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Abstract: Urban water systems worldwide are confronted with the dual challenges of dwindling water
resources and deteriorating infrastructure, emphasising the critical need to minimise water losses
from leakage. Conventional methods for leak and burst detection often prove inadequate, leading to
prolonged leak durations and heightened maintenance costs. This study investigates the efficacy of logic-
and machine learning-based approaches in early leak detection and precise location identification within
water distribution networks. By integrating hardware and software technologies, including sensor
technology, data analysis, and study on the logic-based and machine learning algorithms, innovative
solutions are proposed to optimise water distribution efficiency and minimise losses. In this research,
we focus on a case study area in the Sunbury region of Victoria, Australia, evaluating a pumping main
equipped with Supervisory Control and Data Acquisition (SCADA) sensor technology. We extract
hydraulic characteristics from SCADA data and develop logic-based algorithms for leak and burst
detection, alongside state-of-the-art machine learning techniques. These methodologies are applied to
historical data initially and will be subsequently extended to live data, enabling the real-time detection
of leaks and bursts. The findings underscore the complementary nature of logic-based and machine
learning approaches. While logic-based algorithms excel in capturing straightforward anomalies based
on predefined conditions, they may struggle with complex or evolving patterns. Machine learning
algorithms enhance detection by learning from historical data, adapting to changing conditions, and
capturing intricate patterns and outliers. The comparative analysis of machine learning models highlights
the superiority of the local outlier factor (LOF) in anomaly detection, leading to its selection as the final
model. Furthermore, a web-based platform has been developed for leak and burst detection using a
selected machine learning model. The success of machine learning models over traditional logic-based
approaches underscores the effectiveness of data-driven, probabilistic methods in handling complex
data patterns and variations. Leveraging statistical and probabilistic techniques, machine learning
models offer adaptability and superior performance in scenarios with intricate or dynamic relationships
between variables. The findings demonstrate that the proposed methodology can significantly enhance
the early detection of leaks and bursts, thereby minimising water loss and associated economic costs.
The implications of this study are profound for the scientific community and stakeholders, as it provides
a scalable and efficient solution for water pipeline monitoring. Implementing this approach can lead to
more proactive maintenance strategies, ultimately contributing to the sustainability and resilience of
urban water infrastructure systems.

Keywords: leak detection; water pipe networks; burst detection; software-based technologies;
hardware-based technologies; water infrastructure; Internet of Things (IoT); machine learning;
artificial intelligence; sensing technologies

Water 2024, 16, 1935. https://doi.org/10.3390/w16141935 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w16141935
https://doi.org/10.3390/w16141935
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-4992-3933
https://orcid.org/0000-0002-0172-5033
https://orcid.org/0000-0002-7016-4524
https://doi.org/10.3390/w16141935
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w16141935?type=check_update&version=1


Water 2024, 16, 1935 2 of 21

1. Introduction

Water is a precious resource that is vital for sustaining life and supporting critical
sectors, including agriculture, industry, and urban infrastructure energy. However, one of
the most pervasive and costly challenges faced by water utilities is the challenge of water
leakages and bursts within municipal water distribution networks [1]. These leaks, whether
minor and unnoticed or significant and catastrophic, result in substantial water losses,
financial burdens, and environmental consequences. If leaks are small, flow from pipes
generally does not disrupt the water supply. On the other hand, pipe bursts are created
due to the rupture of pipes and will partly or fully disrupt the water supply in the area
depending upon the location of the burst in the water supply network [1]. The Figure 1
shows leak and burst in the water pipeline.

These leaks, whether unnoticed or catastrophic, result in substantial water losses,
financial burdens, and environmental consequences. Addressing this issue is not just an
economic imperative but also a moral obligation, considering the growing global concern
over water scarcity and the need to optimise energy consumption. In response to this critical
challenge, the adoption of smart systems driven by logic-based and machine learning (ML)
techniques have emerged as transformative solutions [2].
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Smart systems represent an integrated approach that combines sensor technologies,
data analytics, automation, and system hydraulics to enhance the efficiency and sustain-
ability of water distribution networks. This paper explores the multifaceted issue of water
leakages and bursts and the urgent need for smart systems to mitigate their impacts. It
also delves into the application of logic-based and ML techniques for early leak detection
and precise identification, highlighting their pivotal role in optimising water and energy
consumption while improving customer services.

The hydraulic characteristics of the pipeline, pressure sensors, and flow meters are
integral components of a water network, working together to ensure efficient water distri-
bution, pressure regulation, and accurate flow measurement. Pressure sensors are devices
that measure the pressure of a fluid, such as water, and convert it into an electrical signal.
Flow meters are devices that quantify the amount of fluid passing through a pipe or a
channel. These technologies contribute to the overall functionality, sustainability, and
management of water resources in urban and industrial settings.

