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A B S T R A C T

Objective: Physiological signals, such as electrocardiogram (ECG) and wrist pulse signals (WPS), play an
important role in diagnosing and preventing cardiovascular and other physiological diseases. Therefore,
accurate classification of physiological signals has become the key to assist physicians in diagnosis. However,
this field still faces several prominent challenges, including limited availability of data, imbalanced datasets,
convergence issues with loss functions, and the need for model architectures capable of accurately detecting
waveform patterns.
Methods: This study introduces the Physiological Signal Classification Network (PSC-Net), which combines
the strengths of Convolutional Neural Networks (CNNs) and transformers for applications in medical artificial
intelligence. Specifically, local temporal features are extracted using the GRWA-LSTM network (GLNet)
proposed in this paper. Within the transformer, two GRU layers replace the fully-connected layer to enhance
global feature extraction for physiological signal data. Residual connection integrates the outputs of GLNet and
Transformer through global average pooling and weight settings. To address challenges related to small and
imbalanced datasets, we propose an enhanced data augmentation algorithm based on SMOTE Tomek, along
with an improved loss function. Additionally, automatic learning rates are optimized using the Dung Beetle
Algorithm (DBA).
Results: Our proposed method achieves superior accuracies of 83.33%, 100.0%, 95.74%, and 98.85% on four
physiological signal datasets (including one clinical dataset): Five Types of Pulses Database, Coronary Heart
Disease (CHD) database, MIT-BIH Arrhythmia Database, and MIT-BIH ST Change Database. These results attest
to the model’s robust generalization capability and its promising application prospects in assisting diagnoses.
1. Introduction

According to the latest data from the 2021 European Society of
Cardiology Atlas Project, cardiovascular disease (CVD) stands among
the leading causes of death. An estimated 17.9 million people die
due to CVD annually, constituting 32% of all deaths worldwide [1].
Within these cases, arrhythmia is a prevalent manifestation of CVD,
and electrocardiogram (ECG) data plays a crucial role in diagnosing
the presence of arrhythmias. Similarly, the wrist pulse signals (WPS)
serves as a vital biomarker, reflecting the propagation of physiolog-
ical phenomena within the arterial system of the human body. By
categorizing it into a particular pulse, it can dynamically reflect car-
diovascular [2,3]. Moreover, the World Health Organization (WHO)
advocates for wrist pulse diagnosis as an efficacious and expedient
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approach, shown in Fig. 1, for the detection and management of
CVD [4], as shown in Fig. 1. ECG and WPS, both physiological signals,
are non-invasive and widely utilized medical diagnostic tools. Utilizing
deep learning algorithms to classify and process physiological signal
data can offer crucial information for medical disease diagnosis and
treatment. With the rapid growth of artificial intelligence (AI), deep
learning methods have been widely used in many fields including ECG
classification. Many methods advocate segmenting the ECG signal into
2, 5 or 10-s heartbeats [5], which are subsequently classified using
CNN, Densely Connected CNN (DenseNet) [6], or an improved deep
residual network [7]. All these models demonstrate high classification
performance. However, in contrast to the ECG signal, the WPS travels
through various parts of the body, including nerves, muscles, skin,
vailable online 3 February 2024
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Fig. 1. Wrist pulse diagnosis is typically performed at three specific positions, namely,
Cun, Guan and Chi.

and arterial walls. Consequently, the WPS contains more physiological
information than the ECG signals [8].

In recent years, there has been a growing interest among researchers
in AI-based diagnostic tools for noninvasive physiological signals, with
a particular focus on WPS [9–12]. Meanwhile, several challenges have
emerged during this exploration process. For instance, Kang et al. [13]
utilized the non-invasive monitoring of human WPS to obtain real-time
information on heart rate, cardiovascular metrics, and pulse wave-
forms. Despite utilizing a support vector machine (SVM) for detection,
the limited availability of data hindered the capacity of the model
to learn diverse patterns and perform effective generalization to new
cases, leading to unsatisfactory detection outcomes. Similarly, a wrist
pulse acquisition method was proposed [14], generating a feature
vector capturing the wrist pulse waveform, and an SVM classifier
was employed to distinguish between diabetic and healthy samples.
Unfortunately, this dataset suffered from imbalance, with significantly
more healthy samples than diabetic samples. This imbalance caused
the model to be biased towards the majority category, resulting in
suboptimal performance for the minority category. These challenges
underscore the need for data enhancement methods to effectively ad-
dress data scarcity and imbalance in the field of physiological signals.
Addressing data imbalance, current research primarily involves two
techniques: (1) reducing the majority class size (undersampling [15,
16]) and (2) increasing the minority class size (oversampling [17,
18]). Both undersampling and oversampling can be performed in a
stochastic manner with low complexity but may lead to potentially
destabilizing behaviors, such as the deletion of important instances or
the enhancement of noisy instances.

Furthermore, the prevailing methodology for wrist pulse diagnosis
entails manual feature extraction to derive a vector of relevant features,
subsequently input into a conventional classifier. Nevertheless, this
procedure is labor-intensive and constitutes a substantial impediment
to the seamless integration of AI into the field of medicine [19]. To
tackle this problem, Wang et al. proposed a 1D convolutional neural
network instead of traditional machine learning models for wrist pulse
classification [20]. On this basis, researchers [21] proposed a CNN with
gate recurrent unit (GRU) and attention architecture to automatically
identify and classify gestational periods using wrist pulse data. Yet,
these model architectures still have limitations in terms of performance
and only apply to specific datasets, which may not satisfy the practical
needs encountered in clinical settings.

In this paper, we consider that in real-world scenarios, physiological
signals such as ECG and WPS often exhibit multi-periodic patterns,
2

where the variation of each cycle at each time point is not only affected
by the temporal pattern of its neighboring regions but also highly
correlated with the variation at other time points. This observation
naturally leads to a modular structure for time change modeling where
the changes in a certain period can be captured in a single module.
Moreover, employing pre-processing techniques, such as wavelet trans-
form [22] and trilinear interpolation [23], can aid in decomposing the
complex temporal patterns of physiological signals, thereby facilitating
the modeling of temporal changes. Accordingly, we combine CNN and
Transformer models to build a novel model for ECG and wrist pulse
diagnosis using a self-built PSC-Net framework. The CNN part of the
model is based on GLNet, which effectively extracts physiological signal
features using causal convolution, gated convolution, GRU, and two
layers of LSTM. The Transformer block integrates two layers of GRU
instead of the traditional fully connected layers, in addition to a resid-
ual connection from the global average pooling of the first LSTM layer
to the flattened feature, which allows the model to utilize frequency-
domain features. To the best of our knowledge, there has been no
prior work that employs the fusion of CNN, GRU and Transformer for
wrist pulse diagnosis. By appropriately integrating GRU, causal convo-
lution, inflation convolution, and LSTM into the model architecture,
it becomes more adaptable to the intra- and inter-cycle variations in
physiological signals, thus can effectively model the characteristics of
physiological signals and capture more information from the data.

In addition to the improved model architecture, we also propose
a new algorithm for data augmentation, which mitigates the impact
on accuracy due to data scarcity and imbalance. Our algorithm auto-
matically splits the dataset into training and test sets, applies SMOTE
Tomek to the training set to fit minority classes, then add Gaussian
noise to the augmented dataset and combines it with the original
training set to obtain a larger training set. We also design our loss
function by combining focal loss, cross-entropy and triplet loss, and
use an algorithm to automatically assign optimal weights to the focal
loss, which strategy can be applied to all methods that require optimal
weight assignment. Finally, we optimize the loss function using the
DBA in the four datasets, which improves the accuracy of the model
by approximately 3%.

This study makes the following main contributions:

• We designed an improved data enhancement algorithm based on
SMOTE Tomek for the problem of scarcity and category imbal-
ance in clinical datasets, and combined the respective advantages
of three loss functions, namely, cross-entropy, focal loss, and
triple loss, to optimize the training process using DBA.

• We propose a PSC-Net model specifically for physiological sig-
nal data, where we use GLNet to extract local features and a
transformer encoder to extract global features. Unlike the existing
models with the parallel architecture of the two, our model
increases the interaction between the two. We use a residual
concatenation with global average pooling to directly connect
the output of GLNet to the output of the transformer encoder.
This operation not only eliminates a large amount of redundant
information in the input of the transformer encoder, but also
allows the model to retain previously extracted local features. The
inter-period and intra-period information is effectively captured
and performs well in all four datasets.

• This work introduces an automated weight assignment algorithm
for focal loss, effectively addressing the challenge of setting ap-
propriate weights across diverse scenarios.

2. Related work

The modeling and analysis of physiological signals for medical
disease diagnosis have been fundamental applications in the field of
time series data and have received extensive research attention. Ad-
dressing issues such as data imbalance, the extraction of better feature
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vectors, and the optimization of the model training process are ur-
gent challenges. In this section, we categorize related work into three
main areas: the synthetic minority oversampling technique (SMOTE)
methods, model construction, and model optimization.

