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Abstract
Let H be a Hilbert space. In this paper we show among others that, if f , g are synchronous and continuous on I
and A, B are selfadjoint with spectra Sp(A) , Sp(B)⊂ I, then

( f (A)g(A))⊗1+1⊗ ( f (B)g(B))≥ f (A)⊗g(B)+g(A)⊗ f (B)

and the inequality for Hadamard product

( f (A)g(A)+ f (B)g(B))◦1≥ f (A)◦g(B)+ f (B)◦g(A) .

Let either p,q ∈ (0,∞) or p,q ∈ (−∞,0). If A, B > 0, then

Ap+q⊗1+1⊗Bp+q ≥ Ap⊗Bq +Aq⊗Bp,

and (
Ap+q +Bp+q)◦1≥ Ap ◦Bq +Aq ◦Bp.
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1. Introduction
Let I1, . . . , Ik be intervals from R and let f : I1× . . .× Ik→ R be an essentially bounded real function defined on the product

of the intervals. Let A = (A1, . . . ,An) be a k-tuple of bounded selfadjoint operators on Hilbert spaces H1, . . . ,Hk such that the
spectrum of Ai is contained in Ii for i = 1, . . . ,k. We say that such a k-tuple is in the domain of f . If

Ai =
∫

Ii
λidEi (λi)
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is the spectral resolution of Ai for i = 1, . . . ,k; by following [1], we define

f (A1, . . . ,Ak) :=
∫

I1
. . .
∫

Ik
f (λ1, . . . ,λk)dE1 (λ1)⊗ . . .⊗dEk (λk) (1.1)

as a bounded selfadjoint operator on the tensorial product H1⊗ . . .⊗Hk.
If the Hilbert spaces are of finite dimension, then the above integrals become finite sums, and we may consider the functional

calculus for arbitrary real functions. This construction [1] extends the definition of Korányi [2] for functions of two variables
and have the property that

f (A1, . . . ,Ak) = f1(A1)⊗ . . .⊗ fk(Ak),

whenever f can be separated as a product f (t1, . . . , tk) = f1(t1) . . . fk(tk) of k functions each depending on only one variable.
It is know that, if f is super-multiplicative (sub-multiplicative) on [0,∞), namely

f (st)≥ (≤) f (s) f (t) for all s, t ∈ [0,∞)

and if f is continuous on [0,∞) , then [3, p. 173]

f (A⊗B)≥ (≤) f (A)⊗ f (B) for all A, B≥ 0. (1.2)

This follows by observing that, if

A =
∫
[0,∞)

tdE (t) and B =
∫
[0,∞)

sdF (s)

are the spectral resolutions of A and B, then

f (A⊗B) =
∫
[0,∞)

∫
[0,∞)

f (st)dE (t)⊗dF (s) (1.3)

for the continuous function f on [0,∞) .
Recall the geometric operator mean for the positive operators A, B > 0

A#tB := A1/2(A−1/2BA−1/2)tA1/2

where t ∈ [0,1] and

A#B := A1/2(A−1/2BA−1/2)1/2A1/2.

By the definitions of # and ⊗ we have

A#B = B#A and (A#B)⊗ (B#A) = (A⊗B)#(B⊗A) .

In 2007, S. Wada [4] obtained the following Callebaut type inequalities for tensorial product

(A#B)⊗ (A#B)≤ 1
2
[(A#α B)⊗ (A#1−α B)+(A#1−α B)⊗ (A#α B)]≤ 1

2
(A⊗B+B⊗A) (1.4)

for A, B > 0 and α ∈ [0,1] .
Recall that the Hadamard product of A and B in B(H) is defined to be the operator A◦B ∈ B(H) satisfying〈

(A◦B)e j,e j
〉
=
〈
Ae j,e j

〉〈
Be j,e j

〉
for all j ∈ N, where

{
e j
}

j∈N is an orthonormal basis for the separable Hilbert space H. It is known that, see [5], we have the
representation

A◦B = U ∗ (A⊗B)U (1.5)

where U : H→ H⊗H is the isometry defined by U e j = e j⊗ e j for all j ∈ N.

If f is super-multiplicative and operator concave (sub-multiplicative and operator convex) on [0,∞) , then also [3, p. 173]

f (A◦B)≥ (≤) f (A)◦ f (B) for all A, B≥ 0. (1.6)
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We recall the following elementary inequalities for the Hadamard product

A1/2 ◦B1/2 ≤
(

A+B
2

)
◦1 for A, B≥ 0

and Fiedler inequality

A◦A−1 ≥ 1 for A > 0.

