the study. The details of the sensors are presented 
below:  

• AM107 is a compact and integrated indoor ambience monitoring 
sensor for indoor environmental parameters (i.e. temperature, hu-
midity, light, Co2, TVOC) and motion. The accuracy of the temper-
ature sensor is ±0.3 ◦C and has a measurement range from -20 ◦C to 
+70 ◦C and a resolution of 0.1 ◦C. In addition, the humidity sensor 
has an accuracy of ±3%, a measurement range of 0–100% RH, and a 
resolution of 0.5% RH. In terms of the light sensor, the measurement 

range and accuracy are 60,000 lx (visible + IR, IR) and ± 30%, 
respectively. In addition, the Co2 sensor has an accuracy of ±30 ppm 
or ± 3% of reading, measurements ranging from 400 to 5000 ppm, 
and a resolution of 1 ppm. Finally, the accuracy, measurement range 
and resolution of the TVOC sensor are ±15%, 0-6000 ppb and 1 ppb, 
respectively.  

• AM307 is also a compact and integrated indoor ambience monitoring 
sensor for indoor environmental parameters (i.e. temperature, hu-
midity, light, Co2, TVOC) and motion. However, in addition to the 
aforementioned environmental parameters, the AM307 sensor also 
measures the fine particulate matter (PM2.5) that exists in the air. 
The diameter of the tiny particles normally measures lesser than 2.5 
μm and are able to travel deeper into the respiratory system of 
humans. The PM2.5 sensor has an accuracy of ±10 μg/m3 with 
measurement range and resolution of 0-1000 μg/m3 and 1 μg/m3, 
respectively. Regarding the temperature sensor, the accuracy is 
±1 ◦C, and the measurement range is -40 ◦C to 85 ◦C. The accuracy, 
measurement range and resolution of the humidity sensor are ±3%, 
0–100% RH and 0.5% RH, respectively. The Co2 sensor has an ac-
curacy of ±30 ppm or ± 3% of reading, measurements ranging from 
400 to 5000 ppm and a resolution of 1 ppm. Regarding the TVOC 
sensor, the accuracy is ±15% while the measurement range is 0–500 

Fig. 3. Overview of the BIM model of the university library.  

Fig. 4. An example of the group study room utilised in the study.  
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(IAQ index). The indoor air quality (IAQ) index quantifies the overall 
quality of the air within a building/ indoor space. IAQ index provides 
information about the concentration of various contaminants and 
pollutants in the air and thus, affects occupant comfort and health 
[39]. TVOC concentration is one of the factors used to quantify the 
IAQ index [24,39]. Meyer [39] indicated that TVOC is the summa-
tion of various classifications of organic compounds including Very 
Volatile Organic Compound (VVOC), an example is formaldehyde; 
Volatile Organic Compound (VOC), an example is benzene; and Semi 
Volatile Organic Compound (SVOC), an example is diisononyl 
phthalate. A high level of TVOC affects personal comfort, perception 
of cleanliness and health of building occupants [8,24,39]. 

In addition to the identified features of the selected IoT sensor de-
vices, both sensors could monitor the activity levels in the selected group 
study rooms. This was very important since occupancy densities in the 
room are vital to the operation of the library, especially in the post- 

COVID-19 era. This requires the installation of motion detectors in the 
selected rooms to detect their occupancies. The AM107 has a passive 
infrared (PIR) sensor that detects infrared signals in movements. The 
detection area is 940 horizontal and 820 vertical, the detection distance 
is 5 m and the output range is 0–65,535. Regarding the AM307, the 
detection area, detection range and status are 800 horizontal and 550 

vertical, and vacant/occupied, respectively. It is worth noting that no 
specific project accuracy requirements were documented at the start of 
the study. The temperature and humidity values of the AM107 and 
AM307 sensors were calibrated against known values in a controlled 
environment before deployment. The measured temperature on the 
sensors in comparison to the controlled room temperature for a period of 
24 h was within the range of ±1%. The sensors operated within the 
manufacturer's technical specifications and accuracy. Furthermore, the 
sensors' performance was continually tested and validated at different 
intervals by comparing the screen display data to the data on the display 
dashboard. The overall project accuracy was dependent on the sensor 
accuracy which was validated by the researchers and the accuracy of the 
data transmitted over the LoRaWAN protocol. All sensors operated 
within the manufacturer's range of accuracy during this project. 
Furthermore, the manufacturer provided different methods for cali-
brating the Co2 values of the AM107 and AM307 sensors. The study 
opted for the manual calibration/background calibration that defines 
the outdoor environment Co2 value as 400 ppm. Thus, each sensor was 
taken to the outdoor area where the Co2 value was adjusted to 400 ppm 
before deployment. The location of the IoT sensor devices in the moni-
tored rooms is illustrated in red dots in Fig. 7. 