2.1. SMOTE methods

While considerable research has been conducted on addressing class
imbalance challenges in shallow machine learning models, limited
attention has been devoted to tackling this issue in the realm of
deep learning. Historically, two primary avenues have been pursued to
mitigate this challenge: modifications to loss functions and the adoption
of resampling techniques. The primary method for modifying the loss
function scheme involves using the focal loss function. However, this
type of function is considered to require artificial setting of weight
parameters, introducing significant uncertainty. Deep learning resam-
pling solutions can be broadly categorized as either pixel-based or
reliant on generative adversarial networks (GANs) for the generation
of synthetic instances. However, both of these approaches come with
inherent limitations.

Pixel-based resampling solutions often fall short in capturing the
intricate data characteristics of images and may struggle to produce
semantically meaningful artificial images [24]. On the other hand,
GAN-based solutions demand substantial amounts of data, are chal-
lenging to fine-tune, and are susceptible to the problem of mode
collapse [25,26]. Therefore, There is a pressing need for a new over-
sampling method is needed that specifically addresses the challenges
posed by the small amount of data and the extreme imbalance between
categories in deep learning.

SMOTE has gained significant popularity in various fields, including
machine learning classification problems, image recognition and bioin-
formatics. It was introduced by Megahed et al. [27], with the aim to
resolve the issue of imbalanced datasets by generating synthetic minor-
ity samples through the interpolation of existing samples. The authors
provided a detailed explanation of the principles of their algorithm,
conducted multiple sets of experiments to validate its effectiveness.

The SMOTE Tomek algorithm selected in this paper offers the ad-
vantage of integrating oversampling and undersampling techniques in
a single step, unlike other SMOTE algorithms that generate only a few
synthetic samples to address the class imbalance. Specifically, it utilizes
the SMOTE algorithm to identify boundary instances and subsequently
employs the Tomek link undersampling technique to remove them. This
comprehensive approach effectively addresses the challenges associ-
ated with unbalanced class distribution and overlapping instances near
decision boundaries. Thus, the utilization of the SMOTE Tomek algo-
rithm brings the potential to enhance the classification performance by
improving the quality and balance of the dataset.

However, SMOTE Tomek also has some limitations, specifically the
lack of diversity in the data generated. This limitation can result in the
model to being well-trained on only one aspect of the data’s features
during subsequent training, inevitably impacting the final accuracy. In
this paper, we address this limitation by enhancing the diversity of the
data through additional processes, such as noise addition and Fisher–
Yates disruption, building upon the foundation of based on SMOTE
Tomek. The detailed content is explained in the subsection of Data aug-
mentation algorithm in the Section 3.2, along with the corresponding
algorithm implementation process, as outlined in Algorithm 1.

2.2. Model construction

In recent years, many popular deep learning models have been
proposed, such as ConvNeXt [28], ViT (Vision Transformer) [29], Swin
Transformer [30], and more. Technically, ConvNeXt is based on con-
volutional neural network that utilizes convolutional layers to capture
image features. ViT employs a self-attention mechanism, dividing the
image into blocks and transforming these blocks into sequences for
3

image classification tasks. Swin Transformer combines local window-
ing and global windowing with multilevel attention mechanisms to
effectively handle both local and global information, demonstrating
strong performance in image classification and other visual tasks. It is
noteworthy that despite the success of these popular models in image
processing, none of these approaches consider the specific character-
istics of time series data, i.e., the trending and periodicity inherent in
one-dimensional data. This paper aims to address this gap and focuses
on incorporating these characteristics into the modeling of time series
data.

We observe that Transformers excel at detecting long-time depen-
dencies between different time points through attention mechanisms.
For instance, Wu et al. proposed Autoformer, integrating an autocor-
relation mechanism to capture serial temporal dependencies based on
learning cycles [31]. However, recognizing only long-term features may
be insufficient. This paper recognizes the need for additional local
features and introduces a CNN architecture for this purpose. Unlike
many existing models that simply divided into two paths to extract
local and global features independently and then fuse them in the final
fully connected layer, such an approach is deemed unscientific. It often
leads to the model relearning features from scratch each time, with
limited mutual benefit. In contrast to previous methods, the PSC-Net
introduced in this paper transcends the parallel architecture of CNN and
Transformer, fostering more interaction between them. The proposed
model first extracts local features using the GLNet architecture, an
improved version of CNN. It then splits into two paths: one is directly
connected to the transformer encoder architecture. In this configu-
ration, the GLNet acts as a facilitator for the transformer encoder,
conduction feature filtering to eliminate redundant information. The
other path involves taking the local features filtering extracted from the
GLNet architecture, pooling them through global averaging to compress
the space and leverage their ability to extract low-frequency frequency-
domain features. These features are then weighted and fused with the
output of the transformer encoder, with weights of 0.64 and 0.35,
respectively. Finally, the 4-layer MLP completes the final category out-
put. is completed. It is worth mentioning that our model architecture,
tailored for time series data the characteristics, incorporates modules
like GRU and LSTM, which are particularly effective for modeling
physiological signals.

2.3. Model optimization

In the realm of model optimization, contemporary methods often
rely on a single loss function, such as cross entropy or focal loss.
Cross-entropy, a traditional loss function commonly used in classi-
fication tasks, faces challenges in handling category imbalance and
overlook minority classes in multi-category classification scenarios. On
other hand, focal loss addresses the issue of category imbalance by
enhancing the weight of difficult-to-categorize samples through the
focus parameter. While focal loss is effective, its reliance on manual
setting of the focus parameter introduces uncertainty. The triplet loss,
frequently employed in contrast learning, is instrumental in learning
feature embedding space. However, its direct applicability to multi-
category classification tasks can be challenging. In this paper, we aim to
overcome the limitation of each individual loss function by combining
cross-entropy, focal loss, and triplet loss.

Cross-entropy loss aids in the classification problem, focus loss
tackles imbalance, and triplet loss contributes to feature embedding.
Additionally, to address the issue of setting weight for the focal loss
function, this paper introduces an automatic weight setting algorithm.
This algorithm adjusts weight based on the number of categories in
the input data, assigning greater weights to samples within underrep-
resented categories. The targeted training approach is elaborated in
Section 4.4.
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Fig. 2. A preprocessing operation is performed on the physiological signals to obtain single-cycle signals for physiological signal anomaly identification.
Furthermore, our choice to employ the DBA over the current an-
nealed cosine algorithm stems from the inherently multi-periodic na-
ture of the input data. The DBA excels in optimizing multi-peak func-
tions, employing both global and local search strategies harmoniously.
This dual strategy proves valuable in avoiding the pitfalls of local
optima. This efficacy of the DBA is evident in the experimental results
presented in Model 12 and Model 13 within Table 14, highlighting the
performance enhancements achieved by incorporating the DBA in this
study.

3. Datasets

We validate the model’s disease diagnosis performance using biosig-
nals with four datasets, including two private and two public datasets.
In addition, clinical medical data require specific pre-processing due
to high and low-frequency noise interference. The denoised data better
align with real-life data patterns, enhancing the model’s suitability for
disease diagnosis. The data processing flow is shown in Fig. 2.

3.1. Data description

(1) Five Types of Pulses Database: We recruited a cohort of volun-
teers from Wuyi University, with data collection conducted by a team
of five research assistants who received rigorous training by physicians
to ensure the highest level of experimental reliability, and performed
the entire study in ethical compliance with the guidelines of the Human
Research Ethics Committee (approval number: [2019] 18). To capture
the wrist pulse waveform data, we utilized a state-of-the-art lingual
pulse and meridian point information collection management system
(model MT-SM-01), which has been awarded the prestigious Class II
medical device registration certificate by Tianjin Huimin Technology.
The collected data were meticulously organized and presented in the
form of organized .xlsx tables. Five types of wrist pulse waves (or Mais)
were included in the dataset, namely, hesitant pulse, slippery pulse,
sluggish pulse, moderate pulse, and counted pulse.

(2) CHD Database: In this work, we also included pulse data from
patients with CHD, which were generously provided by the Shanghai
University of Traditional Chinese Medicine. This dataset consists of
two distinct patient categories: individuals with a health condition and
those diagnosed with coronary artery disease.

Tables 1 and 2 comprehensively present the number of beats per
category for the Five Types of Pulses Database and two types of CHD
Database, respectively, accompanied by detailed explanations of their
clinical significance.

(3) MIT-BIH Arrhythmia Database [32]: The single-lead database
comprises 48 half-hour ECG recordings obtained from the physionet
4

Table 1
Number of beats in each class of pulse and explanation of Five Types of Pulses
Database.

