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Abstract: Let H be a Hilbert space. In this paper we show among others that, if f, g are continuous
on the interval I with
t
0<'y§—f()§F fortel
g(t)

and if A and B are selfadjoint operators with Sp (A), Sp (B) C I, then

[F7 A" (D] @ [ (B) g™ (B)] <(1—v) f(A)@g(B)+rg(A)® f(B)

(v+1)* .

<
- 44T

(177 (A g (] @ [ (B)g' ™ (B)].

The above inequalities also hold for the Hadamard product “o” instead of tensorial product “®”.
Key words: Tensorial product, Hadamard Product, Selfadjoint operators, Convex functions.

MSC (2020): 47A63, 47A99.

1. INTRODUCTION

Let Iy,...,I; be intervals from R and let f : Iy x --- X I — R be an
essentially bounded real function defined on the product of the intervals. Let
A = (Ay,...,A,) be a k-tuple of bounded selfadjoint operators on Hilbert
spaces Hy,...,H such that the spectrum of A; is contained in I; for i =
1,..., k. We say that such a k-tuple is in the domain of f. If

1;
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is the spectral resolution of A; for i = 1,...,k; by following [2], we define
f(Al,...,Ak)iz/”' FOL, .o ) dEL (M) @+ @ dE, (M) (1.1)
I I

as a bounded selfadjoint operator on the tensorial product H; ® - - - ® H.

If the Hilbert spaces are of finite dimension, then the above integrals be-
come finite sums, and we may consider the functional calculus for arbitrary
real functions. This construction [2] extends the definition of Kordnyi [11] for
functions of two variables and have the property that

f(AL . A = fi(A) @ - @ fru(Ar),

whenever f can be separated as a product f(t1,...,tx) = fi(t1) -+ fu(tx) of
k functions each depending on only one variable.

It is know that, if f is super-multiplicative (sub-multiplicative) on [0, c0),
namely

Fst)> () F(5)f () forall st € [0,0)
and if f is continuous on [0, 00), then [I3], p. 173]

F(A®B) > () f(A)® f(B)  forall A, B> 0. (1.2)

This follows by observing that, if

A= / tdE (t) and B = / sdF (s)
[0,00) [0,00)

are the spectral resolutions of A and B, then
f(A® B) :/ / £ (st)dE (t) @ dF (s) (1.3)
[0,00) J[0,00)

for the continuous function f on [0, c0).
Recall the geometric operator mean for the positive operators A4, B > 0

A# B = AV2(ATV2B A2 AL,
where ¢ € [0, 1] and
A#B = AV2(AV2BATL/2)1/2 4172,
By the definitions of # and ® we have
A#B = B#A and (A#B)® (B#A)=(AQB)#(B® A).
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In 2007, S. Wada [I6] obtained the following Callebaut type inequalities
for tensorial product

(A#B) @ (A#B) < 5 [(A#aB) ® (A#1-oB) + (A#1-aB) ® (A#aB)]

N~ N~

<-(A®B+B®A) (1.4)

for A,B >0 and « € [0, 1].
Recall that the Hadamard product of A and B in B(H) is defined to be
the operator Ao B € B(H) satisfying

((AoB)ej,ej) = (Aej, e5) (Bej, e5)

for all j € N, where {¢;} .y is an orthonormal basis for the separable Hilbert
space H.
It is known that, see [6], we have the representation

AoB=U"(A® B)U (1.5)

where U : H — H ® H is the isometry defined by Ue; = e; ® e; for all j € N.
If f is super-multiplicative operator concave (sub-multiplicative operator
convex) on [0,00), then also [I3] p. 173]

f(AoB)> (L) f(A)o f(B) for all A, B > 0. (1.6)

We recall the following elementary inequalities for the Hadamard product

A2 6 B2 < (A;B> o1  forall A, B >0

and Fiedler inequality
Ao A7l > 1 for A>0. (1.7)

As extension of Kadison’s Schwarz inequality on the Hadamard product, Ando
[1] showed that

AoB < (4201)*(B2o)'®  forall 4,B>0
and Aujla and Vasudeva [3] gave an alternative upper bound

AoB < (A20B%)'?  for A,B>0.
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It has been shown in [10] that (A% o 1)1/2 (B*01) /2 and (A?o 32)1/2 are
incomparable for 2-square positive definite matrices A and B.
The famous Young inequality for scalars says that, if a,b > 0 and v € [0, 1],
then
a7 < (1—-v)a+uvb (1.8)

with equality if and only if @ = b. The inequality is also called v-weighted
arithmetic-geometric mean inequality.