5. Digital twin of the library building 

An approach for optimising the indoor environmental conditions in 
the library building is presented in the following sub-sections. It is worth 

Fig. 5. Semiotic representation of internal environmental conditions in the BIM model.  

Fig. 6. (a) Milesight AM107 sensor device Fig. 6. (b) Milesight AM307 
sensor device. 
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noting that, these conditions significantly affect the utilisation of energy 
in the building. The occupants-building interactions present quantita-
tive variables that have the possibility of influencing the overall energy 
usage and consumption, and comfort in the building [56]. The condi-
tions have the potential to significantly affect the occupants' produc-
tivity in the building [26]. 

5.1. Digital twin implementation process model 

Fig. 8 presents the processes followed in developing the DT of the 
library building. The processes consist of seven steps and include the 
development of a 3D BIM model for simulation, visualisation of the 3D 
BIM model on a cloud-based platform, real-time data visualisation on a 
cloud-based platform, real-time data for prediction, development of best 
practice guidelines for decision-making, real-time data support from 
digital twin, and control feedback to physical building for energy and 
indoor environmental conditions optimisation. As indicated in section 4, 
the 3D BIM model of the library building was developed using Autodesk 
Revit 2020 software (.rvt file) in the first stage. The model is then 
simulated to assess the energy consumption of the target group study 
rooms under consideration. These rooms were the identified rooms 
where sensors devices were installed to assess the indoor environmental 
conditions. Stages 2 and 3 are to visualise the 3D BIM model and real- 
time data from the sensor devices on a cloud-based platform. The out-
puts of the combined 3D BIM model and sensor data are visualised on a 
dashboard. The model can easily be explored by selecting the specific 
GSR with a designated sensor ID and specifying the quantity of data to 
visualise. The monitored indoor environmental parameter (temperature, 

Fig. 7. IoT sensors deployment in the target rooms.  

Fig. 8. Process model for digital twin implementation.  
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humidity, light, Co2, TVOC) and activity level of occupants are repre-
sented using colour-coded data blocks in the digital twin. The colour- 
coded data blocks present outputs of the data analysis in the digital twin. 

Further, both maximum and minimum range values are used to 
determine the visualised colour of the various monitored parameters. 
This is indicated as the transparency in the digital twin. The following 
colours are assigned to the various parameters; temperature – blue, 
humidity- yellow, light (illumination) – green, Co2 – red, TVOC – purple, 
and activity level – brown. In order to make the data meaningful to the 
user, the recommended standards for the library building have been 
added to compare with measured values and colour-coded data blocks. 
The dashboard enables the user to display both real-time data and any 
historical data depending on the specific date and time selected. This is 
possible once a specific GSR and sensor ID have been selected. A CSV file 
is also available for download once a specific timeframe is specified. This 
capability has been explored to analyse the time-series data from May to 
August 2022. This period spans the autumn and spring semesters of the 
academic calendar. The system has been active since May 2022. The 
findings from March 22, 2023, at 2:58 pm for the selected target room 
are presented in Fig. 9. Stage 4 entails comparing the occupants' views 
regarding their comfort in the library building with the recommended 
standards to aid in the development of the best practice guidelines. 
These guidelines are aimed at optimising energy consumption and in-
door environmental conditions of the library building. In stages 5 and 6, 
the developed guidelines together with the real-time and historical data 
are used to assist the facilities manager in making informed decisions 
regarding the building. Finally, control feedback is provided to the BMS 
to take suitable corrective actions in the physical library building. 

5.2. Evaluation and discussion of the results from the indoor 
environmental monitoring 

Fig. 9 shows the measurement of the indoor environmental condi-
tions in the target rooms. The overall temperature in the target rooms 
ranges from 19.6 ◦C to 24.8 ◦C. The highest temperature value is 
experienced in the target room located in the western part of the 
building. This is due to the fact that the western target rooms are glazed 

and oriented towards the east where the sun rises. In this situation, it is 
expected that the air temperature would be slightly higher. Notwith-
standing, due to the collection in the library, the temperature is nor-
mally lower than that which would be comfortable for humans. In 
comparison to the recommended standards in Table 1, the temperature 
threshold for a comfortable working environment in an office setting 
should be between 21 ◦C to 24 ◦C [4]. This infers that the library be-
comes so cold that it opposes a comfortable work environment which 
would advertently affect the productivity of the occupants [2,29]. The 
relative humidity is also steadily distributed in the monitored rooms. 
The highest of the humidity readings was 62.5% whilst the lowest was 
27.5%. Similarly, from Table 1, it can be seen that ASHRAE [4] rec-
ommends 40–60% RH for a comfortable office work environment. This 
means the conditions in the target rooms especially the lowest humidity 
significantly contribute to the heat index of the occupants. It must be 
noted that the reason for the even distribution of both temperature and 
humidity is that the monitored target rooms had limited exposure to 
daylight. In terms of illumination, the maximum and lowest readings 
were 268 lx and 1 lx, respectively. The lighting levels indicate the rooms 
are very clear and occupants can comfortably engage in their reading 
activities when compared to the recommended standards [6]. It must be 
noted that in order to better appreciate the DT system's functionality, a 
clearer view of the system is presented in Fig. 10. 