As extension of Kadison’s Schwarz inequality on the Hadamard product, Ando [6] showed that

A◦B≤
(
A2 ◦1

)1/2 (
B2 ◦1

)1/2
for A, B≥ 0

and Aujla and Vasudeva [7] gave an alternative upper bound

A◦B≤
(
A2 ◦B2)1/2

for A, B≥ 0.

It has been shown in [8] that
(
A2 ◦1

)1/2 (B2 ◦1
)1/2 and

(
A2 ◦B2

)1/2 are incomparable for 2-square positive definite matrices
A and B.

For other inequalities concerning tensorial product, see [9] and [10].

Motivated by the above results, in this paper we show among others that if f , g are synchronous and continuous on I
and A, B are selfadjoint with spectra Sp(A) , Sp(B)⊂ I, then

( f (A)g(A))⊗1+1⊗ ( f (B)g(B))≥ f (A)⊗g(B)+g(A)⊗ f (B)

and the inequality for Hadamard product

( f (A)g(A)+ f (B)g(B))◦1≥ f (A)◦g(B)+ f (B)◦g(A) .

Let either p,q ∈ (0,∞) or p,q ∈ (−∞,0). If A, B > 0, then

Ap+q⊗1+1⊗Bp+q ≥ Ap⊗Bq +Aq⊗Bp,

and (
Ap+q +Bp+q)◦1≥ Ap ◦Bq +Aq ◦Bp.

2. Main Results
We start with the following main result:

Theorem 2.1. Assume that f , g are synchronous and continuous on I and h, k nonnegative and continuous on the same interval.
If A, B are selfadjoint with spectra Sp(A) , Sp(B)⊂ I, then

[h(A) f (A)g(A)]⊗ k (B)+h(A)⊗ [k (B) f (B)g(B)]≥ [h(A) f (A)]⊗ [k (B)g(B)]+ [h(A)g(A)]⊗ [k (B) f (B)] (2.1)

or, equivalently

(h(A)⊗ k (B)) [( f (A)g(A))⊗1+1⊗ ( f (B)g(B))]≥ (h(A)⊗ k (B)) [ f (A)⊗g(B)+g(A)⊗ f (B)] . (2.2)

If f , g are asynchronous on I, then the inequality reverses in (2.1) and (2.2).

Proof. Assume that f and g are synchronous on I, then

f (t)g(t)+ f (s)g(s)≥ f (t)g(s)+ f (s)g(t)

for all t,s ∈ I. We multiply this inequality by h(t)k (s)≥ 0 to get

f (t)g(t)h(t)k (s)+h(t) f (s)g(s)k (s)≥ f (t)h(t)g(s)k (s)+ f (s)k (s)g(t)h(t)



Tensorial and Hadamard Product Inequalities for Synchronous Functions — 180/187

for all t,s ∈ I. If we take the double integral, then we get∫
I

∫
I
[ f (t)g(t)h(t)k (s)+h(t) f (s)g(s)k (s)]dE (t)⊗dF (s)

≥
∫

I

∫
I
[ f (t)h(t)g(s)k (s)+ f (s)k (s)g(t)h(t)]dE (t)⊗dF (s) .

(2.3)

Observe that∫
I

∫
I
[ f (t)g(t)h(t)k (s)+h(t) f (s)g(s)k (s)]dE (t)⊗dF (s) =

∫
I

∫
I

f (t)g(t)h(t)k (s)dE (t)⊗dF (s)

+
∫

I

∫
I
h(t) f (s)g(s)k (s)dE (t)⊗dF (s)

=[h(A) f (A)g(A)]⊗ k (B)+h(A)⊗ [k (B) f (B)g(B)]

and ∫
I

∫
I
[ f (t)h(t)g(s)k (s)+ f (s)k (s)g(t)h(t)]dE (t)⊗dF (s) =

∫
I

∫
I

f (t)h(t)g(s)k (s)dE (t)⊗dF (s)

+
∫

I

∫
I
g(t)h(t) f (s)k (s)dE (t)⊗dF (s)

=[h(A) f (A)]⊗ [k (B)g(B)]+ [h(A)g(A)]⊗ [k (B) f (B)] .