Data type Clinical relevance Grouped class

Hesitant pulse Hesitant pulse (Chi Mai), characterized by a
slow or irregular rhythm of the pulse, is a
common symptom of cardiovascular diseases.

99

Slippery pulse Slippery pulse (Hua Mai) may be caused by
phlegm, accumulated food, or actual heat.

444

Sluggish pulse Sluggish pulse (Huan Mai) is mostly caused by
spleen deficiency and lack of qi and blood.

407

Moderate pulse In case of moderate pulse (Ping Mai), the body
is in a state of harmony between yin and yang.

1317

Counted pulse Counted pulses (Shu Mai) are most often seen
in heat evidence, strong for actual heat, weak
for deficiency heat.

609

Table 2
Number of beats in each class of pulse and explanation of CHD Database.

Data type Clinical relevance Grouped class

CHD CHD is a condition characterized by a
narrowing or blockage of the coronary arteries,
which can lead to chest pain, shortness of
breath, and even heart attack.

1270

Normal Normal individuals do not have such blockages
and do not exhibit symptoms of CHD.

900

database. Featuring a sampling frequency of 360 Hz and 11-bit resolu-
tion, this database includes a rich dataset for developing and evaluating
algorithms for arrhythmia detection and classification. The source data
is available at https://www.physionet.org/content/mitdb/1.0.0/

(4) MIT-BIH ST Change Database [33]: This single-lead database
focuses on ST segment changes that serve as crucial indicators of
cardiac conditions, particularly ischemia. It consists of 90 annotated
ECG recordings from 59 patients, each lasting 30 min. The source data
is available at https://www.physionet.org/content/stdb/1.0.0/

The MIT-BIH Arrhythmia Database was used in a 7-class classifica-
tion task, including ‘Normal’, ‘Left bundle branch block’, ‘Right bundle
branch block’, ‘Premature ventricular contraction’, ‘Atrial premature
beat’, ‘Fusion of ventricular and normal beat’, and ‘Fusion of paced and
normal beat’. On the other hand, the MIT-BIH ST Change Database was
used in a 3-class classification task, including the classes of ‘Normal’,
‘ST Elevation’, and ‘ST Depression’. The specific data distributions are
shown in Tables 3 and 4.

https://www.physionet.org/content/mitdb/1.0.0/
https://www.physionet.org/content/stdb/1.0.0/
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Table 3
Types of QRS beat in the MIT-BIH Arrhythmia Database.

Symbol Heartbeat type Grouped class

N Normal beat 5921
L Left bundle branch block beat 949
R Right bundle branch block beat 977
A Atrial premature beat 540
V Premature ventricular contraction 2162
F Fusion of ventricular and normal beat 217
f Fusion of paced and normal beat 43

Table 4
Types of QRS beat in the MIT-BIH ST Change Database.

Symbol Heartbeat type Grouped class

N Normal beat 6369
S ST Elevation 478
V ST Depression 111

Fig. 3. Denoising and interpolation of data.

3.2. Data preprocessing

Denoising. During physiological signal acquisition, minute body
tremors, breathing and power frequency interference from instruments
can cause high- and low-frequency noise and baseline drift. Studies
have indicated that noise induced by power frequency interference and
circuit interface typically appears above 20 Hz, while external inter-
ference, such as breathing and arm movements, usually occurs below
0.1 Hz [34,35]. Bandpass filters remove both high- and low-frequency
noise [36]. Discrete cosine transform, empirical mode decomposition
and wavelet transform can eliminate baseline drift [37]. Moreover, cu-
bic spline interpolation provides a way to smooth denoised WPS [38].

In this study, we first used a Balwons bandpass filter to elimi-
nate noise outside the 0.5 Hz to 40 Hz range as a means to exclude
50 Hz industrial frequency interference and low-frequency noise below
0.5 Hz. Subsequently, we performed a 5-layer decomposition of the
WPS using db6 wavelet basis in the wavelet transform. Since the
sampling frequency of the WPS data set is 128 Hz, the frequency range
of the signal is 0∼64 Hz, and the bandwidth of the high-frequency detail
components D1 and D2 is 64 Hz∼16 Hz. Considering that most of the
energy of the human WPS is mainly concentrated to between 0∼10 Hz,
we reconstructed the high-frequency detail components of D1 and D2
to complete the high-frequency noise of the WPS removal and retain
most of the energy of the WPS. In addition, the other datasets were
processed similarly to the WPS dataset as shown in Fig. 3.

Removal of baseline drift and segmentation. Since different pe-
riods will lead to intro period and interpreted variations, it is straight-
forward to think that by splitting the WPS into multiple single cycles
and using the designed network architecture, we can capture the cycle-
specific derived variations in a single module and thus obtain the intra-
and intercycle characteristics. Besides, this design makes intricate tem-
poral patterns disentangled, benefiting oral variation modeling. This
paper utilizes cubic spline interpolation to perform WPS segmentation
and baseline drift removal (as shown in Fig. 3). The process involves
calculating the fundamental frequency of the WPS to determine the
length of the single-cycle WPS. Then, a corresponding sample point
window is designed, and the window is moved backward until a com-
plete WPS is scanned. The window is then interpolated three times to
5

achieve curve fitting, and the first-order derivative is used to obtain the
corresponding minimum value, which determines the minimum value
of the window. Next, three spline interpolations are performed to fit the
curve to the entire wrist pulse signal and each minimum. The baseline
drift is removed by subtracting the corresponding minimum curve
from the original wrist pulse signal curve. Finally, the list of recorded
minima can be segmented to obtain the corresponding single-cycle
pulse waveform, exactly as described in Fig. 2.

Algorithm 1 Data augmentation algorithm
Input: Dataset 𝑋 consisting of 𝑛 samples with 𝑑 features each.
Split ratio for training and test sets, 𝜆1.
Split ratio for training and validation sets, 𝜆2.
Number of nearest neighbors for SMOTE algorithm, 𝑘.
Amount of Gaussian noise to be added, 𝜎.
Output: Augmented dataset {𝑋}𝑡𝑟𝑎𝑖𝑛.

1: Split the dataset 𝑋 into {𝑋′}𝑡𝑟𝑎𝑖𝑛 and {𝑋′}𝑡𝑒𝑠𝑡 using the split ratio 𝜆1
2: Apply SMOTE Tomek to the training set
3: for ∀ 𝑋𝑖 ∈ {𝑋′}𝑡𝑟𝑎𝑖𝑛 do
4: Calculate distances the 𝑘 nearest neighbors of 𝑋𝑖
5: for each nearest neighbor 𝑋𝑖

′ do
6: Generate a synthetic sample by interpolating 𝑋𝑖 and 𝑋𝑖

′

7: end for
8: end for
9: Get the characteristics of {𝑋′′}𝑡𝑟𝑎𝑖𝑛

10: Add Gaussian noise 𝜎
11: if ∀ 𝑋𝑖 ∈ {𝑋′′}𝑡𝑟𝑎𝑖𝑛 then
12: for 𝑖 = 1 to 𝑛 do
13: 𝑋𝑖 + 𝜎 = 𝑋′

𝑖
14: end for
15: end if
16: Get the characteristics of {𝑋′′′}𝑡𝑟𝑎𝑖𝑛
17: Combine the {𝑋′′′}𝑡𝑟𝑎𝑖𝑛 with the {𝑋′′}𝑡𝑟𝑎𝑖𝑛 to create the augmented training

set, then using the Fisher-Yates algorithm to disrupt
18: Split the augmented training set using the split ratio 𝜆2
19: return {𝑋}𝑡𝑟𝑎𝑖𝑛.

Data augmentation algorithm. The uniform distribution of data
between training and test sets is crucial to achieve high classifica-
tion accuracy. To this end, we utilize the Fisher–Yates algorithm for
shuffling the arrays, as it offers distinct advantages over conventional
shuffling methods. Specifically, the Fisher–Yates algorithm ensures that
the position of each element in the array is equally likely to be scram-
bled, resulting in a more balanced distribution. Additionally, the time
complexity of the algorithm is linear, i.e., O(n), where n denotes the
length of the array. Furthermore, its space complexity is constant,
i.e., O(1), thus it requires a minimal number of auxiliary variables to
swap array elements. It is evident that the distribution of data is highly
imbalanced, as indicated in Fig. 4(a), with a ratio of approximately
1:13.17 for the category ‘Hesitant pulse’ to the category of ‘Moderate
pulse’. Such data imbalance is a common challenge encountered in
clinical medical data analysis. To address this issue, this paper pro-
poses a novel algorithm specifically designed to handle imbalanced
physiological signal datasets. This algorithm integrates several prepro-
cessing methods, including adding Gauss Noise, rotation, translation,
Borderline SMOTE, and SMOTE Tomek, to make up for the lack of
data preprocessing methods in the field of physiological signals and
make it easy for later generations to call it directly. In our experiment,
the algorithm takes the segmented training set as input and performs a
Smote fitting few-class operation to obtain a balanced training set, as
shown in Fig. 4(b).