Additionally, the study also monitored the Co2 concentration in the 
target rooms with the highest reading being 1183 ppm and the lowest 

Fig. 9. Screenshot of indoor environmental conditions monitoring in DT.  

Table 1 
Recommended standards for monitored environmental parameters.  

Indoor Environmental Parameter Threshold References 

Temperature 21 - 24 ◦C ASHRAE 55 
Relative humidity 40–60% ASHRAE 55 
Lighting 320 lx (horizontal) 

160 lx (vertical) 
NABERS 
AS1680 

Co2 1000 ppm 
500 ppm 

ASHRAE 62 
Wargocki 2016 

TVOC 500 μg/m3 LEED V4/ NABERS  
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reading being 402 ppm. Compared to the recommended standard of 
1000 ppm [5] in Table 1, the highest reading is above the standard and 
raises health concerns. As expected in the post-COVID-19 era, air quality 
is an essential requirement due to the respiratory issues associated with 
the pandemic. TVOC was also measured and the highest reading was 
1083 ppb whilst the lowest reading was 4 ppb. These readings present a 
very unhealthy issue considering the air quality index, especially for 
occupants with respiratory diseases. Further, the results from the period 
under evaluation with an identified anomaly is presented in Fig. 10. 

The results in Fig. 10 reveal that temperature, humidity, illumina-
tion, Co2 and TVOC are 23.3 ◦C, 37.5% RH, 302 lx, 1095 ppm, and 115 
μg/m3 respectively. Comparing the findings in digital twin to the rec-
ommended standards for the library building, temperature and lighting 
levels were adequate for occupants' comfortable working space. How-
ever, humidity level was slightly below the recommended standard 
range of 40–60% whilst Co2 was slightly above the recommended level 
of 1000 ppm. In addition, TVOC was also below the recommended 
threshold of 500 μg/m3. This presents an opportunity for the facilities 
manager to further check the real-time and historical humidity and Co2 
data to analyse faults in BMS. This can assist the facilities manager to 
make appropriate critical decisions if the need arises within this COVID- 
19 era. Notwithstanding, in a fully functional DT system, the sensors 
send signals to the BMS if any violation occurs and the actuators are then 
adjusted to fix the violation. This process is automated by the BMS and 
in most cases; the facility manager would not need to interfere with the 
process of the corrective actions. Apart from the visual representation of 
the conditions, the DT system also enhances prediction and decision 
making through the testing of different scenarios. 

The occupancy of the target rooms was also determined using PIR 
sensors to determine the number of occupants in each room at any given 
period. The sensors were located close to the doors at appropriate dis-
tances to avoid intrusion and unnecessary counts due to the glazed na-
ture of the target rooms. To test the reliability and effectiveness of the 
PIR sensor, the researchers walked into the target rooms in sequence and 
the sensor detected their activity levels or movements. However, the 
glazed nature of some of the target rooms made it difficult to ascertain 
the actual number of occupants in those rooms at any given time. A 
manual random inspection of the rooms at regular intervals was there-
fore recommended to determine the occupancy of those rooms. It was 

also possible to determine the room occupancy at any given time by 
establishing a correlation between the Co2 levels and physical occu-
pancy checks. Notwithstanding, a different sensor that only read mo-
tions in the rooms could be installed but would add up to the cost of 
implementation. This information can assist the facility manager in 
promptly identifying the congested rooms with adverse Co2 levels and 
investigating any COVID-19-related health risks. Further, this data can 
enhance the decision-making of the facility manager in scheduling space 
clean-ups after the usage of the target rooms. This data can also help the 
facility manager to determine whether or not the maximum permissible 
number of occupants has been reached to minimise the spread of COVID- 
19. 

5.3. Lessons learnt from the DT development 

The main lessons learnt from the development of the DT system, 
which are worth mentioning, include the following:  

• Data type, format, source, and content are key considerations when 
selecting an appropriate data acquisition protocol due to the massive 
volume of data to be collected.  

• Selection of appropriate IoT sensor devices requires critical thinking 
since internet connectivity depending on available restrictions poses 
a challenge to DT development.  

• Choosing and creating reliable network connectivity for efficient and 
effective real-time data flow between the physical model and virtual 
counterpart is vital for DT development.  

• Choosing appropriate digital modelling tools, and creating digital 
models including the data schema is essential.  

• Ensuring continuous and consistent synchronization together with 
quality control of the data being gathered is vital. 

• Critical thinking regarding the selection of sensors to minimise en-
ergy consumption by the sensors since some do not run on batteries. 