The Intelligent Water Network (IWN) can be considered as a system that can pre-
dict/identify and inform about the likelihood of specific events or water network be-
haviours before their occurrence or immediately after their occurrence. This enables the
service provider to be able to plan for, and mitigate, some of the possible outcomes or
even prevent their occurrence [1]. Consequently, in the case of IWNs, asset management
procedures can be planned for these events to mitigate possible practical consequences
or prevent them completely [1]. Joseph et al. [5] presented comprehensive a literature
examination review which underscores the global exploration and deployment of both
software- and hardware-based technologies, showcasing their increase in adoption. These
technologies confer advantages such as enhanced precision, speed, and cost-effectiveness in
the identification and pinpointing of leaks and bursts. The evaluation encompasses various
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leak detection methods, and analysing factors like detection principle, sensitivity, accuracy,
reliability, and user-friendliness. Software-driven technologies, artificial intelligence, and
machine learning algorithms coupled with hydraulic models exhibit proficiency in the
accurate prediction and early detection of water losses. On the other hand, hardware-based
technologies, exemplified by acoustic sensors, pressure sensors, and flow meters, demon-
strate efficacy in the real-time leak and burst detection and their localisation. Considering
the characteristics of both software and hardware-based technologies, Joseph et al. [5]
introduced a methodology integrating both software and hardware components for leak
and burst identification. Below is a review of the literature on the challenges posed by
water leakages and bursts in municipal water distribution networks and the emergence of
smart systems integrating logic-based and machine learning techniques as transformative
solutions. The work of Berardi and Giustolisi [6] presented a physically based approach for
the calibration of water distribution network (WDN) hydraulic models aimed at supporting
leakage management plans since the early stages. The application on two real networks
and the experience carried on many real WDNs support pressure and flow monitoring to
calibrate a design model to support early-stage leakage management [6]. Joseph et al. [7]
described an integrated hardware and software framework tailored for an Intelligent Water
Network (IWN) system. In this study [7], the water system established connectivity among
flow meters, pressure sensors, and other monitoring devices through the SCADA system,
linking them to the data analysis centre. Data from flow and pressure sensors are harnessed
for calibrating the hydraulic model and for comparison with the real-time simulations of
the water network. Water demand will increase in the future, resulting in the demand
for rapid actions to improve resources, reduce demand, and increase treatment and trans-
mission efficiency, further promoting the need for intelligent networks. Campos et al. [8]
suggested an IoT framework with several layers for water supply networks. These layers
are suggested for creating an Intelligent Water Network (IWN) framework: (i) the sensor
layer; (ii) the communication layer; (iii) the water system and operation layer; and (iv) the
application and prediction layer. SCADA receives data from sensors and flows metres for
flow, pressure, and water quality characteristics. The best distribution of pressure sensors
and flow metres will depend on the topography of the area, the size of the water delivery
system, and historical data on water quantity changes brought on by the ageing infras-
tructure, environment, and several other factors. The SCADA system in a water system
connects flow metres, pressure sensors, and other monitoring devices to the data analysis
centre. Data from the flow and pressure sensors are utilised to calibrate the hydraulic mode
and make comparisons with the water network’s real-time simulation. Fereidooni et al. [9]
suggest a quick hybrid method for finding leaks and calculating the volume of material
lost that combines hydraulic relations with AI algorithms. The suggested technique makes
use of straightforward, reasonably priced flow sensors that are deployed at each pipeline
network junction. By applying hydraulic equations like Hazen–Williams, Darcy–Weisbach,
and pressure drop, Ref. [9] showed how influential features for leak identification would
be produced. They constructed prediction models using decision tree, KNN, Random
Forest, and Bayesian networks, and based on the topology of the pipeline, they identified
leaks and their pressure. Gorenstein [10] demonstrated that the data-driven algorithms
outperform the logic-based model in each metric by at least 5%. Additionally, as algorithms
are trained with new data, their prediction becomes more accurate, but adding attributes
that are connected to geography to the data does not increase the accuracy any further. The
development of more complex prediction algorithms, such as Bayesian belief networks
and deep neural networks, should be the focus of future efforts [10]. The purpose of
developing the logic-based method lies in its structured approach to initial leak and burst
detection. Logic-based algorithms efficiently capture straightforward anomalies that align
with predefined conditions. They offer a clear and interpretable framework for identifying
common patterns and straightforward deviations within the data. However, logic-based
models may struggle with complex or evolving patterns that fall outside the scope of pre-
defined rules. This limitation necessitates the integration of machine learning techniques,
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which excel in capturing intricate patterns and outliers that may not be apparent through
fixed rules alone. In this paper, the relationship between the logic-based method and the
machine learning-based approach is complementary. The logic-based method serves as a
foundational framework for initial detection, providing a structured and efficient approach
to identifying straightforward anomalies. On the other hand, the machine learning-based
approach enhances the detection process by learning from historical data, adapting to
changing conditions, and capturing complex patterns beyond the scope of the fixed rules.
The research achieves a comprehensive and effective approach to leak and burst detection,
leveraging the strengths of each method to enhance overall performance and reliability.
Future research should focus on further refining these methodologies, developing algo-
rithms with fewer false alarms, and optimising sensor deployment to enhance accuracy
and reliability in leak and burst detection. This research aims to develop a methodology for
water pipe leak and burst detection using logic- and machine learning-based approaches.
The developed methodologies can be adopted on pumping mains using live SCADA data
on pressure, flow, and pump speed for quick leak/burst detection.

2. Case Study Pumping Water System for the Detection of Leaks and Bursts

A water supply pumping main system in the Sunbury region, Victoria state, Australia,
has been adopted as the case study system by considering the elevation, pipeline layout,
and availability of data for developing the leak/burst detection methodology. Figure 2
shows the map of the case study area in the Sunbury region, Victoria, Australia, and
Figure 3 presents the simplified detailed diagram of the case study pumping water supply
system with a 450 mm pipeline to the water tank. Water is pumped directly from the trunk
water main to a tank through an Asbestos–Cement pipeline of 450 mm diameter. There is a
pressure sensor and flow meter sensor in the pipeline. The distance between the pumping
station and the tank is 6.24 km. The research methodology was developed using data from
a flow meter, pressure sensor, and pump speed recorder. The pumping station continuously
monitors water flow, pressure, pump speed, and the water level in a tank with a capacity
of 3.72 m (from the extracted SCADA information).
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2.1. Software- and Hardware-Based Methods for the Detection of Leaks and Bursts in the
Water Pipeline

In this research, two methodologies are developed. One is the logic-based method,
and the other is the machine learning-based approach. The overall study is shown in the
flow chart below in Figure 4.
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Figure 4. An overall flow diagram of the leak and burst detection in the water distribution network.

The overall methodology includes understanding the water distribution system,
SCADA data collection, the preprocessing of data for application, and finally developing al-
gorithms for logic- and machine learning-based algorithms for leak and bust identification.