By utilizing (2.3) we derive (2.2). Now, by making use of the tensorial property

(XU)⊗ (YV ) = (X⊗Y )(U⊗V ) ,

for any X , U, Y, V ∈ B(H) , we obtain

[h(A) f (A)g(A)]⊗ k (B)+h(A)⊗ [k (B) f (B)g(B)]

= (h(A)⊗ k (B)) [( f (A)g(A))⊗1]+ (h(A)⊗ k (B)) [1⊗ ( f (B)g(B))]

= (h(A)⊗ k (B)) [( f (A)g(A))⊗1+1⊗ ( f (B)g(B))]

and

[h(A) f (A)]⊗ [k (B)g(B)]+ [h(A)g(A)]⊗ [k (B) f (B)]

= (h(A)⊗ k (B))( f (A)⊗g(B))+(h(A)⊗ k (B))(g(A)⊗ f (B))

= (h(A)⊗ k (B)) [ f (A)⊗g(B)+g(A)⊗ f (B)] ,

which proves (2.2).

Remark 2.2. With the assumptions of Theorem 2.1 and if we take k = h, then we get

[h(A) f (A)g(A)]⊗h(B)+h(A)⊗ [h(B) f (B)g(B)]≥ [h(A) f (A)]⊗ [h(B)g(B)]+ [h(A)g(A)]⊗ [h(B) f (B)] , (2.4)

where f , g are synchronous and continuous on I and h is nonnegative and continuous on the same interval.
Moreover, if we take h≡ 1 in (2.4), then we get

( f (A)g(A))⊗1+1⊗ ( f (B)g(B))≥ f (A)⊗g(B)+g(A)⊗ f (B) , (2.5)

where f , g are synchronous and continuous on I

Corollary 2.3. Assume that f , g are synchronous and continuous on I and h, k nonnegative and continuous on the same
interval. If A, B are selfadjoint with spectra Sp(A) , Sp(B)⊂ I, then

k (B)◦ [h(A) f (A)g(A)]+h(A)◦ [k (B) f (B)g(B)]≥ [h(A) f (A)]◦ [k (B)g(B)]+ [k (B) f (B)]◦ [h(A)g(A)] . (2.6)

If f , g are asynchronous on I, then the inequality reverses in (2.6). In particular, we have

h(B)◦ [h(A) f (A)g(A)]+h(A)◦ [h(B) f (B)g(B)]≥ [h(A) f (A)]◦ [h(B)g(B)]+ [h(B) f (B)]◦ [h(A)g(A)] (2.7)

and

( f (A)g(A)+( f (B)g(B)))◦1≥ f (A)◦g(B)+ f (B)◦g(A) . (2.8)
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Proof. If we take U ∗ to the left and U to the right in the inequality (2.1), we get

U ∗ ([h(A) f (A)g(A)]⊗ k (B))U +U ∗ (h(A)⊗ [k (B) f (B)g(B)])U ≥U ∗ ([h(A) f (A)]⊗ [k (B)g(B)])U

+U ∗ ([h(A)g(A)]⊗ [k (B) f (B)])U

which is equivalent to (2.6).

Corollary 2.4. Assume that f , g are synchronous and continuous on I and h, k nonnegative and continuous on the same
interval. If A j, B j are selfadjoint with spectra Sp(A j) , Sp(B j)⊂ I and p j,q j ≥ 0, j ∈ {1, . . . ,n} , then(

n

∑
j=1

p jh(A j) f (A j)g(A j)

)
⊗

(
n

∑
i=1

qik (Bi)

)
+

(
n

∑
j=1

p jh(A j)

)
⊗

(
n

∑
i=1

qik (Bi) f (Bi)g(Bi)

)

≥

(
n

∑
j=1

p jh(A j) f (A j)

)
⊗

(
n

∑
i=1

qik (Bi)g(Bi)

)
+

(
n

∑
j=1

p jh(A j)g(A j)

)
⊗

(
n

∑
i=1

qik (Bi) f (Bi)

)
.