• Considering a possible integration of the DT system with other sys-
tems to ensure a holistic smart systems approach. 

6. Conclusions 

DTs have witnessed extensive advocacy and desire for their 

Fig. 10. Environmental condition anomaly detection in DT.  
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implementation across various industries including construction. The 
technology is being promoted by industry practitioners and researchers 
to be used in tackling some of the challenges of the construction in-
dustry. Within the construction industry, BIM and WSNs technologies 
are currently aiding the implementation of DTs. While BIM enables vi-
sual 3D communication, WSNs technology provides real-time data 
communication through IoT applications in DTs. To take advantage of 
the potential of DT, this paper aimed at providing an indication of how 
to select an appropriate digital platform that captures data dynamically 
and in real-time, select an appropriate visualisation platform and inte-
grate the live data with the visualisation platform to build a DT. This 
study utilises an applied case study for which a prototype has been 
developed and tested for demonstrating the development of a DT in the 
construction industry. The system integrates real-time data collected 
through multiple sensors with a 3D BIM-based model that automatically 
combines the monitored data. The current state of the building is then 
reflected in the BIM model. 

Further, the system provides an efficient platform and an impression 
of the building's indoor environmental conditions to the facility manager 
for prompt decision-making and data-driven predictive actions. It also 
enhances and promotes the commitment to taking improvement actions 
for building occupants' comfort. In addition, the colour-coded data 
blocks demonstrate the degree of risks associated with the various 
monitored environmental condition parameters. The system has proven 
that DT technology could be embraced to enhance the health and well- 
being of building occupants, especially during this post-COVID-19 era 
and ensure efficient energy management. 

In terms of contribution to knowledge, this study provides a meth-
odology for similar works to be carried out in creating a DT. This study's 
application domain is in educational buildings focusing on improving 
buildings' indoor environmental conditions monitoring for occupants' 
comfort and energy consumption optimisation. The study also experi-
ments on the ‘Living Lab’ concept across universities. Further, this study 
provides DT developers with an opportunity to determine the best 
practices for developing DT in the construction industry. The paper has 
presented some lessons learnt in DT development, which will be bene-
ficial to researchers and industry stakeholders wishing to develop DT. 

However, the paper has some limitations that are worth mentioning. 
The first limitation has to do with the number of selected target rooms 
and sensors utilised in the study. Since cost is a major component in the 
implementation of DTs, only six group study rooms and six sensors were 
used in the study. The number of rooms could have been increased and 
other sensors could have been introduced to add to the data for much 
more informed decision-making. Secondly, only indoor environmental 
conditions monitoring has been reported in this study without the en-
ergy simulation and best practice guidelines as indicated in the process 
model. These would be addressed in future studies. Thirdly, the study's 
dependence on commercial software for DT system development could 
constrain the replicability and adaptability of the developed DT system. 

In upcoming studies, the authors will explore data analytics tech-
niques and integrate them into the developed DT system to provide 
feedback to the building management system (BMS) and actuators to 
take corrective actions in the physical building. It is also envisaged that 
future studies would provide facility managers with an opportunity to 
access the monitored data via mobile devices (i.e. cell phones). 
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[17] A. Čolaković, M. Hadžialić, Internet of Things (IoT): a review of enabling 
technologies, challenges, and open research issues, Comput. Netw. 144 (2018) 
17–39, https://doi.org/10.1016/j.comnet.2018.07.017. 

[18] B. Dave, A. Buda, A. Nurminen, K. Främling, A framework for integrating BIM and 
IoT through open standards, Autom. Constr. 95 (2018) 35–45, https://doi.org/ 
10.1016/j.autcon.2018.07.022. https://doi.org/10.1016/j.autcon.2018.07.022. 

[19] C. Eastman, P. Teicholz, R. Sacks, K. Liston, BIM Handbook: A Guide to Building 
Information Modeling for Owners, Managers, Designers, Engineers, and 

D.-G.J. Opoku et al.                                                                                                                                                                                                                            