Kittaneh and Manasrah [8,[9] provided a refinement and an additive reverse
for Young inequality as follows:

r(\f—\/l;)QS(1—V)a+ub—a1_”b”§R<\f—\/5>2 (1.9)

where a,b > 0, v € [0,1], » = min {1 —v,v} and R = max{l —v,v}. The
case vV = % reduces 1’ to an identity and is of no interest.
We recall that Specht’s ratio is defined by [14]

—hh71 i 00
S (h) == { e (n71) fhed)ul o), (1.10)

1 if h=1.

It is well known that limj,_,1 S (k) =1, S(h) = S(+) > 1 for h >0, h # 1.
The function S is decreasing on (0,1) and increasing on (1, 00).
The following inequality provides a refinement and a multiplicative reverse

for Young’s inequality (1.8])

s ((%)) A < (1—v)at+ b < S (%) A=, (1.11)
where a,b > 0, v € [0,1], r = min {1 — v, v}.

The second inequality in is due to Tominaga [I5] while the first one
is due to Furuichi [7].

It is an open question for the author if in the right hand side of we
can replace S (%) by S <(%)R) where R = max {1 — v,v}.

Kittaneh and Manasrah result provides upper and lower bounds for the dif-
ference between the weighted arithmetic mean and geometric mean while Tom-
inaga and Furuichi results provides bounds for the quotient of these means.
They cannot be compared in general.

We consider the Kantorovich’s ratio defined by

(h+1)?

K (h) = T

h > 0. (1.12)
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The function K is decreasing on (0, 1) and increasing on [1,00), K (h) > 1 for
any h >0 and K (h) = K (3) for any h > 0.

The following multiplicative refinement and reverse of Young inequality in
terms of Kantorovich’s ratio holds

K" (%) "W < (1-v)a+vb< KR (%) a vy, (1.13)

where a,b >0, v € [0,1], r = min {1 — v,v} and R = max {1 — v,v}.

The first inequality in was obtained by Zuo et al. in [17] while the
second by Liao et al. [12].

In [I7] the authors also showed that

1
K" (h) > S(h") for h >0 and r € [0,2]

implying that the lower bound in (1.13) is better than the lower bound

from (|1.11]).
In [5] the authors showed that neither of the upper bounds in (|1.11)) and

(1.13]) is always best.
We can give here a simple direct proof for ([1.13)) as follows.

Recall the following result obtained by the author in 2006 [4] that provides
a refinement and a reverse for the weighted Jensen’s discrete inequality:

je{1,2,..n

, 1 1
n  min {p;} EZ@(xj)fCI) ﬁz% (1.14)
} j=1 j=1
1 < 1 <
<5 > p®(x;) - @ B > pja;

1 1 ¢
<n_max qpj; |~ ) ®(x;) =2 ~-) x|,
2 OO RE PP

where ® : C' — R is a convex function defined on convex subset C' of the linear
space X, {xj}je{l 5...ny are vectors in C' and {p;}
numbers with P, = >%_; p; > 0.

je{1,2,..n) aT€ nonnegative
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For n = 2, we deduce from 1) that

ymin (w1 v} | 2@+ W) <fﬂ‘2*y> (1.15)
<V(I)() (1-v)®(y) - <I>[V90—|—(1—V)y]
< 2max {r,1 - v} [q)(x ~® (x_;g/)]

for any z,y € R and v € [0, 1].

Now, if we write the inequality for the convex function ¢ () =
—Inz, and for the positive numbers a and b we get .

Motivated by the above results, in this paper we show among others that,
if f, g are continuous on the interval I with

)
g(t)

and if A and B are selfadjoint operators with Sp (A), Sp (B) C I, then
A7 (A) g" ()] @ [f7 (B) g (B)]
<(1-v)f(A)®g(B)+vg(A)® f(B)

R
(y+T)°
44T

0<~y< <r fortel

[ (A) g (D] & [f(B) g™ (B)].

b

The above inequalities also hold for the Hadamard product “o” instead of

tensorial product “®”.

2. MAIN RESULTS
We have:

THEOREM 1. Let I and J be two intervals and f, g defined and continuous
on an interval containing I U J. Assume that

)
g(t)

0<y < <Iy for tel

and

0<y <
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Define
K () if 1<
Y2 I'y»
U (71,T1,72,Ta) = maX{K (5;) K(%)} if <1<l
K (%) if D<,
2 Y2
and
K (%) if 1<,
u(y1,T1,79,T2) = ¢ 1 if <1<,

K(L) if <,

72 72

If A and B are selfadjoint operators with Sp (A) C I and Sp (B) C J, then
u" (y1,T1,72,T2) [f177 (A) ¢” (A)] @ [V (B) g" " (B)] (2.1)
S(A-v)f(A)®g(B)+vyg(A)® f(B)