Table 1 shows an example of the extracted SCADA data points as attributed to the
flow, pressure, and pump speed sensors illustrated in Figure 3. The measurements shown
in Table 1 columns 2, 3, and 4 represent readings collected from the SCADA system at
one-minute intervals. Once the pump reaches its maximum speed (1500 rpm), the pump
speed remains constant. The pump speed increases gradually at the start of the pump until
it reaches full speed, and decreases gradually when the pump is being shut down till it
stops. Similar variations can be seen in other recorded parameters during pump start and
shutdown operations.
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Table 1. Extracted SCADA per minute data from the flow meter, pressure sensor, and the pump
speed sensor for the 450 mm pipeline.

Date and Time (Per Min) Pressure (mts) Flow (LPS) Pump Speed (RPM)

01/05/2022 08:05 77.46 252.67 1500

01/05/2022 08:06 77.46 253 1500

01/05/2022 08:07 77.46 252.83 1500

01/05/2022 08:08 77.46 252.67 1500

01/05/2022 08:09 77.2 252.5 1500

01/05/2022 08:10 77.2 252.33 1500

01/05/2022 08:11 77.2 252.17 1500

A total of 20,000 data points based on per minute interval were collected for the
methodology development. Using a part of the collected data set, leak and burst instances
are created and these leak and burst instances are then integrated into the overall dataset,
resulting in a modified dataset containing both normal, leak, and burst data points for
training and testing the algorithms.

2.1.1. Logic-Based (If and Else If Conditions) Algorithm Design for the Detection of Leaks
and Bursts in Water Pipelines Using Flow, Pressure, and Pump Speed Data

Logic-based methods involve defining explicit rules or conditions that, when met,
indicate the presence of specific events or conditions, which are associated with a leak or
burst in a pipeline.

The pressure drop rule is defined as if a sudden and significant pressure drop is
detected in the pipeline over a short period of time, it may indicate a burst, or if the
pressure drop is small over a long period of time in excess of the normal pressure variation
during system operation. The rule could trigger an alarm when the pressure drop exceeds
a predefined threshold. Pump speed variation occurs when the pump speed gradually
increases from 0 to a normal operating speed once started and similarly decreases from the
normal operating speed over a certain period under shutdown conditions.

Logic-based systems can analyse historical data to establish the patterns of normal
behaviour. Deviations from these patterns can be flagged as potential leaks or bursts.
The development of a logic-based algorithm using Python programming language for the
detection of leaks and bursts in water pipelines is rooted in its interpretability, adaptability,
and domain-specific applicability, which can help in addressing the challenges posed by
leak and burst detection.

Figure 5 details the steps involved in the development of the algorithm for leak and burst
identification. The following are the main considerations involved in the development of the
algorithm: (a) collect SCADA data for flow in pumping main, pressure, and pump speed;
(b) estimate variation in pressure and flow (delta ∆P and ∆Q) while the pump is running on
its normal speed for the assessment of threshold values for leaks and burst conditions for
algorithm development; (c) estimate pump speed variation during pump start to full speed
and then decrease in pump speed during pump shutdown condition (identify pump start and
shutdown stages); (d) develop an algorithm (coded in Python) for the identification of leak
and burst conditions and to notify the operator for any leak and burst condition; and (e) in the
case of burst condition, the estimation of approximate burst location.

The following identifications are essential for algorithm development:
Flow anomalies: Unusual flow patterns, such as unexpected increases or decreases

in flow rates, can be indicative of leaks. It is determined by the percentage variations.
Logic-based systems can flag such anomalies for further investigation.
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Pump speed variation: The pump speed gradually increases from 0 to the normal
operating speed of 1500 rpm once started and similarly decreases from the normal operating
speed over a period of 10 min under shutdown conditions in the case study system. The
operation time of the pumps is dependent on the water level in the 0.8 ML tank at the end
of the pumping main.

Historical data analysis for algorithm development: Logic-based systems can analyse
historical data to establish the patterns of normal behaviour. Deviations from these patterns
can be flagged as potential leaks or bursts.

It is hoped that the algorithm developed herein will be used on pumping systems
using live data to help water system operators with leak and burst identification in pipe
networks quickly.

The main tasks in the diagram are from Step 6 to Step 10. The given specified algorithm
outlines a series of steps for detecting leaks and bursts in a water distribution system. The
process begins by reading per-minute input arguments from the command line for flow,
pressure, and pump speed sensor values. Subsequently, threshold values for ∆P (delta
pressure), ∆Q (delta flow), and ∆S (delta speed of the pump) are estimated using the
recorded data; however, these values can be updated periodically.

The following main tasks are involved in the development of the algorithm for the
identification of leaks and bursts:

Task 1 (Steps 1–5): Collect SCADA data for flow in the pumping main, pressure, and pump speed.

Step 1: Read input arguments (name of the data file, configuration file, and pipeline
name) from the command line and parse them. First, the program collects information
about the pressure sensor, flow meter, and pump in the water pipeline. These data include
the name of the data file, a configuration file, and the name of the pipeline.

Step 2: Load the input data (CSV or Excel) and the configuration files (threshold
defined in Yaml), where Yaml is a human-readable data format commonly used for con-
figuration files and data exchange between languages with different data structures. This
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enables the checking of the data file (in CSV or Excel format) and a configuration file that
has a specific threshold in Yaml.

Step 3: Define the helper functions (loading configuration files) for the functioning
of the algorithm. Helper functions in algorithms are small, specialised functions that are
designed to perform a specific task or subtask within a larger algorithm. They are not the
main components of the algorithm but rather an aid in achieving specific functionalities,
making the algorithm more modular, readable, and easier to maintain.

Step 4: Create a lagged variable (shifted by 1 or 10 time units) for the sensor values.
Lagged variables, also known as lag features, are a concept commonly used in time-series
analysis and machine learning, where the past values of a variable are used as features
in predictive modelling. Lagged variables are especially useful when dealing with time-
dependent data.