https://www.mdpi.com/2079-9292/11/1/164
https://www.mdpi.com/2079-9292/11/1/164
https://doi.org/10.1016/j.scs.2019.101447
https://doi.org/10.1016/j.scs.2019.101447
https://doi.org/10.1016/j.scs.2019.101576
http://refhub.elsevier.com/S0926-5805(23)00448-X/rf0020
http://refhub.elsevier.com/S0926-5805(23)00448-X/rf0020
http://refhub.elsevier.com/S0926-5805(23)00448-X/rf0020
http://refhub.elsevier.com/S0926-5805(23)00448-X/rf0020
http://refhub.elsevier.com/S0926-5805(23)00448-X/rf0020
https://www.ashrae.org/about/news/2019/ashrae-releases-updated-versions-of-standard-62-1-and-62-2
https://www.ashrae.org/about/news/2019/ashrae-releases-updated-versions-of-standard-62-1-and-62-2
https://www.ashrae.org/about/news/2019/ashrae-releases-updated-versions-of-standard-62-1-and-62-2
https://doi.org/10.2514/6.2016-5470
https://doi.org/10.1080/15428119591017321
https://doi.org/10.1080/15428119591017321
https://doi.org/10.1061/(asce)co.1943-7862.0000433
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-21-2020
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-21-2020
https://doi.org/10.17863/CAM.32260
https://doi.org/10.17863/CAM.32260
https://doi.org/10.3390/s18072104
https://doi.org/10.1007/978-3-540-72680-7_15
https://doi.org/10.1007/978-3-540-72680-7_15
https://doi.org/10.1016/j.autcon.2018.03.007
https://doi.org/10.3390/s18020436
https://doi.org/10.3390/s18020436
https://doi.org/10.1016/j.buildenv.2012.01.016
https://doi.org/10.1016/j.comnet.2018.07.017
https://doi.org/10.1016/j.autcon.2018.07.022
https://doi.org/10.1016/j.autcon.2018.07.022
https://doi.org/10.1016/j.autcon.2018.07.022
http://refhub.elsevier.com/S0926-5805(23)00448-X/rf0090
http://refhub.elsevier.com/S0926-5805(23)00448-X/rf0090


Automation in Construction 157 (2024) 105188

13

Contractors, John Wiley & Sons, Inc, Hoboken, New Jersey, USA, 2008. ISBN: 
1119287537, 9781119287537. 

[20] V.L. Gamsakhurdia, Semiotic construction of the self in multicultural societies: a 
theory of proculturation, Routledge (2020), https://doi.org/10.4324/ 
9780429201240. 

[21] X. Ge, S. Tu, G. Mao, C.-X. Wang, T. Han, 5G ultra-dense cellular networks, Inst. 
Elect. Electron. Eng. Wireless Commun. 23 (1) (2016) 72–79, https://doi.org/ 
10.1109/MWC.2016.7422408. 

[22] J.A. Goguen, D.F. Harrell, 7 information visualisation and semiotic morphisms, in: 
Studies in Multidisciplinarity vol. 2, Elsevier, 2005, pp. 83–97. http://www.cs.uc 
sd.edu/users/goguen/papers/sm/vzln.html. 

[23] R. He, M. Li, V.J.L. Gan, J. Ma, BIM-enabled computerized design and digital 
fabrication of industrialized buildings: a case study, J. Clean. Prod. 278 (2021), 
https://doi.org/10.1016/j.jclepro.2020.123505. https://www.scopus.com/inwar 
d/record.uri?eid=2-s2.0-85089736108&doi=10.1016%2fj.jclepro.2020.123505 
&partnerID=40&md5=476e56667edc4eff6f84cb0e5c609497>. 

[24] P. Hui, L.T. Wong, K.W. Mui, Feasibility study of an express assessment protocol for 
the indoor air quality of air-conditioned offices, Indoor Built Environ. 15 (4) (2006) 
373–378, https://doi.org/10.1177/1420326X06067866. 

[25] P. Inyim, J. Rivera, Y. Zhu, Integration of building information modeling and 
economic and environmental impact analysis to support sustainable building 
design, J. Manag. Eng. 31 (1) (2015) A4014002, https://doi.org/10.1061/(ASCE) 
ME.1943-5479.0000308. 

[26] F. Jazizadeh, A. Ghahramani, B. Becerik-Gerber, T. Kichkaylo, M. Orosz, Human- 
building interaction framework for personalized thermal comfort-driven systems in 
office buildings, J. Comput. Civ. Eng. 28 (1) (2014) 2–16, https://doi.org/ 
10.1061/(asce)cp.1943-5487.0000300. https://doi.org/10.1061/(ASCE) 
CP.1943-5487.0000300. 

[27] Y. Jiang, M. Li, D. Guo, W. Wu, R.Y. Zhong, G.Q. Huang, Digital twin-enabled 
smart modular integrated construction system for on-site assembly, Comput. Ind. 
136 (2022), https://doi.org/10.1016/j.compind.2021.103594. https://www.scopu 
s.com/inward/record.uri?eid=2-s2.0-85121923542&doi=10.1016%2fj.compind. 
2021.103594&partnerID=40&md5=56b48df4f157aab9d82877caf4466dde. 

[28] Y. Jiang, S. Yin, O. Kaynak, Data-driven monitoring and safety control of industrial 
cyber-physical systems: basics and beyond, Inst. Elect. Electron. Eng. Access 6 
(2018) 47374–47384, https://doi.org/10.1109/ACCESS.2018.2866403. 

[29] A. Kaushik, M. Arif, P. Tumula, O.J. Ebohon, Effect of thermal comfort on occupant 
productivity in office buildings: response surface analysis, Build. Environ. 180 
(2020), 107021, https://doi.org/10.1016/j.buildenv.2020.107021. 