< U™ (11, T1,72,T2) [f177 (A) ¢” (A)] @ [ (B) ' (B)]

for v € [0,1], where r = min {1 — v, v} and R = max {1 — v, v}.
Proof. If a € [y1,T1] C (0,00) and b € [y2, 2] C (0,00), then

a _|n It
—ec |, —| c(0,00).
b [Fz 72] (8, 0)
The function K is decreasing on (0,1) and increasing on [1,00), then we
observe that
max K (1) = U (71,T1,72,12)
TE [l ﬂ]

Fo’v2
and
min K(T) :u(’715F17727F2>-
o]
By (1.13) we then get
UT (’yla F17727F2) al—l/blj S KT (%) al—yby S (1 — V) a -+ l/b (22)

< K" (%) ar ™'y < U (y1,T1, 99, T2) a' 70",
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where r = min {1 — v,v} and R = max {1l — v, v}.
Now, if we take

m an :f(s) S
a_g(t)’ tel d b 7(5) eJ
in , then we get
1—v v
"(71:T1,72,2) (T) g z ) (2.3)

ERVIOIIC

=050 e
R FONT (£

<orenrinr) (3) (J65)

fort el and s € J.
This is equivalent to

u” (y1,T1,72,T2) 177 () g7 (8) f7 (s) g' 7 (s) (2.4)
<A-v)ft)g(s)+rg(t)f(s)
S UM (v, 1,72, Do) F777 (0) g7 (8) 7 (s) 9" 77 (s)

forte I and s € J.

' A= /1 {E(f) and B = /J sdF (s)

are the spectral resolutions of A and B, then by taking the integral [ 7 J ; over
dE (t) ® dF (s) in (2.4)), we derive that

"(71,01,72,T'2) / / v fY(s) g 7" (s)dE (t) ® dF (s) (2.5)
// (1= ) £ (£) g () +vg (t) f (5)] dE () ® dF (s)
< UR(y,T'1,72,T9) //f1 ( Y (s)g" 7" (s)dE (t) @ dF (s).
By utilizing (1.1]) we get

//fl Y () " (1) ¥ (5) g (5) dE () @ dF (s)
= [fl V(A)g" (A ® [f*(B) g (B)]
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// (1-v)f s)+rvg(t)f(s)]dE(t) @ dF(s)

1—1///f s)dE(t) ® dF (s —i—u// t) ® dF (s)

=1 -v)f(A)@g(B)+vg(A) @ f(B).
Therefore, by (12.5) we obtain the desired result (2.1]). &

COROLLARY 1. With the assumptions of Theorem [T}
u” (91, 01,72, T2) [f177 (A) g” (A)] o [£7(B) 9"~ (B)] (2.6)
<(L=v)f(A)og(B)+rg(A)e f(B)
< U (71,71, 72,T2) [f177 (A) g (A)] o [f7(B) g' " (B)]

for v € [0, 1].
Proof. We have the representation
XoY=U"(X®Y)U,

where U : H — H ® H is the isometry defined by Ue; = e; ® ¢; for all j € N.
If we take U™ at the left and U at the right in (2.1)), then we get

u"(y1, Piove, D) U ([F177 (A) g ()] @ [f7(B) '™ (B)]) U
SUT[(1-v)f(A)®g(B)+vg(A) e f(B)U
< UR(, Tre, D) U ([f177(A) ¢ (D] @ [£7(B) g (B)]) U,
which is equivalent to
W (. T, T U ([F (4) g” (4)] o [ (B) g (B)]) U
<A =nU[f(A)og(B)U+ U [g(A)o
< U (1, T, Do) U ([F177(A) g7 (A)] o [/ (B) ' (B)]) U

and the inequality ({2.6]) is obtained. 1

COROLLARY 2. Assume that f,g are continuous on I and

)
g(t)

0<~vy< <T for tel.
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If A and B are selfadjoint operators with Sp (A), Sp (B) C I, then

(S0 (A) g (A)] © [/ (B) g™ (B)] (2.7)
<A-v)f(A)@g(B)+vg(4)® f(B)
9T R
< DL e @l e [ g ).