(2.9)

In particular,(
n

∑
j=1

p jh(A j) f (A j)g(A j)

)
⊗

(
n

∑
i=1

qih(Bi)

)
+

(
n

∑
j=1

p jh(A j)

)
⊗

(
n

∑
i=1

qih(Bi) f (Bi)g(Bi)

)

≥

(
n

∑
j=1

p jh(A j) f (A j)

)
⊗

(
n

∑
i=1

qih(Bi)g(Bi)

)
+

(
n

∑
j=1

p jh(A j)g(A j)

)
⊗

(
n

∑
i=1

qih(Bi) f (Bi)

) (2.10)

and, if ∑
n
j=1 p j = ∑

n
j=1 q j = 1, then(

n

∑
j=1

p j f (A j)g(A j)

)
⊗1+1⊗

(
n

∑
i=1

qi f (Bi)g(Bi)

)
≥

(
n

∑
j=1

p j f (A j)

)
⊗

(
n

∑
i=1

qig(Bi)

)
(2.11)

+

(
n

∑
j=1

p jg(A j)

)
⊗

(
n

∑
i=1

qi f (Bi)

)
.

Proof. We have from (2.1) that

[h(A j) f (A j)g(A j)]⊗ k (Bi)+h(A j)⊗ [k (Bi) f (Bi)g(Bi)]≥ [h(A j) f (A j)]⊗ [k (Bi)g(Bi)]

+ [h(A j)g(A j)]⊗ [k (Bi) f (Bi)]

for all i, j ∈ {1, . . . ,n} . If we multiply by p jqi ≥ 0 and sum over j, i ∈ {1, . . . ,n} , then we get

n

∑
j,i=1

p jqi [h(A j) f (A j)g(A j)]⊗ k (Bi)+
n

∑
j,i=1

p jqi p jqih(A j)⊗ [k (Bi) f (Bi)g(Bi)]

≥
n

∑
j,i=1

p jqi [h(A j) f (A j)]⊗ [k (Bi)g(Bi)]+
n

∑
j,i=1

p jqi [h(A j)g(A j)]⊗ [k (Bi) f (Bi)]

and by using the properties of tensorial product we derive (2.9).

Remark 2.5. If we take Bi = Ai and pi = qi, i ∈ {1, . . . ,n} , then we get(
n

∑
i=1

pi f (Ai)g(Ai)

)
⊗1+1⊗

(
n

∑
i=1

pi f (Ai)g(Ai)

)
≥

(
n

∑
i=1

pi f (Ai)

)
⊗

(
n

∑
i=1

pig(Ai)

)

+

(
n

∑
i=1

pig(Ai)

)
⊗

(
n

∑
i=1

pi f (Ai)

)
,

(2.12)

where f , g are synchronous and continuous on I and Ai are selfadjoint with spectra Sp(Ai)⊂ I, pi ≥ 0 for i ∈ {1, . . . ,n} and
∑

n
i=1 pi = 1. By (2.12) we also have the inequality for the Hadamard product(

n

∑
i=1

pi f (Ai)g(Ai)

)
◦1≥

(
n

∑
i=1

pi f (Ai)

)
◦

(
n

∑
i=1

pig(Ai)

)
, (2.13)



Tensorial and Hadamard Product Inequalities for Synchronous Functions — 182/187

where f , g are synchronous and continuous on I and Ai are selfadjoint with spectra Sp(Ai)⊂ I, pi ≥ 0 for i ∈ {1, . . . ,n} and
∑

n
i=1 pi = 1.

We also have:

Theorem 2.6. Let f , g : [m,M]⊂ R→ R be continuous on [m,M] and differentiable on (m,M) with g′ (t) 6= 0 for t ∈ (m,M) .
Assume that

−∞ < γ = inf
t∈(m,M)

f ′ (t)
g′ (t)

, sup
t∈(m,M)

f ′ (t)
g′ (t)

= Γ < ∞,

and A, B selfadjoint operators with spectra Sp(A) , Sp(B)⊆ [m,M], then for any continuous and nonnegative function h defined
on [m,M] ,

γ
[(

h(A)g2 (A)
)
⊗h(B)+h(A)⊗

(
h(B)g2 (B)

)
−2(g(A)h(A))⊗ (h(B)g(B))]

≤ [h(A) f (A)g(A)]⊗h(B)+h(A)⊗ [h(B) f (B)g(B)]− [h(A) f (A)]⊗ [h(B)g(B)]− [h(A)g(A)]⊗ [h(B) f (B)]

≤ Γ
[(

h(A)g2 (A)
)
⊗h(B)+h(A)⊗

(
h(B)g2 (B)

)
−2(g(A)h(A))⊗ (h(B)g(B))] .