[30] K. Kim, H. Kim, W. Kim, C. Kim, J. Kim, J. Yu, Integration of ifc objects and facility 
management work information using semantic web, Autom. Constr. 87 (2018) 
173–187, https://doi.org/10.1016/j.autcon.2017.12.019. 

[31] W. Lehr, L.W. McKnight, Wireless internet access: 3G vs. WiFi? Telecommun. 
Policy 27 (5–6) (2003) 351–370, https://doi.org/10.1016/S0308-5961(03)00004- 
1. 

[32] Y.C.P. Lin, W.F. Cheung, Developing WSN/BIM-based environmental monitoring 
management system for parking garages in smart cities, J. Manag. Eng. 36 (3) 
(2020), https://doi.org/10.1061/(ASCE)ME.1943-5479.0000760. Scopus. 

[33] Y. Liu, K.A. Hassan, M. Karlsson, Z. Pang, S. Gong, A data-centric internet of things 
framework based on azure cloud, Inst. Elect. Electron. Eng. Access 7 (2019) 
53839–53858, https://doi.org/10.1109/ACCESS.2019.2913224. 

[34] Q. Lu, A.K. Parlikad, P. Woodall, G. Don Ranasinghe, X. Xie, Z. Liang, et al., 
Developing a digital twin at building and city levels: case study of West Cambridge 
Campus, J. Manag. Eng. 36 (3) (2020), https://doi.org/10.1061/(ASCE)ME.1943- 
5479.0000763. 

[35] Q. Lu, X. Xie, A.K. Parlikad, J.M. Schooling, Digital twin-enabled anomaly 
detection for built asset monitoring in operation and maintenance, Autom. Constr. 
118 (2020). Scopus, DOI 10.1016/j.autcon.2020.103277. 

[36] Y. Lu, Z. Wu, R. Chang, Y. Li, Building information modeling (BIM) for green 
buildings: a critical review and future directions, Autom. Constr. 83 (2017) 
134–148, https://doi.org/10.1016/j.autcon.2017.08.024. 

[37] A. Mannino, M.C. Dejaco, F. Re Cecconi, Building information modelling and 
internet of things integration for facility management-literature review and future 
needs, Appl. Sci. (Switzerland) 11 (7) (2021), https://doi.org/10.3390/ 
app11073062. 

[38] P. Matus, Discursive representation: semiotics, theory, and method, Semiotica 
2018 (225) (2018) 103–127, https://doi.org/10.1515/sem-2017-0019. 

[39] C. Meyer, Overview of TVOC and indoor air quality, in: Renesas Electronics 
Corporation: Tokyo, Japan, 2018. Accessed: 15 February 2023, URL: https://www. 
mouser.com/pdfdocs/IDT_ ZMOD4410-Overview-TVOC-IAQWHP20180524.pdf. 

[40] MultiTech, MultiTech Conduit AP, Access Point for Lora technology (MTCAP 
series), viewed 22 April 2022. https://www.multitech.com/brands/multiconnect 
-conduit-ap, 2022. 

[41] B. Nathali Silva, M. Khan, K. Han, Big data analytics embedded smart city 
architecture for performance enhancement through real-time data processing and 
decision-making, Wirel. Commun. Mob. Comput. 2017 (2017), https://doi.org/ 
10.1155/2017/9429676. 

[42] NATSPEC, NATSPEC National BIM guide, Construction Information System Limited, 
Sydney, Australia, Accessed: 21 November 2022. http://codebim.com/wp-conte 
nt/uploads/2013/06/NATSPEC_National_BIM_Guide_v1.0_Sep_2011.pdf, 2016. 

[43] NIBS, p.7, National BIM Standard Version 1 - Part 1: Overview, Principles, and 
Methodologies [online], National Institute of Building Science, London, viewed 20 
January 2020, 2007 http://www.wbdg.org. 

[44] N. Ohmura, E. Takase, S. Ogino, Y. Okano, S. Arai, Material property of on-metal 
magnetic sheet attached on NFC/HF-RFID antenna and research of its proper 
pattern and size on, Inst. Elect. Electron. Eng. 2 (2013) 1158–1161 (ISBN: 978- 
756414279-7). 

[45] D.G.J. Opoku, S. Perera, R. Osei-Kyei, M. Rashidi, Digital twin application in the 
construction industry: a literature review, J. Build. Eng. 40 (2021), 102726, 
https://doi.org/10.1016/j.jobe.2021.102726. 

[46] D.G.J. Opoku, S. Perera, R. Osei-Kyei, M. Rashidi, K. Bamdad, T. Famakinwa, 
Barriers to the adoption of digital twin in the construction industry: a literature 
review, Informatics 10 (1) (2023) 14, https://doi.org/10.3390/ 
informatics10010014. 