Step 5: The final stage involves determining the pump’s running status using rules
around the flow meter and pump values.

Task 2 (Steps 6–8): Estimate variation in pressure ∆P, ∆S, and ∆Q while the pump is running
at its normal speed for the assessment of threshold values for leaks and burst conditions.
Any data point that is more than three times the standard deviation is likely a burst.

Step 6: Calculate the running sum of changes (to what extent it changes) in the sensor
values over a certain period of time (during which the pump is running at its full speed).
The running sum is the summing up of the differences between consecutive pressure
readings (per minute) to check the anomalies over normal operating pressure.

Step 7: Check if the running sum value meets the leak or burst threshold. If “yes”, go
to Step 8, and no go to Step 17.

Step 8: Check if the pumps are shutting down, causing pressure to drop by checking
the 10 time lag values with the current value.

If the condition is “yes” from Step 8, go to Step 6 and calculate the running sum of
changes in pressure values. If the condition is “no” then go to Step 9.

Task 3 (Step 9): Estimate pump speed variation during pump start to full speed and
then decrease in pump speed during pump shutdown condition (identify pump start and
shutdown stages).

Step 9: Reset the running sum timers for specific conditions (if the pump is on or off).

Task 4 (Steps 10–12): The identification of leak and burst conditions and notifying the
operator of any leak and burst condition.

Step 10: If the leak/burst thresholds are met, set the leak/burst detected flag to true.
Step 11: Start a counter to track time for Step 10.
Step 12: If the burst detected flag is true for a certain time, confirm the suspicion.
Task 4 involves identifying the leak and burst conditions and notifying the operator

accordingly.

Task 5 (Steps 13–17): Estimate the appropriate leak location along the pressure water main

Step 13: Find head loss Hf in the pressure main based on the current pressure sensor
readings under burst conditions and topography considerations (see Section 2.1.1.1).

Step 14: Find the burst location.
Step 15: Send an alarming mail to the operator with more information.
Step 16: Burst alerts at the start and end of the event.
Step 17: If the running sum value does not meet the burst threshold, reset the burst

threshold values to false.
Task 5 involves estimating the appropriate leak location. In Step 13, the head loss

(Hf) is calculated. Step 14 determines the burst location (Section 2.1.1.1). Following this,
in Step 15, an alarming email containing additional information is sent to the operator.
Step 16 ensures burst alerts are issued at the beginning and end of the event. Lastly,
Step 17 resets the burst threshold values to false if the running sum value does not meet the
burst threshold.
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In case of live data availability, the process will check ongoing data to identify leaks or
bursts based on system capabilities in terms of pressure/flow data availability across the
pressure main.

2.1.1.1. Burst location Identification in a Pumping Main (Case Study System)

The algorithm can identify the approximate location of a leak or burst in pumping or
gravity main systems, provided significant pressure and flow sensors are placed at regular
intervals. In the absence of such an arrangement, the approximate location of a pipe burst
can still be estimated with limited pressure and flow sensors. Using the change (drop) in
pressure head reading at the pumping end, the location of burst LX can be estimated using
any pipe head loss equation.

Darcy–Weisbach’s head loss equation for flow in pipes can be written as follows:

h f =
8 f LQ2

π2gD5 (1)

where f is the friction factor in the pipe, L is the pipe length in meters, D is the pipe diameter
in meters, Q is the fluid flow in cubic m/s, and g is the gravitational constant.

The friction factor f can be estimated using Swamee equation (Swamee, 1993) [11]:

f = 1.325

{
ln

[
ε

3.7D
+ 4.618

(
νD
Q

)0.9
]}−2

(2)

where ε is the average height of the roughness projection of the pipe wall and ν is the
kinematic viscosity of the fluid. Kinematic viscosity can be obtained using Equation (3)
(Swamee, 2004) [12]:

ν = 1.792 × 10−6

[
1 +

(
T
25

)1.165
]−1

(3)

where T is the water temperature in degrees centigrade.
For known head loss in the pipeline, pipe length, and pipe diameter, friction factor

f can be calibrated using Equation (1), and then ε the pipe wall roughness height can be
calculated using Equation (2).

In the case of a pipe burst, the approximate location of the burst from the pumping
station along the pipe can be estimated using the following equation.

PX =
Ed
L

Lx +
8 f Q2

π2gD5 Lx (4)

where PX is the pressure at the sensor at the time of the leak, Lx is the length of the leak
location along the pumping main alignment, L is the length of the pumping main, Ed is the
elevation difference between the pumping main and the service tank. The topography of
the pipe alignment has a uniform gradient in the case study; however, Equation (4) can be
modified to incorporate various gradients at different lengths across the pumping main.

A simple system diagram for leak location detection is shown in Figure 5 below.
Pipe length for leak location LX can be estimated as follows:

LX =
Px

Ed
L +

8 f Q2

π2gD5

(5)

As the pump system head (static head and head loss in pipe) will change due to pipe
burst, and thus, in some pumps the pump characteristics will also change, which can also
be incorporated in the algorithm specific to pump conditions. In Figure 6 below, a pipeline
with a diameter of 0.45 m extends over a length of 6280 m, connecting the pump to a water
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tank. The pump is situated at an elevation of RL 138.3 m, while the tank stands at an
increased level of 196.3 m.
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Alert Generation

As the system operates, the algorithm continuously monitors the real-time pressure
data from the sensors. It compares the current pressure readings with the established
baseline to identify any deviations. The algorithm employs logic-based rules to identify
patterns or anomalies in the pressure data that may indicate a leak. Common logic includes
looking for sudden pressure drops, fluctuations outside expected ranges, or the patterns in-
dicative of leaks. When the algorithm detects a deviation beyond the predefined thresholds
or violates the established logic rules, it triggers an alert. The alert may include information
about the burst occurrence time, the approximate distance of the burst location, and the
potential cause of the detected anomaly including the pressure values, flow meter reading,
and pump speed.