(2.14)

In particular,

γ
[
g2 (A)⊗1+1⊗g2 (B)−2g(A)⊗g(B)

]
≤ [ f (A)g(A)]⊗1+1⊗ [ f (B)g(B)]− f (A)⊗g(B)−g(A)⊗ f (B)

≤Γ
[
g2 (A)⊗1+1⊗g2 (B)−2g(A)⊗g(B)

]
.

(2.15)

Proof. Using the Cauchy mean value theorem, for all t, s ∈ [m,M] with t 6= s there exists ξ between t and s such that

f (t)− f (s)
g(t)−g(s)

=
f ′ (ξ )
g′ (ξ )

∈ [γ,Γ] .

Therefore

γ [g(t)−g(s)]2 ≤ [ f (t)− f (s)] [g(t)−g(s)]≤ Γ [g(t)−g(s)]2

for all t, s ∈ [m,M] , which is equivalent to

γ
[
g2 (t)−2g(t)g(s)+g2 (s)

]
≤ f (t)g(t)+ f (s)g(s)− f (t)g(s)− f (s)g(t)≤ Γ

[
g2 (t)−2g(t)g(s)+g2 (s)

]
for all t, s ∈ [m,M] . If we multiply by h(t)h(s)≥ 0, then we get

γ
[
h(t)g2 (t)h(s)−2g(t)h(t)h(s)g(s)+h(t)h(s)g2 (s)

]
≤h(t) f (t)g(t)h(s)+h(t)h(s) f (s)g(s)

−h(t) f (t)h(s)g(s)−h(t)g(t)h(s) f (s)

≤Γ
[
h(t)g2 (t)h(s)−2g(t)h(t)h(s)g(s)+h(t)h(s)g2 (s)

]
for all t, s ∈ [m,M] .

This implies that

γ

∫ M

m

∫ M

m

[
h(t)g2 (t)h(s)−2g(t)h(t)h(s)g(s)+h(t)h(s)g2 (s)

]
×dE (t)⊗dF (s)

≤
∫ M

m

∫ M

m
[h(t) f (t)g(t)h(s)+h(t)h(s) f (s)g(s) −h(t) f (t)h(s)g(s)−h(t)g(t)h(s) f (s)]dE (t)⊗dF (s)

≤ Γ

∫ M

m

∫ M

m

[
h(t)g2 (t)h(s)−2g(t)h(t)h(s)g(s)+h(t)h(s)g2 (s)

]
×dE (t)⊗dF (s)

and by performing the calculations as in the proof of Theorem 2.1, we derive (2.14).

Corollary 2.7. With the assumptions of Theorem 2.6 we have

γ
[
h(B)◦

(
h(A)g2 (A)

)
+h(A)◦

(
h(B)g2 (B)

)
−2(g(A)h(A))◦ (h(B)g(B))]

≤ h(B)◦ [h(A) f (A)g(A)]+h(A)◦ [h(B) f (B)g(B)]− [h(A) f (A)]◦ [h(B)g(B)]− [h(A)g(A)]◦ [h(B) f (B)]

≤ Γ
[
h(B)◦

(
h(A)g2 (A)

)
+h(A)◦

(
h(B)g2 (B)

)
−2(g(A)h(A))◦ (h(B)g(B))] .

(2.16)
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In particular,

γ
[[

g2 (A)+g2 (B)
]
◦1−2g(A)◦g(B)

]
≤ [ f (A)g(A)+ [ f (B)g(B)]]◦1− f (A)◦g(B)−g(A)◦ f (B)

≤ Γ
[[

g2 (A)+g2 (B)
]
◦1−2g(A)◦g(B)

]
.

(2.17)

We also have:

Corollary 2.8. With the assumptions of Theorem 2.6 and if A j are selfadjoint with spectra Sp(A j) ⊂ I and p j ≥ 0, j ∈
{1, . . . ,n} , with ∑

n
j=1 p j = 1, then

γ

{(
n

∑
i=1

pig2 (Ai)

)
⊗1+1⊗

(
n

∑
i=1

pig2 (Ai)

)
−2

(
n

∑
i=1

pig(Ai)

)
⊗

(
n

∑
i=1

pig(Ai)

)}

≤

(
n

∑
i=1

pi f (Ai)g(Ai)

)
⊗1+1⊗

(
n

∑
i=1

pi f (Ai)g(Ai)

)
−

(
n

∑
i=1

pi f (Ai)

)
⊗

(
n

∑
i=1

pig(Ai)

)

−

(
n

∑
i=1

pig(Ai)

)
⊗

(
n

∑
i=1

pi f (Ai)

)

≤ Γ

{(
n

∑
i=1

pig2 (Ai)

)
⊗1+1⊗

(
n

∑
i=1

pig2 (Ai)

)
−2

(
n

∑
i=1

pig(Ai)

)
⊗

(
n

∑
i=1

pig(Ai)

)}
.