However, since some of the fitted features may not conform to the
principle of feature diversity, the algorithm replicates the training set
and adds Gaussian noise to enhance diversity. The resulting dataset is
then merged with the original training set. Finally, the results are ran-
domized using the Fisher–Yates algorithm to form the final training set
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Fig. 4. Using t-SNE to visualize the data augmentation process, taking Five types of pulse database as an example: (a) using Fisher–Yates algorithm (b) using the SMOTE Tomek
algorithm (c) using data augmentation algorithm results.
Fig. 5. Overall architecture of PSC-Net, which consists of three components: the GLNet Block can capture local features; the Transformer block can extract global features and
establishes correlations between the signals; the feature fusion block does the final sorting.
for model training. The detailed procedure is illustrated in Algorithm
1, and the corresponding outcomes are visualized in Fig. 4(c).

4. Methods

This section presents the PSC-Net, a novel architecture for phys-
iological classification that combines both local and global feature
extraction. As illustrated in Fig. 5, the proposed architecture consists
of three components: (1) The GLNet Block, which is specifically de-
signed to effectively capture the local features of biological signals;
(2) A modified transformer encoder block that extracts global fea-
tures and establishes correlations between the signals, adapted to the
characteristics of physiological signal data to enhance the ability of
6

the model to learn complex temporal relationships; (3) Finally, the
feature fusion block that integrates multilevel features from previous
layers to produce the final categorical output. A detailed description
of these three components is provided in the following three sections.
Our proposed model is trained on a combination of ECG and pulse
data, collectively referred to as biological signals, resulting in a highly
robust and versatile framework for processing and analyzing complex
biosignals.

4.1. GLNet block

GRWA Block. The overall GRWA model architecture is shown in
Fig. 6. Given an ECG time or Pulse series signal, this module seeks to
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Fig. 6. Structure of GRWA.

Fig. 7. Part of the GRWA network architecture which includes standard convolution,
causal convolution, and expansion convolution.

extract spatiotemporal information. Let X be a physiological signal that
has been recorded and separated into 𝑛 segments, i.e., 𝑋 =

{

𝑥𝑖
}𝑖−𝑛
𝑖=1.

Due to the requirement that the input of the neural network has a
fixed length, 𝑙 is chosen as the length of each segment. The proposed
approach in this work leverages a combination of causal convolu-
tion, dilated convolution and gated convolution. Causal convolution
is employed to account for the causal relationship of the input in the
temporal domain, dilated convolution is utilized to capture a larger
receptive field and extract more features (as shown in Fig. 7), and
gated convolution is incorporated to regulate the flow of information
through gating mechanisms, enabling the network to effectively capture
long-term dependencies in the input signal. Meanwhile, GRU, as a
variant of RNN, excels in addressing long-term memory and gradients
in backpropagation. In addition to the above, we also incorporate
a standard convolution layer, which helps to extract low-level fea-
tures. The integration of causal convolution, dilated convolution, gated
convolution, GRU, and standard convolution enables our approach to
capture short- and long-term dependencies in physiological signal data
in a highly effective manner. This synergistic combination effectively
compensates for the weaknesses inherent to each individual operation,
resulting in a more robust and powerful model that can effectively
handle complex physiological signal data. We represent 1D CNNs that
use the function 𝐹 .
{

𝑓𝑖
}𝑖=𝑛
𝑖=1 = 𝐹

(

{

𝑥𝑖
}𝑖=𝑛
𝑖=1

)

. (1)

LSTM Block. A LSTM [39] is applied to model the temporal rela-
tions between 1D segments. Let us represent the output of the LSTM
and embody its temporal modeling function as:
{

𝑔𝑖
}𝑖=𝑛
𝑖=1 = 𝑆

(

{

𝑓𝑖
}𝑖=𝑛
𝑖=1

)

. (2)

with 𝑓𝑖 ∈ 𝑆𝐿. Furthermore, the output of this module
{

𝑔𝑖
}𝑖=𝑛
𝑖=1 is

subsequently sent to the transformer encoder module.
7

Fig. 8. (a) Structure of transformer block (b) Structure of multi-head attention.

4.2. Transformer block

In our proposed module, the LSTM Block outputs are fused by 2
layers of transformer encoder, which aids the model in avoiding missing
information. The entire network is illustrated in Fig. 8. In the first
step, the input is reshaped and subjected to positional encoding. At the
second step, the transformer encoder [40] is taken to reweight these
features by a proper ratio. These elements have dimensions of 𝑁 × 𝑑,
where 𝑁 represents the maximum sequence length and 𝑑 is the length
of the feature array. This process is illustrated in Fig. 8(a), where the
input is passed through three fully connected layers. Considering the
difference between physiological signal data and other types of data
such as images, we choose to use two GRU layers instead of the original
fully connected layer. This modification has been proved as effective
in experiments, and the average accuracy is improved by 4%. The final
feature 𝑇 value is computed as follows:

𝑇 =
{

wi
}{

𝑔𝑖
}𝑖=𝑛
𝑖=1 . (3)

where the values of 𝑤𝑖 are learned by the transformer encoder.
It is worth mentioning that the self-attention mechanism takes the

input series and transforms it into three elements: query (Q), key (K)
and value (V), as described in Eqs. (4)–(6). These elements have dimen-
sions of 𝑁×𝑑, where 𝑁 represents the maximum sequence length and 𝑑
is the length of the feature array. The process is illustrated in Fig. 8(b),
where the input is passed through three fully connected layers. Then,
the self-attention mechanism performs a transformation on the query
and the set of key–value pairs to generate an output, as indicated in
Eqs. (7)–(8). The output of the self-attention mechanism, denoted as
𝑂, is obtained by multiplying the value (V) with the attention matrix
𝐵.

𝑄𝑖 =
(

𝑞1, 𝑞2,… , 𝑞𝑛
)

, (4)

𝐾 𝑖 =
(

𝑘1, 𝑘2,… , 𝑘𝑛
)

, (5)

𝑉 𝑖 =
(

𝑣1, 𝑣2,… , 𝑣𝑛
)

, (6)

𝐵 = Sof tmax

(

𝑄𝐾 𝑖
√

𝑑

)

, (7)

𝑂 = 𝐵𝑉 . (8)

4.3. Feature fusion block

In this section, we introduce a novel feature fusion method that
differs from the traditional fully connected layer. Our approach fuses
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Fig. 9. Architecture of feature fusion block.

the features extracted from the transformer encoder with the LSTM
output via residual concatenation. This enables the model to capture
long-time feature dependencies using the transformer encoder with-
out overlooking previously extracted local features. Simultaneously,
the GLNet architecture effectively aids the transformer encoder in
eliminating irrelevant redundant information, as illustrated in Fig. 9.

Within the feature fusion layer, morphological features extracted
from the transformer encoder and frequency domain features obtained
by Global Average Pooling are combined. This enables the model to
retain both the locally and globally extracted features. We assigned
weights of 0.65 and 0.35 to the features generated by GLNet and
the features produced by the transformer encoder, respectively. Sub-
sequently, the final classification results are obtained after passing
through fully connected layers with parameter settings of 128, 64, 32,
and 10, respectively.

To further optimize the feature fusion process, we introduced global
average pooling to the residual concatenation to compress the spa-
tial size of each channel. Additionally, leveraging the Discrete Cosine
Transform (DCT) property of global average pooling, which can extract
the lowest frequency, proves beneficial for feature fusion. Furthermore,
inspired by the concept of BiFPN [41], we assigned a weight bias to
the fusion to enhance its focus. We experimented with various weight
settings, including (0.2, 0.8), (0.3, 0.7), and (0.4, 0.6). Ultimately, we
found that setting the weights to (0.65, 0.35) consistently yielded the
best results across all four models. This preference may be attributed
to the fact that the designed GLNet architecture captures more critical
local information that is more favorable to the model.

4.4. Automatic weight setting

In order to improve the performance of focal loss, it is usually
necessary to set the corresponding weight parameters for each category,
significantly influencing the final performance. However, human inter-
vention in this process introduces substantial uncertainty. To address
this challenge, this paper designs an algorithm for automatic weight
setting. The core idea of the algorithm is to assign greater weights
to categories with fewer instances, allowing the model to better learn
this underrepresented aspect, a crucial consideration often overlooked
in contemporary models. To achieve this task, the algorithm first
calculates the weight of each category 𝑊𝑐 by applying the formula:

𝑊𝑐 =
𝑠 . (9)
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N𝑢𝑚𝑐×𝑐
where 𝐶𝑠 represents the number of samples in the training set, 𝑁𝑢𝑚𝑐
represents the number of categories of labels, and 𝐶𝑐 is the number
of occurrences of each category in the training set. The resulting
weight for each category is then returned as an array, which can be
used during the training process to ensure that the model pays more
attention to under-represented classes. The corresponding pseudocode
implementation is shown in Algorithm 2.