2.1.2. Machine Learning-Based Method for the Detection of Leaks and Bursts in
Water Pipelines

Machine Learning is a subfield of artificial intelligence (AI) that focuses on the devel-
opment of algorithms and models that enable computers to learn patterns from data.

Machine learning algorithms are suitable for detecting leaks and bursts in water
pipelines due to their ability to provide early detection, analyse large datasets comprehen-
sively, and monitor systems in real-time. These algorithms contribute to reducing false
positives, adapting to changing conditions, and optimising maintenance strategies by pre-
dicting potential issues and prioritising areas at risk. The integration of machine learning
with Internet of Things (IoT) devices and sensor networks enhances accuracy and efficiency,
leading to significant cost savings through proactive intervention and efficient resource
allocation. Overall, machine learning can play a crucial role in ensuring the sustainable
management of water resources by improving the reliability and effectiveness of leak and
burst detection in water pipeline systems.

Supervised machine learning requires labelled data, which means you need examples
of both normal and leaky situations in the pipeline to train the model. However, obtaining
labelled data for leaks can be challenging and expensive because leaks are relatively rare
events and may not be readily available for training purposes. Unsupervised learning, on
the other hand, does not require labelled data and can detect anomalies or deviations from
normal behaviour without explicit examples of leaks. Unsupervised learning is a kind of
machine learning in which algorithms are taught without explicit supervision or direction
on unlabelled data.

Unsupervised learning: Unsupervised learning involves finding patterns in unlabelled
data without predefined outcomes. These algorithms find patterns, structures, or correla-
tions within the data. This allows them to do tasks like anomaly identification. Without the
need for labelled examples, unsupervised learning is useful for analysing data, uncovering
hidden patterns, and gaining important insights.
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Prediction and classification: ML models can be used for forecasting (e.g., predicting
future values) and classification (e.g., categorising data into classes).

Unsupervised machine learning focuses on identifying anomalies within unlabelled
data, uncovering deviations from the normal pipeline behaviour that might indicate po-
tential issues. Unsupervised learning, tailored for water pipeline monitoring, discovers
patterns in the unlabelled data autonomously, contributing to the detection of leaks and
bursts. Unlike supervised learning, it identifies inherent structures without predefined
output labels, revealing hidden patterns. Its applications span anomaly detection in fraud
and network security, as well as data preprocessing and feature engineering prior to
supervised learning.

A total of 20,000 data points that represent the leak and non-leak scenarios are used
for creating the machine learning model. The machine learning technique selection and
application process is shown in Figure 7. The comparative studies of different machine
learning models including K-Means, DBSCAN, One-Class SVM, Isolation Forest, and local
outlier factor were conducted.
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The steps (marked in Figure 6) in the machine learning approach for leak and burst
detection are provided below:

Step 1: Collect the data from the existing SCADA for pressure sensors, flow meters, and
pump speeds in the time interval of 1 min for the 20,000 data points.
Step 2: Preprocess the data for algorithm conditions by data cleaning and analysing the
SCADA data.
Step 3: The prepared data will be used for the machine learning algorithms.
Step 4: Different machine learning models will be used for training and testing.
Step 5: The selection of the highest-performing machine learning model with the machine
learning parametric indices (anomaly F1 score and ROC curve—explained below).
Step 6: Implementing the selected model for the detection of leaks and bursts.
Step 7: Alert generation for the leaks and bursts in the pipeline.

As indicated, in the context of detecting leaks and bursts in water pipelines, machine
learning algorithms can play a crucial role in analysing the complex data patterns indicative
of such events. DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
can be applied to data from the sensors distributed along the pipeline network. By identify-
ing the clusters of abnormal data points representing potential leaks or bursts, DBSCAN
can effectively pinpoint the areas of interest for further investigation. On the other hand,
KMEANS clustering can segment the data into distinct clusters, allowing for the detection
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of anomalies in the temporal behaviour of the pipeline, such as sudden pressure drops or
irregular flow rates, which may indicate leaks or bursts [13]. One-Class SVM, trained on the
historical data of normal pipeline operation, can detect deviations from this learned normal
behaviour, signalling the presence of abnormalities like leaks or bursts [14]. Isolation Forest,
by isolating anomalies in the data through random decision trees, can efficiently detect
sudden changes or outliers indicative of leaks or bursts in the pipeline [15]. Lastly, the
local outlier factor (LOF) can identify areas of low-density data points, which could signify
abnormal conditions such as leaks or bursts in the pipeline network [16]. These machine
learning algorithms, when applied judiciously to data collected from water pipeline sys-
tems, offer powerful tools for the early detection and mitigation of leaks and bursts, thereby
enhancing the efficiency and reliability of water distribution networks [17].

Data imbalance in machine learning occurs when one category (usually the minority
category) is significantly underrepresented compared to another category (usually the
majority category) within a dataset. This can lead to biased models that perform poorly in
predicting the minority category. In our case study, the minority category is the leak cases,
and the majority category is the non-leak cases. To address the imbalance issue, several
solutions can be employed, including resampling techniques such as oversampling the
minority category, undersampling the majority category, or using a combination of both.
Additionally, algorithmic approaches like cost-sensitive learning and ensemble methods
can help mitigate the effects of data imbalance. Two widely used resampling techniques are
ADASYN (Adaptive Synthetic Sampling) and SMOTE (Synthetic Minority Over-sampling
Technique). ADASYN focuses on generating synthetic samples for the minority category
based on their distribution density, while SMOTE creates synthetic instances along the line
segments joining the k minority class nearest neighbours. By synthesising new instances
from the minority category, both ADASYN and SMOTE aim to balance the distribution and
improve the performance of machine learning models [15].