(2.18)

Also,

γ

[(
n

∑
i=1

pig2 (Ai)

)
◦1−

(
n

∑
i=1

pig(Ai)

)
◦

(
n

∑
i=1

pig(Ai)

)]

≤

(
n

∑
i=1

pi f (Ai)g(Ai)

)
◦1−

(
n

∑
i=1

pi f (Ai)

)
◦

(
n

∑
i=1

pig(Ai)

)

≤ Γ

[(
n

∑
i=1

pig2 (Ai)

)
◦1−

(
n

∑
i=1

pig(Ai)

)
◦

(
n

∑
i=1

pig(Ai)

)]
.

(2.19)

Proof. From (2.15) we get

γ
[
g2 (Ai)⊗1+1⊗g2 (A j)−2g(Ai)⊗g(A j)

]
≤ [ f (Ai)g(Ai)]⊗1+1⊗ [ f (A j)g(A j)]

− f (Ai)⊗g(A j)−g(Ai)⊗ f (A j)

≤Γ
[
g2 (Ai)⊗1+1⊗g2 (A j)−2g(Ai)⊗g(A j)

]
for all i, j ∈ {1, . . . ,n} . If we multiply by pi p j ≥ 0 and sum, then we get

γ

n

∑
i, j=1

pi p j
[
g2 (Ai)⊗1+1⊗g2 (A j)−2g(Ai)⊗g(A j)

]
≤

n

∑
i, j=1

pi p j
{
[ f (Ai)g(Ai)]⊗1+1⊗ [ f (A j)g(A j)]

− f (Ai)⊗g(A j)−g(Ai)⊗ f (A j)
}

≤Γ

n

∑
i, j=1

pi p j
[
g2 (Ai)⊗1+1⊗g2 (A j)−2g(Ai)⊗g(A j)

]
,

which gives (2.18).

3. Some Examples

Let either p,q ∈ (0,∞) or p,q ∈ (−∞,0) and r ∈ R. If A, B > 0, then from (2.4) we get

Ar+p+q⊗Br +Ar⊗Br+p+q ≥ Ar+p⊗Br+q +Ar+q⊗Br+p, (3.1)

while from (2.6) we obtain

Ar+p+q ◦Br +Ar ◦Br+p+q ≥ Ar+p ◦Br+q +Ar+q ◦Br+p. (3.2)
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If one of the parameters p,q is in (−∞,0) while the other in (0,∞) , then the inequality reverses in (3.1) and (3.2).
If we take q = p, then we get

Ar+2p⊗Br +Ar⊗Br+2p ≥ 2Ar+p⊗Br+p, (3.3)

and

Ar+2p ◦Br +Ar ◦Br+2p ≥ 2Ar+p ◦Br+p (3.4)

for p,r ∈ R and A, B > 0.
If we take q =−p, then we get

2Ar⊗Br ≥ Ar+p⊗Br−p +Ar−p⊗Br+p, (3.5)

while from (2.6) we obtain

2Ar ◦Br ≥ Ar+p ◦Br−p +Ar−p ◦Br+p, (3.6)

for p,r ∈ R and A, B > 0.
Assume that A j > 0, p j ≥ 0, j ∈ {1, . . . ,n} with ∑

n
j=1 p j = 1, then by (2.12) we get(

n

∑
i=1

piA
p+q
i

)
⊗1+1⊗

(
n

∑
i=1

piA
p+q
i

)
≥

(
n

∑
i=1

piA
p
i

)
⊗

(
n

∑
i=1

piA
q
i

)
+

(
n

∑
i=1

piA
q
i

)
⊗

(
n

∑
i=1

piA
p
i

)
, (3.7)

if either p,q ∈ (0,∞) or p,q ∈ (−∞,0) . If one of the parameters p,q is in (−∞,0) while the other in (0,∞) , then the inequality
reverses in (3.7). In particular, we derive(

n

∑
i=1

piA
2p
i

)
⊗1+1⊗

(
n

∑
i=1

piA
2p
i

)
≥

(
n

∑
i=1

piA
p
i

)
⊗

(
n

∑
i=1

piA
p
i

)
(3.8)

and

2≥

(
n

∑
i=1

piA
p
i

)
⊗

(
n

∑
i=1

piA
−p
i

)
+

(
n

∑
i=1

piA
−p
i

)
⊗

(
n

∑
i=1

piA
p
i

)
. (3.9)