[47] A.S. Rao, M. Radanovic, Y. Liu, S. Hu, Y. Fang, K. Khoshelham, et al., Real-time 
monitoring of construction sites: sensors, methods, and applications, Autom. 
Constr. 136 (2022), 104099, https://doi.org/10.1016/j.autcon.2021.104099. 

[48] G.N. Sava, S. Pluteanu, V. Tanasiev, R. Patrascu, H. Necula, Integration of BIM 
solutions and IoT in smart houses, Inst. Elect. Electron. Eng. (2018), https://doi. 
org/10.1109/eeeic.2018.8494628. https://doi.org/10.1109/EEEIC.2018.849 
4628. 

[49] A. Schweigkofler, O. Braholli, S. Akro, D. Siegele, P. Penna, C. Marcher, 
L. Tagliabue, D. Matt, Digital Twin as energy management tool through IoT and 
BIM data integration, in: Proceedings of the CLIMA 2022 Conference, 22–25 May, 
Rotterdam, The Netherlands, 2022, https://doi.org/10.34641/clima.2022.46. 

[50] J.M. Scoulas, E. Carrillo, L. Naru, Assessing user experience: incorporating student 
voice in libraries’ pandemic response, J. Libr. Adm. 61 (6) (2021) 686–703, 
https://doi.org/10.1080/01930826.2021.1947058. 

[51] F. Shalabi, Y. Turkan, IFC BIM-based facility management approach to optimize 
data collection for corrective maintenance, J. Perform. Constr. Facil. 31 (1) (2017) 
04016081, https://doi.org/10.1061/(ASCE)CF.1943-5509.0000941. 

[52] N. Sornin, M. Luis, T. Eirich, T. Kramp, O. Hersent, LoRa specification 1.0 LoRa 
alliance standard specification, 2015. Accessed: 15 October 2022, http://www. 
lora-alliance.org/. 

[53] TagoIO, Easily create your own IoT solutions, viewed 15 April 2022. https://tago. 
io/, 2022. 

[54] The Things Network, Lorawan, 2022 viewed 11 April 2022, https://www.thethings 
network.org/docs/lorawan/. 

[55] Y.-H. Tsai, J. Wang, W.-T. Chien, C.-Y. Wei, X. Wang, S.-H. Hsieh, A BIM-based 
approach for predicting corrosion under insulation, Autom. Constr. 107 (2019), 
102923, https://doi.org/10.1016/j.autcon.2019.102923. 

[56] C. Wang, J. Zhu, Developments in the understanding of gas–solid contact efficiency 
in the circulating fluidized bed riser reactor: a review, Chin. J. Chem. Eng. 24 (1) 
(2016) 53–62, https://doi.org/10.1016/j.cjche.2015.07.004. 

[57] T. Wang, V.J. Gan, D. Hu, H. Liu, Digital twin-enabled built environment sensing 
and monitoring through semantic enrichment of BIM with SensorML, Autom. 
Constr. 144 (2022), 104625, https://doi.org/10.1016/j.autcon.2022.104625. 

[58] Y. Xu, Y. Sun, X. Liu, Y. Zheng, A digital-twin-assisted fault diagnosis using deep 
transfer learning, Inst. Elect. Electron. Eng. Access 7 (2019) 19990–19999, https:// 
doi.org/10.1109/ACCESS.2018.2890566. 

[59] D. Zorbas, K. Abdelfadeel, P. Kotzanikolaou, D. Pesch, TS-LoRa: time-slotted 
LoRaWAN for the industrial internet of things, Comput. Commun. 153 (2020) 
1–10, https://doi.org/10.1016/j.comcom.2020.01.056. 

D.-G.J. Opoku et al.                                                                                                                                                                                                                            