Algorithm 2 Automatic weight setting
Input: Data for which weight settings are required 𝑌train.
Output: Parameters of class weights in focal loss 𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡𝑠.
1: def get_class_weights(𝑌train):
2: 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = Compute total number of samples in 𝑌train
3: 𝑛𝑢𝑚_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = Get the total number of classes in 𝑌train
4: 𝑐𝑙𝑎𝑠𝑠_𝑐𝑜𝑢𝑛𝑡𝑠 = Sum of each class count in 𝑌train along axis 0
5: 𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑛𝑢𝑚_𝑐𝑙𝑎𝑠𝑠𝑒𝑠×𝑐𝑙𝑎𝑠𝑠_𝑐𝑜𝑢𝑛𝑡𝑠
6: return 𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡𝑠
7: 𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡𝑠= get_class_weights(𝑌train)

5. Results

5.1. Experimental settings

In the present study, two confidential pulse datasets were em-
ployed along with the MIT-BIH Arrhythmia Database and the MIT-
BIH ST Change Database retrieved from the eminent Physionet public
database, yielding in a total of four datasets that were utilized to
analyze and evaluate the performance of the proposed algorithm. For
the experiment, we partitioned the complete dataset into training,
validation and test sets at a ratio of 6:2:2. To maintain data balance,
we extracted samples for each set from sub-datasets of various cate-
gories proportionally to their contribution to the overall dataset. This
approach ensured that each category was adequately represented in the
training, validation and test sets. The model was trained for 120 epochs
with a batch size of 16. To facilitate experimentation, we employed
resampling techniques on our datasets that are similar to earlier work
by J. Zhang et al. [42]. The ECG datasets were uniformly downsampled
to 328 and the WPS was downsampled to 320. G. AlMahadin et al. [43]
claimed that this resampling approach enhances the reliability and
reproducibility of experimental results as it allows for more consistent
and standardized data preprocessing across all datasets used in our
study. Other data preprocessing operations are explained in detail in
Section 3 Summary Data Preprocessing.

We used an end-to-end approach to train the model using the
Nadam optimizer. Our approach utilizes a novel loss function that
combines the weighted fusion of cross-entropy, focal loss and triplet
loss. The cross-entropy loss function can determine how close the actual
output is to the desired output and is represented by the following
formula:

𝐿𝑐𝑒 =
1
𝑁

∑

𝑖
𝐿𝑖 = − 1

𝑁
∑

𝑖

𝐶
∑

𝑥=1
𝑦𝑖𝑥 log

(

𝐾𝑖𝑥
)

(10)

where 𝐶 represents the number of categories; 𝐲𝐢𝐱 is the indicator
function (0 or 1) that takes the value 1 if the true category of sample 𝑖
is equal to 𝑥, otherwise it takes 0; 𝐾𝑖𝑥 denotes the predicted probability
that sample 𝑖 belongs to category 𝑥.

The focal loss effectively addresses data imbalance issues, while
triplet loss encourages the model to learn more discriminative feature
representations by comparing within-category sample similarities and
between-category differences. The equations for the two loss functions
are presented as follows:

𝐿𝐹𝐿(𝐊𝐭 , ) = −𝛼𝑙𝑝ℎ𝑎(1 −𝐊𝐭 )𝛾 𝑙𝑜𝑔(𝐊𝐭 ) , (11)

𝐾𝑡 =
{

𝐾 if y = 1 , (12)

1 −𝐾 otherwise
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Fig. 10. (a), (b), and (c) illustrate the loss landscapes of different loss functions:
cross-entropy, focal loss and triplet loss, respectively. These plots show relatively flat
loss curves without prominent concave regions. However, Fig. 10(d) demonstrates a
distinct character with a smooth and concave-shaped loss landscape, indicating that
the proposed weighted fusion loss function leads to better convergence and achieves
lower loss values.

𝐿𝑡𝑟 = max(0, ‖𝑓 (𝑎𝑛) − 𝑓 (pos)‖2

− ‖𝑓 (𝑎𝑛) − 𝑓 (neg)‖2 + 𝑚𝑎𝑟) .
(13)

The balance coefficient 𝑎𝑙𝑝ℎ𝑎 is determined using an automatic
weight-giving algorithm developed by the author of this study. The
degree of focus, 𝛾, which controls the emphasis on difficult samples,
is set to 2. The predicted positive class probability 𝐾𝑡 is used in the
calculation. In Eq. (12), we denote 𝑓 (𝑎𝑛) as the feature representation of
the anchor sample, 𝑓 (𝑝𝑜𝑠) as the feature representation of the positive
sample, and 𝑓 (𝑛𝑒𝑔) as the feature representation of the negative sample.
The Euclidean distance between features is represented by ‖ ⋅ ‖. We
introduce the term mar, which is a predefined boundary value aimed
at controlling the difference in distance between positive and negative
samples. The above formulation allows us to effectively compute the
triplet loss, ensuring that the positive sample is closer to the anchor
sample than the negative sample by a margin of at least mar. Optimiz-
ing this loss function can encourage the model to learn discriminative
feature representations for different classes in the context of multi-class
classification tasks. To integrate these three loss functions, we employ
a weighted fusion approach. Specifically, we assign weights of 0.3, 0.5,
and 0.2 to each respective loss function. By considering these weights,
we formulate the final fusion as follows:

𝐹 𝑖𝑛𝑎𝑙𝐿𝑜𝑠𝑠 = 0.3𝐿𝑐𝑒 + 0.5𝐿𝐹𝐿 + 0.2𝐿𝑡𝑟 (14)

Fig. 10 illustrates the smoother landscape achieved by our com-
posite loss function, which results in faster convergence and higher
accuracy compared to a single loss function, as further supported by
the ablation experiments detailed in Table 14. We adopted an initial
learning rate of 0.0001 in our training process, which was determined
via experimentation. In addition, we introduced the DBA to dynami-
cally adjust the learning rate during training, which resulted in further
optimization. Our approach was compared against other optimization
techniques, such as the annealed cosine algorithm, the chimpanzee
algorithm, and the no-optimization algorithm.

The proposed approach is aimed at using the python language; the
PyTorch demonstrates the effectiveness of our approach in achieving
superior model accuracy and faster convergence rates than the other
techniques 1.12.1 framework. All experiments in this paper were run
9

Table 5
Performance metrics for identifying Five Types of Pulses Database. The best results are
shown in bold (see [44–50]).

Method ACC (%) PR (%) RE (%) F1 (%)

RF [3] 65.97 59.15 43.58 46.81
SVM [44] 65.45 55.40 52.70 53.05
XGBoost [45] 70.13 57.07 63.95 59.51
LSTM [3] 79.86 74.22 68.38 69.83
GRU [46] 80.21 74.35 72.11 72.83
CNN+LSTM [47] 74.31 68.77 70.73 69.50
CNN [20] 57.99 49.75 58.03 51.36
ResNet34 [48] 70.49 61.84 62.37 62.09
ResNet32+se 71.18 62.17 64.18 62.99
ResNet32+se+LSTM 75.00 63.37 68.83 63.92
ViT [29] 75.34 67.89 64.30 65.85
ConvNeXt-S [28] 77.77 64.79 63.86 64.05
CNN-SVM [49] 79.53 68.24 70.58 69.72
CNN + BiLSTM [50] 81.46 76.57 73.92 73.88
PSC-Net (ours) 83.33 79.93 75.52 76.99

Table 6
Performance metrics for identifying two types of CHD Database. The best results are
shown in bold.

Method ACC (%) PR (%) RE (%) F1 (%)

RF [3] 99.05 99.10 98.97 99.04
SVM [44] 99.53 99.50 99.50 99.50
XGBoost [45] 99.53 99.58 99.46 99.52
LSTM [3] 98.58 98.46 98.62 98.54
GRU [46] 99.05 98.89 99.19 99.03
CNN+LSTM [47] 98.58 98.39 98.61 98.50
CNN [20] 98.58 98.61 98.52 98.57
ResNet32 [48] 99.53 99.60 99.43 99.51
ResNet32+se 99.53 99.57 99.47 99.52
ResNet32+se+LSTM 99.53 99.63 99.36 99.49
ViT [29] 98.29 79.15 90.00 86.83
ConvNeXt-S [28] 99.05 99.20 98.86 99.02
CNN-SVM [49] 99.11 98.02 99.23 99.24
CNN + BiLSTM [50] 99.80 99.46 99.01 99.57
PSC-Net (ours) 100.0 100.0 100.0 100.0

on a computer with an Intel(R) Core(TM) i7-11700K CPU environment
and NVIDIA GeForce GTX A5000 GPU acceleration environment, using
an Ubuntu OS with 24 GB memory.