The effect of data imbalance for each ML algorithm is shown in Table 2, where it
can be observed that the anomaly F1 score and ROC-AUC values of the algorithms are
very low compared to balanced data. We use the oversampling methods ADASYN and
SMOTE for improving the performance of machine learning algorithms in leak detection.
In scenarios where positive instances (leaks) are significantly outnumbered by negative
instances (non-leaks), these techniques address the data imbalance by generating synthetic
samples for the minority category. By creating a more balanced training dataset, ADASYN
and SMOTE help prevent bias and overfitting, and enhance the model’s generalisation
to accurately identify leaks in water pipeline systems. These methods contribute to a
more representative decision boundary, increased sensitivity to anomalies, and improved
performance metrics, making them essential tools for building accurate and robust leak
detection models.

Table 2. The outcome depicted in Figure 8 is provided in Table below for further clarity.

Type of
Leakage Date Time Pressure (m) Flow (lps) Pump Speed

(rpm)
Max.

Pressure (m)
Pressure

Percentage Change
Leak

Location

Minor
leakage

1 May 2022 16:08:00 75 259.67 1500 79.04 5.11

1 May 2022 16:09:00 75 260 1500 79.04 5.11

1 May 2022 16:10:00 75 260.33 1500 79.04 5.11

1 May 2022 16:11:00 75 260.67 1500 79.04 5.11

1 May 2022 16:12:00 75 261 1500 79.04 5.11

Burst

6 May 2022 15:05:00 61.18 245.83 1500 76.66 20.19 5237

6 May 2022 15:06:00 61.18 246 1500 76.66 20.19 5235.52

6 May 2022 15:07:00 61.18 245.83 1500 76.66 20.19 5237

6 May 2022 15:08:00 60.97 245.67 1500 76.66 20.47 5220.5
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Table 2. Cont.

Type of
Leakage Date Time Pressure (m) Flow (lps) Pump Speed

(rpm)
Max.

Pressure (m)
Pressure

Percentage Change
Leak

Location

Major
leakage

11 May 2022 17:55:00 65 245.67 1500 77.33 15.94

11 May 2022 17:56:00 65 245.33 1500 77.33 15.94

11 May 2022 17:57:00 65 245 1500 77.33 15.94

11 May 2022 17:58:00 65 244.67 1500 77.33 15.94

11 May 2022 17:59:00 65 244.33 1500 77.33 15.94

11 May 2022 18:00:00 69 244 1500 77.33 10.77
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The F1 score is the harmonic mean of precision and recall and is often used in bi-
nary classification and anomaly detection problems. It is calculated using the following
Equation (6) [18,19]:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(6)

where precision is the proportion of data points identified as anomalies by the model that
are anomalies and is calculated using Equation (7). True positive is the proportion of actual
anomalies that are correctly identified as anomalies. False positive is the proportion of
non-anomalous data points that are incorrectly classified as anomalies. Recall (sensitivity)
is the proportion of actual anomalies that are correctly identified by the model and is
calculated using Equation (8).

Precision =
True Positives

True Positives + False Positives
(7)

Recall(Sensitivity) =
True Positives

True Positives + False Negative
(8)
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In evaluating the predictive models for leakage within the pipeline network, it is
crucial to consider performance metrics such as the true positive rate and false positive rate.
The true positive rate, also known as sensitivity or recall, measures the proportion of actual
positive cases that are correctly identified by the model as positive. In the context of leak
detection, it signifies the accuracy of the model in correctly identifying instances of leakage,
ensuring timely intervention and maintenance. Conversely, the false positive rate measures
the proportion of negative cases that are incorrectly classified as positive by the model. In
leak detection, a high false positive rate could lead to unnecessary resource allocation and
operational disruptions. Balancing these rates is essential for optimizing the efficiency and
reliability of the predictive model in detecting and managing pipeline integrity issues.

The Receiver Operating Characteristic (ROC) curve is a graphical representation that
illustrates the trade-off between the true positive rate (sensitivity) and the false positive rate
across the different thresholds of a predictive model. The Area Under the ROC Curve (ROC
AUC) quantifies the overall performance of the model across all the possible threshold
values. It represents the probability that the model will rank a randomly chosen positive
instance higher than a randomly chosen negative instance. Mathematically, ROC AUC is
calculated as the integral of the true positive rate with respect to the false positive rate,
ranging from 0 to 1. This integral captures the entire area under the ROC curve, providing
a single scalar value that summarizes the model’s discriminatory power. A higher ROC
AUC value indicates better overall performance of the model in distinguishing between
positive and negative instances, with a value of 1 representing a perfect classifier.

The ROC AUC (Receiver Operating Characteristic Area Under the Curve) is a measure
of the area under the ROC curve, which plots the true positive rate (sensitivity) against the
false positive rate (1 − specificity) at various thresholds. The ROC AUC is calculated using
Equation (9) [20,21]:

ROC AUC =
∫ 1

0
True Positive Rate(Sensitivity) d(False Positive Rate) (9)

3. Results
3.1. Logic-Based Approach for Leak and Burst Detection
3.1.1. Estimation of Delta Pressure (∆P) and Delta Discharge (∆Q) for Case Study System

The values of ∆P and ∆Q can be estimated using the system running data (Table 1) for
different time periods. Figure 7 below shows the variation in P and Q under the normal
running conditions of the system. As can be seen from Figure 8a, the variation in pressure
P at a time will be with ∆P and similarly, the variation in flow Q will be within a range of
∆Q. These can be written in the following form:

P = Paverage ± ∆P (10)

Q = Qaverage ± ∆Q (11)

For the case study, ∆P was estimated as ± 0.6 m (1.3%) and ∆Q as ± 3.25 L/s (2.65%);
and average P was 77.2 m and Q as 248 L/s.