We also have for B = A that

(177 (4) g (A)] © [ (A) g ()] (2.8)
< (1) f(A) @ g(A)+vg(A)® f(A)
9 R
< | O v () g )] @ [ () g ()]

44T

The proof follows by taking 71 = v2 = v and I'y = I'y = T" in Theorem
We also have:

THEOREM 2. With the assumptions of Theorem 1], we have
u" (1,T1,72,T2) < (L=v) [f"(A) g (A)] @ [f7"(B)g" (B)] (2.9)
+v g (A) [T (A)] @ [ (B) £ (B)]
< U™ (y,T1,72,T9),

for all v € [0, 1].
Proof. From (2.4 we also have

(L—v)f(#)g(s)+vg(t) f(s)
@) gv (8) 17 (s) gt (s)

< U (y1,T1,792,T2),

u” (717F17727F2) <

namely

u" (v1,T1,72,T2) S (L—v) fY (1) g7 (t) [ (s) g" (5) (2.10)
+ug (@) ST ) g (9) F1V (s)
< UM (71,T1,72,T2),
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fort €l and s € J.
By taking the integral [, [; over dE (t) ® dF (s) in (2.10), we derive the
desired inequality (2.9). 1

Remark 1. The above inequalities (2.7]), (2.8) and (2.9)) also hold for the
Hadamard product “o” instead of tensorial product “®”. They can be proved

by making use of a similar argument to the one in the proof of Corollary

3. INEQUALITIES FOR SUMS

We can state the following result:

PROPOSITION 1. With the assumptions of Theorem|I|and if A; and B; are
selfadjoint operators with Sp (A;) C I and Sp(B;) C J, p; > 0,i € {1,...,n}
with > " | p; = 1, then

u (1,1, 72, ) !Zpifl‘”(Ai)g”(Ai) ®

i=1

> pif“(Bi)g' " (Bi)
i—1

<(1-v) (me(&)) ® <Zpig(3i)> (3.1)
i=1 i=1
+v (ZPiQ(&)) ® <sz‘f(3z‘)>
i=1 i=1

®

< U™ (1,101,792, T2) [Z pif TV (Ai)g" (A))
=1

> pif*(Bi)g' v (Bi)
i=1
for v € [0,1], where r = min {1 — v, v} and R = max {1l — v, v}.

Proof. From (2.1]) we get

w (1, 1,72, T2) [F177(Ad)g” (Ai)] @ [f7(Bj)g' " (B))] (3.2)
< (1 =v)f(4) ® g(B)) +vg(A:) ® f(B))
<UR(y1,T1,72,T9) [F177(4) g (A)] @ [fY(B))g' " (By)]

fori,j € {1,...,n}.



248 S.S. DRAGOMIR

If we multiply (3.2) by pip; > 0 and sum, then we get

ur(71,r1,72,r2)zpipj [flfV(Ai)gy( )] [fy( ) V(B])]

ij=1
<A =v) Y pipif(A)@g(B))+v Y pipjg (A:) @ f (Bj)
i,j=1 t,j=1

<UR(m,T1,72,T2) > oipy [f177 (A) g7 (A)] @ [ (B;) g (By)],

ij=1
which is equivalent to (3.1f). N

Remark 2. Assume that f, g are continuous on I and
0<y<—=<T fort e I.

For B; = A;, i € {1,...,n} we get from ({3.1)) that

[ZPifl_V(Ai) “( szfy —(Ai)
i=1

(I-v (sz i ) ® (Zmﬂ&))
+v (ZpiQ(Ai)> ® (Zpif(Ai)>

(fy + F)Q § - 1-v l/
44T Z if (A
i=1

szfy _V

From (3.4) we get a similar inequality for the Hadamard product “o

4. EXAMPLES

Assume that the operators A and B satisfy the conditions
0<m<AB<M

for some constants m and M.

(3.4)
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Consider the functions f (t) = tP, g(t) = ¢4 for t > 0 and p # ¢ are real

P _
numbers. We have i—q =tP~7 and

mP4 < & < MPe for p > q
g(t)
and
MP < & < mPe for p < gq
g

(t)
for all t € [m, M].
For p > ¢ we get by Corollary [2] that

Al=vptva o prr+1=v)a < (1 — 1) AP @ BT + vAY @ BP (4.1)

AA=vIptre o prp+(1-v)q

(mP=1 4 MP=9)> r
Amp—a)[P—a

where v € [0, 1] and R = max {1 — v, v}.
In particular,

1
A" ®Bp7q < §[AP®BQ+AQ®BP]
4.2)
p—q P—q (
S = p:zi— ]\417711 A% ®B%
2m 2 M =2
We also have for B = A that
AU=PHva g AvpHI=1)a < (1 — 1) AP @ AT + v AT @ AP (4.3)

A=Iptva o gvp+(1-v)q,

R
_ (mP=1 4+ MP=1)>
= | dmpapr—a

In particular,

1
APTQ®APTQS§[AP®A‘1+A‘1®AP]
_ _ 4.4)
mP~1 + MP™9 piq pta (
<——5 547 04z
2m'z M =2

The above inequalities - also hold for the Hadamard product “o”
instead of tensorial product “®”.

Similar inequalities may be stated if one consider the functions f(¢) =
exp (at), g (t) = exp (Bt) with a # [ and t € R. The details are omitted.
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