5.2. Evaluation metric

In order to quantify the performance of our model, we employ the
commonly used evaluation metrics of accuracy (ACC), precision (PR),
recall (RE), and F1-score (F1). The detailed calculation formulas are
described below.

𝐴𝐶𝐶 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

× 100% (15)

𝑃𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

× 100% (16)

𝑅𝐸 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

× 100% (17)

𝐹1 = 2 × 𝑃𝑅 × 𝑅𝐸
𝑃𝑅 + 𝑅𝐸

× 100% (18)

where 𝐹𝑃 , 𝐹𝑁 , 𝑇𝑃 , and TN represent false positive, false negative, true
positive, and true negative, respectively. These variables are used to
calculate the evaluation metrics, which can measure the classification
performance of the model.

5.3. Experimental results

In this study, we utilize 5-fold cross-validation to ensure the relia-
bility of results. The final result is obtained by averaging the results of
5 tests. The data demonstrate that our proposed model achieves higher
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Table 7
Performance metrics for identifying seven types of MIT-BIH Arrhythmia Database. The
best results are shown in bold (see [51–55]).

Method ACC (%) PR (%) RE (%) F1 (%)

CNN [51] 89.82 81.88 67.98 71.30
ECVT-Net [52] 92.87 79.04 74.83 76.54
ECT-net [53] 89.34 79.45 72.18 75.19
ConvNeXt-S [28] 95.28 82.85 81.11 81.74
CNN+Transformer [54] 92.60 89.04 79.43 83.36
CNN+LSTM [47] 94.73 85.96 85.17 84.92
CNN+Transformer [55] 86.03 65.45 59.81 61.86
ViT [29] 86.12 61.69 58.42 59.63
CNN-SVM [49] 94.40 83.70 82.30 83.52
CNN + BiLSTM [50] 94.93 88.24 85.68 85.11
PSC-Net (ours) 95.74 89.93 84.06 85.85

Table 8
Performance metrics for identifying three types of MIT-BIH ST Change Database. The
best results are shown in bold.

Method ACC (%) PR (%) RE (%) F1 (%)

CNN [51] 95.83 90.24 74.19 80.78
ECVT-Net [52] 96.97 85.79 72.01 84.23
ECT-net [53] 95.69 92.52 65.62 82.03
ConvNeXt-S [28] 91.09 78.11 91.85 81.94
CNN+Transformer [54] 95.83 91.72 80.33 85.33
CNN+LSTM [47] 96.42 95.31 89.95 92.50
CNN+Transformer [55] 95.55 88.13 70.65 87.55
ViT [29] 93.32 84.75 85.41 84.91
CNN-SVM [49] 97.53 91.24 85.63 91.00
CNN + BiLSTM [50] 97.39 96.56 90.11 94.20
PSC-Net (ours) 98.85 97.01 96.86 97.33

accuracy and improved generalizability compared to the evaluated
baselines. The comparative experimental results are demonstrated in
Tables 5 to 8. Based on the findings, it is evident that the PSC-Net model
outperforms other models in the classification of the four datasets,
namely, Five Types of Pulses Database, CHD Database, MIT-BIH Ar-
rhythmia Database, and MIT-BIH ST Change Database. Our proposed
method achieves impressive accuracies of 83.33%, 100.0%, 95.74%,
and
98.85% for identifying the respective categories, along with F1-scores
of 76.98%, 100.0%, 85.85%, and 97.33%, respectively. Meanwhile,
other methods proposed by different researchers, which have also
shown promising results in detecting pulse and cardiovascular diseases,
still exhibit relatively lower F1-score and accuracy compared to the
PSC-Net model. In Tables 5 to 8, CNN+BiLSTM ranks second in all
ndicators. This performance is attributed to the strengths of LSTM in
andling long sequence data, preventing gradient vanishing problem,
nd long-term memory attributes that form the foundation of the GLNet
onstructed in this paper. Notably, standalone CNN architectures like
onvNeXt-S and standalone Transformer architecture ViT deliver only
verage performance. This is mainly due to their specialization in
ither local feature extraction or long-term feature extraction, which
lone is insufficient for comprehensive model training. Additionally,
raditional machine learning methods such as SVM and XGBoost exhibit
ubpar performance across all four evaluated metrics. This outcome
s unsurprising, considering these methods are representative archi-
ectures widely used in the domain of impulse signals. This further
mphasizes the remarkable contribution of our proposed approach to
he advancement of wrist pulse signaling research.

The promising experimental outcomes in this paper can be largely
ttributed to the efficacy of the employed data augmentation algo-
ithm. In particular, this data augmentation algorithm addresses the
imitations of using the SMOTE Tomek algorithm alone for data aug-
entation. While this algorithm can generate additional samples, it
ay not ensure diverse feature representations. To enhance feature
iversity, the designed data augmentation algorithm incorporates Gaus-
10

ian noise into the SMOTE-fitted data. The augmented dataset is then
merged with the original denoised training set. To ensure randomness,
the Fisher–Yates algorithm is applied to randomize the dataset, result-
ing in a diverse training set suitable for model training. This strategy
effectively mitigates issues related to data sparsity and class imbalance
while promoting diversity in the generated data. This study selects
the Five Types of Pulses Database and the Coronary Heart Disease
(CHD) database as examples to demonstrate the application of data
augmentation algorithms. Our purpose is to illustrate the process of
applying the data augmentation algorithms to these specific datasets,
highlighting their effectiveness in improving the quality of the data.

The specific distribution of the Five types of pulse database, CHD
Database, MIT-BIH Arrhythmia Database and MIT-BIH ST Change
Database after data augmentation are shown in Tables 9 to 12,
respectively, in the form of three-line diagrams. The columns of the
table exemplify the categories of the data, the number of samples
in the test set, the number of samples in the training set, the total
number of samples in the training set after data augmentation, the
proportion of each category in the training set to the total data
before data augmentation, and the proportion of each category in the
training set to the total data after data augmentation, respectively.
Analyzing the data in Tables 9 to 12 reveals the notable transformation
in data distribution resulting from our data augmentation method.
This underscored the efficacy of our proposed approach in mitigating
data imbalance. For instance, Table 9 illustrates the impact of class
imbalance on the training set, where the percentage of the Hesitant
pulse is 3.26% and the percentage of the Moderate pulse is 45.74%.
Such significant difference can adversely affect the overall experimental
results. However, when employing the proposed data augmentation
algorithm, each category accounts for approximately 15.01% of the
total training set, effectively mitigating the data imbalance issue. In
a similar manner, Table 10 presents the distribution of the Coronary
Heart Disease (CHD) database after applying the data enrichment
algorithm. In the original dataset, the CHD and the Normal categories
account for 57.39% and 42.61% of the entire training set, respectively.
However, after applying the data enrichment algorithm, both types are
balanced at 53.44%. These results demonstrate the effectiveness of the
designed data augmentation algorithm in addressing data sparsity and
class imbalance, and promoting diversity within the training data.

5.4. Ablation experiments

In order to evaluate the effectiveness and individual contributions
of the various modules in our proposed PSC-Net, a series of step-by-
step ablation experiments was conducted on the Five Types of Pulses
Database and MIT-BIH ST Change Database. The performance of the
models was assessed by comparing them as follows:

Baseline: Our baseline model consists of GRWA.
Model 1: Based on the baseline, two layers of tandem LSTM are

incorporated at the end of the model to create GLNet.
Model 2: Based on Model 1, a modified transformer encoder was

incorporated, altering the two fully connected layers in the transform
to GRU.

Model 3: Based on Model 2, residual connections containing global
average pooling are added, connected from the output of the LSTM
to the output of the Transformer encoder, and fused with a simple
concatenation.

PSC-Net (ours): Based on Model 3, we replaced simple concate-
nation with an adjusted weight setting to enhance the integration of
features.

Additionally, to compare the advantages and disadvantages of the
constructed modules, the experimental results after replacing them with
contemporary popular modules are arranged. Below are the models:

Model 4: Based on PSC-Net, the modified transformer encoder is
replaced with the original transformer encoder.

Model 5: Based on PSC-Net, remove data augmentation operations.
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Table 9
Five types of pulse database after data augmentation with the number of samples in each category.

Type of pulse No. of
beats

Test
beats

Training
beats

After data augmentation sampled beats
(+SMOTE Tomek + Gaussian noise)

Percentage before data
augmentation (%)

Percentage after data
augmentation (%)

Hesitant pulse 99 24 75 1124 3.26 15.01
Slippery pulse 444 84 360 1395 15.65 18.63
Sluggish pulse 407 88 319 1358 13.86 18.14
Moderate pulse 1317 265 1052 2085 45.74 27.84
Counted pulse 609 115 494 1526 21.49 20.38
Total 2876 576 2300 7488 100.00 100.00
Table 10
CHD Database after data augmentation with the number of samples in each category.