Under no leak condition, the variation in pressure and flow at any time should be
within ∆P and ∆Q. The pump start and shutdown conditions are also checked from the
data. If the pump is running at normal speed and the variation in pressure and flow is two
to three times the ∆P and ∆Q, a leak condition can be triggered. On the other hand, if there
is a significant sudden change in pressure, a leak condition can be triggered. Developing
the conditions for a leak would require a significant analysis of system data.
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3.1.2. Estimation of Friction Factor in Pipe and Pipe Roughness

The friction factor for the pipeline can be calculated using Equation (12) and the
known pumping main system values for flow, pipe length, pipe diameter, and headloss
(Q = 248 L/s, L = 6240 m, D = 0.45 m, g = 9.81 and hf =16.3 m) as follows:

f =
h f π2gD5

8LQ2 =
16.3 × 3.142 × 9.81 × 0.455

8 × 6240 × 0.2482 = (12)

The estimated friction factor will be used in Equation (5) for the estimation of the
approximate location of the pipe burst. For the estimation of potential leak location, a
significant number of pressure and flow meters would be required at suitable intervals
across the pipe.

3.1.3. Categories in the Detection of Leaks and Burst

Leakage severity within the pipeline network is categorised into distinct levels based
on percentage thresholds (% pressure drop). Based on the % pressure drop, the following
categories were developed:

Minor leak: Instances where the percentage threshold falls below 15 (15% pressure drop
from Paverage) are classified as minor leakage, indicating relatively minor disturbances in
the system.
Major leak: When the percentage thresholds range between 15% and 20%, the severity
escalates to major leakage, signifying a more significant impact on the pipeline’s integrity
and functionality.
Burst: Any leakage surpassing the threshold of 20% is categorised as a burst, representing
a critical burst in the pipeline system that requires immediate attention and intervention to
prevent further damage or disruptions.

These categorisations provide a structured framework for assessing and prioritising
responses to pipeline integrity issues, aiding in efficient maintenance and management
strategies. Detailed system-specific assessment will be required to select the threshold
values for these categories.

3.1.4. Leak and Burst Identification

Alerts are produced to detect bursts and leaks. The type of alert indicates whether it is
a burst or a leak, along with details such as the time of occurrence, pressure, flow, pump
speed readings, and the distance to the location of the burst. As indicated earlier, the leaks
and bursts are grouped into three categories: minor leakage, major leakage, and burst. The
screenshot of the outcome is shown in Figure 9. It shows the detection of minor leakage,
major leakage, and burst detection outcomes using the logic-based approach.
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Down below in Figure 10 is the graphical analysis of the pressure (P) data plotted
using Python 3.12.4 in the 450 mm pipeline. Minor leaks, major leaks, and bursts are
detected based on the three categories of alert systems.
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Any data point that is more than three times the standard deviation is almost certainly
an anomaly or an outlier [22]. The detection of leakage is shown in a vertical red dotted
line and burst is shown in a vertical black dotted line in Figure 9.

3.2. Machine Learning Approach
3.2.1. Selection of Suitable Machine Learning Techniques

The outcomes of a comprehensive comparison involving diverse machine learning
models, namely DBSCAN, Isolation Forest, KMEANS, local outlier factor, and One-class
SVM are discussed in this section. The criteria for selecting the machine learning models
are as follows:

KMeans: Used for clustering data into two clusters based on normalised and standardised
features.
Isolation Forest: Effective for anomaly detection with the ability to handle high-dimensional data.
Local Outlier Factor: Computes the local deviation of the density of a sample with respect
to its neighbors.
DBSCAN: Good for identifying clusters of varying shapes and sizes and isolating points
that do not belong to any cluster.
One-Class SVM: Suitable for novelty detection (identifying anomalies) by mapping data to
a higher-dimensional space.
Data Preprocessing: Normalisation and standardisation were performed on both training
and test data to ensure consistency in feature scaling.
Evaluation: Models were evaluated using F1 score as a metric, considering both normal
and anomaly classes.

In the Table 3 below, the hyper-parameter settings and the Python libraries used for
implementation are provided.

Following the initial analysis, various performance enhancement techniques, including
ADASYN and SMOTE, were employed to refine the models. Notably, the local outlier
factor emerged as the most effective among the examined models, exhibiting the highest
anomaly F1 score and ROC curve Area Under the Curve (AUC) value. These findings
underscore the superior performance of the local outlier factor in the context of anomaly
detection, offering valuable insights for the advancement of robust and precise machine
learning models in similar applications. The anomaly F1 score of the local outlier factor
outperforms the other machine learning models. Local outlier factor, without resampling,
is 0.12 and with SMOTE it is 0.67 and with ADASYN it is 0.69. The Receiver Operating
Characteristic (ROC curve) of the local outlier factor with SMOTE and ADASYN are 0.71
and 0.72. The lowest anomaly F1 score is for DBSCAN with an F1 score of 0.02 after SMOTE
analysis and 0.11 after the ADASYN analysis. It is shown in Table 4.
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Table 3. Hyper-parameter settings and the Python libraries used for different machine learning models.

Algorithm Type Classifiers Hyper-Parameters Python Library

Unsupervised machine
learning algorithms

KMEANS

• n_clusters: 2 (fixed to 2 clusters
for binary classification)

• init: k-means++
• algorithm: auto
• max_iter: 500

from sklearn.cluster import KMeans

DBSCAN

• algorithm: ball_tree
• leaf_size: 30
• eps: 0.3
• min_samples: 5
• metric: l2

from sklearn.cluster import
DBSCAN

Isolation Forest

• n_estimators: 200
• contamination: 0.03
• bootstrap: False
• warm_start: True

from sklearn.ensemble import
IsolationForest

Local Outlier
Factor

• n_neighbors: 15
• leaf_size: 30
• contamination: 0.05
• algorithm: brute

from sklearn.neighbors import
LocalOutlierFactor

One-class SVM

• kernel: poly
• degree: 5
• nu: 0.5
• tol: 0.001
• coef0: 0
• gamma: auto

from sklearn.svm import
OneClassSVM

Table 4. Performance comparison of different machine learning models with different techniques.