From (2.13) we obtain(
n

∑
i=1

piA
p+q
i

)
◦1≥

(
n

∑
i=1

piA
p
i

)
◦

(
n

∑
i=1

piA
q
i

)
, (3.10)

if either p,q ∈ (0,∞) or p,q ∈ (−∞,0) . If one of the parameters p,q is in (−∞,0) while the other in (0,∞) , then the inequality
reverses in (3.10). In particular, we have(

n

∑
i=1

piA
2p
i

)
◦1≥

(
n

∑
i=1

piA
p
i

)
◦

(
n

∑
i=1

piA
p
i

)
(3.11)

and

1≥

(
n

∑
i=1

piA
p
i

)
◦

(
n

∑
i=1

piA
−p
i

)
, (3.12)

for p ∈ R, A j > 0, p j ≥ 0, j ∈ {1, . . . ,n} with ∑
n
j=1 p j = 1.

Consider the functions f (t) = t p, g(t) = tq defined on (0,∞) . Then f ′ (t) = pt p−1, g′ (t) = qtq−1 for t > 0 and

f ′ (t)
g′ (t)

=
p
q

t p−q, t > 0.
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Assume that either p,q ∈ (0,∞) or p,q ∈ (−∞,0) . Then p
q > 0 and f ′(t)

g′(t) is increasing for p > q and decreasing for p < q and
constant 1 for p = q.
Assume that 0 < m≤ A, B≤M, then

inf
t∈[m,M]

f ′ (t)
g′ (t)

=
p
q

mp−q and sup
t∈[m,M]

f ′ (t)
g′ (t)

=
p
q

Mp−q for p > q

and

inf
t∈[m,M]

f ′ (t)
g′ (t)

=
p
q

Mp−q and sup
t∈[m,M]

f ′ (t)
g′ (t)

=
p
q

mp−q for p < q.

Assume that either p,q ∈ (0,∞) or p,q ∈ (−∞,0) and 0 < m≤ A, B≤M. From (2.15) we get for p > q that

0≤ p
q

mp−q (A2q⊗1+1⊗B2q−2Aq⊗Bq)
≤ Ap+q⊗1+1⊗Bp+q−Ap⊗Bq−Aq⊗Bp

≤ p
q

Mp−q (A2q⊗1+1⊗B2q−2Aq⊗Bq) (3.13)

and for p < q

0≤ p
q

Mp−q (A2q⊗1+1⊗B2q−2Aq⊗Bq)
≤ Ap+q⊗1+1⊗Bp+q−Ap⊗Bq−Aq⊗Bp

≤ p
q

mp−q (A2q⊗1+1⊗B2q−2Aq⊗Bq) . (3.14)

From (2.17) we also have the inequalities for the Hadamard product for p > q that

0≤ p
q

mp−q ((A2q +B2q)◦1−2Aq ◦Bq)
≤
(
Ap+q +Bp+q)◦1−Ap ◦Bq−Aq ◦Bp

≤ p
q

Mp−q ((A2q +B2q)◦1−2Aq ◦Bq) (3.15)

and for p < q

0≤ p
q

Mp−q ((A2q +B2q)◦1−2Aq ◦Bq)
≤
(
Ap+q +Bp+q)◦1−Ap ◦Bq−Aq ◦Bp

≤ p
q

mp−q ((A2q +B2q)◦1−2Aq ◦Bq) .
(3.16)