http://refhub.elsevier.com/S0926-5805(23)00448-X/rf0090
http://refhub.elsevier.com/S0926-5805(23)00448-X/rf0090
https://doi.org/10.4324/9780429201240
https://doi.org/10.4324/9780429201240
https://doi.org/10.1109/MWC.2016.7422408
https://doi.org/10.1109/MWC.2016.7422408
http://www.cs.ucsd.edu/users/goguen/papers/sm/vzln.html
http://www.cs.ucsd.edu/users/goguen/papers/sm/vzln.html
https://doi.org/10.1016/j.jclepro.2020.123505
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089736108&amp;doi=10.1016%2fj.jclepro.2020.123505&amp;partnerID=40&amp;md5=476e56667edc4eff6f84cb0e5c609497%3e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089736108&amp;doi=10.1016%2fj.jclepro.2020.123505&amp;partnerID=40&amp;md5=476e56667edc4eff6f84cb0e5c609497%3e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089736108&amp;doi=10.1016%2fj.jclepro.2020.123505&amp;partnerID=40&amp;md5=476e56667edc4eff6f84cb0e5c609497%3e
https://doi.org/10.1177/1420326X06067866
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000308
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000308
https://doi.org/10.1061/(asce)cp.1943-5487.0000300
https://doi.org/10.1061/(asce)cp.1943-5487.0000300
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000300
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000300
https://doi.org/10.1016/j.compind.2021.103594
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121923542&amp;doi=10.1016%2fj.compind.2021.103594&amp;partnerID=40&amp;md5=56b48df4f157aab9d82877caf4466dde
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121923542&amp;doi=10.1016%2fj.compind.2021.103594&amp;partnerID=40&amp;md5=56b48df4f157aab9d82877caf4466dde
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121923542&amp;doi=10.1016%2fj.compind.2021.103594&amp;partnerID=40&amp;md5=56b48df4f157aab9d82877caf4466dde
https://doi.org/10.1109/ACCESS.2018.2866403
https://doi.org/10.1016/j.buildenv.2020.107021
https://doi.org/10.1016/j.autcon.2017.12.019
https://doi.org/10.1016/S0308-5961(03)00004-1
https://doi.org/10.1016/S0308-5961(03)00004-1
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000760
https://doi.org/10.1109/ACCESS.2019.2913224
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000763
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000763
http://refhub.elsevier.com/S0926-5805(23)00448-X/rf0170
http://refhub.elsevier.com/S0926-5805(23)00448-X/rf0170
http://refhub.elsevier.com/S0926-5805(23)00448-X/rf0170
https://doi.org/10.1016/j.autcon.2017.08.024
https://doi.org/10.3390/app11073062
https://doi.org/10.3390/app11073062
https://doi.org/10.1515/sem-2017-0019
http://refhub.elsevier.com/S0926-5805(23)00448-X/rf0190
http://refhub.elsevier.com/S0926-5805(23)00448-X/rf0190
http://refhub.elsevier.com/S0926-5805(23)00448-X/rf0190
https://www.multitech.com/brands/multiconnect-conduit-ap
https://www.multitech.com/brands/multiconnect-conduit-ap
https://doi.org/10.1155/2017/9429676
https://doi.org/10.1155/2017/9429676
http://codebim.com/wp-content/uploads/2013/06/NATSPEC_National_BIM_Guide_v1.0_Sep_2011.pdf
http://codebim.com/wp-content/uploads/2013/06/NATSPEC_National_BIM_Guide_v1.0_Sep_2011.pdf
http://www.wbdg.org
http://refhub.elsevier.com/S0926-5805(23)00448-X/rf0215
http://refhub.elsevier.com/S0926-5805(23)00448-X/rf0215
http://refhub.elsevier.com/S0926-5805(23)00448-X/rf0215
http://refhub.elsevier.com/S0926-5805(23)00448-X/rf0215
https://doi.org/10.1016/j.jobe.2021.102726
https://doi.org/10.3390/informatics10010014
https://doi.org/10.3390/informatics10010014
https://doi.org/10.1016/j.autcon.2021.104099
https://doi.org/10.1109/eeeic.2018.8494628
https://doi.org/10.1109/eeeic.2018.8494628
https://doi.org/10.1109/EEEIC.2018.8494628
https://doi.org/10.1109/EEEIC.2018.8494628
https://doi.org/10.34641/clima.2022.46
https://doi.org/10.1080/01930826.2021.1947058
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000941
http://refhub.elsevier.com/S0926-5805(23)00448-X/rf0255
http://refhub.elsevier.com/S0926-5805(23)00448-X/rf0255
http://refhub.elsevier.com/S0926-5805(23)00448-X/rf0255
https://tago.io/
https://tago.io/
https://www.thethingsnetwork.org/docs/lorawan/
https://www.thethingsnetwork.org/docs/lorawan/
https://doi.org/10.1016/j.autcon.2019.102923
https://doi.org/10.1016/j.cjche.2015.07.004
https://doi.org/10.1016/j.autcon.2022.104625
https://doi.org/10.1109/ACCESS.2018.2890566
https://doi.org/10.1109/ACCESS.2018.2890566
https://doi.org/10.1016/j.comcom.2020.01.056

	Digital twin for indoor condition monitoring in living labs: University library case study
	1 Introduction
	2 Review of DT for smart facility management in educational buildings
	3 System architecture for DT development
	3.1 Data acquisition component
	3.2 Data communication and storage
	3.3 Data and model integration component
	3.4 Data analysis and visualisation component

	4 Case study for the development of the DT system
	4.1 Overview of the building selected for the case study
	4.2 Model development and sensor deployment
	4.2.1 BIM model development
	4.2.2 Semiotic representation of the indoor conditions of the building
	4.2.3 IoT sensor devices


	5 Digital twin of the library building
	5.1 Digital twin implementation process model
	5.2 Evaluation and discussion of the results from the indoor environmental monitoring
	5.3 Lessons learnt from the DT development

	6 Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgement
	References