Type of pulse No. of
beats

Test
beats

Training
beats

After data augmentation sampled beats
(+SMOTE Tomek + Gaussian noise)

Percentage before data
augmentation (%)

Percentage after data
augmentation (%)

CHD 1270 303 967 1933 57.39 53.44
Normal 900 182 718 1684 42.61 46.56
Total 2170 485 1685 3617 100.0 100.0
Table 11
MIT-BIH Arrhythmia Database after data augmentation with the number of samples in each category.

Type of pulse No. of
beats

Test
beats

Training
beats

After data augmentation sampled beats
(+SMOTE Tomek + Gaussian noise)

Percentage before data
augmentation (%)

Percentage after data
augmentation (%)

Normal beat 5921 1185 4737 9457 54.77 22.61
Left bundle branch block beat 949 189 760 5498 8.79 13.15
Right bundle branch block beat 977 195 782 5517 9.04 13.19
Atrial premature beat 540 108 432 5165 4.99 12.35
Premature ventricular contraction 2162 432 1730 6467 20.00 15.46
Fusion of ventricular and normal beat 217 43 174 4928 2.01 11.78
Fusion of paced and normal beat 43 9 34 4792 0.40 11.46
Total 10 809 2161 8649 41 824 100.00 100.00
Table 12
MIT-BIH ST Change Database after data augmentation with the number of samples in each category.

Type of pulse No. of
beats

Test
beats

Training
beats

After data augmentation sampled beats
(+SMOTE Tomek + Gaussian noise)

Percentage before data
augmentation (%)

Percentage after data
augmentation (%)

Normal beat 6369 1274 5095 10 188 92.44 48.76
ST Elevation 478 96 328 5423 5.95 25.96
ST Depression 111 22 89 5279 1.61 25.28
Total 6958 1392 5512 20 890 100.0 100.0
Table 13
Comparison of performance on the Five Types of Pulses Database and MIT-BIH ST Change Database after the gradual addition of each module
of the model. The best results are shown in bold.

Models Database
metric

Five Types of Pulses Database MIT-BIH ST Change Database

ACC (%) PR (%) RE (%) F1 (%) ACC (%) PR (%) RE (%) F1 (%)

Baseline 71.18 64.93 66.29 65.27 94.40 87.51 70.64 77.32
Model 1 78.82 70.82 68.86 69.28 96.41 85.70 88.65 97.12
Model 2 77.04 74.54 69.88 71.24 97.13 91.89 89.79 90.37
Model 3 79.86 69.80 68.21 68.73 97.84 92.46 94.08 93.19
PSC-Net (ours) 83.33 79.93 75.52 76.99 98.85 97.01 96.86 97.33
Table 14
Presents a comparative analysis of the performance when each component of the model is replaced with modules from previous studies. The best results are shown in bold.

Models Database Five Types of Pulses Database MIT-BIH ST Change Database

metric ACC (%) PR (%) RE (%) F1 (%) ACC (%) PR (%) RE (%) F1 (%)

Model 4 80.21 75.80 72.08 73.33 97.41 88.97 87.32 88.12
Model 5 79.51 72.05 69.43 69.48 97.13 93.58 83.60 87.86
Model 6 [27] 79.92 73.62 71.55 72.69 97.59 94.59 84.96 87.56
Model 7 [56] 81.68 73.66 72.29 74.38 98.12 95.64 93.96 90.35
Model 8 [57] 82.91 76.98 75.42 76.55 98.10 97.33 97.41 96.02

Model 9 75.00 75.07 66.23 67.87 98.71 97.56 85.05 89.95
Model 10 72.18 63.08 63.10 62.98 98.42 93.82 93.24 93.52
Model 11 75.35 69.38 68.34 68.47 98.71 93.77 95.03 94.05

Model 12 79.51 73.55 75.59 74.48 97.85 96.07 94.68 95.80
Model 13 81.94 78.76 76.37 76.98 98.71 93.73 97.60 95.59
11
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Model 6: Based on Model 6, SMOTE was employed as the data
augmentation algorithm.

Model 7: Based on Model 6, BAGAN was employed as the data
augmentation algorithm.

Model 8: Based on Model 6, GAMO was employed as the data
augmentation algorithm.

Model 9: Based on PSC-Net, the loss function will be modified to a
single loss function, namely, cross-entropy.

Model 10: Based on PSC-Net, the loss function will be modified to
a single loss function, specifically focal loss.

Model 11: Based on Model 11, the automatic weight settings pro-
posed in this paper are added.

Model 12: Based on PSC-Net, remove the optimization of DBA.
Model 13: Based on Model 12, an annealed cosine optimization

algorithm is added to optimize the model.
We systematically evaluated each module and reported the out-

comes in Tables 13 and 14. Table 13 shows the performance of
each part of the proposed PSC-Net in two datasets to demonstrate
the effectiveness of each part. After that, Table 14 compares the
experimental results of the model components after replacing them
with the modules from the existing study.

The results unambiguously indicate that our PSC-Net outperforms
the individual CNN and Transformer modules in terms of both F1-score
and accuracy. This superiority can be attributed to the proficiency of
CNN in capturing local features and the excellence of the Transformer
in extracting global features. By integrating both modules, our model
achieves a comprehensive representation of intracycle and intercycle
features alike. These outcomes underscore the superior learning ca-
pacity of the combined intra-periodic and inter-periodic features for
detecting physiological signal feature waveforms. At the same time,
by employing feature fusion together with optimized weights instead
of direct concatenation, notable improvements in accuracy were ob-
served on both the Five Types of Pulses Database and the MIT-BIH
ST Change Database. Specifically, the accuracy on the Five Types of
Pulses Database increased by 3.47%, while on the MIT-BIH ST Change
Database, the accuracy improved by 1.01%. Moreover, the F1-score,
which measures the balance between precision and recall, also exhib-
ited significant enhancements. On the Five Types of Pulses Database,
the F1-score improved by 8.78%, and on the MIT-BIH ST Change
Database, the F1-score increased by 4.14%. The advantage of setting
weights for feature fusion over direct concatenation lies in its ability to
assign different levels of importance to individual features during the
fusion process. By adjusting the weights, more emphasis can be placed
on informative features while reducing the influence of less discrim-
inative ones. This strategy allows for a more fine-grained integration
of features, capturing their complementary nature and enhancing the
overall discriminative power of fused representation.

In addition, the proposed data augmentation algorithm effectively
mitigates the adverse effects of data scarcity and data imbalance on
model accuracy. As depicted in Fig. 4(c), the augmented dataset
demonstrates improved data volume and a more balanced category
distribution compared to Fig. 4(a). As can be seen from Table 14,
our model achieves a significant accuracy improvement of 3.82% and
1.29% for the respective metrics compared to the scenario without data
augmentation.

A further notable contribution of this paper lies in the design of
an effective loss function. By assigning appropriate weights to the
loss function, the benefits of the three individual loss functions are
combined, leading to significant improvements in various evaluation
metrics compared to using a single loss function. Importantly, for
the weight setting of the focal loss, an algorithm is devised to au-
tomatically determine the optimal weight. This automated approach
surpasses manual weight setting and achieves a remarkable accuracy
improvement of 3.2% and F1-score improvement of 5.49% on the Five
Types of Pulses Database. In a similar manner, on the MIT-BIH ST
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Change Database, the accuracy is enhanced by 0.29% and the F1-score
shows a notable increase of 0.53%. This is mainly due to the fact that
the automatic weight assignment in focal loss improves adaptation by
assigning higher weights to challenging samples or classes, enabling
the model to prioritize difficult examples and enhance the performance
on unbalanced datasets; it specifically enhances learning for minority
groups and mitigates the impact of class imbalance.

Lastly, we used the global search capability of the DBA to ac-
celerate the identification of optimal learning rate for the ongoing
training phase, thereby increasing the convergence rate of the model.
Table 14 presents the results of the ablation experiments, comparing
the performance of the DBA proposed in this study with the widely
used annealing cosine algorithm. The results demonstrate that the
DBA outperforms the annealing cosine algorithm in terms of accuracy.
Specifically, on the Five Types of Pulses Database, it achieves an
accuracy improvement of 1.39% compared to the annealing cosine al-
gorithm. In a similar manner, on the MIT-BIH ST Change Database, the
DBA shows a performance improvement of 0.14% over the annealing
cosine algorithm. It is worth noting that the algorithm without any
optimization achieves lower accuracy, with 79.51% for Five Types of
Pulses Database and 97.85% for MIT-BIH ST Change Database. These
findings highlight the effectiveness of the DBA in enhancing the accu-
racy of the classification task when compared to existing optimization
approaches. In contrast, the accuracy of the algorithm without any
optimization is only 79.51% for the Five Types of Pulses Database and
97.85% for the MIT-BIH ST Change Database. It is noteworthy that the
adaptability of the DBA allows it to dynamically adjust the learning rate
according to the dynamic changes in the training process, alleviating
the oscillations and instabilities often encountered during training and
ultimately improving the generalization of the model. This is one of the
reasons for the smooth curves seen in Fig. 11(a) and (b).