Assume that either p,q ∈ (0,∞) or p,q ∈ (−∞,0) and 0 < m≤ A j ≤M, p j ≥ 0, j ∈ {1, . . . ,n} with ∑
n
j=1 p j = 1. By (2.18) we

get for p > q

0≤ p
q

mp−q

{(
n

∑
i=1

piA
2q
i

)
⊗1+1⊗

(
n

∑
i=1

piA
2q
i

)
−2

(
n

∑
i=1

piA
q
i

)
⊗

(
n

∑
i=1

piA
q
i

)}

≤

(
n

∑
i=1

piA
p+q
i

)
⊗1+1⊗

(
n

∑
i=1

piA
p+q
i

)
−

(
n

∑
i=1

piA
p
i

)
⊗

(
n

∑
i=1

piA
q
i

)
−

(
n

∑
i=1

piA
q
i

)
⊗

(
n

∑
i=1

piA
p
i

)

≤ p
q

Mp−q

{(
n

∑
i=1

piA
2q
i

)
⊗1+1⊗

(
n

∑
i=1

piA
2q
i

)
−2

(
n

∑
i=1

piA
q
i

)
⊗

(
n

∑
i=1

piA
q
i

)} (3.17)
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and for p < q

0≤ p
q

Mp−q

{(
n

∑
i=1

piA
2q
i

)
⊗1+1⊗

(
n

∑
i=1

piA
2q
i

)
−2

(
n

∑
i=1

piA
q
i

)
⊗

(
n

∑
i=1

piA
q
i

)}

≤

(
n

∑
i=1

piA
p+q
i

)
⊗1+1⊗

(
n

∑
i=1

piA
p+q
i

)
−

(
n

∑
i=1

piA
p
i

)
⊗

(
n

∑
i=1

piA
q
i

)
−

(
n

∑
i=1

piA
q
i

)
⊗

(
n

∑
i=1

piA
p
i

)

≤ p
q

mp−q

{(
n

∑
i=1

piA
2q
i

)
⊗1+1⊗

(
n

∑
i=1

piA
2q
i

)
−2

(
n

∑
i=1

piA
q
i

)
⊗

(
n

∑
i=1

piA
q
i

)}
.

(3.18)

Also, by (2.19) we get for p > q

0≤ p
q

mp−q

[(
n

∑
i=1

piA
2q
i

)
◦1−

(
n

∑
i=1

piA
q
i

)
◦

(
n

∑
i=1

piA
q
i

)]

≤

(
n

∑
i=1

piA
p+q
i

)
◦1−

(
n

∑
i=1

piA
p
i

)
◦

(
n

∑
i=1

piA
q
i

)

≤ p
q

Mp−q

[(
n

∑
i=1

piA
2q
i

)
◦1−

(
n

∑
i=1

piA
q
i

)
◦

(
n

∑
i=1

piA
q
i

)]
,

(3.19)

while for p < q

0≤ p
q

Mp−q

[(
n

∑
i=1

piA
2q
i

)
◦1−

(
n

∑
i=1

piA
q
i

)
◦

(
n

∑
i=1

piA
q
i

)]

≤

(
n

∑
i=1

piA
p+q
i

)
◦1−

(
n

∑
i=1

piA
p
i

)
◦

(
n

∑
i=1

piA
q
i

)

≤ p
q

mp−q

[(
n

∑
i=1

piA
2q
i

)
◦1−

(
n

∑
i=1

piA
q
i

)
◦

(
n

∑
i=1

piA
q
i

)]
.

(3.20)

Consider the exponential functions f (t) = exp(αt) , g(t) = exp(β t) with α,β ∈ R. If αβ > 0 then the functions have the
same monotonicity. If αβ < 0 they have different monotonicity.
If αβ > 0 and A, B are selfadjoint operators, then by (2.5) we get

exp [(α +β )A]⊗1+1⊗ exp [(α +β )B]≥ exp(αA)⊗ exp(βB)+ exp(βA)⊗ exp(αB) , (3.21)

and

exp [(α +β )A]◦1+1◦ exp [(α +β )B]≥ exp(αA)◦ exp(βB)+ exp(βA)◦ exp(αB) . (3.22)

If αβ < 0, then the reverse inequality holds in (3.21) and (3.22).
If we take f (t) = t p and g(t) = ln t, we also have the logarithmic inequalities

(Ap lnA)⊗1+1⊗ (Bp lnB)≥ Ap⊗ lnB+ lnA⊗Bp, (3.23)

and

(Ap lnA+Bp lnB)◦1≥ Ap ◦ lnB+ lnA◦Bp, (3.24)

for A, B > 0 and p > 0. If p < 0, then the inequality reverses in (3.23) and (3.24).
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