Anomaly F1 Score ROC-AUC

Machine
Learning Models

Imbalanced
Data

Balanced
ROS

Balanced
SMOTE

Balanced
ADASYN

Imbalanced
Data

Balanced
ROS

Balanced
SMOTE

Balanced
ADASYN

DBSCAN 0.08 0.00 0.02 0.11 0.58 0.45 0.46 0.49

ISOLATION
FOREST 0.13 0.65 0.64 0.64 0.61 0.65 0.64 0.64

K-MEANS 0.01 0.04 0.04 0.14 0.49 0.47 0.47 0.53

Local Outlier Factor 0.12 0.00 0.67 0.69 0.77 0.41 0.71 0.72

One-class SVM 0.13 0.07 0.07 0.05 0.61 0.49 0.49 0.48

3.2.2. Web-Based Platform for Machine Learning Outcome

The local outlier factor algorithm selected in the previous step is employed to detect
the leaks and bursts by developing a web-based platform as in Figures 10 and 11. The
pressure and flow data from the SCADA setup is collected in the form of a CSV file and
is provided as input to the application; the application then predicts the leak or burst
condition if any exists, pinpointing the time at which it occurred. Figure 10 shows the
forecasted instances of leaks within the 450 mm pipeline network at a precise time point,
providing valuable insights into potential vulnerabilities and areas requiring maintenance
or monitoring. Meanwhile, Figure 11 depicts the anticipated occurrences of leakage and
Figure 12 depicts the occurrences of bursts within the same pipeline network, offering
crucial information for proactive maintenance strategies and risk mitigation measures.
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These predictive models enable efficient resource allocation and proactive manage-
ment, enhancing the resilience and reliability of the pipeline infrastructure.

4. Conclusions

In conclusion, this study presents a novel framework for leak and burst detection
in water distribution networks. Through comprehensive modelling and analysis, our
methodology has demonstrated promising results in identifying leaks and bursts within
the network.

Logic-based and machine learning-based models have been developed and anal-
ysed/validated using the Melbourne metro area-based pumping water system’s modified
historical SCADA data to detect the leaks and bursts. These models are based on system
parameters such as flow, pressure, pump speeds, pump operating conditions, and system
hydraulic characteristics.

The section on the most appropriate machine learning model was based on the identi-
fication of five models used recently in the literature, namely DBSCAN, Isolation Forest,
KMEANS, local outlier factor, and One-class SVM. Following the initial analysis, various
performance enhancement techniques, including ADASYN and SMOTE, were employed
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to refine the models. This analysis allows for the evaluation of different algorithms’ perfor-
mance in detecting leaks and bursts within the water distribution system. It helps to assess
each model’s strengths and weaknesses in handling the dataset, thereby providing insights
into the suitability of various machine learning techniques for the task at hand.

A comparative study of multiple machine learning algorithms was conducted using
the data obtained from the SCADA system. The findings indicate that the local outlier
factor (LOF) algorithm achieved an F1 score of 0.69 and an ROC-AUC of 0.72 in predict-
ing leakages. This trained LOF model has been integrated into a web-based platform
designed to predict leakages for new data inputs. The platform processes real-time data
and determines the presence of leaks through a user-friendly web interface.

Logic-based and machine learning-based methodologies have been developed and
analysed through their application to aid a Melbourne metro area-based case study system
to detect the leaks and bursts in the water pumping main. The logic-based algorithm for
the detection of leaks and bursts in the water pipeline is based on parameters such as flow,
pressure, pump speeds, pump operating conditions, and system hydraulic parameters. The
relationship between the logic-based and machine learning approaches is complimentary.
Logic-based algorithms provide a structured method for initial leak and burst detection.
They are efficient in capturing straightforward anomalies that match predefined conditions.
However, they might struggle with identifying complex or evolving patterns that fall
outside the scope of the predefined rules. Machine learning algorithms enhance the
detection process by learning from historical data and adapting to changing conditions.
They excel in capturing complex patterns and outliers that might not be apparent through
the fixed rules alone. Machine learning can also assist in refining logic-based rules by
providing insights into new conditions or scenarios that are not initially considered. There
exist various machine learning approaches in the literature and to select a suitable machine
learning technique, a comparative analysis of different machine models has been conducted.

Further, a web-based platform has been developed for leak and burst detection using
a selected machine learning model, thus demonstrating the automation of the process of
leak and burst detection using the machine learning approach. The fact that LOF and other
machine learning models outperform this logic-based approach highlights the effectiveness
of data-driven, probabilistic methods in handling complex patterns and variations within
the data. It is worth noting that machine learning models, such as LOF, leverage statistical
and probabilistic techniques to identify patterns and anomalies in data, learning from the
inherent structures present in the dataset. This adaptability allows them to potentially
outperform logic-based systems in scenarios where the relationships between variables are
intricate or dynamic.

By utilising real-time sensor data and historical operational information, our approach
has shown significant improvements in detecting subtle deviations indicative of leaks or
bursts, thereby minimising water loss and infrastructure damage. Furthermore, the scala-
bility and robustness of our framework make it well suited for practical implementation
across diverse water distribution network environments. Compatibility with the existing
infrastructure, coupled with efficient data acquisition and processing mechanisms, ensures
seamless integration into operational workflows. To support our conclusions, we provide
quantitative data from extensive experimentation conducted on real-world datasets, show-
casing the efficacy and reliability of our methodology in detecting and mitigating network
anomalies. Looking ahead, future research endeavours could focus on further refining our
framework through the incorporation of advanced machine learning techniques with live
data from the water distribution network. Additionally, they could focus on finding out
the optimal allocation of sensors in the water network.

In summary, our study contributes to advancing the state-of-the-art in leak and burst
detection methodologies, offering a robust and scalable solution that holds promise for
improving the efficiency and reliability of water distribution network management in the
years to come.
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5. Future Recommendations

The performance of machine learning can be further improved by conducting the
study in real-time situations using system live data and significant historical data points
for leak and burst conditions.
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