Fig. 11(c) demonstrates that despite the evident disparities in cat-
egory sizes within the original dataset, our data processing approach
ensures that the significant differences in AUC values between cate-
gories are minimized. Remarkably, the majority of categories achieve
AUC values exceeding 90%. However, it is noteworthy that category
0 still exhibits relatively weaker AUC values compared to other cat-
egories, primarily due to its substantial disparity in category size.
Resolving this disparity will be a focal point for future investigations.

6. Discussion

Our model, designed specifically for waveform detection in physio-
logical signals, surpasses most existing algorithms in real-world applica-
bility. It effectively addresses challenges related to data imbalance and
sparsity, enabling accurate identification of small sample data using
deep learning models. This aspect is particularly advantageous for dis-
ease datasets characterized by data scarcity and imbalance, commonly
encountered issues in the medical field. Moreover, our model incor-
porates crucial features of physiological signals by leveraging modules
such as LSTM and GRU to capture data trends efficiently. The fused
architecture of CNNs and Transformers can extract valuable feature
variables within and between cycles. The specialized one-dimensional
residual blocks designed for physiological signals play a pivotal role
in achieving exceptional performance, especially in frequency domain
feature extraction.

In the GRWA block, our proposed methodology harnesses a syn-
ergistic blend of causal convolution, dilated convolution, and gated
convolution. Causal convolution is strategically employed to adeptly
consider the causal relationship within the temporal domain, while
dilated convolution expands the receptive field and extracts a richer
array of salient features, as vividly illustrated in Fig. 7. Incorporate
gated convolution regulates the flow of information via gating mecha-
nisms, empowering our neural network to capture intricate long-term
dependencies inherent in the input signal.

Two LSTM layers were added to form the GLNet model architec-

ture. According to the results in Tables 5, 8 and 14, compared to
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Fig. 11. The Five Types of Pulses Database is selected as a sample: (a) The accuracy loss function curves for the training and validation sets; (b) The accuracy curves for the
training and validation sets; (c) The class AUC curves for the test set, classes 0, 1, 2, 3, 4 correspond to Hesitant pulse, Slippery pulse, Sluggish pulse, Moderate pulse, Counted
pulse.
the ConvNeXt-S architecture, the GLNet architecture shows a 1.05%
improvement in accuracy, a 6.03% improvement in precision, a 5%
improvement in recall, and a 5.23% improvement in F1 scores in
the Five Types of Pulses Database. Additionally, the GLNet architec-
ture outperforming the ConvNeXt-S architecture by 5.32%, 7.59%,
and 15.18% on the three evaluated metrics (accuracy, precision, and
F1 score, respectively) on the publicly available MIT-BIH ST Change
Database. Notably, ConvNeXt-S excels in negative sample detection on
the MIT-BIH ST Change Database.

To address, the CNN’s limited capability for capturing long-range
dependencies [58], we integrated a Transformer encoder architecture.
Unlike the conventional parallelization of CNN and Transformer struc-
tures for feature extraction, we introduced GLNet to preprocess data,
allowing us to extract long-range feature dependencies while preserving
local features through a residual connection. Experimental results in
Table 14 for Model 2 and PSC-Net on the Five Types of Pulses Database
demonstrate a 6.29% increase in accuracy and a 5.75% boost in F1
score, showcasing the effectiveness of our novel architecture. At the
same time, we replaced the Dense layer in the original Transformer
encoder with a GRU architecture, better suited for time-series data
processing. Comparative results in Table 14 reveal that in the Five
Types of Pulses Database, PSC-Net outperforms Model 4 by 3.12% in
accuracy, 4.13% in precision, 3.44% in recall, and 3.66% in F1-score.
On the publicly available MIT-BIH ST Change Database, these four
metrics exhibit improvements of 1.44%, 8.04%, 9.54%, and 9.21%.

The main reasons for choosing to use SMOTE Tomek instead of
GAN, diffusion models and other methods in data augmentation are:

• The dataset in this paper is one-dimensional data, and GAN, diffu-
sion models are more often used in images. One-dimensional data
feature points are relatively simple and do not require complex
data generation techniques.

• GAN models usually need a lot of data for support, and this
condition is difficult to achieve in the field of medical diagnosis.

• SMOTE Tomek is easy to use and can be interpreted. Its imple-
mentation principle is to use the SMOTE algorithm to synthesize a
new minority class of samples and then use the TOMEK algorithm
to remove the synthesized samples as noise. The generated data
can be directly visualized using t-sne, PCA and other methods, as
shown in Fig. 4.

The experiments in this study confirm the effectiveness of the
proposed data enhancement method. Table 13 illustrates improved
results for PSC-Net on both datasets. Conversely, the model without
data enhancement, Model 5, exhibits a notable performance decline.
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More precisely, within the Five Types of Pulses Database, accuracy,
precision, recall, and F1-score decreased by 3.82%, 7.88%, 6.09%, and
7.51%, respectively. Likewise, on the MIT-BIH ST Change Database, the
respective evaluation metrics experienced decreases of 1.72%, 3.43%,
13.26%, and 9.47%. These findings underscore the positive influence of
the proposed data enhancement approach on the model’s performance.

In addition, the data augmentation method used in this paper is
improved based on the SMOTE Tomek algorithm. We found the optimal
data augmentation method by replacing the SMOTE Tomek in this
paper with SMOTE, BAGAN, and GAMO, respectively. In the related
experiments conducted for Five types of pulse database, the results in
Table 14 show that the data augmentation algorithm we used based on
the SMOTE Tomek improvement achieved the best performance. Specif-
ically, it outperforms SMOTE by 4.3%, BAGAN by 2.61% and GAMO
by 0.44% in terms of accuracy. For the field of data augmentation, our
next work will focus on combining SMOTE and GAN to explore whether
we can improve a new algorithm based on the advantages of both.

Precise recognition of physiological signals can aid doctors in diag-
nosing physiological diseases, playing a crucial role in early diagnosis
and prevention. Extensive testing and analysis across diverse phys-
iological signal datasets encompassing various diseases consistently
demonstrate the superior performance of our proposed approach. These
findings validate the practical value of our network in supporting
clinical medical diagnosis. Notably, physiological signal diagnosis often
requires considering multiple conditions. While our current focus is
on the time and frequency domains of the dataset, future investiga-
tions will delve into other domains to provide more comprehensive
insights. Moreover, our future work will involve integrating temporal
information with knowledge graphs to provide a more usable method
for physiological signal recognition.

7. Conclusions

The proposed PSC-Net model architecture aims to efficiently process
physiological signal data for accurate disease diagnosis. This model
takes patient data as input and outputs corresponding categories, pro-
viding doctors with a faster and more accurate means of assessing the
patient’s physical condition. Physiologic Signal Diagnostics, being non-
invasive and reproducible, offers a valuable tool for continuous moni-
toring and early detection of health issues. Common healthcare devices
can readily acquire relevant medical data suitable for deep learning
analysis. PSC-Net combines Convolutional Neural Networks (CNNs) and
Transformers, effectively utilizing morphological and temporal infor-

mation in physiological signals for enhanced detection performance.
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Specifically, GLNet generates ripple embedding features, facilitating the
efficient extraction of intra-cycle features without excessive computa-
tional complexity. The global average pooling in residual concatenation
aids in sampling frequency domain features in continuous physio-
logical signals. The residual linking fosters interaction between CNN
and Transformer encoder, filtering features for the Transformer input
without neglecting local features or discarding redundant information.
Furthermore, the inclusion of data augmentation, focal loss automatic
weight setting, and the use of the DBA contribute to enhancing the
accuracy of the model.

Extensive evaluation of two pulse datasets demonstrated the supe-
riority, PSC-Net over existing models, achieving excellent performance
with 83.33% accuracy, 79.93% precision, 75.52% recall, and 76.99%
F1-score across Five Types of Pulses Database. The CHD Database ex-
hibited outstanding detection capabilities, showcasing a perfect 100.0%
performance across all four evaluation metrics. Moreover, our method
consistently performed well on two ECG public datasets, indicating its
stability and generalization ability. Our proposed PSC-Net has proved
to be a promising diagnostic tool in clinical applications for accurately
detecting characteristic waveforms in interpatient pathology data, and
thus to derive the presence or absence of physiological signaling ab-
normalities, and to provide an aid to physician disease diagnosis. The
accompanying proposed data augmentation algorithm and weight auto-
setting algorithm hold great potential in diverse applications in the rel-
evant field. Future work is aimed at optimizing the detection accuracy
and exploring disease diagnosis using additional domain features.
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